
Scalable Database Server

HiRDB Version 8
UAP Development Guide Part I

3020-6-356(E)

Relevant program products
List of program products:
For the HP-UX 11.0, HP-UX 11i, or HP-UX 11i V2 (PA-RISC) operating system:
P-1B62-1182 HiRDB/Single Server Version 8 08-00
P-1B62-1382 HiRDB/Parallel Server Version 8 08-00
P-1B62-1582 HiRDB/Single Server Version 8 (64) 08-00
P-1B62-1782 HiRDB/Parallel Server Version 8 (64) 08-00
P-1B62-1B82 HiRDB/Run Time Version 8 08-00
P-1B62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-1B62-1D82 HiRDB/Run Time Version 8(64) 08-00
P-1B62-1E82 HiRDB/Developer's Kit Version 8 (64) 08-00
P-F1B62-11823 HiRDB Staticizer Option Version 8 08-00
P-F1B62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F1B62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F1B62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the HP-UX 11i V2 (IPF) operating system:
P-1J62-1582 HiRDB/Single Server Version 8 (64) 08-00
P-1J62-1782 HiRDB/Parallel Server Version 8 (64) 08-00
P-1J62-1D82 HiRDB/Run Time Version 8 (64) 08-00
P-1J62-1E82 HiRDB/Developer's Kit Version 8(64) 08-00
P-F1J62-11823 HiRDB Staticizer Option Version 8 08-00
P-F1J62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F1J62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F1J62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the Solaris 8, 9, or 10 operating system:
P-9D62-1182 HiRDB/Single Server Version 8 08-00
P-9D62-1382 HiRDB/Parallel Server Version 8 08-00
P-9D62-1582 HiRDB/Single Server Version 8 (64) 08-00
P-9D62-1782 HiRDB/Parallel Server Version 8 (64) 08-00
P-9D62-1B82 HiRDB/Run Time Version 8 08-00
P-9D62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-9D62-1D82 HiRDB/Run Time Version 8(64) 08-00
P-9D62-1E82 HiRDB/Developer's Kit Version 8(64) 08-00
P-F9D62-11823 HiRDB Staticizer Option Version 8 08-00
P-F9D62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F9D62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F9D62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the AIX(R) 5L V5.1, V5.2, or V5.3 operating system:
P-1M62-1182 HiRDB/Single Server Version 8 08-00
P-1M62-1382 HiRDB/Parallel Server Version 8 08-00
P-1M62-1582 HiRDB/Single Server Version 8 (64) 08-00
P-1M62-1782 HiRDB/Parallel Server Version 8 (64) 08-00
P-1M62-1B82 HiRDB/Run Time Version 8 08-00
P-1M62-1C82 HiRDB/Developer's Kit Version 8 08-00

P-1M62-1D82 HiRDB/Run Time Version 8(64) 08-00
P-1M62-1E82 HiRDB/Developer's Kit Version 8(64) 08-00
P-F1M62-11823 HiRDB Staticizer Option Version 8 08-00
P-F1M62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F1M62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F1M62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the Red Hat Linux 7.1, Red Hat Linux 7.2, Red Hat Enterprise Linux AS 2.1, Red Hat Enterprise Linux AS 3 (x86), Red Hat
Enterprise Linux ES 3 (x86), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise
Linux AS 3 (AMD64 & Intel EM64T),* Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), or Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T) operating system:
P-9S62-1182 HiRDB/Single Server Version 8 08-00
P-9S62-1382 HiRDB/Parallel Server Version 8 08-00
P-9S62-1B82 HiRDB/Run Time Version 8 08-00
P-9S62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-F9S62-11823 HiRDB Staticizer Option Version 8 08-00
P-F9S62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F9S62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F9S62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
* Only operating systems that run on the Intel EM64T are supported.

For the Red Hat Enterprise Linux AS 3 (AMD64 & Intel EM64T),* Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), or
Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T) operating system:
P-9W62-1182 HiRDB/Single Server Version 8 08-00
P-9W62-1382 HiRDB/Parallel Server Version 8 08-00
P-9W62-1B82 HiRDB/Run Time Version 8 08-00
P-9W62-1C82 HiRDB/Developer's Kit Version 8 08-00
* Only operating systems that run on the Intel EM64T are supported.
For the Red Hat Enterprise Linux AS 3 (IPF) or Red Hat Enterprise Linux AS 4 (IPF) operating system:
P-9V62-1182 HiRDB/Single Server Version 8 08-00
P-9V62-1382 HiRDB/Parallel Server Version 8 08-00
P-9V62-1B82 HiRDB/Run Time Version 8 08-00
P-9V62-1C82 HiRDB/Developer's Kit Version 8 08-00
P-F9V62-11823 HiRDB Staticizer Option Version 8 08-00
P-F9V62-11825 HiRDB Non Recover Front End Server Version 8 08-00
P-F9V62-11826 HiRDB Advanced High Availability Version 8 08-00
P-F9V62-11827 HiRDB Advanced Partitioning Option Version 8 08-00
For the Windows 2000, Windows XP Professional, Windows XP x64 Edition, Windows Server 2003, Windows Server 2003 x64
Edition, Windows Server 2003 R2, or Windows Server 2003 R2 x64 Edition operating system:
P-2462-7187 HiRDB/Single Server Version 8 08-00
P-2462-7387 HiRDB/Parallel Server Version 8 08-00
P-2462-7H87 HiRDB Non Recover Front End Server Version 8 08-00
P-2462-7J87 HiRDB Advanced High Availability Version 8 08-00
P-2462-7K87 HiRDB Advanced Partitioning Option Version 8 08-00
For the Windows XP x64 Edition or Windows Server 2003 x64 Edition operating system:
P-2962-7187 HiRDB/Single Server Version 8 08-00
P-2962-7387 HiRDB/Parallel Server Version 8 08-00

P-2962-1187 HiRDB/Run Time Version 8 08-00
P-2962-1287 HiRDB/Developer's Kit Version 8 08-00
For the Windows Server 2003 (IPF) operating system:
P-2862-7187 HiRDB/Single Server Version 8 08-00
P-2862-7387 HiRDB/Parallel Server Version 8 08-00
P-2862-1187 HiRDB/Run Time Version 8 08-00
P-2862-1287 HiRDB/Developer's Kit Version 8 08-00
P-2862-7H87 HiRDB Non Recover Front End Server Version 8 08-00
P-2862-7J87 HiRDB Advanced High Availability Version 8 08-00
P-2862-7K87 HiRDB Advanced Partitioning Option Version 8 08-00
For the Windows 2000, Windows XP, Windows XP x64 Edition, Windows Server 2003, or Windows Server 2003 x64 Edition
operating system:
P-2662-1187 HiRDB/Run Time Version 8 08-00
P-2662-1287 HiRDB/Developer's Kit Version 8 08-00
This edition of the manual is released for the preceding program products, which have been developed under a quality management
system that has been certified to comply with ISO9001 and TickIT. This manual may also apply to other program products; for
details, see Before Installing or Readme file (for the UNIX version, see Software Information or Before Installing).

Trademarks
ActiveX is a trademark of Microsoft Corp. in the U.S. and other countries.
AIX is a registered trademark of the International Business Machines Corp. in the U.S.
CORBA is a registered trademark of Object Management Group, Inc. in the United States.
DataStage, MetaBroker, MetaStage and QualityStage are trademarks of International Business Machines Corporation in the United
States, other countries, or both.
DB2 is a registered trademark of the International Business Machines Corp. in the U.S.
HACMP/6000 is a trademark of the International Business Machines Corp. in the U.S.
HP-UX is a product name of Hewlett-Packard Company.
IBM is a registered trademark of the International Business Machines Corp. in the U.S.
Itanium is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.
JBuilder is a trademark of Borland Software Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds.
Lotus, 1-2-3 are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
Microsoft Access is a registered trademark of Microsoft Corporation in the U.S. and other countries.
Microsoft Excel is a product name of Microsoft Corp.
Microsoft is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Motif is a registered trademark of the Open Software Foundation, Inc.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ODBC is Microsoft's strategic interface for accessing databases.
OLE is the name of a software product developed by Microsoft Corporation and the acronym for Object Linking and Embedding.
ORACLE is a registered trademark of Oracle Corporation.
Oracle8i is a trademark of ORACLE Corporation.
Oracle9i is a trademark of ORACLE Corporation.
Oracle 10g is a trademark of ORACLE Corporation.
OS/390 is a trademark of the International Business Machines Corp. in the U.S.
POSIX stands for Portable Operating System Interface for Computer Environment, which is a set of standard specifications

published by the Institute of Electrical and Electronics Engineers, Inc.
RISC System/6000 is a registered trademark of the International Business Machines Corp. in the U.S.
Solaris is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Sun Microsystems is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
The right to use the trademark DCE in Japan is sub-licensed from OSF.
UNIFY2000 is a product name of Unify Corp.
UNIX is a registered trademark of The Open Group in the United States and other countries.
VERITAS is a trademark or registered trademark of Symantec Corporation in the U.S. and other countries.
Visual Basic is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual C++ is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual Studio is a registered trademark of Microsoft Corp. in the U.S. and other countries.
WebLogic is a registered trademark of BEA Systems, Inc.
Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows NT is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows Server is a registered trademark of Microsoft Corp. in the U.S. and other countries.
X/Open is a registered trademark of X/Open Company Limited in the U.K. and other countries.
X Window System is a trademark of X Consortium, Inc.
The following program products include material copyrighted by Sun Microsystems, Inc.: P-9D62-1182, P-9D62-1382,
P-9D62-1582, P-9D62-1782, P-9D62-1B82, P-9D62-1C82, P-9D62-1D82, P-9D62-1E82, P-F9D62-11823, P-F9D62-11825,
P-F9D62-11826, and P-F9D62-11827.
The following program products include material copyrighted by UNIX System Laboratories, Inc.: P-9D62-1182, P-9D62-1382,
P-9D62-1582, P-9D62-1782, P-9D62-1B82, P-9D62-1C82, P-9D62-1D82, P-9D62-1E82, P-F9D62-11823, P-F9D62-11825,
P-F9D62-11826, and P-F9D62-11827.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3020-6-356(E)): March, 2007

Copyright
All Rights Reserved. Copyright (C) 2007, Hitachi, Ltd.

i

Preface

This manual describes the following items:
• Basic information needed to develop user application programs using SQL.

HiRDB Scalable Database Server Version 8 uses SQL as a database language.
• Environment setup for HiRDB Client

In this manual, a user application program is referred to as a UAP.

Intended readers
This manual is intended for users who will be constructing or operating HiRDB
Version 8 ("HiRDB") relational database systems.
It is assumed that readers of this manual have the following:

• For Windows systems, a basic knowledge of managing Windows
• For UNIX Systems, a basic knowledge of managing UNIX or Linux
• A basic knowledge of SQL
• A basic knowledge of programming in C language, COBOL, or Java

Because this manual assumes knowledge of the information presented in HiRDB
Version 8 Description, readers should read that manual first.

Organization of this manual
This manual consists of the following 16 chapters and 9 appendixes:
Chapter 1. Overview

This chapter explains the work flow for creating UAPs and the types of SQL
statements to be used.

Chapter 2. Database Operations
This chapter explains the data expressions used in a HiRDB database and the
basic database operations.

Chapter 3. UAP Design
This chapter explains issues to be taken into consideration in designing a UAP.

Chapter 4. UAP Design for Improving Performance and Handling
This chapter describes issues that UAP designers should consider to improve
UAP performance and usability.

ii

Chapter 5. Notes about Creating UAPs that Access Object Relational Databases
This chapter describes notes about creating UAPs that access object relational
databases.

Chapter 6. Client Environment Setup
This chapter explains the procedure for installing a HiRDB client and describes
the environment definition for creating and executing a UAP.

Chapter 7. UAP Creation
This chapter explains the creation of embedded SQL UAPs written in C or
COBOL.

Chapter 8. Preparation for UAP Execution
This chapter explains the flow from UAP preprocessing to execution and the
methods used in those operations.

Chapter 9. Java Stored Procedures and Java Stored Functions
This chapter explains the development of stored procedures and stored functions
with Java.

Chapter 10. UAP Troubleshooting
This chapter explains collection of historical information for UAP execution and
error information; also explains the UAP error types and recovery methods.

Chapter 11. Using a Distributed Database
This chapter explains the creation of a UAP that accesses a distributed database.

Chapter 12. Command Execution from UAPs
This chapter explains the execution of commands from UAPs.

Chapter 13. HiRDB Access from ODBC Application Programs
This chapter explains the ODBC driver installation procedure and ODBC
functions.

Chapter 14. HiRDB Access from OLE DB Application Programs
This chapter explains HiRDB access from OLE DB application programs.

Chapter 15. HiRDB Access from ADO.NET-compatible Application Programs
This chapter describes how to access HiRDB from application programs that are
compliant with ADO.NET.

Chapter 16. Type2 JDBC Driver
This chapter explains the Type2 JDBC driver installation and JDBC functions.

iii

Chapter 17. Type4 JDBC Driver
This chapter explains the Type4 JDBC driver installation and JDBC functions.

Chapter 18. SQLJ
This chapter explains how to use SQLJ to develop a UAP.

Appendix A. SQL Communications Area
This appendix explains the organization and contents of the SQL
Communications Area, as well as expansion of the SQL Communications Areas.

Appendix B. SQL Descriptor Area
This appendix explains the organization and contents of the SQL Descriptor Area,
as well as expansion of the SQL Descriptor Area.

Appendix C. Column Name Descriptor Area
This appendix explains the organization and contents of the Column Name
Descriptor Area, as well as expansion of the Column Name Descriptor Area.

Appendix D. Type Name Descriptor Area
This appendix explains the organization and contents of the Type Name
Descriptor Area and expansion of the area.

Appendix E. SQL Data Types and Data Descriptions
This appendix explains the correspondence between the SQL data types and the
C data descriptions, and the correspondence between the SQL data types and the
COBOL data descriptions.

Appendix F. Data Dictionary Table Retrieval
This appendix explains the contents of the data dictionary tables and how to
reference them.

Appendix G. Functions provided by HiRDB
This appendix explains the hash function for table partitioning, the space
conversion function, the function for conversion to a DECIMAL signed
normalized number, and the function that sets the character code classification.

Appendix H. Maximum and Minimum HiRDB Values
This appendix explains the HiRDB maximum and minimum values.

Related publications
This manual is related to the following manuals, which should be read as required.
HiRDB (for Windows)

iv

• For Windows Systems HiRDB Version 8 Description (3020-6-351(E))
• For Windows Systems HiRDB Version 8 Installation and Design Guide

(3020-6-352(E))
• For Windows Systems HiRDB Version 8 System Definition (3020-6-353(E))
• For Windows Systems HiRDB Version 8 System Operation Guide

(3020-6-354(E))
• For Windows Systems HiRDB Version 8 Command Reference (3020-6-355(E))

HiRDB (for UNIX)
• For UNIX Systems HiRDB Version 8 Description (3000-6-351(E))
• For UNIX Systems HiRDB Version 8 Installation and Design Guide

(3000-6-352(E))
• For UNIX Systems HiRDB Version 8 System Definition (3000-6-353(E))
• For UNIX Systems HiRDB Version 8 System Operation Guide (3000-6-354(E))
• For UNIX Systems HiRDB Version 8 Command Reference (3000-6-355(E))
• HiRDB Staticizer Option Version 7 Description and User's Guide

(3000-6-282(E))
• For UNIX Systems HiRDB Version 8 Disaster Recovery System Configuration

and Operation Guide (3000-6-364)*

HiRDB (for UNIX and Windows)
• HiRDB Version 8 SQL Reference (3020-6-357(E))
• HiRDB Version 8 Messages (3020-6-358(E))
• HiRDB Datareplicator Version 8 Description, User's Guide and Operator's

Guide (3020-6-360(E))
• HiRDB Dataextractor Version 8 Description, User's Guide and Operator's Guide

(3020-6-362(E))
* This manual has been published in Japanese only; it is not available in English.
You must use the UNIX or the Windows manuals, as appropriate to the platform you
are using.
Others

• HiRDB External Data Access Version 7 Description and User's Guide
(3000-6-284(E))

• Distributed Database System DF/UX (3000-3-248(E))

v

• COBOL85 Operations Guide (3020-3-747(E))
• OpenTP1 Version 6 System Definition (3000-3-943(E))
• OpenTP1 Version 6 Programming Reference C Language (3000-3-945(E))
• OpenTP1 Version 6 Programming Reference COBOL Language (3000-3-946(E))
• TP1/LINK USER'S GUIDE (3000- 3-390(E))
• TPBroker User's Guide (3000-3-555(E))

Organization of HiRDB manuals
The HiRDB manuals are organized as shown below. For the most efficient use of these
manuals, it is suggested that they be read in the order they are shown, going from left
to right.

vi

Conventions: Abbreviations
Unless otherwise required, this manual uses the following abbreviations for product
and other names.

vii

Name of product or other entity Representation

HiRDB/Single Server Version 8 HiRDB/Single
Server

HiRDB or
HiRDB Server

HiRDB/Single Server Version 8(64)

HiRDB/Parallel Server Version 8 HiRDB/Parallel
Server

HiRDB/Parallel Server Version 8(64)

HiRDB/Developer's Kit Version 8 HiRDB/
Developer's Kit

HiRDB Client

HiRDB/Developer's Kit Version 8(64)

HiRDB/Run Time Version 8 HiRDB/Run Time

HiRDB/Run Time Version 8(64)

HiRDB Datareplicator Version 8 HiRDB Datareplicator

HiRDB Dataextractor Version 8 HiRDB Dataextractor

HiRDB Text Search Plug-in Version 7 HiRDB Text Search Plug-in

HiRDB Spatial Search Plug-in Version 3 HiRDB Spatial Search Plug-in

HiRDB Staticizer Option Version 8 HiRDB Staticizer Option

HiRDB LDAP Option Version 8 HiRDB LDAP Option

HiRDB Advanced Partitioning Option Version 8 HiRDB Advanced Partitioning Option

HiRDB Advanced High Availability Version 8 HiRDB Advanced High Availability

HiRDB Non Recover Front End Server Version 8 HiRDB Non Recover FES

HiRDB Disaster Recovery Light Edition Version 8 HiRDB Disaster Recovery Light
Edition

HiRDB External Data Access Version 8 HiRDB External Data Access

HiRDB External Data Access Adapter Version 8 HiRDB External Data Access Adapter

HiRDB Adapter for XML - Standard Edition HiRDB Adapter for XML

HiRDB Adapter for XML - Enterprise Edition

HiRDB Control Manager HiRDB CM

HiRDB Control Manager Agent HiRDB CM Agent

viii

Hitachi TrueCopy TrueCopy

Hitachi TrueCopy basic

TrueCopy

TrueCopy remote replicator

JP1/Automatic Job Management System 2 JP1/AJS2

JP1/Automatic Job Management System 2 - Scenario Operation JP1/AJS2-SO

JP1/Cm2/Extensible SNMP Agent JP1/ESA

JP1/Cm2/Extensible SNMP Agent for Mib Runtime

JP1/Cm2/Network Node Manager JP1/NNM

JP1/Integrated Management - Manager JP1/Integrated Management or JP1/IM

JP1/Integrated Management - View

JP1/Magnetic Tape Access EasyMT

EasyMT

JP1/Magnetic Tape Library MTguide

JP1/NETM/DM JP1/NETM/DM

JP1/NETM/DM Manager

JP1/Performance Management JP1/PFM

JP1/Performance Management Agent for HiRDB JP1/PFM-Agent for HiRDB

JP1/Performance Management - Agent for Platform JP1/PFM-Agent for Platform

JP1/Performance Management/SNMP System Observer JP1/SSO

JP1/VERITAS NetBackup BS v4.5 NetBackup

JP1/VERITAS NetBackup v4.5

JP1/VERITAS NetBackup BS V4.5 Agent for HiRDB License JP1/VERITAS NetBackup Agent for
HiRDB License

JP1/VERITAS NetBackup V4.5 Agent for HiRDB License

JP1/VERITAS NetBackup 5 Agent for HiRDB License

OpenTP1/Server Base Enterprise Option TP1/EE

Name of product or other entity Representation

ix

Virtual-storage Operating System 3/Forefront System Product VOS3/FS VOS3

Virtual-storage Operating System 3/Leading System Product VOS3/LS

Extensible Data Manager/Base Extended Version 2
XDM basic program XDM/BASE E2

XDM/BASE E2

XDM/Data Communication and Control Manager 3
XDM Data communication control XDM/DCCM3

XDM/DCCM3

XDM/Relational Database XDM/RD XDM/RD XDM/RD

XDM/Relational Database Extended Version 2
XDM/RD E2

XDM/RD E2

VOS3 Database Connection Server DB Connection Server

DB2 Universal Database for OS/390 Version 6 DB2

DNCWARE ClusterPerfect (Linux Version) ClusterPerfect

Microsoft(R) Excel Microsoft Excel or Excel

Microsoft(R) Visual C++(R) Visual C++ or C++

Oracle 8i ORACLE

Oracle 9i

Oracle 10g

Sun JavaTM System Directory Server Sun Java System Directory Server or
Directory Server

HP-UX 11i V2 (IPF) HP-UX or HP-UX (IPF)

Red Hat Linux Linux

Red Hat Enterprise Linux

Red Hat Enterprise Linux AS 3 (IPF) Linux (IPF) Linux

Red Hat Enterprise Linux AS 4 (IPF)

Red Hat Enterprise Linux AS 3 (AMD64 & Intel EM64T) Linux (EM64T)

Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

turbolinux 7 Server for AP8000 Linux for AP8000

Name of product or other entity Representation

x

Microsoft(R) Windows NT(R) Workstation Operating System Version
4.0

Windows NT

Microsoft(R) Windows NT(R) Server Network Operating System
Version 4.0

Microsoft(R) Windows(R) 2000 Professional Operating System Windows 2000

Microsoft(R) Windows(R) 2000 Server Operating System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating System

Microsoft(R) Windows(R) 2000 Advanced Server Operating System Windows 2000 or Windows 2000
Advanced Server

Microsoft(R) Windows ServerTM 2003, Standard Edition Windows Server 2003

Microsoft(R) Windows ServerTM 2003, Enterprise Edition

Microsoft(R) Windows ServerTM 2003 R2, Standard Edition Windows Server 2003 R2 or Windows
Server 2003

Microsoft(R) Windows ServerTM 2003 R2, Enterprise Edition

64 bit Version Microsoft(R) Windows ServerTM 2003, Enterprise
Edition (IPF)

Windows Server 2003 (IPF) or
Windows Server 2003

Microsoft(R) Windows ServerTM 2003, Standard x64 Edition Windows Server
2003 or Windows
Server 2003 x64
Editions

Windows (x64)

Microsoft(R) Windows ServerTM 2003, Enterprise x64 Edition

Microsoft(R) Windows ServerTM 2003 R2, Standard x64 Edition Windows Server
2003, Windows
Server 2003 R2 or
Windows Server
2003 x64 Editions

Microsoft(R) Windows ServerTM 2003 R2, Enterprise x64 Edition

Microsoft(R) Windows(R) XP Professional x64 Edition Windows XP or
Windows XP x64
Edition

Microsoft(R) Windows(R) XP Professional Operating System Windows XP
Professional

Windows XP

Microsoft(R) Windows(R) XP Home Edition Operating System Windows XP Home
Edition

Single server SDS

Name of product or other entity Representation

xi

• Windows 2000, Windows XP, and Windows Server 2003 may be referred to
collectively as Windows.

• The hosts file means the hosts file stipulated by TCP/IP (including the /etc/
hosts file). As a rule, a reference to the hosts file means the
%windir%\system32\drivers\etc\hosts file.

This manual also uses the following abbreviations:

System manager MGR

Front-end server FES

Dictionary server DS

Back-end server BES

Abbreviation Full name or meaning

ACK Acknowledgement

ADM Adaptable Data Manager

ADO ActiveX Data Objects

ADT Abstract Data Type

AP Application Program

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BES Back End Server

BLOB Binary Large Object

BOM Byte Order Mark

CD-ROM Compact Disc - Read Only Memory

CGI Common Gateway Interface

CLOB Character Large Object

CMT Cassette Magnetic Tape

COBOL Common Business Oriented Language

CORBA(R) Common ORB Architecture

Name of product or other entity Representation

xii

CPU Central Processing Unit

CSV Comma Separated Values

DAO Data Access Object

DAT Digital Audio Taperecorder

DB Database

DBM Database Module

DBMS Database Management System

DDL Data Definition Language

DF for Windows NT Distributing Facility for Windows NT

DF/UX Distributing Facility/for UNIX

DIC Dictionary Server

DLT Digital Linear Tape

DML Data Manipulate Language

DNS Domain Name System

DOM Document Object Model

DS Dictionary Server

DTD Document Type Definition

DTP Distributed Transaction Processing

DWH Data Warehouse

EUC Extended UNIX Code

EX Exclusive

FAT File Allocation Table

FD Floppy Disk

FES Front End Server

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GUI Graphical User Interface

Abbreviation Full name or meaning

xiii

HBA Host Bus Adapter

HD Hard Disk

HTML Hyper Text Markup Language

ID Identification number

IP Internet Protocol

IPF Itanium(R) Processor Family

JAR Java Archive File

Java VM Java Virtual Machine

JDBC Java Database Connectivity

JDK Java Developer's Kit

JFS Journaled File System

JFS2 Enhanced Journaled File System

JIS Japanese Industrial Standard code

JP1 Job Management Partner 1

JRE Java Runtime Environment

JTA Java Transaction API

JTS Java Transaction Service

KEIS Kanji processing Extended Information System

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LIP loop initialization process

LOB Large Object

LRU Least Recently Used

LTO Linear Tape-Open

LU Logical Unit

LUN Logical Unit Number

LVM Logical Volume Manager

Abbreviation Full name or meaning

xiv

MGR System Manager

MIB Management Information Base

MRCF Multiple RAID Coupling Feature

MSCS Microsoft Cluster Server

NAFO Network Adapter Fail Over

NAPT Network Address Port Translation

NAT Network Address Translation

NIC Network Interface Card

NIS Network Information Service

NTFS New Technology File System

ODBC Open Database Connectivity

OLAP Online Analytical Processing

OLE Object Linking and Embedding

OLTP On-Line Transaction Processing

OOCOBOL Object Oriented COBOL

ORB Object Request Broker

OS Operating System

OSI Open Systems Interconnection

OTS Object Transaction Service

PC Personal Computer

PDM II E2 Practical Data Manager II Extended Version 2

PIC Plug-in Code

PNM Public Network Management

POSIX Portable Operating System Interface for UNIX

PP Program Product

PR Protected Retrieve

PU Protected Update

Abbreviation Full name or meaning

xv

RAID Redundant Arrays of Inexpensive Disk

RD Relational Database

RDB Relational Database

RDB1 Relational Database Manager 1

RDB1 E2 Relational Database Manager 1 Extended Version 2

RDO Remote Data Objects

RiSe Real time SAN replication

RM Resource Manager

RMM Resource Manager Monitor

RPC Remote Procedure Call

SAX Simple API for XML

SDS Single Database Server

SGML Standard Generalized Markup Language

SJIS Shift JIS

SNMP Simple Network Management Protocol

SQL Structured Query Language

SQL/K Structured Query Language / VOS K

SR Shared Retrieve

SU Shared Update

TCP/IP Transmission Control Protocol / Internet Protocol

TM Transaction Manager

TMS-4V/SP Transaction Management System - 4V / System Product

UAP User Application Program

UOC User Own Coding

VOS K Virtual-storage Operating System Kindness

VOS1 Virtual-storage Operating System 1

VOS3 Virtual-storage Operating System 3

Abbreviation Full name or meaning

xvi

Path name representations
• The backslash (\) is used as the delimiter in path names. Readers who are using

a UNIX version of HiRDB must replace the backslash with a forward slash (/).
When the path names in the Windows and UNIX versions differ, both path names
are given.

• The HiRDB directory path is represented as %PDDIR%. However, when the path
names in the Windows and UNIX versions differ, the directory path in the UNIX
version is represented as $PDDIR, as shown in the following example:

 Windows version: %PDDIR%\CLIENT\UTL\
 UNIX version: $PDDIR/client/lib/

• %windir% refers to a Windows installation directory path.

Log representations
 Windows version

The application log that is displayed by Windows Event Viewer is referred to as
the event log. The following procedure is used to view the event log.

To view the event log:
1. Choose Start, Programs, Administrative Tools (Common), and then Event
Viewer.
2. Choose Log, and then Application.

WS Workstation

WWW World Wide Web

XDM/BASE E2 Extensible Data Manager / Base Extended Version 2

XDM/DF Extensible Data Manager / Distributing Facility

XDM/DS Extensible Data Manager / Data Spreader

XDM/RD E2 Extensible Data Manager / Relational Database Extended Version 2

XDM/SD E2 Extensible Data Manager / Structured Database Extended Version 2

XDM/XT Extensible Data Manager / Data Extract

XFIT Extended File Transmission program

XML Extensible Markup Language

Abbreviation Full name or meaning

xvii

3. The application log is displayed. Messages with HiRDBSingleServer or
HiRDBParallelServer displayed in the Source column were issued by HiRDB.
If you specified a setup identifier when you installed HiRDB, the specified setup
identifier follows HiRDBSingleServer or HiRDBParallelServer.

 UNIX version

The OS log is referred to generically as syslogfile. syslogfile is the log output
destination specified in /etc/syslog.conf. Typically, the following files are
specified as syslogfile.

Conventions: Diagrams
This manual uses the following conventions in diagrams:

Conventions: Fonts and symbols
Font and symbol conventions are classified as:

• General font conventions

OS File

HP-UX /var/adm/syslog/syslog.log

Solaris /var/adm/messages or /var/log/syslog

AIX 5L /var/adm/ras/syslog

Linux /var/log/messages

xviii

• Conventions in syntax explanations
These conventions are described below.
General font conventions

The following table lists the general font conventions:

Examples of coding and messages appear as follows (although there may be some
exceptions, such as when coding is included in a diagram):
MakeDatabase
...
StoreDatabase temp DB32

In examples of coding, an ellipsis (...) indicates that one or more lines of coding are not
shown for purposes of brevity.

Font conventions in syntax explanations and examples
Conventions used in syntax explanations are explained as follows. When typing an
actual command, omit the syntax conventions, attributes, and syntax elements
described here.
Conventions in syntax explanations

Syntax definitions appear as follows:
StoreDatabase [temp|perm] (database-name ...)
The following table lists the conventions used in syntax explanations:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes menus,
menu options, buttons, radio box options, or explanatory labels. For example, bold is used in
sentences such as the following:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text provided by the user or system.
Italics are also used for emphasis. For example:
• Write the command as follows:

copy source-file target-file
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as messages) output
by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

xix

Syntax element conventions

Syntax element conventions explain the types of user-specified values.

Example font or symbol Convention

StoreDatabase Code-font characters must be entered exactly as shown.

database-name This font style marks a placeholder that indicates where appropriate characters are
to be entered in an actual command.

SD Bold code-font characters indicate the abbreviation for a command.

perm Underlined characters indicate the default value.

[] Square brackets enclose an item or set of items whose specification is optional.

| Only one of the options separated by a vertical bar can be specified at the same
time.

... An ellipsis (...) indicates that the item or items enclosed in () or [] immediately
preceding the ellipsis may be specified as many times as necessary.

() Parentheses indicate the range of items to which the vertical bar (|) or ellipsis (...)
is applicable.

The tilde is followed by the attribute of a user-specified value.

<< >> Double angle brackets enclose the default value that the system assumes when the
specification is omitted.

< > Angle brackets enclose the syntax element notation for a user-specified value.

(()) Double parentheses enclose the permitted range of user-specified values.

Syntax element Convention

<unsigned-integer> Numeric characters

<unsigned-decimal>1 Numeric value (0-9), period (.), numeric value (0-9)

<identifier>2 Alphanumeric character string beginning with an alphabetic character

<character-string> String of any characters

<alphabetics-and-special-characters> The alphabetic characters (A-Z and a-z) and the special characters #,
@, and \.

<symbolic-name> Alphanumeric name beginning with an alphabetic character or a
special character

xx

Use all single-byte characters. Alphabetic characters are case-sensitive. The path name
depends on the OS in use.
1

If the numeric value preceding the period is 0, it can be omitted. Similarly, if the
numeric value following the period is 0, both the period and the 0 can be omitted.

2
An RDAREA name can begin with an alphabetic character or symbol, an
alphanumeric, an underscore (_), or a space. However, when an RDAREA name
includes a space, the entire name must be enclosed in double quotation marks (").
A host name is a character string that can consist of alphabetic characters (A to Z,
a to z), numeric characters, periods (.), hyphens (-), and underscores (_). Host
names can begin with a numeric character.

3
If you use a space or a parenthesis in a path name, you must enclose the entire path
name in double quotation marks (").

Notations used in computational expressions

The following notations are used in computational expressions

Notes on Windows path names
• In this manual, the Windows terms directory and folder are both referred to as

directory.

<path-name>3 Alphanumeric characters, backslashes (\) or forward slashes (/), and
periods (.)
In Windows, path names may include spaces and parentheses.

Symbol Meaning

 Round up the result to the next integer.
Example: The result of 34 3 is 12.

 Discard digits following the decimal point.

Example: The result of 34 3 is 11.

MAX Select the largest value as the result.
Example: The result of Max(10, 2 4, 3 + 8) is 11.

MIN Select the smallest value as the result.
Example: The result of Min(10, 2 4, 3 + 8) is 8.

Syntax element Convention

xxi

• Include the drive name when you specify an absolute path name.
Example: C:\win32app\hitachi\hirdb_s\spool\tmp

• When you specify a path name in a command argument, in a control statement
file, or in a HiRDB system definition file, and that path name includes a space or
a parenthesis, you must enclose the entire path name in double quotation marks
(").

Example: pdinit -d "C:\Program
Files(x86)\hitachi\hirdb_s\conf\mkinit"
However, double quotation marks are not necessary when you use the set command
in a batch file or at the command prompt to set an environment variable, or when you
specify the installation directory. If you do use double quotation marks in such a case,
the double quotation marks become part of the value assigned to the environment
variable.
Example: set PDCLTPATH=C:\Program Files\hitachi\hirdb_s\spool

• HiRDB cannot use files on a networked drive, so you must install HiRDB and
configure the HiRDB environment on a local drive. Files used by utilities, such
as utility input and output files, must also be on the local drive.

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.
• Version 2.05 is written as 02-05.
• Version 2.50 (or 2.5) is written as 02-50.
• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

xxii

Sources of the HiRDB Relational database language
The HiRDB relational database language described in this manual was developed by
adding Hitachi's unique interpretations and specifications to the following standards.
Hitachi expresses its appreciation to the developers and acknowledges the sources of
these specifications.
HiRDB Relational Database
JIS X3005-1997 Database Language SQL
IS ISO9075-1992 Information processing systems - Database Language SQL
ANS X3.135-1986 Information systems - Database Language SQL

Relationships to ANSI Standard
The specifications for the HiRDB relational database language have been developed
by adding Hitachi's unique interpretations to the specifications of ANS X3.135-1986
Information systems - Database Language SQL.
Hitachi has been granted ANSI's permission for the creation of this manual; however,
ANSI is not responsible for this product or the contents of this manual.
Note

JIS: Japanese Industrial Standard
IS: International Standard
ANS: American National Standard
ANSI: American National Standards Institute

Acknowledgements
The COBOL language specifications were developed by CODASYL. The following
statements acknowledges Hitachi's indebtedness to the developers, as requested by
CODASYL. This acknowledgement restates a portion of the acknowledgement
provided in the original specifications of COBOL, CODASYL COBOL Journal of
Development 1984:
Any organization interested in reproducing the COBOL report and specifications in
whole or in part, using ideas from this report as the basis for an instruction manual or
for any other purpose, is free to do so. However, all such organizations are requested
to reproduce the following acknowledgement paragraphs in their entirety as part of the
preface to any such publication. Any organization using a short passage from this
document, such as in a book review, is requested to mention COBOL in
acknowledgement of the source, but need not quote the acknowledgement.
COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

xxiii

No warranty, expressed or implied, is made by any contributor or by the CODASYL
COBOL Committee as to the accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection therewith.
The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the
UNIVAC I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.
Note
The DB2 linkage facility was unavailable at the time of this publication because the
English version of DF/UX Extension could not be supported in time for the document
release.

Important notes on this manual
The following facilities are explained, but they are not supported:

• Distributed database facility
• Server mode system switchover facility
• User server hot standby
• Rapid system switchover facility
• Standby-less system switchover (1:1) facility
• Standby-less system switchover (effects distributed) facility
• HiRDB External Data Access facility
• Inner replica facility (supported only in the Windows versions of HiRDB)
• Updatable online reorganization (supported only in the Windows versions of

HiRDB)
• Sun Java System Directory Server linkage facility
• Simple setup tool

The following products and option program products are explained, but they are not
supported:

• HiRDB Control Manager

xxiv

• HiRDB Disaster Recovery Light Edition
• HiRDB External Data Access
• HiRDB LDAP Option

Notes on printed manuals
Please note that even though the printed manuals are separated into Part I and Part II,
the chapters and page numbers sequentially continue from Part I to Part II. Also, please
note that the index is only included in Part II.

xxv

Contents

Preface i
Intended readers ...i
Organization of this manual ...i
Related publications .. iii
Organization of HiRDB manuals ..v
Conventions: Abbreviations ...vi
Path name representations ..xvi
Log representations ..xvi
Conventions: Diagrams ...xvii
Conventions: Fonts and symbols...xvii
Font conventions in syntax explanations and examples...................................... xviii
Notes on Windows path names ...xx
Conventions: KB, MB, GB, and TB ..xxi
Conventions: Version numbers...xxi
Sources of the HiRDB Relational database language ...xxii
Relationships to ANSI Standard..xxii
Acknowledgements ...xxii
Important notes on this manual ... xxiii
Notes on printed manuals ...xxiv

1. Overview 1
1.1 UAP development flow ..2
1.2 UAP characteristics ..3

1.2.1 UAP format ...3
1.2.2 List of SQL statements usable in HiRDB ...4

1.3 Interface with HiRDB...20
1.4 UAP operation environment...21

2. Database Operations 31
2.1 Database data expressions ..32

2.1.1 Relational database tables ...32
2.1.2 Object relational database tables ...34

2.2 Cursor usage ...36
2.3 Data retrieval ..39

2.3.1 Retrieval from a single table ...39
2.3.2 Retrieval from multiple tables...43
2.3.3 Retrieval of a table with FIX attribute ..45

2.4 Data updating..47

xxvi

2.4.1 Updating using a cursor .. 47
2.4.2 Updating with a condition specified... 48
2.4.3 Updating a table with the FIX attribute .. 49
2.4.4 Updating a table with repetition columns... 50

2.5 Data deletion .. 53
2.5.1 Deletion using a cursor ... 53
2.5.2 Deletion with a condition specified .. 54
2.5.3 Deleting all rows in a table ... 55

2.6 Data insertion ... 57
2.6.1 Inserting rows on a column basis ... 57
2.6.2 Inserting rows on a row basis (to a table with the FIX attribute) 58
2.6.3 Inserting rows into a table with repetition columns 59

2.7 Specific data search ... 61
2.7.1 Searching for data within a specified range of values 61
2.7.2 Searching for a specific character pattern... 64
2.7.3 Searching for non-NULL data .. 65
2.7.4 Searching for data that satisfies multiple conditions 66
2.7.5 Searching for data using a Boolean predicate .. 67
2.7.6 Searching for data using a structured repetition predicate 67
2.7.7 Searching for data using a subquery... 68

2.8 Data operations .. 73
2.8.1 Arithmetic operations on numeric data .. 73
2.8.2 Date and time data operations .. 74

2.9 Data processing.. 76
2.9.1 Data grouping ... 76
2.9.2 Data sorting... 77
2.9.3 Duplicated data elimination.. 78

2.10 Outer joining of tables ... 80
2.11 Defining and manipulating a view table .. 85
2.12 Manipulating data in a table with abstract data types .. 93

2.12.1 Abstract data types provided by the HiRDB Text Search Plug-in.............. 93
2.12.2 User-defined abstract data types... 102

3. UAP Design 107
3.1 Basic SQL configuration in a UAP.. 108
3.2 Overview of UAPs..115

3.2.1 UAP descriptive languages..115
3.2.2 Interface areas..116
3.2.3 Integrity constraints ...117
3.2.4 Retrieval methods using SQL statements ..117
3.2.5 Static and dynamic SQLs...119

3.3 Transaction control .. 128
3.3.1 Connection to and disconnection from a HiRDB system........................... 128
3.3.2 Transaction startup and termination ... 128

xxvii

3.3.3 Synchronization point setting and rollback...128
3.3.4 UAP transaction management in an OLTP environment129
3.3.5 Moving a transaction...131

3.4 Locking...133
3.4.1 Units of locking...133
3.4.2 Lock modes ...134
3.4.3 Lock period ...155
3.4.4 Deadlocks and corrective measures ..156
3.4.5 Unlocked conditional search ...163
3.4.6 Non-locking of index key values ..165
3.4.7 Lock and suppression implementable with a UAP168
3.4.8 Lock sequence based on SQL statement and index types170
3.4.9 Creating locked resources for index key values..181

3.5 Use of a cursor..183
3.5.1 Notes on table operations when a cursor is used...183
3.5.2 FOR UPDATE and FOR READ ONLY clauses ...186
3.5.3 Cursor declarations and locks ...187
3.5.4 Holdable cursor ...190
3.5.5 Examples of cursor use ...194

3.6 SQL error identification and corrective measures..198
3.6.1 Error identification ..198
3.6.2 Automatic error identification...201

4. UAP Design for Improving Performance and Handling 203
4.1 Using indexes ...204

4.1.1 Indexes and processing time ...204
4.1.2 Index priority...204
4.1.3 Changing indexes during retrieval ..205

4.2 Manipulation of tables with the FIX attribute ..206
4.3 Stored procedures and stored functions..207

4.3.1 Defining a stored procedure ..207
4.3.2 Defining a stored function...217
4.3.3 Defining and deleting stored functions ...228

4.4 Triggers...230
4.5 SQL optimization ...232

4.5.1 SQL optimizing modes..233
4.5.2 Optimization method types ...246
4.5.3 Specifying SQL optimization..248
4.5.4 Allocating floatable servers (HiRDB/Parallel Server only)249
4.5.5 Grouping processing methods (HiRDB/Parallel Server only)256
4.5.6 Join methods..261
4.5.7 Search Methods ...276
4.5.8 Execution of subqueries with no external references..................................284
4.5.9 Execution of subqueries with external references.......................................290

xxviii

4.5.10 Preparing for application of hash join and subquery hash execution 296
4.5.11 Deriving high-speed search conditions... 303

4.6 Data guarantee levels ... 314
4.6.1 Specifying the data guarantee level .. 314
4.6.2 Data guarantee level types.. 315
4.6.3 Example of search results when a data guarantee level is specified 316

4.7 Block transfer facility .. 319
4.8 Facilities using arrays .. 323

4.8.1 FETCH facility using arrays... 323
4.8.2 INSERT facility using arrays.. 332
4.8.3 UPDATE facility using arrays .. 345
4.8.4 DELETE facility using arrays .. 348

4.9 Rapid grouping facility .. 352
4.9.1 Overview .. 352
4.9.2 Application criteria ... 352
4.9.3 Specification method .. 353
4.9.4 Tuning method.. 353

4.10 Multi-connection facility ... 355
4.11 Using tables for managing numbers... 370
4.12 Narrowed search .. 379

4.12.1 What is a narrowed search? .. 379
4.12.2 Preparations for executing a narrowed search.. 379
4.12.3 Search using lists .. 380
4.12.4 Action if a rollback occurs for a transaction that uses a list 382
4.12.5 Automatic list deletion at HiRDB startup and termination 383
4.12.6 Notes about using lists .. 383

4.13 File output facility for BLOB data... 386
4.13.1 What is the file output facility for BLOB data? 386
4.13.2 Application criteria ... 387
4.13.3 Specification method .. 388
4.13.4 Notes about using the file output facility for BLOB data......................... 388
4.13.5 Examples of using the file output facility for BLOB data........................ 388

4.14 Addition update and partial extraction facility for BLOB and BINARY data 391
4.14.1 What is the addition update and partial extraction facility for BLOB and

BINARY data? ... 391
4.14.2 Examples of using the addition update and partial extraction facility for

BLOB data.. 391
4.14.3 Notes about using the addition update and partial extraction facility for

BLOB and BINARY data... 393
4.15 Retrieve first n records facility .. 395

4.15.1 Overview .. 395
4.15.2 Notes... 395
4.15.3 Checking the access path.. 396

4.16 Automatic reconnect facility.. 397

xxix

4.16.1 Application criteria..397
4.16.2 Reconnect timings ...397
4.16.3 CONNECT processing during automatic reconnect400
4.16.4 Notes about using the automatic reconnect facility400

4.17 Locator facility ...402
4.17.1 What is the locator facility? ..402
4.17.2 Application standard ...404
4.17.3 Usage method..404
4.17.4 Usage example ..404

4.18 Facility for returning the total number of hits ..407
4.18.1 Overview ...407
4.18.2 Usage examples...407
4.18.3 Note ...408

5. Notes about Creating UAPs that Access Object Relational Databases 409
5.1 Using abstract data types and user-defined functions ..410
5.2 Restrictions on functions provided by plug-ins..412

6. Client Environment Setup 421
6.1 Types of HiRDB clients..422
6.2 Environment setup procedure for HiRDB clients...423
6.3 HiRDB client installation ...424

6.3.1 Installing a HiRDB client on a UNIX client ...424
6.3.2 Installing a HiRDB client on a Windows client ..424

6.4 Organization of directories and files for a HiRDB client427
6.4.1 Directories and files for UNIX clients ..427
6.4.2 Directories and files for Windows clients ...444

6.5 Setting the hosts file ...458
6.6 Client environment definitions (setting environment variables)459

6.6.1 Environment setup format ...459
6.6.2 Specifications for using a UAP under OLTP as the client471
6.6.3 Client environment definitions..487
6.6.4 Environment definition information..498
6.6.5 Environment variables and connection types for HiRDB servers...............607
6.6.6 Specifying client environment definitions for foreign table access608

6.7 Registering an environment variable group..610
6.7.1 Registering an environment variable group in a UNIX environment610
6.7.2 Registering an environment variable group in a Windows environment

(registry registration) ..611
6.7.3 Registering an environment variable group in a Windows environment (file

registration) ...618

7. UAP Creation 619
7.1 Overview ..620

xxx

7.1.1 UAP basic configuration .. 620
7.1.2 UAP configuration elements .. 620

7.2 Writing a UAP in C.. 622
7.2.1 Coding rules.. 622
7.2.2 Program example.. 628

7.3 Writing a UAP in COBOL... 658
7.3.1 Coding rules.. 658
7.3.2 Program example.. 663

7.4 Writing a UAP in C++ ... 694
7.4.1 Coding rules.. 694

7.5 Writing a UAP in OOCOBOL... 695
7.5.1 Coding rules.. 695

8. Preparation for UAP Execution 697
8.1 UAP execution procedure .. 698

8.1.1 Executing a UAP written in C .. 698
8.1.2 Executing a UAP written in COBOL ... 699

8.2 Preprocessing ... 701
8.2.1 Overview .. 701
8.2.2 Preprocessing in UNIX... 702
8.2.3 Preprocessing in Windows ... 714
8.2.4 Validating preprocessor declaration statements.. 726
8.2.5 Dispensing with the embedded SQL declare section 727
8.2.6 Specifying pointers as environment variables .. 728
8.2.7 Referencing structures .. 731
8.2.8 Use of pointers, structures, and structure qualifiers when the -E2 or -E3 option

of the preprocessor is specified .. 733
8.3 Compiling and linking ... 737

8.3.1 Libraries for compiling and linking.. 737
8.3.2 Compiling and linking in UNIX... 743
8.3.3 Compiling and linking in Windows.. 750
8.3.4 Compiling and linking when the multi-connection facility is used............ 752

8.4 Notes on UAP execution.. 759
8.4.1 Executing UAPs that use an X/Open-based API (TX_function) 759
8.4.2 Creating UAPs that support the 64-bit mode.. 767
8.4.3 Converting UAPs created with XDM/RD or UNIFY2000 768
8.4.4 Notes on UAP execution .. 769

9. Java Stored Procedures and Java Stored Functions 771
9.1 Overview.. 772
9.2 Procedure from Java stored routine creation to execution..................................... 775

9.2.1 Coding a Java stored routine .. 775
9.2.2 Registering the JAR file in HiRDB .. 778
9.2.3 Defining the Java stored routine... 779

xxxi

9.2.4 Executing the Java stored routine..779
9.3 Sample programs of Java stored routine...781

9.3.1 Sample program ..781
9.3.2 Sample Java stored routines provided with HiRDB....................................785

9.4 Notes about Java program creation ..806
9.4.1 Unsupported methods..806
9.4.2 Package, class, and method definitions ...807
9.4.3 Parameter input/output mode mapping (Java stored procedures only)808
9.4.4 Results-set return facility (Java stored procedures only)809
9.4.5 Connection in a Java stored procedure..815
9.4.6 Releasing the result sets ..815

9.5 Notes about testing and debugging...816
9.5.1 Java program for a Java stored procedure ...816
9.5.2 Java program for a Java stored function..817

9.6 Notes about JAR file creation...819
9.6.1 Integrating Class files..820
9.6.2 Integrating Java files ...820

10. UAP Troubleshooting 823
10.1 Gathering error information..824

10.1.1 SQL tracing ...824
10.1.2 Error logging ...839
10.1.3 Facility for output of extended SQL error information.............................842
10.1.4 UAP statistical report facility ..856
10.1.5 Command trace facility ...885
10.1.6 SQL trace dynamic acquisition facility ...887
10.1.7 Reconnect trace facility ...889
10.1.8 HiRDB SQL Tuning Advisor access path information file892

10.2 UAP error recovery ..894

11. Using a Distributed Database (Limited to HP-UX and AIX 5L) 897
11.1 Format of a distributed database...898

11.1.1 Accessing a distributed database and its relationship to RD-nodes898
11.1.2 Relationship between a connection between RD-nodes and an SQL

connection ...898
11.1.3 Generating and terminating an SQL connection899
11.1.4 Current SQL connection and database access ...901
11.1.5 SQL connection and transaction control ...902

11.2 Creating a UAP that accesses a remote database..904
11.2.1 Rules governing distributed clients and servers ..904
11.2.2 Using the default SQL connection ..905
11.2.3 Using an SQL connection to a distributed RD-node907

11.3 Available SQL statements...909
11.3.1 SQL statements usable for remote database access...................................909

xxxii

11.3.2 Details about available SQL statements ... 910
11.4 Available data types ... 922

11.4.1 Data types of variables usable in remote database access 922
11.4.2 Correspondence between distributed server data types and HiRDB data

types ... 922
11.5 Handling distributed server errors.. 930

11.5.1 Return codes set by the distributed client ... 930
11.5.2 Obtaining and using detailed error information.. 930

11.6 Notes about using a distributed database ... 933
11.6.1 Notes about using a distributed client... 933
11.6.2 Notes about using a distributed server.. 934

12. Command Execution from UAPs 937
12.1 Overview.. 938
12.2 Preparations for executing commands from a UAP .. 939
12.3 Command executability ... 946

13. HiRDB Access from ODBC Application Programs 953
13.1 ODBC application programs ... 954
13.2 Installing the ODBC2.0 driver... 955
13.3 Installing the ODBC3.0 driver and setting the environment variables................ 959

13.3.1 Installation .. 959
13.3.2 Setting the environment variables .. 962
13.3.3 Determining the version number of the ODBC3.0 driver 962

13.4 ODBC functions provided by HiRDB ... 963
13.5 ODBC function data types and HiRDB data types.. 967
13.6 Asynchronous execution of ODBC functions ... 972
13.7 Setting cursor libraries ... 976
13.8 File DSNs... 977
13.9 Executing a UAP in Unicode... 978
13.10 Tuning and troubleshooting ... 981
13.11 Facilities that cannot be used when HiRDB is accessed with ODBC 982

14. HiRDB Access from OLE DB Application Programs 983
14.1 Overview.. 984
14.2 Connection interface .. 985

14.2.1 Registry information... 985
14.2.2 Connection properties... 986

14.3 Schema information... 988
14.4 Data type correspondences .. 990
14.5 Error handling procedures ... 991

14.5.1 Troubleshooting facility.. 991
14.6 Notes .. 992

xxxiii

15. HiRDB Access from ADO.NET-compatible Application Programs 993
15.1 Overview ..994

15.1.1 HiRDB.NET Data Provider...994
15.1.2 Prerequisite programs for HiRDB.NET Data Provider.............................994

15.2 Installing HiRDB.NET Data Provider..995
15.2.1 Installation procedure ..995
15.2.2 Files that are installed..995
15.2.3 Checking the version information ...995

15.3 List of classes provided by HiRDB.NET Data Provider996
15.4 List of members provided by HiRDB.NET Data Provider997

15.4.1 List of HiRDBCommand members...997
15.4.2 List of HiRDBCommandBuilder members...998
15.4.3 List of HiRDBConnection members ...998
15.4.4 List of HiRDBDataAdapter members ...999
15.4.5 List of HiRDBDataReader members...1000
15.4.6 List of HiRDBException members ...1001
15.4.7 List of HiRDBParameter members ...1002
15.4.8 List of HiRDBParameterCollection members...1003
15.4.9 List of HiRDBRowUpdatedEventArgs members1004
15.4.10 List of HiRDBRowUpdatingEventArgs members1004
15.4.11 List of HiRDBTransaction members...1004

15.5 Interfaces of HiRDB.NET Data Provider...1006
15.5.1 HiRDBCommand ..1006
15.5.2 HiRDBCommandBuilder ..1010
15.5.3 HiRDBConnection ..1011
15.5.4 HiRDBDataAdapter ..1015
15.5.5 HiRDBDataReader..1016
15.5.6 HiRDBException ..1025
15.5.7 HiRDBParameter ..1026
15.5.8 HiRDBParameterCollection..1030
15.5.9 HiRDBRowUpdatedEventArgs...1035
15.5.10 HiRDBRowUpdatingEventArgs ...1036
15.5.11 HiRDBTransaction ..1036

15.6 Notes about HiRDB.NET Data Provider..1039
15.7 Data types of HiRDB.NET Data Provider..1041

15.7.1 DbType and HiRDBType properties ...1041
15.7.2 Data types and accessories used by a UAP ...1043
15.7.3 Type conversion by HiRDB.NET Data Provider1044

15.8 Example of a UAP using HiRDB.NET Data Provider.......................................1051
15.8.1 Connecting to the database..1051
15.8.2 Executing the SQL statement ..1052
15.8.3 Executing a transaction ...1053
15.8.4 Executing a search statement ..1055
15.8.5 Executing the INSERT facility using arrays ...1056

xxxiv

15.8.6 Executing a repetition column.. 1057

16. Type2 JDBC Driver 1059
16.1 Installation and environment setup .. 1060

16.1.1 Installing ... 1060
16.1.2 Environment setup.. 1060
16.1.3 Abbreviation of methods .. 1061

16.2 JDBC1.0 facility .. 1062
16.2.1 Driver class ... 1062
16.2.2 Connection class ... 1071
16.2.3 Statement class.. 1072
16.2.4 PreparedStatement class ... 1073
16.2.5 CallableStatement class .. 1073
16.2.6 ResultSet class .. 1074
16.2.7 ResultSetMetaData class .. 1075
16.2.8 DatabaseMetaData class ... 1078
16.2.9 SQLWarning class... 1078

16.3 JDBC2.0 basic facility ... 1080
16.3.1 Result set enhancements ... 1080
16.3.2 Batch updating.. 1082
16.3.3 Added data types .. 1086

16.4 JDBC2.0 Optional Package ... 1096
16.4.1 Database connection using DataSource and JNDI 1096
16.4.2 Connection pooling... 1099
16.4.3 Distributed transactions ...1101

16.5 JAR file access facility ...1104
16.5.1 Class name...1104
16.5.2 Method name ...1104

16.6 Array class ..1107
16.7 Specifying a value when using a repetition column as the ? parameter1109
16.8 Functions provided by the HiRDB JDBC driver ..1112

16.8.1 Provided class ..1112
16.8.2 setBlockUpdate..1112
16.8.3 getBlockUpdate ...1113

16.9 Notes on using the BLOB type ...1115
16.10 Setting system properties ..1117

16.10.1 Setting the array facility ..1117
16.10.2 Setting the maximum number of SQL search items or ? parameters1118

16.11 Connection information setup/acquisition interface ...1121
16.11.1 setDescription ..1122
16.11.2 getDescription..1124
16.11.3 setDBHostName ..1125
16.11.4 getDBHostName..1126
16.11.5 setEncodeLang...1126

xxxv

16.11.6 getEncodeLang..1128
16.11.7 setUser ...1128
16.11.8 getUser...1129
16.11.9 setPassword ...1130
16.11.10 getPassword...1131
16.11.11 setXAOpenString...1131
16.11.12 getXAOpenString ..1132
16.11.13 setXACloseString ..1133
16.11.14 getXACloseString..1133
16.11.15 setRMID ..1134
16.11.16 getRMID..1135
16.11.17 setXAThreadMode...1135
16.11.18 getXAThreadMode ..1136
16.11.19 setCommit_Behavior...1136
16.11.20 getCommit_Behavior ..1138
16.11.21 setBlockUpdate ...1139
16.11.22 getBlockUpdate ...1140
16.11.23 setLONGVARBINARY_Access ...1141
16.11.24 getLONGVARBINARY_Access...1141
16.11.25 setSQLInNum..1142
16.11.26 getSQLInNum ...1143
16.11.27 setSQLOutNum ...1144
16.11.28 getSQLOutNum...1145
16.11.29 setSQLWarningLevel...1145
16.11.30 getSQLWarningLevel ..1146
16.11.31 setClear_Env ...1147
16.11.32 getClear_Env ...1148

16.12 Data types and character codes...1149
16.12.1 Data types ..1149
16.12.2 Character code conversion facility ..1150

16.13 Classes and methods with limitations...1152
16.13.1 Driver class..1152
16.13.2 Connection class..1152
16.13.3 Statement class ..1153
16.13.4 PreparedStatement class ..1154
16.13.5 CallableStatement class...1154
16.13.6 ResultSet class...1155
16.13.7 ResultSetMetaData class ...1156
16.13.8 DatabaseMetaData class..1157
16.13.9 Blob class ..1164
16.13.10 Array class...1164

17. Type4 JDBC Driver 1165
17.1 Installation and environment setup...1166

xxxvi

17.1.1 Installation ...1166
17.1.2 Environment setup...1166
17.1.3 Abbreviation of methods ...1167

17.2 Database connection using the DriverManager class ...1168
17.2.1 Registering the Driver class...1168
17.2.2 Connecting to HiRDB with the getConnection method1169

17.3 Database connection using a DataSource object and JNDI................................1188
17.4 JDBC1.2 core API ..1192

17.4.1 Driver interface..1192
17.4.2 Connection interface..1193
17.4.3 Statement interface ..1199
17.4.4 PreparedStatement interface ... 1203
17.4.5 ResultSet interface.. 1208
17.4.6 DatabaseMetaData interface... 1216
17.4.7 ResultSetMetaData interface .. 1222
17.4.8 Blob interface ... 1223
17.4.9 SQLException interface ... 1224
17.4.10 SQLWarning interface .. 1224
17.4.11 Unsupported interfaces ... 1226

17.5 JDBC2.1 Core API .. 1227
17.5.1 Expansion of the result set.. 1227
17.5.2 Batch update ... 1227
17.5.3 Added data types .. 1231
17.5.4 Unsupported interfaces ... 1231

17.6 JDBC2.0 Optional Package ... 1233
17.6.1 JNDI support... 1233
17.6.2 Connection pool.. 1234
17.6.3 Distributed transactions .. 1236
17.6.4 Unsupported interfaces ... 1239

17.7 Connection information setup and acquisition interface 1240
17.7.1 setDescription ... 1242
17.7.2 getDescription... 1245
17.7.3 setDBHostName ... 1245
17.7.4 getDBHostName... 1246
17.7.5 setJDBC_IF_TRC... 1246
17.7.6 getJDBC_IF_TRC .. 1247
17.7.7 setTRC_NO .. 1248
17.7.8 getTRC_NO.. 1249
17.7.9 setUapName.. 1249
17.7.10 getUapName ... 1250
17.7.11 setUser .. 1251
17.7.12 getUser.. 1252
17.7.13 setPassword .. 1252
17.7.14 getPassword .. 1253

xxxvii

17.7.15 setXAOpenString ..1254
17.7.16 getXAOpenString..1255
17.7.17 setXACloseString..1256
17.7.18 getXACloseString ...1256
17.7.19 setLONGVARBINARY_Access ...1257
17.7.20 getLONGVARBINARY_Access...1258
17.7.21 setSQLInNum..1258
17.7.22 getSQLInNum ...1259
17.7.23 setSQLOutNum...1260
17.7.24 getSQLOutNum ..1261
17.7.25 setSQLWarningLevel ..1261
17.7.26 getSQLWarningLevel ..1262
17.7.27 setXALocalCommitMode ...1263
17.7.28 getXALocalCommitMode...1264
17.7.29 setSQLWarningIgnore ...1265
17.7.30 getSQLWarningIgnore...1265
17.7.31 setHiRDBCursorMode ..1266
17.7.32 getHiRDBCursorMode..1267
17.7.33 setNotErrorOccurred ...1268
17.7.34 getNotErrorOccurred...1269
17.7.35 setEnvironmentVariables...1269
17.7.36 getEnvironmentVariables ..1270
17.7.37 setEncodeLang ..1271
17.7.38 getEncodeLang..1273
17.7.39 setMaxBinarySize ...1273
17.7.40 getMaxBinarySize ...1275
17.7.41 setStatementCommitBehavior...1275
17.7.42 getStatementCommitBehavior ..1276
17.7.43 setLONGVARBINARY_AccessSize ..1277
17.7.44 getLONGVARBINARY_AccessSize..1278
17.7.45 setLONGVARBINARY_TruncError ..1279
17.7.46 getLONGVARBINARY_TruncError ..1280

17.8 Data types ...1281
17.8.1 Mapping SQL data types...1281
17.8.2 Mapping during retrieval data acquisition ..1282
17.8.3 Mapping when a ? parameter is set ...1285
17.8.4 Data conversion of TIME, DATE, and TIMESTAMP columns1290
17.8.5 Overflow handling...1294

17.9 Character conversion facility..1304
17.10 Supported client environment definitions ..1305
17.11 Connection information priorities...1312
17.12 JDBC interface method trace..1318

17.12.1 Setup for trace acquisition...1318
17.12.2 Acquisition rules ...1318

xxxviii

17.12.3 Output example... 1319
17.13 Exception trace log .. 1321

17.13.1 Methods to be acquired and setup for log acquisition 1321
17.13.2 Output formats .. 1328
17.13.3 Output example and analysis method... 1334
17.13.4 Required memory size and file size.. 1339
17.13.5 Notes... 1340

18. SQLJ 1343
18.1 Overview.. 1344

18.1.1 What is SQLJ? .. 1344
18.1.2 Environment settings .. 1346

18.2 SQLJ Translator ... 1348
18.3 UAP coding rule .. 1349

18.3.1 Labeling rule... 1349
18.3.2 SQL coding rule.. 1349
18.3.3 SQL statements that can be used in SQLJ.. 1354
18.3.4 Correspondence between HiRDB data types and SQLJ data types........ 1357
18.3.5 Output variable settings (limited to the native interface version) 1359
18.3.6 Using data types when a cursor is declared (limited to the native interface

version)... 1361
18.3.7 Description of connection to and disconnection from a HiRDB server . 1362
18.3.8 Description of cursor-based retrieval.. 1368
18.3.9 Receiving a dynamic result set ... 1372
18.3.10 Using JDBC and SQLJ together... 1373
18.3.11 Creating and executing a UAP ... 1376
18.3.12 Migrating an SQLJ source from the standard interface version to the native

interface version ... 1379
18.3.13 Notes about UAP development .. 1382

18.4 Native Runtime .. 1383
18.4.1 Package configuration .. 1383
18.4.2 Public classes of Native Runtime ... 1383
18.4.3 Cluster specifications.. 1384
18.4.4 Coding examples using the native interface ... 1390

Appendixes 1395
A. SQL Communications Area.. 1396

A.1 Organization and contents of the SQL Communications Area................... 1396
A.2 Expanding the SQL Communications Area ... 1403

B. SQL Descriptor Area... 1406
B.1 Organization and contents of the SQL Descriptor Area 1406
B.2 Expanding the SQL Descriptor Area .. 1417

C. Column Name Descriptor Area... 1429
C.1 Organization and contents of the Column Name Descriptor Area 1429

xxxix

C.2 Expanding the Column Name Descriptor Area...1431
D. Type Name Descriptor Area ..1433

D.1 Organization of the Type Name Descriptor Area..1433
D.2 Contents of the Type Name Descriptor Area ..1433
D.3 Expanding the Type Name Descriptor Area..1434

E. SQL Data Types and Data Descriptions...1436
E.1 SQL data types and C data descriptions ..1436
E.2 SQL data types and COBOL data descriptions ...1454

F. Data Dictionary Table Retrieval ...1469
F.1 Examples of SQL statements for retrieval ...1473
F.2 Data dictionary table details ...1476

G. Functions provided by HiRDB...1553
G.1 Hash function for table partitioning...1553
G.2 Space conversion function ...1578
G.3 Function for conversion to a DECIMAL signed normalized number1585
G.4 Character code type specification function..1587

H. Maximum and Minimum HiRDB Values ..1590

Index 1593

xl

List of figures

Figure 1-1: UAP development flow... 2
Figure 1-2: SQL functional organization ... 4
Figure 1-3: Interface between a UAP and HiRDB... 20
Figure 1-4: Operating mode using a machine other than the server machine as a client......... 22
Figure 1-5: Operating mode using the same server machine as the HiRDB server as the

client ... 23
Figure 1-6: Operating mode using a UAP under OLTP as a client.. 24
Figure 1-7: Operating mode using an ODBC-compatible UAP as a client 25
Figure 1-8: Operating mode using an OLE DB-compatible UAP as a client 26
Figure 1-9: Operating mode using an ADO.NET-compatible UAP as a client 27
Figure 1-10: Operating mode using a Java (JDBC-compatible) application program as a

client ... 28
Figure 1-11: Operating mode using a VOS3 system or Linux for AP8000 UAP as a client ... 29
Figure 2-1: Basic table configuration example .. 32
Figure 2-2: Configuration example of a table with repetition columns 33
Figure 2-3: Example of a base table and view table .. 34
Figure 2-4: Basic configuration example of a table with abstract data types 35
Figure 2-5: Retrieval from a single table ... 39
Figure 2-6: UAP data processing sequence for a retrieval results table 40
Figure 2-7: Cursor position immediately following cursor opening.. 41
Figure 2-8: Example of extracting retrieved contents and storing them in the UAP............... 42
Figure 2-9: Example of retrieval from two tables .. 44
Figure 2-10: Example of retrieval on a row basis .. 46
Figure 2-11: Procedure for updating a table... 47
Figure 2-12: Example of using cursor to update a table .. 48
Figure 2-13: Example of updating with condition specified.. 49
Figure 2-14: Example of updating on a row basis ... 50
Figure 2-15: Example of updating a table with repetition columns... 52
Figure 2-16: Procedure for deleting a table.. 53
Figure 2-17: Example of using a cursor to delete rows ... 54
Figure 2-18: Example of deletion with a condition specified .. 55
Figure 2-19: Example of deleting all rows in a table ... 56
Figure 2-20: Example of row insertion on a column basis .. 58
Figure 2-21: Example of row insertion on a row basis .. 59
Figure 2-22: Example of inserting a row into a table with repetition columns........................ 60
Figure 2-23: Data search example using a comparison predicate.. 62
Figure 2-24: Data search example using a BETWEEN predicate ... 63
Figure 2-25: Data search example using an IN predicate .. 64
Figure 2-26: Data search example using a LIKE predicate ... 65
Figure 2-27: Data search example using a NULL predicate with NOT 66

xli

Figure 2-28: Data search example involving multiple conditions ..67
Figure 2-29: Data search example using a structured repetition predicate...............................68
Figure 2-30: Data search example using a subquery ..69
Figure 2-31: Data search example using a subquery and a quantified predicate......................70
Figure 2-32: Example of a subquery using the EXISTS predicate...71
Figure 2-33: Example of numeric data operations..74
Figure 2-34: Example of time data operation ...75
Figure 2-35: Data grouping example ..77
Figure 2-36: Data sorting example ...78
Figure 2-37: Duplicated data elimination example...79
Figure 2-38: Example of outer joining ...81
Figure 2-39: Example of outer joining with three or more tables ..83
Figure 2-40: Tables used in examples of manipulating view tables ...85
Figure 2-41: Example of defining a view table for limiting the columns to be searched.........87
Figure 2-42: Example of using search conditions to define a view table88
Figure 2-43: Example of defining a read-only view table ..89
Figure 2-44: Example of defining a view table from which duplications are eliminated90
Figure 2-45: Example of defining a view table from another view table91
Figure 2-46: Example of manipulating a view table...92
Figure 2-47: Example of retrieval with a plug-in (1)..94
Figure 2-48: Example of retrieval with a plug-in (2)..95
Figure 2-49: Example of updating with a plug-in...97
Figure 2-50: Example of deletion with a plug-in..99
Figure 2-51: Example of insertion with a plug-in...101
Figure 2-52: Example of retrieval from a table with abstract data types................................102
Figure 2-53: Example of updating a table with abstract data types..103
Figure 2-54: Example of deleting rows from a table with abstract data types104
Figure 2-55: Example of inserting rows into a table with abstract data types........................105
Figure 3-1: Basic SQL configuration in a UAP..108
Figure 3-2: Example of values provided at the time of SQL execution120
Figure 3-3: Dynamic SQL execution mode..121
Figure 3-4: Example of inserting data into a dynamically specified table125
Figure 3-5: Example of dynamic processing when the preprocessed SQL is a dynamic SELECT

statement..126
Figure 3-6: Examples of transaction startup and termination...128
Figure 3-7: Locked resources and inclusive relationships..133
Figure 3-8: Example of deadlock..157
Figure 3-9: Example of deadlock in page-locking..158
Figure 3-10: Example of global deadlock...159
Figure 3-11: Processing flows of an ordinary retrieval and of a retrieval using an unlocked

conditional search..164
Figure 3-12: Example of deadlock avoidance by applying non-locking of index key values 167
Figure 3-13: Creation of a key value locked resource when pd_key_resource_type=TYPE1 is

used..181

xlii

Figure 3-14: Creation of a key value locked resource when pd_key_source_type=TYPE2 is
used... 182

Figure 4-1: Benefits of using an SQL stored procedure .. 208
Figure 4-2: Defining and executing an SQL stored procedure .. 209
Figure 4-3: Example of an SQL stored procedure ... 210
Figure 4-4: Overview of results-set return facility (for SQL stored procedures) 214
Figure 4-5: Defining and executing an SQL stored function ... 218
Figure 4-6: SQL stored function example.. 218
Figure 4-7: Correspondences between a table with abstract data types and the called

function... 225
Figure 4-8: Trigger overview ... 230
Figure 4-9: SQL statement query processing in a HiRDB/Parallel Server 250
Figure 4-10: Floatable server allocation when the optimization method is omitted.............. 253
Figure 4-11: Floatable server allocation when increasing the target floatable servers (back-end

servers for fetching data) is applied.. 254
Figure 4-12: Floatable server allocation when limiting the target floatable servers (back-end

servers for fetching data) is applied.. 255
Figure 4-13: Floatable server allocation when separating data collecting servers is applied 256
Figure 4-14: Grouping processing method when the optimization method is omitted.......... 258
Figure 4-15: Grouping processing when rapid grouping processing is applied..................... 259
Figure 4-16: Grouping processing when group processing, ORDER BY processing, and

DISTINCT set function processing are applied at the local back-end server 260
Figure 4-17: Processing of SORT MERGE JOIN.. 263
Figure 4-18: Processing of KEY SCAN MERGE JOIN.. 263
Figure 4-19: Processing of LIST SCAN MERGE JOIN ... 264
Figure 4-20: Processing of NESTED LOOPS JOIN.. 265
Figure 4-21: Processing of R-LIST NESTED LOOPS JOIN .. 266
Figure 4-22: Processing of HASH JOIN.. 267
Figure 4-23: Processing method of batch hash join ... 269
Figure 4-24: Processing method of bucket partitioning hash join ... 271
Figure 4-25: Processing method of continuous hash join .. 272
Figure 4-26: Processing method of intermittent hash join ... 273
Figure 4-27: Processing method of DISTRIBUTED NESTED LOOPS JOIN 275
Figure 4-28: CROSS JOIN processing method ... 275
Figure 4-29: TABLE SCAN processing method.. 278
Figure 4-30: INDEX SCAN processing method.. 278
Figure 4-31: KEY SCAN processing method.. 279
Figure 4-32: MULTI COLUMNS INDEX SCAN processing method.................................. 279
Figure 4-33: MULTI COLUMNS KEY SCAN processing method 279
Figure 4-34: PLUGIN INDEX SCAN processing method .. 280
Figure 4-35: PLUGIN KEY SCAN processing method .. 280
Figure 4-36: AND PLURAL INDEXES SCAN processing method..................................... 281
Figure 4-37: OR PLURAL INDEXES SCAN processing method.. 282
Figure 4-38: LIST SCAN processing method.. 282

xliii

Figure 4-39: ROWID FETCH processing method ...283
Figure 4-40: FOREIGN SERVER SCAN processing method ...283
Figure 4-41: FOREIGN SERVER LIMIT SCAN processing method284
Figure 4-42: WORK TABLE ATS SUBQ processing method...287
Figure 4-43: WORK TABLE SUBQ processing method ...288
Figure 4-44: ROW VALUE SUBQ processing method ...289
Figure 4-45: HASH SUBQ processing method..290
Figure 4-46: NESTED LOOPS WORK TABLE SUBQ processing method293
Figure 4-47: NESTED LOOPS ROW VALUE SUBQ processing method294
Figure 4-48: HASH SUBQ processing method..295
Figure 4-49: Data guarantee range of data guarantee level 0 ...315
Figure 4-50: Data guarantee range of data guarantee level 1 ...315
Figure 4-51: Data guarantee range of data guarantee level 2 ...316
Figure 4-52: Example of search results when a data guarantee level is specified..................317
Figure 4-53: Overview of block transfer facility ..319
Figure 4-54: Overview of multi-connection facility processing (when multithreading is not

used) ..356
Figure 4-55: Overview of multi-connection facility processing (when multithreading is

used) ..357
Figure 4-56: Overview of multi-connection facility processing (when a connection is shared by

multiple threads)..358
Figure 4-57: Overview of multi-connection facility processing (when an AP uses an

X/Open-compliant API in a single-thread OLTP system)...................................359
Figure 4-58: Overview of multi-connection facility processing (when an AP uses an

X/Open-compliant API in a multi-thread OLTP system)....................................360
Figure 4-59: Coding example (C) of a UAP that uses the multi-connection facility362
Figure 4-60: Coding example (COBOL) of a UAP that uses the multi-connection facility ..364
Figure 4-61: Coding example (C) in which the multi-connection facility is used by a UAP that

uses an X/Open-compliant API under OLTP..366
Figure 4-62: Coding example (COBOL) in which the multi-connection facility is used by a UAP

that uses an X/Open-compliant API under OLTP...367
Figure 4-63: Example of a table that manages numbers...371
Figure 4-64: Example of a search that uses lists...381
Figure 4-65: Overview of the file output facility for BLOB data...387
Figure 4-66: Reconnect timing (when the HiRDB client executes an SQL statement

immediately after executing the CONNECT statement, or when the transaction for
the previous SQL statement is completed)..398

Figure 4-67: Reconnect timing (when the HiRDB client executes an SQL statement while the
HiRDB server is processing the transaction for the previous SQL statement) ...399

Figure 4-68: Reconnect timing (when the HiRDB client executes the CONNECT
statement) ..400

Figure 4-69: Overview of the locator facility ...403
Figure 6-1: Differences between fixing and not fixing the communication-target server......484

xliv

Figure 6-2: Relationships among PDCWAITTIME, PDSWAITTIME, and
PDSWATCHTIME ... 542

Figure 6-3: Overview of processing for each setting of PDCURSORLVL................................ 592
Figure 7-1: Example of the basic configuration of an embedded SQL UAP......................... 620
Figure 7-2: Flowchart example of an embedded SQL UAP written in C.............................. 629
Figure 7-3: Flowchart example of an embedded SQL UAP written in C.............................. 630
Figure 7-4: PAD chart for program example 2 (1/4).. 636
Figure 7-5: PAD chart for program example 2 (2/4).. 637
Figure 7-6: PAD chart for program example 2 (3/4).. 638
Figure 7-7: PAD chart for program example 2 (4/4).. 639
Figure 7-8: PAD chart for program example 3 (1/3).. 648
Figure 7-9: PAD chart for program example 3 (2/3).. 649
Figure 7-10: PAD chart for program example 3 (3/3).. 650
Figure 7-11: Flowchart of program example 4 (1/3).. 664
Figure 7-12: Flowchart of program example 4 (2/3) ... 665
Figure 7-13: Flowchart of program example 4 (3/3) ... 666
Figure 7-14: PAD chart for program example 5 (1/4).. 679
Figure 7-15: PAD chart for program example 5 (2/4).. 680
Figure 7-16: PAD chart for program example 5 (3/4).. 682
Figure 7-17: PAD chart for program example 5 (4/4).. 683
Figure 8-1: Execution procedure for UAP written in C... 699
Figure 8-2: Execution procedure for a UAP written in COBOL ... 700
Figure 9-1: Procedure from Java stored routine creation to execution 773
Figure 9-2: Example of Java program coding.. 775
Figure 9-3: Example of compilation .. 776
Figure 9-4: Overview of testing and debugging .. 777
Figure 9-5: Example of archiving in the JAR format .. 777
Figure 9-6: Overview of JAR file registration ... 778
Figure 9-7: Example of a Java stored routine definition.. 779
Figure 9-8: Example of Java stored routine execution... 780
Figure 9-9: Method execution control using security policy ... 807
Figure 9-10: Example of parameter input/output mod mapping.. 809
Figure 9-11: Overview of the results-set return facility (for a Java stored procedure) 810
Figure 9-12: Procedure for testing and debugging a Java program for a Java stored

procedure .. 817
Figure 9-13: Procedure for testing and debugging a Java program for a Java stored

function... 818
Figure 9-14: Location at which class files are created ... 819
Figure 9-15: Example of integrating Class files in JAR files .. 820
Figure 11-1: Distributed database connection format .. 899
Figure 11-2: Examples of transaction startup and termination using an SQL connection to a

distributed RD-node ... 903
Figure 12-1: Overview of command execution from UAPs .. 938
Figure 12-2: Sample server-client configuration for a HiRDB/Single Server 939

xlv

Figure 12-3: Sample server-client configuration for a HiRDB/Parallel Server......................942
Figure 17-1: Flow of mutual character code conversion between HiRDB character data and

Unicode ...1304
Figure 18-1: Flow of UAP development that uses SQLJ ...1344
Figure 18-2: Execution of a UAP that uses SQLJ ..1345
Figure A-1: Configuration of SQL Communications Area ..1397
Figure B-1: Organization of the SQL Descriptor Area...1406
Figure C-1: Organization of the Column Name Descriptor Area...1429
Figure D-1: Organization of the Type Name Descriptor Area..1433

xlvi

List of tables

Table 1-1: List of SQL statements (definition SQL).. 5
Table 1-2: List of SQL statements (data manipulation SQL)... 10
Table 1-3: List of SQL statements (control SQL) .. 14
Table 1-4: List of SQL statements (embedded language) .. 15
Table 1-5: List of SQL statements (routine control SQL).. 18
Table 2-1: Descriptions of abstract data type functions provided by the HiRDB Text Search

Plug-in .. 93
Table 3-1: UAP descriptive languages ..115
Table 3-2: Interface area types and uses..116
Table 3-3: Classification of UAP retrieval methods using SQL statements118
Table 3-4: Execution characteristics of static and dynamic SQLs ..119
Table 3-5: SQL statements preprocessed by the PREPARE statement, and SQL statements

preprocessed and executed by the EXECUTE IMMEDIATE statement 121
Table 3-6: Synchronization points and transactions... 129
Table 3-7: Scope of the LOCK TABLE UNTIL DISCONNECT specification when OpenTP1

is used ... 132
Table 3-8: Simultaneous execution by two users based on lock modes................................. 135
Table 3-9: Lock mode transition rules.. 136
Table 3-10: Typical lock mode combinations (row locking) (1/2)... 137
Table 3-11: Typical lock mode combinations (row locking) (2/2)... 139
Table 3-12: Typical lock mode combinations (page locking) (1/2) 141
Table 3-13: Typical lock mode combinations (page locking) (2/2) 143
Table 3-14: Typical lock mode combinations (non-locking of index key values) (1/2) 144
Table 3-15: Typical lock mode combinations (non-locking of index key values) (2/2) 147
Table 3-16: Typical lock mode combinations (when check pending status is set) (1/2)........ 149
Table 3-17: Typical lock mode combinations (when check pending status is set) (2/2)........ 150
Table 3-18: Lock release timings in tables for which the WITHOUT ROLLBACK option is

specified in CREATE TABLE (when an index is not defined) (1/2) 151
Table 3-19: Lock release timings in tables for which the WITHOUT ROLLBACK option is

specified in CREATE TABLE (when an index is not defined) (2/2) 152
Table 3-20: Lock release timings in tables for which the WITHOUT ROLLBACK option is

specified in CREATE TABLE (when an index is defined) (1/2) 153
Table 3-21: Lock release timings in tables for which the WITHOUT ROLLBACK option is

specified in CREATE TABLE (when an index is defined) (2/2) 154
Table 3-22: Deadlocks and their countermeasures... 160
Table 3-23: Relationships between cursor updatability and operations that do not use a

cursor .. 183
Table 3-24: Specifying FOR UPDATE and FOR READ ONLY clauses 187

xlvii

Table 3-25: Relationships between the lock option specified during cursor declaration or
dynamic SELECT statement preprocessing and the lock option specified during
table operations ...188

Table 3-26: Values set in variables and SQL statement execution status198
Table 3-27: Relationship among SQLSTATE, SQLCODE, and SQLWARN0 values when

normal termination with a warning occurs..199
Table 3-28: Additional return code information and items referred to by the information200
Table 4-1: Priorities of pre-defined data types..223
Table 4-2: Priorities of abstract data types..224
Table 4-3: Features of the SQL optimizing modes ...233
Table 4-4: SQL optimizing modes in which the SQL optimization option and SQL extension

optimizing option are valid ...245
Table 4-5: Optimization features related to floatable server allocation..................................251
Table 4-6: Optimization features related to number of floatable server allocation

candidates ..252
Table 4-7: Optimization features related to grouping processing methods257
Table 4-8: Join method types and features..261
Table 4-9: Hash join processing methods and features...267
Table 4-10: Search method types and features ...276
Table 4-11: Execution methods and features of subqueries with no external references284
Table 4-12: Optimal execution method of subqueries with no external references................286
Table 4-13: Execution methods and features of subqueries with external references291
Table 4-14: Tuning methods for hash table size ...301
Table 4-15: Tuning information for the hashing mode ...303
Table 4-16: Relationships between the SQL optimization and SQL extension optimizing options

and deriving high-speed search conditions ...305
Table 4-17: Relationships between the SQL optimization options and deriving high-speed

search conditions ...309
Table 4-18: Relationship between data guarantee level and lock option................................314
Table 5-1: Types of plug-in distribution functions ...412
Table 5-2: Correspondences between receive and send functions for passing inter-function

values...413
Table 5-3: Combinations that trigger an error when a plug-in distribution function is

executed...416
Table 5-4: Passing inter-function values in set operation results..420
Table 6-1: Files and directories for workstation - HiRDB/Developer's Kit427
Table 6-2: Files and directories for HiRDB/Run Time (UNIX client)431
Table 6-3: Files and directories for HiRDB/Developer's Kit (UNIX client in IPF machine).433
Table 6-4: Files and directories for HiRDB/Run Time (UNIX client in IPF machine)..........437
Table 6-5: Files and directories for HiRDB/Developer's Kit (Linux (EM64T))439
Table 6-6: Files and directories for HiRDB/Run Time (Linux (EM64T))442
Table 6-7: Archived files used for each purpose (UNIX client) ...442
Table 6-8: Shared library files used for each purpose (UNIX client)443
Table 6-9: Library files used by each transaction manager (UNIX client).............................444

xlviii

Table 6-10: Files and directories for HiRDB/Developer's Kit (Windows client) 445
Table 6-11: Files and directories for HiRDB/Run Time (Windows client)............................ 447
Table 6-12: Files and directories for HiRDB/Developer's Kit (Windows client in IPF

machine) ... 449
Table 6-13: Files and directories for HiRDB/Run Time (Windows client in IPF machine) .. 451
Table 6-14: Files and directories for HiRDB/Developer's Kit (EM64T machine Windows

client) .. 452
Table 6-15: Files and directories for HiRDB/Run Time (EM64T machine Windows client) 454
Table 6-16: Files and directories for ODBC driver (Windows client) 456
Table 6-17: Linkage library files used according to purpose (Windows client) 456
Table 6-18: Library files used by each transaction manager (Windows client) 457
Table 6-19: List of libraries and compilers (Windows client).. 457
Table 6-20: OpenTP1 definitions in which the environment variables are specified 471
Table 6-21: TP1/LiNK definitions in which the environment variables are specified........... 475
Table 6-22: TPBroker definitions in which the environment variables are specified............ 478
Table 6-23: Environment variable specification status (for a UAP under TUXEDO)........... 480
Table 6-24: Environment variable specification status (for a UAP under WebLogic Server)482
Table 6-25: Client environment definitions ... 487
Table 6-26: Differences in character code conversions when UTF8, UTF8_EX, and UTF8_EX2

are specified (for characters received from a HiRDB server) 521
Table 6-27: Differences in character code conversions when UTF8, UTF8_EX, and UTF8_EX2

are specified (for characters entered at the HiRDB client)................................. 522
Table 6-28: Specification values of the SQL optimization option ... 564
Table 6-29: Recommended specification values for the SQL optimization option (for

HiRDB/Parallel Server).. 566
Table 6-30: Relationships between SQL statements that create work tables and suppressing

creation of update SQL-work tables... 575
Table 6-31: Specification values of the SQL extension optimizing option............................ 583
Table 6-32: Relationships between environment variables and connection types 607
Table 7-1: Items that can be described within an embedded SQL declare section 624
Table 7-2: Locations where SQL statements can be described.. 625
Table 7-3: Divisions in COBOL for describing SQL statements... 662
Table 8-1: Character codes that can be specified for LANG ... 702
Table 8-2: Preprocessing options (for C in the UNIX environment) 704
Table 8-3: SQL preprocessor return codes (for C programs in a UNIX environment).......... 708
Table 8-4: SQL preprocessor standard input and output (for C programs in a UNIX

environment)... 709
Table 8-5: Preprocessing options (for COBOL in the UNIX environment)711
Table 8-6: SQL preprocessor return codes (for COBOL programs in a UNIX environment)714
Table 8-7: SQL preprocessor standard input and output (for COBOL programs in a UNIX

environment)... 714
Table 8-8: Preprocessing options (for C in the Windows environment) 716
Table 8-9: SQL preprocessor return codes (for C programs in a Windows environment) 719

xlix

Table 8-10: SQL preprocessor standard input and output (for C programs in a Windows
environment) ...720

Table 8-11: Preprocessing options (for COBOL in the Windows environment)....................722
Table 8-12: SQL preprocessor return codes (for COBOL programs in a Windows

environment) ...725
Table 8-13: SQL preprocessor standard input and output (for COBOL programs in a Windows

environment) ...725
Table 8-14: Use of pointers, structures, and pointer qualifiers when the -E2 or -E3 option is

specified ..734
Table 8-15: Libraries to be specified for compiling and linking (in non-OLTP

environment) ...737
Table 8-16: Libraries to be specified for compiling and linking (in OLTP environment)......740
Table 8-17: Items set with Setup...750
Table 8-18: Item to be set with Edit Project in COBOL85...751
Table 8-19: Item to be set with Project Setup in COBOL2002 ..751
Table 8-20: Item to be set for Compilation Environment in COBOL85751
Table 8-21: Libraries to be linked when the multi-connection facility is used.......................753
Table 8-22: Items to be set with Set..756
Table 8-23: Items to be specified with the Option menu ..757
Table 8-24: UAP transferability from XDM/RD or UNIFY2000 ..769
Table 8-25: LANG and PDLANG settings for each platform ..769
Table 10-1: Relationship between the use of an API (TX_function) conforming to X/Open and

created SQL trace files ..825
Table 10-2: Relationship between use of API (TX_function) conforming to X/Open and created

error log files ...840
Table 10-3: Relationship between the value of PDUAPREPLVL and information to be

obtained ...857
Table 10-4: UAP error types and recovery methods...894
Table 11-1: Generating an SQL connection..900
Table 11-2: Current SQL connection setting ..901
Table 11-3: Current SQL connection and range of databases that can be accessed902
Table 11-4: SQL statements supported by distributed client facility......................................909
Table 11-5: Details about SQL statements usable for remote database access.......................910
Table 11-6: Data types of variables supported by distributed client facility922
Table 11-7: Data types set in SQL Descriptor Area of HiRDB after execution of DESCRIBE

statement in the case of a HiRDB distributed server ..923
Table 11-8: Data types set in SQL Descriptor Area of HiRDB after execution of DESCRIBE

statement in the case of an XDM/RD distributed server.....................................924
Table 11-9: Data types set in SQL Descriptor Area of HiRDB after execution of DESCRIBE

statement in the case of an ORACLE distributed server.....................................926
Table 11-10: Data types set in SQL Descriptor Area of HiRDB after execution of DESCRIBE

statement in the case of an RDB1 E2 distributed server927
Table 11-11: Data types set in SQL Descriptor Area of HiRDB after execution of DESCRIBE

statement in the case of an SQL/K distributed server ...928

l

Table 11-12: SQLCODEs set by distributed client when errors occur at distributed server.. 930
Table 11-13: Statement information items obtained by GET DIAGNOSTICS statement when

error occurs at distributed server .. 931
Table 11-14: Condition information items obtained by specifying condition number 1 (error at

the distributed server) ... 931
Table 11-15: Space conversion when the distributed server is HiRDB 934
Table 12-1: Command executability from UAPs... 946
Table 13-1: ODBC3.0 driver installation directory.. 959
Table 13-2: ODBC functions provided by HiRDB .. 963
Table 13-3: ODBC function data types and HiRDB data types... 967
Table 13-4: Available facilities .. 969
Table 13-5: Options that can be set with the SQLSetConnectOption and SQLGetConnectOption

functions ... 970
Table 13-6: ODBC functions that can be used by a UAP in Unicode 978
Table 14-1: Schema information provided by the HiRDB OLE DB provider....................... 988
Table 14-2: Correspondences between the HiRDB data types and the OLE DB type

indicators .. 990
Table 15-1: List of HiRDB.NET Data Provider classes... 996
Table 15-2: Notes about HiRDB.NET Data Provider .. 1039
Table 15-3: HiRDBType property values that are automatically set when the DbType property

is set .. 1041
Table 15-4: DbType property values that are automatically set when the HiRDBType property

is set .. 1042
Table 15-5: Data types and accessories for HiRDB-type UAPs .. 1043
Table 15-6: List of type conversions for INSERT (1/2)... 1044
Table 15-7: List of type conversions for INSERT (2/2)... 1045
Table 15-8: List of type conversions for SELECT (1/2).. 1046
Table 15-9: List of type conversions for SELECT (2/2).. 1047
Table 16-1: JDBC driver's installation directory and file... 1060
Table 16-2: Arguments of the getConnection method ... 1063
Table 16-3: Information to be specified for Properties info... 1064
Table 16-4: Return values of the getColumnDisplaySize method for each SQL data type in

HiRDB.. 1076
Table 16-5: Availability of result set types with JDBC driver ... 1081
Table 16-6: Mapping between the getXXX methods and JDBC SQL types of ResultSet and

CallableStatement (1/2) .. 1087
Table 16-7: Mapping between the getXXX methods and JDBC SQL types of ResultSet and

CallableStatement (2/2) .. 1089
Table 16-8: setXXX methods and JDBC SQL types to be mapped for PreparedStatement

class .. 1091
Table 16-9: Mapping between the setXXX methods and JDBC SQL types of PreparedStatement

and CallableStatement (1/2) ... 1092
Table 16-10: Mapping between the setXXX methods and JDBC SQL types of

PreparedStatement and CallableStatement (2/2) .. 1093

li

Table 16-11: Classes related to connection pools ...1100
Table 16-12: Classes related to distributed transactions ...1102
Table 16-13: Object types returned by getArray...1107
Table 16-14: Attribute values of the result sets returned by getResultSet1108
Table 16-15: Object types returned during data acquisition using the Array.getArray() method

without any argument..1109
Table 16-16: Data type of the SQL statement specified by the setObject method and the data

type of the array object.. 1110
Table 16-17: Method processing and notes .. 1115
Table 16-18: Methods of setting/acquiring connection information.....................................1121
Table 16-19: Correspondence of SQL data types between HiRDB and JDBC1149
Table 16-20: Correspondence between HiRDB character codes and Java character sets

(UNIX) ..1150
Table 16-21: Correspondence between HiRDB character codes and Java Character sets

(Windows) ...1151
Table 16-22: Limitations to the methods in the Connection class that are defined in the JDBC1.0

standard ...1152
Table 16-23: Limitations to the methods in the Connection class that are added in the JDBC2.0

basic standard ..1153
Table 16-24: Limitations to the methods in the Statement class that are defined in the JDBC1.0

standard ...1153
Table 16-25: Limitations to the methods in the Statement class that are added in the JDBC2.0

basic standard ..1153
Table 16-26: Limitations to the methods in the PreparedStatement class that are added in the

JDBC2.0 basic standard ..1154
Table 16-27: Limitations to the methods in the CallableStatement class that are added in the

JDBC2.0 basic standard ..1154
Table 16-28: Limitations to the methods in the ResultSet class that are added in the JDBC2.0

basic standard ..1155
Table 16-29: Limitations to the methods in the ResultSetMetaData class that are defined in the

JDBC1.0 standard..1156
Table 16-30: Limitations to the methods in the DatabaseMetaData class that are defined in the

JDBC1.0 standard..1157
Table 16-31: Limitations to the methods in the DatabaseMetaData class that are added in the

JDBC2.0 basic standard ..1163
Table 16-32: Limitations to the methods added by JDBC2.0 basic standards for Blob

class ...1164
Table 16-33: Restrictions on the methods added by the JDBC2.0 basic specification for the

Array class...1164
Table 17-1: Specification details of the getConnection method arguments..........................1169
Table 17-2: HiRDB character codes and corresponding conversion character sets1172
Table 17-3: Status of ResultSet objects and Statement objects after commit execution1176
Table 17-4: Return values of the DatabaseMetaData method ..1176
Table 17-5: Properties that can be specified in the getConnection method..........................1178

lii

Table 17-6: Differences in how the HiRDB driver gets BLOB and BINARY data (HiRDB data
types) ...1185

Table 17-7: Driver interface methods..1192
Table 17-8: Connection interface methods..1193
Table 17-9: Effective holdability specifications (1/2)...1197
Table 17-10: Effective holdability specifications (2/2)...1198
Table 17-11: Statement interface methods ..1199
Table 17-12: Priorities for number of rows that the JDBC driver requests the HiRDB server to

transfer in one transmission.. 1201
Table 17-13: PreparedStatement interface methods... 1204
Table 17-14: ResultSet interface methods.. 1208
Table 17-15: Fields supported by the ResultSet interface.. 1212
Table 17-16: Data retrieved and accumulated from the database during execution of the next

method .. 1214
Table 17-17: Data retrieved and accumulated from the database during execution of the

absolute, relative, last, or afterLast method.. 1215
Table 17-18: Number of retrieved rows that ResultSet objects can obtain from the HiRDB

server .. 1215
Table 17-19: DatabaseMetaData interface methods... 1216
Table 17-20: ResultSetMetaData interface methods.. 1222
Table 17-21: Blob interface methods ... 1224
Table 17-22: Conditions for generation of SQLWarning objects... 1225
Table 17-23: DataSource interface methods .. 1233
Table 17-24: ConnectionPoolDataSource interface methods... 1234
Table 17-25: PooledConnection interface methods ... 1236
Table 17-26: XAConnection interface methods... 1237
Table 17-27: XADataSource interface methods... 1237
Table 17-28: XAResource interface methods .. 1238
Table 17-29: Methods for setting and getting connection information................................ 1240
Table 17-30: SQL data type correspondences between HiRDB and JDBC (Type4 JDBC

driver) ... 1281
Table 17-31: Mapping between getXXX methods of the ResultSet class and JDBC's SQL data

types (1/2) ... 1282
Table 17-32: Mapping between getXXX methods of the ResultSet class and JDBC's SQL data

types (2/2) ... 1283
Table 17-33: JDBC SQL types mapped by the setXXX methods of the PreparedStatement

class .. 1286
Table 17-34: Mapping between the setXXX methods of the PreparedStatement class and

JDBC's SQL data types (1/2).. 1286
Table 17-35: Mapping between the setXXX methods of the PreparedStatement class and

JDBC's SQL data types (2/2).. 1288
Table 17-36: Conversion processing for combinations of the TIME, DATE, and TIMESTAMP

types and the setXXX methods .. 1291

liii

Table 17-37: Conversion processing for combinations of the TIME, DATE, TIMESTAMP, and
character string types and the getXXX methods...1293

Table 17-38: Possibility of overflow when the setXXX method is used (1/2)1294
Table 17-39: Possibility of overflow when the setXXX method is used (2/2)1295
Table 17-40: Possibility of overflow when the setObject method is used (1/2)1297
Table 17-41: Possibility of overflow when the setObject method is used (2/2)1297
Table 17-42: Possibility of overflow when the getXXX method is used (1/2).....................1299
Table 17-43: Possibility of overflow when the getXXX method is used (2/2).....................1300
Table 17-44: Possibility of overflow when the getObject method is used (1/2)...................1301
Table 17-45: Possibility of overflow when the getObject method is used (2/2)...................1302
Table 17-46: Client environment variables that can be specified with the JDBC driver......1305
Table 17-47: Priorities for connection information ..1312
Table 17-48: Specifications that become effective when an authorization identifier is not

specified ..1316
Table 17-49: Methods that are acquisition targets of the Exception trace log and their trace

acquisition levels ...1322
Table 17-50: System property settings for acquisition of the Exception trace log1327
Table 17-51: Example in which the Exception trace log is arranged in time sequence........1337
Table 17-52: Transfer of the method execution history accumulated in the JDBC driver

memory..1340
Table 18-1: Files that are generated and referenced by the SQLJ Translator1348
Table 18-2: SQL statement coding formats ..1349
Table 18-3: SQL statements that can be used in SQLJ...1354
Table 18-4: Correspondence between HiRDB data types and SQLJ data types...................1357
Table 18-5: Initial value for each data type and the data length set in SQL Descriptor

Area ...1359
Table 18-6: Description when a cursor is declared, and the acceptance area setting1361
Table 18-7: Combinations of keyword in the WITH clause and setting values1369
Table 18-8: SQLJ Translator options ..1377
Table 18-9: Migrating an SQLJ source to the native interface version1379
Table 18-10: Configuration of the Native Runtime packages ..1383
Table 18-11: Public classes of Native Runtime ..1383
Table A-1: Contents of the SQL Communications Area ..1398
Table B-1: Contents of the SQL Descriptor Area...1407
Table B-2: Data codes and data lengths set in the SQL Descriptor Area1413
Table B-3: Contents of SQLVAR_LOB..1416
Table B-4: SQL Descriptor Area expansion procedure ..1423
Table B-5: SQL Descriptor Area operation macros..1424
Table B-6: Macros for specifying data types ..1424
Table B-7: Repetition column expansion format ..1427
Table C-1: Contents of the Column Name Descriptor Area ...1430
Table D-1: Contents of the Type Name Descriptor Area..1433
Table E-1: SQL data types and C data descriptions..1436
Table E-2: SQL data types and C data descriptions when arrays are used1441

liv

Table E-3: SQL data types and C data descriptions when repetition columns are used 1443
Table E-4: Macros for referencing or setting embedded variables 1445
Table E-5: Pointer variables and C language data description.. 1448
Table E-6: Macros for pointer-type repetition columns .. 1452
Table E-7: Structures to be specified in batches ... 1454
Table E-8: SQL data types and COBOL data descriptions .. 1455
Table E-9: SQL data types and COBOL data descriptions when arrays are used 1460
Table E-10: SQL data types and COBOL data descriptions when repetition columns are

used... 1464
Table F-1: Data dictionaries ... 1469
Table F-2: SQL_PHYSICAL_FILES table contents ... 1476
Table F-3: SQL_RDAREAS table contents ... 1477
Table F-4: SQL_TABLES table contents... 1479
Table F-5: SQL_COLUMNS table contents .. 1487
Table F-6: Values that are stored when the DEFAULT clause is specified.......................... 1493
Table F-7: SQL_INDEXES table contents... 1498
Table F-8: SQL_USERS table contents ... 1500
Table F-9: SQL_RDAREA_PRIVILEGES table contents .. 1502
Table F-10: SQL_TABLE_PRIVILEGES table contents .. 1502
Table F-11: SQL_VIEW_TABLE_USAGE table contents ... 1503
Table F-12: SQL_VIEWS table contents ... 1504
Table F-13: SQL_DIV_TABLE table contents .. 1504
Table F-14: SQL_INDEX_COLINF table contents... 1505
Table F-15: SQL_DIV_INDEX table contents .. 1506
Table F-16: SQL_DIV_COLUMN table contents ... 1507
Table F-17: SQL_ROUTINES table contents.. 1507
Table F-18: SQL_ROUTINE_RESOURCES table contents ... 1515
Table F-19: SQL_ROUTINE_PARAMS table contents .. 1517
Table F-20: SQL_ALIASES table contents ... 1520
Table F-21: SQL_TABLE_STATISTICS table contents.. 1521
Table F-22: SQL_COLUMN_STATISTICS table contents... 1521
Table F-23: SQL_INDEX_STATISTICS table contents.. 1523
Table F-24: SQL_DATATYPES table contents.. 1523
Table F-25: SQL_DATATYPE_DESCRIPTORS table contents ... 1524
Table F-26: SQL_TABLE_RESOURCES table contents .. 1526
Table F-27: SQL_PLUGINS table contents... 1527
Table F-28: SQL_PLUGIN_ROUTINES table contents ... 1528
Table F-29: SQL_PLUGIN_ROUTINE_PARAMS table contents 1529
Table F-30: SQL_INDEX_TYPES table contents ... 1531
Table F-31: SQL_INDEX_RESOURCES table contents .. 1532
Table F-32: SQL_INDEX_DATATYPE table contents ... 1532
Table F-33: SQL_INDEX_FUNCTION table contents ... 1533
Table F-34: SQL_TYPE_RESOURCES table contents... 1534
Table F-35: SQL_INDEX_TYPE_FUNCTION table contents ... 1534

lv

Table F-36: SQL_EXCEPT table contents ...1535
Table F-37: SQL_FOREIGN_SERVERS table contents..1535
Table F-38: SQL_USER_MAPPINGS table contents..1537
Table F-39: SQL_IOS_GENERATIONS table contents ..1538
Table F-40: SQL_TRIGGERS table contents...1538
Table F-41: SQL_TRIGGER_COLUMNS table contents ...1540
Table F-42: SQL_TRIGGER_DEF_SOURCE table contents..1541
Table F-43: SQL_TRIGGER_USAGE table contents..1542
Table F-44: SQL_PARTKEY table contents ..1543
Table F-45: SQL_PARTKEY_DIVISION table contents...1543
Table F-46: SQL_AUDITS table contents..1544
Table F-47: SQL_REFERENTIAL_CONSTRAINTS table contents..................................1546
Table F-48: SQL_KEYCOLUMN_USAGE table contents ...1547
Table F-49: SQL_TABLE_CONSTRAINTS table contents ..1548
Table F-50: SQL_CHECKS table contents...1548
Table F-51: SQL_CHECK_COLUMNS table contents ...1549
Table F-52: SQL_DIV_TYPE table contents ...1550
Table F-53: SQL_SYSPARAMS table contents ...1551
Table G-1: Execution conditions in the HiRDB client ...1554
Table G-2: Items to be set in the HiRDB server with Set Project or Set1556
Table G-3: Items to be set in the HiRDB client with Set Project or Set1557
Table G-4: Double-byte space characters specified in ncspace ..1560
Table G-5: Hash function codes for hash functions..1564
Table G-6: Area for setting partitioning keys ...1565
Table G-7: Data type codes and data length codes ...1565
Table G-8: Area for setting the data address of a partitioning key1566
Table G-9: Macros for maximum values ..1567
Table H-1: HiRDB maximum and minimum values ..1590

1

Chapter

1. Overview

This chapter explains the work flow for creating user application programs (UAPs),
the characteristics of UAPs, and the interface between UAPs and the HiRDB system.
This chapter contains the following sections:

1.1 UAP development flow
1.2 UAP characteristics
1.3 Interface with HiRDB
1.4 UAP operation environment

1. Overview

2

1.1 UAP development flow

Before creating a user application program (UAP), the task requirements must be
analyzed in order to create a database that is well suited to the data to be used in the
task. Based on this analysis, you can estimate the overall database size and develop an
outline of the UAP. Figure 1-1 shows the relationship between UAP creation and the
organization of this manual.

Figure 1-1: UAP development flow

#: For work details, see HiRDB Version 8 Installation and Design Guide.

1. Overview

3

1.2 UAP characteristics

1.2.1 UAP format
To manipulate a HiRDB database, descriptions in the SQL language are embedded
directly into a source program written in a high-level language.
The embedded method involves writing descriptions of a database language called
SQL directly into a source program written in a high-level language. If you decide to
create an embedded SQL UAP, program analysis becomes easy. All operations
including the database operations (SQL) can be written as one program.
ODBC functions can also be specified in a UAP, and UAPs can also be created with
JavaTM (SQLJ).

(1) Source program
The following high-level languages can be used to write an embedded SQL UAP:

• C language
• C++ language
• COBOL language
• OOCOBOL language

(2) SQL
SQL is a database language for writing the definition, data manipulation, operation,
and control instructions of a database. You can use these instructions by embedding
them into a source program written in a high-level language. Figure 1-2 shows the SQL
functional organization.

1. Overview

4

Figure 1-2: SQL functional organization

For an overview of the SQL language types and functions for programs, see 1.2.2 List
of SQL statements usable in HiRDB. For details about the embedded language, see the
manual HiRDB Version 8 SQL Reference.

1.2.2 List of SQL statements usable in HiRDB
Tables 1-1 to 1-5 list the SQL statements that can be used in HiRDB. In the table
headings, OLTP refers to an application program that complies with X/Open in the
OLTP environment.
For details about the following items, refer to the indicated manuals or locations:
Details about the SQL coding formats

HiRDB Version 8 SQL Reference
Database definitions

HiRDB Version 8 Installation and Design Guide
Database operations

1. Overview

5

2. Database Operations
Database management

3. UAP Design
Embedded language

HiRDB Version 8 SQL Reference
Table 1-1: List of SQL statements (definition SQL)

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

ALTER PROCEDURE
(re-create SQL object
for procedure)

Re-creates an SQL object for
a procedure.

U U

ALTER ROUTINE
(re-create SQL object
for function,
procedure, or trigger)

Re-creates an SQL object for
a function or procedure.

U U

ALTER TABLE (alter
table definition)

• Adds a new column to
end of a base table.

• Changes a data type.
• Increases the maximum

length of an existing
column of the
variable-length data type.

• Deletes a base table
column that contains no
data.

• Changes the uniqueness
constraint for cluster keys
for a base table
containing no data.

• Renames table and
columns.

U U

ALTER TRIGGER
(re-create SQL object
for trigger)

Re-creates an SQL object for
a trigger.

U U

COMMENT (add
comment)

Provides a comment in a table
or column.

U U

1. Overview

6

CREATE ALIAS
(define alias)

Assigns an alias for a table. U U

CREATE AUDIT
(define audit event)

Defines an audit event to be
recorded as an audit trace and
its target.

U U

CREATE
CONNECTION
SECURITY (define
connection security
facility)

Defines the security item
related to the connection
security facility.

U U

CREATE FOREIGN
INDEX (define
foreign index)

Defines a foreign index. U U

CREATE FOREIGN
TABLE (define
foreign table)

Defines a foreign table. U U

CREATE FUNCTION
(define function)

Defines a function. U U

CREATE INDEX
(define index)

Defines an index (ascending
or descending order) for
columns in a base table.

U U

CREATE PROCEDURE
(define procedure)

Defines a procedure. U U

CREATE SCHEMA
(define schema)

Defines a schema. U U

CREATE SERVER
(define foreign
server)

Defines a foreign server. U U

CREATE TABLE
(define base table)

Defines a base table. U U

CREATE TRIGGER
(define trigger)

Defines a trigger. U U

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

1. Overview

7

CREATE TYPE
(define type)

Defines an abstract data type. U U

CREATE USER
MAPPING (define user
mapping)

Defines a user mapping. U U

CREATE VIEW (define
view table)

Defines a view table. U U

DROP ALIAS (delete
alias)

Deletes a table alias. U U

DROP AUDIT (delete
audit event)

Deletes the definition that
matches the audit event and
contents defined by CREATE
AUDIT from the audit targets.

U U

DROP CONNECTION
SECURITY (delete
connection security
facility)

Deletes the security item
related to the connection
security facility.

U U

DROP DATA TYPE
(delete user-defined
type)

Deletes a user-defined type. U U

DROP FOREIGN
INDEX (delete foreign
index)

Deletes the definition of a
foreign index.

U U

DROP FOREIGN
TABLE (delete foreign
table)

Deletes the definition of a
foreign table.

U U

DROP FUNCTION
(delete function)

Deletes a function. U U

DROP INDEX (delete
index)

Deletes an index. U U

DROP PROCEDURE
(delete procedure)

Deletes a procedure. U U

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

1. Overview

8

DROP SCHEMA (delete
schema)

Deletes a schema. U U

DROP SERVER (delete
foreign server)

Deletes the definition of a
foreign server.

U U

DROP TABLE (delete
table)

Deletes a base table, as well
as any indexes, comments,
access privileges, view
tables, and trigger associated
with the base table.

U U

DROP TRIGGER
(delete trigger)

Deletes a trigger. U U

DROP USER
MAPPING (delete user
mapping)

Deletes a user mapping. U U

DROP VIEW (delete
view table)

Deletes a view table. U U

GRANT AUDIT
(change auditor's
password)

Changes the auditor's
password.

U U

GRANT CONNECT
(grant CONNECT
privilege)

Grants the CONNECT privilege
to users.

U U

GRANT DBA (grant
DBA privilege)

Grants the DBA privilege to
users.

U U

GRANT RDAREA (grant
RDAREA usage
privilege)

Grants the RDAREA usage
privilege to users.

U U

GRANT SCHEMA (grant
schema definition
privilege)

Grants the schema definition
privilege to users.

U U

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

1. Overview

9

U: Can be used.
: Cannot be used.

GRANT
access-privilege
(grant access
privileges)

Grants access privileges to
users.

U U

REVOKE CONNECT
(revoke CONNECT
privilege)

Revokes previously granted
CONNECT privileges.

U U

REVOKE DBA (revoke
DBA privilege)

Revokes previously granted
DBA privileges.

U U

REVOKE RDAREA
(revoke RDAREA
usage privilege)

Revokes previously granted
RDAREA usage privileges.

U U

REVOKE SCHEMA
(revoke schema
definition privilege)

Revokes previously granted
schema definition privileges.

U U

REVOKE
access-privilege
(revoke access
privilege)

Revokes previously granted
access privileges.

U U

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

1. Overview

10

Table 1-2: List of SQL statements (data manipulation SQL)

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

ALLOCATE CURSOR
statement
(allocate cursor)

Allocates a cursor for a
SELECT statement
preprocessed by the PREPARE
statement or for a group of
result sets returned by a
procedure.

U U U

ASSIGN LIST
statement
(create list)

Creates a list from a base
table.

U U U

CALL statement*
(call procedure)

Calls a procedure. U U U U

CLOSE statement
(close cursor)

Closes a cursor. U U U U U

DEALLOCATE
PREPARE statement
(release
preprocessing)

Releases the allocation of an
SQL statement preprocessed
by the PREPARE statement.

U U U

DECLARE CURSOR
(declare cursor)

Declares a cursor that the
results of a retrieval by the
SELECT statement can be
fetched row by row with the
FETCH statement.

U U U U U

DELETE statement
(delete rows)

Deletes either the rows that
satisfy specified search
conditions or the row
indicated by the cursor.

U U U U U

Preparable dynamic
DELETE statement:
locating
(delete row that uses
preprocessable
cursor)

Deletes the row indicated by
the specified cursor. This
statement is used for dynamic
execution.

U U U

1. Overview

11

DESCRIBE statement
(receive retrieval and
I/O information)

Returns to the SQL Descriptor
Area SQL retrieval
information, output
information, or input
information that was
preprocessed by the PREPARE
statement.

U U U U U

DESCRIBE CURSOR
statement
(receive retrieval
information for
cursor)

Returns to the SQL Descriptor
Area retrieval information for
a cursor that can reference a
result set returned by a
procedure.

U U U

DESCRIBE TYPE
statement
(receive definition
information for
user-defined type)

Receives in the SQL
Descriptor Area the definition
information (including data
codes for all attributes and
data length) for a user-defined
type. The user-defined type
has been directly or indirectly
included in the SQL retrieval
item information that was
preprocessed by the
PREPARE statement.

U U U

DROP LIST statement
(delete list)

Deletes a list. U U U

EXECUTE statement
(execute SQL)

Executes an SQL statement
preprocessed by the PREPARE
statement.

U U U U U

EXECUTE IMMEDIATE
statement
(preprocess and
execute SQL)

Preprocesses and executes an
SQL statement provided in a
character string.

U U U U U

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

1. Overview

12

FETCH statement
(fetch data)

Advances the cursor to the
next row to be fetched, and
reads column values in that
row into the embedded
variable specified in the INTO
clause.

U U U U U

FREE LOCATOR
statement
(invalidate locator)

Invalidates a locator. U U U

INSERT statement
(insert rows)

Inserts rows into a table. A
single row can be inserted by
direct specification of values;
one or more rows can be
inserted by using the SELECT
statement.

U U U U U

OPEN statement
(open cursor)

Opens a cursor. The cursor
declared by DECLARE
CURSOR or allocated by
ALLOCATE CURSOR is
positioned immediately
preceding the first line of the
retrieval results so that the
retrieval results can be
fetched.

U U U U U

PREPARE statement
(preprocess SQL
statement)

Preprocesses the SQL
statement provided in a
character string so that the
statement can be executed and
assigns a name (SQL
statement identifier or
extended statement name) to
that SQL statement.

U U U U U

PURGE TABLE
statement
(delete all rows)

Deletes all rows in a base
table.

U U U

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

1. Overview

13

U: Can be used.
: Cannot be used.

* If a procedure is called under OLTP, or if a procedure defined on a distributed server
is called when a distributed database facility is used, that procedure cannot be executed
if it contains a PURGE TABLE, COMMIT, or ROLLBACK statement.

Single-row SELECT
statement
(retrieve one row)

Searches table data. To fetch
only one row of data from a
table, the single-row SELECT
statement can be used without
having to declare a cursor.

U U U U U

Dynamic SELECT
statement
(retrieve dynamically)

Searches table data. The
dynamic SELECT statement is
preprocessed by the PREPARE
statement. During the search,
a cursor declared by DECLARE
CURSOR or allocated by
ALLOCATE CURSOR is used to
fetch the retrieval results row
by row.

U U U U U

UPDATE statement
(update data)

Updates the values of columns
in the rows that satisfy
specified search conditions or
in the row indicated by the
cursor.

U U U U U

Preparable dynamic
UPDATE statement:
locating
(update data that uses
preprocessable
cursor)

Updates the value of the
specified column in the row
indicated by the specified
cursor. This statement is used
for dynamic execution.

U U U

Assignment statement
(assign value)

Assigns a value to an SQL
variable or SQL parameter.

U U U

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

1. Overview

14

Table 1-3: List of SQL statements (control SQL)

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

COMMIT statement
(terminate transaction
normally)

Terminates the current
transaction normally, sets
synchronization points,
generates one unit of
commitment, and effects the
database updates performed
by the transaction.

U U U U

CONNECT statement
(connect UAP to
HiRDB)

Passes the authorization
identifier and password to
HiRDB, and enables the UAP
to use HiRDB.

U U U* U*

DISCONNECT
statement (disconnect
UAP from HiRDB)

Terminates the current
transaction normally, sets
synchronization points, and
generates one unit of
commitment, then
disconnects the UAP from
HiRDB.

U U U U

LOCK statement (lock
control on tables)

Performs exclusive locks on
specified tables.

U U U U

CONNECT statement
with RD-node
specification
(connect to
distributed RD-node)

Relays an authorization
identifier and a password to a
distributed RD-node so that a
UAP can use that distributed
RD-node.

U U U U U

DISCONNECT
statement with
RD-node
specification
(disconnect from
distributed RD-node)

Terminates the current
transaction normally,
establishes a synchronization
point, and creates a single
commitment unit. The UAP
is then disconnected from the
distributed RD-node.

U U U U

ROLLBACK statement
(cancel transaction)

Cancels the current
transaction and nullifies the
database updating performed
by the transaction.

U U U U

1. Overview

15

U: Can be used.
: Cannot be used.

* The system automatically connects to the distributed server DBMS when the first
data manipulation SQL that accesses a distributed server database is executed, rather
than when the CONNECT statement is executed. After the CONNECT statement is
executed, the system also connects to the distributed server DBMS, if the CONNECT
statement is executed again with the RD node specified.

Table 1-4: List of SQL statements (embedded language)

SET CONNECTION
statement (set current
RD-node)

Sets the current RD-node. U U U U U

SET SESSION
AUTHORIZATION
statement (change
execution user)

Changes the user who is
currently connected.

U U U

SQL Function Usability

C COBOL OLTP Distributed
database

(servertype)

HiRDB Other
than

HiRDB

BEGIN DECLARE
SECTION (declare
beginning embedded
SQL)

Indicates the beginning of an
embedded SQL declare
section, that specifies the
embedded variables and
indicator variables used in the
SQL.

U U U DDF DDF

END DECLARE
SECTION (declare
end of embedded
SQL)

Indicates the end of an
embedded SQL declare
section.

U U U DDF DDF

SQL Function Usability

C COBOL OLTP Distributed
database (server

type)

HiRDB Other
than

HiRDB

1. Overview

16

ALLOCATE
CONNECTION
HANDLE (allocate
connection handle)

Allocates a connection handle
to be used by the UAP in an
environment that uses multiple
connection functions.

U U

FREE CONNECTION
HANDLE (free
connection handle)

Frees a connection handle that
was allocated by ALLOCATE
CONNECTION HANDLE.

U U

DECLARE
CONNECTION
HANDLE SET (declare
connection handle to
be used)

Declares a connection handle
to be used by the UAP SQL in
an environment that uses the
multi-connection facility.

U U U*

DECLARE
CONNECTION
HANDLE UNSET
(cancel all
connection handles
being used)

Cancels all declarations of
connection handle use
specified with DECLARE
CONNECTION HANDLE SET
statements before this
statement.

U

GET CONNECTION
HANDLE (get
connection handle)

Allocates the connection
handle to be used by the UAP
when the multi-connection
facility is to be used in an X/
Open XA interface
environment.

U U U*

COPY (copy cataloged
text)

Copies cataloged text into a
source program.

U U DDF DDF

GET DIAGNOSTICS
(get diagnostic
information)

If the preceding SQL statement
is CREATE PROCEDURE or
CALL, obtains error
information and diagnostic
information from the
diagnostics area.

U U U U U

COMMAND EXECUTE
(execute commands
from UAP)

Executes HiRDB and OS
commands from inside the
UAP.

U

SQL Function Usability

C COBOL OLTP Distributed
database

(servertype)

HiRDB Other
than

HiRDB

1. Overview

17

U: Can be used.
: Cannot be used.

DDF: Cannot be executed on a distributed server; however, it can be used in UAPs that
use the distributed database function.
* The statement can be used if a connection handle was allocated with the GET

SQL prefix Indicates the beginning of SQL
statements.

U U U DDF DDF

SQL terminator Indicates the end of SQL
statements.

U U U DDF DDF

WHENEVER (declare
embedded exception)

Declares UAP processing,
based on the return code set by
HiRDB in the SQL
Communications Areas after
SQL statements have been
executed.

U U U DDF DDF

SQLCODE variable Receives the return code issued
by HiRDB after an SQL
statement has been executed.

U U U DDF DDF

SQLSTATE variable Receives the return code issued
by HiRDB after an SQL
statement has been executed.

U U U DDF DDF

Declaration of
PDCNCTHDL-type
variable

Declares a connection handle
type variable to be used in an
environment that uses the
multi-connection facility.

U

INSTALL JAR
(register JAR file)

Installs the JAR file in the
HiRDB server.

U

REPLACE JAR
(re-register JAR file)

Replaces the JAR file in the
HiRDB server.

U

REMOVE JAR
(delete JAR file)

Uninstalls the JAR file from the
HiRDB server.

U

SQL Function Usability

C COBOL OLTP Distributed
database

(servertype)

HiRDB Other
than

HiRDB

1. Overview

18

CONNECTION HANDLE statement.
Table 1-5: List of SQL statements (routine control SQL)

PFT: The statement cannot be used directly in the UAP. However, the statement can be
used to define an SQL procedure, SQL function, or trigger operation in the CREATE
PROCEDURE, CREATE FUNCTION, or CREATE TRIGGER statement.

: Cannot be used.

SQL Function Usability

C COBOL OLTP Distributed
database

(servertype)

HiRDB Other
than

HiRDB

Compound statement
(execute multiple
statements)

Executes a group of SQL
statements as a single SQL
statement.

PFT PFT

IF statement (execute
by conditional
branching)

Executes the SQL statement
that satisfies a set of
specified conditions.

PFT PFT

RETURN statement
(return return value)

Returns the return value of a
function.

PFT1 PFT1

WHILE statement
(repeat statements)

Executes a set of SQL
statements repetitively.

PFT PFT

FOR statement (repeat
execution of each
row)

Repeats execution of an
SQL statement for each row
in a table.

PFT3 PFT3

LEAVE statement
(leave statement)

Exits from a compound
statement or the WHILE
statement and terminates
execution of the statement.

PFT PFT

WRITE LINE
statement (output
character string to
file)

Outputs a character string of
the specified value
expression to a file.

PFT PFT

SIGNAL statement
(report error)

Triggers an error and reports
it.

PFT2 PFT2

RESIGNAL statement
(re-report error)

Triggers an error and reports
it again.

PFT2 PFT2

1. Overview

19

Note
In procedure definitions, the SQL statements that can be specified in addition to
the routine control SQL statements are the CALL, CLOSE, DECLARE CURSOR,
DELETE, FETCH, INSERT, OPEN, PURGE TABLE, single-row SELECT, UPDATE,
COMMIT, LOCK, and ROLLBACK statements. In functions, SQL statements other
than routine control SQL statements cannot be specified.

1 This statement cannot be used if an SQL procedure or a trigger operation is defined
in the CREATE PROCEDURE or CREATE TRIGGER statement.
2 This statement cannot be used if an SQL function is defined in the CREATE
FUNCTION statement.
3 This statement cannot be used in the CREATE FUNCTION statement.

1. Overview

20

1.3 Interface with HiRDB

To manipulate a HiRDB database, create a UAP. The UAP issues SQL statements and
uses the interface area to exchange information with HiRDB.
Figure 1-3 shows the interface between a UAP and HiRDB.

Figure 1-3: Interface between a UAP and HiRDB

* For details about the interface area, see 3.2.2 Interface areas.

1. Overview

21

1.4 UAP operation environment

HiRDB operates in a client/server network environment. The unit used to send a
request for executing a UAP is called the client, and the unit used to receive a request
is called the server. The system used as the server is the HiRDB server.
A client can operate in any combination of these eight modes:

• Operating mode in which a machine other than the server machine is used as the
client

• Operating mode in which the same server machine as the HiRDB server is used
as the client

• Operating mode in which a UAP under On-Line Transaction Processing (OLTP)
is used as the client

• Operating mode in which an ODBC1-compatible application program is used as
the client

• Operating mode in which an OLE DB2-compatible application program is used
as the client

• Operating mode in which an ADO.NET-compatible application program is used
as the client

• Operating mode in which a Java (JDBC-compatible) application program is used
as the client

• Operating mode in which a VOS3 system or Linux for AP80003 UAP is used as
the client (limited to HiRDB clients for UNIX systems)

1 ODBC refers to a database access mechanism advocated by Microsoft Corporation.
For details about how to access HiRDB from an ODBC-compatible UAP, see 13.
HiRDB Access from ODBC Application Programs.
2 Like ODBC, OLE DB is an API for accessing a wide range of data sources. Unlike
ODBC, OLE DB also defines interfaces for accessing non-SQL data. For details about
how to access HiRDB from an OLE DB-compatible UAP, see 14. HiRDB Access from
OLE DB Application Programs.
3 Linux for AP8000 operates with HiRDB/Developer's Kit Version 6.
Figures 1-4 to 1-11 show the client operation modes.
Use the same platform for the HiRDB/Developer's Kit used to create the UAP and the
HiRDB/Developer's Kit used to execute the UAP.

1. Overview

22

Figure 1-4: Operating mode using a machine other than the server machine as a
client

1. Overview

23

Figure 1-5: Operating mode using the same server machine as the HiRDB
server as the client

1. Overview

24

Figure 1-6: Operating mode using a UAP under OLTP as a client

1. Overview

25

Figure 1-7: Operating mode using an ODBC-compatible UAP as a client

1. Overview

26

Figure 1-8: Operating mode using an OLE DB-compatible UAP as a client

1. Overview

27

Figure 1-9: Operating mode using an ADO.NET-compatible UAP as a client

1. Overview

28

Figure 1-10: Operating mode using a Java (JDBC-compatible) application
program as a client

1. Overview

29

Figure 1-11: Operating mode using a VOS3 system or Linux for AP8000 UAP
as a client

31

Chapter

2. Database Operations

This chapter explains the data expressions used in a database and provides examples
of basic database operations.
The SQL statements used in the examples are excerpts from the complete SQL
statements written according to the prescribed syntax; for details about SQL
statements, see the HiRDB Version 8 SQL Reference manual.
This chapter contains the following sections:

2.1 Database data expressions
2.2 Cursor usage
2.3 Data retrieval
2.4 Data updating
2.5 Data deletion
2.6 Data insertion
2.7 Specific data search
2.8 Data operations
2.9 Data processing
2.10 Outer joining of tables
2.11 Defining and manipulating a view table
2.12 Manipulating data in a table with abstract data types

2. Database Operations

32

2.1 Database data expressions

2.1.1 Relational database tables
A HiRDB database is a relational database whose logical structure is expressed by
tables. This section explains tables.

(1) Basic table configuration
A relational database is expressed logically by tables.
The values in the vertical and horizontal directions of a table are called columns and
rows, respectively. The values within a column represent data with the same attribute,
that is, the same data type. A table consists of a set of rows; the row is the basic unit
for retrievals. Each column is assigned a name (column name) that is used for database
manipulations.
Figure 2-1 shows an example of a basic table configuration. Ending zeros in the PRICE
column (in this example and throughout the manual) are not displayed on the actual
screen.

Figure 2-1: Basic table configuration example

(2) Tables that use repetition columns
A repetition column refers to a column that consists of multiple elements. Using
repetition columns has the following advantages:

• Multiple tables do not have to be joined.

2. Database Operations

33

• Less disk space is used because many duplicate information items are eliminated.
• Access performance is better because related data items (repetition data items) are

stored near each other rather than in separate tables.
Figure 2-2 shows a configuration example of a table that has repetition columns.

Figure 2-2: Configuration example of a table with repetition columns

(3) View table
A virtual table that limits the range of columns or rows that can be manipulated by the
user can be created based on an actual table (referred to hereafter as a base table). Such
a virtual table is called a view table. A view table can be defined for the following
purposes, thus restricting the manipulation range and simplifying operations:

• To retrieve only certain columns of a table
• To change the order of the columns in a table
• To retrieve only certain rows of a table

Although a view table is usually defined to view only selected columns or rows of a
table, it can be retrieved in the same way as a base table. Because use of a view table
restricts the range of manipulations that are possible, precise security measures can be
implemented by means of view tables.
Figure 2-3 shows an example of a view table created from a base table.
For details about how to define and manipulate a view table, see 2.11 Defining and
manipulating a view table.

2. Database Operations

34

Figure 2-3: Example of a base table and view table

2.1.2 Object relational database tables
The HiRDB database can also be defined as an object relational database. An object
relational database table can be created by defining abstract data types in the table
columns.
Figure 2-4 shows a basic configuration example of a table that has abstract data types.

2. Database Operations

35

Figure 2-4: Basic configuration example of a table with abstract data types

2. Database Operations

36

2.2 Cursor usage

Table retrieval results usually consist of multiple rows. A cursor is used by the UAP to
retrieve rows one at a time from the entire set of retrieved rows.
This section explains how to retrieve data using a cursor and how to use the cursor to
update a retrieved row.
For details about how to use a cursor, see 3.5 Use of a cursor.

(1) Retrieval using a cursor
When table retrieval results consist of multiple rows or when retrieving data
dynamically after preprocessing the SQL statement with the PREPARE statement, a
cursor is used to retrieve the individual rows.
When retrieval results consist of one or fewer rows, it is possible to use the single row
SELECT statement for retrieval instead of a cursor.
For details about the PREPARE and single row SELECT statements, see the HiRDB
Version 8 SQL Reference manual.
As an example of using a cursor to retrieve multiple rows, the UAP below retrieves
product codes and unit prices from a stock table:

2. Database Operations

37

(2) Using a cursor to update the row retrieved
When multiple rows are retrieved, a cursor is used to update the rows one at a time.
Although the single row SELECT statement can be used to update a retrieval that
consists of one row or less, use of a cursor results in better processing efficiency.
As an example of using a cursor to update rows one at a time, the UAP below reduces
the unit price of each product in the stock table by 10% (multiplies by 0.9):

2. Database Operations

38

(3) Retrieval without using a cursor (single row retrieval)
As an example of a retrieval that does not use a cursor, the UAP below makes a count
of the items in the stock table and sets the results in an embedded variable.

2. Database Operations

39

2.3 Data retrieval

Selecting those rows that satisfy a condition specified for a particular column is called
a retrieval. You can also join and search two or more tables based on the values of a
specific column and obtain a single set of retrieval results.
This section describes retrieval from one or more tables.

2.3.1 Retrieval from a single table
As an example of a retrieval from a single table, Figure 2-5 shows a case in which a
SELECT statement is used to retrieve from a stock table those rows containing SKIRT
as the product name.

Figure 2-5: Retrieval from a single table

The table retrieval results are expressed as a table and passed to the UAP that requested
the processing.

2. Database Operations

40

A cursor is then used by the UAP to reference the retrieval results table. Because a
cursor can point to a specific row in the retrieval results table, the UAP is able to read
the contents of the row being indicated by the cursor and process that row's contents.
Figure 2-6 shows the sequence in which a UAP processes data from a retrieval results
table.

Figure 2-6: UAP data processing sequence for a retrieval results table

The processing steps shown in Figure 2-6 are explained as follows.
1. Cursor definition

To use a cursor, a cursor name, the name of the table to be retrieved using the
cursor, and retrieval conditions are defined. For the example in Figure 2-5, the
following definitions define the cursor name as CUR1 and specify that SKIRT only
is to be retrieved from the stock table:
DECLARE CUR1 CURSOR FOR
SELECT PNAME,COLOR,PRICE FROM STOCK
 WHERE PNAME=N'SKIRT'

2. Cursor opening

2. Database Operations

41

When a cursor is opened, retrieval results can be extracted in accordance with the
defined conditions. The retrieval results are stored in a table format in the system
and remain valid until the cursor is closed.
The following specification opens the cursor:
OPEN CUR1

As soon as a cursor is opened, it is positioned at the first column above the first
row of the retrieval results table. Figure 2-7 shows a cursor immediately after it
has been opened; in this example, the cursor name is CUR1 and SKIRT is the
retrieval condition for the stock table.
Figure 2-7: Cursor position immediately following cursor opening

3. Data extraction
The FETCH statement advances the cursor by one row (to the next row). The
contents of that row are then stored in a specified area in the UAP.
The example in Figure 2-8 shows the cursor immediately after it has been opened,
and shows how the retrieved contents are stored in the UAP.

2. Database Operations

42

Figure 2-8: Example of extracting retrieved contents and storing them in the
UAP

4. Data output
The data stored in the area in the UAP is output as necessary.

5. Cursor closure
When processing of retrieved data by the UAP has been completed, close the
cursor.
Once the cursor is closed, the retrieval results table stored in the system is deleted.
The following specification closes the cursor:
CLOSE CUR1

2. Database Operations

43

2.3.2 Retrieval from multiple tables
The FROM clause of the SELECT statement is used to retrieve data from two or more
tables. In the example in Figure 2-9, a single set of results is obtained from two tables.
The common PCODE column, indicating product code, is used to join the tables STOCK
and ORDER. Here, a table consisting of form numbers and product names is created for
products with fewer than 60 units in stock and fewer than 30 units ordered.

2. Database Operations

44

Figure 2-9: Example of retrieval from two tables

2. Database Operations

45

2.3.3 Retrieval of a table with FIX attribute
When retrieving data from a table with the FIX attribute, an entire row can be retrieved
as a fixed-length record. In a sense, the entire row is manipulated as a single column.
This is called retrieval on a row basis; ROW is specified in the selection clause of the
SELECT statement.
Retrieval on a row basis reduces retrieving overhead for each column, so it enhances
access performance.
Figure 2-10 shows an example of retrieval on a row basis. Here, a cursor (CUR1) is
used, and product name POLO SHIRT only is retrieved from the stock table and set into
the embedded variable (:XROW). For details about an embedded variable, see the
HiRDB Version 6 SQL Reference manual.

2. Database Operations

46

Figure 2-10: Example of retrieval on a row basis

2. Database Operations

47

2.4 Data updating

The following three methods can be used to update information in a table:
• Updating the row indicated by the cursor
• Updating only those rows that satisfy a condition
• Updating on a row basis (for table with FIX attribute only)

If the table is partitioned by key ranges, the values in the column being used as the key
cannot be updated.

2.4.1 Updating using a cursor
Multiple retrieved rows are updated by using a cursor to extract one row at a time.
Figure 2-11 shows how to use the cursor to update a table.

Figure 2-11: Procedure for updating a table

2. Database Operations

48

The steps of the processing procedure shown in Figure 2-11 are basically the same as
the steps in Figure 2-6, except for data updating.
Figure 2-12 shows an example of using the cursor to update a table. It is assumed that
the steps up to data fetching have been completed.

Figure 2-12: Example of using cursor to update a table

2.4.2 Updating with a condition specified
When a condition is specified for data updating, all rows that satisfy the condition are
updated. To update by specifying a condition, the WHERE clause must be specified in
the UPDATE statement.
If the table is partitioned by key ranges, the values in the column being used as the key
cannot be updated.
Figure 2-13 shows an example of updating with a condition specified. Here, the
quantity of each item whose product code is 411M is updated to 20.

2. Database Operations

49

Figure 2-13: Example of updating with condition specified

2.4.3 Updating a table with the FIX attribute
When a table with the FIX attribute is updated, an entire row can be updated as
fixed-length data. To update on a row basis, ROW must be specified in the SET clause
of the UPDATE statement.
Updating on a row basis reduces updating overhead for each column, so it enhances
access performance.
Figure 2-14 shows an example of updating on a row basis. Here, the quantity of each
item in the stock table whose product code is 411M is updated from 12 to 20; the new
value is specified in the embedded variable (:YROW).

2. Database Operations

50

Figure 2-14: Example of updating on a row basis

2.4.4 Updating a table with repetition columns
The following three methods are provided for updating a table that has repetition
columns:

• Updating an existing element (SET clause)
• Adding a new element (ADD clause)
• Deleting an existing element (DELETE clause)

To update a table that has repetition columns, specify the repetition column elements
to be updated using the following format: repetition-column-name[{subscript| *}].
subscript indicates the element position.

2. Database Operations

51

This section describes the method for adding a new element.
Figure 2-15 shows an example of updating a table that has repetition columns. This
example adds the element DATABASE to the qualifications of the employee named
SMITH, BOB in a staff table.

2. Database Operations

52

Figure 2-15: Example of updating a table with repetition columns

2. Database Operations

53

2.5 Data deletion

The following three methods are provided for deleting information in a table:
• Deleting the row indicated by the cursor
• Deleting only those rows that satisfy a condition
• Deleting all rows

2.5.1 Deletion using a cursor
To delete rows in a table, a cursor can be used to verify each row's contents and delete
the rows one row at a time. Figure 2-16 shows the procedure for using a cursor to delete
rows in a table.

Figure 2-16: Procedure for deleting a table

The steps of the processing procedure shown in Figure 2-16 are basically the same as
the steps in Figure 2-6, except for data deletion.

2. Database Operations

54

Figure 2-17 shows an example of using a cursor to delete data one row at a time. It is
assumed that the steps up to data fetching have been completed.

Figure 2-17: Example of using a cursor to delete rows

2.5.2 Deletion with a condition specified
If a condition is specified for data deletion, all rows that satisfy the condition are
deleted. To delete by specifying a condition, the WHERE clause must be specified in the
DELETE statement.

2. Database Operations

55

Figure 2-18 shows an example of deletion with a condition specified. Here, only the
items whose product name is SKIRT are deleted from the stock table.

Figure 2-18: Example of deletion with a condition specified

2.5.3 Deleting all rows in a table
When the target of data deletion is a base table, it is possible with the PURGE TABLE
statement to delete all rows in the table in one step. Deleting all rows in a table in one
step is more efficient than deleting them by using the DELETE statement with the
WHERE clause omitted (without specifying a condition).
The PURGE TABLE statement cannot be executed if the application program is
compliant with X/Open in the On-Line Transaction Processing (OLTP) environment.
Figure 2-19 shows an example of deleting all rows in the stock table.

2. Database Operations

56

Figure 2-19: Example of deleting all rows in a table

2. Database Operations

57

2.6 Data insertion

Two methods are provided for inserting rows into a table:
• Inserting rows on a column basis
• Inserting rows on a row basis (to a table with FIX attribute)

2.6.1 Inserting rows on a column basis
To insert a single row by directly specifying values in each column, use the INSERT
statement.
Figure 2-20 shows an example of insertion on a column basis. Here, values set in
embedded variables (:ZPCODE to :ZSQUANTITY) are inserted in the columns of the
stock table.

2. Database Operations

58

Figure 2-20: Example of row insertion on a column basis

2.6.2 Inserting rows on a row basis (to a table with the FIX attribute)
When rows are inserted into a table with the FIX attribute, an entire row can be inserted
as a fixed-length record. To insert a row on a row basis, ROW must be specified in the
INSERT statement.
Rows can be inserted on a row basis only into a base table.
Figure 2-21 shows an example of inserting a row on a row basis. Here, the values set
in the embedded variable (:ZROW) are inserted on a row basis into the stock table.

2. Database Operations

59

Figure 2-21: Example of row insertion on a row basis

2.6.3 Inserting rows into a table with repetition columns
When inserting rows into a table that has repetition columns, specify the insertion
values for the repetition columns using the following format:
ARRAY[element-value[,element-value]...]. Figure 2-22 shows an example of inserting
rows into a table that has repetition columns. This example inserts a row into a staff
table.

2. Database Operations

60

Figure 2-22: Example of inserting a row into a table with repetition columns

2. Database Operations

61

2.7 Specific data search

Retrieving specific data with conditions is called a search. A search condition is
specified to manipulate data in a table on the basis of a condition. A search condition
selects the rows to be manipulated; multiple conditions can be combined using logical
operators. The following four methods are provided for searching for data in a table:

• Searching for data within a specified range of values
• Searching for a specified character pattern
• Searching for non-NULL data

• Searching for data that satisfies multiple conditions

2.7.1 Searching for data within a specified range of values
To manipulate rows by specifying a range of values, a comparison predicate, a
BETWEEN predicate, or an IN predicate is used to set a condition.

(1) Comparison predicate
A comparison predicate is used to specify an equivalence or size comparison as the
search condition.
Figure 2-23 shows a data search example using a comparison predicate. Here, the
product codes and product names of products with 50 or fewer units in stock are
searched from the stock table.

2. Database Operations

62

Figure 2-23: Data search example using a comparison predicate

(2) BETWEEN predicate
A BETWEEN predicate extracts only the data within a specified range of values.
Figure 2-24 shows a data search example using a BETWEEN predicate. Here, the
product codes and product names of products with between 200 and 300 units in stock
are searched from the stock table.

2. Database Operations

63

Figure 2-24: Data search example using a BETWEEN predicate

(3) IN predicate
An IN predicate extracts only those items with data that matches specified multiple
values.
Figure 2-25 shows a data search example using an IN predicate. Here, the product
codes and product names of products whose unit price is either 36.40 or 47.60 are
searched from the stock table.

2. Database Operations

64

Figure 2-25: Data search example using an IN predicate

2.7.2 Searching for a specific character pattern
The LIKE predicate manipulates rows that have a specified character pattern in their
column.
Figure 2-26 shows a data search example using a LIKE predicate. Here, form numbers,
product codes, and the ordered quantities are searched from the order table for those
customer codes whose second character is T.

2. Database Operations

65

Figure 2-26: Data search example using a LIKE predicate

2.7.3 Searching for non-NULL data
The NULL predicate combined with NOT manipulates rows that do not contain any null
values in their table columns.
When NOT is not combined with the NULL predicate, the rows containing the null value
become the target of manipulation.
Figure 2-27 shows a data search example using a NULL predicate with NOT. Here, form
numbers, product codes, and the ordered quantities are searched from the order table
for those in which customer codes have been set (non-null values).

2. Database Operations

66

Figure 2-27: Data search example using a NULL predicate with NOT

2.7.4 Searching for data that satisfies multiple conditions
The logical operators AND, OR, and NOT manipulate rows containing data that satisfies
multiple conditions.
Figure 2-28 shows a data search example involving multiple conditions. Here, product
codes and ordered quantities are searched from the stock table for products whose
name is either BLOUSE or POLO SHIRT with 50 or more units in a stock.

2. Database Operations

67

Figure 2-28: Data search example involving multiple conditions

2.7.5 Searching for data using a Boolean predicate
If the result of a function defined by an abstract data type or the result of a user-defined
function is a Boolean value (TRUE, FALSE, or UNKNOWN), use a Boolean predicate
for the true/false decision. For details about data retrieval strings that use a Boolean
predicate, see 2.12.1 Abstract data types provided by the HiRDB Text Search Plug-in.

2.7.6 Searching for data using a structured repetition predicate
When searching for data by specifying conditions for multiple repetition columns in a
table that has repetition columns, use a structured repetition predicate.
Figure 2-29 shows an example of a data search using a structured repetition predicate.
In this example, employees who support their father are retrieved from a staff table.

2. Database Operations

68

Figure 2-29: Data search example using a structured repetition predicate

2.7.7 Searching for data using a subquery
A query can be represented structurally by specifying values of the query results in a
search condition. A subquery allows an easy access to complex queries in a database.
Figure 2-30 shows an example of a data search using a subquery. This example
retrieves from a stock table the product codes of products whose prices equal or exceed
the average price.

2. Database Operations

69

Figure 2-30: Data search example using a subquery

(1) Subquery using a quantified predicate
A quantified predicate can be used to determine whether or not the results of a
subquery satisfy a specified set of comparison conditions and to further narrow the
retrieval results. Figure 2-31 shows an example of a subquery using a quantified
predicate. The example retrieves from the stock table the product codes and names of

2. Database Operations

70

products with a greater stock quantity than any quantity of blouse (regardless of the
product code).

Figure 2-31: Data search example using a subquery and a quantified predicate

(2) Subquery using the EXISTS predicate
The EXISTS predicate is used to test whether or not the results of a subquery are an

2. Database Operations

71

empty set.
Figure 2-32 shows an example of a subquery using the EXISTS predicate. The example
retrieves from the stock table and the order table the names of products for which no
orders have been placed.

Figure 2-32: Example of a subquery using the EXISTS predicate

2. Database Operations

72

2. Database Operations

73

2.8 Data operations

It is possible to search for numeric values, dates, and times in table columns and to
extract the results of operations on such values.
The following types of operations can be performed on data in a table:

• Four types of arithmetic operations on numeric data
• Operations on date and time data

2.8.1 Arithmetic operations on numeric data
Four types of arithmetic operations can be performed on numeric values in specified
columns, and the results of such operations can be extracted.
The four types of arithmetic operations are addition, subtraction, multiplication, and
division.
Figure 2-33 shows an example of performing arithmetic operations on numeric data.
Here, projected revenue figures are calculated on the basis of the unit prices and stock
quantities of the FASTBACK model; the product codes and calculation results are
extracted in million dollar units.

2. Database Operations

74

Figure 2-33: Example of numeric data operations

2.8.2 Date and time data operations
Operations can be performed on date and time data in a table, and retrieval results
based on a specific period of time can be extracted.
Scalar functions are used to operate date or time data. Date operations are used for date
data, and time operations are used for time data.
Figure 2-34 shows an example of a time data operation. Here, the form numbers, the
product codes, and the ordered quantities for orders received before noon (12:00:00)
are extracted from the sales orders table.

2. Database Operations

75

Figure 2-34: Example of time data operation

2. Database Operations

76

2.9 Data processing

Data to be extracted from a table can be processed in various ways, such as by grouping
or by sorting in ascending or descending order. HiRDB provides three types of data
processing:

• Grouping data
• Sorting in ascending or descending order
• Eliminating duplicated data

2.9.1 Data grouping
If a value is repeated in a specified column, all the items with that value can be grouped
as a single item in the retrieval results. The GROUP BY clause performs this grouping.
The AVG, SUM, MAX, MIN, and COUNT set functions, respectively, can be used to obtain
the average value, total value, maximum value, minimum value, and rows count of
each group.
Figure 2-35 shows an example of data grouping in which product codes are grouped
and the total of each group's ordered quantities is extracted from the stock table.

2. Database Operations

77

Figure 2-35: Data grouping example

2.9.2 Data sorting
The data in a specified column of a table can be sorted in ascending or descending
order of the values.
Figure 2-36 shows an example of data sorting. Here, the form numbers, product codes,
and ordered quantities are retrieved from the stock table, and the retrieved items are
sorted by the values of the product codes in ascending order.

2. Database Operations

78

Figure 2-36: Data sorting example

2.9.3 Duplicated data elimination
When two or more tables are manipulated, duplicated data can be eliminated from
retrieval results. UNION or DISTINCT specifies duplicated data elimination.
Figure 2-37 shows an example of duplicated data elimination. Here, the product codes
of products (with at least 10 units ordered) are retrieved from two order tables, and
duplicated data is eliminated.

2. Database Operations

79

Figure 2-37: Duplicated data elimination example

2. Database Operations

80

2.10 Outer joining of tables

When it is necessary to join an outer table that contains general information and an
inner table that contains partial information to obtain information on all rows of the
outer table, in addition to the information that can be obtained from normal joining
(inner joining), outer joining provides a method of fetching the retrieval results. In
outer joining, any inner table columns that do not meet a specified set of joining
conditions are assigned null values. One use of outer joining is to join tables that have
missing values.
Figure 2-38 shows an example of outer joining. In this example, a stock table and an
order table are outer joined to retrieve the products with a stock quantity of less than
100; the retrieved information includes the product codes, product names, colors, and
form numbers of products.

2. Database Operations

81

Figure 2-38: Example of outer joining

2. Database Operations

82

Figure 2-39 shows an example of outer joining with three or more tables. In this
example, a stock table, an order table, and the previous month's order table are outer
joined. For products that have a price of $50.00 or more, the product name, price, and
this and the previous month's ordered quantity are retrieved.

2. Database Operations

83

Figure 2-39: Example of outer joining with three or more tables

2. Database Operations

84

2. Database Operations

85

2.11 Defining and manipulating a view table

Defining a view table derived from other tables to view specific columns and rows
allows you to restrict the table data that can be manipulated.
This section provides examples of defining and manipulating view tables. The
examples are based on the stock table and the sales table shown in Figure 2-40.

Figure 2-40: Tables used in examples of manipulating view tables

(1) Defining view tables
Five examples of defining view tables are provided in this section:

• Defining a view table to limit the columns to be searched
• Using search conditions to define a view table
• Defining a read-only view table

2. Database Operations

86

• Defining a view table from which duplications are eliminated
• Defining a view table from another view table

(a) Defining a view table to limit the columns to be searched
Figure 2-41 shows an example of defining a view table to limit the columns to be
searched. In this example, view table V1 is derived from a stock table in a way that the
columns that can be searched will not include the color column.

2. Database Operations

87

Figure 2-41: Example of defining a view table for limiting the columns to be
searched

(b) Using search conditions to define a view table
Figure 2-42 shows an example of using search conditions to define a view table. In this
example, a query is used to create view table V2 from a stock table and a sales table in
order to determine which products at each branch have sold less than 10 items
(quantity sold).

2. Database Operations

88

Figure 2-42: Example of using search conditions to define a view table

2. Database Operations

89

(c) Defining a read-only view table
Figure 2-43 shows an example of defining a read-only view table. In this example, a
query is used to create a read-only view table V3 from a stock table to determine the
products whose price is higher than the average price of all products; the retrieved
information includes the product codes, product names, prices, and stock quantities.

Figure 2-43: Example of defining a read-only view table

(d) Defining a view table from which duplications are eliminated
Figure 2-44 shows an example defining a view table from which duplications are
eliminated. In this example, view table V4 is created from a stock table; in view table
V4, duplicated product names and prices are eliminated.

2. Database Operations

90

Figure 2-44: Example of defining a view table from which duplications are
eliminated

(e) Defining a view table from another view table
Figure 2-45 shows an example of defining a view table from another view table. In this
example, a query is used to define view table V5, which is to consist of the rows in view
table V1, defined in (a) of Section 2.11(1) Defining view tables, that contain skirt as
the product name.

2. Database Operations

91

Figure 2-45: Example of defining a view table from another view table

(2) Manipulating a view table
Figure 2-46 shows an example of manipulating a view table. In this example, the
product name, branch, and sales total of the product with the highest sales total are
retrieved from the view table (V2) defined in (1)(b) Using search conditions to define
a view table. (The view table is specified in the SQL statement that specifies the
subquery.)

2. Database Operations

92

Figure 2-46: Example of manipulating a view table

2. Database Operations

93

2.12 Manipulating data in a table with abstract data types

To manipulate data in a table that has abstract data types, use functions or component
specifications. The functions include constructor functions (or default constructor
functions), which are created automatically when abstract data types are defined, and
user-defined functions, which are any functions that the user defines. Component
specifications manipulate attributes that make up abstract data types.

2.12.1 Abstract data types provided by the HiRDB Text Search
Plug-in

This section describes examples that use the HiRDB Text Search Plug-in. The HiRDB
Text Search Plug-in provides the abstract data type functions shown in the following
table. For details about the abstract data type functions provided by the plug-in, refer
to the individual plug-in manuals.

Table 2-1: Descriptions of abstract data type functions provided by the HiRDB
Text Search Plug-in

This section also explains examples that use SGML text to manage an operation
manual for medicines. The examples use tables that were defined in the database
creation section (for tables that include abstract data types provided by the plug-in) of
the HiRDB Version 8 Installation and Design Guide.

(1) Retrieving data
Figure 2-47 shows an example of data retrieval with a plug-in. This example searches
for medicines that are indicated for relief of headaches. The SQL statement for
retrieving the data can be specified as follows:
SELECT MEDICINE_ID FROM MEDICINE_MGMT_TABLE
 WHERE contains (OPERATION_MANUAL, 'attached text data
[indications {"headaches"}]')
 IS TRUE

This example uses the contains abstract data type function to retrieve medicines that
include the character string headaches in the indications structure section of the
OPERATION_MANUAL column.

Function name Description

SGML TEXT SGML text registration

Contains Structure specification retrieval

contains_with_score, score Score retrieval

2. Database Operations

94

Figure 2-47: Example of retrieval with a plug-in (1)

Figure 2-48 shows another example of retrieval with a plug-in. This example retrieves
the medicine ID and inventory quantity of medicines that are indicated for food
poisoning. The SQL statement for retrieving the data can be specified as follows:
SELECT MEDICINE_MGMT_TABLE.MEDICINE_ID,SQUANTITY
 FROM MEDICINE_MGMT_TABLE LEFT OUTER JOIN STOCK
 ON MEDICINE_MGMT_TABLE.MEDICINE_ID=STOCK.MEDICINE_ID
 WHERE contains (OPERATION_MANUAL, 'attached text data
[indications {"food poisoning"}]')
 IS TRUE

In this example, a medicine management table and a stock table are outer joined and
searched. The example uses the contains abstract data type function to retrieve

2. Database Operations

95

medicine IDs that include the character string food poisoning in the indications
structure section of the OPERATION_MANUAL column and find out the stock quantity
for those medicine IDs.

Figure 2-48: Example of retrieval with a plug-in (2)

2. Database Operations

96

(2) Updating a table
Figure 2-49 shows an example of updating with a plug-in. This example updates the
operation manual for MEDICINE 2. The SQL statement for updating the table can be
specified as follows:
UPDATE MEDICINE_MGMT_TABLE SET OPERATION_MANUAL =
SGMLTEXT(:sgml AS BLOB(1M))
WHERE MEDICINE_ID = 'MEDICINE 2'

This example uses the SGMLTEXT abstract data type function to update the operation
manual data for MEDICINE 2.
The sgml BLOB-type embedded variable must be defined beforehand in front of the
UPDATE statement:
EXEC SQL BEGIN DECLARE SECTION; 1
 SQL TYPE IS BLOB(300K)sgml; 1
EXEC SQL END DECLARE SECTION; 1
strcpy (sgml. sgml_data,char_ptr_pointing_to_a_sgml_text); 2
sgml.sgml_length=strlen(char_ptr_pointing_to_a_sgml_text); 3

1. Define the sgml BLOB-type embedded variable.
2. Store the new update data in the sgml embedded variable.
3. Set the sgml_length attribute value for the BLOB data that was created to the

length of the stored data.

2. Database Operations

97

Figure 2-49: Example of updating with a plug-in

(3) Deleting rows
Figure 2-50 shows an example of row deletion with a plug-in. The example deletes the

2. Database Operations

98

row for MEDICINE 2. The SQL statement for deleting the row can be specified as
follows:
DELETE FROM MEDICINE_MGMT_TABLE
 WHERE MEDICINE_ID = 'MEDICINE 2'

This examples deletes the row for MEDICINE 2 from the medicine management table.

2. Database Operations

99

Figure 2-50: Example of deletion with a plug-in

2. Database Operations

100

(4) Inserting rows
Figure 2-51 shows an example of row insertion with a plug-in. This example inserts a
row for MEDICINE 25 into the medicine management table. The SQL statement for
inserting the row can be specified as follows:
INSERT INTO MEDICINE_MGMT_TABLE(MEDICINE_ID,OPERATION_MANUAL)
 VALUES(MEDICINE 25,SGMLTEXT(:sgml AS BLOB(1M)))

This example uses the SGMLTEXT abstract data type function to add a row for
MEDICINE 25 to the medicine management table.
The sgml BLOB-type embedded variable must be defined beforehand in front of the
INSERT statement:
EXEC SQL BEGIN DECLARE SECTION; 1
 SQL TYPE IS BLOB(300K) sgml; 1
EXEC SQL END DECLARE SECTION; 1
strcpy(sgml.sgml_data,char_ptr_pointing_to_a_sgml_text); 2
sgml.sgml_length=strlen(char_ptr_pointing_to_a_sgml_text); 3

1. Define the sgml BLOB-type embedded variable.
2. Store the insertion data in the sgml embedded variable.
3. Set the sgml_length attribute value for the BLOB data that was created to the

length of the stored data.

2. Database Operations

101

Figure 2-51: Example of insertion with a plug-in

2. Database Operations

102

2.12.2 User-defined abstract data types
This section describes examples of manipulating tables with user-defined abstract data
types. The examples use tables that were defined in the database creation section (for
tables that include user-defined abstract data types) of the HiRDB Version 8
Installation and Design Guide.

(1) Retrieving data from a table with abstract data types
Figure 2-52 shows an example of retrieval from a table that has abstract data types. The
example retrieves staff numbers of employees who have worked for at least 20 years
in the company. The SQL statement for retrieving the data can be specified as follows:
SELECT STAFF_NUMBER
 FROM STAFF_TABLE
 WHERE YearsOfService(EMPLOYEE)>=20

This example uses the user-defined function YearsOfService to retrieve staff
numbers of employees whose years of service are 20 years or longer. The argument for
the user-defined function YearsOfService is EMPLOYEE.

Figure 2-52: Example of retrieval from a table with abstract data types

(2) Updating a table with abstract data types
Figure 2-53 shows an example of updating a table that has abstract data types. This
example updates the post of the employee with staff number 900123 to MANAGER.
The SQL statement for updating the table can be specified as follows:
UPDATE STAFF_TABLE

2. Database Operations

103

 SET EMPLOYEE..POST='MANAGER'
 WHERE STAFF_NUMBER='900123'

In this example, the POST attribute in the EMPLOYEE column is updated to MANAGER
for the employee whose staff number is 900123. A component specification is used
for specifying the attribute of the abstract data type. In this example,
EMPLOYEE..POST is the component specification.

Figure 2-53: Example of updating a table with abstract data types

(3) Deleting rows from a table with abstract data types
Figure 2-54 shows an example of row deletion from a table that has abstract data types.
The example deletes the rows for employees whose POST is CLERK. The SQL
statement for deleting the rows can be specified as follows:
DELETE FROM STAFF_TABLE
 WHERE EMPLOYEE..POST='CLERK'

This example deletes the rows of employees whose POST attribute in the EMPLOYEE
column is CLERK. A component specification is used to specify the abstract data type
attribute. In this example, the component specification is EMPLOYEE..POST.

2. Database Operations

104

Figure 2-54: Example of deleting rows from a table with abstract data types

(4) Inserting rows into a table with abstract data types
Figure 2-55 shows an example of row insertion into a table that has abstract data types.
This example inserts a row into a staff table. The SQL statement for inserting the row
can be specified as follows:
INSERT INTO STAFF_TABLE
 VALUES ('950070',t_EMPLOYEE('STONE, JANE,
 'F'
 'CLERK'
 '1995-04-01'
 :PHOTOGRAPH AS BLOB,
 1400.00
)
)

In this example, the t_EMPLOYEE constructor function, which was defined when the
abstract data type was defined, is used to insert the row for staff number 950070 into
the staff table.
:PHOTOGRAPH is a BLOB-type embedded variable in which a photographic image of
the employee's face is set.

2. Database Operations

105

Figure 2-55: Example of inserting rows into a table with abstract data types

107

Chapter

3. UAP Design

This chapter explains basic issues that programmers must consider when designing
UAPs.
This chapter contains the following sections:

3.1 Basic SQL configuration in a UAP
3.2 Overview of UAPs
3.3 Transaction control
3.4 Locking
3.5 Use of a cursor
3.6 SQL error identification and corrective measures

3. UAP Design

108

3.1 Basic SQL configuration in a UAP

Figure 3-1 shows the basic SQL configuration in a UAP. This explanation assumes that
the UAP is written in COBOL.

Figure 3-1: Basic SQL configuration in a UAP

Note
The numbers enclosed in parenthesis correspond to the numbers of the
explanation sections described as follows.

#: If necessary, specify an error handling process for this section in the error handling

3. UAP Design

109

process specification section or the error identification section. However, make sure
that the error handling process for transaction invalidation specified in the error
handling process specification section does not form an endless loop.

(1) Declaration of embedded and indicator variables
The UAP must declare variables for transferring data between SQL and the UAP
descriptive language so that the UAP can receive data retrieved by SQL statements and
insert UAP data into SQL tables. Use embedded variables for this purpose. If a data
item that includes a null value must be transferred, use an indicator variable along with
the embedded variable for that item.
An example of declarations for embedded and indicator variables is shown as follows.
For details about how to specify embedded and indicator variables in SQL statements,
see (5) Retrieval and update SQL (execution statements).
EXEC SQL
 BEGIN DECLARE SECTION 1
END-EXEC.
77 XUSERID PIC X(7) 2
77 XPSWD PIC X(7) 2
77 XPCODE PIC X(4) 2
77 XPNAME PIC N(8) 2
77 XSTOCK PIC S9(9)COMP 2
77 ISTOCK PIC S9(4)COMP 3
EXEC SQL
 END DECLARE SECTION 4
END-EXEC.

Explanation:
1. Indicates the beginning of the embedded variable declaration section.
2. Declares an embedded variable; if data is to be transferred between SQL and the

UAP, specify embedded variables according to the predetermined rules. For
details about the SQL data types and data specifications, see E. SQL Data Types
and Data Descriptions.

3. Declares an indicator variable for embedded variable (:xstock). The indicator
variable declaration for a BLOB-type embedded variable is PIC S9(9) COMP.

4. Indicates the end of the embedded function declaration section.
If the default value setting facility for null values is used, an embedded variable can
accept a default value (0 for numerical data and a space for character data) in place of
a null value when the retrieval result is a null value. When this facility is used, indicator
variables do not have to be used if the default values and the null value do not have to
be discriminated. For details about the default value setting facility for null values, see
the HiRDB Version 8 SQL Reference manual.

3. UAP Design

110

(2) Connection with HiRDB
This section reports the user's authorization identifier and password to HiRDB so that
the UAP can use HiRDB. This is called connection with HiRDB. The SQL statements
for connection with HiRDB are shown as follows:
EXEC SQL
 CONNECT :XUSERID IDENTIFIED BY :XPSWD
END-EXEC.

Connects with HiRDB based on the authorization identifier stored in the embedded
variable (:XUSERID) and the password stored in the embedded variable (:XPSWD).

(3) Cursor declaration
This section uses the DECLARE CURSOR statement to declare the cursor that allows the
UAP to extract multiple-row retrieval results one row at a time. Use the DECLARE
CURSOR statement to retrieve, update, and delete data. To open the cursor, use the OPEN
statement. To extract the retrieval results and move the cursor to the next line, use the
FETCH statement. To close the cursor, use the CLOSE statement.
Embedded and indicator variables can be specified as retrieval condition values in the
cursor declaration. If such variables are specified, the UAP passes the values in those
variables to HiRDB when the OPEN statement for that cursor is executed.
For details about cursors, see 3.5 Use of a cursor.
The SQL statements for cursor declaration are shown as follows:
EXEC SQL
 DECLARE CR1 CURSOR FOR SELECT PCODE, PNAME, STOCK FROM STOCK
END-EXEC.

Declares cursor CR1 for extracting PCODE, PNAME, and STOCK one row at a time from
the STOCK table.

(4) Error-handling process specification
If a WHENEVER statement is specified before an SQL statement, the UAP can
automatically determine whether an error occurred.

(a) If an error occurs
EXEC SQL
 WHENEVER SQLERROR GO TO error-handling-process
END-EXEC.

WHENEVER SQLERROR
Declares the process to be executed if an error occurs.

GO TO error-handling-process
Switches the process to the specified clause or paragraph name

3. UAP Design

111

(error-handling-process) if an error occurs. If an SQL Communications Area is
referenced from within this process, return code information can be checked.

(b) If a row to be retrieved is not found
EXEC SQL
 WHENEVER NOT FOUND GO TO retrieval-end-process
END-EXEC.

WHENEVER NOT FOUND
Declares the process to be executed if the row to be retrieved is not found.

GO TO retrieval-end-process
Switches the process to the specified clause or paragraph name
(retrieval-end-process), if the row to be retrieved is not found.

(c) Effective range of WHENEVER statement
A WHENEVER statement is effective for all SQL statements found between that
WHENEVER statement and the next WHENEVER statement of the same type. For
details about the effective range of the WHENEVER statement, see the HiRDB
Version 8 SQL Reference manual.

(5) Retrieval and update SQL (execution statements)
In this section, specify SQL statements for retrieving, inserting, or deleting data. For
details about how to specify the individual SQL statements, see 2. Database
Operations.
This section explains how to use embedded and indicator variables.

(a) Specifying embedded and indicator variables in a 1-row SELECT or
FETCH statement
Specify the embedded and indicator variables in the INTO clause of a 1-row SELECT
or FETCH statement. Add a colon in front of each variable. Specify each indicator
variable immediately after its corresponding embedded variable. An example is shown
as follows:

3. UAP Design

112

The embedded variables that were specified in the INTO clause correspond to the
column name sequence specified in the column lineup of the SELECT statement. The
retrieval results are stored to the embedded variables according to this sequence.
If a retrieval result includes a null value, a negative value is stored in the indicator
variable. You can, therefore, check the indicator variable value to determine whether
the result is a null value. In this case, the value of the embedded variable is undefined.
If the value of an indicator variable is 0, a value other than a null value was received.
If the value is positive, character string data other than a null value was received but
the right end was truncated, because the area length of the embedded variable was too
short.
If an embedded variable is specified in a retrieval condition value, the retrieval
condition value can be assigned during SQL execution.

(b) Specifying an embedded or indicator variable in an UPDATE or INSERT
statement
Specify the embedded and indicator variables in the SET clause of an UPDATE
statement or the VALUES clause of an INSERT statement. Add a colon in front of each
variable. Specify each indicator variable immediately after its corresponding

3. UAP Design

113

embedded variable. An example is shown as follows:
UPDATE statement

EXEC SQL
UPDATE STOCK SET STOCK=:XSTOCK:ISTOCK WHERE PCODE=:XPCODE
END-EXEC.

INSERT statement
EXEC SQL
INSERT INTO STOCK VALUES(:XPCODE,:XPNAME,:XCOLOR,:XPRICE,
:XSTOCK:ISTOCK,:XSTOCK_CAPACITY,:XREQSTOCK)
END-EXEC.

If the UPDATE or INSERT statement sets a null value in a table, specify a negative value
in the indicator value before executing that SQL. No setting value is necessary for the
embedded function. When passing a non-null value, set the indicator variable value to
0 or a positive value.

(6) Error identification
If an error occurs during SQL execution, the UAP checks SQLCODE and SQLSTATE to
determine the return codes returned by HiRDB. The UAP uses the return codes to
specify which process should then be executed. However, if an error-handling process
has already been specified in Section (4) Error-handling process specification, the
same process does not have to be specified in this section.
Do not execute error identification immediately after a declaration statement, such as
DECLARE CURSOR. If error identification is executed, the UAP references an incorrect
SQLCODE, and HiRDB malfunctions.
For details about error identification, see 3.6.1 Error identification.

(7) Transaction validation
If update processing was executed in a transaction, this section validates the updated
database contents and terminates the transaction normally.
The SQL statements for validating a transaction are shown as follows:
EXEC SQL
 COMMIT
END-EXEC.

Validates a transaction; to release the UAP from HiRDB after validating the
transaction, specify RELEASE in the COMMIT statement, and execute the statement. If
RELEASE is specified, the DISCONNECT statement does not have to be executed.

(8) Transaction invalidation
This section invalidates the database contents that were updated in a transaction and
terminates the transaction. Specify this section to cancel a database update if the update

3. UAP Design

114

processing in a translation is invalid.
The SQL statements for invalidating a transaction are shown as follows:
EXEC SQL
 ROLLBACK
END-EXEC.

Invalidates a transaction; to release the UAP from HiRDB after terminating the
transaction, specify RELEASE in the ROLLBACK statement, and execute the statement.
If RELEASE is specified, the DISCONNECT statement does not have to be executed.

(9) Disconnection from HiRDB
This section terminates a transaction normally and releases the UAP from HiRDB. The
DISCONNECT statement executes the same processing executed by a COMMIT
statement in which RELEASE is specified.
The SQL statements for terminating a transaction normally and releasing the UAP
from HiRDB are shown as follows:
EXEC SQL
 DISCONNECT
END-EXEC.

Terminates a transaction normally and releases the UAP from HiRDB. To cancel a
transaction and then release the UAP from HiRDB, execute a ROLLBACK statement
where RELEASE is specified.
Note

If you terminate a UAP without executing a DISCONNECT, COMMIT statement
(with RELEASE specified), or ROLLBACK statement (with RELEASE specified), the
system automatically executes a ROLLBACK statement (with RELEASE specified),
and the transaction that was being executed becomes invalid.

3. UAP Design

115

3.2 Overview of UAPs

This section explains the basic issues to be taken into consideration in designing a
UAP.

3.2.1 UAP descriptive languages
In this type of UAP, SQL statements are incorporated directly into a source program
written in C language (based on ANSI-C) or in COBOL (based on COBOL85).
Table 3-1 lists the UAP descriptive languages that can be used in HiRDB.

Table 3-1: UAP descriptive languages

* The multi-connection facility cannot be used.
An embedded-type UAP cannot be compiled or linked directly. Execute the SQL
preprocessor and convert the UAP into a post-source program before compiling and
linking the UAP. For details about how to preprocess, compile and link UAPs, see 8.
Preparation for UAP Execution.

Operating
environment

Descriptive languages

HP-UX • C language (Microsoft Visual C++)
• C++ language (Optimizing C++)
• COBOL language (COBOL85 and COBOL2002)
• OOCOBOL language (OOCOBOL) *

Solaris • C language
• COBOL language *

COBOL85, COBOL2002, and COBOL language products of other companies
(MicroFocusCOBOL and SUN Japanese COBOL)

AIX 5L • C language
• C++ language
• COBOL language (COBOL85 and COBOL2002)

Linux • C language (gcc)
• C++ language (GCC)
• COBOL language (COBOL85 and COBOL2002)
• OOCOBOL language (OOCOBOL)*

Windows • C language (Microsoft Visual C++)
• C++ language (Optimizing C++)
• COBOL language (COBOL85 and COBOL2002)
• OOCOBOL language (OOCOBOL) *

3. UAP Design

116

3.2.2 Interface areas
Interface areas are used for exchanging information between HiRDB and a UAP. Table
3-2 lists the types of interface areas and their usage.

Table 3-2: Interface area types and uses

R: Required
O: Optional
1 These areas need not be declared, because they are expanded within the UAP when
the SQL preprocessor is executed. For details about SQL preprocessor execution, see
8.2 Preprocessing.
2 An embedded variable and an indicator variable are used instead of a ? parameter.
For details about SQL Communications Areas and SQL Descriptor Areas, see A. SQL
Communications Area and B. SQL Descriptor Area. For details about embedded
variables, indicator areas, and ? parameters, see the HiRDB Version 8 SQL Reference
manual.

Area type Use Language

C COBOL

SQL Communications
Areas

For obtaining detailed information on SQL execution
results.

R1 R1

SQL Descriptor Areas • For sending to the system information on input
variables that are resolved dynamically during UAP
execution.

• For receiving information of item to be retrieved
from SQL statements that are preprocessed for the
dynamic UAP execution.

• For specifying column name data areas.

O O

Column name data areas For receiving information of item to be retrieved from
SQL statements that are preprocessed for the dynamic
UAP execution.

O O

Type name data areas For receiving user-defined data type names. O O

Embedded variables For transferring values (specified in SQL statements
embedded in UAP).

O O

Indicator variables For transferring values (specified in SQL statements
embedded in UAP).

O O

? parameters For transferring values from a UAP to the SQL
statements that are preprocessed for the dynamic UAP
execution.

O O2

3. UAP Design

117

3.2.3 Integrity constraints
HiRDB uses the following two integrity constraints to ensure the validity of a
database:

• NOT NULL constraint
• Uniqueness constraint

(1) NOT NULL constraint
The NOT NULL constraint prohibits the null value from being set in a specified column.
The NOT NULL operand of the CREATE TABLE statement is used to implement the NOT
NULL constraint. Because there must always be a value in every row of a column for
which the NOT NULL constraint is specified, a constraint error occurs if an attempt is
made to assign the null value in the column. When a constraint error occurs, the
database cannot be updated; the null value must never be set in a column for which the
NOT NULL constraint is specified.

(2) Uniqueness constraint
When the uniqueness constraint is specified for a column, the value in every row of
the column must be unique (no value can be duplicated in the column).
The uniqueness constraint can be specified for the following types of columns:

(a) Column defined as a cluster key
Specified with the UNIQUE operand of the CREATE TABLE statement.
For details about the cluster key specifications, see the HiRDB Version 8 Installation
and Design Guide.

(b) Column for which an index is defined
Specified with the UNIQUE operand of the CREATE INDEX statement.
For details about the CREATE TABLE and CREATE INDEX specifications, see the
manual HiRDB Version 8 SQL Reference.

3.2.4 Retrieval methods using SQL statements
An SQL statement used to retrieve a table can be executed either statically or
dynamically. Table 3-3 shows the UAP retrieval methods when an SQL statement is
used.

3. UAP Design

118

Table 3-3: Classification of UAP retrieval methods using SQL statements

(1) Single-row SELECT statement
The single-row SELECT statement extracts only a single-row of retrieval results from
a table.
Because a cursor need not be used when the single-row SELECT statement is used, you
can retrieve the table with only one SQL statement.
The single-row SELECT statement is effective when used in the cases listed below. You
can also dynamically execute a single-row SELECT statement that is constructed
during UAP execution.

• You know that the retrieval results will be contained within a single-row
• You use a set function without grouping (using a GROUP BY clause)

Even when a single-row is retrieved, using a cursor results in better processing
efficiency for updating or deleting the retrieved row. You should consider whether the
single-row SELECT statement or the cursor will be used.

(2) Cursor declaration
If retrieval results include multiple rows, the UAP cannot receive them all at once. A
cursor is used to extract one row at a time. The flow from cursor declaration to retrieval
completion is described as follows.
1. Execute DECLARE CURSOR to declare a cursor.
2. Execute the OPEN statement to open and use the declared cursor.
3. Execute the FETCH statement to position the cursor at the first row of the retrieval

results. Embedded variables specified by the INTO clause of the FETCH statement
are used to extract the retrieval results.

4. Execute the FETCH statement to advance the cursor to the next row (the retrieval
results are extracted one row at a time in this manner).

5. Repeat the operation in step 4 until there are no more rows to be retrieved.
6. When the retrieval is completed, execute the CLOSE statement to close the cursor.

Retrieval method SQL statement for specifying query

Embedded UAP Static SQL Single-row SELECT statement

Cursor declaration

Dynamic SQL Single-row SELECT statement

Dynamic SELECT statement

3. UAP Design

119

(3) Dynamic SELECT statement
Use the dynamic SELECT statement to extract multiple retrieval results through
dynamic SQL execution. To extract retrieval results with the dynamic SELECT
statement, you must either declare a cursor in advance or allocate a cursor by using the
ALLOCATE CURSOR statement. Once you declare or allocate a cursor, use the PREPARE
statement to preprocess the SQL statements that are constructed during UAP
execution. You can then perform the same operations as in normal retrieval using a
cursor.

3.2.5 Static and dynamic SQLs
SQL statements written directly into the user application program when it is created
are called static SQL statements; SQL statements that are constructed during UAP
execution instead of being written into UAP is called dynamic SQL statements.
Because the execution characteristics of static and dynamic SQLs are different,
evaluate them carefully before you create a UAP.

(1) Differences during execution
Table 3-4 shows the execution characteristics of static and dynamic SQLs.

Table 3-4: Execution characteristics of static and dynamic SQLs

* Processing efficiency improves when an SQL having the same character string is
executed several times.

(2) Values provided at time of execution
When static SQL statements are executed, values to be inserted, new values to be set,
and search conditions can be modified. When dynamic SQL statements are executed,
any part of the SQL statements, such as the table name, column names, and conditional
expressions, can be changed, in addition to those values that can be changed during
execution of static SQL statements.
The following examples show values that can be changed during execution of static
and dynamic SQL statements. Bold letters indicate the areas where values can be

Type Advantage Disadvantage

Static SQL If the UAP is to be executed repeatedly, an
executed SQL statement is converted to
execute form and can be used again in the
shared memory, thus improving processing
efficiency.

Because the SQL statements are embedded
in the UAP, the ability to change search
conditions is limited.

Dynamic SQL Because SQL statements are constructed
during execution, it is easy to change search
conditions.

The SQL statements must be analyzed and
converted to execute form each time they
are executed, resulting in poor processing
efficiency.*

3. UAP Design

120

changed.
Figure 3-2: Example of values provided at the time of SQL execution

(3) Notes on executing dynamic SQL statements
A dynamic SQL provides more flexibility in changing search conditions than a static
SQL. However, dynamic SQL statements must be executed each time a condition is
changed. For this reason, execution efficiency (processing efficiency) must be
considered when deciding whether or not to use a dynamic SQL.

(a) Preprocessing and executing dynamic SQL statements
Dynamic SQL statements need to be processed first by the PREPARE statement and
then executed during UAP execution. How a dynamic SQL statement is executed
depends on whether the SQL statement to be preprocessed is the dynamic SELECT
statement or another statement. If the SQL statement to be preprocessed is the SELECT
statement, it is executed with the OPEN, FETCH, and CLOSE statements. If the SQL
statement to be preprocessed is a statement other than the dynamic SELECT statement,
it is executed with the EXECUTE statement. The EXECUTE IMMEDIATE statement can
also be used to both preprocess and execute an SQL statement in a single operation.
When the same SQL statement is to be executed dynamically by changing values, ?
parameters should be used so that the SQL statement is preprocessed only once, rather
than having to preprocess the SQL statement several times; the SQL statement can
then be executed repeatedly by changing the values that are assigned to the ?
parameters. This results in improved performance (processing efficiency). For details
about ? parameters, see the HiRDB Version 8 SQL Reference manual.
Figure 3-3 shows the dynamic SQL execution mode, and Table 3-5 lists the SQLs that
can be preprocessed by the PREPARE statement and the SQL statements that can be
preprocessed and executed by the EXECUTE IMMEDIATE statement.

3. UAP Design

121

Figure 3-3: Dynamic SQL execution mode

Table 3-5: SQL statements preprocessed by the PREPARE statement, and SQL
statements preprocessed and executed by the EXECUTE IMMEDIATE statement

Type SQL statement PREPARE EXECUTE
IMMEDIATE

Data Manipulation
SQL

ASSIGN LIST statement U3 U

CALL U3 U

DELETE1 U3 U

Preparable dynamic DELETE statement: locating U U

DROP LIST statement U3 U

INSERT U3 U

PURGE TABLE U3

Single-row SELECT2 U3 U

Dynamic SELECT U4

UPDATE1 U3 U

Preparable dynamic UPDATE statement: locating U U

Assignment statement U3

3. UAP Design

122

Control SQL COMMIT

CONNECT

DISCONNECT

LOCK TABLE U3 U

CONNECT statement with RD-node specification6

DISCONNECT statement with RD-node
specification6

ROLLBACK

SET CONNECTION statement6

SET SESSION AUTHORIZATION statement

Definition SQL ALTER PROCEDURE U3 U

ALTER ROUTINE U3 U

ALTER TABLE U3 U

ALTER TRIGGER U3 U

COMMENT U3 U

CREATE ALIAS6 U3 U

CREATE AUDIT U3 U

CREATE CONNECTION SECURITY U3 U

CREATE FOREIGN INDEX5 U U

CREATE FOREIGN TABLE5 U U

CREATE FUNCTION U3 U

CREATE INDEX U3 U

CREATE PROCEDURE U3 U

CREATE SCHEMA U3 U

Type SQL statement PREPARE EXECUTE
IMMEDIATE

3. UAP Design

123

CREATE SERVER5 U U

CREATE TABLE U3 U

CREATE TRIGGER U3 U

CREATE TYPE U3 U

CREATE USER MAPPING5 U U

CREATE VIEW U3 U

DROP ALIAS6 U3 U

DROP AUDIT U U

DROP CONNECTION SECURITY U3 U

DROP DATA TYPE U3 U

DROP FOREIGN INDEX5 U U

DROP FOREIGN TABLE5 U U

DROP FUNCTION U3 U

DROP INDEX U3 U

DROP PROCEDURE U3 U

DROP SCHEMA U3 U

DROP SERVER5 U U

DROP TABLE U3 U

DROP TRIGGER U3 U

DROP USER MAPPING5 U U

DROP VIEW U3 U

GRANT U3 U

REVOKE U3 U

Type SQL statement PREPARE EXECUTE
IMMEDIATE

3. UAP Design

124

U: Can be used.
: Cannot be used.

Note
An SQL statement that contains embedded variables cannot be executed
dynamically; in this case, ? parameters must be used instead of embedded
variables. For details about ? parameters, see the HiRDB Version 8 SQL Reference
manual.

1 Operations requiring the use of a cursor cannot be performed.
2 The SQL must not contain an INTO clause.
3 Executed by the EXECUTE statement.
4 Executed by the OPEN, FETCH, or CLOSE statement.
5 Can be used if HiRDB External Data Access is installed.
6 This SQL statement is applicable to the UNIX version only.
An example of inserting data into a dynamically-specified table is shown as follows:

3. UAP Design

125

Figure 3-4: Example of inserting data into a dynamically specified table

(b) Using the EXECUTE statement and the EXECUTE IMMEDIATE statement
The EXECUTE IMMEDIATE statement is functionally equivalent to executing the
PREPARE and EXECUTE statements in succession. When SQL statements are to be
executed repeatedly, it is more efficient to execute it iteratively using the EXECUTE
statement after first preprocessing it with the PREPARE statement than to execute it
several times with the EXECUTE IMMEDIATE statement.

(c) Executing dynamic SQL statements with preprocessing a dynamic
SELECT statement
This execution mode varies depending on whether the SQL statement to be
preprocessed is a dynamic SELECT statement or a statement other than the dynamic
SELECT statement. If the SQL statement to be preprocessed is a dynamic SELECT
statement, the SQL statements after preprocessing should be executed using the OPEN,
FETCH, or CLOSE statement; if it is not a dynamic SELECT statement, an EXECUTE
statement should be used. An example of executing SQL statements with processing a
dynamic SELECT statement is shown as follows:

3. UAP Design

126

Figure 3-5: Example of dynamic processing when the preprocessed SQL is a
dynamic SELECT statement

(d) Dynamic execution of an SQL statement that uses a cursor for a dynamic
SELECT statement
When a dynamic SELECT statement is preprocessed and an SQL statement that uses a
cursor is executed dynamically for that dynamic SELECT statement, a cursor declared
in a cursor declaration is not used. In this case, a cursor allocated with the ALLOCATE
CURSOR statement is used for the preprocessed dynamic SELECT statement. An
example of dynamic execution of an SQL statement that uses a cursor for a dynamic
SELECT statement is shown below.

3. UAP Design

127

(e) Receiving information determined during dynamic SQL execution
When a UAP dynamically executes SQL statements, it uses an SQL Descriptor Area
as the area for notifying HiRDB about information determined during the execution
(including the number, attributes, and addresses of data transfer areas). To realize
dynamic execution, the UAP receives search item information for SQL statements
preprocessed with the PREPARE statement in the SQL Descriptor Area by using one of
the following methods:

• Executing the DESCRIBE statement
• Specifying OUTPUT and INPUT when executing the PREPARE statement. (When

this method is used, the number of communications might be reduced, because
information can be received during execution of the PREPARE statement.)

For details about the DESCRIBE statement, see the manual HiRDB Version 8 SQL
Reference. For an example of the use of SQL Descriptor Areas, see B. SQL Descriptor
Area.

PREPARE GLOBAL :SEL FROM :XCMND;
//Adds an extended statement name (:SEL='SEL1') to the dynamic SELECT statement that was set to an embedded variable
(:XCMND).
ALLOCATE GLOBAL :CR CURSOR FOR GLOBAL :SEL;
//Allocates a cursor (:CR='CR1') to the query identified by the extended statement name (:SEL='SEL1').
PREPARE UPD1 FROM
 'UPDATE SET C1=? WHERE CURRENT OF GLOBAL CR1';
//Preprocesses the UPDATE statement that uses the cursor (CR1) and attaches an SQL statement identifier (UPD1).
OPEN GLOBAL :CR;
//Adds a cursor (:CR='CR1').
FETCH GLOBAL :CR INTO :XKEKKA;
//Reads the search results obtained using the cursor (:CR='CR1') into an embedded variable (:XKEKKA).
EXECUTE UPD1 USING :XDATA;
//Executes the UPDATE statement for the preprocessed SQL statement identifier (UPD1). At this time, the embedded variable
(:XDATA) corresponding to the ? parameter is specified.
CLOSE GLOBAL :CR;
//Closes the cursor (:CR='CR1').

3. UAP Design

128

3.3 Transaction control

This section explains when a UAP starts and terminates a transaction in a HiRDB
system, setting synchronization points, handling transactions, and rollbacks.

3.3.1 Connection to and disconnection from a HiRDB system
Executing the CONNECT statement connects a UAP to a HiRDB system, and executing
the DISCONNECT statement disconnects them.

3.3.2 Transaction startup and termination
A transaction is started when an SQL statement of the UAP is executed and is
terminated when a COMMIT or ROLLBACK statement is executed. Any number of
transactions can be started and terminated while the UAP is connected to the HiRDB
system.
Figure 3-6 shows examples of transaction startup and termination.

Figure 3-6: Examples of transaction startup and termination

In a HiRDB/Parallel Server, processing of SQL statements is branched to multiple
servers; but a process is managed as one transaction, and you do not need to consider
the internal branches.

3.3.3 Synchronization point setting and rollback
Table 3-6 explains setting synchronization points and handling transactions.

3. UAP Design

129

Table 3-6: Synchronization points and transactions

1 Cannot be executed in the OLTP environment. For details about synchronization
point setting and rollback in the OLTP environment, see 3.3.4 UAP transaction
management in an OLTP environment.
2 Results in implicit rollback; the following are major causes of implicit rollback:
3 When a transaction is invalidated, all transactions since the most recent
synchronization point are invalidated.

• Deadlock
• RDAREA page shortage
• Detection of RDAREA error or shutdown

3.3.4 UAP transaction management in an OLTP environment
In OLTP, you cannot code the COMMIT and ROLLBACK statements. When
synchronization point setting or transaction rollback occurs in a UAP executing in this
environment, you must use an application program interface (API) that conforms to X/
Open.
An example using OpenTP1 is explained here. For details about how to create a
program by using OpenTP1, see the manual OpenTP1 Version 5 Program Reference C
Language and the manual OpenTP1 Version 5 Program Reference COBOL Language.
A remote procedure call (RPC) can be used to implement one transaction among
multiple OLTP user server processes. Each process is called a transaction branch, and
the totality of these processes is called an OLTP global transaction.
When HiRDB is accessed from an OLTP global transaction, HiRDB cannot be

Synchronization point Set by: Handling
transactions

Set points in UAP by executing SQL
statements

Executing COMMIT statement Validated1

Executing ROLLBACK statement Invalidated1, 2

Set points in HiRDB by executing
SQL statements

Executing definition SQL statements Validated1

Executing PURGE TABLE statement Validated1

Processing cannot be continued while executing
SQL statements

Invalidated3

Set points in HiRDB by terminating
UAP

UAP normal termination Validated

UAP abnormal termination Invalidated2

3. UAP Design

130

accessed by the multiple transaction branches that make up the global transaction
branch.
Sometimes when a resource is to be accessed, a timeout occurs because a lock on the
resource was issued by a preceding transaction branch in the global transaction branch,
thus causing a succeeding transaction branch to wait until the resource becomes
available. Similarly, deadlock can occur between transaction branches.
The chain RPC function can be used in such a situation so that multiple RPCs can be
treated as belonging to the same transaction branch.

(1) C
(a) Transaction startup

Code the tx_begin function in the UAP.
(b) Setting synchronization points

Code the tx_commit function in the UAP.
(c) Setting rollbacks

Code the tx_rollback function in the UAP.
(2) COBOL85

(a) Transaction startup
DATA DIVISION.

*include TX definitions.

 01 TX-RETURN_STATUS
 COPY TXSTATUS.

PROCEDURE DIVISION.
CALL "TXBEGIN" USING TX-RETURN_STATUS.

(b) Setting synchronization points
DATA DIVISION.

*include TX definitions.

 01 TX-RETURN_STATUS
 COPY TXSTATUS.

PROCEDURE DIVISION.
CALL "TXCOMMIT" USING TX-RETURN_STATUS.

(c) Setting rollbacks
DATA DIVISION.

3. UAP Design

131

*include TX definitions.

 01 TX-RETURN_STATUS
 COPY TXSTATUS.

PROCEDURE DIVISION.
CALL "TXROLLBACK" USING TX-RETURN_STATUS.

3.3.5 Moving a transaction
When a UAP commits a transaction in a process different from the process in which
the UAP accessed HiRDB, the commitment processing is called moving the
transaction.
The UAP referenced is a UAP that connects itself to HiRDB via the HiRDB XA
library.
When the transaction-move function is used, 1 must be specified in the PDXAMODE
operand of the client environment definition. For details about the PDXAMODE operand,
see 6.6.4 Environment definition information.

(1) Scope of LOCK TABLE UNTIL DISCONNECT when the PDXAMODE operand
is specified

The specification of the PDXAMODE operand affects the scope of the LOCK TABLE
UNTIL DISCONNECT specification, as explained as follows:

(a) PDXAMODE=0
1. Resource Manager opened by means of AP coding

The LOCK TABLE UNTIL DISCONNECT specification remains in effect until the
Resource Manager is closed.

2. Resource Manager opened separately for each transaction
The LOCK TABLE UNTIL DISCONNECT specification remains in effect throughout
the global transaction.

(b) PDXAMODE=1
1. Resource Manager opened by means of AP coding

• Transaction is not moved
The LOCK TABLE UNTIL DISCONNECT specification remains in effect until
the Resource Manager is closed.

• Transaction is moved
The LOCK TABLE UNTIL DISCONNECT specification remains in effect
throughout the global transaction.

3. UAP Design

132

2. Resource Manager opened separately for each transaction
The LOCK TABLE UNTIL DISCONNECT specification remains in effect throughout
the global transaction.

Table 3-7 shows the scope of the LOCK TABLE UNTIL DISCONNECT specification
when OpenTP1 is used.

Table 3-7: Scope of the LOCK TABLE UNTIL DISCONNECT specification
when OpenTP1 is used

Note
The -d option can be specified when the TP1/Server Base version is 03-03 or later
and the HiRDB version is for UNIX systems.

PDXAMODE
specification

OpenTP1 specification Scope of LOCK
TABLE UNTIL
DISCONNECT

0 trn_rm_open_close_scope=process Effective until Resource
Manager is closed.

trn_rm_open_close_scope=transaction Effective within a global
transaction.

1 trn_rm_ope
n_close_sc
ope=proces
s

-d option specified in trnstring operand Effective until the
Resource Manager is
closed.-d option not

specified in
trnstring
operand

A single AP comprises a
global transaction in the
OpenTP1 system.

Multiple APs
comprise a
global
transaction in
the OpenTP1
system.

A single
AP links
to the
HiRDB
XA
library.

Multiple
APs link
to the
HiRDB
XA
library.

Effective within the
global transaction.

trn_rm_open_close_scope=transaction

3. UAP Design

133

3.4 Locking

The HiRDB system automatically locks tables to prevent data inconsistencies, because
data inconsistencies are apt to occur when several users manipulate a table
simultaneously. This section explains the structure of locking and what aspects of
locking the user can change.

3.4.1 Units of locking
(1) Locked resources and inclusive relationships

HiRDB locks a resource to prevent unauthorized referencing or updating.
HiRDB performs locking to maintain database integrity. In a HiRDB/Parallel Server,
closed locking is performed for each server, because resources are not shared among
servers.
When a higher-level resource is locked, the resources under that resource need not be
locked, because locked resources maintain inclusive relationships. Figure 3-7 shows
the resources that can be locked and their inclusive relationships.

Figure 3-7: Locked resources and inclusive relationships

#1: When the inner replica facility is used, the highest locked resource is the inner
replica configuration management.
When updatable online reorganization is executed, the highest locked resource is the
inner replica configuration management or the replica group configuration
management. If the inner replica configuration management cannot be locked, the
replica group configuration management is locked.
When an RDAREA that is not defined as a replica RDAREA is accessed, that
RDAREA is locked.
#2: This file is used by plug-ins.

3. UAP Design

134

(2) Setting the minimum unit of resource locking
For purposes of lock control that the HiRDB system implements automatically, the
minimum unit of resource locking (the row or the page) can be specified for each table.
You can also disable lock control with the index key value for an index. This setting is
called non-locking of index key values.

(a) When the row is specified as the minimum unit of resource locking
Because the row is a smaller unit of resource locking than the page, the efficiency of
concurrent execution improves, but processing time and memory requirements
associated with locking increase.
To specify the row as the minimum unit of resource locking, use the CREATE TABLE,
ALTER TABLE, or LOCK statement. For details, see the HiRDB Version 8 SQL
Reference manual.

(b) When the page is specified as the minimum unit of resource locking
Compared with row-level locking, the processing time and memory requirements
associated with locking decrease, but the efficiency of concurrent execution is
reduced.
To specify the row as the minimum unit of resource locking, use the CREATE TABLE,
ALTER TABLE, or LOCK statement. For details, see the HiRDB Version 8 SQL
Reference manual.

(c) When non-locking of index key values is specified
Locking is applied only to the table and not to the index key value. This setting allows
you to avoid the following problems:

• Deadlock between data update and index retrieval
• Unnecessary wait when data that has the same key is accessed
• Unnecessary wait when data that has a different key is accessed

For details about non-locking of index key values, see 3.4.6 Non-locking of index key
values.
These three settings each have different tradeoffs. These tradeoffs must be considered
when the minimum unit of resource locking is specified.

3.4.2 Lock modes
(1) Mode types

You can apply five lock modes to a resource, as explained as follows:
1. Protected retrieve (PR) mode

In the PR mode, only the first transaction that uses the resource occupies it and

3. UAP Design

135

can reference, add to, update, and delete data in the locked resource. Other
transactions can only reference the locked resource.

2. Exclusive (EX) mode
In the EX mode, only the transaction that uses the resource occupies it and can
reference, add to, update, and delete data in the locked resource. Other
transactions cannot reference, add to, update, or delete the locked resource.

3. Shared retrieve (SR) mode
In the SR mode, if a lock is applied in PR mode to a certain resource, the lock is
applied to the resource that is located above that resource. Other transactions can
also reference, add to, update, and delete the locked resource.

4. Shared update (SU) mode
In the SU mode, if a lock is applied in EX mode to a certain resource, the lock is
applied to the resource that is located above that resource. Other transactions can
also reference, add to, update, and delete the locked resource.

5. Protected update (PU) mode
In the PU mode, the first transaction that uses the resource can reference, add to,
update, and delete data in it; other transactions can only reference the locked
resource.
Unlike the first four modes, the PU mode occurs as a result of locking mode
transition.

Locking is applied first to the highest-level resource and then to lower-level resources.
If a transaction cannot be executed simultaneously with other transactions that have
locking in effect for the same resource, that transaction goes onto wait status. When
the PR or EX mode is encountered while locking is being applied from a higher-level
resource to a lower-level resource, a resource that is located below the resource to
which the mode has been applied is not locked.
When two users attempt to perform identical processing on the same resource, the
difference in the combination of the lock modes may prevent simultaneous execution.
Table 3-8 shows when two users can perform execution simultaneously based on lock
modes.

Table 3-8: Simultaneous execution by two users based on lock modes

Mode SR PR SU PU EX

SR A A A A NA

PR A A NA NA NA

SU A NA A NA NA

3. UAP Design

136

A: Simultaneous execution allowed
NA: Simultaneous execution not allowed
When two users cannot perform execution simultaneously, the system usually waits
for the other transaction to be committed (updated at the synchronization point). WITH
ROLLBACK, or NOWAIT can be specified in the SQL statement to cause an error
return without waiting for the other transaction to be committed.

(2) Mode transition
If the user applies different locking modes repeatedly to the same resource, the mode
shifts to the stronger one.
After locking has been applied using a strong mode, applying a weaker mode does not
cause the mode to shift to the weaker one. For example, if EX is used for locking
during row updating, the lock mode of the row remains as EX, even if PR is applied
subsequently for referencing the updated row.
Table 3-9 shows the lock mode transition rules.

Table 3-9: Lock mode transition rules

: Mode transition does not occur.
(code): Mode after transition.

(3) Mode combinations
Different lock modes can be combined, depending on the SQL statement and the
execution environment.
Tables 3-10 and 3-11 show typical lock mode combinations based on the SQL
statement and execution environment for row-level locking. Tables 3-12 and 3-13

PU A NA NA NA NA

EX NA NA NA NA NA

Mode applied subsequently Current mode

SR PR SU PU EX

SR

PR PR PU

SU SU PU

EX EX EX EX EX

Mode SR PR SU PU EX

3. UAP Design

137

show similar combinations for page-level locking, and Tables 3-14 and 3-15 show
them for non-locking of index key values. Tables 3-16 and 3-17 show typical lock
mode combinations for cases when a table is set to check pending status.

Table 3-10: Typical lock mode combinations (row locking) (1/2)

SQL statement and execution
environment

Resource

Higher level --------------------- Lower level

Inner
replica
config6

Replica
group

config8

RDAREA Table NO
WAIT
tableFor

tables
For
IX

Last
HiRDB

file5

Retrieval NOWAIT specified SR SR SR SR

WITH SHARE specified SR SR SR SR

WITH EXCLUSIVE
specified1

SR SR SU SR SU

FOR UPDATE clause
specified1

SR SR SU SR SU

None of the above SR SR SR SR

Updating1, 12 SR SR SU EX SU

Addition1 SR SR SU EX SU

Deletion1 SR SR SU SU

LOCK
statement

SHARE specified11 SR SR SR PR

EXCLUSIVE
specified

Unshared
table

SR SR SU EX

Shared
table11

SR SR EX EX EX

Table deletion2, 13 SU EX EX

Index Definition13 SU EX

Deletion3, 13 SR10 SU EX4 EX

Deletion of all rows2, 13 SR SR SU EX EX

Table definition change13 SR9 SR9 SU7 EX EX

3. UAP Design

138

: Locking is not applied.
(code): Lock mode.
IX: indexes
1 If the database update log is not being collected during UAP execution, a table is
locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during
UAP execution, see the HiRDB Version 8 System Operation Guide.
2 All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.
3 All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.
4 Plug-in indexes are locked in the EX mode, but B-Tree indexes are not locked.
5 If automatic extension of the RDAREA is applied, the last HiRDB file that makes up
the RDAREA is locked from start to end of the automatic extension processing.
6 If the inner replica facility is used, the server containing the RDAREA to be
processed is locked.
7 If an RDAREA is added or is altered with the free space reusage facility, the
RDAREA is locked.
8 When updatable online reorganization is executed, the replica group containing the
RDAREA to be processed is locked.
9 If an RDAREA to be processed is accessed, the RDAREA is locked.
10 If the inner replica facility is applied, the resource is locked.
11 When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when a shared table is accessed.
12 When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when an UPDATE statement that does not update the index is executed for a shared
table.
13 When HiRDB/Parallel Server is used, locking equivalent to an
EXCLUSIVE-specified LOCK statement is applied to all back-end servers when the
operation is executed for a shared table or a shared index. When HiRDB/Single Server
is used, locking equivalent to an EXCLUSIVE-specified LOCK statement is applied
when the operation is executed for a shared table or a shared index.

3. UAP Design

139

Table 3-11: Typical lock mode combinations (row locking) (2/2)

: Locking is not applied.
(code): Lock mode.
1 If the database update log is not being collected during UAP execution, a table is

SQL statement and execution
environment

Resource

Higher level --------------------- Lower level

Index Index
information

file4

Page Row Key
value

Logical
file

Retrieval NOWAIT specified PR

WITH SHARE specified PR PR PR

WITH EXCLUSIVE
specified1

EX PR EX

FOR UPDATE clause
specified1

EX PR EX

None of the above PR PR PR

Updating1, 6 EX EX EX EX

Addition1 EX EX EX EX

Deletion1 EX8 EX EX

LOCK
statement

SHARE specified5

EXCLUSIVE
specified

Unshared
table

Shared
table5

Table deletion2, 7

Index Definition7

Deletion3, 7 EX

Deletion of all rows2, 7

Table definition change7

3. UAP Design

140

locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during
UAP execution, see the HiRDB Version 8 System Operation Guide.
2 All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.
3 All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.
4 The delayed batch creation facility for plug-in indexes is used to lock a plug-in index
when it is updated. The lock is held until a commit statement is executed.
5 When HiRDB/Parallel Server is used, locking is applied to all back-end servers when
a shared table is accessed.
6 When HiRDB/Parallel Server is used, locking is applied to all back-end servers when
an UPDATE statement that does not update the index is executed for a shared table.
7 When HiRDB/Parallel Server is used, locking equivalent to an EXCLUSIVE-specified
LOCK statement is applied to all back-end servers when the operation is executed for a
shared table or a shared index.
8 The row to be deleted is locked in the EX mode until the transaction is committed or
rolled back. However, if another transaction executes retrieval processing while the
row is being deleted, the retrieval processing does not wait for lock-release because it
cannot apply a lock on the row to be deleted.

3. UAP Design

141

Table 3-12: Typical lock mode combinations (page locking) (1/2)

: Locking is not applied.
(code): Lock mode.

SQL statement and execution
environment

Resource

Higher level --------------------- Lower level

Inner
replica
config6

Replica
group

config8

RDAREA Table NO
WAIT
tableFor

tables
For
IX

Last
HiRDB

file5

Retrieval NOWAIT specified SR SR SR SR

WITH SHARE specified SR SR SR SR

WITH EXCLUSIVE
specified1

SR SR SU SR SU

FOR UPDATE clause
specified1

SR SR SU SR SU

None of the above SR SR SR SR

Updating1, 12 SR SR SU EX SU

Addition1 SR SR SU EX SU

Deletion1 SR SR SU SU

LOCK
statement

SHARE specified11 SR SR SR PR

EXCLUSIVE
specified

Unshared
table

SR SR SU EX

Shared
table11

SR SR EX EX EX

Table deletion2, 13 SU EX EX

Index Definition13 SU EX

Deletion3, 13 SR10 SU EX4 EX

Deletion of all rows2, 13 SR SR SU EX EX

Table definition change13 SR9 SR9 SU7 EX EX

3. UAP Design

142

IX: indexes
1 If the database update log is not being collected during UAP execution, a table is
locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during
UAP execution, see the HiRDB Version 8 System Operation Guide.
2 All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.
3 All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.
4 Plug-in indexes are locked in the EX mode, but B-Tree indexes are not locked.
5 If automatic extension of the RDAREA is applied, the last HiRDB file that makes up
the RDAREA is locked from start to end of the automatic extension processing.
6 If the inner replica facility is used, the server containing the RDAREA to be
processed is locked.
7 If an RDAREA is added or is altered with the free space reusage facility, the
RDAREA is locked.
8 When updatable online reorganization is executed, the replica group containing the
RDAREA to be processed is locked.
9 If an RDAREA to be processed is accessed, the RDAREA is locked.
10 If the inner replica facility is applied, the resource is locked.
11 When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when a shared table is accessed.
12 When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when an UPDATE statement that does not update the index is executed for a shared
table.
13 When HiRDB/Parallel Server is used, locking equivalent to an
EXCLUSIVE-specified LOCK statement is applied to all back-end servers when the
operation is executed for a shared table or a shared index. When HiRDB/Single Server
is used, locking equivalent to an EXCLUSIVE-specified LOCK statement is applied
when the operation is executed for a shared table or a shared index.

3. UAP Design

143

Table 3-13: Typical lock mode combinations (page locking) (2/2)

: Locking is not applied.
(code): Lock mode.
1 If the database update log is not being collected during UAP execution, a table is

SQL statement and execution
environment

Resource

Higher level --------------------- Lower level

Index Index
information

file4

Page Row Key
value

Logical
file

Retrieval NOWAIT specified PR

WITH SHARE specified PR PR PR

WITH EXCLUSIVE
specified1

EX PR EX

FOR UPDATE clause
specified1

EX PR EX

None of the above PR PR PR

Updating1, 6 EX EX EX EX

Addition1 EX EX EX EX

Deletion1 EX EX EX

LOCK
statement

SHARE specified5

EXCLUSIVE
specified

Unshared
table

Shared
table5

Table deletion2, 7

Index Definition7

Deletion3, 7 EX

Deletion of all rows2, 7

Table definition change7

3. UAP Design

144

locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during
UAP execution, see the HiRDB Version 8 System Operation Guide.
2 All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.
3 All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.
4 The delayed batch creation facility for plug-in indexes is used to lock a plug-in index
when it is updated. The lock is held until a commit statement is executed.
5 When HiRDB/Parallel Server is used, locking is applied to all back-end servers when
a shared table is accessed.
6 When HiRDB/Parallel Server is used, locking is applied to all back-end servers when
an UPDATE statement that does not update the index is executed for a shared table.
7 When HiRDB/Parallel Server is used, locking equivalent to an EXCLUSIVE-specified
LOCK statement is applied to all back-end servers when the operation is executed for a
shared table or a shared index.

Table 3-14: Typical lock mode combinations (non-locking of index key values)
(1/2)

SQL statement and execution
environment

Resource

Higher level --------------------- Lower level

Inner
replica
config5

Replica
group

config7

RDAREA Table NO
WAIT
tableFor

tables
For
IX

Last
HiRDB

file4

NOWAIT specified SR SR SR SR

WITH SHARE specified SR SR SR SR

Retrieval WITH EXCLUSIVE
specified10

SR SR SU SR SU SU

FOR UPDATE clause
specified10

SR SR SU SR SU SU

None of the above SR SR SR SR

Updating10, 12 SR SR SU EX SU

3. UAP Design

145

: Locking is not applied.
(code): Lock mode.
IX: indexes
1 All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.
2 All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.
3 Plug-in indexes are locked in the EX mode, but B-Tree indexes are not locked.
4 If automatic extension of the RDAREA is applied, the last HiRDB file that makes up
the RDAREA is locked from start to end of the automatic extension processing.
5 If the inner replica facility is used, the server containing the RDAREA to be

Addition10 SR SR SU EX SU

Deletion10 SR SR SU SU

LOCK
statement

SHARE specified11 SR SR SR PR

EXCLUSIVE
specified

Unshared
table

SR SR SU EX

Shared
table11

SR SR EX EX EX

Table deletion1, 13 SU EX EX

Index Definition13 SU EX

Deletion2, 13 SR9 SU EX3 EX

Deletion of all rows1, 13 SR SR SU EX EX

Table definition change13 SR8 SR8 SU6 EX EX

SQL statement and execution
environment

Resource

Higher level --------------------- Lower level

Inner
replica
config5

Replica
group

config7

RDAREA Table NO
WAIT
tableFor

tables
For
IX

Last
HiRDB

file4

3. UAP Design

146

processed is locked.
6 If an RDAREA is added or is altered with the free space reusage facility, the
RDAREA is locked.
7 When updatable online reorganization is executed, the replica group containing the
RDAREA to be processed is locked.
8 If an RDAREA to be processed is accessed, the RDAREA is locked.
9 If the inner replica facility is applied, the resource is locked.
10 If the database update log is not being collected during UAP execution, a table is
locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during
UAP execution, see the HiRDB Version 8 System Operation Guide.
11 When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when a shared table is accessed.
12 When HiRDB/Parallel Server is used, locking is applied to all back-end servers
when an UPDATE statement that does not update the index is executed for a shared
table.
13 When HiRDB/Parallel Server is used, locking equivalent to an
EXCLUSIVE-specified LOCK statement is applied to all back-end servers when the
operation is executed for a shared table or a shared index. When HiRDB/Single Server
is used, locking equivalent to an EXCLUSIVE-specified LOCK statement is applied
when the operation is executed for a shared table or a shared index.

3. UAP Design

147

Table 3-15: Typical lock mode combinations (non-locking of index key values)
(2/2)

SQL statement and execution
environment

Resource

Higher level --------------------- Lower level

Index Index
information

file3

Page Row Key
value

Logical
file

Retrieval NOWAIT specified PR

WITH SHARE specified ,
PR4

PR,
 4

PR

WITH EXCLUSIVE
specified6

,
EX4

EX,
 4

EX

FOR UPDATE clause
specified6

,
EX4

EX,
 4

EX

None of the above
PR4

PR,
 4

PR

Updating6, 8 EX ,
EX4,

5

EX,

4, 5

EX

Addition6 EX ,
EX4,

5

EX,

4, 5

EX

Deletion6

EX4,

5

EX,

4, 5

EX

LOCK
statement

SHARE specified7

EXCLUSIVE
specified

Unshared
table

Shared
table7

Table deletion1, 9

Index Definition9

Deletion2, 9 EX

3. UAP Design

148

: Locking is not applied.
(code): Lock mode.
1 All segments being used for the table and associated indexes are locked in the EX
mode and kept locked until the transaction is committed.
2 All segments being used for the index are locked in the EX mode and kept locked
until the transaction is committed.
3 The delayed batch creation facility for plug-in indexes is used to lock a plug-in index
when it is updated. The lock is held until a commit statement is executed.
4 In row locking, resource rows are locked and resource pages are not locked. In page
locking, resource rows are not locked, and resource pages are locked.
5 If a unique index is defined, resource rows are locked, even in page locking.
6 If the database update log is not being collected during UAP execution, a table is
locked in the EX mode and kept locked until it is committed; rows and keys are not
locked. For details about operations when a database update log is not collected during
UAP execution, see the HiRDB Version 8 System Operation Guide.
7 When HiRDB/Parallel Server is used, locking is applied to all back-end servers when
a shared table is accessed.
8 When HiRDB/Parallel Server is used, locking is applied to all back-end servers when
an UPDATE statement that does not update the index is executed for a shared table.
9 When HiRDB/Parallel Server is used, locking equivalent to an EXCLUSIVE-specified
LOCK statement is applied to all back-end servers when the operation is executed for a
shared table or a shared index.

Deletion of all rows1, 9

Table definition change9

SQL statement and execution
environment

Resource

Higher level --------------------- Lower level

Index Index
information

file3

Page Row Key
value

Logical
file

3. UAP Design

149

Table 3-16: Typical lock mode combinations (when check pending status is set)
(1/2)

: Locking is not applied.
(code): Lock mode.

#1
This table shows resources for tables in which a referential constraint or a check
constraint is defined.

#2
Locking is applied to the RDAREAs in which the check pending status is to be
set.

#3
When a HiRDB/Parallel Server is used, locking equivalent to a LOCK statement
with EXCLUSIVE specified is applied to all back-end servers when the utility is

SQL statement and utility Resource#1

Higher level --------------------- Lower level

RDAREA Table NO WAIT
table

For
tables#2

For
indexes

For LOB Last
HiRDB file

Deletion of all rows SU EX EX

Changing a table's definition
(changing the storage
partitioning conditions)

SU EX EX

Database load utility
(pdload)#3

SU EX EX

Database reorganization
utility (pdrorg)#3

SU EX EX

Database structure
modification utility (pdmod)

SU EX EX

Integrity check utility
(pdconstck)#3

SU EX EX

Reflection command for
online reorganization
(pdorend)#3

SU EX EX

3. UAP Design

150

executed for a shared table. For details about the lock mode applied during
execution of the LOCK statement on a shared table, see the EXCLUSIVE specified
rows under LOCK statement in Tables 3-10 to 3-15.
Table 3-17: Typical lock mode combinations (when check pending status is set)
(2/2)

: Locking is not applied.

#1
This table shows resources for tables in which a referential constraint or a check
constraint is defined.

#2
When a HiRDB/Parallel Server is used, locking equivalent to a LOCK statement
with EXCLUSIVE specified is applied to all back-end servers when the utility is
executed for a shared table. For details about the lock mode applied during
execution of the LOCK statement on a shared table, see the EXCLUSIVE specified
rows under LOCK statement in Tables 3-10 to 3-15.

(4) Lock release timings in tables for which the WITHOUT ROLLBACK option is
specified in CREATE TABLE

Tables 3-18 to 3-21 show the lock release timings in tables for which the WITHOUT

SQL statement and utility Resource#1

Higher level --------------------- Lower level

Index Index
information

file

Page Row Key
valu

e

Logical
file

Deletion of all rows

Changing a table's definition (changing
the storage partitioning conditions)

Database load utility (pdload)#2

Database reorganization utility
(pdrorg)#2

Database structure modification utility
(pdmod)

Integrity check utility (pdconstck)#2

Reflection command for online
reorganization (pdorend)#2

3. UAP Design

151

ROLLBACK option is specified in CREATE TABLE.
Table 3-18: Lock release timings in tables for which the WITHOUT
ROLLBACK option is specified in CREATE TABLE (when an index is not
defined) (1/2)

SQL statement and
execution environment

Resource

Higher level --------------------- Lower level

Inner
replica
config*

Replica
group
config*

RDAREA Table NO
WAIT
tableFor

tables
For

indexes
Last

HiRDB
file

Retrieval NOWAIT
specified

B B B B

WITH SHARE
specified

B B B B

WITH
EXCLUSIVE
specified*

B B B B

FOR UPDATE
clause
specified*

B B B B

None of the
above

B B B B

Updating B B B B

Addition B B B B

Deletion B B B B

LOCK
statement

SHARE specified B B B B

EXCLUSIVE
specified

B B B B

Table deletion B B B

Index Definition B B B

Deletion B B B

Deletion of all rows B B B B B

Table definition change B B

3. UAP Design

152

: Locking is not applied or is not applicable (page locking cannot be specified).
B: Lock is not released when the SQL statement is executed.
* If the inner replica facility is being used, the inner replica configuration management
is locked. If the updatable online reorganization is being used, the inner replica
configuration management or the replica group configuration management is locked.

Table 3-19: Lock release timings in tables for which the WITHOUT
ROLLBACK option is specified in CREATE TABLE (when an index is not
defined) (2/2)

: Locking is not applied or is not applicable (page locking cannot be specified).

SQL statement and execution
environment

Resource

Higher level --------------------- Lower level

Index Index
information

file

Page Row Key
value

Logical
file

Retrieval NOWAIT specified

WITH SHARE specified B

WITH EXCLUSIVE
specified

B

FOR UPDATE clause
specified

B

None of the above B

Updating R

Addition R

Deletion R

LOCK
statement

SHARE specified

EXCLUSIVE specified

Table deletion

Index Definition

Deletion

Deletion of all rows

Table definition change

3. UAP Design

153

R: Lock is released when the SQL statement is executed.
B: Lock is not released when the SQL statement is executed.

Table 3-20: Lock release timings in tables for which the WITHOUT
ROLLBACK option is specified in CREATE TABLE (when an index is defined)
(1/2)

SQL statement Resource

Higher level --------------------- Lower level

Inner
replica
config*

Replica
group
config*

RDAREA Table NO
WAIT
tableFor

tables
For

indexes
Last

HiRDB
file

Retrieval NOWAIT
specified

B B B B B

WITH SHARE
specified

B B B B B

WITH
EXCLUSIVE
specified

B B B B B

FOR UPDATE
clause specified

B B B B B

None of the
above

B B B B B

Updating B B B B B

Addition B B B B B

Deletion B B B B B

LOCK
statement

SHARE specified B B B B B

EXCLUSIVE
specified

B B B B B

Table deletion B B B B

Index Definition B B B B

Deletion B B B B

Deletion of all rows B B B B B B

Table definition change B B B

3. UAP Design

154

Legend:
: Locking is not applied or is not applicable (page locking cannot be specified).

B: Lock is not released when the SQL statement is executed.
* If the inner replica facility is being used, the inner replica configuration management
is locked. If the updatable online reorganization is being used, the inner replica
configuration management or the replica group configuration management is locked.

Table 3-21: Lock release timings in tables for which the WITHOUT
ROLLBACK option is specified in CREATE TABLE (when an index is defined)
(2/2)

SQL statement Resource

Higher level --------------------- Lower level

Index Index
information

file

Page Row Key
value

Logical
file

Retrieval NOWAIT
specified

WITH SHARE
specified

B 1

WITH
EXCLUSIVE
specified

B 1

FOR UPDATE
clause specified

B 1

None of the
above

B 1

Updating R 2

Addition R 3

Deletion R 3

LOCK
statement

SHARE specified

EXCLUSIVE
specified

Table deletion

3. UAP Design

155

Legend:
: Locking is not applied or is not applicable (index definition and page locking

cannot be specified).
R: Lock is released when the SQL statement is executed.
B: Lock is not released when the SQL statement is executed.

1 If the pd_indexlock_mode operand of the system definition is KEY (index locking
is applied), the lock is released when the key value of the processed target is changed
to another key value.
2 The lock is released if the resource is a unique key index.
3 The lock is not released if the pd_indexlock_mode operand of the system
definition is KEY (index locking is applied).

3.4.3 Lock period
(1) Starting and releasing a lock

When a transaction locks a resource, that resource is usually occupied until COMMIT or
ROLLBACK occurs. For example, because the EX mode is in effect while a locked
resource (row or page) is being updated, all other transactions for the resource being
updated must wait until COMMIT or ROLLBACK is executed. However, if the UNTIL
DISCONNECT option is specified in the LOCK statement, the lock on the resource is
retained until either the resource is disconnected or the transaction is committed after
the table is deleted.
When row deletion is executed, the lock is maintained until the transaction is
completed. However, because the row ends up being deleted from the database,
retrieval processing in other transactions does not wait for lock-release in the row
being deleted.

Index Definition

Deletion

Deletion of all rows

Table definition change

SQL statement Resource

Higher level --------------------- Lower level

Index Index
information

file

Page Row Key
value

Logical
file

3. UAP Design

156

(2) Referencing during a lock
Once a resource is locked, that resource is usually not released until COMMIT or
ROLLBACK occurs. When an SQL statement with WITHOUT LOCK specified is used for
retrieval, however, the lock is released from a locked resource (row or page) as soon
as that resource has been referenced. When an SQL statement with WITHOUT LOCK
NOWAIT specified is used for retrieval, even tables and rows that have been locked in
EX mode by another transaction can be referenced as if they were not locked, except
when a logical file is referenced. However, a table cannot be referenced if it is being
accessed by the pdload or pdrorg command. For details about the pdload and
pdrorg commands, see the HiRDB Version 8 Command Reference manual.
In retrieval using an SQL statement with WITHOUT LOCK NOWAIT specified,
referencing is allowed even during updating. Therefore, care must be taken, because
the result of the referencing might not be the same as the result after the updating.

3.4.4 Deadlocks and corrective measures
(1) Causes of deadlock

When two transactions attempt to access multiple resources but are waiting for the
other to initiate a move, processing can become stuck; this is called deadlock.
Deadlock occurs most often between a referencing transaction and an updating
(including deleting) transaction. It is, therefore, possible to reduce the frequency of
deadlocks by changing the UAP access sequence.
Figure 3-8 shows an example of deadlock, in which two transactions simultaneously
access a row with the same key. The figure also shows the relationship between the
order in which locking is applied and deadlock.

3. UAP Design

157

Figure 3-8: Example of deadlock

With page-locking, there are situations in which deadlock cannot be prevented even
though UAP access procedures are standardized.

3. UAP Design

158

Figure 3-9 shows an example of deadlock occurring in page-locking.
Figure 3-9: Example of deadlock in page-locking

In the example shown in Figure 3-9, the order in which rows are stored in a page cannot
be standardized unless a cluster key is specified. Therefore, the sequence of UAP
accesses cannot be standardized at the page level. In this case, ALTER TABLE must be
used to change page locking to row locking in order to prevent deadlock from
occurring.

(2) Deadlock between servers
Deadlock can occur between servers as well as within a single server. In a HiRDB/
Parallel Server, deadlock between servers is called global deadlock.
Global deadlock occurs between a referencing transaction and an updating transaction
in the same way that deadlock occurs within a single server, as shown in Figure 3-9.
The frequency of these deadlocks can be reduced by changing the UAP access
sequence.
Figure 3-10 shows an example of global deadlock, in which two transactions try to
execute retrieval and updating in reverse order on tables stored in two separate servers.
The figure also shows the relationship between the order in which locking is applied
and deadlock.

3. UAP Design

159

Figure 3-10: Example of global deadlock

In this example, locking occurs between UAP1 and UAP2 within each back-end

3. UAP Design

160

server; however, deadlock occurs at the front-end server because of lock-release wait.
(3) Deadlock countermeasures

The two major causes of deadlock are:
• UAP access sequence (order in which lock is applied)
• Retrieving and updating in reverse order

There are other types of deadlock in addition to those shown in Figures 3-8, 3-9, and
3-10. Table 3-22 shows the major types of deadlocks and their countermeasures.

Table 3-22: Deadlocks and their countermeasures

(4) Locking based on deadlock priority values
Deadlock priority values can be used to control the transaction that is to be terminated
with an error when a deadlock occurs. When deadlock priority control is specified in
the pd_deadlock_priority_use operand in the system common definition, and
deadlock priority values are specified in the PDDLKPRIO operand in the client
environment definition, HiRDB determines the deadlock priority order of the
transactions based on these specified values. Specification of a low value means a

Deadlocked
resources

Cause Countermeasure

Row and row UAP access sequence
(shown in Figure 3-10)

• Standardize UAP access sequence.
• Use LOCK TABLE to lock the table.
• Re-execute UAP after deadlock occurs.

Row and index key Retrieval and updating in
reverse order (shown in
Figure 3-8)

• Do not update the retrieved row.
• Do not update the values in a column to the same

value.
• Minimize index definition.
• Use LOCK TABLE to lock the table.
• Perform NOWAIT retrieval.
• Re-execute UAP after deadlock occurs.
• Apply non-locking of index key values

Index key and index key UAP access sequence • Standardize UAP access sequence.
• Minimize index definition.
• Use LOCK TABLE to lock the table.
• Perform NOWAIT retrieval.
• Re-execute UAP after deadlock occurs.
• Apply non-locking of index key values

Page and page Rows are stored in a page
in an unpredictable
sequence (shown in
Figure 3-9)

• Use ALTER TABLE to change page locking to row
locking.

3. UAP Design

161

higher-processing priority; specification of a high value means that an error and
rollback are more likely to occur. If two transactions have the same deadlock priority
value, the error occurs for the transaction that was started later (this transaction is
rolled back). If specification of the PDDLKPRIO operand is omitted, HiRDB triggers
the error for the transaction that caused the deadlock (and rolls back this transaction),
based on the type of UAP, the utility, and the operation command. For the default that
is assumed when specification of the PDDLKPRIO operand is omitted, see 6.6.4
Environment definition information. Unless the transaction is terminated by a
ROLLBACK or DISCONNECT statement, a UAP that is rolled back implicitly because of
deadlock results in an error, even if an SQL statement is issued. When an X/
Open-compliant UAP is used as a client in an OLTP environment, a transaction must
be terminated, even if deadlock occurs in the UAP.
To enable output of deadlock information if a deadlock occurs, specify Y in the
pd_lck_deadlock_info operand of the system definitions. For details about the
pd_lck_deadlock_info operand, see the HiRDB Version 8 System Definition
manual.

(5) Preventing deadlocks
Although the frequency of deadlock occurrences can be reduced by enlarging the lock
range, the concurrent execution capability of transactions declines. Conversely, while
narrowing the lock range improves the concurrent execution capability, incorrect
referencing and updating occurs, resulting in an increase in the deadlock frequency. To
avoid deadlocks while maintaining concurrent execution capability, consider the
measures listed as follows:

• Do not assign indexes to columns that are updated frequently
• Do not update retrieval conditions columns
• Specify the FOR UPDATE OF clause in the cursor definition only for columns to be

updated
• Do not update values in a column (a unique index column in particular) to the

same values (use the SET clause to specify only the columns that it is certain are
updated to a different value)

• Specify the FOR UPDATE clause in the cursor specification to update or delete a
row retrieved by the cursor

• Specify WITH EXCLUSIVE LOCK the columns that are updated after retrieval
• When assigning conditions to multiple columns, consider the use of a

multicolumn index (to avoid expanding the retrieval range of single-column
indexes)

• Consider the use of retrievals that use WITHOUT LOCK NOWAIT
• When accessing multiple tables, standardize the access sequence (if A is accessed

3. UAP Design

162

before B, do not access A again; instead, save the value of A)
• Specify LOCK TABLE
• If a row must be updated immediately after being inserted with the INSERT

statement, try to perform both steps in the same transaction
• To allow multiple UAPs to use multiple indexes with AND and update the same

table simultaneously, specify 1 in the pd_work_table_option operand of the
system definitions. For details about how to use multiple indexes with AND, see
the explanation for PDSQLOPTLVL in 6.6.4 Environment definition information.
For details about the pd_work_table_option operand, see the HiRDB Version
8 System Definition manual.

• Apply non-locking of index key values.
As explained above, both the lock range and the lock sequence must be evaluated to
avoid deadlock. The lock sequence depends on the SQL statement and index types. For
details, see Section 3.4.8 Lock sequence based on SQL statement and index types.

(6) Avoiding deadlock in logical files used by plug-ins
If a plug-in uses logical files, use the EX mode to lock the files in logical file units for
update manipulation, and use the PR mode for retrieval manipulation.
A logical file becomes locked while it is manipulated, regardless of the data value.
Consequently, if an update transaction accesses a column that has a plug-in definition
for using a logical file, logical file contention can occur between that transaction, and
all other transactions that manipulate that column. To prevent contention, avoid
executing any other programs while a program that updates columns with plug-in
definitions for using logical files is being executed.

Deadlock avoidance measure 1
Specify LOCK TABLE.
Deadlock avoidance measure 2
If a logical file becomes a deadlocked resource, check whether the logical file is
used for a data-type plug-in or for an index-type plug-in, and see Table 3-10
through Table 3-15. For details about the deadlock information that is output if a
deadlock occurs, see the HiRDB Version 8 System Operation Guide.
Lock information:

Type 000e -> logical file
First four bytes of lock information -> RDAREA number

Investigate the RDAREA name from the RDAREA number.
If the RDAREA is used for storing abstract data LOB attributes, the data is treated as
a row.

3. UAP Design

163

If the RDAREA is used for a plug-in index, the data is treated as an index key.
Notes

• For a plug-in index retrieval, the logical file is locked in PR mode even if
NOWAIT is specified.

• Even if a LOCK TABLE lock is applied, the logical file is locked in EX or
PR mode during data manipulation.

3.4.5 Unlocked conditional search
Unlocked conditional search does not lock items whenever retrieval processing is
underway, but instead locks only those rows and key values that satisfy the retrieval
condition. Unlocked conditional search can reduce the retrieval time compared to
ordinary retrieval processing, because rows and key values that do not satisfy the
retrieval condition are not locked.
Moreover, when updating and retrieval are executed simultaneously, it is unnecessary
to wait for lock-release if another user is updating or adding rows that do not satisfy
the condition. Consequently, the incidence of deadlocks and of lock-release timeouts
is reduced.
Figure 3-11 shows the processing flows of an ordinary retrieval and of a retrieval using
unlocked conditional search.

3. UAP Design

164

Figure 3-11: Processing flows of an ordinary retrieval and of a retrieval using an
unlocked conditional search

An unlocked conditional search is used by specifying YES in the PDLOCKSKIP operand
in the client environment definition.
An unlocked conditional search is effective under the following conditions:

• When the number of items that satisfy the condition is small compared to the
number of items to which the conditional search is to be applied.
When a condition is selected for retrieval after the search range has been
narrowed to some extent by means of an index key, only those items that satisfy
the condition are locked. Consequently, if the number of items that satisfy the
condition is small compared to the number of items within the range of the search,

3. UAP Design

165

the number of lock processes is reduced (by
number-of-items-that-satisfy-condition/number-of-items-in-search-range)
compared to an ordinary retrieval.

• When retrieval does not use an index
In the case of an ordinary retrieval that does not use an index, all rows are locked
temporarily.
If unlocked conditional search is used for a retrieval that does not use an index,
only those items that satisfy the condition are locked, and therefore the number of
lock processes is reduced (by number-of-items-that-satisfy-condition/
total-number-of-rows-in-target-table).

• When retrieval is executed simultaneously with an updating process that does not
satisfy the condition.
Even if updating has already been performed within the retrieval range by another
updating transaction, no lock-release waiting occurs if the updated results do not
satisfy the condition.
Unlocked conditional search is not applied in the following cases even if it is
specified:

• Retrieval that does not apply a lock (such as WITHOUT LOCK NOWAIT)
• Retrieval that uses the direct product of two tables or a quantified predicate as

the retrieval condition
• Retrieval that uses an index when non-locking of index keys is applied

Because unlocked conditional search performs a conditional search without locking
items, if it is executed simultaneously with an updating transaction, the result may not
be the same as would have been the case with an ordinary retrieval.

3.4.6 Non-locking of index key values
Non-locking of index key values is when index key values are not locked. In this case,
only the table data is locked.
When non-locking of index key values is applied, index key values cannot be locked
during retrieval processing that uses an index. Also, in table update processing (row
insertion, row deletion, or column value updating), index key values for the index
defined in the update-target column cannot be locked.

(1) Application criteria
Non-locking of index key values should normally be applied.
However, the uniqueness constraint assurance operations, remaining entries for unique
indexes, and the system log size that is output during table data update must be
considered when deciding whether to apply non-locking of index key values. For

3. UAP Design

166

details about the uniqueness constraint assurance operations and remaining entries for
unique indexes, see (4)(b) Remaining entries for unique indexes. For details about the
system log size that is output during table data update, see the HiRDB Version 8
Installation and Design Guide.

(2) Specifying non-locking of index key values
To apply non-locking of index key values, specify NONE in the system definition for
the pd_indexlock_mode operand. For details about the pd_indexlock_mode
operand, see the HiRDB Version 8 System Definition manual.
If the value specified for the pd_inner_replica_control operand in the system
definition is greater than 1, NONE is assumed for the system definition's
pd_indexlock_mode operand regardless of the actual specification of the
pd_indexlock_mode operand.

(3) Example of deadlock avoidance
Deadlocks like the one shown in Figure 3-8 can be avoided by applying non-locking
of index key values. Figure 3-12 shows an example of deadlock avoidance by applying
non-locking of index key values.

3. UAP Design

167

Figure 3-12: Example of deadlock avoidance by applying non-locking of index
key values

(4) Notes
(a) Uniqueness constraint assurance operations for unique indexes

When non-locking of index key values is applied, the uniqueness constraint assurance
operations in row addition and update are different from the operations for the index
key value method (a method that does not use non-locking of index key values) in
tables for which the uniqueness constraint is specified. These operational differences
must be considered when non-locking of index key values is applied.
Uniqueness constraint assurance processing checks whether the data for keys to be
added by using an index (unique index) is already in the table. This processing also
guarantees the uniqueness of added keys.
In uniqueness constraint assurance processing, if index key entries that have the same
key are found, a uniqueness error occurs immediately. Even if the other transaction
operating that index key has the uncomplete status for transaction determination and

3. UAP Design

168

rollback is possible, the HiRDB system indicates a uniqueness error immediately,
without executing a lock check.
To continue processing instead of waiting during insertion or update processing of
table data for which the uniqueness constraint was specified, apply non-locking of
index key values. Also apply non-locking of index key values to give priority to
attempting insertion or update processing even if waiting is involved.

(b) Remaining entries for unique indexes
Lock-release wait or deadlock may occur in a unique index when non-locking of index
key values is applied.
When non-locking of index key values is applied to a unique index, the index key
before DELETE or UPDATE statement execution is kept instead of being deleted so that
the uniqueness constraint is assured. This remaining index key is called a remaining
entry. Although this remaining entry is deleted at the appropriate timing after
transaction determination, if an INSERT or UPDATE statement is executed for the same
key as the remaining entry, an unexpectedly long wait period or deadlock may occur,
depending on when the statement is executed.
To prevent these conditions, create UAPs so that they do not update columns that have
the uniqueness constraint.

(c) Deadlocks that cannot be avoided even when non-locking of index key
values is applied
Depending on the access sequence of the UAP, a deadlock may occur between index
keys. To prevent this condition, create UAPs so that they do not update columns that
have the uniqueness constraint.

3.4.7 Lock and suppression implementable with a UAP
Although locking is controlled automatically by the HiRDB system, using the UAP to
change the unit of locking sometimes reduces the locking overhead, resulting in better
processing efficiency. Consider the items listed below when you design UAP:

(1) Search
1. If retrieval results will be referenced only once and the data need not be locked

until COMMIT occurs, specify WITHOUT LOCK in the SELECT statement.
When WITHOUT LOCK is specified, lock is released without waiting for
transaction termination, thus resulting in better concurrent execution capability of
transactions.
Even if WITHOUT LOCK NOWAIT is specified, a table undergoing data processing
by the database load utility (except when nowait=yes is specified in the option
statement) or the database reorganization utility (except when -k unld is
specified) cannot be searched.

3. UAP Design

169

2. In cases other than the one above, lock the target table in the PR mode with the
LOCK statement with SHARE specified.
When a table is locked in advance with the LOCK statement, the overhead is
reduced significantly because locking on a row or table basis does not occur. A
lock buffer shortage can also be prevented.

3. When you search a shared table, we recommend that you specify WITHOUT LOCK
or WITH ROLLBACK.

(2) Update
1. Before updating, lock the target table in the EX mode with the LOCK statement

with EXCLUSIVE specified.
When a table is locked in advance with the LOCK statement, the overhead is
reduced significantly because locking on a row basis does not occur. A lock buffer
shortage can also be prevented.

2. When updating a shared table (including addition and deletion) where the key
value of an index is changed, or when updating a large section of a shared table,
always lock the shared table with an EXCLUSIVE-specified LOCK statement. Note
that when a shared table is locked with an EXCLUSIVE-specified LOCK statement,
the RDAREA for indexes (shared RDAREA), which stores indexes defined for
the shared table, is also locked.

(3) Deletion
1. When dropping a table or an index or when deleting all rows, lock in the EX mode

all segments being used for the target table.
If many segments are being used for the table, all of those segments must be
locked in the EX mode. To do this, have the transaction occupy all of the segments
until the COMMIT statement is executed. Note that in this case, a large table for
managing locked resources is required in the lock buffer. Care must be taken
especially when one of the following statements is used to delete a table, its
schema, its indexes, or all its rows:

• DROP TABLE statement
• DROP SCHEMA statement
• DROP INDEX statement
• PURGE TABLE statement

2. To delete a schema that applies to multiple tables, the individual tables should be
deleted before the schema is deleted.
This method uses less memory.

3. UAP Design

170

(4) Notes
1. When you lock a table with a LOCK statement, avoid simultaneous execution of

other online transactions because those transactions remain in the wait status for
a long time. However, no wait is involved for NOWAIT searches of unshared
tables.

2. When a NOWAIT search is performed on a shared table, the shared table cannot be
accessed if another user has executed an EXCLUSIVE-specified LOCK statement
on that table.

3.4.8 Lock sequence based on SQL statement and index types
(1) Lock sequence of data manipulation SQL statements for index key values and
data page rows

(a) INSERT statement

3. UAP Design

171

(b) DELETE statement that does not use a cursor or UPDATE statement to
search for data matching a condition

3. UAP Design

172

(c) DELETE statement that uses a cursor

(d) UPDATE statement that uses a cursor

3. UAP Design

173

(e) SELECT or FETCH statement

3. UAP Design

174

3. UAP Design

175

3. UAP Design

176

(2) Lock sequence of data manipulation SQL statements when non-locking of
index key values is used

(a) INSERT statement

3. UAP Design

177

(b) DELETE statement that does not use a cursor or UPDATE statement to
search for data matching a condition

3. UAP Design

178

(c) DELETE statement that uses a cursor

(d) UPDATE statement that uses a cursor

3. UAP Design

179

(e) SELECT or FETCH statement

3. UAP Design

180

3. UAP Design

181

3.4.9 Creating locked resources for index key values
If a key value for an index exceeds 10 bytes, the system creates a different locked
resource for the index key value, according to the value that was specified for the
pd_key_resource_type operand in the system definitions. For details about the
pd_key_resource_type operand of the system definitions, see the HiRDB Version
8 System Definition manual.
Figure 3-13 shows how a key value locked resource is created when TYPE1 is specified
in the pd_key_resource_type operand. Figure 3-14 shows how a key value locked
resource is created when TYPE2 is specified.

Figure 3-13: Creation of a key value locked resource when
pd_key_resource_type=TYPE1 is used

If the key value length exceeds 10 bytes, the system removes the first two bytes and
the last byte of the key value, extracts the remaining data in 7-byte units, and applies
exclusive-OR while bit-shifting the units. The bit shift operation logically shifts
each unit by the remainder after the extraction count is divided by eight and applies
exclusive-OR for 8-byte data to the units.
The system stores the exclusive-OR result (intermediate result) to an 8-byte area and
applies exclusive-OR to the first (X) and last (Y) bytes of the intermediate result to

3. UAP Design

182

create a 7-byte data value (result).
The system combines the 7-byte data (result) with the first two bytes and the last byte
that were removed initially and sets the resulting 10-byte data value as the locked
resource of the index key value.

Figure 3-14: Creation of a key value locked resource when
pd_key_source_type=TYPE2 is used

If the key value length exceeds 10 bytes, the system removes the first two bytes and
the last byte of the key value, extracts the remaining data in 7-byte units, and applies
exclusive-OR. The system combines the exclusive-OR result with the first two
bytes and the last byte that were removed initially, and sets the resulting 10-byte data
value as the locked resource of the index key value.

3. UAP Design

183

3.5 Use of a cursor

You can use a cursor in a UAP to extract retrieval results.
To use a cursor, declare the cursor with DECLARE CURSOR or allocate the cursor with
ALLOCATE CURSOR.
This section explains the effects of using a cursor and issues to consider when using a
cursor.

3.5.1 Notes on table operations when a cursor is used
(1) How operations that do not use a cursor relate to cursor updatability and
whether an operation that uses a cursor is performed

Once you declare or allocate a cursor and open it with an OPEN statement, you can
extract data and perform other operations such as referencing and updating. However,
after the cursor is opened, whether or not operations that do not use a cursor can be
performed depends on the specification of the FOR READ ONLY or FOR UPDATE clause
and whether or not an operation that uses a cursor (updating or deletion) is performed.
The FOR READ ONLY and FOR UPDATE clauses are specified in the cursor declaration
and in the SELECT statement identified by either the SQL statement identifier specified
in the cursor declaration or the extended statement name specified in the cursor
allocation.
Table 3-23 shows the relationships between cursor updatability and operations that do
not use a cursor. When the SQL optimization option for suppressing creation of
update-SQL work tables is specified, the restrictions on operations that do not use a
cursor are relaxed.

Table 3-23: Relationships between cursor updatability and operations that do
not use a cursor

Condition Operation that does not use a cursor

Specification of
cursor updatability

Process
that uses a

cursor

SQL optimization option
for suppressing creation of

update-SQL work tables
not applied

SQL optimization option for
suppressing creation of
update-SQL work tables

applied and index key value
no-lock facility used

UD Del Ret UD Del Add Ret UD Del Add

Static
SQL

FOR READ
ONLY
clause
specified

NP NP Y Y Y Y Y Y Y Y

3. UAP Design

184

FOR
UPDATE
OF column
name
specified

NP NP Y CU N N Y Y2 Y2 Y2

NP P Y Y Y Y Y Y Y Y

P NP Y CU N N Y Y2 Y2 Y2

P P Y Y Y Y Y Y Y Y

FOR
UPDATE
clause
specified

NP NP Y Y Y Y Y Y Y Y

NP P Y Y Y Y Y Y Y Y

P NP Y Y Y Y Y Y Y Y

P P Y Y Y Y Y Y Y Y

None of
the above1

NP NP Y N N N Y Y2 Y2 Y2

NP P Y Y Y Y Y Y Y Y

P NP Y Y Y Y Y Y Y Y

P P Y Y Y Y Y Y Y Y

Dynamic
SQL

FOR READ
ONLY
clause
specified

NP NP Y Y Y Y Y Y Y Y

FOR
UPDATE
OF column
name
specified

NP NP Y CU N N Y Y2 Y2 Y2

NP P Y Y Y Y Y Y Y Y

P NP Y CU N N Y Y2 Y2 Y2

P P Y Y Y Y Y Y Y Y

Condition Operation that does not use a cursor

Specification of
cursor updatability

Process
that uses a

cursor

SQL optimization option
for suppressing creation of

update-SQL work tables
not applied

SQL optimization option for
suppressing creation of
update-SQL work tables

applied and index key value
no-lock facility used

UD Del Ret UD Del Add Ret UD Del Add

3. UAP Design

185

The abbreviations in the column headers denote the following:
UD: Updating
Del: Deletion
Ret: Retrieval
Add: Addition

Legend:
P: Performed
NP: Not performed
Y: Can be performed.
CU: Specified column can be updated.
N: Cannot be performed.

1 Specification of the FOR UPDATE clause is assumed when the same post source
contains an update or deletion in which the CURRENT OF cursor name is specified.
2 If the index being used in the retrieval that uses the cursor is updated, the retrieval
results that were obtained with the cursor are not guaranteed. An example of this case
and countermeasures are shown as follows.

FOR
UPDATE
clause
specified

NP NP Y Y Y Y Y Y Y Y

NP P Y Y Y Y Y Y Y Y

P NP Y Y Y Y Y Y Y Y

P P Y Y Y Y Y Y Y Y

None of
the above

NP NP Y N N N Y Y2 Y2 Y2

NP P Y Y Y Y Y Y Y Y

P NP Y Y Y Y Y Y Y Y

P P Y Y Y Y Y Y Y Y

Condition Operation that does not use a cursor

Specification of
cursor updatability

Process
that uses a

cursor

SQL optimization option
for suppressing creation of

update-SQL work tables
not applied

SQL optimization option for
suppressing creation of
update-SQL work tables

applied and index key value
no-lock facility used

UD Del Ret UD Del Add Ret UD Del Add

3. UAP Design

186

Example:

CREATE INDEX X1 ON T1(C1);
DECLARE CR1 CURSOR FOR SELECT C1 FROM T1 WHERE C1>0;

The cursor that was declared is used to execute the following FETCH and
UPDATE statements repeatedly:

FETCH CR1 INTO :XX;
UPDATE T1 SET C1=10;

The line that was updated to C1=10 is retrieved again.
Countermeasure:

Implement one of the following countermeasures:
• Change the search conditions so that the update value in the UPDATE

statement does not satisfy the search condition.
Example: WHERE C1>0 AND C1 <>10

• Delete the problem-causing column from the configuration columns of
the index used in the retrieval. However, note that when a configuration
column of the index is deleted, the performance may drop if the column
was one that significantly narrowed the search described by the search
conditions. Also note that deleting a configuration column of the index
increases the number of index key duplications and may increase the
incidence of lock-release waiting and deadlock. Therefore, check the
potential effects of this countermeasure thoroughly before applying it.

(2) Using multiple cursors simultaneously
To use multiple cursors for updating the same table simultaneously, you must specify
all columns to be updated in the FOR UPDATE clause of the individual cursor
declarations or dynamic SELECT statements. For example, to use cursor 1 to update
column 1 and cursor 2 to update column 2, specify both column 1 and column 2 in the
FOR UPDATE clause when you declare cursor 1 and cursor 2. If only column 1 is
specified for cursor 1 or only column 2 is specified for cursor 2, an error occurs during
updating.

3.5.2 FOR UPDATE and FOR READ ONLY clauses
To use a cursor to perform row updating, deletion, or insertion on a table being
retrieved, you must define the cursor with DECLARE CURSOR or ALLOCATE CURSOR.
When you define the cursor, specify the FOR UPDATE (including FOR UPDATE OF)
and FOR READ ONLY clauses according to the processing contents of the UAP.

3. UAP Design

187

A good way to update or delete a row that uses a cursor without updating nearly all of
the retrieved rows is to specify WITH SHARE LOCK as the lock option. If a lock option
is not specified, WITH EXCLUSIVE LOCK is assumed.
Care must be taken, because specifying the FOR UPDATE (or FOR UPDATE OF) clause
or the FOR READ ONLY clause may result in a significant drop in processing efficiency
in some cases.
Table 3-24 lists the issues to be considered when specifying the FOR UPDATE (or FOR
UPDATE OF) clause and the FOR READ ONLY clause.

Table 3-24: Specifying FOR UPDATE and FOR READ ONLY clauses

Even if the FOR UPDATE or FOR READ ONLY clause is not specified, a work table may
be created internally during the first FETCH, so overhead creation must still be taken
into account.
No internal work table is created when only retrieval is to be performed; in this case,
do not consider overhead.

3.5.3 Cursor declarations and locks
When FETCH is executed, the lock mode that has priority is the lock option specified
in the cursor declaration. If the cursor declaration does not specify a lock option, the
lock mode is determined by the data guarantee level (if a data guarantee level is not
specified, the default is 2). The data guarantee level is specified with PDISLLVL in the
client environment definitions or with ISOLATION LEVEL in the SQL compile options
specified in the procedure or trigger definitions. When the data guarantee level is used,

Application Consideration

FOR UPDATE
clause

Specified for a table being retrieved using a
cursor when the rows for which the cursor is
used will be updated or deleted, followed by
updating, deletion, or addition of rows for
which the cursor is not used.

To guarantee correct operation even when
the target index is updated during retrieval
of a row for which the cursor is used, a work
table is created internally during the first
FETCH; creation of this work table involves
overhead during retrieval.

FOR UPDATE OF
clause

Specified for a table being retrieved using a
cursor when only some of the columns will be
updated.

When the index assigned to a column
specified by its column name is used for
retrieval, a work table is created internally
during the first FETCH; creation of this work
table involves overhead during retrieval.

FOR READ ONLY
clause

Specified when another cursor will be used for
updating (or deletion or insertion) during
retrieval using a cursor or for updating (or
deletion) by directly specifying a search
condition.

When another cursor will be used for
updating during retrieval using a cursor, a
work table is created internally during the
first FETCH so that there will be no impact
on the processing result; creation of this
work table involves overhead during
retrieval.

3. UAP Design

188

the lock mode is also affected by whether updating (or deletion) using a cursor is
specified and whether WITH EXCLUSIVE LOCK is assumed during FOR UPDATE
processing.
The specification for assuming WITH EXCLUSIVE LOCK during FOR UPDATE
processing requires specifying PDFORUPDATEEXLOCK in the client environment
definitions and the data guarantee level (specification of FOR UPDATE EXCLUSIVE)
in the SQL compile options specified in the procedure or trigger definitions.
Table 3-25 shows the relationships between the lock option specified during cursor
declaration or dynamic SELECT statement preprocessing and the lock option specified
during table operations.

Table 3-25: Relationships between the lock option specified during cursor
declaration or dynamic SELECT statement preprocessing and the lock option
specified during table operations

Lock option in SQL
statement

WITH
EXCLUSIVE

LOCK
assumed

during FOR
UPDATE

processing

Data
guarantee

level

Update
permission

using
cursor1

Lock option during
table manipulation
and assumed value

in FOR UPDATE
clause

Specified WITH EXCLUSIVE
LOCK

2 2 No WITH EXCLUSIVE
LOCK

Yes WITH EXCLUSIVE
LOCK FOR UPDATE

WITH SHARE
LOCK

No WITH SHARE LOCK

Yes WITH SHARE LOCK
FOR UPDATE

WITHOUT LOCK
WAIT

No WITHOUT LOCK WAIT

Yes WITHOUT LOCK WAIT
FOR UPDATE

WITHOUT LOCK
NOWAIT

No WITHOUT LOCK
NOWAIT

Yes Error

3. UAP Design

189

Legend:
: Does not apply.

Notes
Depending on which lock option is specified, the following conditions may occur
during execution:

• When WITH SHARE LOCK is specified
Because rows in the table will be changed from the protected retrieve mode
to the exclusive mode during updating, deadlock may occur.

Not specified Yes 2 No WITH SHARE LOCK

Yes WITH EXCLUSIVE
LOCK FOR UPDATE

1 No WITHOUT LOCK WAIT

Yes WITHOUT LOCK WAIT
FOR UPDATE

0 No WITHOUT LOCK
NOWAIT

Yes WITHOUT LOCK WAIT
FOR UPDATE

No 2 No WITH SHARE LOCK

Yes WITH EXCLUSIVE
LOCK FOR UPDATE

1 No WITHOUT LOCK WAIT

Yes WITHOUT LOCK WAIT
FOR UPDATE

0 No WITHOUT LOCK
NOWAIT

Yes WITHOUT LOCK WAIT
FOR UPDATE

Lock option in SQL
statement

WITH
EXCLUSIVE

LOCK
assumed

during FOR
UPDATE

processing

Data
guarantee

level

Update
permission

using
cursor1

Lock option during
table manipulation
and assumed value

in FOR UPDATE
clause

3. UAP Design

190

• When WITHOUT LOCK WAIT is specified
Incorrect updating (double updating) or a deletion error may occur
depending on other transactions.

• When WITHOUT LOCK NOWAIT is specified
If an SQL statement updates a table retrieved with WITHOUT LOCK NOWAIT
specified, an error will occur.

1 Update using a cursor is permitted in the following cases:
• The FOR UPDATE clause is specified.
• The FOR UPDATE clause is not specified, but there is an UPDATE or DELETE

statement that specifies the same cursor (the cursor specified in the cursor
declaration).

Update using a cursor is not permitted in the following case:
• The FOR UPDATE clause is not specified, and there is also no UPDATE or

DELETE statement that specifies the same cursor (the cursor specified in the
cursor declaration).

2 The lock option in the SQL statement has priority regardless of the specified
contents.
Because HiRDB fetches all rows targeted for retrieval during the first FETCH statement
when a cursor is used, a lock buffer shortage may occur. This problem is caused by an
increase in the overhead associated with creation of the internal table. Therefore,
before a cursor is used, the target rows should be narrowed using a search condition.
If the target rows cannot be narrowed, consider other measures to suppress locking,
such as changing the unit of locking. For details about lock suppression, see 3.4.7 Lock
and suppression implementable with a UAP.

3.5.4 Holdable cursor
(1) Overview

A holdable cursor does not close, even when a COMMIT statement is executed.
To use a holdable cursor, declare the cursor by specifying UNTIL DISCONNECT or
WITH HOLD in the DECLARE CURSOR statement. However, before the cursor is
opened, a LOCK statement with UNTIL DISCONNECT specified must be issued to lock
the table. When these statements are specified, the cursor remains open until execution
of a CLOSE, DISCONNECT, or ROLLBACK statement (including ROLLBACK and
DISCONNECT processing that is executed implicitly if an error occurs).

(2) Advantages of using a holdable cursor
Using a holdable cursor can reduce the incidence of locked resources, because a

3. UAP Design

191

COMMIT statement can be executed while retrieving or updating a large amount of data.
Moreover, because a COMMIT statement can be executed while keeping the cursor
open, a synchronization point can be activated even when a large amount of data is
being retrieved or updated (i.e., when a transaction executes for an extended period of
time), thus reducing the restart time.

(3) Processing using a holdable cursor
When a holdable cursor is used, deletion of the work table file and freeing of the work
buffer for the work table take place during commit processing after the holdable cursor
for which the work table file was created is closed.
When a holdable cursor is opened, each back-end server process becomes occupied
even if there are no transactions. Therefore, the maximum number of server processes
must be estimated carefully when a holdable cursor is to be used.
The locked resources that are inherited beyond a transaction differ depending on
whether a LOCK statement with UNTIL DISCONNECT specified is executed and
whether a search in which a work table is created or a parallel scan is executed. The
locked resources that are inherited are shown below.

3. UAP Design

192

Explanation:
The numbers in the figure are explained below.

When a UAP executing in an OLTP environment is using a holdable cursor, use must

No. Execution of LOCK
statement with UNTIL

DISCONNECT
specified

Search in which
work table is

created or parallel
scan

Inherited locked resources

1 Executed Not applicable Only the resource of the LOCK statement

2 Not executed Executed All resources

3 Not executed Only the resource at the cursor position

3. UAP Design

193

be specified in the pd_oltp_holdcr operand of the HiRDB system definition.
For a UAP executing in an OLTP environment to use a holdable cursor, the following
conditions must be satisfied:

• The UAP must use an X/Open-compliant API to access HiRDB.
• The service function of the UAP using the holdable cursor must perform cursor

postprocessing sometime after the holdable cursor is opened but before the
service function returns control.*

* The cursor postprocessing procedure is described below:
1. Close the cursor.
2. Execute the ROLLBACK statement.
3. Execute the DISCONNECT statement.

4. Terminate the UAP process.
The SQL execution sequence from the UAP service function is shown below. Note the
sequential relationships between the start transaction API, OPEN cursor, CLOSE cursor,
and COMMIT API steps in the figure.

3. UAP Design

194

Explanation:
1. Duration that the cursor is held
2. Duration of the transaction

3.5.5 Examples of cursor use
This section shows examples in which a cursor is used.

(1) Example of updating a table while retrieving rows with a cursor
This example discounts the price (PRICE) values by 10% while using a cursor (CR1)
to retrieve all rows from a stock table (STOCK).
 :
EXEC SQL BEGIN DECLARE SECTION;
 char xpcode[5] ; ..1
 char xpname[17];

3. UAP Design

195

..1
 char xcolor[3];
..1
 int xprice; ..1
 int xsquantity; ...1
EXEC SQL END DECLARE SECTION;
 :
EXEC SQL DECLARE CR1 CURSOR FOR
 SELECT * FROM STOCK
 FOR UPDATE OF PRICE;2
EXEC SQL OPEN CR1;3
EXEC SQL FETCH CR1
INTO:xpcode,:xpname,:xcolor,:xprice,:xsquantity;.......4
EXEC SQL UPDATE STOCK
 SET PRICE=0.9*:xprice
 WHERE CURRENT OF CR1;5
EXEC SQL CLOSE CR1;6
 :

Explanation:
1. Declares an embedded function to be used in retrieval, update, and insertion.
2. Declares cursor CR1. FOR UPDATE OF column-name is specified in this

statement because cursor CR1 will be used to update only the PRICE column.
3. Opens cursor CR1.
4. Fetches the value from the PRICE column of the row indicated by cursor CR1

and places the value in embedded variable (:xprice).
5. Discounts the PRICE value by 10% (0.9*:xprice).

6. Closes cursor CR1.
(2) Example of updating while retrieving rows with a cursor and then inserting
rows

This example updates a stock table (STOCK) while using a cursor (CR1) to retrieve all
rows from the table. The example then inserts a row without using the cursor (CR1).
 :
EXEC SQL BEGIN DECLARE SECTION;
 char xpcode[5];1
 char xpname[17] ;1
 char xcolor[3] ;1
 int xprice ; ..1
 int xsquantity ;1
EXEC SQL END DECLARE SECTION;
 :

3. UAP Design

196

EXEC SQL DECLARE CR1 CURSOR FOR
 SELECT * FROM STOCK
 FOR UPDATE; 2
EXEC SQL OPEN CR1; 3
EXEC SQL FETCH CR1
 INTO:xpcode,:xpname,:xcolor,:xprice,:xsquantity;4
EXEC SQL UPDATE STOCK
 SET QUANTITY=:xsquantity+100
 WHERE CURRENT OF CR1;5
EXEC SQL INSERT INTO STOCK
VALUES(:xpcode,:xpname,:xcolor,:xprice,:xsquantity); ...6
EXEC SQL CLOSE CR1;7
 :

Explanation:
1. Declares an embedded function to be used in retrieval.
2. Declares cursor CR1. Cursor CR1 is used to update the table, and the FOR

UPDATE clause, is specified for row insertion without using cursor CR1.
3. Opens cursor CR1.
4. Fetches the values from the row indicated by cursor CR1 and places the

values in the embedded variables.
5. Adds 100 to the QUANTITY value.
6. Inserts a row into the STOCK table without using cursor CR1.
7. Closes cursor CR1.

(3) Example of using a holdable cursor
This example modifies the price (PRICE) values to 50% of the original values while
using a cursor (CR1) to retrieve all rows from a stock table (STOCK). The cursor (CR1)
is left open and is used for another manipulation.
 :
EXEC SQL BEGIN DECLARE SECTION:
 char xpcode[5] ;1
 char xpname[17] ;1
 char xcolor[3] ;1
 int xprice ; 1
 int xsquantity ;1
END DECLARE SECTION ;
 :
EXEC SQL LOCK TABLE STOCK
 IN EXCLUSIVE MODE UNTIL DISCONNECT;2
 :
EXEC SQL DECLARE CR1 CURSOR WITH HOLD FOR

3. UAP Design

197

 SELECT * FROM STOCK
 FOR UPDATE OF PRICE3
EXEC SQL OPEN CR1;4
EXEC SQL FETCH CR1
 INTO :xpcode,:xpname,:xcolor,:xprice,:xsquantity;5
EXEC SQL UPDATE STOCK SET PRICE=0.5*:xprice
 WHERE CURRENT OF CR1;6
Decision for executing next COMMIT statement in
1000-row units 7
EXEC SQL COMMIT; 8
Execution of the next CLOSE statement after all rows
have been updated 9
EXEC SQL CLOSE CR1;10
 :

Explanation:
1. Declares an embedded variable (for example, :xprice) to be used in

retrieval and update.
2. Locks the STOCK table with a LOCK statement in which UNTIL DISCONNECT

is specified, so that a holdable cursor can be used. This statement also
specifies a lock mode (IN EXCLUSIVE MODE) because the cursor is used for
updating the table.

3. Declares cursor CR1. The cursor declaration specifies WITH HOLD because
the cursor is a holdable cursor. The PRICE column is specified in the FOR
UPDATE OF clause because PRICE is the only column to be updated.

4. Opens cursor CR1.
5. Fetches the value from the PRICE column in the row indicated by cursor

CR1 and places it in embedded variable (:xprice).
6. Modifies the PRICE value to 50% of the original value (0.5*:xprice).
7. Specifies the decision for executing the next COMMIT statement for each

1,000 rows to be updated or for continuing the update process if the COMMIT
statement is not to be executed.

8. Commits the update process.
9. Specifies the decision for executing the next CLOSE statement if there are no

rows to be updated or continuing the update process if there are still rows to
be updated.

10. Closes cursor CR1.

3. UAP Design

198

3.6 SQL error identification and corrective measures

When a UAP is used to execute an SQL statement, it is important to ascertain whether
or not the SQL statement executed correctly.
This section explains how to determine whether or not an SQL statement executed
correctly and the measures to be taken when an error is detected.

3.6.1 Error identification
(1) Return codes

HiRDB sets up return codes (SQLCODE and SQLSTATE) when SQL statements execute.
However, HiRDB does not set return codes for declaration statements, such as
DECLARE CURSOR. The following variables can be used to reference the return
codes:

• SQLCODE
• SQLSTATE

An SQL statement's execution status can be determined by referencing the SQLCODE
and SQLSTATE variables.
Table 3-26 shows the SQL statement execution status indicated by the values set in the
variables.

Table 3-26: Values set in variables and SQL statement execution status

SQL statement execution
status

SQLCODE
variable value

SQLWARN0
value

SQLWARN6
value

SQLSTATE
variable value

Normal
termination

Without
warning

0 ' ' '00000'

With warning4 0 'W' '01nnn'1

(nnn R00)

>0 (100, 110) 'R01R00'

Without data3 110 'R2000'

No data 100 '02000'

Termination
with error

Without
implicit
rollback

<0 ' ' 'mmnnn'2

With implicit
rollback

<0 'W' 'W' '40nnn'1

3. UAP Design

199

mm: Class
nnn: Subclass

: No value is set.
1 000 if nnn is not set.
2 R0000 if mm or nnn is not set.
3 This status occurs when a search using a list is executed and a row that was present
when the list was created is not returned.
4 The warning information is set in the SQLWARN1 to SQLWARNF areas or is indicated
by the SQLCODE value (positive number other than 100). When warning information
is set in the SQLWARN1 to SQLWARNF areas, W is set in SQLWARN0. Therefore, when
SQLWARN0 contains W, the SQLWARN1 to SQLWARNF areas should also be checked.
For details about the contents of the SQLWARN0 to SQLWARNF areas, see A. SQL
Communications Area.
If warning information is indicated with an SQLCODE value (positive number other
than 100), the SQLSTATE subclass (nnn) becomes R00. Table 3-27 shows the
relationships among the SQLSTATE, SQLCODE, and SQLWARN0 values if normal
termination with warning occurs.

Table 3-27: Relationship among SQLSTATE, SQLCODE, and SQLWARN0
values when normal termination with a warning occurs

(a) SQLCODE=100 or SQLSTATE='02000'
The UAP determines that there are no more rows to be retrieved.
This setting is useful for determining the following:

• There are no more rows to be fetched with the FETCH statement.
• No row was selected with the 1-row SELECT statement.
• There were no rows to be updated with the INSERT, DELETE, or UPDATE

statement.
(b) SQLCODE<0 or SQLSTATE='mmnnn '(mm is not '00', '01', or '02', or mm

is not '00', '01', '02', or 'R2' when a search using a list is executed)
The UAP determines that an SQL error occurred.

SQLSTATE value SQLCODE value SQLWARN0 value

01nnn (nnn R00) 0 'W'

01R00 Positive number other than 100 Blank or 'W'

3. UAP Design

200

If an SQL error occurred, implicit rollback may also have occurred. If SQLWARN6='W'
or SQLSTATE='40nnn', the UAP determines that implicit rollback occurred.
To identify the SQL statement that caused the error, check the SQL trace information.
For details about the SQL trace information, see 10.1.1 SQL tracing.

(c) Values other than (a) or (b)
The UAP determines that the SQL statements terminated normally. Normal
termination may come with warning information. If SQLWARN0='W', SQLCODE is a
positive value other than 100, or SQLSTATE='01nnn', the UAP determines that normal
termination with warning occurred.
When a search using a list is executed, normal termination without any data (a row that
was present when the list was created has been deleted) may occur. If SQLCODE is 110
or SQLSTATE is 'R2000', the UAP must determine that normal termination without any
data occurred and skip the processing for selection rows.
For details about normal termination with warning, see Table 3-27.

(2) Corrective measures for detected errors
When you detect an error, use the following procedure:
1. Output or display the return codes.
2. If the cause of the error cannot be determined on the basis of the return code alone,

specify display or output of additional return code information. It is also possible
to display either the SQL statement at which the error occurred or information that
can be used to identify the affected SQL statement.
Table 3-28 shows the additional return code information and the items that are
referred to by the information.
Table 3-28: Additional return code information and items referred to by the
information

* If the FETCH statement is re-executed after an error has occurred, HiRDB returns the
return code for the previous error; however, variable parts of such an error message
may not be applicable.
1. Cancel the transaction (ROLLBACK or abort the UAP). If a UAP transaction is

Additional information Referenced item

Message concerning SQLCODE* SQLERRML field in SQL Communications Areas and
contents of SQLERRMC field

When a distributed system is used, information that
identifies the source of the error in terms of the local RD
node vs. other nodes

Contents of SQLCAIDE field of SQL
Communications Areas

3. UAP Design

201

rolled back implicitly by deadlock, the following processing is executed:
Normal UAP:

If a transaction is rolled back implicitly, the next SQL statement that is
executed becomes the start of a new transaction (the ROLLBACK or
DISCONNECT statement can also be executed).

UAP executing in an OLTP environment:
If a transaction is rolled back implicitly, HiRDB cannot accept any
statements except DISCONNECT or ROLLBACK from the UAP executing in
the OLTP environment.

If an X/Open-compliant UAP is operated as a client in the OLTP environment and
a deadlock occurs while the UAP is being executed, the affected transaction must
be terminated.

2. Terminate the UAP or start a transaction (new execution of a different transaction
or re-execution of the same transaction).
Before re-executing the same transaction, you must take error correction
measures. If the transaction is re-executed before the cause of the error has been
eliminated, the system may enter an endless loop. If the same error occurs after
re-execution, you may have to terminate the UAP.

3.6.2 Automatic error identification
When WHENEVER statements are used, errors can be detected automatically.
WHENEVER statements can identify the following conditions:

• Error occurrence
• No more rows to be retrieved
• Whether or not warning information is present in normal termination

For details about the WHENEVER statement, see the HiRDB Version 8 SQL Reference
manual.

(a) Identification of an error occurrence (SQLCODE<0)
Determined by using the WHENEVER statement where SQLERROR is specified. When an
error occurs, the system shifts to the specified measure. If an error referencing
operation is specified, the return codes and related information can be referenced.

(b) No more rows to be retrieved (SQLCODE=100)
Determined by using the WHENEVER statement where NOT FOUND is specified. By
specifying the process to be taken when there are no more lines to be searched, the
system shifts to the specified measure.

3. UAP Design

202

(c) Whether or not warning information is present in normal termination
(SQLWARN0='W', or SQLCODE>0 but SQLCODE 100)
Determined by using the WHENEVER statement where SQLWARNING is specified. When
a measure to be taken when warning information is present in normal termination is
specified, the system shifts to the specified measure only when warning information is
present.
When a search using a list is executed, normal termination without any data (a row that
was present when the list was created has been deleted) may occur. If SQLCODE is 110
or SQLSTATE is R2000, the UAP must determine that normal termination without any
data occurred and skip the processing for selection rows.

203

Chapter

4. UAP Design for Improving
Performance and Handling

This chapter describes issues that UAP designers should consider to improve UAP
performance and usability.
This chapter contains the following sections:

4.1 Using indexes
4.2 Manipulation of tables with the FIX attribute
4.3 Stored procedures and stored functions
4.4 Triggers
4.5 SQL optimization
4.6 Data guarantee levels
4.7 Block transfer facility
4.8 Facilities using arrays
4.9 Rapid grouping facility
4.10 Multi-connection facility
4.11 Using tables for managing numbers
4.12 Narrowed search
4.13 File output facility for BLOB data
4.14 Addition update and partial extraction facility for BLOB and BINARY data
4.15 Retrieve first n records facility
4.16 Automatic reconnect facility
4.17 Locator facility
4.18 Facility for returning the total number of hits

4. UAP Design for Improving Performance and Handling

204

4.1 Using indexes

An index is a key created on the basis of values in a specified column in a table to
improve processing speed during data retrieval. Using indexes can reduce the number
of I/O operations during retrievals.
This section explains the implications on UAP design of using indexes. For details
about index definition, see the HiRDB Version 8 Installation and Design Guide.

4.1.1 Indexes and processing time
(1) Benefits of using indexes

An index reduces the number of rows to be retrieved, thus reducing processing time.
When a multicolumn index is used, fewer I/O accesses to the database are required
than when a single index is used.
Retrieval performance is improved when an index is set on the following columns:

• Columns to be used as the condition for narrowing data
• Columns to be used for joining tables
• Columns to be used for sorting or grouping

When many rows are to be updated or when the rows to be retrieved cannot be
narrowed, the benefits of defining and using an index are not realized.
In the following cases, the benefits of using an index are not realized, because the
number of rows to be retrieved cannot be reduced:

• No search condition is specified
• Many of the rows have the null value or the default value in the column

(2) Drawbacks of using indexes
Because all related indexes are updated during data addition, updating, or deletion, the
number of indexes affects processing efficiency. Processing time increases and
efficiency declines, unless the number of indexes is minimized to the required number.
An SQL error can also occur.

4.1.2 Index priority
When multiple indexes are defined for a table, the HiRDB system usually uses the
indexes sequentially, beginning with the one that defines the most efficient condition
to narrow the number of retrieved rows. However, depending on the search conditions,
the HiRDB system might first use the index it judges to be the most appropriate,
regardless of the priority.
There is no need to consider how to retrieve data from a table when creating a UAP.

4. UAP Design for Improving Performance and Handling

205

However, to ensure that HiRDB selects the index best suited to the system, define an
index for the column for which the search condition is specified.

4.1.3 Changing indexes during retrieval
During table manipulation, it is possible to add new indexes or to change the
configuration of an index to change the processing or to improve retrieval efficiency.
However, adding unnecessary indexes reduces retrieval efficiency.
If a UAP is running using a schema, you cannot add or delete an index for the table in
the schema.

4. UAP Design for Improving Performance and Handling

206

4.2 Manipulation of tables with the FIX attribute

The rows in a table with the FIX attribute are fixed in length. Thus, when a table has
many columns, processing efficiency is improved if the table is assigned the FIX
attribute. In a sense, the entire row is manipulated as a single column. This is called
manipulation on a row basis.
Manipulation of a table on a row basis provides the following advantages over
manipulation on a column basis:

• Processing time is shorter.

• Processing time is unaffected by increases in the number of columns to be
processed.

• Because one row can be transferred as one item of data, UAPs are easy to create
and maintain.

If a table is assigned the FIX attribute, manipulating the table on a row basis rather than
a column basis improves the processing efficiency for the following operations:

• When all or most of the columns will be retrieved
• When all or most of the columns will be updated
• When data will be inserted

Because an entire row is the target of manipulation, the embedded variables for
transferring data must be re-declared if a column is added to the table.
A table with the FIX attribute cannot contain variable-length columns or null values.
Therefore, manipulation on a row basis can be executed only for a table with no
variable-length columns or null values. If manipulating an entire row as a single
column will improve efficiency (particularly when there are many columns), consider
eliminating columns with variable-length data and columns with null values; make the
table attribute FIX. Use the following methods to do this:

• Look for short variable-length columns or variable-length columns where only a
restricted portion stores data: convert them to fixed-length columns.

• Replace null values with some other values (e.g., 0 for numeric data and blanks
for character data).

4. UAP Design for Improving Performance and Handling

207

4.3 Stored procedures and stored functions

This section explains how to define stored procedures and stored functions.
Be sure to create the necessary RDAREA spaces before defining stored procedures and
stored functions. For details about the operation of stored procedures and stored
functions, see the HiRDB Version 8 System Operation Guide.
Stored procedures and stored functions can code processing procedures in SQL or
Java. Those coded in SQL are called SQL stored procedures and SQL stored functions,
while those coded in Java are called Java stored procedures and Java stored functions.

For details about Java stored procedures and Java stored functions, see 9. Java Stored
Procedures and Java Stored Functions.
Note
If an error occurs while an SQL stored procedure or SQL stored function is being
executed, processing of the SQL stored procedure or SQL stored function terminates
at the point when the error occurred (the programs exits from control of the SQL stored
procedure or SQL stored function). Therefore, error-handling processes cannot be
specified in SQL stored procedures and SQL stored functions.

4.3.1 Defining a stored procedure
A stored procedure is a facility that registers an SQL-coded database processing
procedure to a database as a procedure.

(1) Benefits of using an SQL stored procedure
Manipulating a database may involve searching for data with the FETCH statement
and then issuing the UPDATE or INSERT statement, depending on whether or not
matching data is found. This process may be repeated many times, resulting in high
overhead between the client and the server. This type of database access processing can
also be defined in a routine that is stored as a procedure and can then be executed by
calling it with a CALL statement. Use of a stored procedure reduces the amount of
overhead associated with passing and receiving data between the client and the server.
Because the SQL statements that are stored in a procedure are stored at the server in a
compiled form (as SQL objects), using a stored procedure permits the client and the
server to share processing, at the same time reducing the SQL parsing overhead.
Figure 4-1 shows the benefits of using an SQL stored procedure.

4. UAP Design for Improving Performance and Handling

208

Figure 4-1: Benefits of using an SQL stored procedure

(2) Defining and executing an SQL stored procedure
CREATE PROCEDURE or CREATE TYPE stores a defined procedure in a database as an
SQL stored procedure; DROP PROCEDURE deletes an SQL stored procedure from the
database. Once stored in a database, an SQL stored procedure can be executed by
calling it with a CALL statement.
If a procedure has an SQL object that has been invalidated, the ALTER PROCEDURE or
ALTER ROUTINE statement can be used to re-create that procedure.
If an SQL stored procedure has already been registered, the pddefrev command can
be executed to create definition-type SQL statements for that SQL stored procedure.
This command is useful for creating a new SQL stored procedure, the processing of
which is similar to that of an existing SQL stored procedure. For details about the
pddefrev command, see the HiRDB Version 8 Command Reference manual.
Definition and execution of an SQL stored procedure are illustrated in Figure 4-2.

4. UAP Design for Improving Performance and Handling

209

Figure 4-2: Defining and executing an SQL stored procedure

(3) Example of an SQL stored procedure
An example of the definition and execution of an SQL stored procedure that defines
SQL statements and statements for controlling the SQL statements (routine control
SQL) is shown as follows:

4. UAP Design for Improving Performance and Handling

210

Figure 4-3: Example of an SQL stored procedure

Explanation
1. Defines the procedure name and the SQL parameters.
2. Begins compound statements.
3. Declares SQL variables.
4. Specifies repetitive execution of statements.

4. UAP Design for Improving Performance and Handling

211

5. Specifies exiting a statement.
6. Specifies conditional branching.
7. Specifies value assignments.
8. Ends the conditional branch.
9. Ends repetitive executions of statements.
10. Ends the compound statements.
11. Calls the procedure.

Notes
1. For details about the individual SQL statements, see the HiRDB Version 8

SQL Reference manual.
2. This example specifies entrydate as a selection item in the SELECT

clause for cursor declaration, so that the data can be sorted according to
entrydate. However, because entrydate values are not referenced, the
FETCH statement omits the embedded variable corresponding to entrydate
and does not fetch entrydate values.

(4) Debugging an SQL stored procedure
To debug an SQL stored procedure, use WRITE LINE statements in a routine control
SQL and output the SQL variables and SQL parameters to be referenced to a client file.
For details about the WRITE LINE statement, see the manual HiRDB Version 8 SQL
Reference.
An example of specifying WRITE LINE statements in an SQL stored procedure is
shown below.

Explanation:
1. Converts the value of the fromdate SQL parameter to a character string and

outputs the string to a file.
2. Converts the value of the todate SQL parameter to a character string and

outputs the string to a file.
To output the values of the value expressions in the WRITE LINE statements from the
SQL stored procedure in which the WRITE LINE statements were written to a client

 CREATE PROCEDURE proc_1 (IN fromdate date, IN todate date)
 BEGIN
 ...
 WRITE LINE 'fromdate='||char(fromdate); 1
 WRITE LINE 'todate='||char(todate); 2
 ...

4. UAP Design for Improving Performance and Handling

212

file, set the PDWRTLNFILSZ client environment definition, and call the SQL stored
procedure from the UAP. An example is shown below.
PDWRTLNFILSZ setup example for csh (C shell) (UNIX version of HiRDB client)

PDWRTLNFILSZ setup example (Windows version of HiRDB client)

Calling the SQL stored procedure:

Contents of output file:

Note: The output file is set with PDWRTLNPATH in the client environment definition.
Once debugging is completed, if you no longer need to output the values of the value
expressions in the WRITE LINE statements from the SQL stored procedure in which
the WRITE LINE statements were specified to a file, omit the PDWRTLNFILSZ client
environment definition before executing the UAP. When the PDWRTLNFILSZ
specification is omitted, the WRITE LINE statements in the SQL stored procedure are
not executed.

(5) Completing a transaction in a stored procedure
(a) SQL statements for completing a transaction

To complete a transaction in a stored procedure, execute one of the following SQL
statements in that procedure:

• COMMIT statement
• ROLLBACK statement

 setenv PDWRTLNFILSZ 4096

 PDWRTLNFILSZ=4096

 strcpy(e_fromdate, "2003-06-01");
 strcpy(e_todate, "2003-06-30");
 EXEC SQL CALL proc_1(IN :e_fromdate, IN :e_todate);

 fromdate=2003-06-01
 todate=2003-06-30

4. UAP Design for Improving Performance and Handling

213

COMMIT is executed automatically when one of the following SQL statements is
executed:

• PURGE TABLE statement
• Definition SQL (in Java stored procedures only)

ROLLBACK is executed automatically when the following condition applies:
• An error that requires ROLLBACK execution occurs.

(b) Note on transaction completion
When creating a stored procedure that completes a transaction, you must consider the
note described below.

(c) Re-executing a stored procedure
If an error occurs during a stored procedure after a transaction has been completed,
execution of the procedure is terminated before completion. If you re-execute the
stored procedure that resulted in an error, the procedure processes are executed again
from the beginning. You must therefore consider whether the operations performed
before the transaction was terminated due to error can be executed twice. An example
is shown below.

(6) Results-set return facility (limited to SQL stored procedures)
When defining an SQL stored procedure, you can use the results-set return facility by
specifying a value of 1 or higher in the DYNAMIC RESULT SETS clause of CREATE
PROCEDURE. The results-set return facility cannot be used for SQL stored functions.

(a) What is the results-set return facility?
The results-set return facility allows the calling source of an SQL stored procedure to

4. UAP Design for Improving Performance and Handling

214

reference the cursor obtained when the SELECT statement in the SQL stored procedure
is executed.
Figure 4-4 shows an overview of the results-set return facility.

Figure 4-4: Overview of results-set return facility (for SQL stored procedures)

(b) Languages of calling sources that can use the results-set return facility
Listed below are the languages of calling sources that can use the results-set return
facility:

• Java
• C
• C++

• COBOL*

• OOCOBOL
* COBOL can be used if an RDB file input/output function is not used.

(c) Example of using the results-set return facility
In this example, the SQL stored procedure searches the emps_1 and emps_2 tables
and retrieves id, name, and age data for id column values that satisfy the condition
id<10. The calling source accepts the two result sets and executes them.
Definitions of the SQL stored procedure

4. UAP Design for Improving Performance and Handling

215

Explanation:
1. Defines the procedure name and the parameter.
2. Specifies the number of search result information sets to be returned.
3. Declares the CUR1 cursor.
4. Declares the CUR2 cursor.
5. Opens the CUR1 cursor.
6. Opens the CUR2 cursor.
7. Terminates the call and returns the result sets.
Calling source (embedded UAP written in C)

CREATE PROCEDURE proc2(IN param1 INTEGER) 1
 DYNAMIC RESULT SETS 2 2
 BEGIN
 DECLARE CUR1 CURSOR WITH RETURN 3
 FOR SELECT id,name,age FROM emps_1
 WHERE id < param1 ORDER BY id;
 DECLARE CUR2 CURSOR WITH RETURN 4
 FOR SELECT id,name,age FROM emps_2
 WHERE id < param1 ORDER BY id;
 OPEN CUR1; .. 5
 OPRN CUR2; .. 6
 END; .. 7

#include <stdio.h>
#include <string.h>

main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 struct {
 long len;
 char str[31];
 } cur1;
 int emp_id;
 char emp_name[13];
 int emp_age;
 EXEC SQL END DECLARE SECTION;

4. UAP Design for Improving Performance and Handling

216

Explanation:
1. Sets the cursor name.
2. Executes the CALL statement.
3. Determines whether there is a result set to be returned.
4. Assigns a cursor (associates the first result set with the cursor).
5. Outputs information from the first result set.
6. Closes the cursor (associates the second result set with the cursor).
7. Determines whether there is another result set.
8. Outputs information from the second result set.
9. Closes the cursor.

 --------(CONNECT process to HiRDB (omitted))--------

 cur1.len = sprintf(cur1.str, "cursor1"); 1

 EXEC SQL CALL PROC(10); 2

 If (SQLCODE == 120) { 3

 EXEC SQL ALLOCATE GLOBAL :cur1
 FOR PROCEDURE PROC2; 4

 printf("*** emps_1 ***\n"); 5
 while (1) { ... 5
 EXEC SQL FETCH GLOBAL :cur1 5
 INTO :emp_id,:emp_name,:emp_age; 5
 if (SQLCODE<0 || SQLCODE==100) break; 5
 printf("ID=%d NAME=%s AGE=%d\n", 5
 emp_id, emp_name, emp_age); 5
 } ... 5
 CLOSE GLOBAL :cur1; 6

 if (SQLCODE==121) { 7
 printf("*** emps_2 ***\n"); 8
 while (1) { ... 8
 EXEC SQL FETCH GLOBAL :cur1 8
 INTO :emp_id,:emp_name,:emp_age; 8
 if (SQLCODE<0 || SQLCODE==100) break; 8
 printf("ID=%d NAME=%s AGE=%d\n", 8
 emp_id, emp_name, emp_age); 8
 } ... 8
 CLOSE GLOBAL :cur1; 9
 }
 }
}

4. UAP Design for Improving Performance and Handling

217

(d) Notes about using the results-set return facility
Defining the SQL stored procedure with CREATE PROCEDURE
1. Specify WITH RETURN in the cursor declarations of the cursors to be returned

as result sets.
2. Of the cursors declared with the WITH RETURN specification, only those that

are open when the procedure ends are returned as result sets.
3. If there are two or more result sets to be returned, they are returned in the

order that their corresponding cursors were opened.
Creating the calling source
1. When a procedure that returns a result state is executed, SQLSTATE is set to

0100C and SQLCODE to 120.
2. To have an embedded UAP and an SQL stored procedure receive a result set,

use the ALLOCATE CURSOR statement to allocate a cursor to the group of
result sets and associate the cursor with the first result set. If another result
set is to be returned, execute the CLOSE statement for the cursor that is
referencing the previous result set. A cursor is then associated with that
subsequent result set. When the CLOSE statement is executed and there is a
subsequent result set, SQLSTATE is set to 0100D and SQLCODE to 121 when
that result set is associated with a cursor. If there is no subsequent result set,
SQLSTATE is set to 02001 and SQLCODE to 100.

4.3.2 Defining a stored function
A stored function is a facility that registers a sequence of SQL-coded database
operations to a database as a user-defined function.

(1) Defining and executing an SQL stored function
CREATE FUNCTION or CREATE TYPE registers a user-defined function in a database
as an SQL stored function. DROP FUNCTION deletes an SQL stored function from the
database. Once registered in a database, a user-defined function can be executed by
calling it in an SQL statement. If a function has an SQL object that has been
invalidated, the ALTER ROUTINE statement can be used to re-create that function.
Figure 4-5 shows the definition and execution of an SQL stored function.

4. UAP Design for Improving Performance and Handling

218

Figure 4-5: Defining and executing an SQL stored function

(2) Example of an SQL stored function
Figure 4-6 shows an example of how routine control SQL statements are combined and
defined as a user-defined function and how the function is called and executed.

Figure 4-6: SQL stored function example

Explanation
1. Defines the user-defined function name and the SQL parameters.
2. Specifies the function return value.
3. Begins the compound statements.

4. UAP Design for Improving Performance and Handling

219

4. Declares SQL variables.
5. Specifies value assignments.
6. Specifies return of the function return value.
7. Ends the compound statements.
8. Retrieves the SQL stored function with a function call.

Note
For details about the individual SQL statements, see the HiRDB Version 8 SQL
Reference manual.

Defining the following functions is helpful.
Function that calculates the last date of a month containing the specified date
CREATE FUNCTION LASTDAY(INDATE DATE) RETURNS DATE
 BEGIN
 DECLARE MM1 INTEGER;
 SET MM1=MONTH(INDATE)-1;
 RETURN (INDATE-MM1 MONTHS+(31-DAY(INDATE))
 DAYS+MM1 MONTHS);
 END

Function that calculates the day of a specified date with an integer from 0
(Sunday) through 6 (Saturday)
CREATE FUNCTION DNOFWEEK(INDATE DATE) RETURNS INTEGER
 BEGIN
 RETURN MOD(DAYS(INDATE),7);
 END

Function that calculates the day of a specified date in English
CREATE FUNCTION DAYOFWEEK(INDATE DATE) RETURNS CHAR(3)
 BEGIN
 RETURN (CASE MOD(DAYS(INDATE),7) WHEN 0 THEN 'SUN'
 WHEN 1 THEN 'MON'
 WHEN 2 THEN 'TUE'
 WHEN 3 THEN 'WED'
 WHEN 4 THEN 'THU'
 WHEN 5 THEN 'FRI'
 ELSE 'SAT' END);
 END

Function that calculates the date of the specified day that immediately follows a
specified date
CREATE FUNCTION NEXTDAY(INDATE DATE, DAYOFWEEK CHAR(3))
 RETURNS DATE
 BEGIN
 DECLARE SDOW, TDOW INTEGER;

4. UAP Design for Improving Performance and Handling

220

 SET TDOW=(CASE, DAYOFWEEK WHEN 'SUN' THEN 0
 WHEN 'MON' THEN 1
 WHEN 'TUE' THEN 2
 WHEN 'WED' THEN 3
 WHEN 'THU' THEN 4
 WHEN 'FRI' THEN 5
 ELSE 6 END);
 SET SDOW=MOD(DAYS(INDATE),7);
 RETURN (INDATE + (CASE WHEN TDOW>SDOW THEN TDOW-SDOW
 ELSE 7+TDOW-SDOW END) DAYS);
 END

(When the day argument is an integer [0 to 6])
CREATE FUNCTION NEXTDAY(INDATE DATE, DNOFWEEK INTEGER)
 RETURNS DATE
 BEGIN
 DECLARE SDOW, TDOW INTEGER;
 SET TDOW=DNOFWEEK;
 SET SDOW=MOD(DAYS(INDATE),7);
 RETURN (INDATE + (CASE WHEN TDOW>SDOW THEN TDOW-SDOW
 ELSE 7+TDOW-SDOW END) DAYS);
 END

Function that calculates the year and month (yyyy-mm) of a specified date when
each month ends on the 20th

CREATE FUNCTION YYYYMM20(INDATE DATE) RETURNS CHAR(7)
 BEGIN
 RETURN SUBSTR(CHAR(INDATE+1 MONTH -20 DAYS),1,7);
 END

Function that calculates the year (yyyy) of the specified date when each fiscal year
ends on March 20
CREATE FUNCTION YYYY0320(INDATE DATE) RETURNS CHAR(4)
 BEGIN
 RETURN SUBSTR(CHAR(INDATE-2 MONTHS -20 DAYS)1,4);
 END

Function that calculates the year and quarter (yyyy-nQ) of the specified date when
each fiscal year ends on March 20
CREATE FUNCTION YYYYNQ0320(INDATE DATE) RETURNS CHAR(7)
 BEGIN
 DECLARE WORKDATE DATE;
 SET WORKDATE=(INDATE -2 MONTHS -20 DAYS);
 RETURN (SUBSTR(CHAR(WORKDATE),1,5)||
 SUBSTR(DIGITS((MONTH(WORKDATE)+2)/3),10,1)| |'Q');
 END

Function that calculates the year and half (yyyy-nH) of the specified date when

4. UAP Design for Improving Performance and Handling

221

each fiscal year ends on March 20
CREATE FUNCTION YYYYNH0320(INDATE DATE) RETURNS CHAR(7)
 BEGIN
 DECLARE WORKDATE DATE;
 SET WORKDATE=(INDATE -2 MONTHS -20 DAYS);
 RETURN (SUBSTR(CHAR(WORKDATE),1,5) ||
 SUBSTR(DIGITS((MONTH(WORKDATE)+5)/6),10,1)| |'H');
 END

Function that calculates the number of months between dates (argument 1 -
argument 2)(extra days are discarded)
CREATE FUNCTION MONTHBETWEEN0(INDATE1 DATE, INDATE2 DATE)
 RETURNS INTEGER
 BEGIN
 DECLARE YMINTERDATE INTERVAL YEAR TO DAY;
 SET YMINTERDATE=INDATE1-INDATE2;
 RETURN (YEAR(YMINTERDATE)*12+MONTH(YMINTERDATE));
 END

Function that calculates the number of months between two dates (argument 1 -
argument 2) to several decimal places. (The number-of-months value for one day
is calculated by setting the day of the earlier date as the starting point of each
month and then dividing 1 by the number of days in the month with the later date.)
CREATE FUCNTION MONTHBETWEEN(INDATE1 DATE,INDATE2 DATE)
 RETURNS DECIMAL(29,19)
 BEGIN
 DECLARE INTERDATE INTERVAL YEAR TO DAY;
 DECLARE DMONTHS DEC(29,19);
 DECLARE YYI,MMI INTEGER;
 DECLARE WDATE DATE;
 DECLARE SIGNFLAG DEC(1);
 IF INDATE1>INDATE2 THEN
 SET INTERDATE=INDATE1-INDATE2;
 SET WDATE=INDATE2;
 SET SIGNFLAG=1;
 ELSEIF INDATE1<INDATE2 THEN
 SET INTERDATE=INDATE2-INDATE1;
 SET WDATE=INDATE1;
 SET SIGNFLAG=-1;
 ELSE RETURN 0;
 END IF;
 SET YYI=YEAR(INTERDATE);
 SET MMI=MONTH(INTERDATE);
 SET WDATE=WDATE+YYI YEARS+MMI MONTHS;
 SET DMONTHS=YYI*12+MMI
 +DEC(DAY(INTERDATE),2)/(DAYS(WDATE+1 MONTH)-
DAYS(WDATE));
 IF SIGNFLAG=1 THEN RETURN DMONTHS;

4. UAP Design for Improving Performance and Handling

222

 ELSE RETURN -DMONTHS;
 END IF;
 END

Function that calculates the number of years between two dates (argument 1 -
argument 2) to several decimal places (the number-of-years value for one day is
calculated by setting the month and day of the earlier date as the starting point of
each year and then dividing 1 by the number of days in the year with the later
date).
CREATE FUNCTION YEARBETWEEN(INDATE1 DATE,INDATE2 DATE)
 RETURNS DECIMAL(29,19)
 BEGIN
 DECLARE INTERDATE INTERVAL YEAR TO DAY;
 DECLARE DYEARS DEC(29,19);
 DECLARE YYI,MMI INTEGER;
 DECLARE WDATE1, WDATE2 DATE;
 DECLARE SIGNFLAG DEC(1);
 IF INDATE1>INDATE2 THEN
 SET INTERDATE=INDATE1-INDATE2;
 SET WDATE1=INDATE1;
 SET WDATE2=INDATE2;
 SET SIGNFLAG=1;
 ELSEIF INDATE1<INDATE2 THEN
 SET INTERDATE-INDATE2-INDATE1;
 SET WDATE1=INDATE2;
 SET WDATE2=INDATE1;
 SET SIGNFLAG=-1;
 ELSE RETURN 0;
 END IF;
 SET YYI=YEAR(INTERDATE);
 SET WDATE2=WDATE2+YYI YEARS;
 SET DYEARS=YYI
 +DEC(DAYS(WDATE1)-DAYS(WDATE2),3)
 /(DAYS(WDATE2+1 YEAR)-DAYS(WDATE2));
 IF SIGNFLAG=1 THEN RETURN DYEARS;
 ELSE RETURN -DYEARS;
 END IF;
 END

(3) Rules for determining the called function and the result data type
• A function is called if the counts for authorization identifiers, routine identifiers,

and arguments all match, if the argument data types do not include abstract data
types, and if the parameter data types perfectly match the argument order. In this
case, the data type of the function result is the RETURNS clause data type of the
called function.

• A function is not called if any of the counts for authorization identifiers, routine

4. UAP Design for Improving Performance and Handling

223

identifiers, or arguments do not match.
• If the counts for authorization identifiers, routine identifiers, and arguments all

match, but the argument data types include an abstract data type or the parameter
data types do not perfectly match the argument order, the called function is
determined as follows:

• If an abstract data type is not included in the arguments
The HiRDB system checks the arguments sequentially from the leftmost
argument and sets the pre-defined data types of the individual arguments as
references. The system then calls the function whose parameters have
pre-defined data types with priorities that are equal to those of the references.
If it does not find such a function, the system looks at the functions whose
parameters have pre-defined data types with priorities that are less than those
of the references and calls the function with the highest data type priorities.
Table 4-1 shows the priorities of pre-defined data types. If an abstract data
type is not included in the arguments, the called function is uniquely
determined during SQL parsing, and the RETURNS clause data type of the
called function becomes the data type of the function result.

Table 4-1: Priorities of pre-defined data types

A B: Indicates that A has a higher priority than B.
• If an abstract data type is included in the arguments

If an abstract data type is included in the arguments, the function to be called is
determined according to the sequence described as follows:

1. Determining the basic function
The HiRDB system checks the arguments sequentially from the leftmost
argument and sets the data types of the individual arguments as references. The
system then selects the function whose parameters have data types with priorities
that are equal to those of the references and sets that function as the basic function.

Argument data type Priority

Numeric data SMALLINT INTEGER DECIMAL SMALLFLT F
LOAT

Character data CHAR VARCHAR

National character data NCHAR NVARCHAR

Mixed character string data MCHAR MVARCHAR

4. UAP Design for Improving Performance and Handling

224

If it does not find such a function, the system looks at the functions whose
parameters have pre-defined data types with priorities that are less than those of
the references and selects the function with the highest data type priorities. If a
data type is a pre-defined data type, the priority is determined according to Table
4-1. If a data type is an abstract data type, the priority is determined according to
Table 4-2 as follows:
Table 4-2: Priorities of abstract data types

* The super type that is specified directly by the UNDER clause in an abstract type
definition has a higher priority than other super types.

A B: Indicates that A has a higher priority than B.
1. Determining other candidate functions

If an argument has an abstract data type, the data types of values that can actually
be used as data for that argument are the same as the abstract data type in the
argument definition and the subtypes of that data type. In addition to the basic
function, all functions that have parameters corresponding to the same data type
as the abstract data type of the argument, or to the abstract data type of a subtype,
become candidates for the called function.
If the basic function is the only candidate function, it becomes the called function.
The data type of the function result becomes the RETURNS clause data type of the
called function.

2. Limiting the candidate functions based on the data type in the RETURNS clause
For each candidate function other than the basic function, the HiRDB system
checks whether the RETURNS clause data type is compatible with the RETURNS
clause data type for the basic function. If the data type is not compatible, the
function is dropped from the candidate functions. After checking this
compatibility for all candidate functions, the HiRDB system determines the data
type of the function result based on the RETURNS clause data types for the
remaining candidate functions. The system performs a set operation
(UNION[ALL] or EXCEPT[ALL]) on the remaining candidates. The resulting data
type and data length become the data type and data length of the function result.
For details, see the HiRDB Version 8 SQL Reference manual.
However, if the data type of the function result is an abstract data type, the abstract
data type of the RETURNS clause for the basic function is used.

3. Determining the called function when an SQL statement is executed

Argument data type Priority

Abstract data type
Same data type super type*

4. UAP Design for Improving Performance and Handling

225

If there are two or three functions that cannot be determined uniquely, the HiRDB
system determines which one of these candidate functions to call based on the
actual data type used for each abstract data type argument when the SQL
statement is executed. The system checks the arguments sequentially from the
leftmost argument. If the actual value of an argument is a non-null value, the data
type of that value is used as a reference. If the actual value is a null value, the data
type of that argument is used as reference. From the candidate functions, the
HiRDB system selects the function whose parameters have data types with
priorities that are equal to those of the references and sets that function as the
called function. If it cannot find such a function, the system looks at the functions
whose parameters have pre-defined data types with priorities that are less than
those of the references and selects the function with the highest data type
priorities.

Because HiRDB allows a function to be defined more than once, there may be several
candidates for a called function. The called function is determined by how the function
call specification and the function definition match. Figure 4-7 shows the
correspondences between a table with abstract data types and the called function.

Figure 4-7: Correspondences between a table with abstract data types and the
called function

Explanation
Suppose that the following SQL statement uses the abstract data type function
REMUNERATION to retrieve data from the staff table:
SELECT STAFF_NUMBER FROM STAFF_TABLE WHERE
 REMUNERATION(EMPLOYEE)>=2000.00

In this case, the function for each data type is determined and called according to
whether the data for the parameter value is t_EMPLOYEE or t_SALESPERSON.

4. UAP Design for Improving Performance and Handling

226

For details about the definitions of this staff table, see the HiRDB Version 8
Installation and Design Guide.

1 REMUNERATION = SALARY REMUNERATION_RATE()
2 REMUNERATION = TOTAL_NUMBER_OF_CLIENTS 1000 + SALARY
REMUNERATION_RATE()
Examples of determining the called function when abstract data types are included

In the examples below, A, B, and C are abstract data types, C is the super type of
B, and B is the super type of A (priority of abstract data type: A B C).

Example 1
Prerequisite conditions

Table definition
CREATE TABLE T1(C1 C)

Function definitions
f(A), f(B), f(C)

SQL statement
SELECT f(C1) FROM T1

Results
Basic function

f(C)
Candidate functions when function call is f(C1)

f(A), f(B), f(C)
Called function

The following table shows which function is called when the SQL statement
is executed.

Example 2

Actual value of T1.C1 Called function

Type A f(A)

Type B f(B)

Type C f(C)

Null value f(C)

4. UAP Design for Improving Performance and Handling

227

Prerequisite conditions
Table definition

CREATE TABLE T1(C1 C,C2 B)
Function definitions

f(A,A), f(A,B), f(A,C), f(B,A), f(B,C), f(C,A),
f(C,B), f(C,C)

SQL statement
SELECT f(C1,C2) from T1

Results
Basic function

f(C,B)
Candidate functions when function call is f(C1,C2)

f(A,A), f(A,B), f(A,C), f(B,A), f(B,C), f(C,A), f(C,B)
Called function

The following table shows which function is called when the SQL
statement is executed.

Actual value of T1.C1 Actual value of T1.C2 Called function

Type A Type A f(A,A)

Type B f(A,B)

Null value f(A,B)

Type B Type A f(B,A)

Type B f(B,C)

Null value f(B,C)

Type C Type A f(C,A)

Type B f(C,B)

Null value f(C,B)

Null value Type A f(C,A)

Type B f(C,B)

Null value f(C,B)

4. UAP Design for Improving Performance and Handling

228

4.3.3 Defining and deleting stored functions
This section describes how to define and delete stored functions.

(1) Defining stored functions
When a stored function is created, an existing stored function may become
invalid
An existing stored function becomes invalid under the following condition:

• A UAP has called a stored function that has the same name (same
authorization identifier and same routine identifier) and the same number of
parameters as the stored function to be created.

In this case, use ALTER ROUTINE to re-create the stored function that was
invalidated.
When a stored function is created, an existing stored procedure may become
invalid
When a stored function is created, an existing stored procedure may become
invalid. An existing stored procedure becomes invalid under the following
condition:

• The stored procedure calls a stored procedure that has the same name (same
authorization identifier and same routine identifier) and the same number of
parameters as the stored function to be created.

In this case, use ALTER PROCEDURE or ALTER ROUTINE to re-create the stored
procedure that was invalidated.
When a stored function is created, an existing trigger may become invalid
When a stored function is created, an existing trigger may become invalid. An
existing trigger becomes invalid under the following condition:

• The trigger calls a stored function that has the same name (same
authorization identifier and same routine identifier) and the same number of
parameters as the stored function to be created.

In this case, use ALTER TRIGGER or ALTER ROUTINE to re-create the trigger that
was invalidated.
A created stored function becomes invalid
A stored function may become invalid if it is created under the following
circumstances:
1. A plug-in is installed.
2. A stored function that calls a function provided by the plug-in in step 1 is

created.

4. UAP Design for Improving Performance and Handling

229

3. A plug-in that is different from the one that was installed in step 1 is installed.
If the plug-ins installed in steps 1 and 3 provide functions that have the same name
and same number of parameters, the stored function that was created in step 2
becomes in valid when step 3 is executed.
In this case, use ALTER ROUTINE to re-create the stored function that was
invalidated.

(2) Deleting stored functions
When a stored function is deleted, another stored function may become
invalid
An existing stored function becomes invalid under the following condition:

• A UAP has called a stored function that has the same name (same
authorization identifier and same routine identifier) and the same number of
parameters as the stored function to be deleted.

In this case, use ALTER ROUTINE to re-create the stored function that was
invalidated.
When a stored function is invalid, a stored procedure that has the same name
may become invalid
An existing stored procedure becomes invalid under the following condition:

• A UAP has called a stored procedure that has the same name (same
authorization identifier and same routine identifier) and the same number of
parameters as the stored function to be created.

In this case, use ALTER PROCEDURE or ALTER ROUTINE to re-create the stored
procedure that was invalidated.

4. UAP Design for Improving Performance and Handling

230

4.4 Triggers

By defining a trigger, you can execute an SQL statement automatically when an
operation (update, insertion, or deletion) is performed on a certain table. To define a
trigger, specify information such as the table that defines the trigger, the SQL statement
that specifies the trigger operation timing (trigger-activating SQL statement), the SQL
statement to be executed automatically (trigger SQL statement), and the conditions
under which that operation is executed (trigger operation search conditions). When an
SQL statement that satisfies the trigger operation search conditions is executed for the
table that defines the trigger, the trigger SQL statement is executed automatically.
Figure 4-8 shows an overview of triggers.

Figure 4-8: Trigger overview

Explanation:
When the UAP executes an SQL that activates the trigger, table A, which defines
the trigger, calls the trigger. If the search conditions for trigger operation are
satisfied, the trigger SQL statement (in this case, row insertion for table B and row
update for table C) is automatically executed.

If you use a trigger, you do not need to describe the following types of operations in
the UAP:

• When a certain table is updated, always update another table.
• When a certain table is updated, always update a certain column in the updated

row. (Associate a column with another column.)
For example, suppose that when prices in a product management table are changed, the
changes are accumulated in a product management history table. If a trigger is not
used, the UAP that updates the product management table must also always update the

4. UAP Design for Improving Performance and Handling

231

product management history. If a trigger is used, the UAP that updates the product
management table need not be concerned about updating the product management
history table because the latter table can be manipulated automatically. By using
triggers appropriately as in this example, you can reduce the work load involved in
creating a UAP.
When a trigger is defined, the functions, procedures, and trigger SQL objects that use
that table become invalid and must be re-created. When a resource (such as a table or
index) being used by a trigger is defined, redefined, or deleted, the SQL objects of the
trigger become invalid and must be re-created.
For details about triggers, see the HiRDB Version 8 Installation and Design Guide.

4. UAP Design for Improving Performance and Handling

232

4.5 SQL optimization

HiRDB features an optimization facility that improves the retrieval efficiency of SQL
statements.
Optimization processing includes SQL optimizing modes that use different methods.
HiRDB determines the SQL optimizing mode for each SQL based on the specified
value of the SQL extension optimizing option and the SQL syntax.
The SQL optimizing mode types are as follows:

• Optimizing mode 1 based on cost (optimization processing method used in
HiRDB versions before Version 06-00)

• Optimizing mode 2 based on cost (optimization processing method used in
HiRDB versions starting from Version 06-00)

You can also consider the status of the database and specify an optimization method to
determine the most efficient access path. There are three types of optimization
methods:

• SQL optimization specifications
• SQL optimization options
• SQL extension optimizing options

SQL optimization specifications

SQL optimization specifications can be specified in SQL statements. These
optimization methods are applied to the SQL statements that specify the methods.
For details about SQL optimization specifications, see the manual HiRDB Version
8 SQL Reference.

SQL optimization options and SQL extension optimizing options

The SQL optimization options and the SQL extension optimizing options are
assigned multiple functions from which you can select those that are necessary.
The functions specified by using the SQL optimization options are effective with
both optimizing mode 1 based on cost and optimizing mode 2 based on cost. The
functions specified with the SQL extension optimizing options are effective with
only optimizing mode 2 based on cost.
For details about the SQL optimization options and SQL extension optimizing
options, see 6.6.4 Environment definition information.

Notes
Indicators for selecting the SQL optimizing mode are described as follows:

4. UAP Design for Improving Performance and Handling

233

When installing HiRDB for the first time with Version 06-00 or a later version
• Hitachi recommends that you use optimizing mode 2 based on cost.
• If you use optimizing mode 2 based on cost, execute the optimizing

information collection facility as necessary to further improve the
optimizing precision. For details about the necessity of executing the
optimizing information collection utility, see the manual HiRDB
Version 8 Command Reference.

• The SQL optimization option and the SQL extension optimizing option
have recommended values that should be specified. Make sure that
these recommended values are specified, and also examine whether
other functions can be used.

When upgrading a HiRDB version earlier than Version 06-00
Hitachi recommends that you use optimizing mode 1 based on cost so that
you can use the HiRDB system under the same conditions as before the
version upgrade. However, because some SQL statements always use
optimizing mode 2 based on cost, study the specification values of the SQL
extension optimizing option when you start a new operation in the
environment that is already constructed. Also, do not change the
specification values of the SQL optimization option.

4.5.1 SQL optimizing modes
(1) Features of the SQL optimizing modes

Table 4-3 describes the features of the SQL optimizing modes.
Table 4-3: Features of the SQL optimizing modes

SQL
optimizing

mode

Explanation Advantages Disadvantages Selection method

Optimizing
mode 1 based on
cost

This is the
optimization
processing method
based on cost for
HiRDB versions
before Version
06-00. This mode
can also be used in
HiRDB Version
06-00 and later
versions.

Even if HiRDB is
upgraded from a
version earlier than
Version 06-00,
searches can be
performed with the
same access paths
used in the earlier
version.
Access paths are
sometimes changed
for high-speed
retrieval.

The optimal access
path cannot always
be selected because
there are only a few
access path
candidates. (Access
paths are not
selected by setting
facilities such as
hash join as
candidates.)

Do not specify the
SQL extension
optimizing option, or
clear the specification
for application of
optimizing mode 2
based on cost in the
SQL extension
optimizing option.
Some SQL
statements always
use optimizing mode
2 based on cost. For
details, see (2) as
follows.

4. UAP Design for Improving Performance and Handling

234

(2) SQL statements that forcibly apply optimizing mode 2 based on cost
Even if optimizing mode 1 based on cost is being used, optimizing mode 2 based on
cost is sometimes forcibly applied. The SQL statements that forcibly apply optimizing
mode 2 based on cost are as follows:

• Subquery in the SET clause of the UPDATE statement
• Outer join + (inner) join
• COUNT(*) in a set operation result
• Value expression of the DISTINCT set function
• Specification of the query name of a viewed table or WITH clause to an outer join
• Addition update and partial extraction facility for BLOB data and BINARY data
• HiRDB External Data Access facility
• SQL optimization specification
• Sorting with a value expression with a defined length exceeding 255 bytes
• Retrieve first n records
• Retrieval using the BINARY type
• Retrieval of a viewed table or WITH clause containing an internally derived table

that becomes a nesting structure with at least two levels
• Matrix partitioning
• Subquery for a joined table
• Application of the MIN or MAX set function to a repetition column
• Row value constructor
• Subquery in the CASE expression

Optimizing
mode 2 based on
cost

This is the
optimization
processing method
based on cost that is
used in HiRDB
Version 06-00 and
later. This mode is
designed for fast
retrieval.

High-speed retrieval
is possible because
this mode selects
access paths from
candidates that
combine hashing to
join search and
subquery
processing.

Optimization
processing takes
time because this
mode performs
complex
optimization
processing.

Specify application
of optimizing mode 2
based on cost in the
SQL extension
optimizing option.

SQL
optimizing

mode

Explanation Advantages Disadvantages Selection method

4. UAP Design for Improving Performance and Handling

235

• POSITION function in which value equation 2 is the BLOB type
• Referential constraint
• Check constraint
• Limit release to allow data with a defined length of 256 bytes or more
• Specification of a table targeted for data update, deletion, or addition in a

subquery
• Unnesting facility for repetition column in the FROM clause
• LIMIT clause
• Search in which an internally derived table has two or more nesting layers
• Expansion of the specification location in the query expression body
• Window functions
• SIMILAR predicate

The application condition and an example of each SQL sentence are shown as follows.
(a) Subquery in the SET clause of the UPDATE statement

• When a scalar or line subquery is specified in the SET clause of the UPDATE
statement
Example
UPDATE T1 SET(C1,C2)=(SELECT MAX(C1),MAX(C2) FROM T2) WHERE
C3=1

Note
The underlined section is the applicable location.

(b) Outer join + (inner) join
• When an (inner) join is specified in the FROM clause

Example
SELECT T1.C1,T2.C2 FROM T1 INNER JOIN T2 ON T1.C1=T2.C1

Note
The underlined section is the applicable location.

• When a table reference that includes LEFT [OUTER] JOIN and any other table
reference are delimited with a comma (,) and specified in the FROM clause
Example
SELECT T1.C1,T2.C2 FROM T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C1,
T3 WHERE T1.C1=T3.C1

4. UAP Design for Improving Performance and Handling

236

Note
The underlined section is the applicable location.

• When table-reference1 LEFT [OUTER] JOIN table-reference2 is specified in
the FROM clause, and LEFT [OUTER] JOIN is nested and specified in
table-reference2
Example
SELECT T1.C1,T2.C2,T3.C2 FROM T1 LEFT OUTER JOIN
 (T2 LEFT OUTER JOIN T3 ON T2.C1=T3.C1)
 ON T1.C1=T3.C1

Note
The underlined section is the applicable location.

(c) COUNT(*) in a set operation result
• When the query expression body specified in the FROM clause includes a set

operation
Example
SELECT COUNT(*) FROM (SELECT C1 FROM T1 UNION SELECT C1 FROM
T2)

Note
The underlined section is the applicable location.

(d) Value expression of the DISTINCT set expression
• When a value expression other than a column specification is specified as an

argument of the DISTINCT set function (COUNT, SUM, or AVG)
Example
SELECT AVG(DISTINCT C1+C2) FROM T1

Note
The underlined section is the applicable location.

(e) Specification of the query name of a viewed table or WITH clause to an
outer join

• When LEFT [OUTER] JOIN for the query name of a viewed table or WITH clause
is specified in the FROM clause, and an internally derived table is created from the
query name of that viewed table or WITH clause
Example
WITH W1(C1,C2) AS (SELECT C1,COUNT(*) FROM T1 GROUP BY C1)
 SELECT W1.C1,W1.C2,T2.C2 FROM W1 LEFT JOIN T2 ON
W1.C1=T2.C1

4. UAP Design for Improving Performance and Handling

237

Note
The underlined section is the applicable location.

(f) Addition update and partial extraction facility for BLOB and BINARY data
• When BLOB-type data is specified in value expression 1 of the SUBSTR scalar

function
Example
SELECT SUBSTR(C1,1,500) FROM T1

Note
The underlined section is the applicable location. C1 is a BLOB-type column.

• When the update target of an UPDATE statement is a BLOB-type column, and a
concatenation operation is specified in the update value
Example
UPDATE T1 SET C1=C1||?

Note
The underlined section is the applicable location. C1 is a BLOB-type column.

• When the update target of an UPDATE statement is a BLOB-type column or has the
BLOB attribute, and a column or component specification is specified in the update
value
Example
UPDATE T1 SET C1=C2

Note
The underlined section is the applicable location. C1 and C2 are BLOB-type
columns.

(g) HiRDB External Data Access facility
• When a foreign table is included in a query

Example
SELECT T1.C1,FT2.C2 FROM T1 LEFT OUTER JOIN FT2
 ON T1.C1=FT2.C1

Note
The underlined section is the applicable location. FT2 is a foreign table.

(h) SQL optimization specification
• When an SQL optimization specification for a used index is specified

4. UAP Design for Improving Performance and Handling

238

Example
SELECT T1.C1 FROM T1 WITH INDEX(idx1) WHERE T1.C2<=500

Note
The underlined section is the applicable location.

• When an SQL optimization specification for a join method is specified
Example
SELECT T1.C1,T2.C2 FROM T1 INNER JOIN BY NEST T2 ON
T1.C1=T2.C1

Note
The underlined section is the applicable location.

• When an SQL optimization specification for a subquery execution method is
specified
Example
SELECT T1.C1 FROM T1 WHERE T1.C1=ANY
 (HASH SELECT T2.C1 FROM T2 WHERE T2.C2='302S')

Note
The underlined section is the applicable location.

(i) Sorting with a value expression with a defined length exceeding 255
bytes

• When a CHAR, VARCHAR, MCHAR, or MVARCHAR expression with a minimum
defined length of 256 bytes, or an NCHAR or NVARCHAR expression with a
minimum defined length of 128 characters is specified as the sort key item in an
ORDER BY clause
Example 1
SELECT C1,C2 FROM T1 ORDER BY C2

Note
The underlined section is the applicable location. C2 is a VARCHAR(300)
column.

Example 2
SELECT C1,C3||C4 FROM T1 ORDER BY 2

Note
The underlined section is the applicable location. C3||C4 is an
NCHAR(150) value expression.

4. UAP Design for Improving Performance and Handling

239

(j) Retrieve first n records
• When a LIMIT clause is specified directly after an ORDER BY clause

Example
SELECT PCODE,SQUANTITY FROM STOCK WHERE SQUANTITY>20 ORDER
BY 2,1 LIMIT 10

Note
The underlined section is the applicable location.

(k) Retrieval using the BINARY type
• When a BINARY-type column is retrieved

Example
SELECT C1 FROM T1

Note
The underlined section is the applicable location. C1 is a BINARY-type
column.

(l) Retrieval of a viewed table or WITH clause containing an internally
derived table that becomes a nesting structure with at least two levels

• When a FROM clause contains a query specification that specifies the query name
of a viewed table or WITH clause, and that viewed table or WITH clause contains
a FROM clause for a derived query expression that specifies the viewed table or
WITH clause that becomes the internally derived table
Example
WITH Q1(QC1,QC2) AS (SELECT C1,C2 FROM V1 GROUP BY C1,C2)

SELECT AVG(QC1),QC2 FROM Q1 GROUP BY QC2

Note
The underlined section is the applicable location. V1 is the viewed table that
becomes the internally derived table.

(m) Matrix partitioning
• When a retrieval, update, deletion, or list operation is performed on a

matrix-partitioned table
Example
SELECT * FROM T1

Note
The underlined section is the applicable location. T1 is a matrix-partitioned

4. UAP Design for Improving Performance and Handling

240

table.
(n) Subquery for a joined table

• When a query specification containing a joined table is specified and a subquery
is specified in the ON search condition of the FROM clause, in the WHERE clause, or
in the HAVING clause
Example
SELECT * FROM T1 LEFT JOIN T2 ON T1.C1=T2.C1
 WHERE T1.C1=ANY(SELECT C1 FROM T3)

Note
The underlined section is the applicable location.

(o) Application of the MIN or MAX set function to a repetition column
• When a repetition column in the FLAT specification is specified in the MIN or MAX

set function
Example
SELECT MIN(FLAT(C1)) FROM T1

Note
The underlined section is the applicable location. C1 is a repetition column.

(p) Row value constructor
• When a row value constructor is specified

Example
SELECT * FROM T1 WHERE (C1,C2,C3)>(1,2,3)

Note
The underlined section is the applicable location.

(q) Subquery in the CASE expression
• When a subquery is specified in the CASE expression

Example
SELECT CASE(SELECT C1 FROM T1) WHEN 1 THEN C2 ELSE C1 END
FROM T1

Note
The underlined section is the applicable location.

(r) POSITION scalar function in which value expression 2 is the BLOB type
• When the BLOB type is specified in value expression 2 of the POSITION scalar

4. UAP Design for Improving Performance and Handling

241

function
Example
SELECT POSITION(? AS BLOB(1K) IN C1) FROM T1

Note
The underlined section is the applicable location. C1 is a BLOB-type column.

(s) Referential constraint
• When insertion, update, or deletion is executed for a referenced table or a

referencing table
Example
UPDATE T1 SET C1=?

Note
The underlined section is the applicable location. T1 is a referenced table or
a referencing table.

(t) Check constraint
• When insertion or update is executed for a column in which a check constraint is

defined
Example
INSERT INTO T1(C1,C2) VALUES(?,?)

Note
The underlined section is the applicable location. C1 is the column in which
a check constraint is defined.

(u) Limit release to allow data with a defined length of 256 bytes or more
• When one of the following expressions is defined in the GROUP BY clause

• CHAR, VARCHAR, MCHAR, or MVARCHAR type with a defined length of 256
bytes or more

• NCHAR or NVARCHAR type of 128 bytes or more
• BINARY type of 256 bytes or more

Example
SELECT C1,COUNT(*) FROM T1 GROUP BY C1

Note
The underlined section is the applicable location. T1.C1 is a character string
of 256 bytes or more.

4. UAP Design for Improving Performance and Handling

242

• When one of the following value expressions is specified for an argument of a set
function

• CHAR, VARCHAR, MCHAR, or MVARCHAR type with a defined length of 256
bytes or more

• NCHAR or NVARCHAR type of 128 bytes or more
• BINARY type of 256 bytes or more

Example
SELECT MIN(C1) FROM T1

Note
The underlined section is the applicable location. T1.C1 is a character string
of 256 bytes or more.

• When a query expression body is specified in a viewed table, a WITH clause, or a
FROM clause, an internally defined table is created, and one of the following value
expressions is specified in the selection expressions of the internally derived table

• CHAR, VARCHAR, MCHAR, or MVARCHAR type of 256 bytes or more
• NCHAR or NVARCHAR type of 128 bytes or more
• BINARY type of 256 bytes or more

Example
WITH W1(C1,C2) AS (SELECT DISTINCT C1,C2 FROM T1)
 SELECT C2,COUNT(*) FROM W1 GROUP BY C2

Note
The underlined section is the applicable location. T1.C1 is a character string
of 256 bytes or more.

(v) Specification of a table targeted for data update, deletion, or addition in a
subquery

• When a table targeted for data update, deletion, or addition is specified in a
subquery
Example 1
UPDATE T1 SET C1=NULL WHERE C1=(SELECT MIN(C1) FROM T1)

Example 2
DELETE FROM T1 WHERE C1=(SELECT MIN(C1) FROM T1)

Example 3
INSERT INTO T1(C1,C2) VALUES((SELECT MIN(C1) FROM T1),NULL)

4. UAP Design for Improving Performance and Handling

243

Note
The underlined section is the applicable location.

• When a table to which data is to be added is specified in the query expression
body of the INSERT statement
Example
INSERT INTO T1(C1,C2) SELECT C1,C2+1 FROM T1

Note
The underlined section is the applicable location.

(w) Unnesting facility for repetition column in the FROM clause
• When FLAT is specified in the FROM clause

Example
SELECT C1,C2 FROM T1(FLAT(C1,C2)) WHERE C1<10 AND C2 >20

Note
The underlined section is the applicable location. C1 and C2 are repetition
columns.

(x) LIMIT clause
• When the LIMIT clause is specified

Example
SELECT PCODE, SQUANTITY FROM STOCK WHERE SQUANTITY > 20 ORDER
BY 2, 1 LIMIT 20, 10

Note
The underlined section is the applicable location.

(y) Search in which an internally derived table has two or more nesting
layers

• When the FROM clause of a query specification that creates an internally derived
table also specifies a query specification that becomes an internally derived table
Example
SELECT AVG(QC1),QC2 FROM(SELECT C1,C2 FROM V1 GROUP BY C1,C2)
AS Q1(QC1,QC2)

Note
The underlined section is the applicable location. V1 is a view table that
becomes an internally derived table.

4. UAP Design for Improving Performance and Handling

244

(z) Expansion of the specification location in the query expression body
• When a set operation is specified in a viewed table, the WITH clause, or the FROM

clause and this query creates an internally derived table
Example
WITH V1(C1,C2) AS (SELECT C1,C2 FROM T1 UNION SELECT C1,C2
FROM T2)
 SELECT C1 FROM V1 WHERE C2>0

Note
The underlined section is the applicable location.

• When a set operation is specified in the INSERT statement
Example
INSERT INTO T3 (C1,C2)
 SELECT C1,C2 FROM T1 UNION ALL SELECT C1,C2 FROM T2

Note
The underlined section is the applicable location.

• When a set operation is specified in a subquery
Example
SELECT C1, C2 FROM T3
 WHERE EXISTS(SELECT C1 FROM T1 EXCEPT SELECT C1 FROM T2)

Note
The underlined section is the applicable location.

(aa) Window functions
• When a selection expression contains a window function

Example

SELECT C1,C2,COUNT(*) OVER() FROM T1

Note

The underlined section is the applicable location.

(ab)SIMILAR predicate
• When the SIMILAR predicate is specified

Example

4. UAP Design for Improving Performance and Handling

245

SELECT C1 FROM T1 WHERE C2 SIMILAR TO '%(b|g)%'

Note

The underlined section is the applicable location.

(3) Valid scope of the SQL optimization option and SQL extension optimizing
option

Table 4-4 shows the SQL optimizing modes in which the SQL optimization option and
SQL extension optimizing option are valid.

Table 4-4: SQL optimizing modes in which the SQL optimization option and
SQL extension optimizing option are valid

V: The option is valid in this mode.
: The option is invalid in this mode.

(4) Checking the SQL optimizing mode selected by the optimization process
To check the SQL optimizing mode that was selected by the optimization process for
each SQL statement, use the access path display utility. For details about the access
path display utility, see the HiRDB Version 8 Command Reference manual.

(5) Notes
1. When the SQL optimizing mode is changed, the search performance of an SQL

statement may drop because the access path is changed. If the environment being
used for actual operation does not allow adequate evaluation of performance,
Hitachi recommends that you do not change the SQL optimizing mode.

2. If you are installing HiRDB for the first time, Hitachi recommends that you use
optimizing mode 2 based on cost. If you are using another SQL extension
optimizing option, use it by adding it to optimizing mode 2 based on cost. By
using optimizing mode 2 based on cost, you can select access paths capable of
retrieving data faster because the optimization process can select many types of
access paths.
Normally, optimizing mode 2 based on cost is applied because it is the default
value for the pd_additional_optimize_level operand in the HiRDB
system definition. Optimizing mode 2 based on cost is also applied when you use

SQL optimizing mode SQL optimization option SQL extension optimizing
option

Optimizing mode 1 based on cost V

Optimizing mode 2 based on cost V V

4. UAP Design for Improving Performance and Handling

246

the simple setup tool, the system generator, SPSetup.bat, or an environment
setup support tool such as HiRDEF to set up your HiRDB environment.

3. If you upgrade HiRDB from a version earlier than 06-00, Hitachi recommends
that you continue to use optimizing mode 1 based on cost because you are using
HiRDB in the same conditions as before the version upgrade. However, some
SQL statements may always use optimizing mode 2 based on cost.

4. Normally, the narrowing condition is considered in the optimization process.
However, if a hash join, subquery hash execution is applied to the SQL extension
optimizing option and there is no narrowing condition, or if the narrowing
condition does not produce much narrowing of the number of rows, a hash join
that sets a table with more rows as an inner table may be applied, or a table with
more rows may be transferred. In such cases, execute the optimizing information
collection utility by using one of the following methods, as necessary. For details
about the necessity of executing the optimizing information collection utility, see
the manual HiRDB Version 8 Command Reference and verify the performance.

• With data stored in the table, set the optimizing information collection level
to lvl1 (specify lvl1 in the -c option) and execute the optimizing
information collection utility. When lvl1 is specified, the optimizing
information collection utility can be executed in a relatively short time
because the utility fetches only information on the number of rows in the
table. To fetch the number of rows for all tables in the schema, specify ALL
in the -t option.

• If data cannot be stored in the table or if a test environment is being used,
specify the number of rows (NROWS) found in the table used in the actual
environment, specify the -s option for each table, and then execute
optimization. The following is an example of the specification in the
optimization parameter file when the number of rows in the table is set to
1,000:
Table optimization information
 NROWS 1000 # Total number of rows in table

5. If you are using optimizing mode 1 based on cost, normally you do not need to
execute the optimizing information collection utility. But if you do execute the
utility, set the optimizing information collection level to lvl1.

4.5.2 Optimization method types
This subsection describes the optimization method types for SQL optimization
specifications, SQL optimization options, and SQL extension optimizing options.

(1) SQL optimization specifications
The SQL optimization specifications consist of the following optimization methods:

4. UAP Design for Improving Performance and Handling

247

• SQL optimization specification for a used index
• SQL optimization specification for a join method
• SQL optimization specification for a subquery execution method

(2) SQL optimization options
The SQL optimization options consist of the following optimization methods:
1. Forced nest-loop-join
2. Making multiple SQL objects
3. Increasing the target floatable servers (back-end servers for fetching data)
4. Prioritized nest-loop-join
5. Increasing the number of floatable server candidates
6. Priority of OR multiple index use
7. Group processing, ORDER BY processing, and DISTINCT set function processing

at the local back-end server
8. Suppressing use of AND multiple indexes
9. Rapid grouping processing
10. Limiting the floatable target servers (back-end servers for fetching data)
11. Separating data collecting servers
12. Suppressing index use
13. Forcing use of multiple indexes
14. Suppressing creation of update-SQL work tables
15. Deriving high-speed search conditions
16. Applying a key condition that includes a scalar operation
17. Facility for batch acquisition from functions provided by plug-ins

(3) SQL extension optimizing options
The SQL extension optimizing options consist of the following optimization methods:
1. Application of optimizing mode 2 based on cost
2. Hash join, subquery hash execution
3. Suppressing foreign server execution of SQL statements that contain join

operations
4. Forcing foreign server execution of SQL statements that contain direct products

4. UAP Design for Improving Performance and Handling

248

5. Suppressing derivation of unconditionally created high-speed search conditions
for foreign server execution

4.5.3 Specifying SQL optimization
(1) Locations where SQL optimization can be specified

(a) SQL optimization specifications
SQL optimization specifications can be specified in the following SQL statements:

• Subqueries
• Table expressions
• DELETE statement
• UPDATE statement

(b) SQL optimization options and SQL extension optimizing options
SQL optimization options and SQL extension optimizing options can be specified at
the following locations. Normally, you would specify this options in the system
common definitions, so that the options will be valid for all SQL statements.

• pd_optimize_level, pd_additional_optimize_level operand of the
system common definitions

• pd_optimize_level, pd_additional_optimize_level operand of the
front-end server definitions

• PDSQLOPTLVL, PDADDITIONALOPTLVL of the client environment definitions
• SQL compile option (procedure body of ALTER PROCEDURE, ALTER ROUTINE,

ALTER TRIGGER, CREATE PROCEDURE, CREATE TRIGGER and CREATE TYPE)
(2) Priority

The priority when SQL optimization options and SQL extension optimizing options
are specified in several locations is as follows. If SQL optimization specifications are
specified in SQL statements, they have priority over SQL optimization options and
SQL extension optimizing options.

(a) Data manipulation SQL statements in locations other than stored
routines and triggers
The priority is as follows:
1. PDSQLOPTLVL and PDADDITIONALOPTLVL of the client environment definitions
2. pd_optimize_level and pd_additional_optimize_level operands of

the front-end server definitions
3. pd_optimize_level and pd_additional_optimize_level operands of

4. UAP Design for Improving Performance and Handling

249

the system common definitions
(b) Data manipulation SQL statements in stored routines and in triggers

The priority is as follows:
1. SQL command options (procedure body of ALTER PROCEDURE, ALTER

ROUTINE, ALTER TRIGGER, CREATE PROCEDURE, CREATE TRIGGER and
CREATE TYPE)

2. pd_optimize_level and pd_additional_optimize_level operands of
the front-end server definitions

3. pd_optimize_level and pd_additional_optimize_level operands of
the system common definitions

4.5.4 Allocating floatable servers (HiRDB/Parallel Server only)
(1) Query processing method in HiRDB

The HiRDB/Parallel Server divides query processing of SQL statements into three
main steps and executes the statements. Figure 4-9 shows the query processing method
of SQL statements in the HiRDB/Parallel Server.

4. UAP Design for Improving Performance and Handling

250

Figure 4-9: SQL statement query processing in a HiRDB/Parallel Server

Explanation
1. The back-end servers fetch data. If the query involves two or more tables,

data communication is executed between back-end servers using a join
method, and Step 1 may be broken down into several levels.

2. The floatable servers perform grouping, sorting, duplicate elimination, and
set operation processing. Depending on the processing method, there are
times when floatable servers are not used and when data communication is
executed between floatable servers, and Step 2 is broken down in several
levels.

4. UAP Design for Improving Performance and Handling

251

3. The front-end server collects the query results and transfers the results to the
client.

In the HiRDB system, the floatable servers that are used in step 2 automatically
allocate the back-end servers that are not accessed with SQL statements to those
individual SQL statements. However, if the SQL optimization option is specified, the
allocation method for floatable servers can be changed.
The optimization methods related to floatable server allocation are shown as follows.
For details about these optimization methods, see (2) as follows:

• Increasing the target floatable servers (back-end servers for fetching data)
• Limiting the target floatable servers (back-end servers for fetching data)
• Separating data collecting servers

When the next optimization method is applied, the number of allocated floatable
servers can be increased to the maximum value. The features of this optimization
method are described in (3).

• Increasing the number of floatable server candidates
(2) Optimization features related to floatable server allocation

Table 4-5 shows the optimization features related to floatable server allocation.
Table 4-5: Optimization features related to floatable server allocation

Optimization method Advantages Disadvantages

Omitted When an SQL statement that fetches
data is executed concurrently from the
same back-end server, search processing
can be executed rapidly because
load-imposing processes such as sorting
are not allocated to back-end servers for
fetching data.

The communication load increases
because back-end servers that do not
fetch data are allocated as floatable
servers.

Increasing the target
floatable servers (back-end
servers for fetching data)

When this method is combined with
"increasing the number of floatable
server candidates," the effectiveness of
parallel processes such as sorting
increases in the floatable servers
because all back-end servers are
allocated as floatable servers.

When multiple SQL statements are
executed concurrently, the concurrent
execution performance drops because
multiple processes are allocated to the
same floatable server. The
communication load also increases.

Limiting the target floatable
servers (back-end servers
for fetching data)

Work division of the back-end servers
can be implemented based on table
definitions because only those back-end
servers in which tables to be used for
searching are defined are allocated as
floatable servers.

If a large volume of data is stored in a
table that has few partitions, all
back-end servers cannot be used
effectively because the number of
floatable servers that can be used
decreases.

4. UAP Design for Improving Performance and Handling

252

(3) Optimization features related to the number of floatable server allocation
candidates

Table 4-6 shows the optimization features related to the number of floatable server
allocation candidates.

Table 4-6: Optimization features related to number of floatable server allocation
candidates

(4) Allocating floatable servers at each optimization
(a) When the optimization method is omitted

Figure 4-10 shows floatable server allocation when the optimization method is
omitted.

Separating data collection
servers

When data is sent to a data collection
server from both that server and a
separate server at the same time, the
transfer from the same server has
priority. Therefore the processing for the
separate server is performed later. When
separating data collection servers is
applied, data is accepted equally for all
servers because all servers can be treated
as individual servers.

When a single SQL statement
contains multiple queries, such as set
operations and searches involving
subqueries, the concurrent execution
performance drops because the same
floatable server is used for all of those
queries.

Optimization method Advantages Disadvantages

Omitted In searches involving many data items,
more servers are allocated as floatable
servers. In searches involving few data
items, fewer servers are allocated as
floatable servers.

If a narrowing predicate such as = or
BETWEEN is specified in the search
conditions, the HiRDB system judges
that the number of data items is low
and automatically reduces the number
of allocated floatable servers. If the =
or BETWEEN specification does not
actually narrow the search, the
processing load on the servers
increases.

Increasing the number of
floatable server candidates

In searches involving many data items,
the HiRDB system uses all floatable
servers so that the search can be
performed efficiently.

If the number of data items is small,
the concurrent execution performance
for SQL statements drops because the
HiRDB system uses all floatable
servers. Also, when there are many
table partitions, the communication
load increases because the
communication paths between the
servers become complex.

Optimization method Advantages Disadvantages

4. UAP Design for Improving Performance and Handling

253

Figure 4-10: Floatable server allocation when the optimization method is
omitted

Explanation
If increasing the number of floatable server candidates is not specified, the
HiRDB system determines the number of floatable servers that is necessary and
allocates them from FLT1 and FLT2.
If increasing the number of floatable server candidates is specified, the HiRDB
system allocates both FLT1 and FLT2 as floatable servers.
Apply this optimization method if the system has back-end servers in which no
tables are defined, multiple SQL statements fetch the same data, and the back-end
servers for fetching data are to be used only for fetching data.

(b) When increasing the target floatable servers (back-end servers for
fetching data) is applied
Figure 4-11 shows floatable server allocation when increasing the target floatable
servers (back-end servers for fetching data).

4. UAP Design for Improving Performance and Handling

254

Figure 4-11: Floatable server allocation when increasing the target floatable
servers (back-end servers for fetching data) is applied

Explanation
If increasing the number of floatable server candidates is not specified, the
HiRDB system determines the number of floatable servers necessary and
allocates them from BES1, BES2, BES3, FLT1, and FLT2. However, all of these
servers are not necessarily allocated.
If increasing the number of floatable server candidates is specified, the HiRDB
system allocates BES1, BES2, BES3, FLT1, and FLT2 as floatable servers.
Apply this optimization method if the SQL statements are executed individually,
and all back-end servers are to be used efficiently.

(c) When limiting the target floatable servers (back-end servers for fetching
data) is applied
Figure 4-12 shows floatable server allocation when limiting the target floatable servers
(back-end servers for fetching data) is applied.

4. UAP Design for Improving Performance and Handling

255

Figure 4-12: Floatable server allocation when limiting the target floatable
servers (back-end servers for fetching data) is applied

Explanation
If increasing the number of floatable server candidates is not specified, the
HiRDB system determines the number of floatable servers necessary and
allocates them from BES1, BES2, and BES3. However, all of these servers are
not necessarily allocated.
If increasing the number of floatable server candidates is specified, the HiRDB
system allocates BES1, BES2, and BES3 as floatable servers.
Apply this optimization method if multiple SQL statements are to be executed,
each search process accesses tables defined in a different back-end server, and the
back-end servers used for the individual tables are to be operated separately.

(d) When separating data collecting servers is applied
Figure 4-13 shows floatable server allocation when separating data collecting servers
is used.

4. UAP Design for Improving Performance and Handling

256

Figure 4-13: Floatable server allocation when separating data collecting servers
is applied

Explanation
For SQL statements that must collect data (data collecting) from multiple BES
units into one BES, the HiRDB system allocates FLT2 from FLT1, FLT2, and
FLT3 as the server for data collecting. If an SQL statement executes data
collecting several times, the HiRDB system always allocates this data collecting
server (FLT3). If a process other that data collecting is to be executed and
increasing the number of floatable server candidates is not specified, the HiRDB
system determines the number of floatable servers that is necessary and allocates
them from BES1, BES2, BES3, FLT1, and FLT2. However, all of these servers
are not necessarily allocated.
If increasing the number of floatable server candidates is specified, the HiRDB
system allocates BES1, BES2, BES3, FLT1, and FLT2 as floatable servers.
Apply this optimization method if the SQL statements do not contain data
collecting processes, and increasing the target floatable servers (back-end servers
for fetching data) is applied.

4.5.5 Grouping processing methods (HiRDB/Parallel Server only)
The following optimization methods affect grouping processing:

• Rapid grouping processing
• Group processing, ORDER BY processing, and DISTINCT set function processing

at the local back-end server
If the HiRDB system judges that sort and hash processing for grouping are
unnecessary, it selects a method that can process the data faster. For details about
grouping processing, see the HiRDB Version 8 Command Reference manual.

4. UAP Design for Improving Performance and Handling

257

Table 4-7 describes the optimization features related to grouping processing methods.
Table 4-7: Optimization features related to grouping processing methods

(a) Grouping processing when the optimization method is omitted
Figure 4-14 shows grouping processing when the optimization method is omitted.

Optimization method
(type of grouping

processing method)

Advantages Disadvantages

Omitted (FLOATABLE
SORT)

Data can be searched rapidly if the data
count values are unevenly distributed
among the back-end servers and
grouping does not reduce the data count.

If the group count is small and the data
count is high, the performance drops
because the communication volume
increases.

Rapid grouping processing
(HASH)

Data can be searched rapidly when the
group count is small.

If the group count is large, the
performance drops because the data is
grouped by hashing.

Group processing, ORDER
BY processing, and
DISTINCT set function
processing at the local
back-end server (LIST
SORT)

Data can be searched rapidly if grouping
substantially decreases the data count.
Data can also be searched rapidly if the
data is grouped by partitioning keys.

If the data count values are unevenly
distributed among the back-end
servers because of sorting in each
back-end server, the performance
drops because processing takes a long
time in servers that have a high data
count.

4. UAP Design for Improving Performance and Handling

258

Figure 4-14: Grouping processing method when the optimization method is
omitted

Explanation
1. The back-end servers perform only data fetching.
2. The floatable servers perform only sorting and grouping by grouping

columns.
3. The front-end server collects grouping processing results and transfers the

results to the client.

4. UAP Design for Improving Performance and Handling

259

(b) Grouping processing when rapid grouping processing is applied
Figure 4-15 shows grouping processing when rapid grouping processing is applied.

Figure 4-15: Grouping processing when rapid grouping processing is applied

Explanation
1. The back-end servers fetch data, and then hash and group the data by

grouping columns. (The floatable servers are not used.)
2. The front-end server collects grouping results from each back-end server,

regroups the combined data, and transfers the results to the client.

4. UAP Design for Improving Performance and Handling

260

(c) Grouping processing when group processing, ORDER BY processing,
and DISTINCT set function processing are applied at the local back-end
server
Figure 4-16 shows grouping processing when group processing, ORDER BY
processing, and DISTINCT set function processing are applied at the local back-end
server. However, this diagram shows the processing when one table is searched.

Figure 4-16: Grouping processing when group processing, ORDER BY
processing, and DISTINCT set function processing are applied at the local
back-end server

Explanation

4. UAP Design for Improving Performance and Handling

261

1. The back-end servers fetch data, and then sort and group the data by
grouping columns. (The floatable servers are not used.)

2. The front-end server collects grouping results from each back-end server,
regroups the combined data, and transfers the results to the client.

4.5.6 Join methods
(1) Join method types

Table 4-8 describes the join method types (except direct product) and their features. If
the join methods found in this table cannot be applied, direct product is applied.

Table 4-8: Join method types and features

Join method Processing
method

Initial data
fetching

Advantages Disadvantages

Merge join This method sorts
the data by join
column and
executes matching
in sequence from
the smallest value in
the join column.

Slow The performance
degradation is small
compared with other
methods because even
tables with many hits can
be joined with a small
amount of memory.
Data can be searched
rapidly if the join column
data has already been
sorted, and the sort
processing for merge
join can be cancelled.

If the data in the
columns to be joined has
not been sorted, the sort
processing load
increases, and the
performance drops.

Nested-loops-j
oin

This method uses
join column values
from the outer table,
searches the index
defined in the join
column of the inner
table, and
repeatedly
processes nested
matches.

Fast Data can be searched
rapidly if the inner table
can be narrowed with the
index specified in the
join column.

If the hit count of the
outer table is high, the
performance drops
because the index is used
to search the inner table
each time a row is
fetched from the outer
table.

Hash join This method creates
a hash table from the
join column of the
inner table, hashes
the join column of
the outer table, and
executes matching
with the hash table
that was created
from the inner table.

Fast if the
number of
hits in the
inner table is
small (slower
than
next-loop-joi
n, but faster
than merge
join)

Data can be searched
rapidly when the hit
count is low for the inner
table and high for the
outer table.

If the hit count in the
inner table is high,
memory usage becomes
high. The performance
drops because the hits
for which memory is
unavailable are first
saved to a file.

4. UAP Design for Improving Performance and Handling

262

* In some cases, the optimal access path cannot be selected even if the optimizing
information collection utility is executed. For details about the necessity of executing
the optimizing information collection utility, see the manual HiRDB Version 8
Command Reference and verify the performance.

(2) Processing methods
(a) Merge join

Merge join is effective when the outer table cannot be narrowed very much.
SORT MERGE JOIN

This join method fetches rows from the outer and inner table, creates the
respective work tables, and sorts the data. The join method then joins the rows if
the join condition is satisfied.
Figure 4-17 shows the processing of SORT MERGE JOIN.

SELECT-APSL If a condition
contains a ?
parameter, this
method prepares
several join method
candidates, and
determines the
optimal search
method when the
value of the ?
parameter is input.

Differs
depending on
the search
method that is
selected

The optimal search
method can be selected
when the value of the ?
parameter is input.

The optimizing
information collection
utility (pdgetcst) must
be executed.* Also, the
SQL object size
becomes large because
several join methods are
prepared.

Distributed
nested loops
join

This method uses
join column values
of the outer table to
match up the values
in a foreign table,
which is the inner
table. (This method
is applied when
HiRDB External
Data Access is
installed in the
system.)

Fast Data can be retrieved
quickly if the number of
outer table hits is small
and the number of inner
table hits is large.

Because the foreign
server containing the
foreign table is searched
each time a row is
fetched from the outer
table, the performance
worsens as the number
of outer table hits
increases.

Join method Processing
method

Initial data
fetching

Advantages Disadvantages

4. UAP Design for Improving Performance and Handling

263

Figure 4-17: Processing of SORT MERGE JOIN

KEY SCAN MERGE JOIN
This join method system fetches rows from the outer and inner table by using KEY
SCAN. The join method then joins the rows if the join condition is satisfied.
Figure 4-18 shows the processing of KEY SCAN MERGE JOIN.
Figure 4-18: Processing of KEY SCAN MERGE JOIN

LIST SCAN MERGE JOIN
This join method creates work tables from the outer and inner tables, and fetches
rows in ascending join column order without sorting the data beforehand. The join
method then joins the rows if the join condition is satisfied.
Figure 4-19 shows the processing of LIST SCAN MERGE JOIN.

4. UAP Design for Improving Performance and Handling

264

Figure 4-19: Processing of LIST SCAN MERGE JOIN

L-KEY R-LIST MERGE JOIN
This join method fetches rows from the outer table by using KEY SCAN. The
method creates a work table for the inner table and fetches rows without first
sorting the data. The join method then joins the rows if the join condition is
satisfied.

L-KEY R-SORT MERGE JOIN
This join method system fetches rows from the outer table by using KEY SCAN.
The join method creates a work table for the inner table, sorts the data, and fetches
rows. The join method then joins the rows if the join condition is satisfied.

L-LIST R-KEY MERGE JOIN
This join method creates a work table for the outer table and fetches rows without
first sorting the data. The join method fetches rows from the inner table by using
KEY SCAN. The join method then joins the rows if the join condition is satisfied.

L-LIST R-SORT MERGE JOIN
This join method creates a work table for the outer table and fetches rows without
first sorting the data. The join method creates a work table for the inner table, sorts
the data, and fetches rows. The join method then joins the rows if the join
condition is satisfied.

L-SORT R-KEY MERGE JOIN
This join method creates a work table for the outer table, sorts the data, and
fetches rows. The join method fetches rows from the inner table by using KEY
SCAN. The join method then joins the rows if the join condition is satisfied.

L-SORT R-LIST MERGE JOIN
This join method creates a work table for the outer table, sorts the data, and
fetches rows. The join method creates a work table for the inner table, sorts the
data, and fetches rows. The join method then joins the rows if the join condition
is satisfied.

4. UAP Design for Improving Performance and Handling

265

(b) Nested-loops-join
Nested-loops-join is effective if an index is defined in the inner table, and the outer
table can be narrowed significantly
NESTED LOOPS JOIN

This join method fetches rows one at a time from the outer table, matches them to
individual rows in the inner table, and executes nested loop processing that
fetches rows that satisfy the join condition.
Figure 4-20 shows the processing of NESTED LOOPS JOIN.
Figure 4-20: Processing of NESTED LOOPS JOIN

Note
In some cases, an index is used when the outer table is searched.

R-LIST NESTED LOOPS JOIN
This join method fetches rows from the inner table and creates a work table. The
join method then fetches rows one at a time from the outer table, matches the work
table that was created from the inner table to those individual rows, and executes
nested loop processing that fetches rows that satisfy the join conditions.
Figure 4-21 shows the processing of R-LIST NESTED LOOPS JOIN.

4. UAP Design for Improving Performance and Handling

266

Figure 4-21: Processing of R-LIST NESTED LOOPS JOIN

Note
In some cases, an index is used when the outer table is searched.

(c) Hash join
HASH JOIN

This join method first hashes the inner table with the join column values and
creates a hash table. The join method then hashes the outer table with the join
column values each time a row is fetched, and matches the outer table with the
hash table that was created from the inner table.
Figure 4-22 shows the processing of HASH JOIN.

4. UAP Design for Improving Performance and Handling

267

Figure 4-22: Processing of HASH JOIN

There are four hash join processing methods. Table 4-9 describes the hash join
processing methods and features.

Table 4-9: Hash join processing methods and features

Processing
method

Description Advantages Disadvantages Selection
method

Batch hash
join

This method performs
hash join by expanding the
hash table that was created
from the inner table into
the buffer area for all work
tables.

Hash join can be
processed rapidly
because this method
expands the entire
hash table in the
work table buffer
area before
executing hash join.

If the hash table for
the inner table is
large, the system's
capability to execute
SQL statements
simultaneously is
diminished because
the work table work
area becomes large.

Change the
hash table size.*

4. UAP Design for Improving Performance and Handling

268

Bucket
partitioning
hash join

This method partitions the
inner and outer tables into
several buckets, creates a
hash table from some of
the inner table buckets,
and expands it in the work
table buffer area. This
method then saves the
remaining buckets in a
work table file and reads
the contents of inner table
buckets that were
expanded in the work table
buffer area and the outer
table buckets of the area
with the same value. The
method then expands the
inner table from the work
table file to the work table
buffer area a little at a
time, and executes hash
join.
The amount of memory
used becomes small, and
the processing
performance drops
slightly.

Hash join can be
executed in
environments that
have a small work
table buffer area.

Because the rows of
the inner and outer
table are first saved
to a work table file,
the performance
drops compared to
when hash join is
executed with only
work table buffer
area.

Change the
hash table size.*

Continuous
hash join

When three or more tables
are searched, this method
creates hash tables from
the tables, except the
outermost table, expands
the hash tables in the work
table buffer area, and
executes hash join in
succession.
The amount of memory
used becomes large, and
the processing
performance improves.

Hash join can be
processed rapidly
because this method
expands the entire
hash table in the
work table buffer
area before
executing hash join.
Also, hash join can
be processed rapidly
when only the
outermost table is
large.

When the number of
tables to be executed
becomes large, the
work table buffer
area that is used
becomes large.

This method
cannot be
selected. The
HiRDB system
automatically
selects the
optimal method
based on the
number of table
rows.

Processing
method

Description Advantages Disadvantages Selection
method

4. UAP Design for Improving Performance and Handling

269

* For details about how to change the hash table size, see 4.5.10 Preparing for
application of hash join and subquery hash execution.
The processing methods are summarized as follows.

Batch hash join
This processing method expands the entire hash table created from the inner table
in the work table buffer area and then executes hash join. Figure 4-23 shows the
processing method of batch hash join.
Figure 4-23: Processing method of batch hash join

Bucket partitioning hash join

Intermittent
hash join

When three or more tables
are searched, this method
executes hash join by
saving the join results to a
work table file each time
tables or work tables are
joined.

Hash join involving
three or more tables
can be executed even
in environments that
have a small work
table buffer area.

The number of I/O
operations increases
and performance
drops because the
join results are first
saved to a file each
time tables or work
tables are joined.

This method
cannot be
selected. The
HiRDB system
automatically
selects the
optimal method
based on the
number of table
rows.

Processing
method

Description Advantages Disadvantages Selection
method

4. UAP Design for Improving Performance and Handling

270

This processing method partitions the inner and outer table into buckets, expands
part of the inner table into the work table buffer area, and saves the remaining
sections to a work table file.
Bucket partitioning refers to hashing a table with join row values and partitioning
the table into multiple small tables. Join processing is executed on an inner table
section that was expanded in the work file buffer area. First, a hash table is created
from the inner table, and rows are fetched one at a time from the outer table and
then merged and joined with the hash table that was created from the inner table.
After joining of the tables found in the work table buffer area is completed, the
buckets of the outer and inner tables are expanded from the work table files into
the work table buffer area, and join processing is executed in the same manner.
Processing ends after all tables are expanded into the work table buffer area and
joined.
Figure 4-24 shows the processing method of bucket partitioning hash join.

4. UAP Design for Improving Performance and Handling

271

Figure 4-24: Processing method of bucket partitioning hash join

Continuous hash join
This processing method is applied to searches involving three or more tables.
First, hash tables are created from all target tables except the outermost table and
expanded into the work table buffer area. Next, a row is fetched from the outer
table, hashed, and then matched and joined with the hash table that was created
from the inner table. If the join condition is satisfied, the row is hashed with the
join result, and then matched and joined with the hash table.
When joining is completed to the last row or when the condition becomes false,
processing returns to the outermost table, the next row is fetched, and join
processing is repeated in the same manner. During join processing, if there is a

4. UAP Design for Improving Performance and Handling

272

location where the join key value in the inner table is duplicated, processing
returns to that location and join processing is repeated. When processing of all
duplicate key values is completed, processing returns to the outermost table, the
next row is fetched, and join processing is repeated in the same manner.
Figure 4-25 shows the processing method of a continuous hash join.
Figure 4-25: Processing method of continuous hash join

Intermittent hash join
This processing method is applied to searches involving three or more tables.
First, a hash table is created from the inner table of the first join and expanded in
the work table buffer area. Next, rows are fetched one at a time from the outer
table, hashed with the join column values of the outer table, and then matched and
joined with the hash table that was created from the inner table. After all lines
from the outer table have been fetched and joined, processing proceeds to the next
join process.
The processing changes depending on whether the join result becomes the outer
table or the inner table.
If the join result becomes the outer table, a hash table is created from the next
inner table to be joined, and rows are fetched one at a time from the join results
and then matched and joined with the hash table that was created from the inner
table.

4. UAP Design for Improving Performance and Handling

273

If the join result becomes the inner table, a hash table is created from the join
results, and rows are fetched one at a time from the outer table and then matched
and joined with the hash table that was created from the join results.
Figure 4-26 shows the processing method of intermittent hash join. In the
example shown for this processing method, that tables are joined as follows: outer
table 1 ((outer table 2 inner table 1) inner table 2).
Figure 4-26: Processing method of intermittent hash join

4. UAP Design for Improving Performance and Handling

274

(d) SELECT-APSL
SELECT-APSL is a method that dynamically determines the join method during SQL
execution.
SELECT-APSL (HiRDB/Parallel Server only)

If the conditions include the ? parameter, the optimal join method may change
depending on the value of the ? parameter. Also, if the value of the ? parameter
cannot be determined during SQL optimization processing, the optimal join
method cannot be determined. The system therefore determines the join method
by calculating the hit ratio during SQL execution.
SELECT-APSL is described as follows based on a display example of the access
path display utility (pdvwopt).
Condition T1(outer-table).C1=? parameter
Reference value 0.047
[1] Nest-loop-join
[2] Merge join

Explanation
• If the hit rate of the predicate T1(outer-table).C1=? parameter is less

than the reference value (0.047), nested-loops-join is selected during
execution because the hit rate is small and the outer table can be narrowed
substantially.

• If the hit rate of the predicate T1(outer-table).C1=? parameter is
equal to or greater than the reference value (0.047), merge join is selected
during execution because the hit rate is large and the outer table cannot be
narrowed very much.

(e) Distributed nested loops join
DISTRIBUTED NESTED LOOPS JOIN (DNL JOIN)

The DISTRIBUTED NESTED LOOPS JOIN method performs a nested-type loop
process that fetches rows that satisfy the join condition. To do this, the local
HiRDB fetches rows from the outer table. Then for each row, the local HiRDB
executes an SQL statement that uses a variable to pass the values of the outer table
row to the foreign server where the inner table (foreign table) is located. The
values of the outer table row are then matched with those in the inner table. The
local HiRDB can get the retrieval search results from the foreign database
(DBMS) by sending a foreign table acquisition request to the foreign table.
Figure 4-27 shows the processing method of DISTRIBUTED NESTED LOOPS
JOIN.

4. UAP Design for Improving Performance and Handling

275

Figure 4-27: Processing method of DISTRIBUTED NESTED LOOPS JOIN

(f) Cross join
CROSS JOIN

The CROSS JOIN process method combines and joins all rows of the outer table
and all rows of the inner table. If there are conditions that apply across both tables,
the conditions are judged after the tables are joined.
Figure 4-28 shows the CROSS JOIN processing method.
Figure 4-28: CROSS JOIN processing method

Note

4. UAP Design for Improving Performance and Handling

276

Depending on the condition, sometimes a work table is not created.

4.5.7 Search Methods
(1) Search method types

Table 4-10 describes the search method types (except LIST SCAN, ROWID FETCH,
FOREIGN SERVER SCAN and FOREIGN SERVER LIMIT SCAN) and their features.
LIST SCAN is applied when a work table is created and searched, for example, in a
viewed table search or a WITH clause query expression. ROWID FETCH is applied when
a cursor is used. FOREIGN SERVER SCAN and FOREIGN SERVER LIMIT SCAN are
applied when the local HiRDB gets retrieval results from a foreign server.

Table 4-10: Search method types and features

Search method Processing method Advantages Disadvantages

Table scan(TABLE
SCAN)

This method sequentially
searches the pages (data
pages) in which the table
is stored and references all
rows. The initial data
fetch is fairly slow.

When all data items are to be
searched, the data can be
searched rapidly.
The data can be searched
rapidly even if the search
cannot be narrowed with an
index.

Even if the search results
can be narrowed by
conditions, the
performance is poor
because all data pages are
referenced.

Index scan
(INDEX SCAN,
MULTI COLUMNS
INDEX SCAN,
PLUGIN INDEX
SCAN)

This method executes a
binary search of the index,
and then each time it
retrieves the row identifier
of a target data item, it
references the database
row indicated by that row
identifier. The initial data
fetch is fast.

The data can be searched
rapidly when the search can
be narrowed with an index.
The data rows can be
obtained in order (or reverse
order) of the index
configuration column
values.1
The data can be searched
rapidly even if a cluster key
index is used and the search
cannot be narrowed very
much.

If the search cannot be
narrowed very much with
an index, the number of
random I/O operations
performed on the data
pages increases, and
performance drops.

4. UAP Design for Improving Performance and Handling

277

Key scan(KEY SCAN,
MULTI COLUMNS KEY
SCAN, PLUGIN KEY
SCAN)

This method executes a
binary search of the index
and references only the
data found in the index
(configuration column
values or row identifiers
of the index). This method
is applied when only the
configuration columns or
row identifiers of the
index are to be referenced.
The initial data fetch is
fast.

Even if the search cannot be
narrowed very much with an
index, the data can be
searched rapidly because
only the index pages are
referenced and there is no
data page input or output.
The rows can be obtained in
order (or reverse order) of
the index configuration
column values.1

None

SELECT-APSL If a condition contains a ?
parameter, this method
prepares several join
method candidates, and
determines the optimal
search method when the
value of the ? parameter is
input.
The speed of the initial
data fetch differs
according to the search
method that is actually
selected.

When the value of the ?
parameter is input, the
optimal search method can
be selected by considering
the narrowing rate obtained
with the index.

The optimizing
information collection
utility (pdgetcst) must
be executed.2 Also, the
SQL object size becomes
large because several
search candidates are
prepared.

AND multiple index
usage(AND PLURAL
INDEXES SCAN)

This method uses multiple
indexes, creates multiple
work tables, combines
product sets, sum sets, and
difference sets between
the work tables to obtain
results.
The initial data fetch is
slow.

Because the results are
obtained by combining,
product sets, sum sets, and
difference sets, indexes can
be used in evaluating the
data even when multiple
conditions are specified.

This method creates
several work tables and
sorts the data in each
work table. Thus, if the
search cannot be
narrowed with an index,
the performance drops
because the number of
items to be sorted is large.

OR multiple index
usage(OR PLURAL
INDEXES SCAN)

This method stores results
retrieved by using
multiple indexes into one
work table, and executes
duplicate elimination at
the end to obtain results.
The initial data fetch is
slow.

The data can be searched
rapidly if narrowing with an
index is possible for the
individual search conditions
that are combined with the
OR operator.

This method uses
multiple indexes to
search the data, stores the
results in one work table,
sorts the results, and
executes duplicate
elimination. Thus, if
there are many data items
before duplicate
elimination, the
performance drops.

Search method Processing method Advantages Disadvantages

4. UAP Design for Improving Performance and Handling

278

1 In processing that requires sorting, the rows can be obtained in order (or reverse
order) of the index configuration column values. However, if HiRDB judges that
sorting is unnecessary, it may cancel sort processing.
2 In some cases, the optimal access path cannot be selected even if the optimizing
information collection utility is executed. For details about the necessity of executing
the optimizing information collection utility, see the manual HiRDB Version 8
Command Reference and verify the performance.

(2) Processing methods
(a) Search using no index

TABLE SCAN
This processing method searches the database pages of a table without using an
index. Figure 4-29 shows the TABLE SCAN processing method.

Figure 4-29: TABLE SCAN processing method

(b) Search using one index
INDEX SCAN

This processing method searches the index pages of a single-column index to
narrow the search and then searches the data pages of the table. Figure 4-30 shows
the INDEX SCAN processing method.
Figure 4-30: INDEX SCAN processing method

KEY SCAN

4. UAP Design for Improving Performance and Handling

279

This processing method searches only the index pages of a single-column index.
The data pages are not searched. Figure 4-31 shows the KEY SCAN processing
method.
Figure 4-31: KEY SCAN processing method

MULTI COLUMNS INDEX SCAN
This processing method searches the index pages of a multi-column index to
narrow the search and then searches the data pages of the table. Figure 4-32 shows
the MULTI COLUMNS INDEX SCAN processing method.
Figure 4-32: MULTI COLUMNS INDEX SCAN processing method

MULTI COLUMNS KEY SCAN
This processing method searches only the index pages of a multi-column index.
The data pages are not searched. Figure 4-33 shows the MULTI COLUMNS KEY
SCAN processing method.
Figure 4-33: MULTI COLUMNS KEY SCAN processing method

4. UAP Design for Improving Performance and Handling

280

PLUGIN INDEX SCAN
This processing method uses a plug-in index to narrow the search and then
searches the data pages of the table. Figure 4-34 shows the PLUGIN INDEX SCAN
processing method.
Figure 4-34: PLUGIN INDEX SCAN processing method

Note
The structure of the plug-in index differs according to the plug-in.

PLUGIN KEY SCAN
This processing method searches only the index pages of a plug-in index. The data
pages are not searched. Figure 4-35 shows the PLUGIN KEY SCAN processing
method.
Figure 4-35: PLUGIN KEY SCAN processing method

Note
The structure of the plug-in index differs according to the plug-in.

(3) SELECT APSL
SELECT-APSL (for HiRDB/Parallel Server)

If the conditions include the ? parameter, the optimal search method may change
depending on the value of the ? parameter. Also, if the value of the ? parameter
cannot be determined during preprocessing, the optimal search method cannot be

4. UAP Design for Improving Performance and Handling

281

determined. The system therefore determines the search method by calculating
the hit ratio during SQL execution.

(4) Search using multiple indexes
AND PLURAL INDEXES SCAN

For search conditions that are combined with the AND or OR operator, the
respective indexes are used to conduct the search, and the row identifiers (ROWID)
are stored in the respective work tables. These work tables are consolidated into
a single work table by forming a product set when the AND operator is used, a sum
set when the OR operator is used, and a difference set when the ANDNOT operator
(can only be used in the ASSIGN LIST statement) is used. Then rows are fetched
based on the row identifiers of this work table.
When creating a work table of row identifiers from each condition, HiRDB
sometimes uses TABLE SCAN to create the work table, even if the condition
column does not have an index.
Figure 4-36 shows the AND PLURAL INDEXES SCAN processing method.
Figure 4-36: AND PLURAL INDEXES SCAN processing method

OR PLURAL INDEXES SCAN
For search conditions that are combined with the OR operator, the respective
indexes are used to conduct the search, and the row identifiers (ROWID) are stored
in one work table. After the duplicate rows in the work table are eliminated by
duplicate elimination, the rows are fetched based on the row identifiers.
When creating a work table of row identifiers from each condition, HiRDB
sometimes uses TABLE SCAN to create the work table, even if the condition

4. UAP Design for Improving Performance and Handling

282

column does not have an index.
Figure 4-37 shows the OR PLURAL INDEXES SCAN processing method.
Figure 4-37: OR PLURAL INDEXES SCAN processing method

(5) Search of internally created work table
LIST SCAN

This processing method searches a work table that was created internally.
Figure 4-38 shows the LIST SCAN processing method.
Figure 4-38: LIST SCAN processing method

(6) Search using a row identifier
ROWID FETCH

This processing method searches a table by using row identifiers (ROWID) as keys.
If the row does not have to be fetched, a search is not executed.
Figure 4-39 shows the ROWID FETCH processing method.

4. UAP Design for Improving Performance and Handling

283

Figure 4-39: ROWID FETCH processing method

(7) Retrieving query results from a foreign server
FOREIGN SERVER SCAN

The local HiRDB executes an SQL statement to the foreign server where the
foreign table is located. The local HiRDB then receives the retrieval results for
the query.
Figure 4-40 shows the FOREIGN SERVER SCAN processing method.
Figure 4-40: FOREIGN SERVER SCAN processing method

FOREIGN SERVER LIMIT SCAN

When the retrieve first n records facility is being used, the local HiRDB executes
an SQL statement containing an ORDER BY clause to the foreign server where the
foreign table is located. The local HiRDB then receives the first n rows of the
retrieval results for the query.
Figure 4-41 shows the FOREIGN SERVER LIMIT SCAN processing method.

4. UAP Design for Improving Performance and Handling

284

Figure 4-41: FOREIGN SERVER LIMIT SCAN processing method

4.5.8 Execution of subqueries with no external references
(1) Execution method types

Table 4-11 describes the execution formats and features of inquiries that do not have
external references. Table 4-12 describes the optimal execution methods of queries that
do not have external references.

Table 4-11: Execution methods and features of subqueries with no external
references

Execution
method

Processing method Advantages Disadvantages

Work table ATS
execution

This method obtains the
subquery results beforehand
and creates a work table.
Then when a search using
an index is conducted for an
external query, this method
uses the work table that was
created from the subquery
results to narrow the search
range.

An index can be used for an
external query. Therefore,
when the number of
subquery hits is small and
the number of external
queries is large, data can be
searched rapidly when an
index is used to narrow the
search range.

When the number of
subquery hits is large, the
performance drops because
a search using an index for
the external query must be
performed for each row in
the subquery results.

4. UAP Design for Improving Performance and Handling

285

Work table
execution

This method obtains the
subquery results beforehand
and creates a work table.
Then each time a row of the
external query is searched,
this method matches the
row with the work table that
was created from the
subquery results and
evaluates the predicate that
contains the subquery.

This method can be applied
to all subquery conditions
that require a work table.

The performance drops
when the number of
external queries is large.

Row value
execution

This method obtains the
subquery beforehand. (A
work table is not created.)
Then, when an external
query is searched, this
method uses the values of
the subquery results to
evaluate the condition that
includes the subquery.

An index can be used for
external queries.
Therefore, if the number of
external queries is large, an
index can be used to
narrow the search range,
and data can be searched
rapidly.

The performance drops
when the number of
external queries is high and
the predicates that include
subqueries cannot be
narrowed using an index.

Hash execution This method creates a hash
table from the subquery
results beforehand. Then
each time a row of the
external query is retrieved,
this method hashes the
external query value and
evaluates the condition that
includes the subquery.

Data can be searched
rapidly when the number of
subquery hits is small and
the number of external
queries is large.

If the number of subquery
hits is large, the work table
buffer size to be used
becomes large. Although
the work table buffer size
to be used can be specified,
the buffer data must be
saved to a work table file
when the work table buffer
becomes full, and
consequently the
performance drops.

Execution
method

Processing method Advantages Disadvantages

4. UAP Design for Improving Performance and Handling

286

Table 4-12: Optimal execution method of subqueries with no external references

Subquery Optimal execution method

Table subqueries specified
on the right side of the
=ANY and =SOME
quantified predicates and
the IN predicate

The method differs depending on the number of data items in the external query or
subquery.

External queries: Many
Subqueries: Few

Work table ATS execution or hash
execution is effective.

External queries: Intermediate
Subqueries: Few

External queries: Few
Subqueries: Few

External queries: Many
Subqueries: Intermediate

Hash execution is effective

External queries: Intermediate
Subqueries: Intermediate

External queries: Few
Subqueries: Intermediate

Hash execution or work table execution is
effective.

External queries: Many
Subqueries: Many

Hash execution is effective. (Performance
improvement cannot be executed because
the number of data items is high.)

External queries: Intermediate
Subqueries: Many

External queries: Few
Subqueries: Many

Hash execution or work table execution is
effective. If the predicate is converted to an
EXISTS predicate that contains an external
reference, HiRDB may be able to conduct
the search rapidly.

Table subqueries specified
on the right side of
quantified predicates
(except =ANY and =SOME)
and the IN predicate

Work table execution is always applied.

Subqueries of the EXISTS
predicate

Row value execution is always applied.

Other subqueries (scalar
subqueries and row
subqueries)

4. UAP Design for Improving Performance and Handling

287

(2) Processing methods
(a) Work table ATS execution

WORK TABLE ATS SUBQ
This processing method applies to table subqueries specified on the right side of
=ANY and =SOME quantified predicates and IN predicates.
First, HiRDB calculates the values of the subquery selection expression and
creates a work table. Next, HiRDB uses an index to retrieve external queries. To
retrieve the queries, HiRDB uses the subquery results to narrow the index search
range. The query search conditions are ATS and RANGES.
In some cases, HiRDB executes duplicate elimination (DISTINCT) internally for
subqueries. Figure 4-42 shows the WORK TABLE ATS SUBQ processing method.
Figure 4-42: WORK TABLE ATS SUBQ processing method

An example of a quantified predicate and a comparison predicate is shown as
follows.

Example
SELECT C1 FROM T1 WHERE C2=ANY(SELECT C2 FROM T2)

4. UAP Design for Improving Performance and Handling

288

Note
This example supposes that an index is defined in T1 (C2).
First, table T2 of the subquery is searched, and a work table is created from
the values of T2.C2. Next, the values of T2.C2 are fetched one row at a time
from the work table, and a search is conducted by narrowing the search range
of the index defined in T1.C2 of the external query.

(b) Work table execution
WORK TABLE SUBQ

This processing method is applied to table subqueries specified on the right side
of quantified predicates and IN predicates. First, the values of the subquery
selection expression are determined and a work table is created. Next, the outer
query is searched. Each time a row of the outer query is searched, the row is
matched with the results of the subquery, and the search conditions are evaluated.
Figure 4-43 shows the WORK TABLE SUBQ processing method
Figure 4-43: WORK TABLE SUBQ processing method

Example
SELECT T1.C1 FROM T1 WHERE T1.C2=ANY(SELECT C2 FROM T2)

First, table T2 of the subquery is searched, and a work table is created from the
values of T2.C2. Next, the outer query is executed, the rows are fetched one at a
time, the T1.C2 values are matched with the work table that was created from the
subquery, and the search conditions are evaluated.

(c) Row value execution
ROW VALUE SUBQ

4. UAP Design for Improving Performance and Handling

289

This processing method is applied to row subqueries, scalar subqueries, and
EXISTS predicates. With this method, first the value of the selection expression
in the subquery is determined. Then, the value of the subquery result is used in
evaluating the conditions, including the subquery of the outside query.
With comparison predicates, if HiRDB judges that using an index is better when
searching an external query, it uses an index in the search.
Figure 4-44 shows the ROW VALUE SUBQ processing method.
Figure 4-44: ROW VALUE SUBQ processing method

An example is shown as follows.
Example

SELECT T1.C1 FROM T1 WHERE T1.C2<(SELECT MAX(C2) FROM T2)

First, table T2 of the subquery is searched, and the MAX(T2.C2) values are
fetched. (A work table is not created.) Next, the condition that includes the
subquery in the external query is evaluated with the MAX(T2.C2) values.

(d) Hash execution
HASH SUBQ

This processing method is applied to table subqueries specified on the right side
of quantified predicates and IN predicates.
First, the values of the subquery selection expression are determined, and a hash
table is created from the selection expression values. Next, the external query is
executed, hashed with the column values specified on the left side of the
quantified predicate and IN predicate, matched with the hash table that was
created from the subquery, and searched.
Figure 4-45 shows the HASH SUBQ processing method.

4. UAP Design for Improving Performance and Handling

290

Figure 4-45: HASH SUBQ processing method

An example is shown as follows.
Example

SELECT T1.C1 FROM T1 WHERE T1.C2=ANY(SELECT C2 FROM T2)

First, table T2 of the subquery is searched, and a hash table is created from the
T2.C2 values. Next, the external query is executed, hashed with the T1.C2
values, matched with the hash table that was created from the subquery, and
searched.

4.5.9 Execution of subqueries with external references
(1) Execution method types

Table 4-13 shows the execution methods and features of subqueries that have external
references.

4. UAP Design for Improving Performance and Handling

291

Table 4-13: Execution methods and features of subqueries with external
references

Execution
method

Processing method Advantages Disadvantages

Nested loops work
table execution

Each time a row of the
external query is searched,
this method executes the
subquery, creates a work
table, and evaluates the
condition that includes the
subquery.

An index can be used for the
subquery search conditions
that include a reference
column to the outside.
Therefore, data can be
searched rapidly when a
subquery search condition
can narrow the search range
by using an index.
In external query searches,
the subquery search can be
omitted when the external
reference column repeatedly
searches a row of the same
value.

The performance drops
when the number of
external query hits is
high.

Nested loops row
value execution

Each time a row of the
external query is searched,
this method executes the
subquery (a work table is not
created) and evaluates the
condition that includes the
subquery.

An index can be used for the
subquery search conditions
that include a reference
column to the outside.
Therefore, data can be
searched rapidly when a
subquery search condition
can narrow the search range
by using an index.
In external query searches,
the subquery search can be
omitted when the external
reference column repeatedly
searches a row of the same
value.

The performance drops
when the number of
external query hits is
high.

4. UAP Design for Improving Performance and Handling

292

(2) Processing methods
(a) Nested loops work table execution

NESTED LOOPS WORK TABLE SUBQ
This processing method is applied to table subqueries specified on the right side
of quantified predicates and IN predicates.
First, the external query is executed. During the execution, each time a row of the
external query is fetched, the values in the external reference column are used to
execute the subquery, the values of the subquery selection expression are
calculated, and a work table is created. Next, the work table that was created from
the subquery is used to evaluate the condition that includes the external subquery.
Because the external query is processed one row at a time, multiple work table
areas are never created at the same time. Also, because the subquery is executed
for each row in the external query, the performance drops when the external query
has many rows.
Figure 4-46 shows the NESTED LOOPS WORK TABLE SUBQ processing method.

Hash execution This method creates a hash
table from the subquery
results beforehand. Then
each time a row is fetched
from the external query, this
method hashes the values of
the external query and
matches them with the hash
table.

Data can be searched rapidly
when the number of
subquery hits, excluding
conditions that include
external reference columns,
is low and the number of
external queries is high.

An index cannot be used
for conditions that
include an external
reference column. If the
hit count for subqueries
that exclude conditions
that include an external
reference column is high,
the size of the work table
buffer used becomes
large. Although the work
table buffer size to be
used can be specified, the
buffer data must be saved
to a work table file when
the work table buffer
becomes full, and
consequently the
performance drops.
If subqueries are to be
joined, conditions that
include external
reference columns are
evaluated after the
subqueries are joined.

Execution
method

Processing method Advantages Disadvantages

4. UAP Design for Improving Performance and Handling

293

Figure 4-46: NESTED LOOPS WORK TABLE SUBQ processing method

Example
SELECT C1 FROM T1
 WHERE C1=ANY(SELECT C1 FROM T2 WHERE C2=T1.C2)

Note
The underlined section is the external reference column.
The external query is executed. The values of the outer reference column
(T1.C2) are used to execute the subquery for all rows of the external query,
and a work table is created from the T2.C1 values. Next, T1.C1 is matched
with the T2.C1 work table, and the condition that includes the subquery is
evaluated.

(b) Nested loops row value execution
NESTED LOOPS ROW VALUE SUBQ

This processing method is applied to row subqueries, scalar subqueries, and
EXISTS predicates.
First, the external query is executed. During the execution, each time a row of the
external query is fetched, the values in the external reference column are used to
execute the subquery, and the values of the subquery selection expression are
calculated. (A work table is not created.) Next, the values of the subquery results
are used to evaluate the condition that includes the subquery of the external query.
Because the subquery is executed for each row in the external query, the
performance drops when the external query has many rows.
Figure 4-47 shows the NESTED LOOPS ROW VALUE SUBQ processing method.

4. UAP Design for Improving Performance and Handling

294

Figure 4-47: NESTED LOOPS ROW VALUE SUBQ processing method

Example
SELECT C1 FROM T1
 WHERE C1=(SELECT MAX(C1) FROM T2 WHERE C2=T1.C2)

Note
The underlined section is the external reference column.
The external query is executed. The values of the outer reference column
(T1.C2) are used to search the subquery for all rows of the external query,
and the MAX(T2.C1) value is fetched. (A work table is not created.) Next,
the condition that includes the subquery found in the external query is
evaluated.

(c) Hash execution
HASH SUBQ

This processing method applies to table subqueries specified in EXISTS
predicates and on the right side of comparison predicates, quantified predicates,
and IN predicates.
First, the subquery is executed without the condition that includes the external
reference column, and the values of the query selection expression are
determined. At this time, the columns that were narrowed by the external
reference column from the search condition compared with = in the subquery are
used to create a hash table. (If the predicate is =ANY, =SOME or IN, the selection
expression is used to create the hash table.)
Next, an external query is executed, each fetched row is hashed with the value of
the external reference column, matched with the hash table that was created from
the subquery, and searched. (If the predicate is =ANY, =SOME, or IN, the columns
values specified on the left side of the predicate are also used for hashing.)
Figure 4-48 shows the HASH SUBQ processing method.

4. UAP Design for Improving Performance and Handling

295

Figure 4-48: HASH SUBQ processing method

Examples of an EXISTS predicate and a comparison predicate are shown as
follows.

Example 1: EXISTS predicate
SELECT T1.C1 FROM T1
 WHERE EXISTS(SELECT * FROM T2 WHERE C1='a' AND C2=T1.C2)

Note
The underlined section is the external reference column.
First, the subquery is evaluated without the condition that includes the
external reference column, and a hash table is created from the subquery
column (T2.C2) that has been narrowed by using the external reference
column. Next, the external query is executed, hashed with the values of the
external reference column (T1.C2), and matched with the hash table that was
created from the subquery. Then the EXISTS predicate is evaluated.

Example 2: Comparison predicate
SELECT T1.C1 FROM T1
 WHERE T1.C3<(SELECT T2.C3 FROM T2 WHERE C1='a' AND
C2=T1.C2)

Note
The underlined section is the external reference column.
First, the subquery is evaluated without the condition that includes the
external reference column, and a hash table is created from the subquery
column (T2.C2) that has been narrowed by using the external reference
column. Next, the external query is executed, hashed with the values of the
external reference column (T1.C2), and matched with the hash table created
from the subquery. Then the condition that includes the external reference

4. UAP Design for Improving Performance and Handling

296

column is evaluated. If the result is true, the comparison predicate (<) is
evaluated.

4.5.10 Preparing for application of hash join and subquery hash
execution

This section describes the items that must be set before hash join or hash execution of
a subquery can be applied with the SQL extension optimizing option.

(1) Items to be preset
Before hash join or hash execution of a subquery can be applied, the following items
must be set:

• Hash table size
• Method for allocating the work table buffer
• Work table buffer size
• Hashing mode

(a) Hash table size
Use the pd_hash_table_size operand in the system definition or PDHASHTBLSIZE
in the client environment definition to set the hash table size. Calculate the maximum
hash table row length, and then set the hash table size to a value that is equal to or
greater than the value obtained from the following formula:

maximum-hash-table-row-length
For each SELECT statement, calculate the hash table row lengths for the following
units. Then select the largest calculated value (maximum hash table row length).

• Query specifications that join multiple tables with =
• Subqueries that correspond to one of the following:

 Table subquery specified on the right side of an =ANY quantified predicate
 Table subquery specified on the right side of an =SOME quantified

predicate
 Table subquery specified on the right side of an IN predicate
 Other subquery that specifies an external reference column with = in a

search condition
The calculation methods for hash table row length are shown as follows.

Query specification that joins multiple tables with =

hash-table-size (in kilobytes) (maximum-hash-table-row-length (in bytes) 2 + 32) 128 128

4. UAP Design for Improving Performance and Handling

297

1. For columns specified in the selection expressions and search conditions of
the tables that are linked with =, calculate the row length in each table from
the following formula:

2. From the table row lengths that were calculated in 1, use one that is not the
smallest value and calculate the hash table length from the following
formula:

Subquery
For columns specified in subquery selection expressions and columns specified
in predicates that include an external reference column in the search condition,
calculate the hash table row length from the following formula:

ai
Data length of the i-th data item. For details about data length, see the HiRDB
Version 8 Installation and Design Guide. However, for character data
(including national character data and mixed character data) that is specified
only in a selection expression of a table joined with = and has a defined
length of 256 bytes or more, the data length becomes 12.

Hash tables of the size calculated previously can store 1,500 to 2,000 rows. If the
number of inner tables to be joined or the number of subquery searches is high,
bucket partitioning is executed several times, and the performance may not
improve. In this case, either calculate and set the hash table size for batch hash

4. UAP Design for Improving Performance and Handling

298

join shown as follows or see (2) to tune the hash table size.

Determine the hash table page length from the hash table row length as shown in the
following table.

(b) Method for allocating the work table buffer
The method for allocating the work table buffer must be set to buffer batch allocation

hash-table-size-for-batch-hash-join (in kilobytes) = (number-of-hash-table-data-pages +
number-of-hash-table-management-table-pages) number-of-one-segment-pages 128

number-of-hash-table-data-pages = number-of-hash-table-rows MIN { (hash-table-page-length 48)
hash-table-row-length , 255} + 63

number-of-hash-table-management-table-pages = (16 number-of-hash-table-rows + (
(number-of-hash-table-data-pages hash-table-page-length + 16 number-of-hash-table-rows)
(number-of-one-segment-pages hash-table-page-length) 8) + 8) hash-table-page-length
hash-table-page-length

number-of-one-segment-pages = (128 1024) hash-table-page-length

Hash table row length Hash table page length

0 to 1,012 4,096

1,013 to 2,036 8,192

2,037 to 4,084 16,384

4,085 to 16,360 32,768

16,361 to 32,720 (hash-table-row-length + 48) 2048 2048
hash-table-row-length:

Number of inner tables to be joined when the targets of batch
hash join are joined. If the targets are subqueries, this value is
the number of subquery searches excluding the predicates that
include outer reference columns in the search conditions.

4. UAP Design for Improving Performance and Handling

299

(pool) in server process units. Therefore specify pool in the pd_work_buff_mode
operand of the system definition.

(c) Work table buffer size
Hash tables are allocated in the work table buffer. If the work table buffer size or the
upper limit size for expansion allocation of the work table buffer is smaller than the
specified hash table size, an error occurs because of insufficient space in the work table
buffer. Therefore, in the pd_work_buff_size or pd_work_buff_expand_limit
operand of the system definition, set a value that is equal to or larger than the value
calculated with the following formula:
work-table-buffer-size (in kilobytes) (hash-table-size (in kilobytes)
 2 + 256) maximum-number-of-hash-joins-in-SELECT-statement + 128

maximum-number-of-hash-joins-in-SELECT-statement
Calculate the number of hash joins in each SELECT statement from the following
formula, and set the largest value as the maximum number of hash joins in a
SELECT statement. The number of hash joins is determined by counting the items
that have HASH JOIN as the join type in the join processing information that is
output by the access path display utility (pdvwopt).
number-of hash-joins-in-SELECT-statement =
((number-of-tables-joined-with-=)
(number-of-query-specifications-joined-with-=)), +
(number-of-=ANY-quantified-predicates) +
(number-of-=SOME-quantified-predicates) +
(number-of-IN-(subquery)-specifications) +
(number-of-other-subqueries-that-specify-external-reference-columns-with-=-in
-search-conditions)

If multiple cursors are to be opened at the same time and searched, total the values
that are calculated for the individual cursors.
Example

SELECT A.A1,B.B2,C.C3 FROM A,B,C 3-1
 WHERE A.A1=B.B1 AND A.A2=B.B2
 AND B.B3=C.C3
 AND A.A1=C.C1
 AND A.A4=ANY(SELECT D.D4 FROM D) 1
 AND A.A5=SOME(SELECT E.E5 FROM E) 1
 AND A.A6 IN(SELECT F.F6 FROM F
 WHERE F.F1=A.A1) 1
 AND EXISTS(SELECT G.G1 FROM G WHERE G.G1=B.B1) 1

In this example, the values are (3-1) + 1 + 1 + 1 + 1, so the number of hash
joins in this SELECT statement is 6.

Adding about 4,096 extra kilobytes to the value calculated from the work table

4. UAP Design for Improving Performance and Handling

300

buffer size formula shown previously increases the input/output unit size during
bucket partitioning, which in turn improves the performance.
If batch hash join without bucket partitioning is to be executed on all data, the
operation can be executed if the following formula is satisfied:
work-table-buffer-size (in kilobytes) hash-table-size (in
kilobytes) maximum-number-of-hash-joins-in-SELECT-statement + 384

(d) Hashing mode
A retrieval that accompanies a hash join or subquery execution is processed by
hashing.
You can select the hashing mode with the pd_hashjoin_hashing_mode operand of
the system definition or with PDHJHASHINGMODE client environment definition. The
default is TYPE1.
TYPE1 is the hashing mode of HiRDB versions before 07-02. If you use hash join for
the first time in HiRDB version 07-02 or a more recent version, specify TYPE2.
If you specify TYPE1 in HiRDB version 07-02 or a more recent version, you may not
obtain the desired performance. If this happens, specify TYPE2 as the hashing mode,
or see (3) Tuning the hashing mode, and tune the mode.

(2) Tuning methods for hash table size
(a) Tuning information used

The hash table size can be tuned based on either of the following types of tuning
information:

• UAP statistical report (specify client environment definition PDUAPREPLVL)
• UAP statistical information from the statistics analysis utility

For details about the UAP statistical report, see 10.1.4 UAP statistical report facility.
For details about the statistics analysis utility, see the HiRDB Version 8 Command
Reference manual.

(b) Items derived from tuning information
When tuning information about the hash table size is obtained, the following items can
be determined:

• Whether batch hash join, which expands data into a hash file all at once, or bucket
partitioning hash join, which expands data into a hash table in bucket units, is set

• Whether bucket repartitioning is being executed when bucket partitioning hash
join is set

• How large the hash table size should be set to execute batch hash join when bucket
partitioning hash join is set

4. UAP Design for Improving Performance and Handling

301

• How large the hash table size should be set to avoid bucket repartitioning when
bucket partitioning hash join is set

Bucket repartitioning refers to the repetition of bucket partitioning recursively for up
to three levels when the bucket size exceeds the hash table size. An example is shown
as follows.

The number of partitions in one bucket partitioning is determined from the following
formula:
number-of-bucket-partitions = MIN { (hash-table-size 2)
hash-table-page-length , 64}

Even with batch hash join, level 1 bucket partitioning is executed for inner tables to be
joined.

(c) Tuning methods
Table 4-14 describes the tuning methods for hash table size.

Table 4-14: Tuning methods for hash table size

Tuning information (unit:
kilobytes)

Tuning method

Maximum batch hash table
size

If a value that is equal to or greater than this value was set as the hash table size,
batch hash join without bucket partitioning is set for all data.1 If this value
exceeds the maximum hash table size that can be specified, batch hatch join
cannot be used.
If this value is 0, hash join or subquery hash execution has not been performed.

4. UAP Design for Improving Performance and Handling

302

1 When the hash table size is increased, the number of bucket partitions at each
partitioning execution may increase according to the formula for calculating the
number of bucket partitions. Consequently, a hash table size that is larger than the size
that was used during tuning information acquisition may be necessary.
If you used tuning information and increased the hash table size, get the tuning
information again. If the intended results are not realized, increase the hash table size
again according the new tuning information that was acquired.
2 When the hash table size is increased, the number of bucket partitions at each
partitioning execution may increase according to the formula for calculating the
number of bucket partitions. Consequently, bucket partitioning may terminate at the
intended level even if the hash table size is smaller than the size that was used during
tuning information acquisition.
On the other hand, when the hash table size is decreased, the number of bucket
partitions at each partitioning execution may decrease. Consequently, bucket
partitioning may not terminate at the same level used during tuning information
acquisition. You should therefore use this tuning information when the hash table size
is increased.

Level 1 maximum bucket size If a value that is equal to or greater than this value was set as the hash table size,
bucket partitioning has terminated at level 1. If bucket partitioning is set to level
2 or higher, specifying this value as the hash table size terminates bucket
partitioning at level 1.2
If batch hash join without bucket partitioning was executed on all data, 0 is
displayed for this value.

Level 2 maximum bucket size If a value that is equal to or greater than this value was set as the hash table size,
bucket partitioning has terminated at level 2. If bucket partitioning is set to level
3 or higher, specifying this value as the hash table size terminates bucket
partitioning at level 2.2
If level 2 bucket partitioning was not executed even once, 0 is displayed for this
value.

Level 3 maximum bucket size If a value that is equal to or greater than this value was set as the hash table size,
bucket partitioning has terminated at level 3.
If the hash table size is smaller than this value, each bucket is partially expanded
into the hash table, and the processing efficiency becomes worse. In this case,
set the hash table size to this value or larger.2
In some cases, not applying hash join or subquery hash execution improves the
performance.
If level 3 bucket partitioning was not executed even once, 0 is displayed for this
value.

Tuning information (unit:
kilobytes)

Tuning method

4. UAP Design for Improving Performance and Handling

303

(3) Tuning the hashing mode
(a) Tuning information used

The hash table size can be tuned based on either of the following types of tuning
information:

• UAP statistical report (specify client environment definition PDUAPREPLVL)
• UAP statistical information from the statistics analysis utility

For details about the UAP statistical report, see 10.1.4 UAP statistical report facility.
For details about the statistics analysis utility, see the manual HiRDB Version 8
Command Reference.

(b) Item derived from tuning information
By obtaining tuning information about the hash table size, you can determine the
following item:

• Retrieval performance of the specified hashing mode
(c) Tuning mode

Table 4-15 shows tuning information for the hashing mode.
Table 4-15: Tuning information for the hashing mode

Note

If the tuning information value is 0, hash join or subquery hash execution has not
been performed.

Tuning method example

Set TYPE1 and TYPE2 in client environment definition PDHJHASHINGMODE, and
get the average number of comparisons from the statistical information for each
mode. Compare the average number of comparisons, and set the hashing mode
with the smaller value to the pd_hashjoin_hashing_mode operand.

4.5.11 Deriving high-speed search conditions
A high-speed search condition refers to a condition derived from a WHERE clause
search condition or an ON search condition in a FROM clause by CNF conversion or

Tuning information (unit: number) Description

Maximum number of comparisons Maximum number of comparisons during hash searching

Total number of comparisons Total number of comparisons during hash searching

Number of searches Number of hash table searches

Average number of comparisons Total number of comparisons / number of searches

4. UAP Design for Improving Performance and Handling

304

condition shifting. When high-speed search conditions are derived, the retrieval
performance improves because the rows to be retrieved can be narrowed at an earlier
stage.
When HiRDB derives high-speed search conditions, it retains the original search
conditions used in the derivation. HiRDB can therefore generate just those derived
conditions that are optimal conditions without generating derived conditions that
cannot be used to narrow the search.
When HiRDB derives high-speed search conditions, it optimizes the search by
considering the new derived conditions when it determines the access path (including
the table retrieval method, join method, and join sequence). Therefore, when HiRDB
derives high-speed search conditions, the access paths may change as described as
follows:

• HiRDB determines that the rows to be retrieved can be narrowed down at an early
stage, and retrievals with an index become easier to select.

• If OR is specified in a join condition, and the CNF conversion and OR reduction
operations extract the join condition outside OR, then nested-loops-join, merge
join, and hash join can be applied outside direct products.

• If a limiting condition is specified for only one of the tables to be joined,
nested-loops join becomes easier to select. If limiting conditions are specified for
both tables, merge join and hash join become easier to select.

When high-speed search conditions are derived from complex conditions, it takes
longer to generate the high-speed search conditions and to evaluate the conditions
when the search is executed. Therefore, depending on the SQL statements involved,
the performance may actually drop instead of improve.

(1) Application scope of high-speed search conditions
(a) UNIX version

Whether or not HiRDB derives high-speed search conditions depends on the
specification values of the SQL optimization and SQL extension optimizing options.
Table 4-16 shows the relationships between the SQL optimization and SQL extension
optimizing options and deriving high-speed search conditions.

4. UAP Design for Improving Performance and Handling

305

Table 4-16: Relationships between the SQL optimization and SQL extension
optimizing options and deriving high-speed search conditions

Type Derivation source
condition

Derived condition Specified SQL optimization option
or SQL extension optimizing

option

Do not
derive2

Derive
only to
foreign

servers3

Derive 4

CNF
conversion

OR
condition
for one
table

Internal table One-table condition

Foreign
table1

One-table condition

OR
condition
extending
across two
or more
tables

Internal table One-table condition G

Join condition
(column=column) is
extracted by OR
reduction

G

Other condition for
two or more tables

Confined to
one foreign
server1

One-table condition

Join condition
(column=column) is
extracted by OR
reduction

G

Other condition for
two or more tables

Extends
across
multiple
foreign
servers or
across
foreign and
internal
tables1

Confined
to
internal
tables

One-table
condition

G

4. UAP Design for Improving Performance and Handling

306

Join
condition
(column=
column) is
extracted
by OR
reduction

G

Other
condition
for two or
more
tables

Confined
to one
foreign
server

One-table
condition

G G

Join
condition
(column=
column) is
extracted
by OR
reduction

G G

Other
condition
for two or
more
tables

G G

Extends
across
multiple
foreign
servers
or across
foreign
and
internal
tables

Join
condition
(column=
column) is
extracted
by OR
reduction

G

Other
condition
for two or
more
tables

Type Derivation source
condition

Derived condition Specified SQL optimization option
or SQL extension optimizing

option

Do not
derive2

Derive
only to
foreign

servers3

Derive 4

4. UAP Design for Improving Performance and Handling

307

Condition
shifting

Join
condition
for tables
A and B,
and
condition
for table A

Tables A and
B are internal
tables

One-table condition
for table B

G

Tables A and
B are
confined to
one foreign
server1

One-table condition
for foreign table B

Tables A and
B extend
across
multiple
foreign
servers or
across
foreign and
internal
tables1

One-table condition
for internal table B

G

One-table condition
for foreign table B

G G

Type Derivation source
condition

Derived condition Specified SQL optimization option
or SQL extension optimizing

option

Do not
derive2

Derive
only to
foreign

servers3

Derive 4

4. UAP Design for Improving Performance and Handling

308

Legend:
G: HiRDB generates high-speed search conditions.

: HiRDB does not generate high-speed search conditions.
Note

An internal table refers to one of the following types of tables:
• Any table when HiRDB External Data Access is not installed
• A non-foreign table when HiRDB External Data Access is installed

1 This condition applies when HiRDB External Data Access is installed.
2 In the SQL extension optimizing options, specify the value for suppressing derivation
of unconditionally created high-speed search conditions for foreign server execution.

Join
condition
for tables
A and B,
and join
condition
for tables
A and C

Tables A, B,
and C are
internal
tables

Join condition for
tables B and C

Tables A, B,
and C are
confined to
one foreign
table1

Join condition for
tables B and C, which
are confined to one
foreign server

Tables A, B,
and C extend
across
multiple
foreign
servers or
across
foreign and
internal
tables1

Join condition for
internal tables B and C

Join condition for
tables B and C, which
are confined to one
foreign server

G G

Join condition for
tables B and C, which
extend across two
foreign servers or
across foreign and
internal tables

Type Derivation source
condition

Derived condition Specified SQL optimization option
or SQL extension optimizing

option

Do not
derive2

Derive
only to
foreign

servers3

Derive 4

4. UAP Design for Improving Performance and Handling

309

However, this option specification becomes invalid if the value for deriving
high-speed search conditions is specified concurrently in the SQL optimization
options.
3 Do not concurrently specify the value for suppressing derivation of unconditionally
created high-speed search conditions for foreign server execution in the SQL extension
optimizing options and the value for deriving high-speed search conditions in the SQL
optimization options.
4 Specify the value for deriving high-speed search conditions in the SQL optimization
options.

(b) Windows version
High-speed search conditions are generated when you specify the value for deriving
high-speed search conditions in the SQL optimization options. Table 4-17 shows the
relationships between the SQL optimization options and deriving high-speed search
conditions.

Table 4-17: Relationships between the SQL optimization options and deriving
high-speed search conditions

Legend:
G: HiRDB generates high-speed search conditions.

: HiRDB does not generate high-speed search conditions.
#

Specify the value for deriving high-speed search conditions in the SQL
optimization options.

Type Derivation source
condition

Derived condition Specified SQL optimization
option (derives high-speed

search conditions)#

CNF
conversion

OR condition for one
table

One-table condition

OR condition
extending across two
or more tables

One-table condition G

Join condition
(column=column) is extracted
by OR reduction

G

Other condition for two or
more tables

Condition
shifting

Join condition for
tables A and B, and
condition for table A

One-table condition for table
B

G

4. UAP Design for Improving Performance and Handling

310

(2) Deriving high-speed search conditions by CNF conversion
CNF conversion refers to converting conditions joined with OR (disjunctive normal
form (DNF) format) into equivalent conditions joined with AND (conjunctive normal
form (CNF) format). High-speed search conditions can be derived by applying CNF
conversion to WHERE clause search conditions or to ON search conditions in FROM
clauses.

(a) Search conditions derived by CNF conversion
The following search conditions are derived by CNF conversion:

• If CNF conversion can generate a one-table condition from a condition that
extends across two or more tables joined with OR, HiRDB derives the one-table
condition as a high-speed search condition. By deriving the one-table condition,
HiRDB can narrow the number of items to be joined.

• If HiRDB can generate conditions that are joined with the OR operator and are
confined to one foreign server when the HiRDB External Data Access facility is
being used, HiRDB derives those conditions as a high-speed search conditions.
HiRDB can thereby narrow the number of data items to be retrieved from the
foreign server.

• If all conditions joined with OR are included in the same join condition
(column=column only) for two tables, HiRDB can derive (join-condition OR ...
OR join-condition) by applying CNF conversion to that condition. Then if the
same condition can be used to execute duplicate elimination on all join conditions
joined with OR (OR reduction), HiRDB derives the join conditions as high-speed
search conditions. By deriving the join conditions, HiRDB can eliminate direct
product processing and improve the performance.

Furthermore, the specifications for the SQL optimization options and SQL extension
optimizing options determine whether HiRDB derives high-speed search conditions.
For details about the relationships between SQL optimization options and SQL
extension optimizing options, and deriving of high-speed search conditions, see (1)
Application scope of high-speed search conditions.

(b) Conditions when CNF conversion is not executed
High-speed search conditions are not derived by CNF conversion if any one of the
following conditions applies:

• A derived search condition would include a subquery.
• Deriving the derivation-source conditions specified in the ON search condition of

an outer join would produce conditions that are confined to the outer table.
• Deriving the derivation-source conditions specified in the WHERE clause of an

outer join would produce conditions that are confined to the inner table.
• If HiRDB derived high-speed search conditions, the maximum nest count of the

4. UAP Design for Improving Performance and Handling

311

Boolean operations would exceed 255.
• A search condition is specified in a HAVING clause.

(3) Deriving high-speed search conditions by condition shifting
Condition shifting refers to deriving a new condition from two or more conditions.
The methods of deriving search conditions by condition shifting are described as
follows.

• Deriving high-speed search conditions by shifting a one-table condition through
a join condition

• Deriving high-speed search conditions by shifting join conditions (applicable to
the UNIX version only)

Furthermore, the specifications for the SQL optimization options and SQL extension
optimizing options determine whether HiRDB derives high-speed search conditions.
For details about the relationships between SQL optimization options and SQL
extension optimizing options, and deriving of high-speed search conditions, see (1)
Application scope of high-speed search conditions.

(a) Deriving high-speed search conditions by shifting a one-table condition
through a join condition
If the search conditions consist of a two-table join condition (column=column only)
and a one-table condition that includes the join column, HiRDB derives a one-table
condition for the column in the table to be joined. An example is shown as follows:

T1.C1 = T2.C1 AND T1.C1 > 10

T1.C1 = T2.C1 AND T1.C1 > 10 AND T2.C1 > 10

The underlined section becomes the derived high-speed search condition.

One-table conditions that are targets for condition shifting
The one-table conditions that are targets for condition shifting are listed as
follows:

• column-specification comparison operator
{value-specification|reference-column-to-outside}
Condition shifting is executed even when the left and right sides of the
comparison operator (=, <>, ^=, !=, <, <=, >, or >=) are switched.

• column-specification IS [NOT] NULL
• column-specification [NOT] IN

4. UAP Design for Improving Performance and Handling

312

(value-specification[,value-specification]...)
• column-specification [NOT] LIKE pattern-character-string [ESCAPE

escape-character]
If the join columns have different data lengths, condition shifting is executed
only when the pattern character string is a literal and forward matching is
applied.

• column-specification [NOT] XLIKE pattern-character-string [ESCAPE
escape-character]
If the join columns have different data lengths, condition shifting is not
executed.

• column-specification BETWEEN
{value-specification|reference-column-to-outside} AND
{value-specification|reference-column-to-outside}

• column-specification [NOT] SIMILAR TO pattern-character-string
[ESCAPE escape-character]
If the join columns have different data lengths, condition shifting is executed
only when the pattern character string is a literal and forward matching that
produces a LIKE-predicate equivalent is applied.

Conditions when condition shifting is not executed
Condition shifting is not executed if any one of the following conditions applies:

• The join condition is an outer join.
• The join condition is an inner join, and condition shifting would take place

between a WHERE clause search condition and an ON search condition in a
FROM clause. (For an inner join involving three or more tables, HiRDB
executes condition shifting between multiple ON search conditions.)

• The join condition and the one-table condition to be used in deriving the new
condition are confined to one foreign server.

• The data type of the join columns is a comparison of fixed length and
variable length.

• The data type of the join columns is FLOAT or SMALLFLT.
• Repetition columns are used and joined.
• If HiRDB derived high-speed search conditions, the maximum nest count of

the Boolean operations would exceed 255.
• A search condition is specified in a HAVING clause.

4. UAP Design for Improving Performance and Handling

313

(b) Deriving high-speed search conditions by shifting join conditions
(applicable to the UNIX version only)
If the search conditions consist of a two-table join condition (column=column only)
and a join condition (column=column only) between a column in one of the two tables
and a column in a separate third table, HiRDB derives a new join condition from the
remaining two columns that are not linked by a join condition. If correlation names are
specified, the tables are viewed as separate tables if the correlation names are different.
An example is shown as follows:

T1.C1 = T2.C1 AND T2.C1 = T3.C1

T1.C1 = T2.C1 AND T2.C1 = T3.C1 AND T1.C1 = T3.C1

The underlined section is the rapid search condition that was derived.
Conditions when the join condition is not shifted
The join condition is not shifted if any one of the following conditions applies:

• The join condition is an outer join.
• The join condition is an inner join, and condition shifting would take place

between a WHERE clause search condition and an ON search condition in a
FROM clause. (For an inner join involving three or more tables, HiRDB
executes condition shifting between multiple ON search conditions.)

• The join condition contains a foreign table.
• All join conditions from which the new conditions would be derived are

confined to one foreign table.
• The data type of the join columns is a comparison of fixed length and

variable length.
• The data type of the join columns is FLOAT or SMALLFLT.
• If HiRDB derived high-speed search conditions, the maximum nest count of

the Boolean operations would exceed 255.
• A search condition is specified in a HAVING clause.

4. UAP Design for Improving Performance and Handling

314

4.6 Data guarantee levels

The data guarantee level specifies the transaction point up to which the retrieved data
is to be guaranteed. The data guarantee levels range from 0 to 2. Specify the data
guarantee level according to operation goals, for example, whether you want to prevent
other users from updating data or whether you want to allow other users to reference
data being updated.

4.6.1 Specifying the data guarantee level
A data guarantee level can be specified for each UAP. To specify a data guarantee level
for each SQL statement, specify a lock option for that SQL statement.
If both a data guarantee level and a lock option are specified concurrently, the lock
option specification becomes valid. Table 4-18 shows the relationships between data
guarantee level and lock option.

Table 4-18: Relationship between data guarantee level and lock option

1 When the FOR UPDATE clause is specified in a cursor declaration or a dynamic
SELECT statement, a data guarantee level of 1 is assumed even if 0 is specified.
2 When the FOR UPDATE clause is specified in a cursor declaration or a dynamic
SELECT statement, WITH EXCLUSIVE LOCK is assumed.
3 WITH EXCLUSIVE LOCK is assumed in the following cases:

• YES is specified in client environment definition PDFORUPDATEEXLOCK
when a cursor declaration or dynamic SELECT statement in which the FOR
UPDATE clause is specified is executed.

• FOR UPDATE EXLOCK is specified immediately after the data guarantee
level in the SQL compile options that are specified when the routine is
defined.

The data guarantee level can be specified at the following locations:
• PDISLLVL in the client environment definition
• SQL compile option in ALTER PROCEDURE

Data guarantee level Lock option

0 WITHOUT LOCK NOWAIT1, 3

1 WITHOUT LOCK WAIT3

2 WITH SHARE LOCK or EXCLUSIVE LOCK2

4. UAP Design for Improving Performance and Handling

315

• SQL compile option in ALTER ROUTINE
• SQL compile option in ALTER TRIGGER
• SQL compile option in CREATE PROCEDURE
• SQL compile option in CREATE TRIGGER
• SQL compile option in procedure body of CREATE TYPE

4.6.2 Data guarantee level types
(1) Data guarantee level 0

Specify data guarantee level 0 to allow other users to view data being updated without
waiting for update completion. This guarantee level can improve the concurrent
execution capability more than the other guarantee levels. However, if the same rows
are searched twice in the same transaction, the first and second search results may not
be the same.
Figure 4-49 shows the data guarantee range of data guarantee level 0.

Figure 4-49: Data guarantee range of data guarantee level 0

(2) Data guarantee level 1
Specify data guarantee level 1 to prevent other users from updating data that has been
searched once until the search processing is completed (until HiRDB finishes viewing
the pages or rows). This guarantee level therefore improves the concurrent execution
capability. However, if the same rows are searched twice in the same transaction, the
first and second search results may not be the same.
Figure 4-50 shows the data guarantee range of data guarantee level 1.

Figure 4-50: Data guarantee range of data guarantee level 1

4. UAP Design for Improving Performance and Handling

316

(3) Data guarantee level 2
Specify data guarantee level 2 to prevent other users from updating data that has been
searched once until the transaction ends. Data that has been searched is therefore
guaranteed until the end of the transaction. However, data that has not been searched
is not guaranteed. If the same rows are searched twice in the same transaction, the first
and second transaction results may not be the same if there are added rows.
Figure 4-51 shows the data guarantee range of data guarantee level 2.

Figure 4-51: Data guarantee range of data guarantee level 2

(4) Notes
1. If data guarantee level 0 is specified for a cursor declaration that accompanies an

update, the specification is ignored, and level 1 is assumed.
2. If data guarantee level 0 or 1 is specified for a holdable cursor, the specification

is ignored, and level 2 is assumed.

4.6.3 Example of search results when a data guarantee level is
specified

Figure 4-52 shows an example of search results when a data guarantee level is
specified. UAP1 is a UAP that searches the PRODUCT table, UAP2 is a UAP that inserts
data into the PRODUCT table, and UAP3 is a UAP that updates PRODUCT table data. The
numbers 1. to 4. show the execution sequence of UAP1, UAP2, and UAP3.

4. UAP Design for Improving Performance and Handling

317

Figure 4-52: Example of search results when a data guarantee level is specified

When the UAPs are executed as shown previously, the search results of 1. and 4. of
UAP1 are as shown as follows. In this example, UAP1, UAP2, and UAP3 are all executed
at the same data guarantee level.

Data
guarantee

level

UAP1 search results Explanation

1. 4.

0 TV 100
VIDEO 80

TV 100
VIDEO 200
AMPLIFIER 50

• Although the same data is searched
twice in the same transaction, the search
results of 1. and 4. are different.

• Because the data is not guaranteed, the
processing for 2. and 3. is reflected in the
search results for 4.

1 TV 100
VIDEO 80

TV 100
VIDEO 200
AMPLIFIER 50

• Although the same data is searched
twice in the same transaction, the search
results of 1. and 4. are different.

• Although the data is guaranteed during
search processing, the data is no longer
guaranteed once a search process ends.
Consequently, the processing for 2. and
3. is reflected in the search results for 4.

4. UAP Design for Improving Performance and Handling

318

2 TV 100
VIDEO 80

TV 100
VIDEO 80
AMPLIFIER 50

• Although the same data is searched
twice in the same transaction, the search
results of 1. and 4. are different.

• When the data is searched in 1., the
TELEVISION and VIDEO rows are
guaranteed. However, because the data
is not guaranteed in 2., the processing of
2. is reflected. However, the processing
for 3. enters wait status because the data
is guaranteed, and the processing for 3.
is not reflected in the search results for 4.

Data
guarantee

level

UAP1 search results Explanation

1. 4.

4. UAP Design for Improving Performance and Handling

319

4.7 Block transfer facility

(1) Overview of the block transfer facility
Block transfer means that the HiRDB system sends data to a HiRDB client in units of
a specified number of rows. The block transfer facility is useful when a HiRDB client
accesses the HiRDB system to retrieve a large amount of data.
Figure 4-53 shows an overview of the block transfer facility.

Figure 4-53: Overview of block transfer facility

(2) Usage method
The block transfer facility is executed when both of the following conditions are
satisfied:

4. UAP Design for Improving Performance and Handling

320

1. When at least two values are specified in client environment definition PDBLKF
or when at least one value is specified in PDBLKBUFFSIZE

2. When the FETCH statement is specified (except when one of the following
conditions applies)

• Update using a cursor
• Retrieval involving a BLOB-type selection expression
• Retrieval in which the value of client environment definition

PDBINARYBLKF is NO and involving a BINARY-type selection expression
with a definition length of 32,001 bytes or more

• Retrieval that uses a BLOB locator type or BINARY locator type variable to
accept results and that uses a holdable cursor

(3) Specification of communication buffer size between server and client
You can use client environment definition PDBLKBUFFSIZE to specify the
communication buffer size between the server and the client.
For retrievals in which the number of rows to be extracted (PDBLKF specification
value) is large, specifying PDBLKBUFFSIZE suppresses the allocation of a
communication buffer memory larger than the value specified in the server. However,
a communication buffer memory for transferring one row is allocated.
For details about the calculation equation for the communication buffer size between
the server and the client, see Formula for size of memory required during block
transfer or array FETCH in the HiRDB Version 8 Installation and Design Guide.

(4) Number of rows transferred in one transmission
The table below shows the number of rows transferred in one transmission when the
block transfer facility is used.

4. UAP Design for Improving Performance and Handling

321

* Certain SQL statements may be able to transfer more than the calculated number of
rows.

(5) Notes
1. If one of the following events occurs, HiRDB interrupts retrieval processing and

returns the data that was retrieved to that point:
• A warning error occurs during retrieval processing. (HiRDB returns the

warning information and the data that was retrieved to that point.)*

• During a search via a list, a row that was present when the list was created is
deleted or an attribute value is deleted or updated. (HiRDB returns return
code information (SQLCODE=+110) that indicates the event and the data that

PDBLKF
specification

value

PDBLKBUFFSIZE specification value

0 1 or higher

1 Block transfer facility
does not apply.

Number of rows = Min (X, 4096)*

X:
The number of rows becomes the maximum value
(number of rows that can be stored in the specified
buffer size) of n that satisfies the following condition
expression. However, if (a - b) < ci, then the number of
rows becomes 1 (i is 1).

 n

(a - b) ci (unit: bytes)
 i=1

ci: Data length of the i-th row in the search results
received with the FETCH statement
a: Specified buffer size (PDBLKBUFFSIZE value
1024)
b: Header information and other information (864 + 22

 d + 2 e)
The d and e variables in the calculation expression for
b are described below.
d: Number of retrieval items specified in the SELECT
clause
e: Number of BINARY-type selection items in retrieval
items specified in the SELECT clause

2 or higher Number of rows =
PDBLKF value

Number of rows = MIN (X, Y)*

X: Number of rows that can be stored in specified buffer
size (same as X shown above)
Y: PDBLKF value

4. UAP Design for Improving Performance and Handling

322

was retrieved to that point.)
* HiRDB may not interrupt retrieval processing even if a warning error occurs. If
HiRDB does not interrupt processing, it continues retrieval processing until the
specified number of rows and returns all warning error information that occurred
during the retrieval, and the retrieved data.

2. The block transfer facility can shorten the retrieval time because it decreases the
communication overhead by transferring a large number of rows at a time.
However, the facility must be used with caution because it increases the amount
of required memory. When client environment definition PDBLKBUFFSIZE is
specified, the memory size used for the communication buffer is held below a
fixed value. However, if the value is too small, the block transfer facility becomes
ineffective because the number of communications cannot be reduced.

3. When the block transfer facility is being used and the search results of one cursor
are received with multiple FETCH statements, specify the same embedded
variable or embedded variables with the same attribute in each of those FETCH
statements. If you try to receive the search results with embedded variables
having different attributes, an error occurs.

4. UAP Design for Improving Performance and Handling

323

4.8 Facilities using arrays

4.8.1 FETCH facility using arrays
(1) Overview

You can use the FETCH statement to fetch the retrieval results for multiple rows at a
time. To do this, specify an array-type embedded variable in the INTO clause or specify
the number of retrieval rows in an embedded variable of the BY clause. This method is
effective when the HiRDB client accesses the HiRDB system and retrieves a large
volume of data. Unlike the block transfer facility, the FETCH facility using arrays
clearly specifies in the program that multiple rows of retrieval results are to be fetched.

(2) Usage methods
(a) Static execution

Convert all embedded and indicator variables specified in the INTO clause of the
FETCH statement into array-type variables. The number of rows to be retrieved at one
time becomes the minimum number of array elements for the specified embedded
variables.

(b) Dynamic execution
To execute the FETCH facility using arrays:
1. Use the PREPARE statement to preprocess the SELECT statement.
2. Use the DESCRIBE statement to fetch information about the SQL descriptor area

of the preprocessed SELECT statement.
3. In the SQLDATA area indicated in the SQL descriptor area, specify the receiving

area for each data item. For variable-length data, specify the size of one element
in the SQLSYS area.

4. Specify the SQL descriptor area in the USING DESCRIPTOR clause of the FETCH
statement and specify an embedded variable in the BY clause. Use the embedded
variable to specify the number of rows to be retrieved at one time.

(3) Notes
1. A cursor specified with the FETCH facility using arrays becomes a dedicated

cursor for that facility. When that cursor is used, the block transfer facility
becomes ineffective. If that cursor is used to execute the normal FETCH facility,
Note 4 applies. When the same module (preprocessing unit) uses both the FETCH
facility using arrays and the normal FETCH facility, use a separate cursor for each.

2. Note that, unlike the normal FETCH facility, the FETCH facility using arrays
fetches data up to the row before the NOT FOUND occurrence if the rows to be

4. UAP Design for Improving Performance and Handling

324

fetched run out during retrieval processing. Similarly, if an error occurs, the
FETCH facility using arrays fetches the data up to the row in which the error
occurred.

3. If the FETCH facility using arrays is executed dynamically, the UAP area may be
destroyed if the number of rows specified in the embedded variable of the BY
clause is larger than the receiving area.

4. The FETCH facility using arrays cannot be used if one of the following conditions
applies:

• A query specification contains a BLOB-type selection expression.
• A query specification contains a BINARY-type selection expression, and the

defined length for one element in the receiving area of the BINARY-type
selection expression is not a multiple of 4.

• The search includes a BINARY-type selection expression having a defined
length of 32,001 bytes or more, and the version of either HiRDB Server or
HiRDB Client Library is 07-00 or earlier.

(4) Usage examples
Following is a coding example of a FETCH operation using arrays:
Example 1

This example uses FETCH statement format 3. The target table consists of the
PCODE (CHAR(4)), PNAME (VARCHAR(17)), COLOR (NCHAR(1)), PRICE
(INTEGER), and SQUANTITY (INTEGER) columns.

 long sel_cnt;
 long data_cnt;
 short i;
 char work[17];

 /* Declaration of array-type embedded variables */
 EXEC SQL BEGIN DECLARE SECTION;
 char xpcode[50][5];
 SQL TYPE IS VARCHAR(17) xpname[50];
 char xcolor[50][3];
 long xprice[50];
 long xsquantity[50];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL
 DECLARE CR3 CURSOR FOR
 SELECT PCODE,PNAME,COLOR,PRICE,SQUANTITY
 FROM STOCK;

 EXEC SQL WHENEVER SQLERROR GOTO FIN;

4. UAP Design for Improving Performance and Handling

325

 EXEC SQL OPEN CR3;

 /* Heading */

 printf(" ***** Stock Table List *****\n\n");
 printf(" Product code Product name Color Price Stock
quantity\n");
 printf(" ---- ---------------- -- -------- --------\n");

 EXEC SQL WHENEVER SQLERROR GOTO FIN;
 EXEC SQL WHENEVER NOT FOUND GOTO FIN;

 /* FETCH */
 sel_cnt = 0;
 for(;;){
 EXEC SQL
 FETCH CR3 INTO
:xpcode,:xpname,:xcolor,:xprice,:xsquantity;
 /* Store total row count retrieved with this */
 /* cursor to SQLERRD2 */
 data_cnt = SQLERRD2 - sel_cnt; /* Calculate number
of retrieved rows */
 for(i=0; i < data_cnt; i++){
 memcpy(work, xpname[i].str, xpname[i].len);
 work[xpname[i].len] = '\0';
 printf(" %4s %-16s %2s %8d %8d\n",
 xpcode[i], work, xcolor[i], xprice[i],
xsquantity[i]);
 }
 sel_cnt = SQLERRD2;
 }

FIN:
/* */
/* Display remaining data because data is read even */
/* if error or NOT FOUND occurs */
/* */
 if(sel_cnt != SQLERRD2){
 data_cnt = SQLERRD2 - sel_cnt;
 for(i=0; i < data_cnt; i++){
 memcpy(work, xpname[i].str, xpname[i].len);
 work[xpname[i].len] = '\0';
 printf(" %4s %-16s %2s %8d %8d\n",
 xpcode[i], work, xcolor[i], xprice[i],
xsquantity[i]);
 }
 }

4. UAP Design for Improving Performance and Handling

326

FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL CLOSE CR3;
 EXEC SQL COMMIT;

Example 2

This example uses FETCH statement format 2. The target table consists of the
PCODE (CHAR(4)), PNAME (VARCHAR(17)), COLOR (NCHAR(1)), PRICE
(INTEGER), and SQUANTITY (INTEGER) columns.

#include <pdbsqlda.h> /* Include this file to use */
 /* user-defined SQLDA*/

 long sel_cnt;
 long data_cnt;
 short i;
 char work[17];

 /* Declaration of user-defined SQLDA */
 PDUSRSQLDA(5) xsqlda;

 /* Declaration of array-type embedded variables */
 EXEC SQL BEGIN DECLARE SECTION;
 char xpcode[50][5];
 SQL TYPE IS VARCHAR(17) xpname[50];
 char xcolor[50][3];
 long xprice[50];
 long xsquantity[50];
 short arry_num;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO FIN;

 /* Preprocessing of retrieval SQL */
 EXEC SQL PREPARE SEL1 FROM
 'SELECT * FROM STOCK' ;

 /* Acquisition of retrieval SQL output information */
 PDSQLN(xsqlda) = 5 ; /* Set SQLVAR count */
 EXEC SQL DESCRIBE SEL1 INTO :xsqlda ;

 EXEC SQL
 DECLARE CR3 CURSOR FOR SEL1 ;

 EXEC SQL OPEN CR3;

 /* SQLVAR setting: Normally, it would better if I/O */
 /* area was allocated dynamically from SQLDA. */

4. UAP Design for Improving Performance and Handling

327

 /* However, the specification is omitted because */
 /* this is an example. */
 /* Values that were set during DESCRIBE processing */
 /* are used for SQLLEN, SQLXDIM, and SQLSYS. */
 /* PCODE column information settings */
 PDSQLDATA(xsqlda, 0) = (void *)xpcode ; /* Set address */
 PDSQLIND(xsqlda, 0) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD(xsqlda, 0) = PDSQL_CHAR ; /* Set data code */
 /* PNAME column information settings */
 PDSQLDATA(xsqlda, 1) = (void *) xpname; /* Set address */
 PDSQLIND(xsqlda, 1) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD(xsqlda, 1) = PDSQL_VARCHAR ; /* Set data code */
 PDSQLSYS(xsqlda, 1) = sizeof(xpname[0]) ; /* Set SQLSYS
because this is */
 /* variable-length
data */
 /* COLOR column information settings */
 PDSQLDATA(xsqlda, 2) = (void *) xcolor; /* Set address */
 PDSQLIND(xsqlda, 2) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD(xsqlda, 2) = PDSQL_NCHAR ; /* Set data code */
 /* PRICE column information settings */
 PDSQLDATA(xsqlda, 3) = (void *) xprice; /* Set address */
 PDSQLIND(xsqlda, 3) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD(xsqlda, 3) = PDSQL_INTEGER ; /* Set data code */
 /* SQUANTITY column information settings */
 PDSQLDATA(xsqlda, 4) = (void *) xsquantity; /* Set address */
 PDSQLIND(xsqlda, 4) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD(xsqlda, 4) = PDSQL_ INTEGER; /* Set data code */

 /* Heading */

 printf(" ***** Stock Table List *****\n\n");
 printf(" Product code Product name Color Price
Stock quantity\n");
 printf(" ---- ---------------- -- --------
--------\n");

 EXEC SQL WHENEVER SQLERROR GOTO FIN;
 EXEC SQL WHENEVER NOT FOUND GOTO FIN;

 /* FETCH */
 sel_cnt = 0;
 for(;;){

4. UAP Design for Improving Performance and Handling

328

 arry_num = 50 ;
 EXEC SQL
 FETCH CR3 USING DESCRIPTOR :xsqlda BY :arry_num ROWS ;
 /* Store total row count retrieved with this */
 /* cursor to SQLERRD2 */
 data_cnt = SQLERRD2 - sel_cnt; /* Calculate number
of fetched rows */
 for(i=0; i < data_cnt; i++){
 memcpy(work, xpname[i].str, xpname[i].len);
 work[xpname[i].len] = '\0';
 printf(" %4s %-16s %2s %8d %8d\n",
 xpcode[i], work, xcolor[i], xprice[i], xsquantity
[i]);
 }
 sel_cnt = SQLERRD2;
 }

FIN:
/* */
/* Display remaining data because data is read even */
/* if error or NOT FOUND occurs */
/* */
 if(sel_cnt != SQLERRD2){
 data_cnt = SQLERRD2 - sel_cnt;
 for(i=0; i < data_cnt; i++){
 memcpy(work, xpname[i].str, xpname[i].len);
 work[xpname[i].len] = '\0';
 printf(" %4s %-16s %2s %8d %8d\n",
 xpcode[i], work, xcolor[i], xprice[i], xsquantity
[i]);
 }
 }
FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL CLOSE CR3;
 EXEC SQL COMMIT;

Example 3

The example uses FETCH statement format 3. The target table consists of the
XCODE (INTEGER) and ROW_DATA (BINARY(3002)) columns.

 long sel_cnt;
 long data_cnt;
 short i;

 /* Declaration of array-type embedded variables */
 EXEC SQL BEGIN DECLARE SECTION;
 long xcode[50];

4. UAP Design for Improving Performance and Handling

329

 /* To fetch data using BINARY-type array, */
 /* define area length with multiple of 4 */
 SQL TYPE IS BINARY(3004) xrow_data[50];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL
 DECLARE CR3 CURSOR FOR
 SELECT * FROM T_BINARY;

 EXEC SQL WHENEVER SQLERROR GOTO FIN;

 EXEC SQL OPEN CR3;

 /* Heading */

 printf(" ***** Binary Data Table *****\n\n");

 EXEC SQL WHENEVER SQLERROR GOTO FIN;
 EXEC SQL WHENEVER NOT FOUND GOTO FIN;

 /* FETCH */
 sel_cnt = 0;
 for(;;){

 EXEC SQL
 FETCH CR3 INTO : xcode,: xrow_data;
 /* Store total row count retrieved with this */
 /* cursor to SQLERRD2 */
 data_cnt = SQLERRD2 - sel_cnt; /* Calculate number
of fetched rows */
 for(i=0; i < data_cnt; i++){
 printf(" CODE=%8d\n",xcode[i]);
 printf(" DATA_LENGTH=%d\n", xrow_data [i].len);
/* Do not display BINARY data section because this is */
/* only an example */
/* Convert xrow_data[i].str to individual format of */
/* each UAP */
 }
 sel_cnt = SQLERRD2;
 }

FIN:
/* */
/* Display remaining data because data is read even */
/* if error or NOT FOUND occurs */
/* */
 if(sel_cnt != SQLERRD2){
 data_cnt = SQLERRD2 - sel_cnt;

4. UAP Design for Improving Performance and Handling

330

 for(i=0; i < data_cnt; i++){
 printf(" CODE=%8d\n",xcode[i]);
 printf(" DATA_LENGTH=%d\n", xrow_data [i].len);
/* Do not display BINARY data section because this is */
/* only an example */
/* Convert xrow_data[i].str to individual format of */
/* each UAP */
 }
 }
FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL CLOSE CR3;
 EXEC SQL COMMIT;

Example 4

This example uses FETCH statement format 2. The target table consists of the
XCODE (INTEGER) and ROW_DATA (BINARY(3002)) columns.

#include <pdbsqlda.h> /* Include this file to use */
 /* user-defined SQLDA */

 long sel_cnt;
 long data_cnt;
 short i;

 /* Declaration of user-defined SQLDA */
 PDUSRSQLDA(2) xsqlda;

 /* Declaration of array-type embedded variable */
 EXEC SQL BEGIN DECLARE SECTION;
 long xcode[50];
 /* To fetch data using BINARY-type array, */
 /* define area length with multiple of 4 */
 SQL TYPE IS BINARY(3004) xrow_data[50];
 short arry_num;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GOTO FIN;

 /* Preprocessing of retrieval SQL */
 EXEC SQL PREPARE SEL1 FROM
 'SELECT * FROM T_BINARY ;

 /* Acquisition of retrieval SQL output information */
 PDSQLN(xsqlda) = 2 ; /* Set SQLVAR count */
 EXEC SQL DESCRIBE SEL1 INTO :xsqlda ;

 EXEC SQL

4. UAP Design for Improving Performance and Handling

331

 DECLARE CR3 CURSOR FOR SEL1 ;

 EXEC SQL OPEN CR3;

 /* SQLVAR setting: Normally, it would better if I/O */
 /* area was allocated dynamically from SQLDA. */
 /* However, the specification is omitted because */
 /* this is an example. */
 /* Values that were set during DESCRIBE processing */
 /* are used for SQLLEN, SQLXDIM, and SQLSYS. */
 /* XCODE column information settings */
 PDSQLDATA(xsqlda, 0) = (void *)xcode ; /* Set address */
 PDSQLIND(xsqlda, 0) = NULL ; /* Clear NULL indicator
variable */
 PDSQLCOD(xsqlda, 0) = PDSQL_INTEGER ; /* Set data code */
 /* R_DATA column information settings */
 PDSQLDATA(xsqlda, 1) = (void *) xrow_data; /* Set address */
 PDSQLIND(xsqlda, 1) = NULL ; /* Clear NULL
indicator variable */
 PDSQLCOD (xsqlda, 1) = PDSQL_BINARY ; /* Set data code*/
 PDSQLLEN (xsqlda, 1) = 3004 ; /* Reset because
defined length */
 /* is not multiple of 4 */

 /* Heading */

 printf(" ***** Binary Data Table *****\n\n");

 EXEC SQL WHENEVER SQLERROR GOTO FIN;
 EXEC SQL WHENEVER NOT FOUND GOTO FIN;

 /* FETCH */
 sel_cnt = 0;
 for(;;){
 arry_num = 50 ;
 EXEC SQL
 FETCH CR3 USING DESCRIPTOR :xsqlda BY :arry_num ROWS ;
 /* Store total row count retrieved with this */
 /* cursor to SQLERRD2 */
 data_cnt = SQLERRD2 - sel_cnt; /* Calculate number
of fetched rows */
 for(i=0; i < data_cnt; i++){
 printf(" CODE=%8d\n",xcode[i]);
 printf(" DATA_LENGTH=%d\n", xrow_data [i].len);
/* Do not display BINARY data section because this is an example
*/
/* Convert xrow_data[i].str to individual format of each UAP */
 }

4. UAP Design for Improving Performance and Handling

332

 sel_cnt = SQLERRD2;
 }

FIN:
/* */
/* Display remaining data because data is read even */
/* if error or NOT FOUND occurs */
/* */
 if(sel_cnt != SQLERRD2){
 data_cnt = SQLERRD2 - sel_cnt;
 for(i=0; i < data_cnt; i++){
 printf(" CODE=%8d\n",xcode[i]);
 printf(" DATA_LENGTH=%d\n", xrow_data [i].len);
/* Do not display BINARY data section because this is */
/* only an example */
/* Convert xrow_data[i].str to individual format of */
/* each UAP */
 }
 }
FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL CLOSE CR3;
 EXEC SQL COMMIT;

4.8.2 INSERT facility using arrays
(1) Overview

You can insert multiple rows of data with one SQL statement by specifying an
array-type variable in which the data for the multiple rows has been set. Using the
INSERT facility using arrays reduces the number of communications between the
HiRDB client and the HiRDB server. This facility is therefore effective when you want
to access the HiRDB server from the HiRDB client and insert a large volume of data
at high speed.

(2) Usage methods
(a) Static execution

Specify the embedded variables in the INSERT statement's FOR clause and use an
array-type variable to specify all embedded and indicator variables. The embedded
variables specified in the FOR clause control the number of rows that can be inserted
at one time (batch insertion).

(b) Dynamic execution
To execute the INSERT facility using arrays:
1. Use the PREPARE statement to preprocess the INSERT statement (specify one or

more ? parameters).

4. UAP Design for Improving Performance and Handling

333

2. In the USING clause of the EXECUTE statement, use an array to specify the values
to be assigned to the input ? parameter of the preprocessed INSERT statement,
and specify an embedded variable in the BY clause. Use the embedded variable
specified in the BY clause to control the number of rows to be inserted by batch
insertion.
If you specify an embedded variable in the USING clause, change all embedded
and indicator variables to array-type variables.
If you specify an SQL descriptor area in the USING clause, use the array format
to specify data in all areas indicated by SQLDATA. In the SQLSYS area, specify
values that correspond to the data type.

(3) Note
If a row count that exceeds the write area is specified in the embedded variable in the
FOR clause of the INSERT statement or the BY clause of the EXECUTE statement, DB
destruction or UAP area destruction may occur.

(4) Usage examples
Explained as follows are coding examples for the INSERT facility using arrays.
Example 1

This example uses INSERT statement format 3 to set the data read from the file
into an array-format embedded variable and to insert 50 rows at a time into the
STOCK table.
The target table is consists of the PCODE (CHAR(4)), PNAME (VARCHAR(17)),
COLOR (NCHAR(1)), PRICE (INTEGER), and SQUANTITY (INTEGER) columns.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAXCOLUMN 80
#define INFILE "inputf1"

void abnormalend();

FILE *input ;

main() {
 char indata[MAXCOLUMN];
 char in_pcode[5];
 short in_pname_len;
 char in_pname[17];
 char in_color[3];
 int in_price;
 int i;

4. UAP Design for Improving Performance and Handling

334

 EXEC SQL BEGIN DECLARE SECTION;
 short xinsert_num;
 /* Declare array-type embedded variables */
 char xpcode[50][5]; /* For specifying value to
be inserted */
 /* in PCODE (CHAR(4) type
column) */
 SQL TYPE IS VARCHAR(17) xpname[50];
 /* For specifying value to
be inserted */
 /* in PNAME (VARCHAR(17)
type column) */
 char xcolor[50][3]; /* For specifying value to
be inserted */
 /* in COLOR (NCHAR(1) type
column) */
 long xprice[50]; /* For specifying value to
be inserted */
 /* in PRICE (INTEGER type
column) */
 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 input = fopen(INFILE, "r");
 if (input == NULL) {
 fprintf(stderr, "can't open %s.", INFILE);
 goto FIN;
 }

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* Batch insertion row count (up to 50 rows) */
 xinsert_num=50;
 while (!feof(input)) {
 /* Set input data for 50 rows (if last data in file, */
 /* up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read data from file */
 fgets(indata, MAXCOLUMN, input);
 if (feof(input)){
 /* If last data in file, set row count up to last data */
 /* in batch insertion row count, and escape for statement
*/
 xinsert_num= i;
 break;
 }

4. UAP Design for Improving Performance and Handling

335

 sscanf(indata, "%4s %hd %16s %2s %8d",
 in_pcode, &in_pname_len, in_pname, in_color, &in_price);
 /* Set input data into array variable elements */
 strncpy(xpcode[i], in_pcode, 5);
 xpname[i].len = in_pname_len;
 strncpy(xpname[i].str, in_pname, 17);
 strncpy(xcolor[i], in_color, 3);
 xprice[i] = in_price;
 }
 /* INSERT execution */
 EXEC SQL FOR :xinsert_num
 INSERT INTO STOCK (PCODE, PNAME, COLOR, PRICE)
 VALUES (:xpcode, :xpname, :xcolor, :xprice);
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 if (input != NULL) {
 fclose(input);
 }
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;

 if (input != NULL) {
 fclose(input);
 }
 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

Example 2

This example uses INSERT statement format 3 to set data read from the data read
function to an array-type embedded variable and to insert 50 rows at a time into
the STOCK table.
The target table consists of the PCODE (CHAR(4)) and ROW_DATA
(BINARY(3002)) columns.

4. UAP Design for Improving Performance and Handling

336

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void abnormalend();

main() {
 int i,rc;

 EXEC SQL BEGIN DECLARE SECTION;
 short xinsert_num;
 /* Declaration of array-type embedded variables */
 char xpcode[50][5]; /* For specifying value to be
inserted */
 /* in PCODE (CHAR(4) type column) */
 SQL TYPE IS BINARY(3004) xrow_data[50];
 /* For specifying value to be inserted in
ROW_DATA (BINARY(3002) type column) */
 /* However, set data length to multiple of 4. */
 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 rc = 0 ;
 /* Batch insertion row count (up to 50 rows) */
 xinsert_num=50;
 while (0==rc) {
 /* Set input data for 50 rows (if last data in file, */
 /* up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read BINARY data: Function details omitted */
 rc = get_binarydata(&xpcode[i],&xrow_data[i]);
 if (0 != rc){
 /* If input data runs out, set row count up to last data */
 /* in batch insertion row count, and escape for statement
*/
 xinsert_num= i;
 break;
 }
 }
 /* INSERT execution */
 EXEC SQL FOR :xinsert_num
 INSERT INTO STOCK (PCODE, ROW_DATA)
 VALUES (:xpcode, :xrow_data);
 }

4. UAP Design for Improving Performance and Handling

337

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;

 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

Example 3

This example uses EXECUTE statement format 2 to set data read from a file to
array-format embedded variables and insert 50 rows at a time into the STOCK
table.
The target table consists of the PCODE (CHAR(4)), PNAME (VARCHAR(17)),
COLOR (NCHAR(1)), PRICE (INTEGER), and SQUANTITY (INTEGER) columns.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAXCOLUMN 80
#define INFILE "inputf1"

void abnormalend();

FILE *input ;

main() {
 char indata[MAXCOLUMN];
 char in_pcode[5];
 short in_pname_len;
 char in_pname[17];
 char in_color[3];
 int in_price;
 int i;

 EXEC SQL BEGIN DECLARE SECTION;

4. UAP Design for Improving Performance and Handling

338

 short xinsert_num;
 /* Declaration of array-type embedded variables */
 char xpcode[50][5]; /* For specifying value to be
inserted */
 /* in PCODE (CHAR(4) type column) */
 SQL TYPE IS VARCHAR(17) xpname[50];
 /* For specifying value to be inserted
in PNAME (VARCHAR(17) type column) */
 char xcolor[50][3]; /* For specifying value to be inserted
in COLOR (NCHAR(1) type column) */
 long xprice[50]; /* For specifying value to be inserted
in PRICE (INTEGER type column) */
 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 input = fopen(INFILE, "r");
 if (input == NULL) {
 fprintf(stderr, "can't open %s.", INFILE);
 goto FIN;
 }

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* SQL preprocessing execution */
 EXEC SQL PREPARE INS1 FROM
 'INSERT INTO STOCK(PCODE, PNAME, COLOR, PRICE)
VALUES(?,?,?,?)';

 /* Batch insertion row count (up to 50 rows) */
 xinsert_num=50;
 while (!feof(input)) {
 /* Set input data for 50 rows (if last data in file, */
 /* up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read data from file */
 fgets(indata, MAXCOLUMN, input);
 if (feof(input)){
 /* If input data runs out, set row count up to last data */
 /* in batch insertion row count, and escape for statement
*/
 xinsert_num= i;
 break;
 }
 sscanf(indata, "%4s %hd %16s %2s %8d",
 in_pcode, &in_pname_len, in_pname, in_color, &in_price);
 /* Set input data to array variable elements */
 strncpy(xpcode[i], in_pcode, 5);

4. UAP Design for Improving Performance and Handling

339

 xpname[i].len = in_pname_len;
 strncpy(xpname[i].str, in_pname, 17);
 strncpy(xcolor[i], in_color, 3);
 xprice[i] = in_price;
 }
 /* EXECUTE execution */
 EXEC SQL EXECUTE INS1
 USING :xpcode, :xpname, :xcolor, :xprice
 BY :xinsert_num ROWS ;
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 if (input != NULL) {
 fclose(input);
 }
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;

 if (input != NULL) {
 fclose(input);
 }
 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

Example 4

This example uses EXECUTE statement format 2 to set data read from a file to
array-format embedded variables and uses a user-defined SQLDA to insert 50 rows
at a time into the STOCK file.
The target table consists of the PCODE (CHAR(4)), PNAME (VARCHAR(17)),
COLOR (NCHAR(1)), PRICE (INTEGER), and SQUANTITY (INTEGER) columns.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <pdbsqlda.h> /* Include file to use */

4. UAP Design for Improving Performance and Handling

340

 /* user-defined SQLDA */

#define MAXCOLUMN 80
#define INFILE "inputf1"

void abnormalend();

FILE *input ;

main() {
 char indata[MAXCOLUMN];
 char in_pcode[5];
 short in_pname_len;
 char in_pname[17];
 char in_color[3];
 int in_price;
 int i;

 /* Declaration of user-defined SQLDA */
 PDUSRSQLDA(4) xsqlda;

 EXEC SQL BEGIN DECLARE SECTION;
 short xinsert_num;
 /* Declaration of array-type embedded variables */
 char xpcode[50][5]; /* For specifying value to be
inserted */
 /* in PCODE (CHAR(4) type column) */
 SQL TYPE IS VARCHAR(17) xpname[50];
 /* For specifying value to be inserted to
PNAME (VARCHAR(17) type column) */
 char xcolor[50][3]; /* For specifying value to be
inserted to COLOR (NCHAR(1) type column) */
 long xprice[50]; /* For specifying value to be inserted
to PRICE (INTEGER type column) */
 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 input = fopen(INFILE, "r");
 if (input == NULL) {
 fprintf(stderr, "can't open %s.", INFILE);
 goto FIN;
 }

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* SQL preprocessing execution */
 EXEC SQL PREPARE INS1 FROM

4. UAP Design for Improving Performance and Handling

341

 'INSERT INTO STOCK(PCODE, PNAME, COLOR, PRICE)
VALUES(?,?,?,?)';

 /* SQLVAR settings */
 PDSQLN(xsqlda) = 4 ; /* Set SQLVAR count */
 PDSQLD(xsqlda) = 4 ; /* Set ? parameter count */
 /* Set PCODE column information */
 PDSQLCOD(xsqlda, 0) = PDSQL_CHAR ; /* Set data code */
 PDSQLXDIM(xsqlda, 0) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLSYS(xsqlda, 0) = 0 ; /* Length of one element */
 /* (fixed to 0 except for
variable-length character strings) */
 PDSQLLEN(xsqlda, 0) = 4 ; /* Set data defined length */
 PDSQLDATA(xsqlda, 0) = (void *)xpcode ; /* Set data area
address */
 PDSQLIND(xsqlda, 0) = NULL ; /* Clear NULL indicator
variable */
 /* Set PNAME column information */
 PDSQLCOD(xsqlda, 1) = PDSQL_VARCHAR ; /* Set data code */
 PDSQLXDIM(xsqlda, 1) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLLEN(xsqlda, 1) = 17 ; /* Set data defined length */
 PDSQLSYS(xsqlda, 1) = sizeof(xpname[0]) ; /* Length of one
element */
 PDSQLDATA(xsqlda, 1) = (void *) xpname; /* Set data area
address */
 PDSQLIND(xsqlda, 1) = NULL ; /* Clear NULL indicator
variable */
 /* Set COLOR column information */
 PDSQLCOD(xsqlda, 2) = PDSQL_NCHAR ; /* Set data code */
 PDSQLXDIM(xsqlda, 2) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLSYS(xsqlda, 2) = 0 ; /* Length of one element */
 /* (fixed to 0 except for
variable-length character strings) */
 PDSQLLEN(xsqlda, 2) = 1 ; /* Set data defined length */
 PDSQLDATA(xsqlda, 2) = (void *) xcolor; /* Set data area
address */
 PDSQLIND(xsqlda, 2) = NULL ; /* Clear NULL indicator
variable */
 /* Set PRICE column information */
 PDSQLCOD(xsqlda, 3) = PDSQL_INTEGER ; /* Set data code */
 PDSQLXDIM(xsqlda, 3) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLSYS(xsqlda, 3) = 0 ; /* Length of one element */
 /* (fixed to 0 except for
variable-length character strings) */

4. UAP Design for Improving Performance and Handling

342

 PDSQLLEN(xsqlda, 3) = 4 ; /* Set data defined length */
 PDSQLDATA(xsqlda, 3) = (void *) xprice; /* Set data area
address */
 PDSQLIND(xsqlda, 3) = NULL ; /* Clear NULL indicator
variable */

 /* Batch insertion row count (up to 50 rows) */
 xinsert_num=50;
 while (!feof(input)) {
 /* Set input data for 50 rows (if last data in file, */
 /* up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read data from file */
 fgets(indata, MAXCOLUMN, input);
 if (feof(input)){
 /* If last data in file, set row count up to last data */
 /* in batch insertion row count, and escape for statement
*/
 xinsert_num= i;
 break;
 }
 sscanf(indata, "%4s %hd %16s %2s %8d",
 in_pcode, &in_pname_len, in_pname, in_color, &in_price);
 /* Set input data to array variable elements */
 strncpy(xpcode[i], in_pcode, 5);
 xpname[i].len = in_pname_len;
 strncpy(xpname[i].str, in_pname, 17);
 strncpy(xcolor[i], in_color, 3);
 xprice[i] = in_price;
 }
 /* EXECUTE execution */
 EXEC SQL EXECUTE INS1
 USING DESCRIPTOR :xsqlda
 BY :xinsert_num ROWS ;
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 if (input != NULL) {
 fclose(input);
 }
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()

4. UAP Design for Improving Performance and Handling

343

{
 int wsqlcode;

 if (input != NULL) {
 fclose(input);
 }
 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

Example 5

This example uses EXECUTE statement format 2 to set data read by a data read
function to array-type embedded variables and uses a user-defined SQLDA to
insert 50 rows at a time into the STOCK file.
The target table consists of the PCODE (CHAR(4)) and ROW_DATA
(BINARY(3002)) columns.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <pdbsqlda.h> /* Include file for using */
 /* user-defined SQLDA */

void abnormalend();

main() {
 int i,rc;

 /* Declaration of user-defined SQLDA */
 PDUSRSQLDA(4) xsqlda;

 EXEC SQL BEGIN DECLARE SECTION;
 short xinsert_num;
 /* Declaration of array-type embedded variables */
 char xpcode[50][5]; /* For specifying value to be inserted
*/
 /* to PCODE (CHAR(4) type column) */
 SQL TYPE IS BINARY(3004) xrow_data[50];
 /* For specifying value to be inserted to
ROW_DATA (BINARY(3002) type column) */
 /* However, set data length to multiple of 4 */
 EXEC SQL END DECLARE SECTION;

4. UAP Design for Improving Performance and Handling

344

 -------(CONNECT processing to HiRDB (omitted))-------

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* SQL preprocessing execution */
 EXEC SQL PREPARE INS1 FROM
 'INSERT INTO STOCK(PCODE, ROW_DATA) VALUES(?,?)';

 /* SQLVAR settings */
 PDSQLN(xsqlda) = 2 ; /* Set SQLVAR count */
 PDSQLD(xsqlda) = 2 ; /* Set ? parameter count */
 /* Set PCODE column information */
 PDSQLCOD(xsqlda, 0) = PDSQL_CHAR ; /* Set data code */
 PDSQLXDIM(xsqlda, 0) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLSYS(xsqlda, 0) = 0 ; /* Length of one element */
 /* (fixed to 0 except for
variable-length character strings) */
 PDSQLLEN(xsqlda, 0) = 4 ; /* Set data defined length */
 PDSQLDATA(xsqlda, 0) = (void *)xpcode ; /* Set data area
address */
 PDSQLIND(xsqlda, 0) = NULL ; /* Clear NULL indicator
variable */
 /* Set ROW_DATA column information */
 PDSQLCOD(xsqlda, 1) = PDSQL_BINARY ; /* Set data code */
 PDSQLXDIM(xsqlda, 1) = 1 ; /* Set number of repeated */
 /* structure elements */
 PDSQLLOBLEN(xsqlda, 1) = 3004 ; /* Set data defined length */
 PDSQLDATA(xsqlda, 1) = (void *) xrow_data; /* Set data */
 /* area address */
 PDSQLIND(xsqlda, 1) = NULL ; /* Clear NULL indicator
variable */

 rc = 0 ;
 /* Batch insertion row count (up to 50 rows) */
 xinsert_num=50;
 while (0==rc) {
 /* Set input data for 50 rows (if last data in file, */
 /* up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read BINARY data: Function details omitted */
 rc = get_binarydata(&xpcode[i],&xrow_data[i]);
 if (0 != rc){
 /* If input data runs out, set row count up to last data */
 /* in batch insertion row count, and escape for statement
*/
 xinsert_num= i;
 break;

4. UAP Design for Improving Performance and Handling

345

 }
 }
 /* EXECUTE execution */
 EXEC SQL EXECUTE INS1
 USING DESCRIPTOR :xsqlda
 BY :xinsert_num ROWS ;
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;

 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

4.8.3 UPDATE facility using arrays
(1) Overview

You can update multiple table columns with one SQL statement by specifying an
array-type variable in which the data for multiple columns has been set.
Using the UPDATE facility using arrays reduces the number of communications
between the HiRDB client and the HiRDB server. This facility is therefore effective
when you want to access the HiRDB server from the HiRDB client and update a large
volume of data at high speed.

(2) Usage methods
(a) Static execution

In the UPDATE statement, specify an embedded variable in the FOR clause and change
all embedded and indicator variables specified in the search condition to array-type
variables. Use the embedded variable specified in the FOR clause to control the number
of updates to be performed by batch processing.

4. UAP Design for Improving Performance and Handling

346

(b) Dynamic execution
To execute the UPDATE facility using arrays:
1. Use the PREPARE statement to preprocess the UPDATE statement. (Specify the ?

parameter for the update values and in the search condition.)
2. In the USING clause of the EXECUTE statement, use an array to specify the values

to be assigned to the input ? parameter of the preprocessed UPDATE statement,
and specify an embedded variable in the BY clause. Use the embedded variable
specified in the BY clause to control the number of updates to be performed by
batch processing.

Notes about dynamic execution are described below.
• If you specify an embedded variable in the USING clause, change all embedded

and indicator variables to array-type variables.
• If you specify an SQL Descriptor Area in the USING clause, use the array format

to specify data in all areas indicated by SQLDATA. In the SQLSYS area, specify
values that correspond to the data type.

(3) Note
1. If a count that exceeds the write area is specified in the embedded variable in the

FOR clause of the UPDATE statement or the BY clause of the EXECUTE statement,
database destruction or UAP area destruction may occur.

(4) Usage example
Example

This example sets the data read from a file into an array-format embedded
variable and performs several updates to the STOCK table by batch processing.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAXCOLUMN 80
#define INFILE "inputf1"

void abnormalend();

FILE *input ;

main() {
 char indata[MAXCOLUMN];
 char in_pcode[5];
 int in_quantity;
 int i;

4. UAP Design for Improving Performance and Handling

347

 EXEC SQL BEGIN DECLARE SECTION;
 short xupdate_num;
 /* Declare array-type embedded variables */
 char xpcode[50][5]; /* For search condition to PCODE (CHAR(4) type
column) */
 long squantity[50]; /* For specifying update value to SQUANTITY
(INTEGER type column) */
 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 input = fopen(INFILE, "r");
 if (input == NULL) {
 fprintf(stderr, "can't open %s.", INFILE);
 goto FIN;
 }

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* Batch update count (up to 50 updates) */
 xupdate_num=50;
 while (!feof(input)) {
 /* Set update/search condition data for 50 updates (if last */
 /* data in file, up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read data from file */
 fgets(indata, MAXCOLUMN, input);
 if (feof(input)){
 /* If last data in file, set array elements up to last data */
 /* in batch update count, and escape for statement */
 xupdate_num= i;
 break;
 }
 sscanf(indata, "%4s %8d", in_pcode, &in_quantity);
 /* Set update/search condition data into array variable elements */
 strncpy(xpcode[i], in_pcode, 5);
 xquantity[i] = in_quantity;
 }
 /* UPDATE execution */
 EXEC SQL FOR :xupdate_num
 UPDATE STOCK SET ZQUANTITY = :xquantity WHERE PCODE =
:xpcode ;
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:

4. UAP Design for Improving Performance and Handling

348

 if (input != NULL) {
 fclose(input);
 }
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;

 if (input != NULL) {
 fclose(input);
 }
 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

4.8.4 DELETE facility using arrays
(1) Overview

You can delete multiple rows with one SQL statement by specifying an array-type
variable in which the data for multiple deletions has been set.
Using the DELETE facility using arrays reduces the number of communications
between the HiRDB client and the HiRDB server. This facility is therefore effective
when you want to access the HiRDB server from the HiRDB client and delete a large
volume of data at high speed.

(2) Usage methods
(a) Static execution

In the DELETE statement, specify an embedded variable in the FOR clause and change
all embedded and indicator variables specified in the search condition to array-type
variables. Use the embedded variable specified in the FOR clause to control the number
of deletions to be performed by batch processing.

(b) Dynamic execution
To execute the DELETE facility using arrays:
1. Use the PREPARE statement to preprocess the DELETE statement (specify the ?

parameter in the search condition).

4. UAP Design for Improving Performance and Handling

349

2. In the USING clause of the EXECUTE statement, use an array to specify the values
to be assigned to the input ? parameter of the preprocessed DELETE statement,
and specify an embedded variable in the BY clause. Use the embedded variable
specified in the BY clause to control the number of deletions to be performed by
batch processing.

Notes about dynamic execution are described below.
• If you specify an embedded variable in the USING clause, change all embedded

and indicator variables to array-type variables.
• If you specify an SQL Descriptor Area in the USING clause, use the array format

to specify data in all areas indicated by SQLDATA. In the SQLSYS area, specify
values that correspond to the data type.

(3) Note
1. If a count that exceeds the write area is specified in the embedded variable in the

BY clause of the EXECUTE statement, database destruction or UAP area
destruction may occur.

(4) Usage example
Example

This example sets the data read from a file into an array-format embedded
variable and performs several deletions from the STOCK table by batch
processing.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAXCOLUMN 80
#define INFILE "inputf1"

void abnormalend();

FILE *input ;

main() {
 char indata[MAXCOLUMN];
 char in_pcode[5];
 int i;

 EXEC SQL BEGIN DECLARE SECTION;
 short xdelete_num;
 /* Declare array-type embedded variables */
 char xpcode[50][5]; /* For search condition to PCODE (CHAR(4) type
column) */

4. UAP Design for Improving Performance and Handling

350

 EXEC SQL END DECLARE SECTION;

 -------(CONNECT processing to HiRDB (omitted))-------

 input = fopen(INFILE, "r");
 if (input == NULL) {
 fprintf(stderr, "can't open %s.", INFILE);
 goto FIN;
 }

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;

 /* Batch deletion count (up to 50 deletions) */
 xdelete_num=50;
 while (!feof(input)) {
 /* Set search condition data for 50 deletions (if last */
 /* data in file, up to that row) to array variables */
 for (i = 0; i < 50; i++) {
 /* Read data from file */
 fgets(indata, MAXCOLUMN, input);
 if (feof(input)){
 /* If last data in file, set array element count up to last data */
 /* in batch deletion count and escape for statement */
 xdelete_num= i;
 break;
 }
 sscanf(indata, "%4s", in_pcode);
 /* Set search condition data into array variable elements */
 strncpy(xpcode[i], in_pcode, 5);
 }
 /* DELETE execution */
 EXEC SQL FOR :xdelete_num
 DELETE FROM STOCK WHERE PCODE = :xpcode ;
 }

 EXEC SQL COMMIT;
 printf(" *** normal ended ***\n");
FIN:
 if (input != NULL) {
 fclose(input);
 }
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{

4. UAP Design for Improving Performance and Handling

351

 int wsqlcode;
 if (input != NULL) {
 fclose(input);
 }
 wsqlcode = -SQLCODE;
 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

4. UAP Design for Improving Performance and Handling

352

4.9 Rapid grouping facility

4.9.1 Overview
When the GROUP BY clause of the SQL is specified for grouping, grouping is
performed after sorting. Rapid grouping is accomplished by combining hashing with
grouping. The rapid grouping facility reduces the time required for grouping as the
number of groups to be grouped gets smaller and as the number of rows gets larger.
In HiRDB/Parallel Server, you must also consider the grouping processing method,
because how the floatable servers are used affects performance. For details about
grouping processing methods, see 4.5.5 Grouping processing methods (HiRDB/
Parallel Server only).

4.9.2 Application criteria
The rapid grouping facility can be used when an SQL that satisfies all the following
conditions is executed:

HiRDB/Parallel Server
• The GROUP BY clause is specified.
• Use of the rapid grouping facility is defined in the system common

definitions, front-end server definitions, client environment definitions, or
routine definitions.

• The selection expression column length is 4,096 or less.
• The grouping process is not for an inquiry specification that becomes the

input for a set operation (UNION, EXCEPT).
• DISTINCT is not specified within the set function.
• A character string-type column with a defined length of 256 bytes or more,

a BINARY-type column, or a BLOB-type column is not specified in the set
function.

• When a HAVING clause is specified in the specification of a query in which
the GROUP BY clause is specified, no subquery is specified in the HAVING
clause.

• No subquery is specified in the selection expression.
In the following case, rapid grouping is performed regardless of whether or not
the SQL optimization option is specified:

• Grouping can be executed without sorting, using a grouping column index.
The following facilities cannot be used when the rapid grouping facility is used:

4. UAP Design for Improving Performance and Handling

353

• Facility for creating multiple objects
• AND multi-index use (however, this function is used with structured

repetition predicates and functions dedicated to index type plug-ins).
HiRDB/Single Server

• The GROUP BY clause is specified.
• Use of the rapid grouping facility is defined in the system common

definitions, client environment definitions, or routine definitions.
• The grouping process is not for an inquiry specification that becomes the

input for a set operation (UNION, EXCEPT).
• DISTINCT is not specified within the set function.
• A character string-type column with a defined length of 256 bytes or more,

a BINARY-type column, or a BLOB-type column is not specified in the set
function.

In the following case, rapid grouping is performed regardless of whether or not
the SQL optimization option is specified:

• Grouping can be executed without sorting, using a grouping column index or
by sorting join columns for sort/merge join.

The following facility is not used when the rapid grouping facility is used:
• AND multi-index use (however, this function is used with structured

repetition predicates and functions dedicated to index type plug-ins).

4.9.3 Specification method
To use the rapid grouping facility, specify in the SQL optimization options either
RAPID_GROUPING or a value to which 1,024 has been added. For details about how to
specify the SQL optimization options, see the following locations:

• The pd_optimize_level description in the manual HiRDB Version 8 System
Definition

• The SQL optimization options description in the manual HiRDB Version 8 SQL
Reference

• The PDSQLOPTLVL description in 6.6.4 Environment definition information

4.9.4 Tuning method
If the number of groups to be grouped is high, the rapid grouping facility may not be
effective. If this is the case, specify a value of the required size (number of groups or
higher) in the PDAGGR operand of the client environment definitions. Note, however,
that a large amount of process-specific memory may be used. If the amount of memory
used is large and a value of the required size cannot be specified, specify the maximum

4. UAP Design for Improving Performance and Handling

354

specifiable value that is less than the number of groups. Specifying a value larger than
the number of groups is no more effective than specifying a value equal to the number
of groups. For details about the PDAGGR operand, see 6.6.4 Environment definition
information.

4. UAP Design for Improving Performance and Handling

355

4.10 Multi-connection facility

(1) Overview
(a) What is the multi-connection facility?

The multi-connection facility establishes multiple connections to the HiRDB server
from one AP process in a HiRDB client. This facility can be used only when creating
or executing a UAP in the HP-UX, Solaris, or Windows environment.
The multi-connection facility establishes independent individual connections. A
separate server process is allocated to each connection, and the connections are
processed as separate transactions. The AP process can, therefore, execute multiple
SQL statements simultaneously. Because multiple connections can be established
from one UAP, the number of UAPs to be executed can be reduced, and the overall
memory requirement for UAPs can be reduced.
Because each connection is counted as a separate user, the maximum number of server
connections becomes the maximum number of simultaneous connections rather than
the maximum number of users.
The multi-connection facility has the following characteristics:

• A different authorization server and password can be used for each connection.
• One AP process can connect to HiRDB servers on multiple server computers and

execute SQL statements because each connection can be connected to a HiRDB
server in a different server computer.

• The multi-connection facility can be used for all servers that can connect to the
client library.

(b) Multi-connection facility in the X/Open XA interface environment
When the multi-connection facility is used in the X/Open XA interface environment,
a UAP operating under a single transaction manager (such as OpenTP1) can use the
XA interface to access multiple HiRDB systems. Because the UAP is using the XA
interface, the UAP can synchronize and control processing among transactions that
access multiple HiRDB systems.
For the open character string to be specified in the xa_open() function, specify the
name of the file in which the environment variables (client environment definitions)
were set. The xa_open() function establishes a connection to HiRDB according to
those environment variables. You can select the destination to which an SQL statement
is issued from among the connection destinations connected by the xa_open()
function.
The multi-connection facility in the X/Open XA interface environment can be used
only with the following client platforms:

4. UAP Design for Improving Performance and Handling

356

• HP-UX 11.0
• Solaris
• AIX 5L (single thread)
• Linux (single thread)
• Windows

(2) Processing overview
Figures 4-54 through 4-58 show an overview of multi-connection facility processing.

Figure 4-54: Overview of multi-connection facility processing (when
multithreading is not used)

4. UAP Design for Improving Performance and Handling

357

Figure 4-55: Overview of multi-connection facility processing (when
multithreading is used)

4. UAP Design for Improving Performance and Handling

358

Figure 4-56: Overview of multi-connection facility processing (when a
connection is shared by multiple threads)

4. UAP Design for Improving Performance and Handling

359

Figure 4-57: Overview of multi-connection facility processing (when an AP
uses an X/Open-compliant API in a single-thread OLTP system)

Explanation
Register HiRDB 1 and HiRDB 2 in the OLTP system beforehand. When
tx_open() is executed, the OLTP system connects to all registered HiRDB
systems. When an SQL statement is executed, select the connection destination
for that SQL statement.

4. UAP Design for Improving Performance and Handling

360

Figure 4-58: Overview of multi-connection facility processing (when an AP
uses an X/Open-compliant API in a multi-thread OLTP system)

4. UAP Design for Improving Performance and Handling

361

Explanation
Register HiRDB 1 and HiRDB 2 in the OLTP system beforehand. When
tx_begin() is executed, the OLTP system connects to all registered HiRDB
systems. When an SQL statement is executed, select the connection destination
for that SQL statement. Because the individual transactions are independent, SQL
statements for different threads can be executed simultaneously.

(3) Coding example
(a) Normal UAPs

Figures 4-59 and 4-60 show coding examples of UAPs that use the multi-connection
facility.

4. UAP Design for Improving Performance and Handling

362

Figure 4-59: Coding example (C) of a UAP that uses the multi-connection
facility

4. UAP Design for Improving Performance and Handling

363

Explanation
1. Defines the connection handle.
2. Allocates the connection handle.
3. Specifies HiRDB processing for connection 1.
4. Specifies HiRDB processing for connection 2.
5. Releases the connection handle.

4. UAP Design for Improving Performance and Handling

364

Figure 4-60: Coding example (COBOL) of a UAP that uses the
multi-connection facility

Note

4. UAP Design for Improving Performance and Handling

365

Specify the entire SQL, including the SQL prefix and terminator, in the B area
(columns 12 to 72).

Explanation
1. Defines the connection handle.
2. Allocates the connection handle.
3. Specifies HiRDB processing for connection 1.
4. Specifies HiRDB processing for connection 2.
5. Releases the connection handle.

(b) UAPs that use an X/Open-compliant API under OLTP
Figures 4-61 and 4-62 show coding examples in which the multi-connection facility is
used by UAPs that use an X/Open-compliant API under OLTP.

4. UAP Design for Improving Performance and Handling

366

Figure 4-61: Coding example (C) in which the multi-connection facility is used
by a UAP that uses an X/Open-compliant API under OLTP

Explanation
Register HiRDB 1 (environment variable group identifier HDB1) and HiRDB 2
(environment variable group identifier HDB2) in the OLTP system beforehand.

4. UAP Design for Improving Performance and Handling

367

For details about how to register a HiRDB system to a transaction manager, see
the HiRDB Version 8 Installation and Design Guide.
Figure 4-62: Coding example (COBOL) in which the multi-connection facility
is used by a UAP that uses an X/Open-compliant API under OLTP

Note

4. UAP Design for Improving Performance and Handling

368

Specify the entire SQL, including the SQL prefix and terminator, in the B area
(columns 12 to 72).

Explanation
Register HiRDB 1 (environment variable group identifier HDB1) and HiRDB 2
(environment variable group identifier HDB2) in the OLTP system beforehand.
For details about how to register a HiRDB system to a transaction manager, see
the HiRDB Version 8 Installation and Design Guide.

(4) Rules
1. If a UAP is to use the multi-connection facility, a special library must be linked to

that UAP. For details, see 8.3.4 Compiling and linking when the multi-connection
facility is used.

2. If a UAP that uses the multi-connection facility library branches a thread while
maintaining a single connection, and that thread executes SQL statements,
serialize the processing between that thread and the other threads that issue SQL
statements. SQL statements for the same connection cannot be issued
simultaneously. However, SQL statements for different connections can be issued
simultaneously.

3. To obtain error information for ALLOCATE CONNECTION HANDLE or FREE
CONNECTION HANDLE, reference the value of the return code receiving variable
instead of SQLCODE and SQLERRM. For details about the return code receiving
variable, see the HiRDB Version 8 SQL Reference manual.

4. To reference an SQL Communications Area, the UAP must use the DECLARE
CONNECTION HANDLE SET statement to declare a connection handle to the SQL
Communications Area to be referenced.

5. When the programming language is COBOL, UAPs containing SQL statements
that use the multi-connection facility cannot specify SQL statements except those
for connection handle allocation and fetching before the DECLARE CONNECTION
HANDLE SET specification (outside the effective scope).

6. When the programming language is COBOL, DECLARE CONNECTION HANDLE
UNSET cannot be used.

7. The multi-connection facility can be used by UAPs that support multiple threads
(DCE threads or real threads) or a single thread. To create a UAP that supports
multi-threads and uses the multi-connection facility, you need to know how to
develop a UAP in HiRDB and how to develop a UAP that uses DCE threads or
real threads.

8. The multi-connection function in Windows can only be used by UAPs that
support multi-threads. Therefore, when specifying the C runtime library to be
used in UAP compilation, select the multi-thread DLL (specify Multithread
DLL in Compile option: Code generation).

4. UAP Design for Improving Performance and Handling

369

9. When using C or C++ to reference the SQL Communications Area, use and
reference macro names that begin with SQL. Do not reference the SQLCA
structures directly. For details about the macro names to be used, see B.2(1)(a) C.

4. UAP Design for Improving Performance and Handling

370

4.11 Using tables for managing numbers

(1) When tables should be used
Actual work operations involve numbering, including management of form and
document numbers. There are instances when two users may try to get form numbers
at the same time. The form numbers must be counted to ensure that when a user
requests a form number, he or she does not get the same number that was issued earlier
to another user. If a duplicate number is generated, a user may be forced to wait while
another user is getting a form number. HiRDB provides a numbering function to
minimize the effects of lock-release waiting.

(2) Designing tables
For the most efficient numbering, tables must be designed to minimize the effects of
lock-release waiting. HiRDB minimizes the locking effects on tables that manage
numbers by providing a facility that releases the lock on a row without waiting for the
UAP to commit the transaction. This facility releases the lock when the table update
(including addition and deletion) process is completed and disables rollback after that
point. To use this facility, the table designer must specify the WITHOUT ROLLBACK
option in the CREATE TABLE statement when defining the table.

(3) Conditions for applying WITHOUT ROLLBACK to operations
If the WITHOUT ROLLBACK option is specified when a table is defined, rollback
becomes disabled as soon as a row is updated. Thus, if the UAP or the HiRDB system
terminates abnormally, the active table with obtained numbers is rolled back correctly
when the HiRDB system is restarted, and data integrity is maintained. However, the
point to which the process that updates the number management table was rolled back
is unknown. In this case, the operation has assigned a number but is no longer using it.
Therefore, the WITHOUT ROLLBACK option is not suitable for operations that are
adversely affected if a number is skipped. Use the WITHOUT ROLLBACK option only
if the numbers do not have to be continuous.

(4) Example of a table that manages numbers
Figure 4-63 shows an example of a table that manages numbers.

4. UAP Design for Improving Performance and Handling

371

Figure 4-63: Example of a table that manages numbers

Note
For details about the table definition example (specification of without
ROLLBACK option), see the HIRDB Version 8 Installation and Design Guide.

(5) Example of a numbering application program
Following is an example of a numbering application program. The application
program that manipulates the number management table and the operation table is
assumed to be the same transaction.
This table manages form numbers and document numbers. In the following example,
the SQL obtains the latest form number from the number management table and uses
it in the operation.
INSERT INTO number-management-table VALUE ('form-number',1) 1
:
DECLARE CUR1 CURSOR FOR 2
SELECT number FROM number-management-table
WHERE type='form-number' FOR UPDATE OF number
OPEN CUR1 3
FETCH CUR1 INTO :x_number 4
UPDATE number-management-table SET number=:x_number+1 5
WHERE CURRENT OF CUR1
CLOSE CUR1 6
:
Access to operation table that used obtained number 7
:

Explanation
1. Enters 1 as the initial form number value in the number management table.
2. Retrieves the latest form number from the number management table and

declares cursor CUR1.

4. UAP Design for Improving Performance and Handling

372

3. Opens cursor CUR1.
4. Fetches the form number into x_number.
5. Increments the number for the next user who retrieves a number (sets the

latest number). When this process is completed, the lock on the row is
released without waiting for the COMMIT statement.

6. Closes cursor CUR1.
7. Executes the user-defined operation based on the form number that was

fetched into x_number.
Steps 3 through 7 are repeated for each number.

(6) Considerations when managing multiple number types
(a) Lock processing

If multiple rows are stored in a table for which the WITHOUT ROLLBACK option is
specified and an index is not defined for that table, all rows are temporarily locked
because the retrieval targets all rows. In such cases, a lock-release wait may occur
between the form number numbering process and the document number numbering
process. To avoid lock-release wait, specify YES for PDLOCKSKIP in the client
environment definitions. This sets a search using condition evaluation with no lock.
When a search using condition evaluation with no lock is set, the rows are not locked
during retrieval processing, and only the rows that satisfy the retrieval condition are
locked.

(b) Rollback processing
When handling multiple number types, do not execute processes that update multiple
rows with one SQL execution. Lock release and rollback become disabled in each row
when update processing for that row is completed. Therefore, if a UAP that updates
multiple rows terminates abnormally, the HiRDB system may not be able to roll back
the update of some of the rows.

(7) Example of numbering with a stored procedure
Registering a numbering process as a stored procedure is useful because numbering is
often processed according to a fixed pattern.
Examples 1 through 3 show table definitions and stored procedures.
Example 1 defines a table with the WITHOUT ROLLBACK specification and uses a
stored procedure to assign sequential numbers.

This example assigns number values that start from an initial value of 1 and
increment by 1 up to the maximum integer value.
If the maximum integer value is exceeded, the HiRDB system returns an overflow
error. However, if the default value setting facility (PDDFLNVAL) is used, a null

4. UAP Design for Improving Performance and Handling

373

value is set instead of an overflow error, and a NOT NULL constraint violation
error occurs. If a row with the initial value is not inserted beforehand, the table
will not have any rows, and a cursor positioning error (the cursor is not positioned
on any row) will occur when the UPDATE statement is executed. If multiple rows
are inserted beforehand, the second and subsequent rows are ignored.
CREATE FIX TABLE
 owner_id.sequence_tbl(sequence_no INTEGER NOT NULL)
 WITHOUT ROLLBACK; 1
CREATE PROCEDURE owner_id.nextval(OUT next_no INTEGER)
 BEGIN
 DECLARE update_no INTEGER; 2
 DECLARE cr1 CURSOR FOR
 SELECT sequence_no FROM owner_id.sequence_tbl
 FOR UPDATE;
 OPEN cr1;
 FETCH cr1 INTO update_no; 3
 SET next_no=update_no; 4
 UPDATE owner_id.sequence_tbl SET sequence_no=update_
 no+1
 WHERE CURRENT OF cr1; 5
 CLOSE cr1; 3
 END 2
COMMIT WORK; 6
INSERT INTO owner_id.sequence_tbl(sequence_no) VALUES(1);
7
COMMIT WORK; 8
<Sequence number assignment> 9
CALL owner_id.nextval (OUT:xnext_no);
:
Process that uses sequence number xnext_no that was assigned
:
CALL owner_id.nextval (OUT:xnext_no);
:

Explanation
1. Defines the owner_id.sequence_tbl key for assigning INTEGER

values.
2. Defines the owner_id.nextval procedure, which assigns a sequence

number and outputs it with the next_no parameter.
3. Retrieves the value in the sequence_no column of the

owner_id.sequence_tbl table.
4. Sets the retrieved value to the next_no parameter.
5. Increments the sequence_no column in the

owner_id.sequence_tbl table by 1.

4. UAP Design for Improving Performance and Handling

374

6. Commits the transaction to validate the table and procedure definitions.
7. Inserts a row that has the initial value of 1 using an INSERT statement.
8. Commits the transaction to validate the inserted row.
9. Calls the owner_id.nextval procedure with a CALL statement,

assigns a sequence number, and gets the value with the next_no
parameter. The next sequence number is assigned each time a CALL
statement is executed.

Example 2 defines a table with the WITHOUT ROLLBACK specification and uses a
stored procedure to assign two or more types of sequence numbers.

For each sequence number identification key, this example assigns number values
that start from an initial value of 1 and increment by 1 up to the maximum integer
value.
If the maximum integer value is exceeded, the HiRDB system returns an overflow
error. However, if the default value setting facility (PDDFLNVAL) is used, a null
value is set instead of an overflow error, and a NOT NULL constraint violation
error occurs. If a row with the initial value is not inserted beforehand for a
sequence value identification key, the table will not have any rows and a cursor
positioning error (the cursor is not positioned on any row) will occur when the
UPDATE statement is executed. If multiple rows are inserted beforehand for a
sequence number identification key, the second and subsequent rows are ignored.
Notes

1. An index cannot be defined for a table when WITHOUT ROLLBACK is
specified. To prevent lock contention, specify PDLOCKSKIP=YES in the
client environment definitions.

2. Because an index cannot be defined for a table when WITHOUT
ROLLBACK is specified, divide the tables and the procedures if the
number of sequence number types is extremely large.

CREATE FIX TABLE
 owner_id.sequence_tbl(sequence_key CHAR(30) NOT NULL,
 sequence_no INTEGER NOT NULL)
 WITHOUT ROLLBACK;
..1
CREATE PROCEDURE owner_id.nextval(IN input_key CHAR(30),
 OUT next_no INTEGER)
 BEGIN
 DECLARE update_no INTEGER;
.................................2
 DECLARE cr1 CURSOR FOR
 SELECT sequence_no FROM owner_id.sequence_tbl
 WHERE sequence_key=input_key FOR UPDATE OF
sequence_no;

4. UAP Design for Improving Performance and Handling

375

 OPEN cr1;
 FETCH cr1 INTO update_no;
..................................3
 SET next_no=update_no;
.....................................4
 UPDATE owner_id.sequence_tbl SET sequence_no=update_no+1
 WHERE CURRENT OF cr1;
....................................5
 CLOSE cr1;
...3
 END
..2
COMMIT WORK;
...6
INSERT INTO owner_id.sequence_tbl(sequence_key,sequence_no)
 VALUES('key_value_1',1);
...................................7
COMMIT WORK;
...8
INSERT INTO owner_id.sequence_tbl(sequence_key,sequence_no)
 VALUES('key_value_2',1);
...................................7
COMMIT WORK;
...8
 :
(Initial value row is inserted for each sequence number type)

<Assignment of 'key_value_1' sequence number>
............................9
xinput_key <-- 'key_value_1'
CALL owner_id.nextval(IN:xinput_key,OUT:xnext_no);
 :
Processing when sequence number xnext_no assigned to
'seqkey_value_1' is used
 :
xinput_key <-- 'key_value_1'
CALL owner_id.nextval(IN:xinput_key,OUT:xnext_no);
 :

<'Assignment of key_value_2' sequence number>
............................9
xinput_key <-- 'key_value_2'
CALL owner_id.nextval(IN :xinput_key,OUT:xnext_no);
 :
Processing when sequence number xnext_no assigned to
'key_value_2' is used
 :
xinput_key <-- 'key_value_2'

4. UAP Design for Improving Performance and Handling

376

CALL owner_id.nextval(IN:xinput_key,OUT:xnext_no);
 :

Explanation
1. Defines the owner_id.sequence_tbl table for assigning INTEGER

values to each sequence number identification key.
2. Defines the owner_id.nextval procedure, which enters a sequence

number identification key using the input_key parameter, assigns a
sequence number for that key, and outputs the sequence number with the
next_no parameter.

3. Specifies a sequence number identification key for the sequence_key
column in the owner_id.sequence_tbl table and retrieves the value in
the sequence_no column.

4. Sets the retrieved value to the next_no parameter.
5. Increments the sequence_no column in the owner_id.sequence_tbl

table by 1.
6. Commits the transaction to validate the table and procedure definitions.
7. Inserts a row that has the initial value of 1 using an INSERT statement, for

each sequence number identification key.
8. Commits the transaction to validate the inserted row.
9. Calls the owner_id.nextval procedure with a CALL statement, assigns a

sequence number, and gets the value with the next_no parameter. The next
sequence number is assigned each time a CALL statement is executed.

Example 3 defines a table with the WITHOUT ROLLBACK specification and uses a
stored procedure to assign sequence numbers that are incremented between a
minimum value and a maximum value.

If a row with the initial value is not inserted beforehand, the table will not have
any rows, and a cursor positioning error (where the cursor is not positioned on any
row) will occur when the UPDATE statement is executed. If multiple rows are
inserted beforehand, the second and subsequent rows are ignored.
CREATE FIX TABLE
 owner_id.sequence_tbl (sequence_no INTEGER NOT NULL)
 WITHOUT ROLLBACK; 1
CREATE PROCEDURE owner_id.nextval(OUT next_no INTEGER)
 BEGIN
 DECLARE update_no INTEGER; 2
 DECLARE cr1 CURSOR FOR
 SELECT sequence_no FROM owner_id.sequence_tbl FOR
UPDATE;
 OPEN cr1;

4. UAP Design for Improving Performance and Handling

377

 FETCH cr1 INTO update_no; 3
 SET next_no=update_no; 4
 IF update_no=214783647 THEN
 SET update_no=-214783648;
 ELSE
 SET update_no=update_no+1;
 END IF; 5
 UPDATE owner_id.sequence_tbl SET sequence_no=update_no
 WHERE CURRENT OF cr1 6
 CLOSE cr1; 3
 END 2
COMMIT WORK; 7
INSERT INTO
 owner_id.sequence_tbl(sequence_no)VALUES(1); 8
COMMIT WORK; 9
<Sequence number assignment> 10
CALL owner_id.nextval(OUT:xnext_no);
 :
Process that uses sequence number xnext_no that was assigned
 :
CALL owner_id.nextval(OUT:xnext_no);
 :

Explanation
1. Defines the owner_id.sequence_tbl key for assigning INTEGER values.
2. Defines the owner_id.nextval procedure, which assigns a sequence

number to the sequence_no column of the owner_id.sequence_tbl
table. The sequence numbers increment in values of 1, a minimum value of
-2,147,483,648, and a maximum value of 2,147,483,647. The number
incremented after the maximum number is the minimum value.

3. Retrieves the value in the sequence_no column of the
owner_id.sequence_tbl table.

4. Sets the retrieved value to the next_no parameter.
5. If the retrieved value is the maximum value of 2,147,483,647, this section

sets the minimum value of -2,147,483,648, as the next sequence number.
Otherwise, this section increments the retrieved value by 1 and sets the result
as the next sequence number.

6. Updates the sequence_no column in the owner_id.sequence_tbl table
to the next sequence number value.

7. Commits the transaction to validate the table and procedure definitions.
8. Inserts a row that has the initial value of 1 with an INSERT statement.
9. Commits the transaction to validate the inserted row.

4. UAP Design for Improving Performance and Handling

378

10. Calls the owner_id.nextval procedure with a CALL statement, assigns a
sequence number, and gets the value with the next_no parameter. The next
sequence number is assigned each time a CALL statement is executed.

4. UAP Design for Improving Performance and Handling

379

4.12 Narrowed search

4.12.1 What is a narrowed search?
A narrowed search refers to a search that limits the target records in stages.
When a narrowed search is executed, lists are created with the ASSIGN LIST
statement of the data manipulation SQL. The lists are used in information searches that
specify conditions and limit the data items in stages until the appropriate number of
data items is reached. These lists are intermediate-stage data sets that are temporarily
saved with a name (list name) or data sets that are saved.
If a list is created for a certain condition, using that list can increase the processing
speed. When several conditions are specified, a search that combines several lists can
be executed.

4.12.2 Preparations for executing a narrowed search
Before executing a narrowed search, perform the following preparations:

• Specify the system definition
• Create an RDAREA for lists

You can execute a narrowed search (create lists) after you specify the system
definitions and create an RDAREA for lists.

(1) Specifying the system definition
Before executing a narrowed search, specify the operands for the narrowed search in
the system definition. The following operands must be specified before a narrowed
search can be executed:

• pd_max_list_users (maximum number of users who can create lists)
• pd_max_list_count (maximum number of lists that each user can create)

In addition, the following operands can be specified if necessary:
• pd_max_list_users_wrn_pnt (output timing of the usage rate warning

message for the specified pd_max_list_users value)
• pd_max_list_count_wrn_pnt (output timing of the usage rate warning

message for the specified pd_max_list_count value)
• pd_rdarea_list_no_wrn_pnt (output timing of the usage rate warning

message for the maximum number of lists that can be created in the server)
For details about these system definition operands, see the HiRDB Version 8 System
Definition manual.

4. UAP Design for Improving Performance and Handling

380

(2) Creating an RDAREA for lists
To create an RDAREA for lists, use the database initialization utility (pdinit) or the
database structure modification utility (pdmod). For details about the database
initialization utility and the database structure modification utility, see the HiRDB
Version 8 Command Reference manual.
For the HiRDB file system area to be specified in the RDAREA for lists, specify WORK
as the usage purpose. For details about how to design the RDAREA for lists, see the
HiRDB Version 8 Installation and Design Guide.

4.12.3 Search using lists
This section explains the method of searching using lists. Figure 4-64 shows an
example of a search that uses a list.

4. UAP Design for Improving Performance and Handling

381

Figure 4-64: Example of a search that uses lists

4. UAP Design for Improving Performance and Handling

382

4.12.4 Action if a rollback occurs for a transaction that uses a list
If a transaction is cancelled by the ROLLBACK statement of SQL or an error, you many
need to re-create a list that was created or deleted by that transaction. The following
table describes the user action to be taken depending on the status of a list that had been
created or deleted when a transaction was cancelled.

List operation in cancelled transaction List status User action

List created with
ASSIGN LIST statement
in the transaction

If the list was created
with a list name that did
not exist before the
transaction was started

The list that was created
cannot be found.

Reexecute the transaction
process.

If the list was created
with a list name that
existed before the
transaction was started

The list that had the same
list name before the
transaction was started
cannot be used. (An error
occurs if the list is
searched.)*

To use the list that had the
same list name before the
transaction was started in
the transaction, re-create
the list. Then reexecute the
transaction.

4. UAP Design for Improving Performance and Handling

383

* Depending on when the transaction was cancelled, you still may be able to use the
list normally.

4.12.5 Automatic list deletion at HiRDB startup and termination
When HiRDB is terminated or started, all lists that have been created are deleted
regardless of the start mode.
If a HiRDB/Parallel Server is being used, and a single unit is terminated or started, all
lists in the RDAREA for lists in that unit are deleted. If a single server is terminated or
started, all lists in the RDAREA for lists in that server are deleted. When a deleted list
is searched, an error occurs.
If HiRDB terminates abnormally in a unit or if all the units that configure the HiRDB
system are stopped, all created lists are deleted when HiRDB is started. If some of the
units terminate abnormally and those units are restarted, all lists in the RDAREA for
lists in those units are deleted. When a deleted list is searched, an error occurs.
If such an error occurs, use one of the following methods to delete or re-create the list.
If you want to use the list that was affected by the search error

Use the ASSIGN LIST statement to create a list with the same list name that was
used previously.

If you do not want to use the list that was affected by the search error
Use the DROP LIST statement to delete the list that resulted in the search error,
or terminate and restart HiRDB to delete all created lists.

4.12.6 Notes about using lists
(1) List after disconnection from HiRDB

A list is not deleted even after the UAP is disconnected from the HiRDB system. To

List to be deleted by
DROP LIST statement in
the transaction

If the deletion-target list
did not exist before the
transaction was started

The list that was deleted
cannot be found.

Reexecute the transaction
process.

If the deletion-target list
existed before the
transaction was started

The list that did not exist
before the transaction was
started cannot be found.
The deletion-target list
that existed before the
transaction was started
cannot be used. (An error
occurs if the list is
searched.)*

To use the deletion-target
list that existed before the
transaction was started in
the transaction, re-create
that list. Then reexecute
the transaction.

List operation in cancelled transaction List status User action

4. UAP Design for Improving Performance and Handling

384

delete a list, either use the DROP LIST statement or stop the HiRDB system to delete
all lists.

(2) List status after row insertion or deletion
In a search that uses a list, rows that were present in the list when the list was created
but then later deleted are not searched. If a row is updated after the list is created, the
updated data is fetched.

(3) Row insertion and deletion after list creation
In a search that uses a list, rows that were inserted after the list was created and after
rows in the base table were deleted are sometimes searched.

(4) Execution of the ASSIGN LIST statement for a row partitioned table
If the ASSIGN LIST statement is executed for a row partitioned table and the table
cannot be searched because of shutdown of some of the RDAREAs in the base table,
an error occurs even if the data of an RDAREA that can be searched is specified in a
search condition for a partitioned column.

(5) List operation by the same user
The same user cannot connect to multiple HiRDB systems simultaneously and operate
a list.

(6) Stopping of the dictionary server or a unit found in the dictionary server
With a HiRDB/Parallel Server, if the dictionary server or the unit that contains the
dictionary server is stopped, the list management information is lost. As a result,
operations (search, deletion, and update) become disabled for all lists that were created
up to that point. (An error occurs if a list is operated.) To use a list that triggered an
error when operated, use the ASSIGN LIST statement to create a new list that has the
same list name as the previous list.
If the dictionary server is restarted, the KFPA11998-E error (list operation while
transaction is undetermined) may be displayed for processes that use a list. This error
may be displayed until recovery is completed for all list-using transactions of other
users that were started before the server was stopped.

(7) Recovery of a list base table with the database recovery utility
If a log is used to recover a list base table to its latest status, the lists that were created
can be used without modification. However, for a recovery that uses only a backup, a
time-specification recovery that uses a log, or a recovery that does not use the latest
log, use one of the following methods to delete or re-create all lists that were based on
the recovered table:
If you want to use the lists:

Use the ASSIGN LIST statement to create lists that have the same list names as
the previous lists.

4. UAP Design for Improving Performance and Handling

385

If you do not want to use the lists:
Use the DROP LIST statement to delete the lists, or terminate and restart HiRDB
to delete all created lists.

(8) Reinitialization of an RDAREA where a list base table is stored
Use one of the following methods to delete or re-create all lists that are based on a list
stored in a reinitialized RDAREA:
If you want to use the lists:
Use the ASSIGN LIST statement to create lists that have the same list names as the
previous lists.
If you do not want to use the lists:

Use the DROP LIST statement to delete the lists, or terminate and restart HiRDB
to delete all created lists.

(9) Execution of reorganization, creation mode download, or the PURGE TABLE
statement on a list base table

Executing reorganization, creation mode download, or the PURGE TABLE statement
on a list base table invalidates previously obtained search results for lists that were
created based on that table. To use the lists, you must use the ASSIGN LIST statement
to re-create the lists.

(10) Narrowed search when the inner replica facility is used
When you use the inner replica facility and also use the pddbchg command or
PDDBACCS in the client environment definitions to switch the RDAREA to be
accessed, the search results become invalid unless one of the following conditions is
satisfied:

• The RDAREA to be accessed during list retrieval matches the RDAREA to be
accessed during list creation.

• The RDAREA to be accessed during list retrieval contains data that was copied
from the RDAREA to be accessed during list creation.

To use a list, perform one of the following:
• Use the RDAREA to be accessed during list creation.
• Use the access-target RDAREA to which data was copied from the RDAREA to

be accessed during list creation.
• Re-create the list in the RDAREA that is currently being accessed.

4. UAP Design for Improving Performance and Handling

386

4.13 File output facility for BLOB data

4.13.1 What is the file output facility for BLOB data?
Before you can search BLOB data, you must prepare a memory area for storing BLOB
data in the client. You will also need a send buffer for BLOB data returns in the server
and memory for a receive buffer that accepts BLOB data in the client library.
Consequently, a large amount of memory must be allocated according to the BLOB data
size, and the memory resources will be strained.
More and more systems are configured so that a middleware program that operates as
a HiRDB client is placed between the end user program and HiRDB. This
configuration design has further increased the amount of memory used as BLOB data
is transferred between these programs.
The file output facility for BLOB data prevents increased memory usage during BLOB
data searches by outputting retrieved BLOB data directly to a file in a single server or a
unit with a front-end server, instead of returning the BLOB data to the client. The
facility then returns the name of the file to the client.
Figure 4-65 shows an overview of the file output facility for BLOB data.

4. UAP Design for Improving Performance and Handling

387

Figure 4-65: Overview of the file output facility for BLOB data

Explanation
1. When the client searches BLOB data, the server outputs that BLOB data in

single rows and single columns to a file.
2. The server returns the file name of the BLOB data that was output in (1) to the

client.
3. Based on the file name that was returned, the client accesses the BLOB data

file located in the server.

4.13.2 Application criteria
Apply the file output facility for BLOB data to reduce the amount of memory required
during BLOB data search.
This facility is effective in reducing the memory size required for client programs and
the memory size required for the communication buffer used in server-client
communication. However, applying this facility also increases the disk input/output
operations that take place during file output. Therefore, be sure to consider both the
required memory size effects and the disk input/output effects before you use the file

4. UAP Design for Improving Performance and Handling

388

output facility for BLOB data.

4.13.3 Specification method
Specify the file output facility for BLOB data in a WRITE specification of SQL. The
WRITE specification can be specified in a cursor specification or a query specification.
For details about the WRITE specification, see the HiRDB Version 8 SQL Reference
manual.

4.13.4 Notes about using the file output facility for BLOB data
1. When a BLOB data file that was created becomes unnecessary, the user must delete

that file. Note the following point about deleting BLOB data files. Also, BLOB data
files can be deleted unconditionally after cursor close or transaction resolution.

• When deleting a BLOB data file immediately after FETCH processing, and the
FETCH result prior to the same cursor search and the BLOB value are the
same, there are cases in which the file is not re-created with the same file
name. In this case, control the processing by storing the prior file name and
then deleting it when the file name changes.

2. Created BLOB data files are not deleted if an error or a rollback occurs. Note that
if the BLOB data files are not deleted, they use up disk space and operating system
resources.

3. Check that there is enough disk space available before using the following
facilities:

• FETCH facility using arrays
Each time FETCH is executed, a file is created for each array element.

• Block transfer facility

During the first FETCH is executed, a file is created for each block transfer
row. Subsequently, each time the FETCH for all block transfer rows is
completed and the next FETCH is executed, the file creation for each block
transfer row is repeated.

4. If a file name is the same as the file name of another transaction or cursor search,
the files may destroy one another. To avoid this problem, for each transaction or
cursor, change the directory or file name in the file prefix so that file names are
not duplicated.

4.13.5 Examples of using the file output facility for BLOB data
This section shows search examples in which the file output facility for BLOB data is
used.

4. UAP Design for Improving Performance and Handling

389

(1) Retrieving BLOB columns
In the following example, columns C1 and C2 are searched from table T1. The BLOB
data in column C1 is output to files, and the names of those files are obtained.

(2) Retrieving an abstract data type that has the BLOB attribute
In the following example, the ADT1 column in which CONTAINS() is true is searched
from table T2. At this time, the BLOB values of the results for passing the columns
values to the EXTRACTS() argument are output to a file, and the file name is obtained.
This example shows the case when all values are hit.

4. UAP Design for Improving Performance and Handling

390

4. UAP Design for Improving Performance and Handling

391

4.14 Addition update and partial extraction facility for BLOB and
BINARY data

4.14.1 What is the addition update and partial extraction facility for
BLOB and BINARY data?

If all registered BLOB or BINARY* data must be updated when new data is added, or if
all BLOB or BINARY* data must be fetched when data is retrieved, both the server and
client must secure large amounts of memory that match the enormous data size.
Consequently, the memory resources become used up. The addition update and partial
extraction facility for BLOB and BINARY data is used for solving this problem.
* This refers to BINARY data that has a minimum defined length of 32,001 bytes.

(1) Addition update of BLOB or BINARY data
To add new data to registered BLOB or BINARY data, specify a concatenation operation
in the SET clause of the UPDATE statement. The amount of memory used is suppressed
to the amount of data to be added.

(2) Partial extraction of BLOB or BINARY data
To extract only the specified portion from BLOB or BINARY data, specify the SUBSTR
scalar function. The amount of memory used is suppressed to the amount of data to be
extracted.

4.14.2 Examples of using the addition update and partial extraction
facility for BLOB data
(1) Addition update of BLOB data

Multiple files are stored as one BLOB data element.

4. UAP Design for Improving Performance and Handling

392

Explanation
1. The BLOB data of file 1 is inserted in column C2 of row A in the target table

(T1).
2. The BLOB data of file 2 is added by concatenating the data to column C2 of

row A. The same applies when subsequent data is added.
(2) Partial extraction of BLOB data

The BLOB data of file 2 is extracted from the BLOB data (column C2) in row A that was
stored in Addition update of BLOB data.

4. UAP Design for Improving Performance and Handling

393

Explanation
The SUBSTR scalar function is used to extract data from the starting position (byte
(100 1024 + 1) = byte 102401) of the data column for file 2 in column C2 of
row A. Only the amount of data equivalent to the length of the data column in file
2 (200 1024 = 204800 bytes) is extracted.

4.14.3 Notes about using the addition update and partial extraction
facility for BLOB and BINARY data

When you use the addition update and partial extraction facility for BLOB and BINARY
data, note the following points:
1. A concatenation operation for BLOB or BINARY data can be specified only with

an update value in the SET clause of the UPDATE statement. The item specified for
the first term in the concatenation operation must be a column specification, and
the item specified for the second term must be an embedded variable, the ?
parameter, an SQL variable, or an SQL parameter.
For details about the rules for using the concatenation operation to update a
BLOB-type or BINARY-type column, see the manual HiRDB Version 8 SQL
Reference.

2. To execute an addition update, create a column that stores unique key values, and
specify that column in the search conditions to identify the update row. To
accelerate the row identification process, create an index in that column.

3. The minimum input/output unit for BLOB data is the page length of the RDAREA,
and HiRDB performs batch input/output of up to 128 kilobytes. Therefore, to

4. UAP Design for Improving Performance and Handling

394

improve the performance of BLOB data insertion, addition update, or partial
extraction, you should set the data length to units of 128 1024 n bytes (n is
a nonzero positive integer).

4. The BINARY data described in this subsection refers to BINARY data with a
minimum defined length of 32,001 bytes.

4. UAP Design for Improving Performance and Handling

395

4.15 Retrieve first n records facility

4.15.1 Overview
Sometimes the SQL retrieval performance can be improved by obtaining the retrieval
results of only the first n rows. The performance improvement can be expected to
increase as the number of retrieval result rows decreases.
When the retrieve first n records facility is used, only the first n rows from the
beginning of the SQL retrieval results (or after the specified offset of the first row to
return has been skipped) are accepted. In this case, the access path selected by the SQL
optimization method changes. Consequently, the SQL retrieval performance may
improve as described as follows:

• Fewer rows may need to be sorted because sort processing that targets all rows
that satisfy the search conditions becomes unnecessary.

• The work tables that HiRDB creates exclusively for the ORDER BY clause may
become unnecessary.

• The amount of communication between server processes can sometimes be
reduced by having the server processes not read the rows that do not fall in the
first n rows of the retrieval results.

To use the retrieve first n records facility, specify LIMIT. For details about LIMIT, see
the manual HiRDB Version 8 SQL Reference.

4.15.2 Notes
In the following cases, the retrieval performance may not improve, or conversely, may
become worse, even if the retrieve first n records facility is used.
1. If the sum of the offset of the first row to return and the maximum number of rows

to return is the same or extremely close to the value when the LIMIT clause is not
specified.

2. If the LIMIT clause is specified but the ORDER BY clause is not, HiRDB cannot
uniquely determine which rows are to be retrieved. The ORDER BY clause should
therefore be specified whenever the LIMIT clause is specified. However, when
the ORDER BY clause is specified, the SQL optimization method may select a
different access path and the retrieval performance may worsen. To check the
access path selected by the SQL optimization method, use the access path display
utility (pdvwopt).

3. If both the ORDER BY and LIMIT clauses are specified and there are several rows
that have the same sort key value as the last row that was skipped based on the
offset of the first row to return or the last row that was obtained based on the
maximum number of rows to return, HiRDB cannot uniquely determine which of

4. UAP Design for Improving Performance and Handling

396

the rows with the same sort key value are to be retrieved. To retrieve a specific
row that has the same sort key value as the row that satisfies this condition, add
more columns to the sort key. However, when more sort key columns are added,
the SQL optimization method may select a different access path, and the retrieval
performance may worsen. To check the access path selected by the SQL
optimization method, use the access path display utility (pdvwopt).

In cases like those described, do not use the retrieve first n records facility.
If the maximum number of rows to return is 1 or more and the sum of the offset of the
first row to return and the maximum number of rows to return is 32,767 or less, HiRDB
stores the rows that fall within that sum in memory instead of creating a work table.
Therefore, the required memory size increases compared to when the facility is not
used. For details about the required memory size, see Calculating the required memory
size for execution of the retrieve first n records facility in the HiRDB Version 8
Installation and Design Guide.

4.15.3 Checking the access path
Depending on whether or not the retrieve first n records facility is used to accelerate
retrieval processing, the SQL optimization method may select an access path that
differs from the ORDER BY processing method. For details about the ORDER BY
processing method, see the pdvwopt description in the manual HiRDB Version 8
Command Reference.

4. UAP Design for Improving Performance and Handling

397

4.16 Automatic reconnect facility

The automatic reconnect facility automatically reconnects the HiRDB client to the
HiRDB server if the connection with the HiRDB server is disconnected because of a
service process failure, system switchover, network failure, or other cause. By using
the automatic reconnect facility, you can continue UAP execution without worrying
about disconnections with the HiRDB server.
To use the automatic reconnect facility, specify YES in the PDAUTORECONNECT client
environment definition.

4.16.1 Application criteria
If the HiRDB server is executing the system reconfiguration command* or update to
the HiRDB update version*, the HiRDB client waits until that process ends. While the
HiRDB client is waiting, the wait time is monitored based on the PDCWAITTIME time.
If the PDCWAITTIME time is exceeded, the wait status is released and a PDCWAITTIME
over error is returned to the UAP.
Depending on the execution timing, the HiRDB client is sometimes unable to detect
that the system reconfiguration command or update to the HiRDB update version is
being executed, and a communication processing error may occur. If you know ahead
of time that the system reconfiguration command or update to the HiRDB update
version is to be executed, use the automatic reconnect facility. If you use this facility,
the HiRDB client can continue processing without returning an error to the UAP even
if the system reconfiguration command or update to the HiRDB update version is
being executed.
* The system reconfiguration command is executed with the pdchgconf command.
Update to the HIRDB update version is executed with the pdprgcopy and
pdprgrenew commands. For details about these operation commands, see the manual
HiRDB Version 8 Command Reference.

4.16.2 Reconnect timings
Reconnection is performed at the following times:

• When the HiRDB client executes an SQL statement immediately after executing
the CONNECT statement, or when the transaction for the previous SQL statement
is completed

• When the HiRDB client executes an SQL statement while the HiRDB server is
processing the transaction for the previous SQL statement

• When the HiRDB client executes the CONNECT statement

4. UAP Design for Improving Performance and Handling

398

(1) If the HiRDB client executes an SQL statement immediately after executing
the CONNECT statement, or when the transaction for the previous SQL statement
is completed

When the HiRDB client executes an SQL statement, the automatic reconnect facility
detects whether the connection with the HiRDB server has been disconnected. If the
facility detects a disconnection, it reconnects the client to the server, and re-executes
the SQL statement after the connection is re-established. If the automatic reconnect
facility detects a connection failure when the HiRDB client executes an SQL statement
after automatic reconnection, it returns an error to the UAP. Figure 4-66 shows the
reconnect timing (when the HiRDB client executes an SQL statement immediately
after executing the CONNECT statement, or when the transaction for the previous SQL
statement is completed).

Figure 4-66: Reconnect timing (when the HiRDB client executes an SQL
statement immediately after executing the CONNECT statement, or when the
transaction for the previous SQL statement is completed)

(2) When the HiRDB client executes an SQL statement while the HiRDB server is
processing the transaction for the previous SQL statement

When the HiRDB client executes an SQL statement, the automatic reconnect facility
detects whether the connection with the HiRDB server has been disconnected. If the
facility detects a disconnection, it returns a connection error (SQLCODE = -722 or
-723) to the UAP. When the client executes the next SQL statement, the facility

4. UAP Design for Improving Performance and Handling

399

reconnects with the server and re-executes the previous SQL statement.
If the automatic reconnect facility detects a connection failure when the HiRDB client
executes an SQL statement after automatic reconnection, it returns an error to the UAP.
Figure 4-67 shows the reconnect timing (when the HiRDB client executes an SQL
statement while the HiRDB server is processing the transaction for the previous SQL
statement). Any uncompleted transactions that were being executed when the SQL
statement with the returned error was executed are rolled back.

Figure 4-67: Reconnect timing (when the HiRDB client executes an SQL
statement while the HiRDB server is processing the transaction for the previous
SQL statement)

(3) When the HiRDB client executes the CONNECT statement
If the HiRDB client executes the CONNECT statement and the connection fails because
of a communication error, the automatic reconnect facility executes reconnect
processing.
Figure 4-68 shows the reconnect timing (when the HiRDB client executes the

4. UAP Design for Improving Performance and Handling

400

CONNECT statement).
Figure 4-68: Reconnect timing (when the HiRDB client executes the
CONNECT statement)

4.16.3 CONNECT processing during automatic reconnect
The automatic reconnect facility executes the CONNECT statement five times internally
at 5-second intervals. You can use PDRCCOUNT and PDRCINTERVAL to change the
number of times the CONNECT statement is executed, and the execution interval,
respectively. However, if the request from the UAP specifies a statement other than the
CONNECT statement, HiRDB uses the PDCWAITTIME time to monitor the processing
time. If the processing time for automatic reconnect exceeds the PDCWAITTIME time,
HiRDB aborts the automatic reconnect process and returns an error to the UAP.

4.16.4 Notes about using the automatic reconnect facility
1. The automatic reconnect facility cannot be used if the UAP contains a LOCK

statement that specifies UNTIL DISCONNECT.
2. If the UAP that uses a holdable cursor is being used, the automatic reconnect

facility returns an error to the UAP, even if a transaction is not being processed.

3. If the JDBC driver1 or DABroker for JAVA2 accesses the system and a statement
that applies over several transactions is effective, the JDBC statement becomes
ineffective after the automatic reconnect facility reconnects the HiRDB client. In
this case, the prepareStatement() method must be executed again.

4. UAP Design for Improving Performance and Handling

401

1 When the JDBC driver is used, a statement that applies over several transactions
becomes effective when "CLOSE" or "RESERVE" is set to COMMIT_BEHAVIOR.
COMMIT_BEHAVIOR can be set with the Properties info argument of the
connect method in the Driver class, the Properties info argument of the
DriverManager.getConnection method, or the COMMIT_BEHAVIOR key in
a URL connection.
2 When DABroker for JAVA is used, a statement that applies over several
transactions becomes effective when the DABroker version is 03-06 or later and
the DABroker for JAVA version is 02-10 or later.

4. UAP Design for Improving Performance and Handling

402

4.17 Locator facility

4.17.1 What is the locator facility?
For the client UAP to accept retrieved BLOB or BINARY data in embedded variables of
that data type, the client must have a memory area available for storing the data.
Therefore, the memory resources of the client become overburdened when large object
data is retrieved. Furthermore, the amount of data transferred from the server to the
client becomes large. However, if only a portion of that data is required or if the
accepted data is simply specified unchanged into another SQL statement and returned
to the server, transferring all the data to the client makes processing ineffective.
HiRDB provides a locator facility to resolve this problem. A locator is a 4-byte value
that identifies data on the server. When a locator embedded variable is specified in the
INTO clause of a FETCH or single-row SELECT statement, a locator value that
identifies that data is received as the search result instead of the actual data entity. Also,
by specifying the locator embedded variable identifying the data into another SQL
statement, you can execute a process that handles the data identified by the locator.
Figure 4-69 shows an overview of the locator facility.

4. UAP Design for Improving Performance and Handling

403

Figure 4-69: Overview of the locator facility

Explanation
When the locator facility is not used:

1. The server transfers the BLOB data retrieved from the database to the client.
2. The client transfers the BLOB data to the server for storage in the database.

When the locator facility is used:
1. The server creates locator data that identifies the data retrieved from the

database.
2. The server transfers the locator data to the client.
3. The client transfers the locator data to the server.

4. UAP Design for Improving Performance and Handling

404

4. The server stores the BLOB data identified by the locator data in the database.

4.17.2 Application standard
Apply the locator facility when you are retrieving BLOB or BINARY data and you want
to reduce the amount of memory required in the client or decrease the amount of data
transferred between the server and the client.
When the locator facility is used, memory for the actual data size does not need to be
allocated in the client. In addition, the amount of transferred data can be decreased
because a locator can be used for transferring data between the server and the client.

4.17.3 Usage method
To accept a locator value, specify a locator embedded variable of the corresponding
data type at the location where the embedded variable for accepting the BLOB-type or
BINARY-type data is specified in the SQL statement. To process the data assigned to
the locator, specify a locator embedded variable of the corresponding data type instead
of specifying a BLOB-type or BINARY-type embedded variable in the SQL statement.

4.17.4 Usage example
This example replaces only the first 400 kilobytes starting from a certain binary data
column (search_data) of the data in column C2 of row C1=1 in table T1 with other
data (change_data). The result is inserted into table T1 in column C2 of a new row
(C1=2).
The data types of the columns in table T1 are shown below:

• C1: INTEGER NOT NULL (INDEX)
• C2: BLOB (100M) NOT NULL

void abnormalend(void);

main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 SQL TYPE IS BLOB AS LOCATOR alldata_loc; /* Locator representing
all data */
 long change_pos; /* Change start position */
 SQL TYPE IS BLOB(10) search_data; /* Binary data column to
be searched */
 SQL TYPE IS BLOB(400K) change_data; /* Binary data column to
be changed */
 SQL TYPE IS BLOB AS LOCATOR enddata_loc; /* Locator representing
data */
 /* that follows section to be changed */
 long pos;
 EXEC SQL END DECLARE SECTION;

4. UAP Design for Improving Performance and Handling

405

 -------(CONNECT process to HiRDB (omitted)) -------
 -------(Settings for binary data column to be searched (omitted))-------
 -------(Settings for binary data column to be changed (omitted))-------

 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;
 /* Use locator to get column data */
 EXEC SQL SELECT C2 INTO :alldata_loc FROM T1 WHERE C1 = 1;
 /* Get start position that includes binary data to be searched */
 EXEC SQL SET :change_pos = POSITION(:search_data AS BLOB(10)
 IN :alldata_loc AS BLOB(100M));
 pos = change_pos + 409600;
 /* Use locator to get data that follows changed portion */
 EXEC SQL SET :enddata_loc = SUBSTR(:alldata_loc AS BLOB(100M),
:pos);
 pos = change_pos -1;
 /* Use locator to insert data in front of changed section */
 EXEC SQL INSERT INTO T1 VALUES(2, SUBSTR
 (:alldata_loc AS BLOB(100M), 1, :pos));
 /* Locator representing all data is nullified because it is no longer necessary */
 EXEC SQL FREE LOCATOR :alldata_loc;
 /* Link data of changed section and update */
 EXEC SQL UPDATE T1 SET C2 = C2 || :change_data WHERE C1 = 2;
 /* Use locator to link data that follows changed section and update */
 EXEC SQL UPDATE T1 SET C2 = C2 || :enddata_loc WHERE C1 = 2;
 EXEC SQL COMMIT;
 printf(" *** normally ended ***\n");
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL DISCONNECT;
 return(0);
}
void abnormalend()
{
 int wsqlcode;
 wsqlcode = -SQLCODE;printf("\n*** HiRDB SQL ERROR SQLCODE
 = %d \n", wsqlcode);
 printf("SQLERRMC = %s\n", SQLERRMC);
 EXEC SQL ROLLBACK;
 EXEC SQL DISCONNECT;
 exit(1);
}

(1) Note
1. For server data to be assigned to a locator, the server may need memory to store

the data assigned to the locator. Therefore, if a single transaction assigns many
data items to locators and keeps the locators valid, the server memory will be

4. UAP Design for Improving Performance and Handling

406

overburdened. To prevent this problem, use the FREE LOCATOR statement to
invalidate locators that are no longer necessary.

4. UAP Design for Improving Performance and Handling

407

4.18 Facility for returning the total number of hits

4.18.1 Overview
Normally, you would have to execute two SQL statements to obtain the total number
of hits and the values of the rows that were hit. However, by using the facility for
returning the total number of hits, you can combine the SQL statement for obtaining
the total number of hits and the SQL statement for obtaining the values of the hit rows
into a single SQL statement. As a result, the retrieval time for executing the two SQL
statements essentially becomes the same as the retrieval time for executing one SQL
statement.
To use the facility for returning the total number of hits, specify the COUNT(*)
OVER()window function in a selection expression. For details about window
functions, see the manual HiRDB Version 8 SQL Reference.

4.18.2 Usage examples
Shown below are examples in which a count of the total number of products whose
price (PRICE) is $50.00 or more is obtained from the stock table (STOCK), along with
the product names of these products (PNAME), and then the resulting list of products is
sorted by quantity (SQUANTITY).

When the facility for returning the total number of hits is not used

SELECT COUNT(*) FROM STOCK WHERE PRICE>=5000
SELECT PNAME FROM STOCK WHERE PRICE>=5000 ORDER BY
SQUANTITY

Explanation
When the facility for returning the total number of hits is not used, two SQL
statements are required.

When the facility for returning the total number of hits is used

SELECT COUNT(*) OVER(), PNAME
 FROM STOCK WHERE PRICE>=5000 ORDER BY SQUANTITY

Explanation
Because the underlined sections of the two SQL statements are the same, you
can use the facility for returning the total number of hits in order to combine
the two SQL statements into a single SQL statement, and so obtain the total
number of hits in the first fetch operation.

4. UAP Design for Improving Performance and Handling

408

4.18.3 Note
When you use the facility for returning the total number of hits in the cases listed
below, improvement of retrieval performance cannot be expected, and in fact
performance may even drop. If performance drops, do not use the facility for returning
the total number of hits.
1. If DISTINCT, the ORDER BY clause, or the FOR READ ONLY clause is not

specified
2. If the ORDER BY clause is specified and an access path that can cancel the sorting

for ORDER BY is selected
To check whether the sorting for ORDER BY can be canceled, use the access path
display utility (pdvwopt). For details about the access path display utility, see the
manual HiRDB Version 8 Command Reference.

3. If the projection length is short, and the communication volume increase
attributed to the 4-byte string length of COUNT(*) OVER() cannot be ignored

4. If the retrieval processing cost is small

409

Chapter

5. Notes about Creating UAPs that
Access Object Relational Databases

This chapter gives notes about creating UAPs that access object relational databases.
This chapter contains the following sections:

5.1 Using abstract data types and user-defined functions
5.2 Restrictions on functions provided by plug-ins

5. Notes about Creating UAPs that Access Object Relational Databases

410

5.1 Using abstract data types and user-defined functions

This section describes writing UAPs that access tables with abstract data types and
UAPs that have user-defined functions.

(1) Embedded variable data types
User-defined data types cannot be specified in embedded variable declarations
(that is, in embedded SQL declaration clauses).
If the table column to be retrieved contains an abstract data type, no column can
be specified in the selection expression of the SELECT statement.

When embedded variables are specified in function arguments, the specifications
must match the actual argument data types of the function used. If the embedded
variable specifications and the argument data types in the function do not match,
that function cannot be used.
To determine the argument data types of a function, retrieve the
SQL_ROUTINE_PARAMS dictionary table. For details about how to retrieve a
dictionary table, see F.1 Examples of SQL statements for retrieval.

Note
An embedded variable cannot be used if the ROW data type is specified in a function
argument.

(2) Literal data types
When literals are used in function arguments, the literals must match the actual
argument data types of the function used. For example, if the data type of a function
argument is SMALLINT, and an integer literal is specified, the literal does not match the
data type. If another function has the same name, the same number of arguments, and
an argument with the integer type, that function may be used instead.
Literals cannot be used in function arguments that have one of the following data types
specified:

• SMALLINT
• SMALLFLT
• CHAR
• NCHAR
• MCHAR
• DATE
• TIME

5. Notes about Creating UAPs that Access Object Relational Databases

411

• TIMESTAMP
• INTERVAL YEAR TO DAY
• INTERVAL HOUR TO SECOND
• ROW
• BLOB
• BINARY

5. Notes about Creating UAPs that Access Object Relational Databases

412

5.2 Restrictions on functions provided by plug-ins

Functions provided by plug-ins are called plug-in distribution functions.
(1) Restrictions on passing values between plug-in distribution functions

(a) Types of plug-in distribution functions
Table 5-1 lists the types of plug-in distribution functions.

Table 5-1: Types of plug-in distribution functions

1 An example of this function type that the HiRDB Text Search Plug-in provides is the
score function.
2 An example of this function type that the HiRDB Text Search Plug-in provides is the
contains_with_score function.
The HiRDB system allows values to be passed between plug-in distribution functions.
Because HiRDB automatically passes inter-function values between plug-in
distribution functions, the inter-function value does not have to be specified as an
argument of the plug-in distribution function.
Note

Where the plug-in distribution function can be specified in an SQL differs
depending on the function type. For details about the plug-in distribution function
types, see the plug-in manuals.

The following explanations use these terms:

Function type Plug-in process

Process that generates
inter-function values to be
passed and sends them to
other plug-in distribution

functions

Process that receives
inter-function values sent

from other plug-in
distribution functions

Function that does not have
inter-function values

Not supported Not supported

Function that sends inter-function
values1

Not supported Supported

Function that receives passed
inter-function values2

Supported Not supported

Function that sends and receives
inter-function values

Supported Supported

5. Notes about Creating UAPs that Access Object Relational Databases

413

• Function that does not have passing inter-function values Function without
inter-function values

• Function that receives passing inter-function values Receive function for
passing inter-function values

• Function that sends passing inter-function values Send function for passing
inter-function values

• Function that sends and receives passing inter-function values Send/
receive function for passing inter-function values

(b) Correspondences between send and receive functions for passing
inter-function values
The following are rules for the correspondences between send and receive functions
for passing inter-function values.

• Some combinations of send and receive functions for passing inter-function
values do not allow inter-function values to be passed. For details about the
correspondences between send and receive functions for passing inter-function
values, see the plug-in manuals.

• The first arguments in both the send and receive functions for passing
inter-function values must be the same and must be a column specification for a
base table, an SQL parameter, or an SQL variable. The first argument cannot be
a component specification.

• Use one query specification to close the send and receive functions for passing
inter-function values. However, when you specify a send function for passing
inter-function values during list creation to store the passing inter-function values
to a list, and then specify a receive function for passing inter-function values
during search via a list to get the passing inter-function values from the list, you
can specify the send and receive functions for passing inter-function values across
multiple queries. (For details, see (3)(c) Methods of executing set operations
between lists.)

Table 5-2 shows the HiRDB operations for combinations between receive and send
functions for passing inter-function values.

Table 5-2: Correspondences between receive and send functions for passing
inter-function values

Receive function for passing
inter-function values

Send function for passing
inter-function values

HiRDB operation

Not specified Not specified Can be executed

Specified

5. Notes about Creating UAPs that Access Object Relational Databases

414

* When passing inter-function values are to be obtained from a list, the send and
receive functions for passing inter-function values can be specified across multiple
queries.

(c) Restrictions on plug-in distribution functions
Functions without inter-function values
Any of these functions can be specified in locations where a function can be
specified.
Receive functions for passing inter-function values

• These functions can be specified only in the selection expression of a
SELECT statement, the selection expression of an INSERT statement that has
a query specification, or the update value of a SET clause in an UPDATE
statement.

• These functions cannot be specified in CASE expressions or the VALUE
scalar function.

• When a GROUP BY clause, a HAVING clause, or a set function is specified,
receive functions for passing inter-function values that have an SQL variable
or an SQL parameter as the first argument can be specified only in a set
function argument.

Send functions for passing inter-function values
If a receive function for passing inter-function values is not specified

Any send function for passing inter-function values can be specified in
locations where a function can be specified.

If a receive function for passing inter-function values is specified
• The receive function can be specified only in a WHERE clause or an ON search

condition.
• If a send function for passing inter-function values is specified in the ON

search condition of a joined table that specifies an outer join, a column of the
outer table cannot be specified in the first argument of the function.

• If a send function for passing inter-function values is specified in the search

Specified Not specified Cannot be executed*

Specified (one) Can be executed

Specified (two or more) Cannot be executed

Receive function for passing
inter-function values

Send function for passing
inter-function values

HiRDB operation

5. Notes about Creating UAPs that Access Object Relational Databases

415

conditions of the OR operand, all of the following conditions must be
satisfied:
- A plug-in instance is defined in the first argument of the send function for
passing inter-function values.
- The first argument of the send function for passing inter-function values
specifies a base table column that is not a reference column to the outside.
- The second and subsequent arguments of the send function for passing
inter-function values do not specify a column (except a reference column to
the outside) or an argument that includes a value expression for a component
specification of a column.
- A predicate that includes IS FALSE, IS UNKNOWN, or NOT is not specified
for the send function for passing inter-function values.
- The send function for passing inter-function values is not specified in a
CAST specification.
- If the FROM clause contains specifications for two or more tables, a table
column that is different from the column specified in the first argument of the
send function for passing inter-function values cannot be specified in the
search conditions of the OR operand. (When the WHERE clause or the ON
search condition contains the NOT Boolean operator, the same applies, even
if the previous condition is satisfied after the NOT Boolean operator is
eliminated by De Morgan's theorem.)

• Send functions for passing inter-function values cannot be specified in CASE
expressions or the VALUE scalar function.

• A restriction applies if a named derived table defined by specifying the
GROUP BY clause, HAVING clause, or a set function is specified in the FROM
clause, and the named derived table does not create an internal derived table.
In this case, a send function for passing inter-function values in which the
first argument becomes an SQL value or SQL parameter cannot be specified
in the search conditions of the query specification that specifies the named
derived table.

Send/receive functions for passing inter-function values
These functions cannot be specified in SQL statements.

(2) Restrictions on executing plug-in distribution functions
(a) Execution methods for plug-in distribution functions

You can execute plug-in distribution functions in two ways:
• Use an index-type plug-in to execute a plug-in distribution function
• Execute a plug-in distribution function without using an index-type plug-in

5. Notes about Creating UAPs that Access Object Relational Databases

416

Some plug-in distribution functions can be executed only if an index-type plug-in is
used (index-type plug-in-dependent function).
When HiRDB executes an index-type plug-in-dependent function, an error occurs if
HiRDB determines that the index-type plug-in cannot be used. Table 5-3 shows the
combinations that trigger an error. To find out whether a plug-in distribution function
requires an index-type plug-in, see the plug-in manuals.

Table 5-3: Combinations that trigger an error when a plug-in distribution
function is executed

E: Can be executed
: Error occurs when executed

NA: Not applicable
* Index-type plug-in-dependent functions fall into this category. Examples for the
HiRDB Text Search Plug-in are contains and contains_with_score.

(b) Restrictions on execution methods for index-type plug-in-dependent
functions
The following restrictions apply when index-type plug-in-dependent functions are
used:
1. Only a base table column specification can be specified in the first argument.

Also, the column cannot be an external-referencing column.
2. Arguments that include the following value expressions cannot be specified in

any argument except the first:
• Column specifications, except external-referencing columns
• Component specifications for columns

3. Index-type plug-in-dependent functions can be specified in WHERE clauses and ON
search conditions.

4. If an index-type plug-in-dependent function is specified in the WHERE clause of a

Method that uses
index-type plug-in to

execute function

Method that
executes function

without using
index-type plug-in

Retrieval method selected by HiRDB

Retrieval with
index-type plug-in

Retrieval without
index-type

plug-in

Provided Provided E E

Provided* Not provided* E

Not provided Provided NA E

5. Notes about Creating UAPs that Access Object Relational Databases

417

query specification that specifies an outer join, a column that becomes the inner
table of the outer join cannot be specified in the first argument. An example is
shown as follows:

5. If a index-type plug-in dependent function is specified in the ON search condition
of a joined table that specifies an outer join, the following columns cannot be
specified in the first argument:

• Columns of the outer table
• Columns of the outer-joined inner table included in the inner table, if the

inner table is a joined table containing an outer join
6. If the FROM clause contains specifications for two or more tables, a table column

that is different from the column specified in the first argument of an index-type
plug-in-dependent function cannot be specified in the search condition of the OR
operand. However, when the WHERE clause or the ON search condition contains the
NOT logical operator, a different table column can be specified, if the previous
condition is not satisfied after the NOT logical operator is eliminated by De
Morgan's theorem.* An example is shown as follows:
Example:
SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE T1.C1=10 AND ((CONTAINS(T2.ADT,'ABC') IS TRUE)

5. Notes about Creating UAPs that Access Object Relational Databases

418

 OR CONTAINS(T2.ADT,'DEF') IS TRUE))

The UNION representation of this SQL is as follows:
(SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE T1.C1=10 AND (CONTAINS(T1.ADT,'ABC') IS TRUE)
UNION ALL
 SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE T1.C1=10 AND (CONTAINS(T2.ADT,'DEF') IS TRUE))
EXCEPT ALL
 SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE T1.C1=10 AND (CONTAINS(T2.ADT,'DEF') IS TRUE)
 AND (CONTAINS(T1.ADT,'ABC') IS TRUE)
* Assume that the following SQL statements have been specified:
SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE NOT(CONTAINS(T1.ADT, ...)IS NOT TRUE AND T1.C1=10)
 AND T1.C1=T2.C1

If the NOT logical operator is eliminated according to De Morgan's theorem, the
result is as follows:
SELECT T1.C1,T2.C2 FROM T1,T2
 WHERE NOT(CONTAINS(T1.ADT, ...)IS TRUE OR T1.C1<>10)
 AND T1.C1=T2.C1

7. Index-type plug-in dependent functions cannot be specified in CASE expressions
and CAST specifications.

8. Predicates that include IS FALSE, IS UNKNOWN, or negation (NOT) cannot be
specified for index-type plug-in-dependent functions.

Examples related to these restrictions are as follows.
Example 1

If the WHERE clause specifies a send function for passing inter-function values and
that function is dependent on an index-type plug-in, the first argument cannot
contain one query specification that specifies that send function, together with an
index-type plug-in-dependent function that has a column from the same table.
SELECT C1,C2, score(SENTENCES) FROM T1
 WHERE contains(SENTENCES,...)IS TRUE
 AND contains_with_score(SENTENCES, ...) IS TRUE

Example 2
This example outer-joins tables T1 and T2 and retrieves data by specifying an
index-type plug-in-dependent function in the WHERE clause.
SELECT T1.C1,T2.C2 FROM T1 LEFT OUTER JOIN T2
 ON T1.C1=T2.C1 WHERE contains(T1.C3, ...)IS TRUE

5. Notes about Creating UAPs that Access Object Relational Databases

419

(3) Notes on storing passing inter-function values to a list
(a) Storing passing inter-function values to a list

When target records are narrowed hierarchically (a narrowed search is performed), the
results of the receive function for passing inter-function values can be obtained quickly
by storing the passing inter-function values to a list.
To store passing inter-function values to a list, use the ASSIGN LIST statement to
specify a send function for passing inter-function values in the search conditions for
creating a list from a base table. The send function for passing inter-function values
must be able to store the passing inter-function values to a list. (However, only one
send function for passing inter-function values that can store such values to a list can
be specified in the ASSIGN LIST statement.)
For information about whether the functions provided by a plug-in can store passing
inter-function values to a list, refer to the manual for that plug-in.
You can also use the ASSIGN LIST statement to store passing inter-function values
from a list that stores such values to a new list.

(b) Getting passing inter-function values from a list
To get passing inter-function values stored to a list without specifying a send function
for passing inter-function values, specify a receive function for passing inter-function
values that can get such values from a list (receive function for passing inter-function
values for lists) in the selection expression of the cursor specification for search via a
list.
For information about whether the functions provided by a plug-in can get passing
inter-function values from a list, refer to the manual for that plug-in.
If a receive function for passing inter-function values that can get such values from a
list is specified in the selection expression of the cursor specification for search via a
list, HiRDB gets those values without evaluating the type of send function for passing
inter-function values that stored those values to the list. Therefore, be sure to specify a
receive function for passing inter-function values that corresponds to the send function
for passing inter-function values specified when the list was created.

(c) Methods of executing set operations between lists
If a set operation between lists is to be performed, the set operation execution method
changes depending on the send function for passing inter-function values that was
specified in the search conditions for list creation.
Table 5-4 shows the passing inter-function values in the set operation results for the
following:
list-name-1 {AND | OR | AND NOT | ANDNOT} list-name-2

5. Notes about Creating UAPs that Access Object Relational Databases

420

Table 5-4: Passing inter-function values in set operation results

Legend:
N: Cannot be executed.

1 For information about send functions for storing inter-function variables that allow a
set operation method to be specified, refer to the manual of the individual plug-in.
2 The set operation result becomes the null value if the OR operation results do not
include passing inter-function values.

Send function for passing
inter-function values when

list-name-1 is created1

Send function for passing inter-function values when
list-name-2 is created1

When passing inter-function values
can be stored to a list

Other cases

Passing
inter-function

values for
narrowing used is

specified

No set operation
method is
specified

When passing
inter-function
values can be
stored to a list.

Passing
inter-function
values for
narrowing used is
specified.

N N Passing
inter-function

values of
list-name-12

No set operation
method is specified.

N N N

Other cases N N None

421

Chapter

6. Client Environment Setup

This chapter explains how to install a HiRDB client and how to define the environment
for creating and executing a UAP.
This chapter contains the following sections:

6.1 Types of HiRDB clients
6.2 Environment setup procedure for HiRDB clients
6.3 HiRDB client installation
6.4 Organization of directories and files for a HiRDB client
6.5 Setting the hosts file
6.6 Client environment definitions (setting environment variables)
6.7 Registering an environment variable group

6. Client Environment Setup

422

6.1 Types of HiRDB clients

There are two programs that are categorized as HiRDB clients. These programs are
called HiRDB clients:

• HiRDB/Developer's Kit
• HiRDB/Run Time

The available operations, from UAP creation to execution, depend on the type of
HiRDB client. The following figure shows the procedure from UAP creation to
execution.

The operations available to each type of HiRDB client are as follows:
• HiRDB/Developer's Kit

(1) - (4) are available.
• HiRDB/Run Time

(4) only is available. Because the programs provided for the HiRDB client are
also provided by the HiRDB server, use the HiRDB server functions to execute
(1) - (3).

Note
Use the same platform for the HiRDB/Developer's Kit used to create the UAP and
the HiRDB/Developer's Kit used to execute the UAP.

6. Client Environment Setup

423

6.2 Environment setup procedure for HiRDB clients

The procedure for setting the client environment is shown as follows.

6. Client Environment Setup

424

6.3 HiRDB client installation

The installation procedure is the same for both HiRDB/Developer's Kit and HiRDB/
Run Time.
Note that the HiRDB client programs are already included in the HiRDB server.
Therefore, if you want use the HiRDB client on the same server machine on which the
HiRDB server operates, you do not need to install the HiRDB client on that server
machine. See Figure 1-5 for the operating mode in which the HiRDB client operates
on the same server machine as the HiRDB server.

6.3.1 Installing a HiRDB client on a UNIX client
For details about installing a HiRDB client on a UNIX client, see the manual for your
operating system.

6.3.2 Installing a HiRDB client on a Windows client
When you install the HiRDB client, the environment definition file (HIRDB.INI) is
stored in the system directory.
To install the HiRDB client:
1. Start the installer

Execute hcd_inst.exe found on the integrated CD-ROM to start Hitachi
Integrated Installer.
At the Hitachi Integrated Installer screen, select one of the following, and then
click the Execute installation button:

• For HiRDB/Run Time, select HiRDB/Run Time.
• For HiRDB/Developer's Kit, select HiRDB/Developer's Kit.

The HiRDB setup program is activated.
At the Select Program Product screen of the HiRDB setup program, select one of
the following, and then click the Next button:

• For HiRDB/Run Time, select HiRDB/Run Time.
• For HiRDB/Developer's Kit, select HiRDB/Developer's Kit.

The setup program of the selected program product is activated.
2. Register user information

The User Information screen is displayed.
Enter your name and company's name, and then click the Next button.

6. Client Environment Setup

425

3. Start installation
The Select Installation Folder screen is displayed.
In Installation folder, specify the location where the HiRDB client is to be
installed. If you omit this value, the drive in which Windows is installed is
assumed. After specifying the installation folder, click the Next button.

4. Select the setup type
The Setup Method screen is displayed.
Depending on the setup method, you may be able to change the libraries to be
installed. To install an OLE DB provider, the JDBC driver, the JBuilder
distribution wizard, SQLJ, the ODBC 3.0 driver, and the HiRDB.NET data
provider, select Custom.
Typical

This method installs the regular libraries and the X/Open-compliant
libraries.

Compact
This method installs the regular libraries.

Custom
This method allows you to select which libraries and sample UAPs to install.
This method also allows you to select and install an OLE DB provider, the
JDBC driver, the JBuilder distribution wizard, SQLJ, the ODBC 3.0 driver,
and the HiRDB.NET data provider.

After selecting the setup method, click the Next button.
5. Select the components to be installed

The Select Components screen is displayed.
Specify the components to be installed.
After specifying the components to be installed, click the Next button. Then,
when the Start File Copy screen is displayed, check the current settings.
After checking the current settings, click the Next button.

6. Check the installation status
The execution status of the installation is displayed.
After checking the current setup, click the Next button to display the following
screen, which shows the progress of installation.
Notes about the installation execution are described as follows.

6. Client Environment Setup

426

• If there is not enough space, you cannot click the Next button. In this case,
either change the drive or delete unnecessary files to secure enough space.

• To cancel the installation, click the Cancel button. If installation is cancelled,
start over from step 3.

7. Terminate the installation program
When installation is complete, the Setup Complete screen is displayed.

Notes
• If the software currently being used is returned to a previous version, note

that the environment definition file will be set to the assumed value status
(initial status) when the software is reinstalled.

• The maximum length of a line in the environment definition file is 512 bytes.
A definition line that exceeds 512 bytes is ignored.

• When you install a HiRDB client in Windows, you must have Administrator
or Power User privileges. If a user who does not have Administrator or
Power User privileges installs the client, redistributed files are not updated,
nor is the PATH system environment variable updated.

6. Client Environment Setup

427

6.4 Organization of directories and files for a HiRDB client

When a HiRDB client is installed, directories and files are created automatically. This
section explains the organization of the directories and files.

6.4.1 Directories and files for UNIX clients
Tables 6-1 to 6-6 list the files and directories that are created automatically during
HiRDB client installation on a client machine.

Table 6-1: Files and directories for workstation - HiRDB/Developer's Kit

Name Dir1 File name Platform

HP HP
(32)

HP
(64)

Sol Sol
(64)

AIX AIX
(64)

Linux

Header
files

/HiRDB/
include

SQLCA.CBL C C C C C C C C

SQLDA.CBL C C C C C C C C

SQLIOA.CBL C C C C C C C C

pdbtypes.h C C C C C C C C

pdberrno.h C C C C C C C C

pdbmisc.h C C C C C C C C

pdbmiscm.h C C C C C C C C

pdbsqlda.h C C C C C C C C

pddbhash.h C C C C C C C C

pdauxcnv.h C C C C C C C C

SQLCAM.cbl C C C C C C C C

SQLDAM.cbl C C C C C C C C

SQLIOAM.cbl C C C C C C C C

SQLIOAMTH.cbl C C C C C C

SQLCAMTH.cbl C C C C C C

6. Client Environment Setup

428

Archive
files

/HiRDB/
client/
lib

libclt.a C C C C C C C C

libclt64.a C3 C3 C3

libcltxa.a C C C C C C C

libcltya.a C C C C C C C

libcltm.a C C C C C

libcltxam.a NF NF NF NF NF

libcltyam.a NF NF NF NF NF

libcltk.a C C C C C C C C

libcltk64.a C3 C3 C3

libclts.a C C C C C C C C

Shared
library
files2

/HiRDB/
client/
lib

libzclt.sl C C C C C C C C

libzclt64.sl C3 C3 C3

libzcltx.sl C C C C C C C

libzclty.sl C C C C C C C C

libzcltm.sl C C C C C

libzcltxm.sl NF NF NF NF NF

libzcltym.sl NF NF NF NF NF

libzcltk.sl C C C C C C C C

libzcltk64.sl C3 C3 C3

libzpdodbc.sl C C C

libsqlauxf.sl C C C C C C C C

libsqlauxf64.sl C3 C3 C3

libzcltxk.sl C C C C C NF NF NF

Name Dir1 File name Platform

HP HP
(32)

HP
(64)

Sol Sol
(64)

AIX AIX
(64)

Linux

6. Client Environment Setup

429

libzcltyk.sl C C C C C C C NF

libzclts.sl C C C C C C C C

libzcltxs.sl C C C C C C C

libzcltys.sl C C C C C C C

JDBC
driver

/HiRDB/
client/
lib

libjjdbc.sl C C C C C C C

pdjdbc.jar C C C C C C C

pdjdbc2.jar C C C C C C C

Command
utilities

/HiRDB/
client/
utl

pdcpp C C C C C C C C

pdocc C C C C C C C C

pdcbl C C C C C C C C

pdocb C C C C C C C C

pdprep C C C3 C C3 C C3 C

pdtrcmgr C C C C C C C C

pdodbcsetup C C C

pdodbcconfig C C C

/HiRDB/
bin

pddef C C C C C C C C

SQLJ /HiRDB/
client/
lib

pdsqlj.jar C C C C

libpdparse.sl C C C C

libpdsqljn.sl C C C C

/HiRDB/
client/
utl

pdjava C C C C

JBuilder /HiRDB/
jba

pdjba35.jar C C C

pdjba4.jar C C C

pdjba5.jar C C C

Name Dir1 File name Platform

HP HP
(32)

HP
(64)

Sol Sol
(64)

AIX AIX
(64)

Linux

6. Client Environment Setup

430

Legend:
HP: HP-UX
HP (32): 32-bit mode HP-UX
HP (64): 64-bit mode HP-UX
Sol: Solaris
Sol (64): 64-bit mode Solaris
AIX: AIX 5L
AIX (64): 64-bit mode AIX 5L

Message
object file

/HiRDB/
lib

msgtxt C C C C C C C C

Parsing
libraries2

/HiRDB/
lib/
sjis

libasqap.sl C C C3 C C3 C C3 C

/HiRDB/
lib/
chinese

C C C3 C C3 C C3 C

/HiRDB/
lib/
lang-c/

C C C3 C C3 C C3 C

/HiRDB/
lib/
ujis

C C C3 C C3 C C3 C

Sample
source
files

/HiRDB/
client/
samplep
/uap

CREATE.ec C C C C C C C C

SAMPLE1.ec C C C C C C C C

SAMPLE2.ec C C C C C C C C

SAMPLE3.ec C C C C C C C C

sample1.ecb C C C C C C C C

sample.mk C C C C C C C C

inputf1 C C C C C C C C

inputf2 C C C C C C C C

Name Dir1 File name Platform

HP HP
(32)

HP
(64)

Sol Sol
(64)

AIX AIX
(64)

Linux

6. Client Environment Setup

431

C: The file is created.
NF: The file is created, but the facility that uses that file does not operate.

: The file is not created.
1 The underlined portion indicates the HiRDB installation directory.
2 The suffixes for the shared library files and parsing libraries differ according to the
platform. For Solaris the suffix is .so. For AIX 5L, the suffix is .a.
3 The file operates in 64-bit mode.

Table 6-2: Files and directories for HiRDB/Run Time (UNIX client)

Name Dir1 File name Platform

HP HP
(32)

HP
(64)

Sol Sol
(64)

AIX AIX
(64)

Linux

Archive
files

/HiRDB/
client/
lib

libclt.a C C C C C C C C

libclt64.a C3 C3 C3

libcltxa.a C C C C C C C

libcltya.a C C C C C C C

libcltm.a C C C C C

libcltxam.a NF NF NF NF NF

libcltyam.a NF NF NF NF NF

libcltk.a C C C C C C C C

libcltk64.a C3 C3 C3

libclts.a C C C C C C

Shared
library
files2

/HiRDB/
client/
lib

libzclt.sl C C C C C C C C

libzclt64.sl C3 C3 C3

libzcltx.sl C C C C C C C

libzclty.sl C C C C C C C C

libzcltm.sl C C C C C

libzcltxm.sl NF NF NF NF NF

6. Client Environment Setup

432

Legend:
HP: HP-UX
HP (32): 32-bit mode HP-UX
HP (64): 64-bit mode HP-UX
Sol: Solaris
Sol (64): 64-bit mode Solaris

libzcltym.sl NF NF NF NF NF

libzcltk.sl C C C C C C C C

libzcltk64.sl C3 C3 C3

libzpdodbc.sl C C C

libsqlauxf.sl C C C C C C C C

libsqlauxf64.sl C3 C3 C3

libzcltxk.sl C C C C C NF NF NF

libzcltyk.sl C C C C C C C NF

libzclts.sl C C C C C C C C

libzcltxs.sl C C C C C C C

libzcltys.sl C C C C C C C

JDBC
driver

/HiRDB/
client/
lib

libjjdbc.sl C C C C C C C

pdjdbc.jar C C C C C C C

pdjdbc2.jar C C C C C C C

SQLJ
Runtime
Library

/HiRDB/
client/
lib

pdruntime.jar C C C C

Command
utilities

/HiRDB/
client/
utl

pdtrcmgr C C C C C C C C

pdodbcsetup C C C

pdodbcconfig C C C

Name Dir1 File name Platform

HP HP
(32)

HP
(64)

Sol Sol
(64)

AIX AIX
(64)

Linux

6. Client Environment Setup

433

AIX: AIX 5L
AIX (64): 64-bit mode AIX 5L
C: The file is created.
NF: The file is created, but the facility that uses that file does not operate.

: The file is not created.
1 The underlined portion indicates the HiRDB installation directory.
2 The suffixes for the shared library files and parsing libraries differ according to the
platform. For Solaris the suffix is .so. For AIX 5L, the suffix is .a.
3 The file operates in 64-bit mode.

Table 6-3: Files and directories for HiRDB/Developer's Kit (UNIX client in IPF
machine)

Name Directory* File name Platform

HP-UX Linux

Header files /HiRDB/include SQLCA.CBL C C

SQLDA.CBL C C

SQLIOA.CBL C C

pdbtypes.h C C

pdberrno.h C C

pdbmisc.h C C

pdbmiscm.h C C

pdbsqlda.h C C

pddbhash.h C C

pdauxcnv.h C C

SQLCAM.cbl C C

SQLDAM.cbl C C

SQLIOAM.cbl C C

SQLIOAMTH.CBL C C

SQLCAMTH.CBL C C

6. Client Environment Setup

434

Shared
libraries

/HiRDB/client/lib libzclt.so C

libzclt64.so C C

libzcltx.so C

libzcltx64.so NF NF

libzclty.so C

libzclty64.so NF NF

libzcltk.so C

libzcltk64.so C C

libsqlauxf.so C

libsqlauxf64.so C C

libzcltxk.so NF

libzcltxk64.so NF NF

libzcltyk.so NF

libzcltyk64.so NF NF

libzclts.so C

libzclts64.so C C

libzcltxs.so C

libzcltxs64.so NF NF

libzcltys.so C

libzcltys64.so NF NF

JDBC drivers /HiRDB/client/lib libjjdbc.so C C

libjjdbc32.so C

pdjdbc.jar C C

pdjdbc2.jar C C

pdjdbc32.jar C

Name Directory* File name Platform

HP-UX Linux

6. Client Environment Setup

435

Command
utilities

/HiRDB/client/utl pdcpp C C

pdocc C C

pdcbl C C

pdocb C C

pdprep C C

pdtrcmgr C C

/HiRDB/bin pddef C C

SQLJ /HiRDB/client/lib pdsqlj.jar C C

pdsqlj32.jar C

pdsqljn.so C C

pdsqljn32.so C

libpdparse.so C

/HiRDB/client/utl pdjava C C

Message
object file

/HiRDB/lib msgtxt C C

Syntax
analysis
libraries

/HiRDB/lib/sjis libasqap.so C C

/HiRDB/lib/chinese

/HiRDB/lib/lang-c C C

/HiRDB/lib/ujis C C

Name Directory* File name Platform

HP-UX Linux

6. Client Environment Setup

436

Legend:
C: The file is created.
NF: The file is created, but the facility that uses that file does not operate.

: The file is not created.
* The underlined portion indicates the HiRDB installation directory.

Sample
source files

/HiRDB/client/
sampleap/uap

CREATE.ec C C

SAMPLE1.ec C C

SAMPLE2.ec C C

SAMPLE3.ec C C

Sample1.ecb C C

Sample.mk C C

inputf1 C C

inputf2 C C

Name Directory* File name Platform

HP-UX Linux

6. Client Environment Setup

437

Table 6-4: Files and directories for HiRDB/Run Time (UNIX client in IPF
machine)

Name Directory* File name Platform

HP-UX Linux

Shared
libraries

/HiRDB/client/lib libzclt.so C

libzclt64.so C C

libzcltx.so C

libzcltx64.so NF NF

libzclty.so C

libzclty64.so NF NF

libzcltk.so C

libzcltk64.so C C

libsqlauxf.so C

libsqlauxf64.so C C

libzcltxk.so NF

libzcltxk64.so NF NF

libzcltyk.so NF

libzcltyk64.so NF NF

libzclts.so C

libzclts64.so C C

libzcltxs.so C

libzcltxs64.so NF NF

libzcltys.so C

libzcltys64.so NF NF

6. Client Environment Setup

438

Legend:
C: The file is created.
NF: The file is created, but the facility that uses that file does not operate.

: The file is not created.
* The underlined portion indicates the HiRDB installation directory.

JDBC drivers /HiRDB/client/lib libjjdbc.so C C

libjjdbc32.so C

pdjdbc.jar C C

pdjdbc2.jar C C

pdjdbc32.jar C

SQLJ
runtime files

/HiRDB/client/lib pdruntime.jar C C

pdruntime32.jar C

pdnativert.jar C C

pdnativert32.jar C

pdsqljn.so C C

Command
utilities

/HiRDB/client/utl pdtrcmgr C C

Name Directory* File name Platform

HP-UX Linux

6. Client Environment Setup

439

Table 6-5: Files and directories for HiRDB/Developer's Kit (Linux (EM64T))

Name Directory* File name

Header files /HiRDB/include SQLCA.CBL

SQLDA.CBL

SQLIOA.CBL

pdbtypes.h

pdberrno.h

pdbmisc.h

pdbmiscm.h

pdbsqlda.h

pddbhash.h

pdauxcnv.h

SQLCAM.cbl

SQLDAM.cbl

SQLIOAM.cbl

SQLIOAMTH.CBL

SQLCAMTH.CBL

6. Client Environment Setup

440

Shared libraries /HiRDB/client/lib libzclt.so

libzclt64.so

libzcltx.so

libzclty.so

libzcltk.so

libzcltk64.so

libsqlauxf.so

libsqlauxf64.so

libzcltxk.so

libzcltyk.so

libzclts.so

libzcltxs.so

libzcltys.so

JDBC driver /HiRDB/client/utl libjjdbc.so

pdjdbc.jar

pdjdbc2.jar

Command utilities /HiRDB/client/utl pdcpp

pdocc

pdcbl

pdocc

pdprep

pdtrcmgr

/HiRDB/bin pddef

Name Directory* File name

6. Client Environment Setup

441

* The underlined portion indicates the HiRDB installation directory.

SQLJ /HiRDB/client/lib pdsqlj.jar

libpdparse.so

libpdsqljn.so

pdruntime.jar

/HiRDB/client/utl pdjava

Message object file /HiRDB/lib msgtxt

Parsing libraries /HiRDB/lib/sjis libasqap.so

/HiRDB/lib/chinese

/HiRDB/lib/lang-c

/HiRDB/lib/ujis

/HiRDB/lib/utf8

Sample source files /HiRDB/client/
sampleap/uap

CREATE.ec

SAMPLE1.ec

SAMPLE2.ec

SAMPLE3.ec

Sample1.ecb

Sample.mk

inputf1

inputf2

Name Directory* File name

6. Client Environment Setup

442

Table 6-6: Files and directories for HiRDB/Run Time (Linux (EM64T))

* The underlined portion indicates the HiRDB installation directory.
Archived files and shared library files used for each purpose
Table 6-7 shows the archived files that are used for each purpose. Table 6-8 shows
the shared library files that are used for each purpose.
Table 6-7: Archived files used for each purpose (UNIX client)

Name Directory* File name

Shared libraries /HiRDB/client/lib libzclt.so

libzclt64.so

libzcltx.so

libzclty.so

libzcltk.so

libzcltk64.so

libsqlauxf.so

libsqlauxf64.so

libzcltxk.so

libzcltyk.so

libzclts.so

libzcltxs.so

libzcltys.so

JDBC driver /HiRDB/client/utl libjjdbc.so

pdjdbc.jar

pdjdbc2.jar

SQLJ runtime /HiRDB/client/lib libpdsqljn.so

Command utility /HiRDB/client/utl pdtrcmgr

Purpose File used

Normal UAP libclt.a

6. Client Environment Setup

443

1 The connection type can be switched between static connection and dynamic
connection by the switch registered to TM.

Table 6-8: Shared library files used for each purpose (UNIX client)

Note
The suffix of the shared library files differs according to the platform. For Solaris, the
suffix is .so; for AIX 5L, the suffix is .a.
1 The connection type can be switched between static and dynamic by the switch that
is registered to TM.

XA interface
connection

Dynamic connection (single thread) libcltxa.a

Static or dynamic connection (single thread)1 libcltya.a

Multi-connection
facility

DCE thread libcltm.a

Kernel thread libcltk.a

Solaris thread libcltk.a

Single thread libclts.a

Purpose File used

Normal UAP libzclt.sl

XA interface
connection

Dynamic connection Single thread libzcltx.sllibzcltxs.sl (for
OTS)

Multiple threads libzcltxk.sl

Static or dynamic
connection1

Single thread libzclty.sllibzcltys.sl (for
OTS or TUXEDO)

Multiple threads libzcltyk.sl

Multi-connection
facility

DCE thread libzcltm.sl

Kernel thread libzcltk.sl

Solaris thread libzcltk.sl

Single thread libzclts.sl

ODBC connection libzpodbc.sl

SQL auxiliary functions libsqlauxf.sl

Purpose File used

6. Client Environment Setup

444

 Library files used by each transaction manager

Table 6-9 lists the library files used by each transaction manager.
Table 6-9: Library files used by each transaction manager (UNIX client)

Legend:
Y: The BES connection holding facility can be used.
N: The BES connection holding facility cannot be used.

Note

The suffix of the shared library files differs according to the platform. For Solaris,
the suffix is .so; for AIX 5L, the suffix is .a.

6.4.2 Directories and files for Windows clients
Tables 6-10 through 6-16 list the files and directories that are created automatically
during HiRDB client installation.

Transaction manager Library name BES connection holding facility

OpenTP1 libzcltx.sl Y

libzclty.sl Y

libzcltxs.sl Y

libzcltys.sl Y

TPBroker libzcltxk.sl N

libzcltyk.sl N

TUXEDO libzcltys.sl Y

WebLogic Server libzcltyk.sl N

TP1/EE libzcltyk.sl Y

6. Client Environment Setup

445

Table 6-10: Files and directories for HiRDB/Developer's Kit (Windows client)

Name Directory File name

Header files xxxx\INCLUDE PDBTYPES.H

PDBERRNO.H

PDBMISC.H

SQLCA.CBL

SQLIOA.CBL

PDBMISCM.H

SQLDA.CBL

PDBSQLDA.H

SQLIOAD.CBL

SQLCAD.CBL

PDDBHASH.H

PDAUXCNV.H

SQLIOAMTH.CBL

SQLCAMTH.CBL

Message object file xxxx\LIB msgtxt

Linkage libraries xxxx\LIB CLTDLL.LIB

PDCLTM32.LIB

PDCLTM50.LIB

PDCLTX32.LIB

PDCLTXM.LIB

PDSQLAUXF.LIB

PDCLTXS.LIB

PDCLTXM5.LIB

JBuilder files xxxx\JBA PDJBA35.JAR*

PDJBA4.JAR*

PDJBA5.JAR*

6. Client Environment Setup

446

Command utilities xxxx\UTL PDCPP.EXE

PDOCC.EXE

PDCBL.EXE

PDOCB.EXE

PDPREP.EXE

PDPREP7.EXE

PDTRCMGR.EXE

PDCLTADM.EXE

DLL files xxxx\UTL CLTDLL.DLL

PDCLTM32.DLL

PDCLTM50.DLL

PDCLTX32.DLL

PDCLTXM.DLL

PDSQLAUXF.DLL

PDOLEDB.DLL*

PDCLTXS.DLL

PDCLTXM5.DLL

JDBC drivers xxxx\UTL JJDBC.DLL*

PDJDBC.JAR*

PDJDBC2.JAR

SQLJ xxxx\UTL PDSQLJ.JAR*

PDPARSE.DLL*

PDJAVA.EXE*

PDSQLJN.DLL*

HiRDB.NET data providers xxxx\UTL PDDNDP.DLL*

PDDBDPCORE.DLL*

Name Directory File name

6. Client Environment Setup

447

* This file is created when Custom installation is selected.
Notes

1. xxxx indicates the name of the directory specified during installation. The
directory name can be specified when HiRDB/Developer's Kit is installed.
\Windows indicates the system directory.

2. This table does not include redistributed files and installer management files.
Table 6-11: Files and directories for HiRDB/Run Time (Windows client)

Interface definition file xxxx\LIB HIRDB.PKG

Sample files xxxx\SAMPLEAP CREATE.EC

SAMPLE1.EC

SAMPLE2.EC

SAMPLE3.EC

SAMPLE1.ECB

INPUTF1

INPUTF2

README file xxxx README.TXT

Environment definition file \WINDOWS HIRDB.INI

Name Directory File name

Command utilities xxxx\UTL CLTDLL.DLL

PDCLTM32.DLL

PDCLTM50.DLL

PDCLTP32.DLL

PDCLTX32.DLL

PDTRCMGR.EXE

PDSQLAUXF.DLL

PDCLTXM.DLL

PDOLEDB.DLL*

Name Directory File name

6. Client Environment Setup

448

* This file is created when Custom installation is selected.
Notes

1. xxxx indicates the name of the directory specified during installation. The
directory name can be specified when HiRDB/Run Time is installed.
\Windows indicates the system directory.

2. This table does not include redistributed files and installer management files.

PDCLTADM.EXE

PDCLTXS.DLL

PDCLTXM5.DLL

JJDBC.DLL*

PDJDBC.JAR*

PDJDBC2.JAR*

PDRUNTIME.JAR*

PDDNDP.DLL*

PDDBDPCORE.DLL*

HIRDB.PKG

README file xxxx README.TXT

Environment definition file \WINDOWS HIRDB.INI

Name Directory File name

6. Client Environment Setup

449

Table 6-12: Files and directories for HiRDB/Developer's Kit (Windows client in
IPF machine)

Name Directory File name

Header files xxxx\INCLUDE PDBTYPES.H

PDBERRNO.H

PDBMISC.H

PDBMISCM.H

SQLDA.CBL

PDBSQLDA.H

SQLIOA.CBL

SQLCA.CBL

SQLIOAD.CBL

SQLCAD.CBL

PDDBHASH.H

PDAUXCNV.H

SQLIOAMTH.CBL

SQLCAMTH.CBL

Linkage libraries xxxx\LIB PDCLTM64.LIB

PDCLTX64.LIB

PDCLTXM64.LIB

PDSQLAUXF64.LIB

PDCLTXS64.LIB

6. Client Environment Setup

450

Command utilities xxxx\UTL PDCPP.EXE

PDOCC.EXE

PDCBL.EXE

PDOCB.EXE

PDPREP.EXE

PDJAVA.EXE

PDTRCMGR.EXE

PDCLTADM.EXE

DLL files xxxx\UTL PDCLTM64.DLL

PDCLTX64.DLL

PDCLTXM64.DLL

PDSQLAUXF64.DLL

PDCLTXS64.DLL

JDBC drivers xxxx\UTL JJDBC.DLL

PDJDBC.JAR

PDJDBC2.JAR

SQLJ xxxx\UTL PDSQLJN.DLL

PDSQLJ.JAR

PDPARSE.DLL

Sample files xxxx\SAMPLEAP CREATE.EC

SAMPLE1.EC

SAMPLE2.EC

SAMPLE3.EC

SAMPLE1.ECB

INPUTF1

INPUTF2

README file xxxx README.TXT

Name Directory File name

6. Client Environment Setup

451

Notes

1. xxxx indicates the name of the directory specified during installation. The
directory name can be specified when HiRDB/Developer's Kit is installed.
\Windows indicates the system directory.

2. This table does not include redistributed files and installer management files.
Table 6-13: Files and directories for HiRDB/Run Time (Windows client in IPF
machine)

Notes

1. xxxx indicates the name of the directory specified during installation. The
directory name can be specified when HiRDB/Run Time is installed.
\Windows indicates the system directory.

Environment definition file \Windows HIRDB.INI

Name Directory File name

Command utilities xxxx\UTL PDCLTM64.DLL

PDCLTX64.DLL

PDCLTXM64.DLL

PDSQLAUXF64.DLL

PDCLTXS64.DLL

PDTRCMGR.EXE

PDCLTADM.EXE

PDJDBC.JAR

PDJDBC2.JAR

JJDBC.DLL

PDRUNTIME.JAR

PDNATIVERT.JAR

PDSQLJN.DLL

README file xxxx README.TXT

Environment definition file \Windows HIRDB.INI

Name Directory File name

6. Client Environment Setup

452

2. This table does not include redistributed files and installer management files.
Table 6-14: Files and directories for HiRDB/Developer's Kit (EM64T machine
Windows client)

Name Directory File name

Header files xxxx\INCLUDE PDBTYPES.H

PDBERRNO.H

PDBMISC.H

PDBMISCM.H

SQLDA.CBL

PDBSQLDA.H

SQLIOA.CBL

SQLCA.CBL

SQLIOAD.CBL

SQLCAD.CBL

PDDBHASH.H

PDAUXCNV.H

SQLIOAMTH.CBL

SQLCAMTH.CBL

Linkage libraries xxxx\LIB CLTDLL.LIB

PDCLTM32.LIB

PDCLTM50.LIB

PDCLTM64.LIB

PDCLTX32.LIB

PDCLTXM.LIB

PDSQLAUXF.LIB

PDSQLAUXF64.LIB

PDCLTXS.LIB

PDCLTXM5.LIB

6. Client Environment Setup

453

Jbuilder addins xxxx\JBA PDJBA35.JAR

PDJBA4.JAR

PDJBA5.JAR

Command utilities xxxx\UTL PDCPP.EXE

PDOCC.EXE

PDCBL.EXE

PDOCB.EXE

PDPREP.EXE

PDJAVA.EXE

PDTRCMGR.EXE

PDCLTADM.EXE

DLL files xxxx\UTL CLTDLL.DLL

PDCLTM32.DLL

PDCLTM50.DLL

PDCLTM64.DLL

PDCLTX32.DLL

PDCLTXM.DLL

PDOLEDB.DLL

PDSQLAUXF.DLL

PDSQLAUXF64.DLL

PDPARSE.DLL

PDCLTXS.DLL

JDBC drivers xxxx\UTL JJDBC.DLL

PDJDBC.JAR

PDJDBC2.JAR

SQLJ xxxx\UTL PDSQLJ.JAR

PDSQLJN.DLL

Name Directory File name

6. Client Environment Setup

454

Notes:

1. xxxx indicates the name of the HiRDB installation directory. This directory
name can be specified during installation. \Windows indicates the system
directory.

2. This table does not include redistributed files and installer management files.
Table 6-15: Files and directories for HiRDB/Run Time (EM64T machine
Windows client)

HiRDB data providers xxxx\UTL PDDNDP.DLL

PDDBDPCORE.DLL

ODBC 3.0 drivers \Windows\system32 pdodbcdrv3.dll

pdodbstp3.dll

pdclto32.dll

Interface definition file xxxx\BIN HIRDB.PKG

Sample xxxx\SAMPLEAP CREATE.EC

SAMPLE1.EC

SAMPLE2.EC

SAMPLE3.EC

SAMPLE1.ECB

INPUTF1

INPUTF2

README file xxxx README.TXT

Environment definition file \Windows HIRDB.INI

Name Directory File name

Command utilities xxxx\UTL PDTRCMGR.EXE

PDCLTADM.EXE

Name Directory File name

6. Client Environment Setup

455

Notes:
1. xxxx indicates the name of the HiRDB installation directory. This directory

name can be specified during installation. \Windows indicates the system
directory.

2. This table does not include redistributed files and installer management files.

DLL files xxxx\UTL CLTDLL.DLL

PDCLTM32.DLL

PDCLTM50.DLL

PDCLTM64.DLL

PDCLTX32.DLL

PDCLTXM.DLL

PDOLEDB.DLL

PDSQLAUXF.DLL

PDSQLAUXF64.DLL

PDPARSE.DLL

PDCLTXS.DLL

JDBC driver xxxx\UTL JJDBC.DLL

PDJDBC.JAR

PDJDBC2.JAR

SQLJ runtime xxxx\UTL PDSQLJN.DLL

HiRDB data providers xxxx\UTL PDDNDP.DLL

PDDBDPCORE.DLL

ODBC 3.0 drivers \Windows\system32 pdodbcdrv3.dll

pdodbstp3.dll

pdclto32.dll

README files xxxx README.TXT

Environment definition file \Windows HIRDB.INI

Name Directory File name

6. Client Environment Setup

456

Table 6-16: Files and directories for ODBC driver (Windows client)

Note
\Windows indicates the system directory.

* The file is not created on EM64T machines running Windows clients.

 Linkage library files used by application

Table 6-17 lists the linkage library files that are used according to their purpose.
Table 6-17: Linkage library files used according to purpose (Windows client)

* The connection type can be switched between static connection and dynamic
connection by the switch registered to TM.

 Library files used by each transaction manager

Table 6-18 lists the library files used by each transaction manager.

Name Directory File name

Setup files \Windows DRVSETUP.EXE*

DRVSTP32.EXE

Setup DLL HIRDBSTP.DLL*

HRDSTP32.DLL

Driver PDODBDRV.DLL*

PDODBD32.DLL

HiRDB/ClientDLL PDCLTLIB.DLL*

PDCLTL32.DLL

Purpose File used

Usual UAP CLTDLL.DLL

XA interface connection
(static connection or
dynamic connection)*

Single thread PDCLTX32.DLL
PDCLTXS.DLL (for OTS or TUXEDO)

Multi-thread PDCLTXM.DLL

Multi-connection facility (for multi-thread) PDCLTM32.DLL
PDCLTM50.DLL (for VisualC++5.0)

For SQL auxiliary functions PDSQLAUXF.DLL

6. Client Environment Setup

457

Table 6-18: Library files used by each transaction manager (Windows client)

Legend:
Y: The BES connection holding facility can be used.
N: The BES connection holding facility cannot be used.

 List of libraries and compilers

Table 6-19 lists the libraries and compilers.
Table 6-19: List of libraries and compilers (Windows client)

Transaction manager Library name BES connection holding facility

OpenTP1 pdcltx32.dll Y

pdcltxs.dll Y

TPBroker pdcltxm.dll N

TUXEDO pdcltxs.dll Y

WebLogic Server pdcltxm.dll N

Library name Compiler version VisualC runtime used

cltdll.dll VisualC++ 2.0 Multi-thread static

pdcltm32.dll VisualC++ 4.2 Multi-thread DLL

pdcltx32.dll

pdcltxm.dll

pdcltxs.dll

pdcltm50.dll VisualC++ 5.0

pdcltxm5.dll

6. Client Environment Setup

458

6.5 Setting the hosts file

When different machines are used for the client and the server, the following
information must be specified in the hosts file of the client machine. If DNS is used,
the hosts file does not need to be set.

• IP address
• Host name

(1) HiRDB/Single Server
• IP address

Specify the IP address of the HiRDB/Single Server.
• Host name

Specify the host name of the HiRDB/Single Server.
System-switching without IP address inheritance
Specify the IP addresses and the host names of both the execution system and the
standby system.

(2) HiRDB/Parallel Server
• IP address

Specify the IP address of the server machine at which the front-end server is
defined.

• Host name
Specify the host name of the server machine at which the front-end server is
defined.
System-switching without IP address inheritance
Specify the IP addresses and the host names of both the execution system and the
standby system.

6. Client Environment Setup

459

6.6 Client environment definitions (setting environment variables)

6.6.1 Environment setup format
To execute a UAP, you must specify client environment definitions for each client.

(1) UNIX environment
To execute commands and utilities, add the following directory to the PATH
environment variable:

Executing a client on the server machine
/opt/HiRDB/client/utl/

Logging into the HiRDB server from a remote system
$PDDIR/client/utl/

Retrieval sequence for client environment definitions
If the client environment definitions are set at several locations, each client
environment definition is retrieved in the sequence below. If a client environment
definition has no specified value, the default value is applied.

1. Environment variables group*

2. User environment variables
* When the multi-connection facility is used, use ALLOCATE CONNECTION
HANDLE to specify the file name. If a UAP under OLTP is used as the client,
specify the file name in an open character string. For details about open character
strings, see the HiRDB Version 8 Installation and Design Guide.

(a) sh (Bourne shell)
You must store the environment variables shown below in the .profile file. These
environment variables execute automatically at the time of startup.
 $
PDHOST=HiRDB-server-host-name[,secondary-system-HiRDB-server-host-name]
 $ PDNAMEPORT=HiRDB-server-port-number
 $ PDFESHOST=front-end-server-host-name
 [:port-number-of-unit-containing-front-end-server]
 [,secondary-system-front-end-server-host-name

[:port-number-of-unit-containing-secondary-system-front-end-server]]
 $ PDSERVICEGRP=server-name
 $ PDSRVTYPE={WS|PC}
 $ PDSERVICEPORT=high-speed-connection-port-number
 [,secondary-system-high-speed-connection-port-number]

6. Client Environment Setup

460

 $
PDFESGRP=FES-group[,switchover-FES-group[,switchover-FES-group]...]
 $ PDCLTRCVPORT=client-receive-port-number
 $ PDCLTRCVADDR={client-IP-address|client-host-name}
 $ PDTMID=OLTP-identifier
 $ PDXAMODE={0|1}
 $
PDTXACANUM=maximum-number-of-concurrent-transaction-executions-per-process
 $ PDXARCVWTIME=transaction-recovery-wait-time
 $ PDXATRCFILEMODE={LUMP|SEPARATE}
 $
HiRDB_PDHOST=HiRDB-server-host-name[,secondary-system-HiRDB-server-host-
name]
 $ HiRDB_PDNAMEPORT=HiRDB-server-port-number
 $ HiRDB_PDTMID=OLTP-identifier
 $ HiRDB_PDXAMODE={0|1}
 $ PDUSER=[authorization-identifier/password]
 $ PDCLTAPNAME=identification-name-of-UAP-to-be-executed
 $ PDCLTLANG={SJIS|CHINESE|UJIS|C}
 $ PDLANG={UTF-8|SJIS|CHINESE|ANY}
 $ PDDBLOG={ALL|NO}
 $ PDEXWARN={YES|NO}
 $ PDSUBSTRLEN={3|4|5|6}
 $ PDCLTCNVMODE={AUTO|NOUSE|UJIS|UJIS2|UTF8|UTF8MS|
 UTF8_TXT|UTF8_EX|UTF8_EX2|UTF8MS_TXT|UCS2_UJIS|
 UCS2_UTF8}
 $ PDCLTGAIJIDLL=user-defined-external-character-conversion-DLL-file-name
 $ PDCLTGAIJIFUNC=user-defined-external-character-conversion-function-name
 $ PDCLTGRP=client-group-name
 $ PDTCPCONOPT={0|1}
 $ PDAUTORECONNECT={YES|NO}
 $ PDRCCOUNT=CONNECT-retry-count-with-automatic-reconnect-facility
 $ PDRCINTERVAL=CONNECT-retry-interval-with-automatic-reconnect-facility
 $ PDUAPENVFILE=UAP-environment-definition-file-name
 $ PDDBBUFLRU={YES|NO}
 $ PDHATRNQUEUING=NO
 $ PDASTHOST=HiRDB-Control-Manager-Agent-host-name
 [,secondary-system-HiRDB-Control-Manager-Agent-host-name]
 $ PDASTPORT=HiRDB-Control-Manager-Agent-port-number
 $
PDSYSTEMID=HiRDB-identifier-of-HiRDB-server-managed-by-HiRDB-Control-Ma
nager-Agent
 $ PDASTUSER=OS-user-name/password
 $ PDCMDWAITTIME=maximum-client-wait-time-during-command-execution
 $ PDCMDTRACE=command-trace-file-size
 $ PDIPC={MEMORY|DEFAULT}

6. Client Environment Setup

461

 $ PDSENDMEMSIZE=data-send-memory-size-in-client
 $ PDRECVMEMSIZE=data-receive-memory-size-in-client
 $ PDCWAITTIME=maximum-client-wait-time
 $ PDSWAITTIME=maximum-server-wait-time-during-transaction-processing
 $ PDSWATCHTIME=maximum-server-wait-time-outside-transaction-processing
 $ PDCWAITTIMEWRNPNT=output-time-for-SQL-runtime-warning
 $ PDKALVL={0|1|2}
 $ PDKATIME=packet-send-interval
 $ PDTIMEDOUTRETRY=retry-count
 $
PDNBLOCKWAITTIME=connection-establishment-monitoring-time-in-nonblock-mode
 $
PDCONNECTWAITTIME=maximum-wait-time-in-HiRDB-client-during-server-connect
ion
 $ PDCLTPATH=trace-file-storage-directory
 $ PDSQLTRACE=SQL-trace-file-size
 $ PDUAPERLOG=error-log-file-size
 $ PDERRSKIPCODE=SQLCODE[,SQLCODE]...
 $ PDPRMTRC={YES|NO|IN|OUT|INOUT}
 $ PDPRMTRCSIZE=
maximum-data-length-of-parameter-information-output-to-SQL-trace
 $ PDTRCMODE={ERR|NONE}
 $ PDUAPREPLVL={[s][u][p][r]|a}
 $ PDREPPATH=storage-directory-for-UAP-statistical-report-files
 $ PDTRCPATH=storage-directory-for-dynamic-SQL-trace-files
 $ PDSQLTRCOPENMODE={CNCT|SQL}
 $ PDSQLTEXTSIZE=SQL-statement-size
 $ PDSQLEXECTIME={YES|NO}
 $ PDRCTRACE=reconnect-trace-file-size
 $
PDWRTLNPATH=storage-directory-for-files-to-which-WRITE-LINE-statement-value-e
xpression-values-are-output
 $
PDWRTLNFILSZ=maximum-size-of-output-files-for-WRITE-LINE-statement-value-ex
pression-values
 $ PDWRTLNCOMSZ=total-size-of-WRITE-LINE-statement-value-expression-values
 $ PDUAPEXERLOGUSE={YES|NO}
 $ PDUAPEXERLOGPRMSZ=maximum-data-length-of-parameter-information
 $ PDVWOPTMODE={0|1|2}
 $ PDTAAPINFPATH=access-path-information-file-output-directory-name
 $ PDTAAPINFMODE={0|1}
 $ PDTAAPINFSIZE=access-path-information-file-size
 $ PDSTJTRNOUT={YES|NO}
 $ PDLOCKLIMIT=maximum-locked-resource-request-count-per-user
 $ PDDLKPRIO={96|64|32}
 $ PDLOCKSKIP={YES|NO}

6. Client Environment Setup

462

 $ PDFORUPDATEEXLOCK={YES|NO}
 $ PDISLLVL=data-guarantee-level
 $ PDSQLOPTLVL=SQL-optimization-option[,SQL-optimization-option]...
 $ PDADDITIONALOPTLVL=SQL-extension-optimizing-option
 [,SQL-extension-optimizing-option]...
 $
PDHASHTBLSIZE=hash-table-size-when-hash-join-or-subquery-hash-execution-is-a
pplied
 $ PDDFLNVAL={USE|NOUSE}
 $ PDAGGR=group-count-resulting-from-grouping
 $ PDCMMTBFDDL={YES|NO}
 $ PDPRPCRCLS={YES|NO}
 $ PDAUTOCONNECT={ON|OFF}
 $ PDDDLDEAPRP={YES|NO}
 $ PDCURSORLVL={0|1|2}
 $ PDDELRSVWDFILE=SQL-reserved-word-deletion-file-name
 $ PDHJHASHINGMODE={TYPE1|TYPE2}
 $ PDBLKF=block-transfer-row-count
 $ PDBINARYBLKF={YES|NO}
 $ PDBLKBUFFSIZE=communication-buffer-size
 $ PDNODELAYACK={YES|NO}
 $ PDDBACCS=generation-number-of-RDAREA-to-be-accessed
 $ PDDBORGUAP={YES|NO}
 $ PDSPACELVL={0|1|3}
 $ PDCLTRDNODE=XDM/RD-E2-database-identifier
 $ PDTP1SERVICE={YES|NO}
 $ PDCNSTRNTNAME={LEADING|TRAILING}
 $ PDBESCONHOLD={YES|NO}
 $ PDBESCONHTI=BES-connection-holding-period
 $ PDRDABLKF=batch-retrieval-row-count
 $ PDODBSTATCAHE={0|1}
 $ PDODBESCAPE={0|1}
 $ PDGDATAOPT={YES|NO}
 $ PDODBLOCATOR={YES|NO}
 $ PDODBSPLITSIZE=partition-acquisition-size
 $ PDODBCWRNSKIP={YES|NO}
 $ PDJETCOMPATIBLE={YES|NO}
 $ PDPLGIXMK={YES|NO}
 $ PDPLGPFSZ=initial-size-of-delayed-batch-creation-index-information-file
 $
PDPLGPFSZEXP=extension-value-of-delayed-batch-creation-index-information-file

 $ export PDHOST PDNAMEPORT PDFESHOST PDSERVICEGRP PDSRVTYPE
 PDSERVICEPORT PDFESGRP PDCLTRCVPORT PDCLTRCVADDR PDTMID
PDXAMODE
 PDTXACANUM PDXARCVWTIME PDXATRCFILEMODE PDUSER
 PDCLTAPNAME PDCLTLANG PDLANG PDDBLOG PDEXWARN

6. Client Environment Setup

463

PDSUBSTRLEN
 PDCLTCNVMODE PDCLTGAIJIDLL PDCLTGAIJUFUNC PDCLTGRP
PDTCPCONOPT
 PDAUTORECONNECT PDRCCOUNT PDRCINTERVAL PDUAPENVFILE
 PDDBBUFLRU PDHATRNQUEUING PDASTHOST PDASTPORT
PDSYSTEMID PDASTUSER
 PDCMDWAITTIME PDCMDTRACE PDIPC PDSENDMEMSIZE
 PDRECVMEMSIZE PDCWAITTIME PDSWAITTIME PDSWATCHTIME
 PDCWAITTIMEWRNPNT PDKALVL PDKATIME PDTIMEDOUTRETRY
 PDNBLOCKWAITTIME PDCONNECTWAITTIME PDCLTPATH PDSQLTRACE
 PDUAPERLOG PDERRSKIPCODE PDPRMTRC PDPRMTRCSIZE
PDTRCMODE
 PDUAPREPLVL PDREPPATH PDTRCPATH PDSQLTRCOPENMODE
PDSQLTEXTSIZE
 PDUAPEXERLOGUSE PSUAPEXERLOGPRMSZ PDVWOPTMODE
PDTAAPINFPATH
 PDTAAPINFMODE PDTAAPINFSIZE PDSTJTRNOUT PDLOCKLIMIT
PDDLKPRIO
 PDLOCKSKIP PDFORUPDATEEXLOCK PDISLLVL PDSQLOPTLVL
 PDADDITIONALOPTLVL PDHASHTBLSIZE PDDFLNVAL PDAGGR
 PDCMMTBFDDL PDPRPCRCLS PDAUTOCONNECT PDDDLDEAPRP
PDCURSORLVL
 PDDELRSVWDFILE PDHJHASHINGMODE PDBLKF PDBINARYBLKF
PDBLKBUFFSIZE
 PDNODELAYACK PDDBACCS PDDBORGUAP PDSPACELVL PDCLTRDNODE
 PDTP1SERVICE PDCNSTRNTNAME PDBESCONHOLD PDBESCONHTI
PDRDABLKF
 PDODBSTATCAHE PDODBESCAPE PDGDATAOPT PDODBLOCATOR
PDODBSPLITSIZE
 PDODBCWRNSKIP PDJETCOMPATIBLE PDPLGIXMK PDPLGPFSZ
PDPLGPFSZEXP

(b) csh (C shell)
You must store the environment variables shown below in the .login or .cshrc file.
These environment variables execute automatically at the time of startup.
 % setenv PDHOST HiRDB-server-host-name
 [,secondary-system-HiRDB-server-host-name]
 % setenv PDNAMEPORT HiRDB-server-port-number
 % setenv PDFESHOST front-end-server-host-name
 [:port-number-of-unit-containing-front-end-server]
 [,secondary-system-front-end-server-host-name
 [:host-name-of-unit-containing-secondary-system-front-end-server]]
 % setenv PDSERVICEGRP server-name
 % setenv PDSRVTYPE {WS|PC}
 % setenv PDSERVICEPORT high-speed-connection-port-number
 [,secondary-system-high-speed-connection-port-number]
 % setenv PDFESGRP

6. Client Environment Setup

464

FES-group[,switchover-FES-group[,switchover-FES-group]...]
 % setenv PDCLTRCVPORT client-receive-port-number
 % setenv PDCLTRCVADDR {client-IP-address
 |client-host-name}
 % setenv PDTMID OLTP-identifier
 % setenv PDXAMODE {0|1}
 % setenv PDTXACANUM
maximum-concurrent-transaction-execution-count-per-process
 % setenv PDXARCVWTIME transaction-recovery-wait-time
 % setenv PDXATRCFILEMODE {LUMP|SEPARATE}
 % setenv HiRDB_PDHOST HiRDB-server-host-name
 [,secondary-system-HiRDB-server-host-name]
 % setenv HiRDB_PDNAMEPORT HiRDB-server-port-number
 % setenv HiRDB_PDTMID OLTP-identifier
 % setenv HiRDB_PDXAMODE {0|1}
 % setenv PDUSER authorization-identifier/password
 % setenv PDCLTAPNAME identification-name-of-UAP-to-be-executed
 % setenv PDCLTLANG {SJIS|CHINESE|UJIS|C}
 % setenv PDLANG {UTF-8|SJIS|CHINESE|ANY}
 % setenv PDDBLOG {ALL|NO}
 % setenv PDEXWARN {YES|NO}
 % setenv PDCLTCNVMODE
{AUTO|NOUSE|UJIS|UJIS2|UTF8|UTF8MS|UTF8_TXT|
 UTF8_EX|UTF8_EX2|UTF8MS_TXT|UCS2_UJIS|UCS2_UTF8}
 % setenv PDCLTGAIJIDLL
user-defined-external-character-conversion-DLL-file-name
 % setenv PDCLTGAIJIFUNC
user-defined-external-character-conversion-function-name
 % setenv PDCLTGRP client-group-name
 % setenv PDTCPCONOPT {0|1}
 % setenv PDAUTORECONNECT {YES|NO}
 % setenv PDRCCOUNT CONNECT-retry-count-with-automatic-reconnect-facility
 % setenv PDRCINTERVAL
CONNECT-retry-interval-with-automatic-reconnect-facility
 % setenv PDUAPENVFILE UAP-environment-definition-file-name
 % setenv PDDBBUFLRU {YES|NO}
 % setenv PDHATRNQUEUING NO
 % setenv PDASTHOST HiRDB-Control-Manager-Agent-host-name
 [,secondary-system-HiRDB-Control-Manager-Agent-host-name]
 % setenv PDASTPORT HiRDB-Control-Manager-Agent-port-number
 % setenv PDSYSTEMID
HiRDB-identifier-of-HiRDB-server-managed-by-HiRDB-Control-Manager-Agent
 % setenv PDASTUSER [OS-user-name/password]
 % setenv PDCMDWAITTIME
maximum-client-wait-time-during-command-execution
 % setenv PDCMDTRACE command-trace-file-size

6. Client Environment Setup

465

 % setenv PDIPC {MEMORY|DEFAULT}
 % setenv PDSENDMEMSIZE data-send-memory-size-in-client
 % setenv PDRECVMEMSIZE data-receive-memory-size-in-client
 % setenv PDCWAITTIME maximum-client-wait-time
 % setenv PDSWAITTIME
maximum-server-wait-time-during-transaction-processing
 % setenv PDSWATCHTIME
maximum-server-wait-time-outside-transaction-processing
 % setenv PDCWAITTIMEWRNPNT output-time-for-SQL-runtime-warning
 % setenv PDKALVL {0|1|2}
 % setenv PDKATIME packet-send-interval
 % setenv PDTIMEDOUTRETRY retry-count
 % setenv PDNBLOCKWAITTIME
connection-establishment-monitoring-time-in-nonblock-mode
 % setenv PDCONNECTWAITTIME
maximum-wait-time-in-HiRDB-client-during-server-connection
 % setenv PDCLTPATH trace-file-storage-directory
 % setenv PDSQLTRACE SQL-trace-file-size
 % setenv PDUAPERLOG error-log-file-size
 % setenv PDERRSKIPCODE SQLCODE[,SQLCODE]...
 % setenv PDPRMTRC {YES|NO|IN|OUT|INOUT}
 % setenv PDPRMTRCSIZE=
maximum-data-length-of-parameter-information-output-to-SQL-trace
 % setenv PDTRCMODE {ERR|NONE}
 % setenv PDUAPREPLVL {[s][u][p][r]|a}
 % setenv PDREPPATH storage-directory-for-UAP-statistical-report-files
 % setenv PDTRCPATH storage-directory-for-dynamic-SQL-trace-files
 % setenv PDSQLTRCOPENMODE {CNCT|SQL}
 % setenv PDSQLTEXTSIZE SQL-statement-size
 % setenv PDSQLEXECTIME {YES|NO}
 % setenv PDRCTRACE reconnect-trace-file-size
 % setenv PDWRTLNPATH
storage-directory-for-files-to-which-WRITE-LINE-statement-value-expression-value
s-are-output
 % setenv PDWRTLNFILSZ
maximum-size-of-output-files-for-WRITE-LINE-statement-value-expression-values
 % setenv PDWRTLNCOMSZ
total-size-of-WRITE-LINE-statement-value-expression-values
 % setenv PDUAPEXERLOGUSE {YES|NO}
 % setenv PDUAPEXERLOGPRMSZ
maximum-data-length-of-parameter-information
 % setenv PDVWOPTMODE {0|1|2}
 % setenv PDTAAPINFPATH access-path-information-file-output-directory-name
 % setenv PDTAAPINFMODE {0|1}
 % setenv PDTAAPINFSIZE access-path-information-file-size
 % setenv PDSTJTRNOUT {YES|NO}

6. Client Environment Setup

466

 % setenv PDLOCKLIMIT maximum-locked-resource-request-count-per-user
 % setenv PDDLKPRIO {96|64|32}
 % setenv PDLOCKSKIP {YES|NO}
 % setenv PDFORUPDATEEXLOCK {YES|NO}
 % setenv PDISLLVL data-guarantee-level
 % setenv PDSQLOPTLVL
SQL-optimization-option[,SQL-optimization-option]...
 % setenv PDADDITIONALOPTLVL SQL-extension-optimizing-option
 [,SQL-extension-optimizing-option]...
 % setenv PDHASHTBLSIZE
hash-table-size-when-hash-join-or-subquery-hash-execution-is-applied
 % setenv PDDFLNVAL {USE|NOUSE}
 % setenv PDAGGR group-count-resulting-from-grouping
 % setenv PDCMMTBFDDL {YES|NO}
 % setenv PDPRPCRCLS {YES|NO}
 % setenv PDAUTOCONNECT {ON|OFF}
 % setenv PDDDLDEAPRP {YES|NO}
 % setenv PDCURSORLVL {0|1|2}
 % setenv PDDELRSVWDFILE SQL-reserved-word-deletion-file-name
 % setenv PDHJHASHINGMODE {TYPE1|TYPE2}
 % setenv PDBLKF block-transfer-row-count
 % setenv PDBINARYBLKF {YES|NO}
 % setenv PDBLKBUFFSIZE communication-buffer-size
 % setenv PDNODELAYACK {YES|NO}
 % setenv PDDBACCS generation-number-of-RDAREA-to-be-accessed
 % setenv PDDBORGUAP {YES|NO}
 % setenv PDSPACELVL {0|1|3}
 % setenv PDCLTRDNODE XDM/RD-E2-database-identifier
 % setenv PDTP1SERVICE {YES|NO}
 % setenv PDCNSTRNTNAME {LEADING|TRAILING}
 % setenv PDBESCONHOLD {YES|NO}
 % setenv PDBESCONHTI BES-connection-holding-period
 % setenv PDRDABLKF batch-retrieval-row-count
 % setenv PDODBSTATCAHE {0|1}
 % setenv PDODBESCAPE {0|1}
 % setenv PDGDATAOPT {YES|NO}
 % setenv PDODBLOCATOR {YES|NO}
 % setenv PDODBSPLITSIZE partition-acquisition-size
 % setenv PDODBCWRNSKIP {YES|NO}
 % setenv PDJETCOMPATIBLE {YES|NO}
 % setenv PDPLGIXMK {YES|NO}
 % setenv PDPLGPFSZ
initial-size-of-delayed-batch-creation-index-information-file
 % setenv PDPLGPFSZEXP
extension-value-of-delayed-batch-creation-index-information-file

Notes on the UNIX environment

6. Client Environment Setup

467

• The environment variables are required for preprocessing. For details about
preprocessing, see 8.2 Preprocessing.

• If different directories are used for storing shared libraries for the client
during UAP creation and UAP execution, specify the -W1,+s option in the
cc or ccbl command. During UAP execution, specify the name of the
directory containing the shared libraries in the SHLIB_PATH environment
variable. For details about the cc and ccbl commands, see 8.3 Compiling
and linking.

• When you use the Type4 JDBC driver, client environment definitions set
using this method are not valid.

• Client environment definitions that begin with PDJDB are not valid when
they are set using this method.

(2) Windows environment
In the Windows environment, the directory is set automatically to the PATH
environment variable. However, the directory may not be set automatically if the path
name is too long or if you do not have write privileges for PATH. You should therefore
check whether the directory has been set to PATH. If the directory has not been set, you
must add the following directory to PATH. xxxx indicates the directory name in which
the HiRDB client is installed.
xxxx\UTL

Set the environment variables as system environment variables or user environment
variables, or store them in the HiRDB.INI file in the Windows directory. If you are
using a function in the UAP to set the environment variables, use the
SetEnvironmentVariable function. Do not use the putenv function.

Retrieval sequence for client environment definitions

If the client environment definitions are set at several locations, each client
environment definition is retrieved in the sequence below. If a client environment
definition has no specified value, the default value is applied.

1. Environment variables group*

2. User environment variables
3. HIRDB.ini
* When the multi-connection facility is used, use ALLOCATE CONNECTION
HANDLE to specify the group name or file name. If a UAP under OLTP is used as
the client, specify the group name or file name in an open character string. For
details about open character strings, see the HiRDB Version 8 Installation and
Design Guide.

A specification example of the HiRDB.INI file is shown below.

6. Client Environment Setup

468

 [HIRDB]

PDHOST=HiRDB-server-host-name[,secondary-system-HiRDB-server-host-name]
 PDNAMEPORT=HiRDB-server-port-number
 PDFESHOST=front-end-server-host-name
 [:port-number-of-unit-containing-front-end-server]
 [,secondary-system-front-end-server-host-name

[:port-number-of-unit-containing-secondary-system-front-end-server]]
 PDSERVICEGRP=server-name
 PDSRVTYPE={WS|PC}
 PDSERVICEPORT=high-speed-connection-port-number
 [,secondary-system-high-speed-connection-port-number]
 PDFESGRP=FES-group[,switchover-FES-group[,switchover-FES-group]...]
 PDCLTRCVPORT=client-receive-port-number
 PDCLTRCVADDR={client-IP-address|client-host-name}
 PDXATRCFILEMODE={LUMP|SEPARATE}
 PDUSER=[authorization-identifier/password]
 PDCLTAPNAME=identification-name-of-UAP-to-be-executed
 PDCLTLANG={SJIS|CHINESE|UJIS|C}
 PDLANG={UTF-8|SJIS|CHINESE|ANY}
 PDDBLOG={ALL|NO}
 PDEXWARN={YES|NO}
 PDSUBSTRLEN={3|4|5|6}
 PDCLTCNVMODE={AUTO|NOUSE|UJIS|UJIS2|UTF8|UTF8MS|
 UTF8_TXT|UTF8_EX|UTF8_EX2|UTF8MS_TXT|UCS2_UJIS|
 UCS2_UTF8}
 PDCLTGAIJIDLL=user-defined-external-character-conversion-DLL-file-name
 PDCLTGAIJIFUNC=user-defined-external-character-conversion-function-name
 PDCLTGRP=client-group-name
 PDTCPCONOPT={0|1}
 PDAUTORECONNECT={YES|NO}
 PDRCCOUNT=CONNECT-retry-count-with-automatic-reconnect-facility
 PDRCINTERVAL=CONNECT-retry-interval-with-automatic-reconnect-facility
 PDUAPENVFILE=UAP-environment-definition-file-name
 PDDBBUFLRU={YES|NO}
 PDHATRNQUEUING=NO
 PDASTHOST=HiRDB-Control-Manager-Agent-host-name
 [,secondary-system-HiRDB-Control-Manager-Agent-host-name]
 PDASTPORT=HiRDB-Control-Manager-Agent-port-number
 PDSYSTEMID=HiRDB-identifier-of-HiRDB-server-managed-by-HiRDB-Control
Manager-Agent
 PDASTUSER=OS-user-name/password
 PDCMDWAITTIME=maximum-client-wait-time-during-command-execution
 PDCMDTRACE=command-trace-file-size

6. Client Environment Setup

469

 PDIPC={MEMORY|DEFAULT}
 PDSENDMEMSIZE=data-send-memory-size-in-client
 PDRECVMEMSIZE=data-receive-memory-size-in-client
 PDCWAITTIME=maximum-client-wait-time
 PDSWAITTIME=maximum-server-wait-time-during-transaction-processing
 PDSWATCHTIME=maximum-server-wait-time-outside-transaction-processing
 PDCWAITTIMEWRNPNT=output-timing-for-SQL-runtime-warning
 PDKALVL={0|1|2}
 PDKATIME=packet-send-interval
 PDTIMEDOUTRETRY=retry-count

PDNBLOCKWAITTIME=connection-establishment-monitoring-time-in-nonblock-mode

PDCONNECTWAITTIME=maximum-wait-time-in-HiRDB-client-during-server-connect
ion
 PDCLTPATH=trace-file-storage-directory
 PDSQLTRACE=SQL-trace-file-size
 PDUAPERLOG=error-log-file-size
 PDERRSKIPCODE=SQLCODE[,SQLCODE]...
 PDPRMTRC={YES|NO|IN|OUT|INOUT}
 PDPRMTRCSIZE=
maximum-data-length-of-parameter-information-output-to-SQL-trace
 PDTRCMODE={ERR|NONE}
 PDUAPREPLVL={[s][u][p][r]|a}
 PDREPPATH=storage-directory-for-UAP-statistical-report-files
 PDTRCPATH=storage-directory-for-dynamic-SQL-trace-files
 PDSQLTRCOPENMODE={CNCT|SQL}
 PDSQLTEXTSIZE=SQL-statement-size
 PDSQLEXECTIME={YES|NO}
 PDRCTRACE=reconnect-trace-file-size

PDWRTLNPATH=storage-directory-for-files-to-which-WRITE-LINE-statement-value-e
xpression-values-are-output

PDWRTLNFILSZ=maximum-size-of-output-files-for-WRITE-LINE-statement-value-ex
pression-values
 PDWRTLNCOMSZ=total-size-of-WRITE-LINE-statement-value-expression-values
 PDUAPEXERLOGUSE={YES|NO}
 PDUAPEXERLOGPRMSZ=maximum-data-length-of-parameter-information
 PDVWOPTMODE={0|1|2}
 PDTAAPINFPATH=access-path-information-file-output-directory-name
 PDTAAPINFMODE={0|1}
 PDTAAPINFSIZE=access-path-information-file-size
 PDSTJTRNOUT={YES|NO}
 PDLOCKLIMIT=maximum-locked-resource-request-count-per-user
 PDDLKPRIO={96|64|32}

6. Client Environment Setup

470

 PDFORUPDATEEXLOCK={YES|NO}
 PDLOCKSKIP={YES|NO}
 PDISLLVL=data-guarantee-level
 PDSQLOPTLVL=SQL-optimization-option[,SQL-optimization-option]...
 PDADDITIONALOPTLVL=SQL-extension-optimizing-option
 [,SQL-extension-optimizing-option]...

PDHASHTBLSIZE=hash-table-size-when-hash-join-or-subquery-hash-execution-is-a
pplied
 PDDFLNVAL={USE|NOUSE}
 PDAGGR=group-count-resulting-from-grouping
 PDCMMTBFDDL={YES|NO}
 PDPRPCRCLS={YES|NO}
 PDAUTOCONNECT={ON|OFF}
 PDDDLDEAPRP={YES|NO}
 PDCURSORLVL={0|1|2}
 PDDELRSVWDFILE=SQL-reserved-word-deletion-file-name
 PDHJHASHINGMODE={TYPE1|TYPE2}
 PDBLKF=block-transfer-row-count
 PDBINARYBLKF={YES|NO}
 PDBLKBUFFSIZE=communication-buffer-size
 PDNODELAYACK={YES|NO}
 PDDBACCS=generation-number-of-RDAREA-to-be-accessed
 PDDBORGUAP={YES|NO}
 PDSPACELVL={0|1|3}
 PDCLTRDNODE=XDM/RD-E2-database-identifier
 PDTP1SERVICE={YES|NO}
 PDRDCLTCODE={SJIS|UTF-8}
 PDCNSTRNTNAME={LEADING|TRAILING}
 PDBESCONHOLD={YES|NO}
 PDBESCONHTI=BES-connection-holding-period
 PDODBSTATCAHE={0|1}
 PDODBESCAPE={0|1}
 PDGDATAOPT={YES|NO}
 PDODBLOCATOR={YES|NO}
 PDODBSPLITSIZE=partition-acquisition-size
 PDODBCWRNSKIP={YES|NO}
 PDJETCOMPATIBLE={YES|NO}
 PDPLGIXMK={YES|NO}
 PDPLGPFSZ=initial-size-of-delayed-batch-creation-index-information-file
 PDPLGPFSZEXP=extension-value-of-delayed-batch-creation-index-information-file

Notes on the Windows environment
• The environment variables are required for preprocessing. For details about

how to preprocess, see 8.2 Preprocessing.

6. Client Environment Setup

471

• When you use the Type4 JDBC driver, client environment definitions set
using this method are not valid.

• Client environment definitions that begin with PDJDB are not valid when
they are set using this method.

6.6.2 Specifications for using a UAP under OLTP as the client
(1) Using a UAP under OpenTP1 as the client

For the operation mode in which a UAP under OpenTP1 is used as the client, specify
the client environment definitions in the system service definitions for OpenTP1. The
environment variables are specified in the following OpenTP1 definitions:

System environment
When a common specification is made for all environment variables
Transaction service
When a specification related to recovery control of a transaction error is made
User service default
When a common specification is made for all UAPs
Individual user service
When separate specifications are made for individual UAPs

Table 6-20 shows the OpenTP1 definitions in which the environment variables are
specified. Environment variables other than those shown in Table 6-20 can be
specified as needed.
The putenv format is used to specify environment variables.

Table 6-20: OpenTP1 definitions in which the environment variables are
specified

Environment variable System
environment

definition

Transaction
service

definition

User service
default

definition

User
service

definition

HiRDB_PDHOST9 M1 N N N

HiRDB_PDNAMEPORT9 M2 N N N

HiRDB_PDTMID9 O3,4 N N N

HiRDB_PDXAMODE9 O5 N N N

PDHOST N M1, 6 M1, 6 O1, 6, 7

6. Client Environment Setup

472

PDNAMEPORT N M2, 6 M2, 6 O2, 6, 7

PDTMID9 N O3, 4, 6 O3, 4, 6 O3, 4, 6, 7

PDXAMODE9,10 N O5, 6 O5, 6 O5, 6, 7

PDTXACANUM9 N O O O

PDCLTPATH N O O O

PDUSER N N M M

PDCWAITTIME N O O O

PDSWAITTIME N M M M

PDSQLTRACE N O O O

PDUAPERLOG N O O O

PDCLTAPNAME N O O8 O8

PDSWATCHTIME N N M M

PDTRCMODE N O O O

PDUAPREPLVL N O O O

PDREPPATH N O O O

PDTRCPATH N O O O

PDSQLTRCOPENMODE N O O O

PDAUTOCONNECT N N N N

PDXARCVWTIME9 N O N N

PDCWAITTIMEWRNPNT N O O O

PDTCPCONOPT N O O O

PDAUTORECONNECT N N N N

PDRCCOUNT N N N N

PDRCINTERVAL N N N N

PDKALVL N N N N

Environment variable System
environment

definition

Transaction
service

definition

User service
default

definition

User
service

definition

6. Client Environment Setup

473

M: Required.
O: Optional; specify as needed.
N: Not required.
Note

For details about the OpenTP1 system service definitions, see the manual
OpenTP1 System Definition.

1 When HiRDB_PDHOST is specified, it is not necessary to specify PDHOST because the
value specified in HiRDB_PDHOST is assumed for PDHOST. However, if
HiRDB_PDHOST is not specified, PDHOST must be specified. If PDHOST and
HiRDB_PDHOST are both specified, HiRDB_PDHOST takes precedence.
When PDHOST is specified in an environment variable group, the PDHOST
specification of the environment variable group becomes effective.
For guidelines on the value to be specified in PDHOST, see (7) Fixing the
communication-target server by specifying the PDFESHOST name in PDHOST
(limited to HiRDB/Parallel Server).
2 When HiRDB_PDNAMEPORT is specified, it is not necessary to specify PDNAMEPORT
because the value specified in HiRDB_PDNAMEPORT is assumed for PDNAMEPORT.
However, if HiRDB_PDNAMEPORT is not specified, PDNAMEPORT must be specified. If
PDNAMEPORT and HiRDB_PDNAMEPORT are both specified, HiRDB_PDNAMEPORT
takes precedence.
When PDNAMEPORT is specified in an environment variable group, the PDNAMEPORT
specification of the environment variable group becomes effective.
3 This information must be specified for accessing one HiRDB server using an X/
Open-compatible API from multiple OLTPs.
4 When HiRDB_PDTMID is specified, it is not necessary to specify PDTMID because the

PDKATIME N N N N

PDSQLTEXTSIZE N O O O

PDSQLEXECTIME N O O O

PDRCTRACE N N N N

Other environment variable N N O O

Environment variable System
environment

definition

Transaction
service

definition

User service
default

definition

User
service

definition

6. Client Environment Setup

474

value specified in HiRDB_PDTMID is assumed for PDTMID. However, if
HiRDB_PDTMID is not specified, PDTMID must be specified. If PDTMID and
HiRDB_PDTMID are both specified, HiRDB_PDTMID takes precedence.
5 When HiRDB_PDXAMODE is specified, it is not necessary to specify PDXAMODE
because the value specified in HiRDB_PDXAMODE is assumed for PDXAMODE.
However, if HiRDB_PDXAMODE is not specified, PDXAMODE must be specified. If
PDXAMODE and HiRDB_PDXAMODE are both specified, HiRDB_PDXAMODE takes
precedence.
6 The same information must be specified in the various definitions.
7 The same specification must be made at the servers of all users who access HiRDB.
For this reason, specify this information in the user service default definition, rather
than in the separate user service definitions.
8 So that the user servers can be distinguished, this information should be specified in
the individual user service definitions, rather than in the separate user-service default
definition.
9 When the multi-connection facility is used, the environment variable specification
variables become invalid, even if these environment variables are set to the
environment variable group that was registered for each connection destination. Also,
in the Windows environment, variables become invalid even though they are specified
in the HiRDB.ini file. The information that was specified in the OpenTP1 system
service definitions becomes valid for these environment variables.
10 Note that if the trnstring option and the PDXAMODE setting do not match, the xa
function results in a -6 error.

(2) Using a UAP under TP1/LiNK as the client
If a UAP under TP1/LiNK is used as the client, the client environment definitions must
be specified in the TP1/LiNK definitions. The specification procedures are as follows.

Specifying environment variables for recovery control if a transaction failure
occurs:
In the Resource Manager window, click the Options button. When the Options
dialog box is displayed, specify the environment variables in the Transaction
Service Environment Variables field.
Specifying environment variables that are common to all UAPs:
Open the SPP (or SUP) Environment Assignment dialog box and specify the
environment variables in the Global field of the User Server Environment
Variables field.
Specifying environment variables individually for each UAP:

6. Client Environment Setup

475

Open the SPP (or SUP) Environment Assignment dialog box and specify the
environment variables in the Local field of the User Server Environment
Variables field.

Table 6-21 shows the TP1/LiNK definitions in which the environment variables are
specified.

Table 6-21: TP1/LiNK definitions in which the environment variables are
specified

Environment variable Transaction Service
Environment Variables field

User Server Environment
Variables field

Global field Local field

HiRDB_PDHOST N N N

HiRDB_PDNAMEPORT N N N

HiRDB_PDTMID N N N

HiRDB_PDXAMODE N N N

PDHOST M2 M2 O2, 3

PDNAMEPORT M2 M2 O2, 3

PDTMID5 O1, 2 O1, 2 O1, 2, 3

PDXAMODE5 O2 O2 O2, 3

PDTXACANUM5 O O O

PDCLTPATH O O O

PDUSER N N M

PDCWAITTIME O O O

PDSWAITTIME M M M

PDSQLTRACE O O O

PDUAPERLOG O O O

PDCLTAPNAME O O4 O4

PDSWATCHTIME M M M

PDTRCMODE O O O

PDUAPREPLVL O O O

6. Client Environment Setup

476

M: Required.
O: Optional; specify as needed.
N: Not required.
Note

For details about the TP1/LiNK definitions, see the TP1/LiNK User's Guide.
1 This information must be specified for accessing one HiRDB server using an X/
Open-compatible API from multiple OLTPs.
2 The same information must be specified in the various definitions.
3 The same specification must be made at the servers of all users who access HiRDB.
For this reason, specify this information in the Global field of the User Server
Environment Variables field, rather than in the Local field.
4 So that the user servers can be distinguished, this information should be specified in
the Local field of the User Server Environment Variables field, rather than in the
Global field.
5 When the multi-connection facility is used, the environment variable specification
variables become invalid, even if these environment variables are set to the
environment variable group that was registered for each connection destination. Also,
in the Windows environment, variables become invalid even though they are specified
in the HiRDB.ini file. The information that was specified in the TP1/LiNK definitions
becomes valid for these environment variables.

PDREPPATH O O O

PDTRCPATH O O O

PDSQLTRCOPENMODE O O O

PDAUTOCONNECT N N N

PDXARCVWTIME O N N

PDCWAITTIMEWRNPNT O O O

PDTCPCONOPT O O O

Other environment variable N O O

Environment variable Transaction Service
Environment Variables field

User Server Environment
Variables field

Global field Local field

6. Client Environment Setup

477

(3) Using a UAP under TPBroker as the client
If a UAP under TPBroker is used as the client, the client environment definitions must
be specified in the TPBroker system definitions. For details about the TPBroker
system definitions, see the TPBroker User's Guide.
The client environment definitions are specified with the following format.

Specifying client environment definitions in a transaction completion
process:
Specify the client environment definitions in the transaction definition. In this
case, use the tsdefvalue command of TPBroker to specify the definitions. The
definition key is /OTS, and the definition parameter is
completion_process_env.
tsdefvalue /OTS completion_process_env
 -a 'environment-variable-name=specification-value',
['environment-variable-name=specification-value', ...]

Specifying client environment definitions in a recovery process for
transaction failures:
Specify the client environment definitions in the transaction definition. In this
case, use the tsdefvalue command of TPBroker to specify the definitions. The
definition key is /OTS, and the definition parameter is
recovery_process_env.
tsdefvalue /OTS recovery_process_env
 -a 'environment-variable-name=specification-value',
['environment-variable-name=specification-value', ...]

Specifying client environment definitions individually for each UAP:
Specify the client environment definitions in the operating environment of each
UAP. Specify the definitions according to the environment variable setting
method (for example, the SET or SETENV format) of the operating environment.
Specifying client environment definitions individually for each UAP to be
monitored:
Specify the client environment definitions in the definition file of each process
monitoring definition of TPBroker.

Table 6-22 shows the TPBroker definitions in which the environment variables are
specified.

6. Client Environment Setup

478

Table 6-22: TPBroker definitions in which the environment variables are
specified

Environment variable Transaction completion
process

Transaction recovery
process

Each UAP

HiRDB_PDHOST8 O1, 4 O1, 4 O1, 4

HiRDB_PDNAMEPORT8 O1, 5 O1, 5 O1, 5

HiRDB_PDTMID8 O1, 3, 6 O1, 3, 6 O1, 3, 6

HiRDB_PDXAMODE8 O1, 7 O1, 7 O1, 7

PDHOST O1, 4 O1, 4 O1, 4

PDNAMEPORT O1, 5 O1, 5 O1, 5

PDTMID8 O1, 3, 6 O1, 3, 6 O1, 3, 6

PDXAMODE8 O1, 7 O1, 7 O1, 7

PDTXACANUM8 O O O

PDCLTPATH O O O

PDUSER M N M

PDCWAITTIME O O O

PDSWAITTIME M M M

PDSQLTRACE O O O

PDUAPERLOG O O O

PDCLTAPNAME O O O2

PDSWATCHTIME N N N

PDTRCMODE O O O

PDUAPREPLVL O O O

PDREPPATH O O O

PDTRCPATH O O O

PDSQLTRCOPENMODE O O O

PDAUTOCONNECT N N N

6. Client Environment Setup

479

M: Required.
O: Optional; specify as needed.
N: Not required.
1 The same information must be specified in the client environment definitions for the
transaction completion process, transaction recovery process, and each UAP.
2 So that the processes can be distinguished, this information should be specified in the
individual processes.
3 This information must be specified for accessing one HiRDB server using an X/
Open-compatible API from multiple OLTPs.
4 When HiRDB_PDHOST is specified, it is not necessary to specify PDHOST because the
value specified in HiRDB_PDHOST is assumed for PDHOST. However, if
HiRDB_PDHOST is not specified, PDHOST must be specified. If PDHOST and
HiRDB_PDHOST are both specified, HiRDB_PDHOST takes precedence.
When PDHOST is specified in an environment variable group, the PDHOST
specification of the environment variable group becomes effective.
For guidelines on the value to be specified in PDHOST, see (7) Fixing the
communication-target server by specifying the PDFESHOST name in PDHOST
(limited to HiRDB/Parallel Server).

PDCWAITTIMEWRNPNT O O O

PDTCPCONOPT O O O

PDAUTORECONNECT N N N

PDRCCOUNT N N N

PDRCINTERVAL N N N

PDKALVL N N N

PDKATIME N N N

PDSQLTEXTSIZE O O O

PDSQLEXECTIME O O O

PDRCTRACE N N N

Other environment variable O N O

Environment variable Transaction completion
process

Transaction recovery
process

Each UAP

6. Client Environment Setup

480

5 When HiRDB_PDNAMEPORT is specified, it is not necessary to specify PDNAMEPORT
because the value specified in HiRDB_PDNAMEPORT is assumed for PDNAMEPORT.
However, if HiRDB_PDNAMEPORT is not specified, PDNAMEPORT must be specified. If
PDNAMEPORT and HiRDB_PDNAMEPORT are both specified, HiRDB_PDNAMEPORT
takes precedence.
When PDNAMEPORT is specified in an environment variable group, the PDNAMEPORT
specification of the environment variable group becomes effective.
6 When HiRDB_PDTMID is specified, it is not necessary to specify PDTMID because the
value specified in HiRDB_PDTMID is assumed for PDTMID. However, if
HiRDB_PDTMID is not specified, PDTMID must be specified. If PDTMID and
HiRDB_PDTMID are both specified, HiRDB_PDTMID takes precedence.
7 When HiRDB_PDXAMODE is specified, it is not necessary to specify PDXAMODE
because the value specified in HiRDB_PDXAMODE is assumed for PDXAMODE.
However, if HiRDB_PDXAMODE is not specified, PDXAMODE must be specified. If
PDXAMODE and HiRDB_PDXAMODE are both specified, HiRDB_PDXAMODE takes
precedence.
8 When the multi-connection facility is used, the environment variable specification
variables become invalid, even if these environment variables are set in the
environment variable group that was registered to each connection destination. Also,
in the Windows environment, variables become invalid even though they are specified
in the HiRDB.ini file. The information that was specified in the TPBroker system
definitions becomes valid for these environment variables.

(4) Using a UAP under TUXEDO as the client
For the operation mode in which a UAP under TUXEDO is used as the client, specify
the client environment definitions in the file specified by the ENVFILE parameter in
the TUXEDO configuration file (UBBCONFIG file).
Table 6-23 shows which environment variables can be specified.

Table 6-23: Environment variable specification status (for a UAP under
TUXEDO)

Environment variable Specification status

HiRDB_PDHOST N

HiRDB_PDNAMEPORT N

HiRDB_PDTMID N

HiRDB_PDXAMODE N

PDHOST M1

6. Client Environment Setup

481

M: Required.

O: Optional; specify as needed.
N: Do not specify.
1 The same information must be specified in the environment variables for the
transaction manager server, TUXEDO system server, and each UAP.
For guidelines on the value to be specified in PDHOST, see (7) Fixing the
communication-target server by specifying the PDFESHOST name in PDHOST
(limited to HiRDB/Parallel Server).
2 So that the processes can be distinguished, this information should be specified in the
individual processes.
3 This information must be specified for accessing one HiRDB server using an X/
Open-compatible API from multiple OLTPs.
4 In the Windows environment, variables become invalid even though they are

PDNAMEPORT M1

PDTMID4 O1, 3

PDXAMODE4 M1

PDTXACANUM N

PDUSER M

PDSWAITTIME M

PDCLTAPNAME O2

PDSWATCHTIME N

PDAUTORECONNECT N

PDRCCOUNT N

PDRCINTERVAL N

PDKALVL N

PDKATIME N

PDRCTRACE N

Other environment variable O

Environment variable Specification status

6. Client Environment Setup

482

specified in the HiRDB.ini file. The information that was specified in the file
specified by the ENVFILE parameter in the TUXEDO configuration file becomes valid
for these environment variables.

(5) Using a UAP under WebLogic Server as the client
For the operation mode in which a UAP under WebLogic Server is used as a client,
specify the client environment definitions in the environment variables of the
WebLogic Server process.
Table 6-24 shows which environment variables can be specified.

Table 6-24: Environment variable specification status (for a UAP under
WebLogic Server)

Environment variable Specification status

HiRDB_PDHOST N

HiRDB_PDNAMEPORT N

HiRDB_PDTMID N

HiRDB_PDXAMODE N

PDHOST M3

PDNAMEPORT M

PDTMID4 O1

PDXAMODE4 M

PDUSER M

PDSWAITTIME M

PDCLTAPNAME O2

PDSWATCHTIME N

PDAUTORECONNECT N

PDRCCOUNT N

PDRCINTERVAL N

PDKALVL N

PDKATIME N

PDRCTRACE N

6. Client Environment Setup

483

M: Required.
O: Optional; specify as needed.
N: Do not specify.
1 This environment variable must be specified when multiple OLTP programs use an
X/Open-compliant API to access one HiRDB system.
2 This environment variable should be specified in each process so that the individual
processes can be identified.
3 For guidelines on the value to be specified in PDHOST, see (7) Fixing the
communication-target server by specifying the PDFESHOST name in PDHOST
(limited to HiRDB/Parallel Server).
4 In the Windows environment, variables become invalid even though they are
specified in the HiRDB.ini file. The information that was specified in the file
specified by the ENVFILE parameter in the TUXEDO configuration file becomes valid
for these environment variables.
Notes

1. For the timeout second count that can be specified in the transaction
attributes of WebLogic Server, specify a value that is larger than the
maximum wait time specified by PDCWAITTIME. If you specify a value that
is smaller than the maximum wait time specified by PDCWAITTIME, the
system may not be able to complete UAP process transactions.

2. If the maximum number of concurrent transactions per process specified by
PDTXACANUM is less than the number of connections specified by the JDBC
connection pool of WebLogic Server, the number of connections established
by the JDBC connection pool cannot exceed the PDTXACANUM value.

(6) Using a UAP under TP1/EE as the client (limited to UNIX version)
For the operation mode in which a UAP under TP1/EE is used as a client, specify the
client environment definitions in the OpenTP1 system service definitions of the TP1/
EE execution environment. For details, see (1) Using a UAP under OpenTP1 as the
client.
Be sure to specify PDXAMODE. If the value specified for the OpenTP1 system in which
TP1/EE is executed and the value specified for PDXAMODE are different, specify
PDXAMODE in the user service definitions of the OpenTP1 system.

Other environment variable O

Environment variable Specification status

6. Client Environment Setup

484

(7) Fixing the communication-target server by specifying the PDFESHOST name
in PDHOST (limited to HiRDB/Parallel Server)

When the PDFESHOST host name is specified in PDHOST, the HiRDB client can be
connected to the HiRDB server if a failure occurs in the system manager unit. In
addition, the SQL execution destination, the PC cancel destination, and the XA
recovery request destination can be fixed to a single communication-target server. PC
cancel refers to the server completion instruction when the PDCWAITTIME duration is
exceeded. XA recovery refers to the transaction completion instruction when a UAP
under OLTP is used. For certain combinations of the client and server versions, the
host name that can be specified in PDHOST is limited to the host name of the system
manager.
Figure 6-1 shows the differences between fixing and not fixing the
communication-target server.

Figure 6-1: Differences between fixing and not fixing the communication-target
server

Application standard

The following conditions must be satisfied if the communication-target server is
to be fixed:

• HiRDB/Parallel Server is being used.
• The connection is a FES host direct connection or high-speed connection.

6. Client Environment Setup

485

• The table below shows that specifying the PDFESHOST name in PDHOST is
recommended for the UAP execution environment.

Legend:
Y: Specifying the PDFESHOST host name in PDHOST is recommended.
N: Specify the host name of the transaction manager in PDHOST.

UAP execution environment Specification
recommended

Non-OLTP
system

A UAP has one connection, or the same PDFESHOST is specified for each
connection when a UAP has multiple connections.

Y

A different PDFESHOST is specified for each connection when a UAP has
multiple connections.

N

OLTP
system

OLTP system
(WebLogic
Server)
operating with a
single process
(multi-thread)

The same PDFESHOST is specified for all connection
destinations in the OLTP system (the connection
destinations are the same).1

Y

Each thread operating in the OLTP system specifies a
different PDFESHOST.1

N

OLTP system
(OpenTP1,
TUXEDO,
TPBroker, or
TP1/LiNK)
operating with
multiple
processes

All processes operating as a UAP specify the same
PDFESHOST.1

Y

Each process
operating as a
UAP specifies a
separate
PDFESHOST.1

Client
environment
definition of a
process
operating as
UAP for which
PDFESHOST is
specified2

The same
PDFESHOST is
specified for all
connection
destinations of a
process
operating as a
UAP for which
PDFESHOST is
specified.

Y

A different
PDFESHOST is
specified for
each connection
destination of a
process
operating as a
UAP for which
PDFESHOST is
specified.

N

Client environment definition for
the transaction manager3

N

6. Client Environment Setup

486

1 Specify the host name in the following location:
• For OpenTP1

Environment variables specified in the user service, user default, or
system environment definitions

• For TUXEDO
Client environment definitions of the transaction manager server, the
TUXEDO system server, and each UAP

• For TPBroker
Transaction definitions (for completed processes and recovery
processes) and client environment definitions for each UAP

• For TP1/LiNK
Global and Local fields of the User server environment variables
field

• When the multi-connection facility is used
Environment variable settings file

2 Specify the host name in the following location:
• For OpenTP1

Environment variables specified in the user service or user default
definitions

• For TUXEDO
Client environment definitions of each UAP

• For TPBroker
Transaction definitions (for completed processes) and client
environment definitions of the UAP

• For TP1/LiNK
Global and Local fields of the User server environment variables
field

• When the multi-connection facility is used
Environment variable settings file

3 Specify the host name in the following location:
• For OpenTP1

6. Client Environment Setup

487

Environment variables specified in the transaction service definitions
• For TUXEDO

Client environment definitions of the transaction manager server and
the TUXEDO system server

• For TPBroker
Transaction definition (recovery process)

• For TP1/LiNK
Transaction service environment variables field

• When the multi-connection facility is used
Environment variable settings file

Note

If a host number is specified in PDFESHOST, connect the port number of the
connection destination to PDNAMEPORT.

6.6.3 Client environment definitions
Table 6-25 lists the client environment definitions. The numbers in the list correspond
to the individual environment definition numbers used in 6.6.4 Environment definition
information.

Environment variables that must be specified
The environment variables displayed in bold characters must be specified
regardless of which HiRDB system environment is used. Specify all other
environment variables according to the HiRDB system environment being used.
Table 6-25: Client environment definitions

No. Environment variable Function Category

1 PDHOST Specifies the host name of the HiRDB system
to be connected.

System
configuration3

2 PDNAMEPORT Specifies the port number of the HiRDB
system.

3 PDFESHOST Specifies the host name of the front-end
server.

4 PDSERVICEGRP Specifies the server name of the single server
or front-end server.

5 PDSRVTYPE Specifies the HiRDB server type.

6. Client Environment Setup

488

6 PDSERVICEPORT Specifies the port number for high-speed
connection.

7 PDFESGRP Specifies the FES group to which connection
is to be established when a high-speed
connection is used.

8 PDCLTRCVPORT Specifies the receive port number of the client.

9 PDCLTRCVADDR Specifies the IP address or host name of the
client.

10 PDTMID Specifies a unique identifier for each OLTP
when multiple OLTPs access one HiRDB
server.

Clients that use an
X/Open-compliant
API in an OLTP
environment1

11 PDXAMODE Specifies whether the transaction transfer
function is to be used when the HiRDB client
is linked with an OLTP system.

12 PDTXACANUM Specifies the maximum number of
transactions to be executed simultaneously
from a UAP that uses an X/Open-compliant
API.

13 PDXARCVWTIME Specifies the wait time if a transaction cannot
be recovered.

14 PDXATRCFILEMODE Specifies the format of each trace file name in
the connection mode that uses the X/
Open-compliant API.

15 HiRDB_PDHOST Specifies the host name of the HiRDB server
to be connected.

16 HiRDB_PDNAMEPORT Specifies the port number of the HiRDB
server.

17 HiRDB_PDTMID Specifies a unique identifier for each OLTP
when multiple OLTPs access one HiRDB
server.

18 HiRDB_PDXAMODE Specifies whether the transaction transfer
function is to be used when the HiRDB client
is linked with an OLTP system.

19 PDUSER Specifies the authorization identifier and
password. This environment variable can be
omitted in the UNIX environment.

User execution
environment

No. Environment variable Function Category

6. Client Environment Setup

489

20 PDCLTAPNAME Specifies UAP identification information
(UAP identifier) for accessing the HiRDB
server.

21 PDCLTLANG Specifies the character code classification
used in the descriptions of UAPs to be
processed by the preprocessor.

22 PDLANG Specifies that the character code used when
the UAP is executed is either Unicode or EUC
Chinese kanji code. In the Linux version,
specifies that SJIS is used as the character
code.
This environment variable is not valid in a
Windows environment.

23 PDDBLOG Specifies whether the database update log is to
be collected when a UAP is executed.

24 PDEXWARN Specifies whether return codes with warnings
are to be accepted from the server.

25 PDSUBSTRLEN Specifies the maximum number of bytes used
to represent one character.

26 PDCLTCNVMODE Specifies whether character codes are to be
converted if the HiRDB server and the HiRDB
client use different character code
classifications.

27 PDCLTGAIJIDLL Specifies the name of the user-defined
external character conversion DLL file.

28 PDCLTGAIJIFUNC Specifies the name of the user-defined
external character conversion function.

29 PDCLTGRP Specifies a client group name when the
connection frame guarantee facility for client
groups is used.

30 PDTCPCONOPT Specifies that the number of TCP ports used in
server connection processing is to be reduced
when the client connects to a HiRDB server
with a version of 06-02 or later.

31 PDAUTORECONNECT Specifies whether the automatic reconnect
facility is to be used.

32 PDRCCOUNT Specifies the number of times the CONNECT
statement is to be retried by the automatic
reconnect facility.

No. Environment variable Function Category

6. Client Environment Setup

490

33 PDRCINTERVAL Specifies the retry interval for CONNECT
statement execution by the automatic
reconnect facility.

34 PDUAPENVFILE Specifies the UAP environment definition file
that defines the execution environment if the
UAP is to be executed in a separate
environment.

35 PDDBBUFLRU Specifies whether the LRU method is used for
caching in global buffer pages accessed by the
UAP.

36 PDHATRNQUEUING Specifies that the client is not using the
transaction queuing facility.

37 PDASTHOST Specifies the host name of HiRDB Control
Manager - Agent to be connected when the
UAP is executed.

Command
execution from a
UAP

38 PDASTPORT Specifies the port number of Control Manager
- Agent to be connected when the UAP is
executed.

39 PDSYSTEMID Specifies the HiRDB identifier of the HiRDB
server managed by HiRDB Control Manager -
Agent to be connected when the UAP is
executed.

40 PDASTUSER Specifies the user name and password for the
OS that will run commands.

41 PDCMDWAITTIME Specifies the maximum time the client is to
wait from the time it sends a request to HiRDB
Control Manager - Agent until a response is
returned.

42 PDCMDTRACE Specifies the size of the command trace file
when a file is output during UAP execution.

43 PDIPC Specifies the communication method between
processes.

Inter-process
memory
communication
facility

44 PDSENDMEMSIZE Specifies the data storage area size when the
client sends data to the server while the
inter-process memory communication facility
is used.

No. Environment variable Function Category

6. Client Environment Setup

491

45 PDRECVMEMSIZE Specifies the data storage area size when the
client receives data from the server while the
inter-process memory communication facility
is used.

46 PDCWAITTIME Specifies the maximum time that the HiRDB
client waits for a response to be returned after
issuing a request to the HiRDB server.

System monitoring

47 PDSWAITTIME Specifies the maximum time that the HiRDB
server waits for the next request from the
HiRDB client to arrive after returning a
response to the previous request from the
HiRDB client. This function monitors the time
during transaction processing.

48 PDSWATCHTIME Specifies the maximum time that the HiRDB
server waits for the next request from the
HiRDB client to arrive after returning a
response to the previous request from the
HiRDB client. This function monitors the time
outside transaction processing.

49 PDCWAITTIMEWRNPNT Specifies the output timing of the SQL runtime
warning information file when the SQL
runtime running output facility is used. The
output timing is specified as a percentage of
the maximum wait time of the HiRDB client
or as a time.

50 PDKALVL Specifies whether the facility that sends
packets regularly from the HiRDB client to the
HiRDB server is to be used.

51 PDKATIME Specifies the interval for sending packets
regularly from the HiRDB client to the HiRDB
server.

52 PDTIMEDOUTRETRY Specifies the number of times the connect()
system call is to be retried if an error occurs in
the connect() system call executed when the
HiRDB client connects with the HiRDB
server.

53 PDNBLOCKWAITTIME Specifies the connection establishment
monitoring time in nonblock mode when
completion of the connection between the
HiRDB server and client is monitored.

No. Environment variable Function Category

6. Client Environment Setup

492

54 PDCONNECTWAITTIME Specifies the maximum wait time that the
HiRDB client waits from a response from the
HiRDB server during connection with the
HiRDB server.

55 PDCLTPATH Specifies the storage directory for the SQL
trace file and error log file created by the
HiRDB client.

Trouble-shooting

56 PDSQLTRACE Specifies the size of the SQL trace file (in byte
units) into which the SQL trace of the UAP is
to be output.

57 PDUAPERLOG Specifies the size of the error log file (in byte
units) into which the error log of the UAP is to
be output.

58 PDERRSKIPCODE Specifies that a specific error log is not to be
output.

59 PDPRMTRC Specifies whether parameter information and
retrieval data is to be output to the SQL trace
information.

60 PDPRMTRCSIZE Specifies the maximum length of the
parameter information and retrieval data to be
output to the SQL trace information.

61 PDTRCMODE Specifies whether troubleshooting
information other than SQL trace information
is to be output.

62 PDUAPREPLVL Specifies output information for UAP
statistical reports.

63 PDREPPATH Specifies the output directory for UAP
statistical reports when these files are to be
created in a directory different from the one
specified by PDCLTPATH.

64 PDTRCPATH Specifies the storage directory for dynamic
SQL trace files.

65 PDSQLTRCOPENMODE Specifies the open mode for the SQL trace file
when PDREPPATH is specified.

66 PDSQLTEXTSIZE Specifies the size of the SQL statement to be
output to the SQL trace information.

67 PDSQLEXECTIME Specifies whether the SQL runtime is to be
output to the SQL trace information.

No. Environment variable Function Category

6. Client Environment Setup

493

68 PDRCTRACE Specifies the size of the file that outputs the
UAP reconnect trace.

69 PDWRTLNPATH Specifies the storage directory for files to
which value expression values of WRITE LINE
statements are to be output.

70 PDWRTLNFILSZ Specifies the maximum size of the files to
which value expression values of WRITE LINE
statements are to be output.

71 PDWRTLNCOMSZ Specifies the total size of the value expression
values in WRITE LINE statements.

72 PDUAPEXERLOGUSE Specifies whether the facility for output of
extended SQL error information is to be used.

73 PDUAPEXERLOGPRMSZ Specifies the maximum data length in the
parameter information to be output to the error
log file and the SQL error report when the
facility for output of extended SQL error
information is used.

74 PDVWOPTMODE Specifies whether or not the access path
information file is to be obtained.

Access path display
utility

75 PDTAAPINFPATH Specifies the output destination directory
when the access path information file is output
to the HiRDB client side. The file is not output
without this specification.

Access path
information file for
HiRDB SQL
Tuning Advisor

76 PDTAAPINFMODE Specifies the file name format of the access
path information file when it is output to the
HiRDB client side.

77 PDTAAPINFSIZE Specifies the file size of the access path
information file when it is output to the
HiRDB client side.

78 PDSTJTRNOUT Specifies whether UAP statistical information
is to be output to the client side.

Output unit of UAP
statistical
information

79 PDLOCKLIMIT Specifies the maximum number of lock
requests that a UAP can issue to one server.

Lock control

80 PDDLKPLIO Specifies the deadlock priority value of a UAP.

81 PDLOCKSKIP Specifies whether search using condition
evaluation with no lock is to be performed.

No. Environment variable Function Category

6. Client Environment Setup

494

82 PDFORUPDATEEXLOCK Specifies whether WITH EXCLUSIVE LOCK is
to be applied to the lock option of the SQL
statement in which the FOR UPDATE clause
was specified (or assumed).

83 PDISLLVL Specifies the data guarantee level for SQL
statements.

SQL-related

84 PDSQLOPTLVL Specifies the optimization method (SQL
optimization option) for determining the most
efficient access path in consideration of the
database status.

85 PDADDITIONALOPTLVL Specifies the optimization method (SQL
extension optimizing option) for determining
the most efficient access path in consideration
of the database status.

86 PDHASHTBLSIZE Specifies the hash table size to be used when
hash join or subquery hash execution is
applied in SQL optimization.

87 PDDFLNVAL When table data is to be fetched into an
embedded variable, specifies whether a
default value is to be set into the embedded
variable if the fetched value is a null value.

88 PDAGGR Specifies the maximum number of groups
allowed in each server so that the memory size
used in GROUP BY processing can be
determined.

89 PDCMMTBFDDL Specifies whether a transaction that has that
executed a data manipulation SQL statement
must execute commit processing
automatically before it executes a definition
SQL statement.

90 PDPRPCRCLS Specifies whether an open cursor is to be
closed automatically if the SQL identifier
being used by the open cursor is used again by
the PREPARE statement.

91 PDAUTOCONNECT Specifies whether autoconnection is to be
executed if an SQL statement is executed
while the client is not connected to HiRDB.

92 PDDDLDEAPRP Specifies whether the definition information
of a table being used by a closed holdable
cursor can be changed by another UAP
between transactions.

No. Environment variable Function Category

6. Client Environment Setup

495

93 PDCURSORLVL Specifies whether an open/close cursor
request is to be sent automatically to the
HiRDB server when a search is performed
using the cursor.

94 PDDELRSVWDFILE Specifies the name of the SQL reserved word
deletion file when the SQL reserved word
deletion file is used.

95 PDHJHASHINGMODE Specifies the hashing method when Apply
hash join, subquery hash execution is
selected as the SQL extension optimizing
option.

96 PDBLKF Specifies the number of rows to be sent by a
single transfer process when the HiRDB
server transfers search results to the HiRDB
client.

Block transfer
facility

97 PDBINARYBLKF Specifies whether the block transfer facility is
to be applied when a table having a selection
expression for BINARY-type data with a
defined length of 32,001 bytes or more is
searched.

98 PDBLKBUFFSIZE Specifies the size of the server-client
communication buffer used by the block
transfer facility.

99 PDNODELAYACK Specifies whether immediate
acknowledgement is to be used. This
environment variable is limited to the AIX 5L
version.

Use of immediate
acknowledgment
for HiRDB
communication

100 PDDBACCS Specifies the generation number of an
RDAREA if an RDAREA that is not the
current RDAREA is to be accessed while the
inner replica facility is being used.

Inner replica facility

101 PDDBORGUAP Specifies that the UAP is to be executed for the
original RDAREA for online reorganization
hold.

Updatable online
reorganization

102 PDSPACELVL Specifies the space conversion level for data
storage, comparison, and retrieval.

Space conversion
for data

103 PDCLTRDNODE Specifies the identifier of the XDM/RD E2
database to be connected when the XDM/RD
E2 connection facility is used.

XDM/RD E2
connection facility

No. Environment variable Function Category

6. Client Environment Setup

496

104 PDTP1SERVICE Specifies whether OpenTP1 service names are
to be reported to XDM/RD E2 when the
XDM/RD E2 connection facility is used.

105 PDRDCLTCODE Specifies the character code classification that
the client uses when the XDM/RD E2
connection facility is used.

106 PDCNSTRNTNAME Specifies the position of the constraint name
definition when a referential or check
constraint is defined.

Referential or check
constraint

107 PDBESCONHOLD Specifies whether the BES connection holding
facility is to be used.

BES connection
holding facility

108 PDBESCONHTI Specifies the BES connection holding period
when the BES connection holding facility is
used.

109 PDRDABLKF Specifies the number of rows to be sent in one
transfer when retrieval results are transferred
from a distributed server to a distributed client.

Distributed
database

110 PDODBSTATCACHE Specifies whether column information or
index information that is collected the first
time an ODBC function (SQLColumns() or
SQLStatistics()) is issued is to be cached.

ODBC functions

111 PDODBESCAPE Specifies whether the "&" ESCAPE character
is to be specified for the pattern character
string in a retrieval that uses a cataloging
ODBC function.

112 PDGDATAOPT Specifies that the SQLGetData function of
ODBC is to fetch data from columns, even if
the data has already been fetched from those
columns.

113 PDODBLOCATOR Specifies whether the locator facility is to be
used to partition and retrieve data when a
database access tool is used to retrieve
BLOB-type or BINARY-type column data. The
database access tools are the ODBC driver, the
OLE DB provider, and the HiRDB.Net data
provider.

114 PDODBSPLITSIZE Specifies the partition acquisition size when
PDODBLOCATOR=YES is specified.

115 PDODBCWRNSKIP Specifies whether warnings are to be skipped
when an ODBC connection is used.

No. Environment variable Function Category

6. Client Environment Setup

497

1 Environment variables in this category are specified only for clients that use an X/
Open-compliant API in an OLTP environment to access the HiRDB server. These
environment variables are invalid for any other clients, even if the variables are
specified.

For details about whether each environment variable is necessary, see 6.6.2
Specifications for using a UAP under OLTP as the client.
When the multi-connection facility is used, the values specified for the
environment variables become invalid, even if they are registered to the
environment variable group for each connection definition.

2 This environment variable is set for plug-ins. The client libraries do not check the
setting contents of this environment variable. Also, the information is not output to the

116 PDJETCOMPATIBLE Specifies whether the ODBC 3.0 driver is to be
operated in a Microsoft Jet database engine
compatible mode not based on the ODBC 3.0
specification.

117 PDPLGIXMK Specifies whether delayed batch creation of
plug-in indexes is to be used.

Plug-ins

118 PDPLUGINNSUB2 For details, see the manual for the target
plug-in.

119 PDPLGPFSZ Specifies the initial size of the index
information file for delayed batch creation of
plug-ins.

120 PDPLGPFSZEXP Specifies the extension size of the index
information file for delayed batch creation of
plug-ins.

121 PDJDBFILEDIR Specifies the file output destination of the
Exception trace log using the Type4 JDBC
driver.

JDBC driver

122 PDJDBFILEOUTNUM Specifies the number of outputs to the
Exception trace log file using the Type4 JDBC
driver.

123 PDJDBONMEMNUM Specifies the number of acquired information
items in the Exception trace log memory using
the Type4 JDBC driver.

124 PDJDBTRACELEVEL Specifies the trace acquisition level of the
Exception trace log using the Type4 JDBC
driver.

No. Environment variable Function Category

6. Client Environment Setup

498

SQL trace.
3 For the environment variables related to system configuration, specify the necessary
information when the client connects with the HiRDB server. Whether or not these
environment variables can be specified depends on the connection format with the
HiRDB server. For details about connection formats with the HiRDB server, see 6.6.5
Environment variables and connection types for HiRDB servers.

6.6.4 Environment definition information
(1) PDHOST=HiRDB-server-host-name[,secondary-system-HiRDB-server-host-n
ame]

 <identifier> ((up to 511 bytes))
This environment variable specifies the host name of the HiRDB server to be
connected.
For HiRDB/Single Server, this environment variable specifies the host name of the
server machine on which the single server is installed. For HiRDB/Parallel Server, this
environment variable specifies the host name of the server machine on which the
system manager is installed. If PDFESHOST is specified, the PDFESHOST host name
can be specified. When the PDFESHOST host name is specified, the HiRDB client can
be connected to the HiRDB server even if a failure occurs in the system manager unit.
The FQDN or the IP address can also be specified instead of the host name. The
specification methods are shown below.
Host name

The host name that was specified in the pdunit -x operand of the system
common definition must be specified.
Example:
PDHOST=host1

FQDN
The Free Qualified Domain Name (FQDN) connects the host name and domain
name of the HiRDB server with a period.
Example:
PDHOST=host1.soft.hitachi.co.jp

IP address
The IP address is specified with a decimal number that has each group of 3 digits
separated with a period.
Example:
PDHOST=172.18.131.34

6. Client Environment Setup

499

System switchover with IP address inheritance
• For the UNIX version

If the IP address is to be inherited, specify the host name of the primary system.
• For the Windows version

If the IP address is to be inherited, specify the virtual network name
registered for the MSCS network name. For details about the virtual
network, see the HiRDB Version 8 System Operation Guide.

System switchover without IP address inheritance
Specify the host names of both the primary system and the secondary system. If
you specify only the host name of the primary system, you must change the
specification of this environment variable after system switching occurs. After
system switching, change the host name to that of the new primary system.

When an X/Open-compliant UAP under OLTP is the client and
HiRDB_PDHOST is specified in the system environment definition

The HiRDB_PDHOST specification takes precedence. The PDHOST setting is
replaced with the value specified in HiRDB_PDHOST.

Rules for FQDN specification
1. Do not specify an FQDN if the version of the HiRDB server to be connected

is earlier than 05-03. If an FQDN is specified and there is a server process
remaining after the maximum wait time (PDCWAITTIME) of the client
elapses, the server process cannot be cancelled by sending a cancel process
to the HiRDB server.

(2) PDNAMEPORT=HiRDB-server-port-number
 <unsigned integer> ((5001-65535)) <<20000>>

This environment variable specifies the port number of the HiRDB server to be
connected. Specify the HiRDB server port number to be accessed in the server
machine of the host specified in PDHOST.
If there are multiple HiRDBs, the port number differs for each HiRDB server.
However, specify the port number of the HiRDB server to be accessed.
For details about the pd_name_port operand, see the manual HiRDB Version 8
System Definition.
When an X/Open-compliant UAP under OLTP is the client and
HiRDB_PDNAMEPORT is specified in the system environment definition

The specification of HiRDB_PDNAMEPORT takes precedence. The setting of
PDNAMEPORT is replaced with the value specified in HiRDB_PDNAMEPORT.

6. Client Environment Setup

500

(3) PDFESHOST=front-end-server-host-name[:port-number-of-unit-containing-fr
ont-end-server][,secondary-system-front-end-server-host-name][:port-number-
of-unit-containing-secondary-system-front-end-server]

 <identifier> ((up to 523 bytes))
This environment variable is related to the HiRDB/Parallel Server.
If there are multiple front-end servers, this environment variable specifies the host
name of the front-end server for the HiRDB server to be connected. If the client is to
be connected to the host with a port number that is specified with -p in the pdunit
system definition (when the system switchover facility is used), that port number must
be specified.
The front-end servers determined by the system manager include
recovery-unnecessary front-end servers.
The FQDN or the IP address can also be specified instead of the host name.
Host name

The host name that was specified in the pdunit -x operand of the system
common definition must be specified.
Example:
PDFESHOST=host1

FQDN
The Free Qualified Domain Name (FQDN) connects the host name and domain
name of the HiRDB server with a period.
Example:
PDFESHOST=host1.soft.hitachi.co.jp

IP address
The IP address is specified with a decimal number that has each group of 3 digits
separated with a period.
Example:
PDFESHOST=172.18.131.34

System switchover with IP address inheritance
• For the UNIX version

If the IP address is to be inherited, specify the host name of the primary system.
• For the Windows version

If the IP address is to be inherited, specify the virtual network name
registered for the MSCS network name. For details about the virtual

6. Client Environment Setup

501

network, see the HiRDB Version 8 System Operation Guide.
System switchover without IP address inheritance

Specify the host names of both the primary system and the secondary system. If
you specify only the host name of the primary system, you must change the
specification of this environment variable after system switching occurs. After
system switching, change the host name to that of the new primary system.

Rules for FQDN specification
1. Do not specify an FQDN if the version of the HiRDB server to be connected

is earlier than 05-03.
2. In some cases, after the maximum client wait time (PDCWAITTIME) elapses,

the server process cannot be cancelled and thus remains.
Rules for port number omission

If the port number is omitted, the port number that was specified with
PDNAMEPORT is used as the default value. The port number that was specified
with PDNAMEPORT is also used as the default value if the port number of the host
containing the secondary system front-end server is omitted.

Relationship with other environment variables
1. This environment variable must be specified for multiple front-end servers

when the front-end server to be connected is selected by the client user or
when PDSERVICEPORT is specified.

2. This environment variable should be specified with PDSERVICEGRP.
Notes

1. If a program that uses the X/Open XA interface connects to a
recovery-unnecessary front-end server, that program cannot reference or
update the database. In this case, specify PDFESHOST and PDSERVICEGRP,
and be sure to connect to a front-end server that is not a
recovery-unnecessary front-end server.

2. If there are multiple front-end servers, specify equivalent host names in
PDFESHOST so that the load is not concentrated on the connected front-end
server.

3. The host name specified in PDFESHOST can also be specified in PDHOST.
This allows the HiRDB client to be connected to the HiRDB server even if
an error occurs in the system manager unit.

4. If reflection processing is performed using the two-phase commit method
(fxa_sqle is specified for the reflection system definition
commitment_method operand) as the synchronization point processing
method in the reflected side Datareplicator, reflection processing fails if a

6. Client Environment Setup

502

recovery-unnecessary front-end server in the reflected-side HiRDB is
connected. In this case, specify PDFESHOST and PDSERVICEGRP, and be
sure to connect to a front-end server that is not a recovery-unnecessary
front-end server.

(4) PDSERVICEGRP=server-name
 <character string> ((up to 30 bytes))

This environment variable specifies the single-server name or front-end server name
of the HiRDB server to be connected.
If multiple front-end servers are used with a HiRDB/Parallel Server, this environment
variable specifies the server name of the front-end server to be connected.
Relationship with other environment variables

1. The time required to connect to the HiRDB server can be shortened by
specifying this environment variable simultaneously with PDSERVICEPORT.

2. When using a HiRDB/Parallel Server, also specify PDFESHOST.
Note

1. If a program that uses the X/Open XA interface connects to a
recovery-unnecessary front-end server, that program cannot reference or
update the database. In this case, specify PDSERVICEGRP and PDFESHOST,
and be sure to connect to a front-end server that is not a
recovery-unnecessary front-end server.

2. If reflection processing is performed using the two-phase commit method
(fxa_sqle is specified for the reflection system definition
commitment_method operand) as the synchronization point processing
method in the reflected side Datareplicator, reflection processing fails if a
recovery-unnecessary front-end server in the reflected-side HiRDB is
connected. In this case, specify PDFESHOST and PDSERVICEGRP, and be
sure to connect to a front-end server that is not a recovery-unnecessary
front-end server.

(5) PDSRVTYPE={WS|PC}
This environment variable specifies the server type of the HiRDB server to be
connected.
WS

Specify this server type if the HiRDB server is the HP-UX, Solaris, or AIX 5L
version.

PC
Specify this server type if the HiRDB server is the Linux or Windows version.

6. Client Environment Setup

503

(6) PDSERVICEPORT=high-speed-connection-port-number[,secondary-system-
high-speed-connection-port-number]

 <unsigned integer> ((5001-65535))
This environment variable specifies the port number for high-speed connection.
Specify the value that was specified for the pd_service_port operand in the system
definition of the HiRDB server to be connected.
If multiple front-end servers are used, the high-speed connection port number of the
front-end server to be connected should be specified. For details about the
pd_service_port operand, see the manual HiRDB Version 8 System Definition.
Benefits

Specifying this operand can shorten the amount of time required to connect to the
HiRDB server.

Relationship with other environment variables
When this operand is specified, the following operands must also be specified:
HiRDB/Single Server

• PDHOST
• PDNAMEPORT
• PDSERVICEGRP

HiRDB/Parallel Server
• PDHOST
• PDNAMEPORT
• PDFESHOST
• PDSERVICEGRP

Note
If you use the system switchover facility for mutual system switchover and
specify different port numbers for each system in the pd_service_port
operand of the system definitions, also specify a high-speed connection port
number for the secondary system.

(7) PDFESGRP=FES-group[,switchover-FES-group[,switchover-FES-group]...]
 <character string> ((up to 1024 bytes))

This environment variable can be specified when HiRDB/Parallel Server is used and
the pd_service_port operand is specified in the system definition.
To set up a high-speed connection, specify the FES group to be connected. In a

6. Client Environment Setup

504

configuration with multiple front-end servers, specify the FES group of the connection
destination, and the switchover FES group for switching the connection if an error
occurs in the first FES group.
The information to be specified for FES-group and switchover-FES-group is described
below.
FES-group

A FES group collectively specifies all information for a high-speed connection
destination (PDFESHOST, PDSERVICEGRP, and PDSERVICEPORT). A
specification example is shown below.

host1:fes1:20001

switchover-FES-group
In a configuration with multiple front-end servers, a switchover FES group is a
FES group to which the connection can be switched over if a failure occurs in the
front-end server of the connected FES group. If an error occurs when a switchover
FES group is specified, the connection switches to the switchover FES group. If
multiple switchover FES groups are specified, the connection is switched over
according to the sequence in which the groups are specified.
A switchover FES group is specified in the same way as a FES group.

Notes
1. When this environment variable is specified, the specifications for PDFESHOST,

PDSERVICEGRP, and PDSERVICEPORT are ignored.
2. When a switchover FES group is specified, the number of connections for the

switchover FES group may increase temporarily because the connection
destination is switched if a server error occurs or the number of connected users
is exceeded. You must therefore check and, if necessary, revise the value of the
pd_max_users operand for the switchover FES group.

3. When switchover FES groups are specified, it may take a while for HiRDB to
return an error to the UAP if errors occur in all specified switchover FES groups
or if the number of connected users is exceeded.

Usage example
When only one FES group is specified

6. Client Environment Setup

505

Explanation
If only one FES group is specified, the client is connected only to front-end
server fes1 of host host1.

When one FES group and one switchover FES group are specified

Explanation
If an error occurs in the connection of 1, the client is connected with 2. If an
error occurs in 2 as well, HiRDB returns an error to the UAP.

When one FES group and multiple switchover FES groups are specified

6. Client Environment Setup

506

Explanation
If an error occurs in the connection of 1, Client 1 is connected with 2. If
additional connection errors occur, Client 1 is connected with 3 and then 4.
If errors occur in all connections, HiRDB returns an error to the UAP.

(8) PDCLTRCVPORT=client-receive-port-number
 <unsigned integer> ((0, 5001-65535, 5001-65535, 5001-65535)) <<0>>

This environment variable specifies the receive port number or range of receive port
numbers to be used when the HiRDB client communicates with the HiRDB server.
If this environment variable is omitted, the operating system automatically specifies
the receive port number or range of receive port numbers. Therefore, this environment
variable normally does not have to be specified.
Specification method

Specification examples of the receive port number are shown as follows.

6. Client Environment Setup

507

• Specifying one port number:
10000-10000 or 10000

• Specifying a range of port numbers:
10000-10500

If 0 is specified, HiRDB assumes that this environment variable has not been
specified.

Benefits
If a firewall has been set between the HiRDB server and the HiRDB client, and
the receive port numbers that can pass through the firewall are limited, specifying
this environment variable allows communications to pass through the firewall.

Notes
1. If a range of receive port numbers is specified in this environment variable,

the HiRDB client automatically assigns an unused port number from the
specified range. If there is no unused port number in the specified range, an
error occurs.

2. The HiRDB client uses one port number for one connection to the HiRDB
server. Consequently, one UAP process uses multiple port numbers in the
following cases:

 The ODBC uses multiple connections.
 The multi-connection facility is used.

3. When multiple UAPs are executed concurrently, one port number can be
used only by one UAP process. Therefore, if a range that includes the same
port numbers is specified for multiple UAP processes to be executed
concurrently, contention may occur when the port numbers are assigned. To
ensure that the port numbers do not run out in this case, specify a range that
includes more port numbers than the largest number of port numbers to be
used.

4. Specify receive port numbers that are not in the range of port numbers that
the operating system assigns automatically. The range of port numbers that
the operating system assigns automatically differs for each operating system.

5. If the ODBC is connected through Microsoft Jet, multiple connections with
the HiRDB server are established automatically.

6. When specifying a range that includes 10 or more port numbers, make sure
that the range includes about 20% more port numbers than will actually be
used. If this margin is not included, the efficiency of the port number search
process drops.

6. Client Environment Setup

508

7. Any port number that is being used by other programs cannot be used by the
HiRDB client.

8. Port numbers being used by the HiRDB client cannot be used by other
programs. If a service uses a fixed port number found in the range specified
in this environment variable, there may be times when that service cannot be
started.

9. Manage the programs found inside the firewall so that programs other than
the HiRDB client do not improperly use port numbers that have been set, so
that the HiRDB client can communicate through the firewall.

(9) PDCLTRCVADDR={client-IP-address|client-host-name}
 <unsigned integer> or <identifier> ((up to 256 bytes))

When multiple communication paths are set to the host of an HiRDB client and you
wish to identify a communication path for communicating with the HiRDB server, this
environment variable specifies the IP address, FQDN, or host name for that
communication path. The specification methods are shown below.
IP address:

Specify a decimal address, using a period to delimit each byte.
Example:
 PDCLTRCVADDR=172.18.131.34

FQDN:

The FQDN is comprised of the host name and domain name of a HiRDB server
separated by periods.
Example:
 PDCLTRCVADDR=host1.soft.hitachi.co.jp

Notes
1. The default value is the IP address corresponding to the standard host name

of the client host.
2. If an invalid IP address or host name is specified in this environment

variable, the HiRDB client cannot receive a response from the HiRDB server
during connect processing to the HiRDB server. Therefore, an error
(SQLCODE -732) occurs after the five-minute timer monitoring elapses.

3. If PDIPC=MEMORY is specified, the PDCLTRCVADDR specification is ignored.
4. If 1 is specified in the pd_change_clt_ipaddr operand of the system

definitions, the PDCLTRCVADDR specification is ignored.

6. Client Environment Setup

509

(10) PDTMID=OLTP-identifier
 <identifier> ((4 characters))

This environment variable specifies a unique 4-character identifier of the applicable
OLTP when multiple OLTPs use an X/Open-compliant API to access a HiRDB server.
If one of the following conditions applies to the specification of this environment
variable, the HiRDB server cannot identify the OLTP to which a transaction belongs.
Therefore, if a system failure or a transaction error occurs in an OLTP, the transaction
completion timing is not synchronized.

• This environment variable is omitted in an operating mode in which multiple
OLTPs access the HiRDB server.

• The identifiers assigned to the OLTPs are not unique in an operating mode in
which multiple OLTPs access the HiRDB server.

• Multiple OLTP identifiers are assigned to the same OLTP.
When an X/Open-compliant UAP under OLTP is the client and HiRDB
_PDTMID is specified in the system environment

The HiRDB_PDTMID specification takes precedence. The PDTMID setting is
replaced with the value specified in HiRDB_PDTMID.

(11) PDXAMODE={0|1}
This environment variable specifies whether the transaction transfer facility is to be
used when linking with a UAP that uses an X/Open-compliant API under OLTP.
0: Do not use the transaction transfer facility.
1: Use the transaction transfer facility.
This environment variable should be specified in accordance with instructions
provided by the HiRDB administrator. For details about the transaction transfer
facility, see the HiRDB Version 8 Installation and Design Guide.
When an X/Open-compliant UAP under OLTP is the client and
HiRDB_PDXAMODE is specified in the system environment definition

The HiRDB_PDXAMODE specification takes precedence. The PDXAMODE setting is
replaced with the value specified in HiRDB_PDXAMODE.

When the client is linked with OpenTP1
The trnstring operand of OpenTP1 and the specification of the DXAMODE
setting must match.

When the client is linked with TPBroker
At the completion of a TPBroker transaction, a transaction completion process
that is different from the one used by the UAP process is used. Therefore, 1 must

6. Client Environment Setup

510

be specified in PDXAMODE when the client is linked with TPBroker. If 0 is
specified, UAP process transactions cannot be completed.

When the client is linked with TUXEDO
At the completion of a TUXEDO global transaction, a transaction manager server
(TMS) that is different from the one used by the UAP process is used. Therefore,
1 must be specified in PDXAMODE when the client is linked with TPBroker. If 0 is
specified, UAP process transactions cannot be completed.

When the client is linked with WebLogic Server
Specify 1 in PDXAMODE. If PDXAMODE is omitted or if 0 is specified, UAP process
transactions cannot be completed.

When the client is linked with TP1/EE (limited to the UNIX version)
Specify 0 in PDXAMODE. If PDXAMODE is omitted or if 1 is specified, transactions
sometimes cannot be completed.

(12) PDTXACANUM=maximum-number-of-concurrent-transaction-executions-p
er-process

 <unsigned integer> ((1-2147483647)) <<20>>
This environment variable specifies the maximum number of transactions that can be
executed simultaneously per process when a UAP that uses an X/Open-compliant API
supporting multi-thread or X/Open-compliant API using multi-connection facility
accesses HiRDB.
Estimation method

Estimate the value to be specified for this environment variable based on the
following formula:
specification-value = (number-of-transactions-that-can-occur-in-target-process)

 (number-of-HiRDB-servers-that-target-process-can-access)
(13) PDXARCVWTIME=transaction-recovery-wait-time

 <unsigned integer> ((0-270)) <<2>> (seconds)
This environment variable specifies how long to wait before sending the next
connection request to HiRDB, when OpenTP1 that accesses HiRDB using an X/
Open-compliant API cannot connect to HiRDB during a transaction recovery process
or a resource manager monitoring process, or when HiRDB cannot recover a
transaction.
If 0 is specified, a connection request is issued for each HiRDB transaction recovery
instruction.
Estimation method

6. Client Environment Setup

511

Estimate the specification value from the following calculation equation:

specification-value = a b (c - d e)

a: 270
b: Total number of OpenTP1 transaction recovery processes to be connected to
HiRDB
c: Total number of automatic allocation port numbers on the HiRDB single server
or the server machine containing the system manager
d: Number of port numbers used during peak transaction times on the HiRDB
single server or the server machine containing the system manager
e: If the system switchover facility is being used, use 2. If not, use 1.

Notes
1. If you specify a small time value in PDXARCVWTIME, and several transactions

are stopped in OpenTP1, a port number shortage may occur on the HiRDB
single server or the server machine containing the system manager.
Therefore, if the time calculated with the estimation method is larger than the
default value, you should specify the time calculated with the estimation
method.

2. If startup of the HiRDB single server or system manager unit is completed
immediately after the OpenTP1 transaction recovery process begins the wait
time specified in PDXARCVWTIME, recovery of the transaction connected to
HiRDB may take longer to complete.

(14) PDXATRCFILEMODE={LUMP|SEPARATE}
This environment variable specifies the format of trace file names when the connection
mode uses an X/Open-compliant API. If the connection mode does not use an X/
Open-compliant API, the PDXATRCFILEMODE specification is ignored.
LUMP

Output the trace files without adding an execution process ID to each trace file
name.
The LUMP specification is recommended if the UAP is non-resident and is
executed repeatedly and the process ID changes with each execution. By
specifying LUMP, you can prevent the number of trace files from increasing each
time the non-resident UAP is executed and thus causing unstable operation of the
operating system and other programs.
When LUMP is specified, the output destination for trace information becomes

6. Client Environment Setup

512

limited, and the trace output size may need to be increased. In addition, the
processing time may increase because the trace output competes with the output
of other processes.

SEPARATE
Output the trace files by adding an execution process ID to each trace file name.
The SEPARATE specification is recommended if the UAP is a resident process.

(15) HiRDB_PDHOST=HiRDB-server-host-name[,secondary-system-HiRDB-serv
er-host-name]

 <identifier>
This environment variable specifies the host name of the HiRDB server to be
connected. The value specified in this environment value is replaced with the PDHOST
setting.
For a HiRDB/Single Server, this environment variable specifies the host name of the
server machine in which the Single Server is installed. For a HiRDB/Parallel Server,
this environment variable specifies the host name of the server machine in which the
system manager is installed.
Other than the host name, you can specify the FQDN or the IP address. The
specification methods are shown below.
Host name

The host name that was specified in the pdunit -x operand of the system
common definition must be specified.
Example:
PDHOST=host1

FQDN:

The FQDN is comprised of the host name and domain name of a HiRDB server
separated by periods.
Example:
 PDHOST=host1.soft.hitachi.co.jp

IP address
The IP address is specified with a decimal number that has each byte separated
with a period.
Example:
PDHOST=172.18.131.34

System switchover with IP address inheritance

6. Client Environment Setup

513

• For the UNIX version
If the IP address is to be inherited, specify the host name of the primary system.

• For the Windows version
When the IP address is inherited, specifies a virtual network name registered
for the MSCS network name. For details about the virtual network, see the
HiRDB Version 8 System Operation Guide.

System switchover without IP address inheritance
Specify the host names of both the primary system and the secondary system. If
you specify only the host name of the primary system, you must change the
specification of this environment variable after system switching occurs. After
system switching, change the host name to that of the new primary system.

(16) HiRDB_PDNAMEPORT=HiRDB-server-port-number
 <unsigned integer> ((5001-65535))

This environment variable specifies the port number of the HiRDB server. The port
number must be the value that was specified in pd_name_port of the system
definition for the HiRDB server to be connected. The value specified in this
environment variable is replaced by the PDNAMEPORT setting.
For multiple HiRDBs, the port number differs for each HiRDB server, so you must
specify the port number of the HiRDB server to be connected.
For details about pd_name_port, see the manual HiRDB Version 8 System Definition.

(17) HiRDB_PDTMID=OLTP-identifier
 <integer> ((4 characters))

This environment variable specifies a unique identifier for the applicable OLTP when
multiple OLTPs use an X/Open-compliant API to access a HiRDB server. The value
specified in this environment variable is replaced by the PDTMID setting.
If one of the following conditions applies to the specification of this environment
variable, the server cannot identify the OLTP to which a transaction belongs.
Therefore, if a system failure or transaction error occurs in an OLTP, the transaction
conclusion timing is not synchronized.

• This environment variable and the PDTMID specification are omitted in an
operating mode in which multiple OLTPs access the HiRDB server.

• The identifiers assigned to the OLTPs are not unique in an operating mode in
which multiple OLTPs access the HiRDB server.

(18) HiRDB_PDXAMODE={0|1}
This environment variable specifies whether or not the transaction transfer facility is

6. Client Environment Setup

514

used when a UAP that uses an X/Open-compliant API under OLTP is being used as
the client. The value specified in this environment variable is replaced with the
PDXAMODE setting.
0: Do not use the transaction transfer facility.
1: Use the transaction transfer facility.
This operand should be specified in accordance with instructions provided by the
HiRDB administrator. For details about the transaction transfer facility, see the HiRDB
Version 8 Installation and Design Guide.

(19) PDUSER=authorization-identifier[/password]
 <<current user's name without password>>

This environment variable cannot be omitted in the Windows environment. It can be
omitted in the UNIX environment.
This environment variable specifies the authorization identifier and password in the
format authorization-identifier/password. If specification of a password is not
necessary (when setup is for users who do not have passwords), the password can be
omitted.
Regardless of whether the specification uses upper case or lower case characters, the
password is handled as upper case. However, if lower-case characters are enclosed in
quotation marks, the password is handled as lower-case characters.
Note

• When you use OpenTP1, do not register PDUSER as a system environment
variable. If you do, abort code psti0rf will be output when OpenTP1
starts, and HiRDB will quit.

Notes
1. When a UAP under OpenTP1 is used as the client, specify the authorization

identifier and password in the format 'authorization-identifier/password'.
If you wish to use lower-case alphabetic characters for the authorization
identifier and password, use the format '"authorization-identifier"/
"password"'.

2. When you omit the password and specify only the authorization identifier,
entry of a password may be requested, depending on the utility. In such a
case, use the format authorization-identifier/password to specify a character
string for the password. If the command is executed from the UAP (COMMAND
EXECUTE is executed), the password cannot be omitted.

3. If the directory server linkage facility is used, the directory server performs
user ID and password management and user authentication when HiRDB is
connected (HiRDB does not perform these tasks). Therefore, you must

6. Client Environment Setup

515

specify the user ID and password registered in the directory server. If you
specify a user ID and password that are not registered in the directory server
and then execute a utility, an error will occur during user authentication.

(20) PDCLTAPNAME=identification-name-of-UAP-to-be-executed
 <character string> ((30 characters)) <<Unknown>>

This environment variable specifies identification information about the UAP that will
access the HiRDB system (that is, a UAP identifier). This name is used to identify the
UAP being executed.
The name specified in this environment variable is displayed as the UAP name in the
following information:

• Display result of the pdls command
• SQL trace file
• Connection user information file (%PDDIR%\spool\cnctusrinf)

Note
• If non-alphanumeric characters are specified in the UAP identification name,

the pdcancel command may not be executed. For this reason, only
alphanumeric characters should be specified for name.

• Do not use the following character strings in the UAP identification names:

 Character string that begins with pd*

 Character string that begins with hds
 Character string that begins with 0

* If a character string that begins with pd is specified in the identification name of
a UAP, that UAP may not be monitored by the skipped effective synchronization
point dump monitoring facility.

(21) PDCLTLANG={SJIS|CHINESE|UJIS|C}
This environment variable specifies the character code classification to be used in the
UAPs to be processed by the preprocessor. For the Windows version, only SJIS can be
specified, and SJIS is assumed when this environment variable is omitted.
SJIS

ja_JP.SJIS (ja_JP or ja_JP.PCK) is set as the character code classification.
For Linux, use PDLANG to set SJIS.

CHINESE
chinese_s is set as the character code classification.

6. Client Environment Setup

516

UJIS
ja_JP.EUC (ja_JP.eucJP or ja) is set as the character code classification.

C
Single-byte character codes are set as the character code classification.

During UAP preprocessing, the character code classification is determined as shown
in the following table.

* If a character code was set in the LANG environment variable during preprocessing,
that character code is assumed.
The following table shows whether connection is possible based on the character code
classification combination between the server and the client.

C: Can be connected.

PDCLTLANG Client operating system

HP-UX Solaris AIX 5L Linux Windows

SJIS ja_JP.SJIS ja_JP.PCK ja_JP Error ja_JP.SJI
S

CHINESE chinese-s chinese-s chinese-s chinese
-s

EUC
Chinese
character
code
(GB2312)

UJIS ja_JP.eucJP ja ja_JP ja_JP.e
ucJP

Error

C C C C C C

No setting* ja_JP.SJIS ja ja_JP ja ja_JP.SJI
S

Other Error Error Error Error Error

Character code classification of client1 Character code classification of server

SJIS CHINESE UJIS C

SJIS C

CHINESE C

UJIS C

C C2 C2 C

6. Client Environment Setup

517

: Cannot be connected.
1 A Windows client can connect with any character code classification used in a server.
A VOS3 system client can connect with the server when the character code
classification in the server is SJIS.
2 Connection is possible when the server is set to the default character code
classification. For Solaris and Linux, the default character code classification is UJIS.
For other operating systems, the default character code classification is SJIS.

(22) PDLANG={UTF-8|SJIS|CHINESE|ANY}
This environment variable is not valid in the Windows environment.
This environment variable specifies that the character code classification for UAP
execution is Unicode (UTF-8) or the EUC Chinese character code. In Linux, this
environment variable specifies SJIS if SJIS is to be used. When this environment
variable is omitted, the specification value of the LANG environment variable is
assumed.
When ANY is specified, the client can connect to a server that uses any character codes.
However, the client (application) needs to be aware of the character codes used by the
connected server for data operations and creation of SQL statements.

(23) PDDBLOG={ALL|NO}
This environment variable specifies whether a database update log is to be collected
when UAPs are executed.
ALL

Execute UAPs in the log collection mode.
When ALL is specified, the error correction operation becomes simple, but a
significant amount of processing time is required when a large volume of data is
updated.

NO
Execute UAPs in the no-log mode.
If a UAP terminates abnormally during execution, the database updates
performed by the transaction cannot be recovered. The NO option reduces
processing time to the extent that no time is spent on collecting a database update
log. However, backups must be made before and after UAP execution, and
approval to specify NO must be obtained from the HiRDB administrator.
For details about how to execute UAPs in the no-log mode, see the HiRDB
Version 8 System Operation Guide.

The following log information is collected regardless of the specification of this
environment variable:

6. Client Environment Setup

518

• Log information about updates to the master directory, data directory, and data
dictionary RDAREAs

• Log information about updates to user RDAREA definition information
In a distributed database environment, the system collects a log of all database updates,
regardless of how this environment variable is specified at the server.

(24) PDEXWARN={YES|NO}
This environment variable specifies whether return codes with warnings are to be
accepted from the server.
YES: Accept return codes with warnings.
NO: Do not accept return codes with warnings.
When YES is specified for this environment variable, the error decision method must
be changed for UAPs (including stored procedures) that process all SQLCODEs other
than 0 and +100 as errors. For details about error decision methods, see 3.6 SQL error
identification and corrective measures.

(25) PDSUBSTRLEN={3|4|5|6}
This environment variable specifies the maximum number of bytes used to represent
one character. This environment variable is valid only when the character code
classification is Unicode (UTF-8); it affects the length of the SUBSTR scalar function.
For details about SUBSTR, see the manual HiRDB Version 8 SQL Reference.
Relationship with system definition

If this environment variable is omitted, the setting for the pd_substr_length
operand of the system common definition is assumed.

Note
For details about when you specify this environment variable, see the
pd_substr_length operand in the manual HiRDB Version 8 SQL Reference.

(26) PDCLTCNVMODE={AUTO|NOUSE|UJIS|UJIS2|UTF8|UTF8MS|UTF8_TXT|UT
F8_EX|UTF8_EX2|UTF8MS_TXT|UCS2_UJIS|UCS2_UTF8}

This environment variable specifies how character codes are to be converted when the
character code classifications of the HiRDB server and the HiRDB client are different.
Character code conversion can be performed only when the HiRDB client uses Shift
JIS kanji codes or UCS-2, and the HiRDB server uses EUC Japanese kanji codes or
Unicodes.
AUTO

The HiRDB client automatically checks the character code classification used in
the HiRDB server and converts the character codes if possible. Character code
conversion can be applied when the HiRDB client uses shift JIS kanji codes and

6. Client Environment Setup

519

the HiRDB server uses EUC Japanese kanji codes or Unicodes. When AUTO is
specified, NOUSE, UJIS or UTF8 is set as the specification value.

NOUSE
Character code conversion is not used. Data is transferred without execution of
character code conversion.

UJIS
The HiRDB client assumes that the HiRDB server uses EUC Japanese kanji
codes, and converts character codes without checking what is used in the HiRDB
server. The HiRDB client must be using shift JIS kanji codes. If the HiRDB client
accepts data of variable-length character string types (VARCHAR, MVARCHAR, and
NVARCHAR), it uses the number of spaces equivalent to the SQLLEN value to clear
the SQLDATA area indicated by the SQL descriptor area.

UJIS2
The processing is the same as for UJIS. However, if the HiRDB client accepts
data of the variable-length character string types (VARCHAR, MVARCHAR, and
NVARCHAR), it does not use spaces to clear the SQLDATA area indicated by the
SQL descriptor area.

UTF8
The HiRDB client uses shift JIS kanji codes and converts characters codes by
assuming that the HiRDB server uses Unicodes(UTF-8). However, if the HiRDB
client accepts data of variable-length character string types (VARCHAR and
MVARCHAR), it uses the number of spaces equivalent to the SQLLEN value to clear
the SQLDATA area indicated by the SQL descriptor area.

UTF8MS
The processing is the same as for UTF8. However, the HiRDB server uses
MS-Unicodes, and the HiRDB client uses the Windows encoding character set to
convert character codes.

UTF8_TXT
The processing is the same as for UTF8. However, the HiRDB client does not
convert character codes for data of fixed-length character string types (CHAR and
MCHAR) or variable-length character string types (VARCHAR and MVARCHAR).

UTF8_EX
Processing is the same as for UTF8. However, when the HiRDB client receives a
backslash (0x5C) from the HiRDB server, it does not convert the character code,
but handles it as a SJIS backslash (0x5C). If the HiRDB client receives a Unicode
(UTF-8) backslash (0xC2A5), it converts it to a SJIS backslash (0x5C), in the
same way as when UTF8 is specified.

6. Client Environment Setup

520

When a backslash (0x5C) is entered at the HiRDB client, the character code is not
converted and 0x5C is passed to the HiRDB server.

UTF8_EX2
The processing is the same as for UTF8_EX. However, when a SJIS backslash
(0x5C) is entered at the HiRDB client, it is converted to a Unicode (UTF-8)
backslash (0xC2A5), in the same way as when UTF8 is specified, and it is passed
to the HiRDB server.

UTF8MS_TXT
The processing is the same as for UTF8MS. However, the HiRDB client does not
convert character codes for data of fixed-length character string types (CHAR and
MCHAR) or variable-length character string types (VARCHAR and MVARCHAR).

UCS2_UJIS
To convert character codes, the HiRDB client uses UCS-2 and the HiRDB server
uses EUC Japanese kanji codes. If the HiRDB server uses character codes other
than EUC Japanese kanji codes, an error is generated when the HiRDB server is
connected. You can specify UCS2_UJIS only when accessing the system from a
Unicode-compliant ODBC 3.0 driver or from version 02-06 or later of HiRDB
SQL Executer.

UCS2_UTF8:
To convert character codes, the HiRDB client uses UCS-2 and the HiRDB server
uses Unicodes (UTF-8). If the HiRDB server uses character codes other than
Unicodes (UTF-8), an error is generated when the HiRDB server is connected.
You can specify UCS2_UTF8 only when accessing the system from a
Unicode-compliant ODBC 3.0 driver or from version 02-06 or later of HiRDB
SQL Executer.
Note that the converted character code range is that of Unicodes (UTF-16),
including surrogate pairs.

AUTO is specified when the character code classification of the HiRDB server cannot
be identified. UJIS is specified when the character code classification of the HiRDB
server can be identified as EUC Japanese kanji codes.
The following character strings are converted:

• Character strings in SQL statements
• Data codes in the SQL descriptor area that are CHAR, VARCHAR, NCHAR,

NVARCHAR, MCHAR, or MVARCHAR character strings
• Column names stored in the Column Name Descriptor Area (SQLCNDA)
• Error messages stored in the SQL Communications Area

6. Client Environment Setup

521

• Data type names stored in the Type Name Descriptor Area (SQLTNDA)
The following table shows the PDCLTCNVMODE settings in terms of the combination of
HiRDB client and HiRDB server character codes.

Legend:
Not needed: Cannot be specified because conversion is not possible.
No conversion: Does not need to be specified because code conversion is not
necessary.

Tables 6-26 and 6-27 show the differences in character code conversions when UTF8,
UTF8_EX, and UTF8_EX2 are specified.

Table 6-26: Differences in character code conversions when UTF8, UTF8_EX,
and UTF8_EX2 are specified (for characters received from a HiRDB server)

Character codes
used by HiRDB

client
application

Character codes at HiRDB server

SJIS Unicode (UTF-8) UJIS C

SJIS No conversion
necessary

UTF8, UTF8MS,
UTF8_TXT,
UTF8_EX,
UTF8_EX2,
UTF8MS_TXT

UJIS, UJIS2 NOUSE

Unicode (UTF-8) Cannot be
specified

No conversion
necessary

Cannot be specified NOUSE

UJIS Cannot be
specified

Cannot be specified No conversion
necessary

NOUSE

UCS-2 Cannot be
specified

UCS2_UTF8 UCS2_UJIS Not needed

C NOUSE NOUSE NOUSE NOUSE

Character received from HiRDB
server (Unicode (UTF-8))

PDCLTCNVMODE
setting

Character code after HiRDB
client conversion (SJIS)

0x5C (backslash) UTF8 0x815F (double-byte backslash)

UTF8_EX 0x5C (\ symbol)*

UTF8_EX2

0xC2A5 (\ symbol) UTF8 0x5C (\ symbol)

UTF8_EX

6. Client Environment Setup

522

* Character code is not converted.
Table 6-27: Differences in character code conversions when UTF8, UTF8_EX,
and UTF8_EX2 are specified (for characters entered at the HiRDB client)

* Character code is not converted.
Notes

• If a data string contains 2-byte external characters, they are replaced with
full-sized number signs (#), except when the client environment definitions
PDCLTGAIJIDLL and PDCLTGAIJIFUNC are specified in the client. EUC
3-byte external characters cannot be used.

• Single-byte katakana characters are 1-byte codes in the shift JIS kanji codes
and 2-byte codes in the EUC Japanese kanji codes. Therefore, if a character
string contains single-byte katakana characters, the data length changes
when the character codes are converted. If a character string received from
the server contains single-byte katakana characters, the character string
becomes shorter after conversion. If a character string to be sent to the server
contains single-byte katakana characters, the character string becomes
longer after conversion.
In the Unicodes, characters that are not ASCII (0x0-0x7f) characters are
expressed as 2- to 4-byte characters. Therefore, the data length changes when
the character codes are converted. If a character string received from the
server contains non-ASCII characters, the character string becomes shorter
after conversion. If a character string to be sent to the server contains
non-ASCII characters, the character string becomes longer after conversion.
When the character string length changes, the following processing takes
place:

1. When data codes set in the SQL descriptor area are CHAR or MCHAR character

UTF8_EX2

Character entered at HiRDB
client (SJIS)

PDCLTCNVMODE
setting

Character code after HiRDB
client conversion (Unicode

(UTF-8))

0x5C (\ symbol) UTF8 0xC2A5 (\ symbol)

UTF8_EX 0x5C (backslash)*

UTF8_EX2 0xC2A5 (\ symbol)

Character received from HiRDB
server (Unicode (UTF-8))

PDCLTCNVMODE
setting

Character code after HiRDB
client conversion (SJIS)

6. Client Environment Setup

523

strings:
If the character string length becomes shorter, the HiRDB client pads the
converted codes with single-byte spaces (0x20) until the original character
string length is reached. (The length becomes shorter when the HiRDB client
receives a UJIS character string containing single-byte katakana characters
or a Unicode character string containing non-ASCII characters from the
HiRDB server.)
If the character string length becomes longer, the HiRDB client passes the
entire converted character string to the HiRDB server without truncating the
character string. (The length becomes shorter when the HiRDB client passes
a UJIS-converted character string containing single-byte katakana characters
or a Unicode-converted character string containing non-ASCII characters to
the HiRDB server.)
Therefore, an adequate length must be allocated for the column that stores
the character string. If all characters can be identified as single-byte katakana
characters, the area must have a byte count that is twice the character count
(for Unicodes, the area must have a byte count that is three times the
character count).

2. When data codes set in the SQL descriptor area are VARCHAR or MVARCHAR
character strings, or for character strings in SQL statements, column names
stored in the Column Name Descriptor Area (SQLCNDA), error messages
stored in the SQL Communications Area, or data type names stored in the
Type Name Descriptor Area (SQLTNDA):
If the character string becomes shorter, the character string length is changed
to the post-conversion character string length.
If the character string becomes longer, the character string length is changed
to the post-conversion character string length.
If all characters can be identified as single-byte katakana characters, the area
must have a byte count that is twice the character count (for Unicodes, the
area must have a byte count that is three times the character count).

3. For NCHAR or NVARCHAR character strings pointed to from the SQL
Descriptor Area (data codes are NCHAR or NVARCHR character strings)
Because single-byte katakana characters cannot be used, the length remains
unchanged, even after conversion.

• If a CHAR or VARCHAR column is used to store binary data, the character code
conversion process may produce unexpected conversions when the column
is accessed. In this case, disable character code conversion (specify NOUSE
in PDCLTCNVMODE).

• Character code conversion cannot be executed on BLOB-type data. For

6. Client Environment Setup

524

example, if a BLOB column is being used to store text data, have the UAP
execute the character code conversion.

• The following two methods are used for character mapping between shift JIS
kanji codes and Unicodes:
JIS method

This method conforms to the mapping method defined by JIS X 0221. The
JIS method is used when a value other than UTF8MS or UTF8MS_TXT is
specified in PDCLTCNVMODE.
Conversion targets: Shift JIS to JIS X0221
Kanji scope: JIS level-1 kanji set and JIS level-2 kanji set
MS method

This method conforms to the mapping method defined by Microsoft. The MS
method is used when UTF8MS or UTF8MS_TXT is specified in
PDCLTCNVMODE.
Conversion targets: Windows signed character set to MS-UNICODE
Kanji scope: JIS level-1 kanji set, JIS level-2 kanji set, IBM expansion kanji,
NEC-selected IBM expansion kanji, NEC special characters

• Note that the shift JIS kanji codes and the Windows signed character set have
different external character code ranges.

• To apply the MS method, which can handle more kanji characters, specify
UTF8MS or UTF8MS_TXT in PDCLTCNVMODE. Before you use the MS
method, make sure that you fully understand the problems that may occur as
a result of mapping differences.

• A user-defined external character conversion DLL file for UJIS cannot be
applied directly to Unicode external character conversion. To execute
Unicode external character conversion, you must use a user-defined external
character conversion DLL file to which a Unicode external character
conversion function has been added.

Notes when the client uses UCS-2 character codes
• Error messages (SQLERRMC) set in the SQL Communications Area may

exceed 254 bytes, depending on the character code conversion. In such cases,
a maximum of 254 bytes are set for column names and type names and any
excess is truncated.

• To receive CHAR, MCHAR, VARCHAR, or MVARCHAR data, the SQL description
area data length requires twice the maximum definition length.

• Data cannot be received if it exceeds the following applicable value after

6. Client Environment Setup

525

character code conversion:
 30,000 bytes for CHAR, NCHAR, and MCHAR
 32,000 bytes for VARCHAR, NVARCHAR, and MVARCHAR

Therefore, data stored in the server may not be able to be searched if
fixed-length character type data exceeds 15,000 bytes, and if variable-length
character type data exceeds 16,000 bytes.

• The length of data specified by input parameters cannot exceed the following
values:

 32,000 bytes for VARCHAR, NVARCHAR, and MVARCHAR
 32,000 bytes for VARCHAR, NVARCHAR, and MVARCHAR

• When data codes set in the SQL description area are CHAR, MCHAR,
VARCHAR, or MVARCHAR and the character strings are sent to the server, the
character string length is changed to the post-conversion character string
length (for the fixed-length, SQLLEN is changed to the post-conversion
character string length).

• Do not add BOM at the beginning of UCS-2 character strings. Such character
strings with BOM are not converted correctly. The UCS-2 byte order is
processed as the byte order of the host that runs the program.

(27) PDCLTGAIJIDLL=user-defined-external-character-conversion-DLL-file-nam
e

 <character string>
This environment variable is valid only in the Windows version.
This environment variable specifies the name of the DLL file for user-defined external
character conversion. This environment variable is valid only if a value other than
NOUSE is specified for PDCLTCNVMODE. If this environment variable is omitted,
double-byte external characters are converted to double-byte number signs (#).

(28) PDCLTGAIJIFUNC=user-defined-external-character-conversion-function-na
me

 <character string>
This environment variable is valid only in the Windows version.
This environment variable specifies the name of the user-defined external character
conversion function. This environment variable is valid only when PDCLTGAIJIDLL
is specified.
Descriptive format for a user-defined external character conversion function

The descriptive format for a user-defined external character conversion function

6. Client Environment Setup

526

is as follows:
 _declspec(dllexport)1 WINAPI2
user-defined-external-character-conversion-function-name (
 long direct,
 unsigned char far *instr,
 unsigned char far *outstr) ;
1 The DLL declaration format differs according to the compiler being used.
Comply with the DLL format of the compiler being used.
2 The export function name (user-defined external character conversion function
name) of the created DLL differs depending on which compiler is used. Use one
of the following methods to check which export function name to specify:

• During DLL creation, specify the project settings so that a MAP file is
output. Then check the export function name from the MAP file.

• Use the dumpbin command (dumpbin /exports DLL-name) of
Microsoft Visual C++ to check the export function name.

Input
direct

Indicates the conversion direction. A value from 1 to 6 is set.
1: Data conversion from the HiRDB client to the HiRDB server
2: Data conversion from the HiRDB server to the HiRDB client
3: Data conversion from the HiRDB client to the HiRDB server (for
Unicodes)
4: Data conversion from the HiRDB server to the HiRDB client (for
Unicodes)
5: Data conversion from the HiRDB client UCS-2 to the HiRDB server UJIS
6: Data conversion from the HiRDB server UJIS to the HiRDB client UCS-2

Note
When the Gaiji conversion DLL passes a Unicode, the data is converted to 2
bytes of UCS-2 format data. Conversion to data in UTF-8 format is
performed by a library.

instr
Indicates the pointer to the external character storage area for characters to
be converted. The character string size is fixed to two bytes.
instr[0] = First byte of external character to be converted

6. Client Environment Setup

527

instr[1] = Second byte of external character to be converted
outstr

Indicates the pointer to the post-conversion external character storage area.
The character string side is fixed to two bytes. A calling side HiRDB client
library secures or releases the area.
outstr[0] = First byte of character code (external character) after
conversion
outstr[1] = Second byte of character code (external character) after
conversion
Even though code conversion could not be performed, set an appropriate
value as the converted value (the passed value is used unconditionally).
For UCS-2 (Unicodes) external character codes, byte columns need to be
returned with a big endian byte column. For example, for , set 0x67 for
the first byte and 0x71 for the second byte.

Output
*outstr

Stores the converted character string.
Note

The following table shows the character code combinations that can be
specified for *instr and *outstr.

direct instr outstr PDCLTCNVMODE

1 External character
codes of the shift JIS
kanji codes

External character
codes of the EUC
Japanese kanji codes

UJIS or UJIS2

2 External character
codes of the EUC
Japanese kanji codes

External character
codes of the shift JIS
kanji codes

UJIS or UJIS2

3 External character
codes of the shift JIS
kanji codes

Unicode external
character codes

UTF8 or UTF8_TXT

External character
codes of the Windows
signed character set

MS-Unicode external
character codes

UTF8MS or
UTF8MS_TXT

6. Client Environment Setup

528

The following table shows the external code ranges for each character code
classification.

* Because Microsoft has assigned its own characters to codes 0xe000 to 0xe757,
and 0xf8f0 to 0xf8ff, the user-defined external character conversion DLL is
not called for these external character codes.

(29) PDCLTGRP=client-group-name
 <letter> ((1 character))

This environment variable specifies a client group name when the connection frame
guarantee facility for client groups is used. The client group name that was specified
in the pdcltgrp operand of the system definition is specified with an uppercase letter.
Even if a lowercase letter is specified, the system assumes that an uppercase letter was
specified.
If the pdcltgrp operand of the system definition is not specified, or if this
environment variable specifies a client group name that is not specified by the
pdcltgrp operand, the specification for this environment variable becomes invalid.

4 Unicode external
character codes

External character
codes of the shift JIS
kanji codes

UTF8 or UTF8_TXT

MS-Unicode external
character codes

External character
codes of the Windows
signed character set

UTF8MS or
UTF8MS_TXT

5 External Unicode
character codes

External EUC Japanese
kanji character codes

UCS2_UJIS

6 External EUC Japanese
kanji character codes

External Unicode
character codes

UCS2_UJIS

Character code First byte Second byte

Shift JIS kanji codes 0xf0-0xfc 0x40-0x7e

0x80-0xfc

Windows signed character set 0xf0-0xfa 0x40-0x7e

0x80-0xfc

EUC Japanese kanji codes 0xf5-0xfe 0xa1-0xfe

Unicodes or MS-Unicodes* 0xe0-0xf8 0x00-0xff

direct instr outstr PDCLTCNVMODE

6. Client Environment Setup

529

For details about the connection frame guarantee facility for client groups, see the
HiRDB Version 8 System Operation Guide.

(30) PDTCPCONOPT={0|1}
This environment variable is valid when the HiRDB client connects to a HiRDB server
of version 06-02 or later. This environment variable is specified when the number of
TCP ports used for communication to the server is to be reduced.
According to the TCP protocol specifications, after a TCP connection ends, the TCP
port may switch to TIME_WAIT status for a fixed period of time (1 to 4 minutes) during
which it cannot be used in a new connection. The TIME_WAIT-status port is used by
the TCP connection that was completed. When PDTCPCONOPT is set to 1, the number
of TIME_WAIT-status TCP ports that occur in the HiRDB client and server can be
reduced.
0

Do not reduce the number of TCP ports that are used in communication with the
HiRDB server.

1
Reduce the number of TCP ports that are used in communication with the HiRDB
server.
The following table shows the number of TIME_WAIT-status TCP ports that can
be eliminated when 1 is specified.

6. Client Environment Setup

530

Legend:
V: Becomes valid when 1 is specified for PDTCPCONOPT.
I: Becomes invalid even if 1 is specified for PDTCPCONOPT.

: Does not apply.
1 The number of TCP ports that are switched to TIME_WAIT status depends on the
timing when packets that participate in the termination protocol for TCP connections
arrive. Therefore, the number changes according to the network status. Consequently,
the number of TIME_WAIT-status TCP ports that can be deleted may change.
2 During failure recovery communication from OLTP, the OLTP failure recovery
process becomes the client.

UAP
execution

environment

Connection
mode from UAP
to HiRDB server

Communication
type

Environment
variable

effect

Number of TCP
ports in TIME_WAIT
status that can be

eliminated1

Client2 Server

OLTP Normal connection Communication for
connecting UAP to
HiRDB server3

V 1 1

Failure recovery
communication from
OLTP to HiRDB
server4, 5

V 1 1

High-speed
connection and FES
host direct
connection

Communication for
connecting UAP to
HiRDB server

I

Failure recovery
communication from
OLTP to HiRDB
server4, 5

V 1 1

Other Normal connection Communication for
connecting UAP to
HiRDB server3

V 1 1

High-speed
connection and FES
host direct
connection

Communication for
connecting UAP to
HiRDB server

I

6. Client Environment Setup

531

3 Some of the TCP ports that are used when the UAP connects to the HiRDB server
are switched to TIME_WAIT status.
4 Failure recovery communication from OLTP to the HiRDB server takes place when
the OLTP failure recovery process calls an X/Open-compliant XA interface function
(such as xa_open, xa_recover, or xa_rollback) to recover a transaction
interrupted by a failure. At this time, some of the TCP ports used in XA interface
execution are switched to TIME_WAIT status. The number of TIME_WAIT-status TCP
ports that can be eliminated is the number that can be eliminated when one XA
interface function is called. Therefore when n XA interface functions are called, n
times that number can be eliminated.
5 The method of specifying the environment variable for the OLTP failure recovery
process differs in each OLTP environment. For example, in OpenTP1, the environment
variable is specified in a transaction service definition.
Application standard

Specify 1 in PDTCPCONOPT if either of the following conditions is satisfied:
• If the number of TCP ports that the OS allocates automatically is less than

5000 (the TCP port range differs according to the OS)
• If PDXAMODE is set to 1 in a UAP under OpenTP1

However, if the specification value of the pd_max_users operand in the system
definitions is less than 100, or if the pd_registered_port operand is specified,
you do not need to specify 1 even if one of the above conditions is satisfied.

Notes
1. If the version of the HiRDB server to be connected is earlier than Version

06-02, do not specify 1 in PDTCPCONOPT. If you specify 1, a shortage may
occur in the communication sockets that the HiRDB server can use.

2. When you specify 1 in PDTCPCONOPT, you must check and, if necessary,
revise the value of the maxfiles_lim operating system parameter in the
HiRDB server. For details about estimating values for operating system
parameters, see the HiRDB Version 8 Installation and Design Guide.

(31) PDAUTORECONNECT={YES|NO}
This environment variable specified whether or not the automatic reconnect facility is
to be used.
For details about the automatic reconnect facility, see 4.16 Automatic reconnect
facility.
YES

Use the automatic reconnect facility.

6. Client Environment Setup

532

When this facility is used, it automatically reconnects the HiRDB client to the
HiRDB server if the connection is disconnected because of a service process
failure, system switchover, or network failure.

NO
Do not use the automatic reconnect facility.

Application standard
Apply the automatic reconnect facility if the HiRDB server is executing the
system reconfiguration command (pdchgconf) or updating to the HiRDB update
version (pdprgcopy or pdprgrenew). If the automatic reconnect facility is used
in this situation, the HiRDB client can continue processing without returning an
error to the UAP, even if the connection with the HiRDB server is disconnected.

Notes
1. Use PDRCCOUNT and PDRCINTERVAL to specify the number of CONNECT

statement retries and the retry interval when reconnection is executed.
2. The time during which the automatic reconnect facility operates with SQL

statements other than the CONNECT statement is monitored based on the
PDCWAITTIME time. If the PDCWAITTIME time is exceeded, automatic
reconnect processing is aborted.

3. If automatic reconnect fails, an error indicating the cause is returned to the
UAP.

4. If an application uses an X/Open-compliant API to access the HiRDB server,
the PDAUTORECONNECT specification is ignored and NO is always assumed.

5. If one of the following conditions is satisfied, the automatic reconnect
facility is enabled only when the CONNECT statement is executed:

 The HiRDB server version is earlier than 07-00.
 The XDM/RD E2 connection facility is being used.
 The XDM/RD E2 version is 10-02 or earlier.

(32) PDRCCOUNT=CONNECT-retry-count-with-automatic-reconnect-facility
 <unsigned integer> ((1-200)) <<5>>

This environment variable specifies the number of times the CONNECT statement is
retried during reconnection by the automatic reconnect facility. This environment
variable becomes effective when PDAUTORECONNECT=YES is specified.

(33) PDRCINTERVAL=CONNECT-retry-interval-with-automatic-reconnect-facility
 <unsigned integer> ((1-600)) <<5>> (seconds)

This environment variable specifies the CONNECT retry interval at which the automatic

6. Client Environment Setup

533

reconnect facility executes reconnect processing. The interval is specified in units of
seconds. This environment variable becomes effective when
PDAUTORECONNECT=YES is specified.

(34) PDUAPENVFILE=UAP-environment-definition-file-name
 <identifier> ((up to 8 characters))

This environment variable specifies the name of the UAP environment definition file
that defines the execution environment if the UAP is to be executed in a separate
environment. Specifying PDUAPENVFILE allows you to switch the execution
environment of each UAP.
For details about UAP environment definitions, see the manual HiRDB Version 8
System Definition.
If the UAP environment definitions contain an error, a definition error occurs during
CONNECT execution. If the UAP environment definition file does not contain any
definitions, the PDUAPENVFILE specification is ignored.
Uppercase and lowercase characters in the UAP environment definition file name are
not discriminated in HiRDB for Windows systems. Note therefore that files that have
the same name except for case differences are treated as the same file.

(35) PDDBBUFLRU={YES|NO}
This environment variable specifies whether or not the LRU method for global buffers
is to be changed for each UAP in an OLTP environment.
YES:

Use the LRU method.
NO:

Do not use the LRU method. In this case, pages that do not hit the buffer become
the target for being flushed out of the global buffer regardless of the access
frequency when the global buffer becomes full. For that reason, the number of
pages to be cached in the global buffer can be minimized.

Application standard
You will usually omit this environment variable (use the LRU method). In the
OLTP environment, when a large number of searches are performed or a large
number of UAP updates are executed using the global buffer, the most recent
contents cached in the global buffer are flushed out, which may cause a temporary
drop in system performance. In order to avoid this, specify PDDBBUFLRU=NO for
a UAP that performs a large volume of searches or updates in an OLTP
environment.

Notes

6. Client Environment Setup

534

1. Pages accessed by a UAP that does not use the LRU method are subject to
being flushed out of the global buffer regardless of the access frequency. For
that reason, a UAP that does not use the LRU method could cause a drop in
response performance, due to an increase in the number of inputs/outputs
caused by the drop in the buffer hit ratio.

2. SQL processing by a UAP secures 1 to 4 global buffer sectors
simultaneously. Therefore, even though the UAP does not use the LRU
method, pages cached in the global buffer for each UAP may be flushed out
from the 1 to 4 global buffer sectors.

3. If the LRU method is not used for a UAP to be updated, writing to the
database becomes frequent. For that reason, log output triggers occur
frequently compared to when the LRU method is used and the amount of
output log information increases. In such a case, a lack of system log file
capacity may occur, so you should take one of the following actions:

 Re-evaluate the size of the system log file
 Specify NO in the PDDBLOG operand of the client environment definition.

The formula is shown below for estimating the log size when the LRU
method is not used. Note that when the system definition's
pd_log_rec_leng operand is set to 1,024, the amount of output log
information when the LRU method is not used can be minimized.

Updated-GET-count* x value-of-pd_log_rec_leng-operand
* You can check the updated GET count from the DIDUC value of the UAP
statistics report, or from the DIDUC value of the UAP statistical information.

(36) PDHATRNQUEUING=NO
When queuing is specified in the pd_ha_transaction operand of the system
definition, this environment variable is specified when application of the transaction
queuing facility is to be changed for each client. If the transaction queuing facility is
not to be applied to a client, specify NO.
NO

Do not apply the transaction queuing facility during connection processing from
the client.

For details about the transaction queuing facility, see the HiRDB Version 8 System
Operation Guide.

(37) PDASTHOST=HiRDB-Control-Manager-Agent-host-name[,secondary-syste
m-HiRDB-Control-Manager-Agent-host-name]

 <identifier> <<PDHOST specification value>>

6. Client Environment Setup

535

When a UAP executes a command, this environment variable specifies the host name
of the HiRDB Control Manager-Agent to be connected. The COMMAND EXECUTE
statement of SQL is used when a UAP executes a command.
When a UAP executes a command, the HiRDB Control Manager-Agent actually
executes that command.
For HiRDB/Parallel Server, the host name of the server machine that contains the
system manager is specified.
In addition to the host name, you can specify the FQDN or the IP address. The
specification methods are as follows:
Host name

The host name that was specified in the pdunit -x operand of the system
common definition must be specified.
Example:
PDHOST=host1

FQDN:

The FQDN is comprised of the host name and domain name of a HiRDB server,
separated by periods.
Example:
 PDASTHOST=host1.soft.hitachi.co.jp

IP address
The IP address is specified with a decimal number that has each group of 3 digits
separated with a period.
Example:
PDHOST=172.18.131.34

System switchover without IP address inheritance
Specify the host names of both the primary system and the secondary system. If
you specify only the host name of the primary system, you must change the
specification of this environment variable after system switching occurs. After
system switching, change the host name to that of the new primary system.

(38) PDASTPORT=HiRDB-Control-Manager-Agent-port-number
 <unsigned integer> ((5001-49999))

This environment variable specifies the port number of the HiRDB Control Manager
- Agent to be connected when a command is executed from a UAP.
Specify a port number that is registered in the services file (for the UNIX version,

6. Client Environment Setup

536

/etc/services; for the Windows version
%windir%\system32\drivers\etc\services).

(39) PDSYSTEMID=HiRDB-identifier-of-HiRDB-server-managed-by-HiRDB-Contr
ol-Manager-Agent

 <identifier> ((4 characters))
When a command is executed from a UAP, this environment variable specifies the
HiRDB identifier of the HiRDB server being managed by the HiRDB Control
Manager - Agent to be connected. Specify the HiRDB identifier with the
pd_system_id operand of the system definitions.

(40) PDASTUSER=OS-user-name/password
 <<PDUSER specification value>>

This environment variable specifies the user name and password for the OS that runs
commands executed from a UAP. This must be the user name and password for an OS
that has the execution privilege for the commands. Specify in the format user-name/
password.
If a password specification is not required (i.e., the setting is for a user without a
password), the password can be omitted.
The user name and password for an OS are handled as upper case characters regardless
of whether the specification is in upper case or lower case. However, if lower-case
characters are enclosed in quotation marks, they are handled as lower-case characters.

(41) PDCMDWAITTIME=maximum-client-wait-time-during-command-execution
 <unsigned integer> ((0, 6-43200)) <<0>> (minutes)

When a command is executed from a UAP, this environment variable specifies, the
maximum time that the HiRDB client waits for a response from the HiRDB Control
Manager - Agent after it sends a request to the server.
If 0 is specified, the HiRDB client continues to wait until a response is returned from
the HiRDB Control Manager - Agent.
If there is no response from HiRDB Control Manager - Agent after the specified
amount of waiting time has elapsed, an error is returned to the client (UAP). If a
command in the UAP is still processing at that time, either HiRDB Control Manager -
Agent or the command must be canceled.

(42) PDCMDTRACE=command-trace-file-size
 <unsigned integer> ((0, 4096-2000000000)) (bytes)

When a command is executed from a UAP, this environment variable specifies, the
size of the command trace output file.
If 0 is specified, the maximum file size is assumed, and a command trace that exceeds

6. Client Environment Setup

537

the maximum size is not output. If a value from 4,096 to 2,000,000,000 is specified,
the specified value becomes the file size, and the output destination switches when the
file size exceeds the specified value. If this environment variable is omitted, a
command trace is not collected.
For details about command traces, see 10.1.5 Command trace facility.
Relationship with other environment variables

The command trace output file is created in the directory specified by
PDCLTPATH. If PDCLTPATH is omitted, the file is created in the current directory
when the UAP is executed. (If the UAP is executed from OpenTP1, the file is
created under the OpenTP1 installation directory \tmp\home\server-namexx.)

(43) PDIPC={MEMORY|DEFAULT}
This environment variable specifies the inter-process communication method to be
used when the server and client are found in the same host.
MEMORY

Use the memory for inter-process communication. This is called the inter-process
memory communication facility.

DEFAULT
Use the default communication method (TCP/IP or PIPE) in each platform for
inter-process communication.

Notes
1. If the client and server are not in the same host, the PDIPC specification is

ignored (the system assumes that DEFAULT was specified). In this case, the
connection process may take longer.

2. If you use the XA interface library for multiple threads (pdcltxm.dll for
Windows clients, and libzcltxk.sl(so) or libzcltyk.sl(so) for
UNIX clients) to access HiRDB with the XA interface, and a UAP running
on TPBroker or Weblogic Server is set as the client, the specification of this
environment variable is ignored, and it is assumed the DEFAULT
specification was specified for PDIPC.

3. If PDIPC=MEMORY is specified in UNIX-version clients, HiRDB allocates a
common memory size equal to values specified for PDSENDMEMSIZE and
PDRECVMEMSIZE, for each client connection. Consequently, a common
memory shortage may occur if multiple clients are executed concurrently. To
avoid a memory shortage, consider the common memory size that can be
used when specifying PDSENDMEMSIZE and PDRECVMEMSIZE.

4. If PDIPC=MEMORY is specified, the specification for PDCLTRCVADDR is
ignored.

6. Client Environment Setup

538

5. If PDIPC=MEMORY is specified, and concurrently p, r, or a is specified in
PDUAPREPLVL or PDWRTLNFILSZ is specified, the specification for PDIPC
becomes invalid.

(44) PDSENDMEMSIZE=data-send-memory-size-in-client
 <unsigned integer> ((4-2097152)) <<16>> (kilobytes)

This environment variable specifies the data storage area size, in multiples of 4 KB, to
be used when the client sends data to the server, when the inter-process memory
communication facility is used. This environment variable becomes effective when
PDIPC=MEMORY is specified.
If the specified value is not a multiple of 4, the value is rounded up to multiple of 4.
If data larger than the size specified here is sent, the inter-process memory
communication facility cannot be used. (The communication method for
PDIPC=DEFAULT is used.)
Estimation method

Estimate the value to be specified for this environment variable based on the
following formula:

specification-value (bytes) = (400 + 16 number-of-retrieved-columns + 16
 number-of-?-parameters + SQL-statement-length) 4096 4

The value calculated with this formula differs from the data size that is actually
sent during communication.

(45) PDRECVMEMSIZE=data-receive-memory-size-in-client
 <unsigned integer> ((4-2097152)) <<32>> (kilobytes)

This environment variable specifies the data storage area size, in multiples of 4 KB, to
be used when the client receives data from the server, when the inter-process memory
communication facility is used. This environment variable becomes effective when
PDIPC=MEMORY is specified.
If the specified value is not a multiple of 4, the value is rounded up to a multiple of 4.
If data larger than the size specified here is received, the inter-process memory
communication facility cannot be used. (The communication method for
PDIPC=DEFAULT is used.)
Estimation method

Estimate the value to be specified for this environment variable based on the
following formula:

specification-value (bytes) = (600 + 25 number-of-retrieved-columns +
column-data-length) 4096 4

6. Client Environment Setup

539

If the data type of column-data-length is VARCHAR, replace column-data-length
with structure-length in the preceding formula. If the HiRDB client accepts array
FETCH statements or repetition columns, use column-data-length
number-of-array-columns or column-data-length
number-of-repetition-column-elements.
If PDBLKF is specified, calculate the value based on the following formula:

specification-value (bytes) = (600 + 19 number-of-retrieved-columns + (7
 number-of-retrieved-columns + column-data-length) PDBLKF-value) /

4096 4
The value calculated with this formula differs from the data size that is actually
sent during communication.

(46) PDCWAITTIME=maximum-client-wait-time
 <unsigned integer> ((0-65535)) <<0>> (seconds)

This environment variable specifies the maximum time that the HiRDB client waits for
a response from the HiRDB server after sending a request to the HiRDB server.
Specify PDCWAITTIME when implementing interval monitoring of long running SQL
statements.
Notes

1. When 0 is specified, the HiRDB client continues to wait until it receives a
response from the HiRDB server. If the HiRDB client does not receive a
response from the HiRDB server before the maximum wait time elapses, the
HiRDB client returns an error to the UAP. If this occurs during transaction
processing, the process in the HiRDB server is cancelled.

2. When 0 is specified, the no response status may be set in the HiRDB client
if one of the following errors occurs:

 Communication error (communication error between a HiRDB client and
a HiRDB server or between two HiRDB servers (including temporary
errors))

 Process not responding because of a disk error
Hitachi therefore recommends that you specify a nonzero value that is larger
than maximum SQL execution time. If the UAP executes an SQL statement
for which lock-release wait occurs, you must also consider the
pd_lck_wait_timeout operand value in the system definitions when
determining the PDCWAITTIME value.

(47) PDSWAITTIME=maximum-server-wait-time-during-transaction-processing
 <unsigned integer> ((0-65535)) <<600>> (seconds)

6. Client Environment Setup

540

This environment variable specifies the maximum time that the HiRDB server waits
for the next request from the HiRDB client to arrive after returning a response to the
previous request from the HiRDB client. This function monitors the time during
transaction processing (from startup of SQL execution to commit or rollback). The
monitoring time is reset when the request from the HiRDB client arrives at the HiRDB
server.
If the HiRDB server does not receive a request within the specified amount of time, it
assumes that an error occurred in the UAP and rolls back the current transaction. The
HiRDB server also severs the connection with the HiRDB client without notifying the
HiRDB client.
If 0 is specified, the HiRDB server continues to wait until it receives a request from
the HiRDB client.
Specify PDSWAITTIME to avoid process survival.
Notes

1. When the block transfer facility (PDBLKF) is used, the HiRDB client
executes FETCH statement processing until all rows that were
block-transferred from the HiRDB server are processed. The HiRDB client
does not send another request to the HiRDB server until the FETCH statement
processing ends. Therefore, if the block transfer facility is used, the value
specified in this environment variable must include the amount of time the
FETCH statement requires to process the number of blocks that will be
transferred.

2. This environment variable must be specified for the operating mode in which
the client is a UAP under OLTP. Otherwise, the default value of 600 seconds
is used, and connections may be severed inappropriately.

(48) PDSWATCHTIME=maximum-server-wait-time-outside-transaction-processi
ng

 <unsigned integer> ((0-65535)) (seconds)
This environment variable specifies the maximum time that the HiRDB server waits
for the next request from the HiRDB client to arrive after returning a response to the
previous request from the HiRDB client. This function monitors the time outside
transaction processing (i.e., outside the interval from start of SQL execution to
commit or rollback). The monitoring time is reset when the request from the
HiRDB client arrives at the HiRDB server.
If the HiRDB server does not receive a request within the specified amount of time, it
assumes that an error occurred in the UAP and severs the connection with the HiRDB
client without reporting the disconnection to the HiRDB client.
If 0 is specified, the HiRDB server continues to wait until it receives a request from
the HiRDB client.

6. Client Environment Setup

541

Specify PDSWATCHTIME to avoid process survival.
Notes

1. This environment variable must be set to 0 for the operating mode in which
the client is a UAP under OLTP, or if the UAP always connects to the HiRDB
server regardless of whether a transaction is being processed.

2. If the HiRDB server disconnects the connection with the HiRDB client, it
does not report the disconnection to the HiRDB client.

Relationship to the system definition
If this environment variable is omitted, the HiRDB server uses the value that was
specified in the pd_watch_pc_client_time operand of the system definition
and monitors processing until the start of a transaction. For details about the
pd_watch_pc_client_time operand, see the manual HiRDB Version 8 System
Definition.

Relationship with other environment variables
Figure 6-2 shows the relationships among PDCWAITTIME, PDSWAITTIME, and
PDSWATCHTIME.

6. Client Environment Setup

542

Figure 6-2: Relationships among PDCWAITTIME, PDSWAITTIME, and
PDSWATCHTIME

6. Client Environment Setup

543

(49) PDCWAITTIMEWRNPNT=output-timing-for-SQL-runtime-warning
This environment variable specifies the output time of the SQL runtime warning
information file when the SQL runtime warning output facility is used.
The SQL runtime warning output facility outputs an SQL runtime warning information
file and a warning message (KFPA20009-W) if the runtime of an SQL statement
exceeds a fixed time. For details about the SQL runtime warning output facility, see
the HiRDB Version 8 System Operation Guide.
Use one of the following methods to specify the output timing of the SQL runtime
running information file:
Percentage of the PDCWAITTIME specification value (when the decimal point is
not specified)

 <unsigned integer> ((0-99)) (%)
Specify the timing as a percentage of the PDCWAITTIME specification value. For
example, if you specify 100 (seconds) in the PDCWAITTIME operand and 90 (%)
in PDCWAITTIMEWRNPNT, HiRDB checks the SQL runtime after it executes an
SQL statement. If the result indicates that the SQL runtime was 90 seconds or
longer but less than 100 seconds, HiRDB outputs warning information.

Percentage of the PDCWAITTIME specification value (when the decimal point is
specified)

 <unsigned decimal number> ((0-99.999999)) (%)
Specify the timing as a percentage (including the decimal point) of the
PDCWAITTIME specification value.

Output time of SQL runtime warning

 <unsigned decimal number> ((0-PDCWAITTIME)) (seconds)
Specify the output time for the SQL runtime warning. (For example, if the output
time is 60 seconds, specify PDCWAITTIMEWRNPNT=60sec.) A decimal point can
be specified in the time specification. The specified value must be less than the

6. Client Environment Setup

544

PDCWAITTIME specification value.
Relationship with system definitions

When PDCWAITTIMEWRNPNT is omitted, the specification value of the
pd_cwaittime_wrn_pnt operand in the system definitions is assumed. For
details about the pd_cwaittime_wrn_pnt operand, see the manual HiRDB
Version 8 System Definition.

(50) PDKALVL={0|1|2}
This environment variable specifies whether the facility that periodically sends
packets from the HiRDB client to the HiRDB server is to be used.
This environment variable is effective only when the multi-thread versions of the
HiRDB client libraries are used.
If a value other than 0 is specified, one packet sending thread is generated for each
connection with HiRDB. The packet send interval can be specified in PDKATIME.
If an application uses an X/Open-compliant API to access HiRDB, the actual PDKALVL
specification is ignored and 0 is always assumed.
0

Do not use the facility that sends packets periodically.
1

Use the facility that sends packets periodically. The packet transmission thread
sends packets to the connection path with the HiRDB server at fixed time
intervals.
HiRDB does not reset the PDSWAITTIME and PDSWATCHTIME monitoring times
that the HiRDB server uses for time monitoring.
If the HiRDB client and the HiRDB server are installed in the same machine, do
not specify 1.

2
Use the facility that sends packets periodically. The packet transmission thread
sends packets to the connection path with the HiRDB server at fixed time
intervals and receives packets returned from the HiRDB server.
HiRDB resets the PDSWAITTIME and PDSWATCHTIME monitoring times that the
HiRDB server uses for time monitoring.
If a packet from the HiRDB server is not returned within the PDCWAITTIME time
specified in the client environment definitions, the connection is invalidated. If
this happens, the timeover SQLCODE (-732) is returned to the application when
the SQL execution thread executes the next SQL statement.

6. Client Environment Setup

545

If the SQL execution thread receives an SQL request from the application while
the packet transmission thread is waiting for a response from the HiRDB server,
the SQL execution thread is set to wait status until the packet transmission thread
receives a response from the HiRDB server. Consequently, the SQL runtime may
be delayed. Also, because the select() system call is issued during the
reception wait period, the CPU usage is higher than when 1 is specified as the
setting value. If the PDSWAITTIME and PDSWATCHTIME monitoring times that the
HiRDB server uses for time monitoring do not need to be reset, Hitachi
recommends that you specify 1 as the setting value.

Application standard
Network management applications such as routers and firewalls sometimes
feature an idle-time monitoring facility that disconnects the connection if there is
no packet flow for a fixed period of time. By specifying a value other than 0 in
PDKALVL, you can retain the HiRDB connection and prevent a Web application
waiting for a service request from using the network management application to
improperly disconnect the HiRDB connection.
When the time-monitoring environment variables (PDSWAITTIME and
PDSWATCHTIME) are set to infinite in the HiRDB server, uncompleted processes
may still remain in the HiRDB server if the HiRDB client machine fails or a
network failure occurs. By specifying 2 in PDKALVL, you can avoid connection
disconnect by the time monitoring facilities of the HiRDB server without having
to set the time-monitoring values in the HiRDB server to infinite.

Application examples
1. If the following conditions apply, specify 1 in PDKALVL and specify a time that is

shorter than the firewall monitoring time in PDKATIME. (For example, if the
firewall monitoring time is 1,200 seconds, specify 1,000 seconds in PDKATIME.)

• The Web application issues SQL execution requests to the DB server at
irregular times, and no SQL statements are executed for long periods of time.

• A firewall has been set up between the Web server and the DB server, and
the firewall disconnects the connection if there is no packet flow for a fixed
period of time.

2. If the following conditions apply, specify 2 in PDKALVL and specify a time that is
shorter than the PDSWATCHTIME monitoring time in PDKATIME. (For example, if
the PDSWATCHTIME monitoring time is 3,600 seconds, specify 3,000 seconds in
PDKATIME.)

• A connection-pooling application accesses HiRDB.
• A connection is reused for each SQL execution request but is sometimes

disconnected according to the PDSWATCHTIME monitoring time because the
connection is not used for a long time.

6. Client Environment Setup

546

(51) PDKATIME=packet-send-interval
 <unsigned integer> ((60-65535)) <<3000>> (seconds)

This environment variable specifies the interval at which the HiRDB client regularly
sends packets to the HiRDB server. The interval is specified in units of seconds.
Specify a time that is shorter than the reset monitoring time.
PDKATIME is enabled when a value other than 0 is specified in PDKALVL.
If the SQL execution thread is executing an SQL statement when a packet is scheduled
to be sent, the packet transmission thread does not send the packet and instead waits
until the next transmission time.

(52) PDTIMEDOUTRETRY=retry-count
 <unsigned integer> ((0-32767)) <<2>>

This environment variable specifies the number of times the connect() system call
can be retried when a WSAETIMEDOUT error (ETIMEOUT error for the UNIX version)
of winsock occurs in the case of a connect() system call that is executed when a
HiRDB client connects to the HiRDB server.
Benefit

When connect() system calls to the HiRDB server become too great, filling the
listen queue, a WSAETIMEDOUT error or ETIMEOUT error is returned from
connect(). Such a connection error can be avoided by retrying the connect()
system call.

Note
In the event of a WSAETIMEDOUT error or ETIMEOUT error that occurs due to a
network failure or server machine power outage, the return from the connect()
system call may take some time. Therefore, if a large number of retries is set, it
may take a while for a connection error to be returned to the UAP. In particular,
switchover to the standby system takes a long time if a network failure or other
failure occurs while the facility for system switchover without IP address
inheritance is being used. In an environment that uses the facility for system
switchover without IP address inheritance, the switchover time to the standby
system can be shortened by setting a small number of retries.

(53) PDNBLOCKWAITTIME=connection-establishment-monitoring-time-in-nonbl
ock-mode

 <unsigned integer> ((0-120)) <<0>> (seconds)
This environment variable specifies the connection establishment monitoring time in
nonblock mode when connection completion between the HiRDB server and client is
monitored.
If 1 or a higher value is set for this environment variable, the communication between

6. Client Environment Setup

547

the HiRDB server and client is set to nonblock communication and completion of the
connect() system call is monitored. This is called the nonblock mode. If 0 is
specified, the system waits until the timeout time of the OS for the connection to be
completed. This is called the block mode.
Application standard

Specify this environment variable (set the nonblock mode) if you want to avoid
having the connect() system call wait several tens of seconds (the actual time
depends on the OS) if a LAN failure occurs. Specifying this environment variable
allows the system to detect LAN failures earlier.

Estimation method
If the specified value is too small, an unwarranted error may occur depending on
the network status. Set a value higher than the value obtained from the following
calculation expression:
MAX (A + 1, 8)
A:

Arrival time between the HiRDB server and client as measured by an OS
command such as ping. The arrival time of ping and other commands
fluctuates depending on the network load. Assume the highest load status
when measuring the arrival time.

(54) PDCONNECTWAITTIME=maximum-wait-time-in-HiRDB-client-during-server
-connection

 <unsigned integer> ((1-300)) <<300>> (seconds)
This environment variable specifies the maximum wait time that the HiRDB client
waits for a response from the HiRDB server when it connects with the HiRDB server.
If a system switchover or a system failure occurs after the HiRDB server accepts a
connection request from the HiRDB client, the HiRDB client waits only the specified
amount of time for a response.
Application standard

If the system switchover facility is being used, specify this environment variable
to allow applications to detect failures early. If this environment variable is
specified together with PDNBLOCKWAITTIME, failures are detected even earlier.

Estimation method
If the specified value is too small, normal connection processing may result in an
error if the processing takes too long because of the network status or the
scheduling wait during connection processing. Set a value higher than the value
obtained from the following calculation expression:

6. Client Environment Setup

548

MIN (value-of-pd_max_users-operand-in-system-definition 0.2, 300)
(55) PDCLTPATH=trace-file-storage-directory

<path name> ((path name of current directory))
This environment variable specifies the storage directory for SQL trace files and error
log files created by the HiRDB client.

(56) PDSQLTRACE=SQL-trace-file-size
<unsigned integer> ((0, 4,096-2,000,000,000)) (bytes)

This environment variable specifies the size of the SQL trace file into which SQL trace
information for the UAP is to be output.
If 0 is specified, the maximum file size is assumed, and an SQL trace that exceeds the
maximum size is not output. If a value from 4,096 to 2,000,000,000 is specified, the
specified value becomes the file size, and the output destination switches when the file
size exceeds the specified value. When this environment variable is omitted, the SQL
trace is not output.
For details about the SQL trace, see 10.1.1 SQL tracing.
Relationship with other environment variables

The SQL trace is output to the directory specified by PDCLTPATH. If no value is
specified for PDCLTPATH, the SQL trace is output to the current directory when
the UAP is started. (When the UAP is started from OpenTP1, the current directory
is %PDDIR%\tmp\home\server-namexx.)

Estimation method
Calculate the size of the SQL trace file from the number of SQL statements to be
collected. For each SQL statement to be collected, calculate the size of the
individual rows (80 bytes) and the size of the SQL statement, and use the overall
total as an estimate for the value to be specified.

(57) PDUAPERLOG=error-log-file-size
 <unsigned integer> ((0, 4096-2000000000)) <<65536>> (bytes)

This environment variable specifies the size of the file into which the error log of the
UAP is to be output.
If 0 is specified, the maximum file size is assumed, and an error log that exceeds the
maximum size is not output. If a value from 4,096 to 2,000,000,000 is specified, the
specified value becomes the file size, and the output destination switches when the file
size exceeds the specified value.
For details about the error log, see 10.1.2 Error logging.
Relationship with other environment variables

6. Client Environment Setup

549

The error log is output to the directory specified by PDCLTPATH. If no value is
specified for PDCLTPATH, the SQL trace is output to the current directory when
the UAP is started. (When the UAP is started from OpenTP1, the current directory
is %PDDIR%\tmp\home\server-namexx.)

(58) PDERRSKIPCODE=SQLCODE[,SQLCODE]...
This environment variable specifies SQLCODEs for which message output to the error
log is to be suppressed. Up to 10 SQLCODEs can be specified.
For example, to suppress SQLCODEs -901 and -917, specify this environment
variable as follows:
PDERRSKIPCODE=-901,-917

Benefits
Depending on the UAP structure, there are errors that will inevitably occur during
SQL processing. If this type of error occurs frequently during normal processing,
the file system may be overwhelmed. Especially for a UAP that uses an X/
Open-compliant API, two error log files are created for each process. If this
environment variable is specified, message output can be suppressed for specific
errors, and the load on the file system can be reduced.

Application standard
Apply this environment variable if both of the following conditions are satisfied:

• Errors occur frequently because of the UAP structure.
• The cause of an error can be identified beforehand, and there is no need to

investigate the cause.
When this environment variable is specified, the cause of unforeseen errors
cannot be investigated. Use caution when applying this environment variable.

(59) PDPRMTRC={YES|NO|IN|OUT|INOUT}
This environment variable specifies whether parameter information and retrieval data
are to be output in the SQL trace information. For details about the output contents, see
10.1.1 SQL tracing.
YES

Output input parameter information in the SQL trace. If YES is specified, retrieval
data information and the input parameters are output.

NO
Do not output parameter information in the SQL trace.

IN
Output the input parameter information in the SQL trace. This also applies to the

6. Client Environment Setup

550

IN and INOUT* parameters of the CALL statement.
OUT

Output the output parameter information and retrieval data information in the
SQL trace. This also applies to the OUT and INOUT* parameters of the CALL
statement.

INOUT
Output the input parameter information, the output parameter information, and
the retrieval data information in the SQL trace. The INOUT parameter* of the
CALL statement is output twice.

* Information on the INOUT parameter of the CALL statement is used only as output
data.

(60) PDPRMTRCSIZE=maximum-data-length-of-parameter-information-output-t
o-SQL-trace

 <unsigned integer> ((4-32008)) <<256>> (bytes)
This environment variable specifies the maximum data length of the parameter
information and retrieval data to be output in the SQL trace. For variable-length
character string-type, BLOB-type, and BINARY-type data, the area of the character
string length is included in the data length.
This environment variable is valid only when a value other than PDPRMTRC=NO is
specified.
Increasing the specified value of this environment variable increases the amount of
information that is output. Therefore, the size of the SQL trace file (PDSQLTRACE
specification value) must also be increased.

(61) PDTRCMODE={ERR|NONE}
This environment variable specifies whether troubleshooting information
(pderr*.trc information) other than SQL trace information is to be output.
ERR: Output pderr*.trc information.
NONE: Do not output pderr*.trc information.

(62) PDUAPREPLVL={[s][u][p][r]|a}
This environment variable specifies output information for the UAP statistical report.
A file to which a UAP statistical report is output is called a UAP statistical report file.
This environment variable becomes effective when PDCLTPATH is specified.
If this environment variable is omitted, only SQL trace information is output.
For details about UAP statistical reports, see 10.1.4 UAP statistical report facility.

6. Client Environment Setup

551

s: SQL unit information is output. SQL trace information is also output.
u: UAP unit information is output.
p: Access path information is output.
r: SQL runtime interim results are output.
a: All information is output.
s, u, p, and r can be specified in different combinations (such as su, sr, or upr).
Specifying supr is the same as specifying a. If u, p, r, up, ur, pr, or upr is specified,
SQL trace information is not output.
Notes

1. If the output of access path information or SQL runtime interim results is
specified, the server load may increase because SQL objects are re-created
even if they already exist in the buffer.

2. UAP unit information is not output for programs that use an X/
Open-compliant API under OLTP.

3. If the size of the access path information or SQL runtime interim results
exceeds one gigabyte, the information is not output.

4. The value 0 is displayed in the time display (for example, SQL execution
time, load wait time, or CPU time) if the value is too small to be retrieved by
a system call of the operating system.

5. With a HiRDB/Parallel Server, privilege check processing by the connected
dictionary server is not included in the UAP unit information.

6. If you specify output of access path information or SQL runtime interim
results and also specify PDIPC=MEMORY in the client environment
definitions, PDIPC=DEFAULT results.

(63) PDREPPATH=storage-directory-for-UAP-statistical-report-files
 <path name> ((up to 256 bytes))

This environment variable specifies the directory in which UAP statistical report files
are to be created if the files are to be created in a different directory from the directory
specified by PDCLTPATH. This environment variable is effective only when
PDUAPREPLVL is specified.
Information is output to the UAP statistical report file each time the UAP is connected
or disconnected. The file name is formed from the connection time
(HH:MM:SS:mmm) and the connection number (XXX). Examples are
pdHHMMSSmmm_XXX_1.trc and pdHHMMSSmmm_XXX_2.trc.

6. Client Environment Setup

552

(64) PDTRCPATH=storage-directory-for-dynamic-SQL-trace-files
 <path name> ((up to 256 bytes))

This environment variable specifies the storage directory for dynamic SQL trace files
that the HiRDB client creates. This environment variable must be specified when
dynamic SQL trace files are collected with the trace acquisition command
(pdtrcmgr).
When the directory specified here is specified in the pdtrcmgr command, an SQL
trace file is created in the specified directory from the next connection. For details
about pdtrcmgr, see 10.1.6 SQL trace dynamic acquisition facility.

(65) PDSQLTRCOPENMODE={CNCT|SQL}
This environment variable specifies the open mode for SQL trace files when
PDREPPATH is specified.
CNCT

Opens and closes the SQL trace file in CONNECT and DISCONNECT units, and
outputs trace information. When CNCT is specified instead of SQL in
PDSQLTRCOPENMODE, the SQL trace output time can be shortened because the
overhead is reduced.
When CNCT is specified, the system continues to write information as long as the
SQL trace file is open. Therefore, some SQL trace information may be discarded
if DISCONNECT cannot be executed properly.

SQL
Opens and closes the SQL trace file in operation units (SQL units), and outputs
trace information.

(66) PDSQLTEXTSIZE=SQL-statement-size
 <unsigned integer> ((4096-2000000)) <<4096>> (bytes)

This environment variable specifies the size of the SQL statement to be output to the
SQL trace.
If this environment variable is omitted during access path acquisition, 2000000 is
assumed instead of 4096.

(67) PDSQLEXECTIME={YES|NO}
This environment variable specifies whether the SQL runtime is to be output to the
SQL trace.
YES

Output the SQL runtime.
The unit for the SQL runtime that is output is microseconds. Normally runtime

6. Client Environment Setup

553

values over 24 hours are not output in the SQL trace.
NO

Do not output the SQL runtime.
(68) PDRCTRACE=reconnect-trace-file-size

 <unsigned integer> ((0, 4096-2000000000)) (bytes)
This environment variable specifies the size of the output file for UAP reconnect trace
information.
If 0 is specified, the maximum file size is assumed, and UAP reconnect trace
information that exceeds the maximum size is not output. UAP reconnect trace
information also is not output when this environment variable is omitted.
If a value from 4,096 to 2,000,000,000 is specified, the specified value becomes the
file size, and the output destination switches when the file size exceeds the specified
value.
The reconnect trace is output to the directory specified in PDCLTPATH. If PDCLTPATH
is not specified, the reconnect trace is output in the current directory when the UAP is
executed (current directory during J2EE server execution if the UAP is executed from
Cosminexus). For details about the reconnect trace, see 10.1.7 Reconnect trace facility.

(69) PDWRTLNPATH=storage-directory-for-files-to-which-WRITE-LINE-statemen
t-value-expression-values-are-output

 <path name> ((up to 256 bytes))
This environment variable specifies the storage directory for files to which value
expression values of WRITE LINE statements are to be output. For details about the
WRITE LINE statement, see the manual HiRDB Version 8 SQL Reference.
If PDWRTLNPATH is omitted, the directory specified in PDCLTPATH is assumed.
Two files are created in the specified directory (or the directory specified in
PDCLTPATH if PDWRTLNPATH is omitted). The files that are created differ depending
on whether or not an X/Open-compliant API (TX_function) is used. The names of
the created files are shown as follows.
If TX_function is not used

pdwrtln1.trc and pdwrtln2.trc
If TX_function is used

pdwrtlnxxxxx-1.trc and pdwrtlnxxxxx-2.trc
xxxxx: Process ID when the UAP is executed

6. Client Environment Setup

554

(70) PDWRTLNFILSZ=maximum-size-of-output-files-for-WRITE-LINE-statement-
value-expression-values

 <unsigned integer> ((0, 4096-2000000000)) (bytes)
This environment variable specifies the maximum size of the files to which value
expression values of WRITE LINE statements are to be output.
If 0 is specified, the maximum file size is the maximum file size that the OS can
manage. If the maximum size is exceeded, the value expression values of WRITE LINE
statements are not output. Value expression values of WRITE LINE statements also are
not output if this environment variable is omitted.
If a value from 4,096 to 2,000,000,000 is specified, the specified value becomes the
maximum file size, and the output destination switches when the file size exceeds the
specified value.
Notes

1. If both PDWRTLNFILSZ and PDIPC=MEMORY are specified, the PDIPC
specification becomes invalid.

2. The files are output to the directory specified in PDWRTLNPATH.
3. If a file becomes full when values are being output, values are output to the

other file. When this happens, the information already stored in the
switchover-destination file is deleted, and new information is written to that
file. Therefore, if the file contains required information, save that
information before switchover occurs. To find out which file is currently
being used, use the following method. The file that has the more recent
update date is the current file.

 In UNIX: Execute the ls -l command of the OS.
 In Windows: Execute the DIR command from the command prompt, or

use Windows Explorer to check the files.
(71) PDWRTLNCOMSZ=total-size-of-WRITE-LINE-statement-value-expression-v
alues

 <unsigned integer> ((1024-131072)) <<1024>> (bytes)
This environment variable specifies the total size of the value expression values in
WRITE LINE statements.
If the total size of the value expression values in WRITE LINE statements exceeds the
PDWRTLNCOMSZ specification value, the excess information is ignored. In this case,
PDWRTLNCOMSZover is output in the following line.

(72) PDUAPEXERLOGUSE={YES|NO}
This environment variable specifies whether the facility for output of extended SQL

6. Client Environment Setup

555

error information is to be used.
For details about the facility for output of extended SQL error information, see 10.1.3
Facility for output of extended SQL error information.
YES

Use the facility for output of extended SQL error information.
NO

Do not use the facility for output of extended SQL error information.
Relationship to the system definition

When this environment variable is omitted, the specification value of the
pd_uap_exerror_log_use operand in the system definition is assumed.

(73) PDUAPEXERLOGPRMSZ=maximum-data-length-of-parameter-information
 <unsigned integer> ((0-32008)) (bytes)

This environment variable specifies the maximum data length of parameter
information to be output to error log and SQL error report files when the facility for
output of extended SQL error information is used. Parameter information is output
when a value of 1 or higher is specified, but parameter information is not output when
0 is specified.
Relationship to the system definition

When this environment variable is omitted, the specification value of the
pd_uap_exerror_log_param_size operand in the system definition is
assumed.

Notes
1. For variable-length character string-type, BLOB-type, and BINARY-type data,

the area of the character length is included in the specification value of this
environment variable.

2. If the data length of the parameter information to be output exceeds the
specification value of this environment variable, the excess portion of the
information is truncated.

(74) PDVWOPTMODE ={0|1|2}
This environment variable specifies whether access path information is to be acquired
for the access path display utility.
The access path information file is created under the SQL information directory
(%PDDIR%\spool\pdsqldump) of the unit containing the single server or the
front-end server to which the UAP is connected.
For details about the access path display utility, see the HiRDB Version 8 Command

6. Client Environment Setup

556

Reference manual.
0

Do not collect access path information.
1

Collect access path information and output the information to the access path
information file. No information is output for SQL statements that have SQL
objects in the buffer.

2
Collect access path information and output the information to the access path
information file. For SQL statements that have SQL objects in the buffer, the SQL
objects are re-created and the information is output.

Notes
1. Specify PDTAAPINFPATH to acquire access path information for HiRDB

SQL Tuning Advisor. For details about the access path information file for
HiRDB SQL Tuning Advisor, see 10.1.8 Access path information file for
HiRDB SQL Tuning Advisor.

2. Note that when 1 is specified, no information is output for SQL statements
that have SQL objects in the buffer. If you want the information output to
include information about SQLs that have SQL objects in the buffer, specify
2.

3. If 2 is specified, the server load increases compared to when 1 is specified
because SQL objects are also re-created for SQL statements that have SQL
objects in the buffer.

4. If the total of %PDDIR%-path-length + authorization-identifier-length +
UAP-name-length is larger than 220 characters when the Windows-version
HiRDB is used, creation of the access path information file may fail. If this
happens, use the UAP statistical report facility and get access path
information. For details about the UAP statistical report facility, see 10.1.4
UAP statistical report facility.

5. The following table shows the relationships between the SQL types and the
PDVWOPTMODE specification values.

SQL type Condition PDVWOPTMODE
specification value

0 1 2

Static SQL SQL objects are not found in the buffer. Y Y

SQL objects are found in the buffer. Y

6. Client Environment Setup

557

Y: Access path information is output.
: Access path information is not output.

(75) PDTAAPINFPATH=access-path-information-file-output-directory-name
<path name>

This environment variable specifies the output destination directory when an access
path information file for HiRDB SQL Tuning Advisor is output. If an output
processing error occurs even with this environment variable specified, because the
output destination directory does not exist or because there is no write privilege for the
specified directory, the access path information is not output. Note that even when an
output processing error occurs, there is no error in the executing SQL. For details about
the access path information file for HiRDB SQL Tuning Advisor, see 10.1.8 Access
path information file for HiRDB SQL Tuning Advisor.
Notes

• This environment variable is ignored when the dynamic browsing function
of HiRDB SQL Tuning Advisor is used.

• The inter-process memory communication facility cannot be used when this
environment variable is specified. Even though you specify MEMORY for the
PDIPC operand in the client environment definition, operation is the same as
when DEFAULT is specified.

(76) PDTAAPINFMODE={0|1}
This environment variable specifies the file name format of the access path
information files that are output for HiRDB SQL Tuning Advisor.
0:

The file names are pdtaapinf1 and pdtaapinf2.

dynamic SQL SQL objects are not found in the buffer. Y Y

SQL objects are found in the buffer. Y

Routine definition None Y Y

CALL statement Index information for procedure SQL objects is invalid as
a result of index addition or deletion.

Y Y

Other condition

SQL type Condition PDVWOPTMODE
specification value

0 1 2

6. Client Environment Setup

558

1:
The file names are in the format pdtaapinfHHMMSSmmm_XXX_1 and
pdtaapinfHHMMSSmmm_XXX_2.
HHMMSSmmm:

Connection time (same as the connection start time of the applicable
CONNECT output in an SQL trace)

XXXXXXXXXX:
Connection sequence number (maximum of 10 digits)

(77) PDTAAPINFSIZE=access-path-information-file-size
<unsigned integer>((100000 - 2000000000)) (409600) (bytes)

This environment variable specifies the file size of an access path information file that
is output for HiRDB SQL Tuning Advisor. When the file size specified here is reached
in the current access path information file, the output destination is switched to the
other file. After that, the two files are used alternately by repeating this switching.

(78) PDSTJTRNOUT={YES|NO}
This environment variable specifies whether UAP statistical information is to be
output to a statistical log file for each transaction.
YES

Output UAP statistical information to a statistical log file for each transaction.
NO

Output UAP statistical information to a statistical log file for each connection.
To specify the start of UAP statistical information output, use the pdstbegin operand
of the system definition or the pdstbegin command. For details about the
pdstbegin operand, see the manual HiRDB Version 8 System Definition. For details
about the pdstbegin command, see the manual HiRDB Version 8 Command
Reference.
If this environment variable is omitted when the UAP is operating in an OLTP
environment, UAP statistical information is output to a statistical log file for each
transaction. If this environment variable is omitted when the UAP is operating in
another environment, UAP statistical information is output to a statistical log file for
each connection.

(79) PDLOCKLIMIT=maximum-locked-resource-request-count-per-user
 <unsigned integer> ((0-32,767)) <<0>>

This environment variable specifies the maximum number of lock requests (that is, the
maximum number of locked resource requests) that a UAP can issue to one server.

6. Client Environment Setup

559

If 0 is specified or this environment variable is omitted, the HiRDB system does not
check the maximum number of lock requests. In this case, the maximum possible
number of lock requests is issued.
Estimation method

The number of locked resources depends on the SQL. Estimate the number of
locked resources depending on the lock processing to determine the value to be
specified in this operand. For details about how to estimate the locked resource
count, see the manual HiRDB Version 8 System Definition. For details about lock
processing, see 3.4 Locking.

(80) PDDLKPRIO={96|64|32}
This environment variable specifies the deadlock priority value of the UAP and
becomes effective when Y is specified in the pd_deadlock_priority_use operand
of the system definition.
If a deadlock occurs between two programs, the program with the smaller value
specified in this environment variable is processed at a higher priority. The program
with the larger value is terminated with an error, and that program is rolled back.
If a deadlock occurs between two programs that have the same deadlock priority value,
the one with the transaction that started earlier is processed first. The following table
lists the deadlock priority values:

: Not applicable

PDDLKPRIO specification Deadlock priority value

96 96

64 64

32 32

Omitted When the X/Open XA interface is used 96

When the X/Open XA interface is not used 64

For distributed server of distributed database 64

Utility 64

Operation
command

pddbchg, pdhold (-b and -s),
pdorbegin, or pdorend

Specification value of the
pd_command_deadlock_priority
operand in the system definition

Other operation command 64

6. Client Environment Setup

560

(81) PDLOCKSKIP={YES|NO}
This environment variable specifies whether an unlocked conditional search can be
performed.
YES

Enables an unlocked conditional search.
NO

Disables an unlocked conditional search.
When YES is specified in this environment variable, the conditional search of a
retrieval process (including retrieval for DELETE and UPDATE) is performed without
locking all items. For details about unlocked conditional search, see 3.4.5 Unlocked
conditional search.

(82) PDFORUPDATEEXLOCK={YES|NO}
This environment variable specifies whether WITH EXCLUSIVE LOCK is to be applied
to the lock option of SQL statements in which the FOR UPDATE clause is specified (or
assumed) in the UAP. If WITH EXCLUSIVE LOCK is applied, the specification value
of the PDISLLVL client environment definition is ignored.
YES

Apply WITH EXCLUSIVE LOCK to the lock option of SQL statements in which
the FOR UPDATE clause is specified.

NO
Apply the PDISLLVL specification value to the lock option of SQL statements in
which the FOR UPDATE clause is specified.

If PDFORUPDATEEXLOCK is specified for an SQL statement in a routine, the
specification becomes invalid. To apply WITH EXCLUSIVE LOCK to an SQL statement
specifying the FOR UPDATE clause in a routine, specify WITH EXCLUSIVE LOCK as
an SQL compile option when defining the routine.

(83) PDISLLVL=data-guarantee-level
 <unsigned integer> ((0-2)) <<2>>

This environment variable specifies the data guarantee level of an SQL statement. The
data guarantee level is the point in a transaction up to which data is to be guaranteed.
This environment variable has the same function as the WITHOUT LOCK option that is
specified in the SELECT statement.
This environment variable enables batch determination of all lock options for the SQL
statements in a UAP. Note that the data guarantee level specified in the lock option of
an SQL statement takes precedence over this operand.

6. Client Environment Setup

561

For details about the data guarantee level, see 4.6 Data guarantee levels.
0

If another user is updating data, users are allowed to reference the same data
without having to wait for completion of the update processing. This specification
can improve the processing concurrency level. However, if the same row of data
is retrieved twice within the same transaction, the same data might not be
received. For example, if a stock table is retrieved with SELECT * FROM STOCK,
the user can retrieve the desired data without having to wait for lock release, even
when another user is updating the stock table. This corresponds to the SELECT
statement with WITHOUT LOCK NOWAIT.
For the cursor declaration used with update processing, a value of 1 is always
assumed, even if 0 is specified.

1
If a user is retrieving data, other users are not allowed to update that data until
retrieval processing is completed. Other users are allowed to reference or update
that data when the retrieval terminates, even if the transaction has not terminated.
This specification therefore improves the apparent concurrent execution property.
However, if the same row is retrieved twice in the same transaction, the same data
may not be retrieved. For example, if data is being retrieved from a stock table
with SELECT * FROM STOCK, other users are allowed to update or reference the
stock table after the retrieval ends, without having to wait for the transaction to
terminate. This corresponds to the SELECT statement with WITHOUT LOCK
WAIT.

2
All other users are prohibited from updating the data being retrieved until the
retrieval transaction terminates. For example, if a stock table is retrieved with
SELECT * FROM STOCK, the contents of the stock table are guaranteed until the
transaction terminates. This corresponds to the SELECT statement with WITH
SHARE LOCK.
For a cursor declaration that accompanies an update, WITH EXCLUSIVE LOCK is
assumed.

Notes
1. The data guarantee level of SQL statements in a stored procedure is

determined by the specifications for CREATE PROCEDURE, CREATE TYPE,
ALTER PROCEDURE, and ALTER ROUTINE. Therefore, when a procedure is
executed, the data guarantee level is not affected by this environment
variable.

2. If this environment variable is omitted along with the lock option in an SQL
statement, the WITH SHARE LOCK option is assumed for the SQL statement.

6. Client Environment Setup

562

For details about lock options, see the HiRDB Version 8 SQL Reference
manual.

(84) PDSQLOPTLVL=SQL-optimization-option[,SQL-optimization-option]...
 <identifier or unsigned integer>

This environment variable specifies optimization methods for determining the most
efficient access path by taking the database status into consideration.
Although SQL optimization options can be specified either with identifiers (character
strings) or numbers, specifying the options with identifiers is usually recommended.
Specifying the SQL optimization methods with identifiers

PDSQLOPTLVL="identifier"[,"identifier"]...

Examples
• Applying prioritized nest-loop-join and rapid grouping processing:

PDSQLOPTLVL="PRIOR_NEST_JOIN","RAPID_GROUPING"
• Applying no optimization method:

PDSQLOPTLVL="NONE"
Rules

1. Specify at least one identifier.
2. When specifying two or more identifiers, separate them with commas.
3. For details about the information (optimization methods) that can be

specified with identifiers, see Specification values for the SQL
optimization option.

4. If no optimization is to be applied, specify NONE as the identifier.
However, if another identifier is specified together with NONE, then
NONE becomes invalid.

5. The identifiers can be specified with uppercase and lowercase
characters.

6. Even if the same identifier is specified more than once, HiRDB
recognizes only one specification. However, try not to specify the same
identifier more than once.

7. The character string specified for "identifier"[,"identifier"]... can
have up to 575 bytes.

Specifying the SQL optimization methods with numbers
PDSQLOPTLVL=unsigned-integer[,unsigned-integer]...

6. Client Environment Setup

563

Examples
• Applying making multiple SQL objects, suppressing use of AND

multiple indexes, and forcing use of multiple indexes
Specification when unsigned integers are separated by commas:
PDSQLOPTLVL=4,10,16
Specification when the sum of the unsigned integers is specified:
PDSQLOPTLVL=30

• Specification when 14 (4+10) is already specified and 16 is added:
PDSQLOPTLVL=14,16

• Applying no optimization method:
PDSQLOPTLVL=0

Rules
1. When HiRDB is updated from a version before 06-00 to version 06-00

or later, the total value specification of the earlier version remains
effective. If the optimization options do not need to be changed after
HiRDB is updated to Version 06-00 or later, the specification value of
this operand does not need to be changed.

2. Specify at least one unsigned integer.
3. When specifying two or more unsigned integers, separate them with

commas.
4. For details about the information (optimization methods) that can be

specified with unsigned integers, see Specification values for the SQL
optimization option.

5. If no optimization is to be applied, specify 0 as the identifier. However,
if another identifier is specified together with 0, then 0 becomes invalid.

6. Even if the same unsigned integer is specified more than once, HiRDB
recognizes only one specification. However, try not to specify the same
unsigned integer more than once.

7. Multiple optimization methods can also be specified by specifying the
sum of the unsigned integers. However, do not add the same
optimization method value more than once. (Otherwise, the specified
result may be interpreted as an unintended optimization methods.)

8. If multiple optimization method values are added together and
specified, it becomes difficult to determine which optimization methods
are being specified. Hitachi therefore recommends that you separate the

6. Client Environment Setup

564

values with commas. If several optimization method values have
already been added and specified, and a new optimization method
becomes necessary, you can separate the new value with a comma and
specify it after the previous specification.

9. The character string specified for
"unsigned-integer"[,"unsigned-integer"]... can have up to 575 bytes.

Relationship to the system definition
1. When this environment variable is omitted, the value specified in the

pd_optimize_level operand of the system definition is assumed. For
details about the pd_optimize_level operand, see the manual HiRDB
Version 8 System Definition.

2. If the pd_floatable_bes or pd_non_floatable_bes operand is
specified in the system definitions, the specifications for increasing the target
floatable servers (back-end servers for fetching data) and limiting the target
floatable servers (back-end servers for fetching data) specifications become
invalid.

3. If KEY is specified (for index key value locking) in the
pd_indexlock_mode operand of the system definitions, the specification
for suppressing creation of update-SQL work tables becomes invalid.

Relationship with SQL
The SQL optimization option for an SQL statement in a stored procedure is
determined by the specifications for CREATE PROCEDURE, CREATE TYPE, ALTER
PROCEDURE, or ALTER ROUTINE, and is not affected by the PDSQLOPTLVL
specification.
If an SQL optimization specification is specified in an SQL statement, the SQL
optimization specification has priority over the SQL optimization option. For
details about SQL optimization specifications, see the manual HiRDB Version 8
SQL Reference.

Specification values for the SQL optimization option
Table 6-28 shows the values that can be specified for the SQL optimization
option.
Table 6-28: Specification values of the SQL optimization option

Number Optimization method Specification value

Identifier Unsigned
integer

1 Forced nest-loop-join "FORCE_NEST_JOIN" 4

6. Client Environment Setup

565

1 If increasing the target floatable servers (back-end servers for fetching data) and
limiting the target floatable servers (back-end servers for fetching data) are both
specified, neither optimization method becomes effective. Instead, the servers operate

2 Making multiple SQL objects "SELECT_APSL" 10

3 Increasing the target floatable servers
(back-end servers for fetching data)1, 2

"FLTS_INC_DATA_BES" 16

4 Prioritized nest-loop-join "PRIOR_NEST_JOIN" 32

5 Increasing the number of floatable
server candidates2

"FLTS_MAX_NUMBER" 64

6 Priority of OR multiple index use "PRIOR_OR_INDEXES" 128

7 Group processing, ORDER BY
processing, and DISTINCT set
function processing at the local
back-end server2

"SORT_DATA_BES" 256

8 Suppressing use of AND multiple
indexes

"DETER_AND_INDEXES" 512

9 Rapid grouping processing "RAPID_GROUPING" 1024

10 Limiting the target floatable servers
(back-end servers for fetching data)1, 2

"FLTS_ONLY_DATA_BES" 2048

11 Separating data collecting servers1, 2 "FLTS_SEPARATE_COLLECT_SVR" 2064

12 Suppressing index use (forced table
scan)

"FORCE_TABLE_SCAN" 4096

13 Forcing use of multiple indexes "FORCE_PLURAL_INDEXES" 32768

14 Suppressing creation of update-SQL
work tables

"DETER_WORK_TABLE_FOR_UPDATE" 131072

15 Deriving high-speed search conditions "DERIVATIVE_COND" 262144

16 Applying key conditions that include
scalar operations

"APPLY_ENHANCED_KEY_COND" 524288

17 Facility for batch acquisition from
functions provided by plug-ins

"PICKUP_MULTIPLE_ROWS_PLUGIN" 1048576

Number Optimization method Specification value

Identifier Unsigned
integer

6. Client Environment Setup

566

as separating data collecting servers.
2 When a HiRDB/Single Server is used, this option becomes invalid, even if specified.
Recommended specification values

The recommended specification values are indicated with item numbers in the
examples and the following table. These numbers correspond to the numbers in
the Number column of Table 6-28.

• HiRDB/Single Server
Specify item numbers 4, 6, 8, 9,14, and 16. An example of how these
numbers are specified with identifiers is shown as follows.

PDSQLOPTLVL="PRIOR_NEST_JOIN",
 "PRIOR_OR_INDEXES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

• HiRDB/Parallel Server
Table 6-29 shows the recommended specification values for the SQL
optimization option.

Table 6-29: Recommended specification values for the SQL optimization option
(for HiRDB/Parallel Server)

Condition Specification value

Use as many back-end
servers as feasible for
SQL processing so that
the individual SQL
statements can be
processed quickly

To process SQL statements
involving mass-data
searches quickly

Specify item numbers 3 to 9, 14 and 16.
Identifier specification example:
PDSQLOPTLVL="FLTS_INC_DATA_BES",
 "PRIOR_NEST_JOIN",
 "FLTS_MAX_NUMBER",
 "PRIOR_OR_INDEXES",
 "SORT_DATA_BES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

To process searches with
numerous results (several
tens of data items) quickly

Specify item numbers 3, 4, 6 to 9, 14 and 16.
Identifier specification example:
PDSQLOPTLVL="FLTS_INC_DATA_BES",
 "PRIOR_NEST_JOIN",
 "PRIOR_OR_INDEXES",
 "SORT_DATA_BES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

6. Client Environment Setup

567

Explanation of optimization methods

1. Forced nest-loop-join
If indexes are defined in the columns of the join condition, only nest-loop-join is
used in join processing. For details about the join processing method for
nest-loop-join, see 4.5.6 Join methods.
However, if one of the following conditions applies, a method other than
nest-loop-join may be used in join processing:

• An entity (for example, a scalar operation) other than a column is specified
in the join condition.

• The join condition is not a = predicate.
• The column in the join condition is not the first configuration column of the

index. Also, if the column in the join condition is the n-th configuration
column of the index, a = predicate or a restriction condition of the IS NULL

To separate back-end
servers for each job

To process SQL statements
involving mass-data
searches quickly

Specify item numbers 4 to 10, 14 and 16.
Identifier specification example:
PDSQLOPTLVL="PRIOR_NEST_JOIN",
 "FLTS_MAX_NUMBER",
 "PRIOR_OR_INDEXES",
 "SORT_DATA_BES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "FLTS_ONLY_DATA_BES",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

To process searches with
numerous results (several
tens of data items) quickly

Specify item numbers 4, 6 to 10, 14 and 16.
Identifier specification example:
PDSQLOPTLVL="PRIOR_NEST_JOIN",
 "PRIOR_OR_INDEXES",
 "SORT_DATA_BES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "FLTS_ONLY_DATA_BES",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

Other conditions Specify item numbers 4, 6 to 9, 14 and 16.
Identifier specification example:
PDSQLOPTLVL="PRIOR_NEST_JOIN",
 "PRIOR_OR_INDEXES",
 "SORT_DATA_BES",
 "DETER_AND_INDEXES",
 "RAPID_GROUPING",
 "DETER_WORK_TABLE_FOR_UPDATE"
 "APPLY_ENHANCED_KEY_COND"

Condition Specification value

6. Client Environment Setup

568

predicate is not specified for any of the preceding configuration columns
(first configuration column to n -1 -th configuration column).

• A join condition is not specified in the ON search condition for an outer join.
• In the join condition, a plug-in presentation function that executes a search

using the indexes of two tables to be joined, or a structured repetition
predicate, is specified for the two tables.

• A HiRDB/Parallel Server is used, and a partitioned column of the inner table
is not specified in the join condition for an outer join that uses a partitioned
table as the inner table.

• A HiRDB/Parallel Server is used, and the outer join uses a flexible hashed
partitioned table as the inner table.

Notes
1. If a joined table is to be processed by nest-loop-join, the table that was specified
as the outer table in the SQL is used as the outer table.
2. If an index is defined in only one of the columns of the join condition and the
join is to processed with nest-loop-join, the table with the defined index becomes
the inner table.
3. Except when a joined table is involved, if a join where indexes are defined in
the columns on both sides of the join condition is processed by nest-loop-join,
HiRDB judges and determines the outer and inner tables of the nest-loop-join.
However, if a view table or WITH clause query name is not specified in the FROM
clause, HiRDB determines the outer and inner tables according to the following
rules:

 If partitioned tables of a HiRDB/Parallel Server are to be joined, and all
partitioned columns of one table but not all partitioned columns of the other table
are specified in the join condition, the table for which all partitioned columns are
specified in the join condition becomes the inner table.

 If (a) previously does not apply, the first table specified in the FROM clause
becomes the outer table.
4. If "forced nest-loop-join" is applied in the HiRDB/Parallel Server and mass
data is to be joined, partition the tables with joined columns as much as possible.

2. Making multiple SQL objects
Multiple SQL objects are created in advance, and the optimum SQL object is
selected during execution, based on the value of an embedded variable or the ?
parameters.

3. Increasing the target floatable servers (back-end servers for fetching data)
Normally, back-end servers that are not used for fetching data are used as floating

6. Client Environment Setup

569

servers. With this optimization method, back-end servers that are used for
fetching data can also be used as floating servers. However, the HiRDB system
calculates the number of back-end servers that can be used as floating servers, and
not all back-end servers end up being used as floating servers. To use all back-end
servers, also specify the specification for increasing the number of floatable
server candidates.
For details about how to allocate floatable servers, see 4.5.4 Allocating floatable
servers (HiRDB/Parallel Server only).
This specification is valid only for a HiRDB/Parallel Server.

4. Prioritized nest-loop-join
If indexes are defined in the columns of the join condition, nest-loop-join is used
with priority in join processing. For details about the join processing method for
nest-loop-join, see Section 4.5.6 Join methods.
This optimization method is different from 1. Forced nest-loop-join. Forced
nest-loop-join always executes nest-loop-join if indexes are defined in the join
condition, even if there is no narrowing condition (except when restrictions
apply). On the other hand, while prioritized nest loop join always executes
nest-loop-join if a narrowing condition is specified, HiRDB determines the join
method if there is no narrowing condition. However, if one of the following
conditions applies, a method other than nest-loop-join may be used in join
processing, even if a narrowing condition is specified:

• An entity (for example, a scalar operation) other than a column is specified
in the join condition.

• The join condition is not a = predicate.
• The column in the join condition is not the first configuration column of the

index. Also, if the column in the join condition is the n-th configuration
column of the index, a = predicate or a restriction condition of the IS NULL
predicate is not specified for any of the preceding configuration columns
(first configuration column to n -1 -th configuration column).

• A join condition is not specified in the ON search condition for an outer join.
• In the join condition, a plug-in presentation function that executes a search

using the indexes of two tables to be joined or a structured repetition
predicate is specified for the two tables.

• A HiRDB/Parallel Server is used, and a partitioned column of the inner table
is not specified in the join condition for an outer join that uses a partitioned
table as the inner table.

• A HiRDB/Parallel Server is used, and the outer join uses a flexible hashed
partitioned table as the inner table.

6. Client Environment Setup

570

• The optimizing information collection utility (pdgetcst) is being executed.
• The narrowing condition is a search condition that includes only a CHAR,

VARCHAR, MCHAR, or MVARCHAR column that has a definition length of at
least 256 bytes; an NCHAR or NVARCHAR column that has a definition length
of at least 128 characters; or a BLOB column.

• The narrowing condition is a search condition that includes only a NOT or OR
operator.

Notes
1. If a joined table is to be processed by nest-loop-join, the table that was specified
as the outer table in the SQL is used as the outer table.
2. If an index is defined in only one of the columns of the join condition and the
join is processed with nest-loop-join, the table with the defined index becomes the
inner table.
3. Except when joined tables are involved, if an index is defined in both columns
of the join condition and the join is to be processed with nest-loop-join, HiRDB
determines which table becomes the outer table and which becomes the inner
table in the nest-loop-join. However, if a view table or WITH clause query name
is not specified in the FROM clause, and only a join clause is specified in the search
conditions, HiRDB determines the outer and inner tables according to the
following rules:

 If partitioned tables of HiRDB/Parallel Server are being joined, specify all
partitioned columns of one table in the join conditions. If the partitioned columns
of the other table being joined contains columns that were not specified in the
search conditions, the table with the partitioned columns that were all specified in
the join conditions becomes the inner table.

 If the preceding rule does not apply, the first table specified in the FROM clause
becomes the outer table.
4. If 1. Forced nest-loop-join is also specified, this optimization option becomes
invalid.

5. Increasing the number of floatable server candidates
Normally, the HiRDB system calculates and allocates the number of floating
servers that are necessary from the floatable servers that can be used. When this
optimization method is applied, all usable floating servers are used, except for
back-end servers that are used for fetching data.
If you wish to include the back-end servers used for fetching data for use as
floatable servers, also specify the value for increasing the target floatable servers
(back-end servers for fetching data).
For details about how to allocate floatable servers, see 4.5.4 Allocating floatable

6. Client Environment Setup

571

servers (HiRDB/Parallel Server only). This specification is valid only when a
HiRDB/Parallel Server is used.

6. Priority of OR multiple index use
Specify this method to give application priority to the method that uses OR
multiple indexes in searching. The OR multiple index use method is used when
multiple conditions are combined with OR in the search condition. This method
uses an index to search each condition and evaluates the search condition by
taking a sum set of the search results.
When A OR B OR C ... OR Z is specified in the WHERE clause or OR search
condition and the data is narrowed by using = for all conditions combined with
OR, a high-speed search can be realized by applying priority of OR multiple index
use.
Even when the value for priority of OR multiple index use is not specified, HiRDB
applies OR multiple index use when retrieving data if the number of ORs is small.
However, as the number of ORs increases, the retrieval costs that HiRDB expends
in internal calculations also increases, and HiRDB may stop applying OR multiple
index use. If this happens, specify the value for priority of OR multiple index use
so that OR multiple index use is always applied, even if the number of ORs
becomes large.
Notes
1. If an AND condition is specified together with the OR conditions, and the AND
condition uses an index to narrow the data, that index may be used in the search
process.
2. This optimization method is applied when all conditions specified with OR are
narrowed with = in the comparison predicate. Also, a single-column index or the
index that becomes the first configuration column of a multi-column index must
be defined for all columns that were narrowed with =.
3. In a join search of two or more tables, this optimization method may not be
applied if HiRDB determines that searching the data by using a joined column
index would be faster.
4. For some SQL statements, AND multiple index use, which involves sum sets, is
applied instead of OR multiple index use. In such cases, high-speed retrieval is
also possible, just as when OR multiple index use is applied. However, if AND
conditions are specified, product sets and sum sets may be combined when use of
AND multiple indexes is applied.
If the performance is poor when use of AND multiple indexes specified with
product sets is applied, you can improve the performance with either of the
following methods:

 Specify both priority of OR multiple index use and suppressing use of AND

6. Client Environment Setup

572

multiple indexes at the same time.
 If several column conditions linked with AND can be narrowed, define a

multi-column index that includes these condition columns.
5. If application of optimizing mode 2 based on cost is not used in the SQL
extension optimizing option, multiple indexes are not used in the join search.
However, if there is a condition that cannot be evaluated without applying
multiple index use, multiple indexes are used regardless of the specification of
this optimization method.

7. Group processing, ORDER BY processing, and DISTINCT set function processing
at the local back-end server

Usually, group processing, ORDER BY processing, and DISTINCT set function
processing use a floating server. However, when this optimization is used for a single
table search, group processing, ORDER BY processing, and DISTINCT set function
processing are performed at the back-end server (local back-end server) where the
table is defined.
For details about grouping processing methods, see 4.5.5 Grouping processing
methods (HiRDB/Parallel Server only).
When rapid grouping processing is used, or when as a result of an index search HiRDB
determines that there is no need to sort for group processing, ORDER BY processing, or
DISTINCT set function processing, a faster processing method is selected.
1. Suppressing use of AND multiple indexes

This specification prevents the use of access paths that use AND multiple indexes.
AND multiple indexes are used when a search condition contains multiple
conditions connected by AND, and a different index is defined for each column
(e.g., SELECT ROW FROM T1 WHERE C1=100 AND C2=200). In this case, the
indexes are used to create work tables for the rows that satisfy the conditions, and
a product set is obtained from the resulting work tables.
If the AND multiple indexes being used include OR multiple indexes, this
specification suppresses multiple index use for the AND portion but not for the OR
portion.
Depending on the data characteristics, the product set is effective in some cases
and can worsen performance in others. Multiple index use is effective when using
those indexes significantly narrows the number of items to be searched, and the
amount of duplicated data is reduced when the product set is taken.
Apply this optimization method if you think that using AND multiple indexes is
not effective.
The use of AND multiple indexes cannot be suppressed if a query specification
contains multiple conditions that include columns for the same table, in the

6. Client Environment Setup

573

following locations:
• In a retrieval condition for a structured repetition predicate
• In the first argument of a plug-in distribution function that retrieves data with

an index
2. Rapid grouping processing

This optimization method uses hashing to rapidly process the groups specified in
the GROUP BY clause of the SQL statement.
For details about the rapid grouping facility, see 4.9 Rapid grouping facility.

3. Limiting the target floatable servers (back-end servers for fetching data)
Normally, back-end servers that are not used for fetching data are used as floating
servers. When this optimization method is applied, only back-end servers used for
fetching data are used as floating servers. This specification is valid only for a
HiRDB/Parallel Server. For details about how to allocate floatable servers, see
4.5.4 Allocating floatable servers (HiRDB/Parallel Server only).

4. Separating data collecting servers
If increasing the target floatable servers (back-end servers for fetching data) or
limiting the target floatable servers (back-end servers for fetching data) is
specified, the separating data collecting server method is applied.
When this method is applied, the back-end servers that are not transmitting data
are allocated for data collecting if the SQL statement requires data from multiple
back-end servers to be collected in one back-end server. The back-end servers that
are not used for data collecting (included back-end servers for fetching data) are
allocated as floatable servers for other uses.
For details about how to allocate floatable servers, see 4.5.4 Allocating floatable
servers (HiRDB/Parallel Server only).

5. Suppressing index use (forced table scan)
Normally, the HiRDB system determines whether or not an index is to be used.
When this optimization method is applied, the method that does not use an index
is forcibly used.
However, index use cannot be suppressed if nest loops are linked with the JOIN
command, a structured repetition predicate is specified in the retrieval condition,
or a condition for an index-type plug-in-dependent function is specified.

6. Forcing use of multiple indexes
Specify this optimization option to forcibly select the use of AND multiple indexes
when searching tables.
If several conditions linked with AND area specified and this optimization method

6. Client Environment Setup

574

is not specified, normally only up to two indexes are used even if AND multiple
index use is selected. The number of indexes to be used changes slightly
according to the table definitions, index definitions, and search conditions.
When this optimization method is specified, all conditions that can narrow the
search range by using indexes are used.
The use of AND multiple indexes is effective when using those indexes
significantly narrows the number of items to be searched, and the amount of
duplicated data is reduced when the product set is taken.
If application of optimizing mode 2 based on cost is not used in the SQL extension
optimizing option, multiple indexes are not used in the join search. However, if
there is a condition that cannot be evaluated without applying multiple index use,
multiple indexes are used regardless of the specification of this optimization
method.

7. Suppressing creation of update-SQL work tables
If this optimization method is used when index key value with no lock is applied,
HiRDB does not create work tables for internal processing even if an index is used
for a search, UPDATE statement, or DELETE statement specified in the FOR
UPDATE clause. The SQL statement can therefore be processed at high speed.
If an index key value with no lock is not applied, HiRDB creates work tables.
To check whether an index is being used, use the access path display utility.
If you specify suppressing creation of update-SQL work tables and also use
non-locking of index key values, the restrictions of table manipulation when a
cursor is used are relaxed.
Table 6-30 shows the relationships between SQL statements that create work
tables and the option for suppressing creation of update-SQL work tables.

6. Client Environment Setup

575

Table 6-30: Relationships between SQL statements that create work tables and
suppressing creation of update SQL-work tables

C: Work tables are created.
: Work tables are not created.

1 This includes FOR UPDATE clauses that are assumed when data is updated using
the cursor of this SELECT statement.
2 Work tables are not created if the configuration column of the index to be used
is not specified in the FOR UPDATE OF column name.
3 Work tables are not created if the configuration column of the index to be used
is not specified in the column to be updated on the left side of the SET clause.
4 Work tables for the ORDER BY clause are sometimes not created when indexes
are used.
5 A table from which data is being retrieved with a cursor can be updated by
another SQL statement. However, if the index that is being used for retrieval with
the cursor is updated, the results retrieved with the cursor are not guaranteed.

8. Deriving high-speed search conditions

SQL statement Indexes are used Indexes
are not
usedThis optimization is

applied
This optimization

is not applied

SELECT
statement

FOR UPDATE1 C

FOR UPDATE OF C2

FOR READ ONLY C C C

ORDER BY C 4 5 C 4 C

Previous clauses are not
specified

 5

UPDATE
statement

Only values are specified for
updated values in the SET
clause

C 3

A non-value entity is specified
for an updated value in the SET
clause

C3 C3

DELETE statement C

6. Client Environment Setup

576

When this optimization method is specified, HiRDB derives high-speed search
conditions.
A high-speed search condition refers to a condition that is derived from a WHERE
clause search condition or an ON search condition in a FROM clause by CNF
conversion or condition shifting. When a high-speed search condition is derived,
the retrieval performance improves because the rows to be retrieved are narrowed
down at an early stage. However, generating and executing a high-speed search
condition may take a long time, and the intended access path is not always
achieved. Therefore, whenever possible, specify the high-speed search condition
directly in an SQL statement instead of specifying this optimization option. For
details about deriving high-speed search conditions, see 4.5.11 Deriving
high-speed search conditions.

9. Applying key conditions that include scalar operations
When this optimization method is specified and all columns included in the scalar
operation specified in a limiting condition are index configuration columns,
HiRDB narrows the search by evaluating the condition for each index key value.
This condition is evaluated as a key condition.
HiRDB operation when applying key conditions that include scalar operations
is specified

When HiRDB uses an index to retrieve data, it evaluates the data in the
following sequence:
1. HiRDB narrows the search range of the index (search condition).
2. For the narrowed results obtained in 1., HiRDB evaluates the condition for
each key value of the index and narrows the search further (key condition).
3. For all key values evaluated as true in 2., HiRDB use the row identifier
(ROWID) to reference the data page and evaluate the condition.
If this optimization method is not specified, conditions that include a scalar
operation are evaluated as described in 3. If this optimization method is
specified, such conditions are evaluated as described in 2. Consequently, the
number of rows for which data page referencing is performed becomes
smaller, and the number of input/output operations can be decreased. For
details about search conditions and key conditions, see the manual HiRDB
Version 8 Command Reference.

Notes on applying key conditions that include scalar operations

1. When this optimization method is specified, HiRDB judges that
narrowing using indexes is an effective method of data retrieval, and
consequently, it becomes easier for indexes to be used. Therefore, do not
specify this option unless beneficial results can be expected when indexes in
conditions containing scalar operations are used to narrow searches.

6. Client Environment Setup

577

2. A condition is not evaluated as a key condition if one of the following
applies:

 The condition includes a columns that is not an index configuration
column.

 The condition includes a system-defined scalar function.
 The condition includes the system built-in scalar function

IS_USER_CONTAINED_IN_HDS_GROUP.
 The condition includes function calling.
 The condition includes a repetition column that has an integer subscript.

3. The evaluation of a structured repetition predicate that includes a scalar
operation causes an error because such predicates cannot be evaluated
without using an index. Therefore, the key condition is applied, even if this
optimization method is not specified.

17. Facility for batch acquisition from functions provided by plug-ins
If a function provided by a plug-in is specified in the search conditions and
HiRDB uses a plug-in index to retrieve data, HiRDB normally obtains the results
returned from that function (row position information and, if necessary, passing
inter-function values) one row at a time.
When this optimization method is applied, the number of times the function
provided by the plug-in is called can be decreased because the results returned by
the function provided by the plug-in can be obtained in batches of multiple rows.
Consequently, the retrieval performance also improves. Note that when the
facility for batch acquisition from functions provided by plug-ins is applied,
HiRDB creates an internal work table.
Even if this optimization method is not specified, HiRDB sometimes
unconditionally applies the facility for batch acquisition from functions provided
by plug-ins if it determines that data can be retrieved at high-speed if the facility
is always applied. The following table describes the cases when the facility for
batch acquisition from functions provided by plug-ins is applied.

6. Client Environment Setup

578

Legend:
UA:

The facility for batch acquisition from functions provided by plug-ins is
applied unconditionally.

WTA:
A new work table is created, and the facility for batch acquisition from
functions provided by plug-ins is applied.

NA:
The facility for batch acquisition from functions provided by plug-ins is not
applied.

* For details about SQL statements that require a work table file, see the manual
HiRDB Version 8 Description.
Notes on the facility for batch acquisition from functions provided by plug-ins

1. When HiRDB obtains results returned by a function provided by a
plug-in, it must create a work table internally. Normally, this
optimization method improves the retrieval performance since the time
needed to create a work table is usually shorter than the time needed to
accept results returned one row at a time. However, sometimes the
retrieval performance drops when this optimization method is specified.
Therefore, if the effect of the drop in performance is large, do not
specify this optimization method.

Type of specified SQL statement Specification of
facility for batch
acquisition from

functions provided
by plug-ins

No Yes

SQL statement that requires a work table for the
base table search results*

Function that does not support
batch acquisition

NA NA

Function that supports batch
acquisition

UA UA

SQL statement that does not require a work table
for the base table search results*

Function that does not support
batch acquisition

NA NA

Function that supports batch
acquisition

NA WTA

6. Client Environment Setup

579

2. If this optimization method is specified for a retrieval in which a work
table is not created, the time when the first FETCH occurs is delayed.
This is because the process that returns results to the client each time a
row is fetched changes to a process that returns results to the client after
all rows satisfying the search condition of the function provided by the
plug-in are fetched and the work table is created. If a drop in the
performance of the first FETCH process becomes a problem, do not
specify this optimization method.

3. When this optimization method is applied, the required memory size
increases because the results of the functions provided by plug-ins are
obtained in batches of multiple rows. For details about the required
memory size, see the HiRDB Version 8 Installation and Design Guide.

Notes

1. For a table for which no indexes have been defined, the following optimization
methods have no effect, even if they are specified:
Forced nest-loop-join
Making multiple SQL objects
Prioritized nest-loop-join
Priority of OR multiple index use
Suppressing use of AND multiple indexes
Suppressing index use (forced table scan)
Forcing use of multiple indexes
Suppressing creation of update-SQL work tables
Applying key conditions that include scalar operations

2. When the ASSIGN LIST statement is used (except in subqueries), HiRDB always
uses indexes to retrieve data. Therefore, specifying the following optimization
methods has no effect:
Suppressing use of AND multiple indexes
Suppressing index use (forced table scan)

3. If optimizing information is not retrieved with the optimizing information
collection utility (pdgetcst), specifying the value for making multiple SQL
objects has no effect.

4. If the number of groups to be grouped is large, rapid grouping processing may not
have any effect. In this case, a value of the required size should be specified by
estimating PDAGGR. Specifying a value larger than the estimated value will have
no beneficial effect. Remember that the use of process-specific memory increases

6. Client Environment Setup

580

as a larger value is specified.
5. For SQL statements that use all back-end servers to fetch data, even if the value

for increasing the target floatable servers (back-end servers for fetching data) is
not specified, the back-end servers for fetching data are used as floatable servers.

6. If the optimization option values for priority of OR multiple index use and
suppressing index use (forced table scan) are specified at the same time, the
specification for priority of OR multiple index use becomes ineffective.

7. If the optimization option values for suppressing use of AND multiple indexes and
forcing use of multiple indexes are specified at the same time, multiple index use
is suppressed for AND sections and is forced for OR sections.

8. If the optimization option values for forcing use of multiple indexes and
suppressing index use (forced table scan) are specified at the same time, the
specification for forcing use of multiple indexes becomes ineffective.

9. SQL optimization option values that are stored in the SQL_ROUTINES dictionary
table are converted to decimal format (sum of unsigned integers used to specify
individual optimization methods).

10. If Suppressing creation of update-SQL work tables is specified and a search with
a FOR UPDATE clause specification is performed, the same row may be retrieved
several times if the configuration column of an index used in the search is updated
for a value that satisfies the search condition.
Example:
[Index definition]
CREATE INDEX X1 ON T1(C1)
[Cursor definition]
DECLARE CR1 CURSOR FOR SELECT C1 FROM T1 WHERE C1>0 FOR
UPDATE

When this cursor is used and the next FETCH and UPDATE statements are repeated,
the row that was updated to C1=10 is retrieved several times.
FETCH CR1 INTO :XX
UPDATE T1 SET C1=10 WHERE CURRENT OF CR1

Correction methods:
• Change the search condition so that the update value in the UPDATE

statement does not satisfy the search condition of the search.
Example:
Change WHERE C1>0 to WHERE C1>0 AND C1< >10.

• Do not specify the optimization option value for suppressing creation of
update-SQL work tables for UAPs that have problems with the same row
being retrieved more than once. For a stored routine, redefine the routine

6. Client Environment Setup

581

instead of specifying the optimization option value when defining the
routine.

• Delete the affected column from the configuration columns of the indexes to
be used in the search. However, if an index configuration column is deleted,
the search performance may become worse if that column significantly
narrows the search scope with the search condition. Also, if part of an index
is deleted, the number of index key duplications increases, and lock wait and
deadlock may occur frequently. This correction method is therefore not
highly recommended. If you plan to employ this correction method, be sure
to verify the effects thoroughly.

The same line may also be updated several times if an index configuration file to
be used in an UPDATE statement is specified as the column name of the SET clause
in that UPDATE statement, and a value that satisfies the search condition of the
WHERE clause is specified as the update value.

(85) PDADDITIONALOPTLVL=SQL-extension-optimizing-option[,SQL-extension
-optimizing-option]...

 <identifier or unsigned integer>
This environment variable specifies optimization methods for determining the most
efficient access path by taking the database status into consideration.
The SQL extension optimizing methods can be specified with identifiers (character
strings) or numbers.
Specifying the SQL extension optimizing methods with identifiers

PDADDITIONALOPTLVL="identifier"[,"identifier"]...

Examples
• Applying application of optimizing mode 2 based on cost and hash join,

subquery hash execution:
PDADDITIONALOPTLVL="COST_BASE_2","APPLY_HASH_JOIN"

• Applying no optimization method:
PDADDITIONALOPTLVL="NONE"

Rules
1. Specify at least one identifier.
2. When specifying two or more identifiers, separate them with commas.
3. For details about the information (optimization methods) that can be

specified with identifiers, see Specification values for the SQL extension
optimizing option.

6. Client Environment Setup

582

4. If no optimization is to be applied, specify NONE as the identifier.
5. The identifiers can be specified with uppercase and lowercase

characters.
6. Even if the same identifier is specified more than once, HiRDB

recognizes only one specification. However, try not to specify the same
identifier more than once.

7. The character string specified for "identifier"[,"identifier"]... can
have up to 575 bytes.

Specifying the SQL extension optimizing methods with numbers
PDADDITIONALOPTLVL=unsigned-integer[,unsigned-integer]...

Examples
• Applying application of optimizing mode 2 based on cost and hash join,

subquery hash execution:
PDADDITIONALOPTLVL=1,2

• Applying no optimization method:
PDADDITIONALOPTLVL=0

Rules
1. Specify at least one unsigned integer.
2. When specifying two or more unsigned integers, separate them with

commas.
3. For details about the information (optimization methods) that can be

specified with unsigned integers, see Specification values for the SQL
extension optimizing option.

4. If no optimization is to be applied, specify 0 as the identifier.
5. Even if the same unsigned integer is specified more than once, HiRDB

recognizes only one specification. However, try not to specify the same
unsigned integer more than once.

6. The character string specified for
"unsigned-integer"[,"unsigned-integer"]... can have up to 575
bytes.

Relationship to the system definition
When this environment variable is omitted, the value specified in the
pd_additional_optimize_level operand of the system definition is
assumed. For details about the pd_additional_optimize_level operand,
see the manual HiRDB Version 8 System Definition.

6. Client Environment Setup

583

Relationship with SQL
The SQL extension optimizing option for an SQL statement in a stored procedure
is determined by the specifications for CREATE PROCEDURE, CREATE TYPE,
ALTER PROCEDURE, or ALTER ROUTINE, and is not affected by the
PDADDITIONALOPTLVL specification.
If SQL optimization specifications are specified in SQL statements, those
specifications have priority over the SQL extension optimizing options. For
details about SQL optimization specifications, see the manual HiRDB Version 8
SQL Reference.

Specification values for the SQL extension optimizing option
Table 6-31 shows the specification values for the SQL extension optimizing
option.
Table 6-31: Specification values of the SQL extension optimizing option

Note 1

Item numbers 2 to 5 become effective when the value for application of
optimizing mode 2 based on cost is specified.

Note 2

Item numbers 3 to 5 are optimization methods that become effective when data is
retrieved from an external table. In other cases, these methods are ineffective.

Number Optimization method Specification value

Identifier Unsigned
integer

1 Application of optimizing mode
2 based on cost

"COST_BASE_2" 1

2 Hash join, subquery hash
execution

"APPLY_HASH_JOIN" 2

3 Suppressing foreign server
execution of SQL statements that
contain join operations

"DETER_JOIN_SQL" 67108864

4 Forcing foreign server execution
of SQL statements that contain
direct products

"FORCE_CROSS_JOIN_SQL" 13421772
8

5 Suppressing derivation of
unconditionally created
high-speed search conditions for
foreign server execution

"DETER_FSVR_DERIVATIVE_COND" 10737418
24

6. Client Environment Setup

584

Recommended specification values
• When HiRDB is installed for the first time, Hitachi recommends that you use

optimizing mode 2 based on cost. When you use optimizing mode 2 based
on cost to improve the accuracy of optimization, execute the optimizing
information collection utility as needed. If the database scope (number of
table rows) differs between the test environment and actual environment, the
access path may change in the test environment and actual environment
when the optimizing information collection utility is executed. In the test
environment, specify the numbers of table rows (NROWS) being used in the
actual environment in the optimizing information parameter file, specify
the-s option in the optimizing information collection utility, and execute the
utility.

• If you are upgrading HiRDB from a version before version 06-00, investigate
whether optimizing mode 2 based on cost should be used. If you are setting
up the same operating environment that was used before the version upgrade,
do not use optimizing mode 2 based on cost. However, some of the SQL
statements that are supported from version 06-00 always use optimizing
mode 2 based on costs in optimization processing.

• If hash join is not being used, hash join, subquery hash execution does not
need to be specified.

Explanation of optimization methods
1. Application of optimizing mode 2 based on cost

This optimization method uses optimizing mode 2 based on cost to execute
optimization processing. For details about optimizing mode 2 based on cost, see
4.5.1 SQL optimizing modes.

2. Hash join, subquery hash execution
When a join search is executed, this optimization method applies hash join to
optimize the search process. If the search involves a subquery, hashing is used to
process the subquery. When deciding whether or not to apply this optimization
method, consider the join methods, the execution methods for subqueries with no
external references, and the execution methods for subqueries with external
references. For details about these methods, see 4.5.6 Join methods, 4.5.8
Execution of subqueries with no external references, and 4.5.9 Execution of
subqueries with external references.
When this optimization method is applied, the system definitions must be
specified beforehand. For details about preparing for application of hash join and
subquery hash execution, see 4.5.10 Preparing for application of hash join and
subquery hash execution.

3. Suppressing foreign server execution of SQL statements that contain join

6. Client Environment Setup

585

operations
When SQL statements for accessing a foreign table are created from queries that
contain accesses to the foreign table, this optimization method suppresses the
creation of SQL statements that contain join operations.
When this optimization method is specified, HiRDB does not create SQL
statements that contain join operations. Instead, HiRDB creates SQL statements
that fetch foreign table data that becomes the join input, and HiRDB performs the
join processing.
For details about suppressing foreign server execution of SQL statements that
contain join operations, see the manual HiRDB External Data Access Version 7.

4. Forcing foreign server execution of SQL statements that contain direct products
When this optimization option is specified, HiRDB tries to create SQL statements
that contain direct products as must as possible when it creates SQL statements
that access a foreign table from queries that contain accesses to the foreign table.
For details about forcing foreign server execution of SQL statements that contain
direct products, see the manual HiRDB External Data Access Version 7.

5. Suppressing derivation of unconditionally created high-speed search conditions
for foreign server execution
High-speed retrieval conditions that are derived unconditionally and can be
executed in foreign servers can be suppressed.
When high-speed search conditions are derived, generation and execution of the
high-speed search condition may take a long time and the resulting access path
may not be the intended path. In such cases, specify this optimization method.
If the value for deriving high-speed search conditions is specified in the SQL
optimization options, this optimization method is ignored even when specified.
For details about deriving high-speed search conditions, see 4.5.11 Deriving
high-speed search conditions.

(86) PDHASHTBLSIZE=hash-table-size-when-hash-join-subquery-hash-executio
n-is-applied

For 32-bit mode
 <unsigned integer> ((128-524288)) (kilobytes)

For 64-bit mode
 <unsigned integer> ((128-2097152)) (kilobytes)

This environment variable specifies the hash table size when the value for hash join,
hash subquery execution is specified in the SQL extension optimizing options.

6. Client Environment Setup

586

Specify a value that is a multiple of 128. If the specified value is not a multiple of 128,
the value is rounded up to the next multiple of 128.
When the server is set to 32-bit mode, an upper limit of 524,288 is assumed when a
value from 524,289 to 2,097,152 is specified.
Specification value reference

See 4.5.10 Preparing for application of hash join and subquery hash execution.
Relationship to the system definition

If this environment variable is omitted, the HiRDB uses the value that was
specified in the pd_hash_table_size operand of the system definition.

(87) PDDFLNVAL={USE|NOUSE}
This environment variable specifies whether the default value is to be set into an
embedded variable if the table data fetched into an embedded variable is a null value.
USE

Use the default value setting facility for null values.
NOUSE

Do not use the default value setting facility for null values.
For details about the default value setting facility for null values, see the HiRDB
Version 8 SQL Reference manual.

(88) PDAGGR=group-count-resulting-from-grouping
For 32-bit mode

 <unsigned integer> ((0-30000000)) <<1024>>
For 64-bit mode

 <unsigned integer> ((0-2147483647)) <<1024>>
This environment variable specifies the maximum number of groups allowed in each
server so that the memory size used in GROUP BY processing can be determined. This
environment variable becomes effective when rapid grouping processing is specified
as the SQL optimization option.
Estimation method

• When at least 1,024 groups will be created or when the expected
performance cannot be achieved:
Specify a large value for this environment variable; however, consider the
balance with the required memory size, and increase the specified value
gradually.

6. Client Environment Setup

587

If a memory shortage occurs when 1,024 is specified, specify a value
according to the amount of memory available.

• When fewer than 1,024 groups will be created or if a memory shortage
occurs:
Specify a small value for this environment variable. If a value of the required
size cannot be specified because the amount of required memory is too large,
specify the largest value that can be specified, even if the value is less than
the number of groups.

Note
If the specified value is too large, a memory shortage may occur. If the number of
groups created exceeds the specified value, processing may become slow because
the allocated memory size is insufficient. For details about the formula for
calculating the required memory size used by the rapid grouping facility, see the
HiRDB Version 8 Installation and Design Guide.

(89) PDCMMTBFDDL={YES|NO}
When a definition SQL is to be executed in a transaction that is executing a data
manipulation SQL, this environment variable specifies whether the transaction is to be
committed automatically before the definition SQL is executed. When the transaction
is automatically committed before the definition SQL is executed, the open holdable
cursors are closed, and the results of the preprocessed SQL statements become invalid.
YES

Automatically commit the transaction that executes the data manipulation SQL
before executing the definition. When this value is specified, the open holdable
cursors are closed, and the results of the preprocessed SQL statements become
invalid.

NO
Execute the definition SQL after explicitly committing the transaction executing
the data manipulation SQL.

(90) PDPRPCRCLS={YES|NO}
This environment variable specifies whether an open cursor is to be closed
automatically if a PREPARE statement reuses the SQL identifier that is using that open
cursor.
PDPRPCRCLS becomes effective if the -Xe option is not specified during
preprocessing. For details about preprocessing, see 8.2 Preprocessing.
YES

Close the open cursor automatically.

6. Client Environment Setup

588

NO
Do not close the open cursor automatically.

(91) PDAUTOCONNECT={ON|OFF}
This environment variable specifies whether the HiRDB client is to connect
automatically with the HiRDB server if an SQL statement is executed while the client
is not connected to the server.
ON

Connect to the HiRDB server automatically and then execute the SQL statement.
OFF

Do not connect to the HiRDB server automatically. In this case, the SQL
statement generates an error (SQLCODE=-563).

If the SET SESSION AUTHORIZATION statement is executed while the HiRDB client
is not connected to the HiRDB server, an error (SQLCODE=-563) occurs regardless of
the PDAUTOCONNECT specification.
When you create a UAP, Hitachi recommends that you specify OFF in
PDAUTOCONNECT because the HiRDB client must be able to determine whether it is
properly connected to HiRDB.

(92) PDDDLDEAPRP={YES|NO}
This environment variable specifies whether the definition information of a table being
used by a closed holdable cursor can be changed by another UAP between
transactions. When a definition SQL is executed, the preprocessing of the holdable
cursor becomes invalid.
YES

Allow another UAP to change the definition information of the table between
transactions of the UAP using the holdable cursor.
The following figure shows an example of the processing when YES is specified.

6. Client Environment Setup

589

Explanation
The definition SQL executed by UAP2 can be executed after the holdable
cursor of UAP1 is closed and the transaction containing that holdable cursor
is completed. Also, if the holdable cursor of UAP1 is reopened, error
SQLCODE=-1512 occurs (the processing becomes invalid).

NO
Do not allow another UAP to change the definition information of the table
between transactions of the UAP using the holdable cursor.
The following figure shows an example of the processing when NO is specified.

6. Client Environment Setup

590

Explanation
The definition SQL executed by UAP2 can be executed after DISCONNECT
processing of UAP1.

(93) PDCURSORLVL={0|1|2}
This environment variable specifies the timing for sending an open/close cursor
request from a HiRDB client to the HiRDB server when performing a search using the
cursor. By specifying this environment variable, the request is not sent to the HiRDB
server when the open cursor request is received from the application but rather the
open cursor is requested when data is fetched for the first time. Also, when it is
detected that there is no data to be searched (SQLCODE=100), the cursor is closed. This
environment variable reduces the communication overhead.
0:

The HiRDB client requests execution of cursor open/close to the HiRDB server
when it receives a request from the application.

1:
When there is no data to be searched, the HiRDB server closes the cursor when it
returns SQLCODE=100, without a request from the HiRDB client. If the HiRDB
client has already detected SQLCODE=100 when it receives a close cursor request
from the application, the HiRDB client does not send the close cursor request to

6. Client Environment Setup

591

the HiRDB server. The close cursor request is sent only when SQLCODE=100 has
not been detected.
For an open cursor request, the operation is the same as when 0 is specified.

2:
When the client receives an open cursor request from the application, it does not
request that the HiRDB server execute it, but requests opening of the cursor at the
same time it sends the initial request to fetch data.
For the close cursor request, the operation is the same as when 1 is specified.

Figure 6-3 provides an overview of the processing for each setting.

6. Client Environment Setup

592

Figure 6-3: Overview of processing for each setting of PDCURSORLVL

Notes
• Even when 1 or 2 is specified for this environment variable, if the client

receives a request to close the cursor for a results-set returned from the
procedure, the client requests that the HiRDB server execute the request.

6. Client Environment Setup

593

• When 1 or 2 is specified for this environment variable, a cursor close is
added to the number of SQL executions in the UAP statistical information,
but the cursor close is not output to the SQL statistical information. Also,
when 2 is specified for this environment variable, a cursor open is added to
the number of SQL executions in the UAP statistical information, but the
cursor open is not output to the SQL statistical information.

• When 1 or 2 is specified for this environment variable, the open/close cursor
operation code is output to the SQL trace. If the FETCH statement is used to
open or close the cursor, SQL statistical information, access path
information, and SQL runtime interim results of the open/close cursor are
output to the FETCH side.

• In the case of a HiRDB/Parallel Server, the first data fetch may take a long
time if there is a long delay from when the open cursor is executed until the
first data is fetched.

• When 2 is specified for this environment variable, even though the PREPARE
statement is executed again on a cursor that is open before the initial fetch
call, an error does not occur because the open cursor request is not sent to the
HiRDB server. When the PREPARE statement is executed again, the cursor
opening needs to be executed again because the PREPARE statement
information is used as cursor information.

• When 1 or 2 is specified for this environment variable, even though the
PREPARE statement or OPEN statement is executed without executing the
CLOSE statement after SQLCODE=100 is detected, an error does not occur
because the cursor is already closed. Also, when the FETCH statement is
executed following detection of SQLCODE=100, SQLCODE=-501 (which
indicates that the cursor is not open) is returned without producing a
no-data-to-be-searched situation.

(94) PDDELRSVWDFILE=SQL-reserved-word-deletion-file-name
 <identifier> ((up to 8 characters))

This environment variable specifies the name of the SQL reserved word deletion file
when the SQL reserved word deletion facility is used. The keywords to be deleted from
the SQL reserved words are specified in the SQL reserved word deletion file.
Relationship to the system definition

When PDDELRSVWDFILE is specified, an SQL reserved word deletion file must
be specified in the pd_delete_reserved_word_file operand of the system
definition. For details about the SQL reserved word deletion file, see the manual
HiRDB Version 8 System Definition.

Note
For a Windows version HiRDB, the SQL reserved word deletion file name is not

6. Client Environment Setup

594

case sensitive. Note. therefore, that files having the same name except for case
differences are treated as the same file.

(95) PDHJHASHINGMODE={TYPE1|TYPE2}
This environment variable specifies the hashing method when Apply hash join,
subquery hash execution is selected as the SQL extension optimizing option.
TYPE1

This specification preserves the HiRDB performance found in versions before
version 07-02.

TYPE2
Hashing is performed more uniformly compared to TYPE1.

Specification value guidelines
• Normally specify TYPE2. However, if the hashing method does not distribute

the records uniformly because of the data in the columns specified in the join
condition, specify TYPE1.

• TYPE1 is the HiRDB hashing method found in versions before version
07-02. If TYPE1 is specified after the HiRDB version is upgraded and the
expected performance is not achieved, specify TYPE2.

Relationship to the system definition
When this environment variable is omitted, the specification of the
pd_hashjoin_hashing_mode operand in the system definition is assumed.

(96) PDBLKF=block-transfer-row-count
 <unsigned integer> ((1-4096)) <<1>>

This environment variable specifies the number of rows to be sent in one transfer when
the server transfers retrieval results to the client.
Note that the actual number of rows that are sent changes according to the specification
value of the PDBLKBUFFSIZE client environment definition. For details about the
number of rows to be sent, see 4.7(4) Number of rows transferred in one transmission.
Specifying a large value reduces the communication overhead and shortens the
retrieval time, but much more memory becomes necessary. Therefore, be sure to
consider the balance of retrieval time and memory.
For details about the calculation expression for memory required in the server, see
Formula for the size of memory required during block transfer or array FETCH in the
manual HiRDB Version 8 Installation and Design Guide. The calculation expression
for memory required in the client is shown below.

6. Client Environment Setup

595

Memory calculation expression (kilobytes)

= (600 + 19 retrieval-column-count + (7 retrieval-column-count +
defined-column-length*) PDBLKF-value) 4096 4

* The unit is bytes.

(97) PDBINARYBLKF={YES|NO}
This environment variable specifies whether the block transfer facility is to be applied
when a table having a BINARY-type selection expression with a defined length of
32,001 bytes or more is searched. For details about the block transfer facility, see 4.7
Block transfer facility.
YES

Apply the block transfer facility.
NO

Do not apply the block transfer facility.
When this value is specified, the data is transferred one row at a time even if the
value specified in the PDBLKF client environment definition is 2 or higher and the
value specified in PDBLKBUFFSIZE is 1 or higher.

(98) PDBLKBUFFSIZE=communication-buffer-size
 <unsigned integer> ((0-2000000)) <<0>> (kilobytes)

This environment variable specifies the size of the server-client communication buffer
used by the block transfer facility.
If 0 is specified, HiRDB calculates the communication buffer size (in units of bytes)
from the value of the PDBLKF client environment definition and the maximum length
of one row.
The value specified in PDBLKBUFFSIZE affects the following values for buffer size
and number of rows:

• Size of the server-client communication buffer used for search result transfer
• Number of search result rows that a single server or a front-end server sends to

the client during one communication
(99) PDNODELAYACK={YES|NO}

This environment variable is limited to the AIX 5L version.
This environment variable specifies whether immediate acknowledgment is to be used
for communication between the HiRDB server machine and the HiRDB client
machine. For details about using immediate acknowledgment for HiRDB

6. Client Environment Setup

596

communication, see the HiRDB Version 8 Installation and Design Guide.
YES:

Use immediate acknowledgment.
NO:

Do not use immediate acknowledgment.
Notes

• This environment variable is not valid when the HiRDB server to be
connected is on the same machine.

• If you use the tcp_nodelayack OS parameter to specify sending of an
immediate acknowledgement, the capability to delay acknowledgment
sending is suppressed throughout the entire system. In such a case,
immediate acknowledgment is used in the entire system regardless of the
setting of this environment variable.

Relationship with system definition
• When the HiRDB server is another server machine in an AIX 5L version

environment, immediate acknowledgment can also be used for HiRDB
servers. To use immediate acknowledgment between HiRDB servers, set Y
for the pd_ipc_tcp_nodelayack operand in the system common
definition.

(100) PDDBACCS=generation-number-of-RDAREA-to-be-accessed
 <unsigned integer> ((0-10))

If the inner replica facility is being used and an RDAREA that is not the current
RDAREA in the inner replica group is to be accessed, this environment variable
specifies the generation number of that RDAREA. The generation number of the
original RDAREA is 0.
PDDBACCS is applied to all inner replica groups defined in HiRDB. If a replication
RDAREA of the generation specified in PDDBACCS is not defined, the current
RDAREA in the target inner replica group is processed. Therefore when setting up a
test environment that uses replica RDAREAs, you must check that replica RDAREAs
of the specified generation are defined for all RDAREAs to be accessed. This is so that
an RDAREA for actual operation is not accessed by mistake.

(101) PDDBORGUAP={YES|NO}
This environment variable specifies whether to execute a UAP on the original
RDAREA during online processing in a replica RDAREA.
YES

Execute the UAP on the original RDAREA being held for online reorganization.

6. Client Environment Setup

597

NO
Do not execute the UAP on the original RDAREA being held for online
reorganization.

(102) PDSPACELVL={0|1|3}
This environment variable specifies the space conversion level for data storage,
comparison, and search processing. Space conversion is not executed when a
definition SQL is executed.
0

Do not convert spaces.
1

Convert spaces in data for literals, embedded variables, and ? parameters of data
manipulation SQL as follows:

• If a character string literal is determined to be a national character string
literal, two single-byte space bytes are converted to a double-byte space
character. If one single-byte space character appears alone, it is not
converted.

• For a mixed character string literal, one double-byte space character is
converted to two single-byte space characters.

• During data storage to a national character string-type column or comparison
with a national character string-type value expression, two single-byte space
bytes in embedded variables and ? parameters are converted to one
double-byte space character. If one single-byte space character appears
alone, it is not converted.

• During data storage to a mixed character string-type column or comparison
with a mixed character string-type value expression, double-byte space
characters in embedded variables and ? parameters are converted to two
single-byte space characters.

3
In addition to the conversions for space conversion level 1, convert each
double-byte space character to two single-byte space characters when data in a
national character string-type value expression is searched.

Relationship to the system definition
If this environment variable is omitted, the HiRDB system uses the value that was
specified in the pd_space_level operand of the system common definition.

Notes
1. If the space conversion level is changed, the UAP results obtained before and

6. Client Environment Setup

598

after the change may be different. To obtain the same UAP results, do not
change the space conversion level.

2. If space conversion level 3 is specified and the data is sorted, the expected
results may not be obtained because HiRDB applies space conversion to the
sort results.

3. When data is stored to a cluster key column, a unique error may occur as a
result of space conversion. If this occurs, store the data without applying
space conversion, or make all spaces in the existing database uniform (apply
space conversion with the database reorganization utility).

4. Space conversion of a national character string is executed in two-byte units
from the beginning of the string.

5. If space conversion level 1 or 3 is specified and the UAP uses the hash
function for table partitioning to determine the storage RDAREA of a
hash-partitioned table, the space conversion level must also be specified as
an argument of the hash function for table partitioning. Otherwise, the results
of the hash function for table partitioning may become invalid. For details
about the hash function for table partitioning, see G.1 Hash function for table
partitioning.

6. If space conversion level 1 or 3 is specified and the UAP executes key range
partitioning on a key range-partitioned table that has a national character
string-type or mixed character string-type column in the partitioning key, the
partitioning key value must be converted with the space conversion function.
Otherwise, the results of key range partitioning may become invalid. For
details about the space conversion function, see G.2 Space conversion
function.

(103) PDCLTRDNODE=XDM/RD-E2-database-identifier
 <identifier>

This environment variable specifies the identifier of the XDM/RD E2 database to be
connected when the XDM/RD E2 connection facility is used. The database identifier
refers to the RD node name specified in the XDM subsystem definitions.

(104) PDTP1SERVICE={YES|NO}
This environment variable specifies whether OpenTP1 service names are to be
reported to XDM/RD E2 when the XDM/RD E2 connection facility is used.
PDTP1SERVICE cannot be specified if HiRDB client library cltdll.dll is being
used in the Windows version. This environment variable can be specified if the HiRDB
client is relinked to another HiRDB client library (for example, pdcltm32.dll).
YES

Report OpenTP1 service names to XDM/RD E2.

6. Client Environment Setup

599

When OpenTP1 service names are reported to XDM/RD E2, the XDM/RD E2
statistical information can be analyzed for each service. This function is supported
only if the XDM/RD E2 version is 09-01 or later.
When OpenTP1 is not used, or if the service is not an OpenTP1 service (for
example, if the service is SUP), the service name is not reported even when YES
is specified.

NO
Do not report OpenTP1 service names.

(105) PDRDCLTCODE={SJIS|UTF-8}
This environment variable is valid for Windows clients. For UNIX clients, this
environment variable is invalid even when specified.
This environment variable specifies the character code classification used by the client
when the XDM/RD E2 connection facility is used.
SJIS

Use shift JIS kanji codes.
UTF-8

Use Unicode (UTF-8) codes. When UTF-8 is specified, specify NOUSE in the
PDCLTCNVMODE client environment definition, or omit PDCLTCNVMODE.

Rules when UTF-8 is specified
1. Unicode (UTF-8) codes can be used in input/output data handled by

embedded variables and data handled by the ? parameter.
2. Only ASCII codes can be specified in SQL statements specified in a UAP.

To specify a non-ASCII character (kanji, single-byte katakana, or Gaiji
character) in an SQL statement, use the PREPARE or EXECUTE IMMEDIATE
statement and specify the SQL statement in an embedded variable.

3. Error messages returned from XDM/RD E2 and stored in the SQL
Communications Area, column names stored in the Column Name
Descriptor Area (SQLCNDA), and data type names stored in the Type Name
Descriptor Area (SQLTNDA) use Unicode (UTF-8) codes. For this reason,
if characters other than ASCII codes are contained in these values and are
output as Shift JIS kanji codes, they may not be displayed correctly.

4. When the XDM/RD E2 side converts character codes from Unicode (UTF-8)
to EBCDIK or KEIS, or EBCDIK or KEIS to Unicode (UTF-8), the data
length may be changed. Therefore, pay attention to the definition length of
embedded variables.

6. Client Environment Setup

600

(106) PDCNSTRNTNAME={LEADING|TRAILING}
This environment variable specifies the position of the constraint name definition
when a referential or check constraint is defined.
LEADING

Specify the constraint name definition before the constraint definition.
TRAILING

Specify the constraint name definition after the constraint definition.
Relationship to the system definition

If this environment variable is omitted, the value of the pd_constraint_name
operand in the system definition is assumed.

(107) PDBESCONHOLD={YES|NO}
This environment variable can be specified when HiRDB/Parallel Server is used.
This environment variable specifies whether the BES connection holding facility is to
be used. For details about the BES connection holding facility, see the HiRDB Version
8 System Operation Guide.
YES

Use the BES connection holding facility.
NO

Do not use the BES connection holding facility.
Relationship to the system definition

If this environment variable is omitted, the value of the
pd_bes_connection_hold operand in the system definition is assumed.

(108) PDBESCONHTI=BES-connection-holding-period
 <unsigned integer> ((0-3600)) (seconds)

This environment variable specifies the BES connection holding period when the BES
connection holding facility is used.
When the BES connection holding facility is used, the back-end server monitors the
time elapsed from when a transaction ends until the next transaction is executed. If the
time until the next transaction is executed falls within the PDBESCONHTI specification
value, the back-end server continues the BES connection holding facility. If the time
exceeds the PDBESCONHTI specification value, the back-end server disconnects the
connection with the front-end-server.
Notes

6. Client Environment Setup

601

1. If 0 is specified, the back-end server does not monitor the time. The
connection between the front-end server and the back-end server is
disconnected only when the connection between the front-end server and the
client is disconnected, such as when the DISCONNECT (xa_close when the
XA library is used) SQL statement is executed or the time specified by the
PDCWAITTIME client environment definition is exceeded.

2. PDBESCONHTI becomes valid when YES is specified in PDBESCONHOLD.
(109) PDRDABLKF=batch-retrieval-row-count

 <unsigned integer> ((1-4096))
This environment variable can be specified when the HiRDB is the HP-UX or AIX 5L
version.
This environment variable specifies the number of rows to be transferred in one
transfer operation when retrieval results are transferred from a distributed server to a
distributed client. A value roughly between 50 and 80 should be specified. Specify 1
for this environment variable if batch retrieval is not used.
Specifying a large value reduces the communications overhead and the search time but
increases the amount of required memory. Therefore consider the balance with the
memory size when determining the value. The following formula can be used to
calculate the amount of required memory:
(328 + 32 a + b) c (in bytes)
a

Number of items specified in the SELECT clause
b

Total length of the character string data output by one transfer operation
c

Value specified for PDRDABLKF
Relationship with other definitions

When PDRDABLKF is omitted, the number of batch retrieval rows specified by the
block_fetch_count operand (SQL environment definition of DF/UX) is
assumed. For details about the block_fetch_count operand, see the manual
Distributed Database System DF/UX.

(110) PDODBSTATCACHE={0|1}
This environment variable specifies whether the column information or index
information collected the first time an ODBC function (SQLColumns() or
SQLStatistics()) is issued is to be cached.

6. Client Environment Setup

602

0
Do not cache the information.
Column information or index information is collected by accessing the server
each time the SQLColumns() or SQLStatistics() function is called.

1
Cache the column information or index information collected the first time the
function is called.
However, the cache is not refreshed while the server is connected. Thus, if the
table definition is altered while the server is connected, column information or
index information that is different from the actual definition is returned.
Therefore, the server connection must be terminated first.

Benefits
When the SQLColumns() and SQLStatistics() functions are called
repeatedly with the same parameters, the number of communications with the
server can be reduced by returning the retrieval results stored in the cache to the
UAP.

Notes
To determine whether specifying this option will be effective, collect an ODBC
trace and investigate whether the SQLColumns() or SQLStatistics()
function is issued repeatedly with the same parameters during the same
connection.
The number of rows that can be cached is x:
SQLColumns()

Approximately 60,000/(50 + table-owner-name-length + table-name-length
+ column-name-length + comment-length) rows

SQLStatistics()
Approximately 60,000/(50 + table-owner-name-length + table-name-length
+ index-name-length + column-name-length) rows

(111) PDODBESCAPE={0|1}
This environment variable specifies whether the ESCAPE "&" character is to be
specified for the pattern character in a retrieval using a cataloging ODBC function
(SQLTables(), SQLColumns(), etc.).
0

Do not specify the ESCAPE "&"character for the pattern character.
1

6. Client Environment Setup

603

Specify the ESCAPE "&"character for the pattern character.
Notes

1. If the column attribute of the dictionary table is CHAR (dictionary
datatype mchar nouse specified by the database initialization utility) and
a double-byte character containing code 0x26 is used in the table name and
the column name, 0 should specified in this option. If 1 is specified and the
HiRDB system is accessed through ODBC, some tables and columns may
not be recognized.

2. If an underscore (_) is used in the identifier of a table name, 1 should be
specified in this option. If 0 is specified, some ODBC-compatible software
programs may not be able to access the identifier that uses the underscore.

(112) PDGDATAOPT={YES|NO}
This environment variable specifies whether the SQLGetData function of the ODBC
functions is to repeatedly retrieve data for columns from which data has already been
retrieved.
Normally, when data retrieval is repeated for a column after data has already been
retrieved from that column, SQL_NO_DATA is returned as the return value.
YES

The SQLGetData function can retrieve data repeatedly for columns from which
data has already been retrieved.

NO
When the SQLGetData function goes to retrieve data for columns for which data
has already been retrieved, SQL_NO_DATA is returned as the return value.

Application standard
This environment variable is specified when data is to be retrieved repeatedly for
the same column. For example, this environment variable is specified when a host
UAP that expects SQL_SUCCESS for repeated data retrieval executions is used.

Note
When Internet Banking Server is used, set PDGDATAOPT=YES in the HiRDB.ini
file of the HiRDB client. If this specification is not set, the following problem may
occur after the customer information management utility or transaction history
management utility of Internet Banking Server is used to log into HiRDB. After
a function selection key, such as Register Customer, Update Customer
Information, or Reference Customer Information is pressed, screen operations
other than the Return button may become disabled.

6. Client Environment Setup

604

(113) PDODBLOCATOR={YES|NO}
This environment variable specifies whether the locator facility is to be used to
partition and retrieve data when a database access tool is used to retrieve BLOB-type or
BINARY-type column data. The database access tools are the ODBC driver, the OLE
DB provider, and the HiRDB.Net data provider.
YES

Use the locator facility to partition and retrieve data when a database access tool
is used to retrieve BLOB-type or BINARY-type column data.

NO
Do not use the locator facility when a database access tool is used to retrieve
BLOB-type or BINARY-type column data.

Application standard
If NO is specified (NO is also the assumed value when this environment variable is
omitted), the database access tool allocates a data reception area that has the
defined length of the column. The HiRDB client also requires a data reception
area that has the defined length of the column.
Since a memory shortage may occur during execution if the defined length of the
column is large, specify YES to avoid running out of memory. Note that when YES
is specified, the number of communications with the HiRDB server increases by
the number of partition acquisitions.

(114) PDODBSPLITSIZE=partition-acquisition-size
 <unsigned integer> ((4-2097152)) <<100>> (kilobytes)

This environment variable specifies the partition acquisition size when
PDODBLOCATOR=YES is specified.
Specification value guideline

Consider the distribution of the actual data length, and specify a value that reduces
the number of partition acquisitions but does not trigger a memory shortage.

(115) PDODBCWRNSKIP={YES|NO}
This environment variable specifies whether warnings should be skipped for ODBC
connections. For non-ODBC connections, this environment variable is ignored even if
it is specified.
YES

The ODBC driver returns SQL_SUCCESS as the SQLFetch() return value even
if SQLFetch() processing is prolonged and SQLWARN is set.

NO

6. Client Environment Setup

605

The ODBC driver returns SQL_SUCCESS_WITH_INFO as the SQLFetch()
return value if SQLFetch() processing is prolonged and SQLWARN is set.

Application standard
When SQLWARN is set in the SQL Communications Area of HiRDB during
retrieval processing, the ODBC driver returns SQL_SUCCESS_WITH_INFO as the
SQLFetch() return value. However, depending on the higher-level application*
that calls the ODBC driver, retrieval processing may be terminated by the
SQL_SUCCESS_WITH_INFO return value. If YES is specified in this environment
variable, SQL_SUCCESS is returned as the return value even if SQLWARN is set to
the SQL Communications Area during retrieval processing, and retrieval
processing can continue.
* For example, if ADO.Net is used and connected to HiRDB through an ODBC
connection, retrieval processing may be terminated by the
SQL_SUCCESS_WITH_INFO return value.

(116) PDJETCOMPATIBLE={YES|NO}
This environment variable specifies whether the ODBC 3.0 driver is to be operated in
Microsoft Jet database engine compatible mode rather than based on the ODBC 3.0
specifications.
YES:

The ODB C3.0 driver operates in Microsoft Jet database engine compatible mode.
NO:

The ODBC 3.0 driver operates as specified.
Application standard

Specify this environment variable when an application program uses a Microsoft
Jet database engine, such as Microsoft Access, to access HiRDB. When this
variable is not specified, #Delete may be displayed as the search result, or
inserted data may be converted incorrectly.

(117) PDPLGIXMK={YES|NO}
This environment variable specifies whether delayed batch creation of plug-in indexes
is to be used. For details about delayed batch creation of plug-in indexes, see the
HiRDB Version 8 System Operation Guide.
YES

Use delayed batch creation of plug-in indexes.
NO

Do not use delayed batch creation of plug-in indexes.

6. Client Environment Setup

606

(118) PDPLUGINNSUB
For details, see the manual for the target plug-in.

(119) PDPLGPFSZ=initial-size-of-delayed-batch-creation-index-information-file
 <unsigned integer> ((1-1048574000)) <<8192>> (kilobytes)

This environment variable specifies the initial size of the index information file for
delayed batch creation of plug-in indexes. This specification is effective when the
index information file is to be created in the HiRDB file system area.
When this environment variable is specified, PDPLGIXMK=YES should also be
specified.

(120) PDPLGPFSZEXP=extension-value-of-delayed-batch-creation-index-inform
ation-file

 <unsigned integer> ((1-1048573000)) <<8192>> (kilobytes)
This environment variable specifies the extension size of the index information file for
delayed batch creation of plug-in indexes. When the index information file becomes
full, the file is extended by the value specified in this environment variable. This
specification is effective when the index information file is to be created in the HiRDB
file system area.
When this environment variable is specified, PDPLGIXMK=YES should also be
specified.

(121) PDJDBFILEDIR=exception-trace-log-file-storage-directory
<path name> PDCLTPATH setting

This environment variable specifies the Exception trace log file storage directory with
the Type4 JDBC driver. To specify the file storage directory, specify the absolute path
of the directory (maximum of 256 bytes). This environment variable can be specified
only when the Type4 JDBC driver is used.
For details about the Exception trace log, see 17.13 Exception trace log. For other
details, see system property HiRDB_for_Java_FileDIR in 17.13.1(2)(b) System
property settings.

(122) PDJDBFILEOUTNUM=number-of-outputs-to-exception-trace-log-file
<unsigned integer>((1-50)) (5)

This environment variable specifies the number of outputs to the Exception trace log
file with the Type4 JDBC driver. This environment variable can be specified only
when the Type4 JDBC driver is used.
For details about the Exception trace log, see 17.13 Exception trace log. For other
details, see system property HiRDB_for_Java_FileOutNUM in 17.13.1(2)(b) System
property settings.

6. Client Environment Setup

607

(123) PDJDBONMEMNUM=number-of-acquired-information-items-in-exception-t
race-log-memory

<unsigned integer>((500-10000)) (1000)
This environment variable specifies the number of acquired information items in the
Exception trace log memory. This environment variable can be specified only when
the Type4 JDBC driver is used.
For details about the Exception trace log, see 17.13 Exception trace log. For other
details, see system property HiRDB_for_Java_OnMemNUM in 17.13.1(2)(b) System
property settings.

(124) PDJDBTRACELEVEL=trace-acquisition-level-of-exception-trace-log
<unsigned integer>((0~5)) (1)

This environment variable specifies the trace acquisition level of the Exception trace
log with the Type4 JDBC driver. If 0 is specified, the Exception trace log is not
acquired. This environment variable can be specified only when the Type4 JDBC
driver is used.
For details about the Exception trace log, see 17.13 Exception trace log. For other
details, see system property HiRDB_for_Java_TraceLevel in 17.13.1(2)(b) System
property settings.

6.6.5 Environment variables and connection types for HiRDB
servers

Table 6-32 shows the relationships among environment variables and connection types
for connecting with the HiRDB server.

Table 6-32: Relationships between environment variables and connection types

Environment
variable

HiRDB/Single
Server

HiRDB/Parallel Server

Single front-end
server

Multiple front-end servers

Normal High-
speed

Normal High-
speed

Normal Connection with
specific front-end

server

FES-host
direct

High-
speed

PDHOST S S S S S S S

PDFESHOST S S S

PDNAMEPORT S S S S S S S

6. Client Environment Setup

608

S: Must be specified.
: Must be specified if the HiRDB server is the Linux or Windows version.
: Does not have to be specified.

Notes
1. The connection format in which all required environment variables are

specified is selected in the priority order of high-speed connection, FES-host
direct connection, and normal connection. Unnecessary environment
variables are not used.

2. The following relationships apply to the connection time to the HiRDB
server:
Normal connection time > FES-host direct connection time > high-speed
connection time
A high-speed connection is recommended if you want to shorten the
connection time. A normal connection is recommended if you want to use
the connected front-end server efficiently.

6.6.6 Specifying client environment definitions for foreign table
access

When the foreign server is a HiRDB or XDM/RD E2 server and a foreign table is to
be accessed, the specification values of some client environment definitions also apply
to the foreign server. There are also client environment definitions for which fixed
values are always applied to the foreign server.
Foreign tables can be accessed (the HiRDB External Data Access facility can be used)
when the HiRDB is the HP-UX or AIX 5L version.

PDSERVICEPORT S S S

PDSERVICEGRP S S S S

PDSRVTYPE

Environment
variable

HiRDB/Single
Server

HiRDB/Parallel Server

Single front-end
server

Multiple front-end servers

Normal High-
speed

Normal High-
speed

Normal Connection with
specific front-end

server

FES-host
direct

High-
speed

6. Client Environment Setup

609

(1) When the foreign server is a HiRDB server
(a) Client environment definitions for which specification values are applied

The specification values of the following client environment definitions are also
applied to the foreign HiRDB server:

• PDISLLVL
• PDCLTAPNAME*

• PDEXWARN*

• PDDLKPRIO*

• PDLOCKSKIP*

• PDCWAITTIMEWRNPNT*

* The specification value is applied if the foreign HiRDB is Version 06-02 or later.
(b) Client environment definitions for which fixed values are applied

For the following client definitions, fixed values are applied to the external HiRDB
server:

• PDSTJTRNOUT (fixed value: NO)
• PDDFLNVAL (fixed value: NOUSE)
• PDSWATCHTIME (fixed value: 0)
• PDAUTOCONNECT (fixed value: OFF)

(2) When the foreign server is an XDM/RD E2 server
(a) Foreign environment definition for which a fixed value is applied

For the following client environment definition, a fixed value is applied to the foreign
XDM/RD E2 server:

• PDSRVTYPE (fixed value: VOS3)

6. Client Environment Setup

610

6.7 Registering an environment variable group

The environment variables of a client can be registered as a group. When the
environment variables of each client are registered, the environment variables can be
changed for each connection. This operation is therefore convenient when the
environment variables must be changed for each connection.
The environment variables are registered to a normal file in the UNIX environment
and to a registry or a file in the Windows environment. Information about the
registered environment variables is obtained during connection to the HiRDB server.

When an open character string is specified while a UAP that uses an X/
Open-compliant API under OLTP is used as the client, the environment variables of
the environment variables group specified in the open character string have priority
over environment variables specified according to 6.6.2 Specifications for using a
UAP under OLTP as the client. For details about open character strings, see the HiRDB
Version 8 Installation and Design Guide.

6.7.1 Registering an environment variable group in a UNIX
environment

When registering environment variables to a normal file, use the following rules:
• Specify one environment variable per line.
• Specify the environment variable with the following format:

client-environment-variable=specification-value
• When specifying a comment, specify a slash and asterisk (/*) before the

comment and an asterisk and slash (*/) after the comment. Comments cannot be
embedded.

• If the same environment variable is specified more than once, the final
specification becomes effective.

• A specified value that includes a space must be enclosed in double quotation
marks ("). If such a value is not enclosed in double quotation marks, the space will
be deleted.

• [HIRDB] can be specified in the first line.
An example of how environment variables are set to a normal file (/HiRDB_P/
Client/HiRDB.ini) is shown as follows.
Example

[HIRDB]
PDCLTPATH=trace-file-storage-directory
PDHOST=system-manager-host-name

6. Client Environment Setup

611

PDUSER="authorization-identifier"/"password"
PDNAMEPORT=name-service-port-number
PDCLTAPNAME=identification-name-of-UAP-to-be-executed

Note
With this method, client environment definitions that begin with PDJDB become
invalid except in the case of UAPs that use the Type4 JDBC driver.

6.7.2 Registering an environment variable group in a Windows
environment (registry registration)

Use the tool for registering HiRDB client environment variables to register
environment variables in the registry.
To use the tool for registering HiRDB client environment variables, execute
xxxx\UTL\pdcltadm.exe (xxxx is %PDDIR%\client in the HiRDB server and the
HiRDB client installation directory in the HiRDB client).
The rest of this section describes procedures for registering environment variables in
the registry with the tool for registering HiRDB client environment variables.
In an OLE DB connection, the environment variables registered with the tool for
registering HiRDB client environment variables have priority over the user
environment variables and the specifications in HIRDB.INI.
Client environment definitions set using this method become invalid when the Type4
JDBC driver is used. Client environment definitions that begin with PDJDB become
invalid if this method is used.

(1) Starting the tool for registering HiRDB client environment variables
Execute xxxx\UTL\pdcltadm.exe. The Tool for Registering HiRDB Client
Variables dialog box is displayed.

6. Client Environment Setup

612

Explanation
User Group

Select this item to add, delete, or modify an environment variable group for a user.
This information is registered in HKEY_CURRENT_USER.

System Group
Select this item to add, delete, or modify an environment variable group for a
computer. This information is registered in HKEY_LOCAL_MACHINE.

Select either User Group or System Group, and click the Add button.
Note

When a UAP that uses an X/Open-compliant API under OLTP is used as a client,
select System Group so that you can use the tool for registering HiRDB client
environment variables to register the environment variables group whose name is
specified in the open character string. For details about open character strings, see
the HiRDB Version 8 Installation and Design Guide.

6. Client Environment Setup

613

(2) Registering an environment variable group
The HiRDB Client Environment Variable Setup dialog box is displayed.

Explanation
Group Name

6. Client Environment Setup

614

Specify the group name with up to 30 characters.
Environment variable fields

Specify a setting for each environment variable. For details about each
environment variable, see 6.6.4 Environment definition information.

After completing the setup, click the OK button. When the OK button is clicked, the
client environment variable settings are registered in the registry, and the Tool for
Registering HiRDB Client Variables dialog box is displayed again.
Click the Cancel button to cancel the client environment variable settings and return
to the Tool for Registering HiRDB Client Variables dialog box.

(3) Changing the settings of an environment variable group
After one or more environment variable groups are registered, a list of the registered
environment variable group names is displayed, as shown in the next dialog box.

When an environment variable group name in the list is selected, the Delete,
Configure, and Test buttons become enabled and can be clicked. Click the Configure
button or double-click an environment variable group name in the list. The following
dialog box is displayed:

6. Client Environment Setup

615

Change the environment variable settings, and click the OK button. When the OK
button is clicked, the new client environment variable settings are registered in the
registry, and the Tool for Registering HiRDB Client Variables dialog box is
displayed again.
Click the Cancel button to cancel the client environment variable settings and return

6. Client Environment Setup

616

to the Tool for Registering HiRDB Client Variables dialog box.
(4) Checking the HiRDB connection with a registered environment variable
group

You can use a registered environment variable group to check whether a connection to
HiRDB can be established for that group.
From the environment variable group name list in the Tool for Registering HiRDB
Client Variables dialog box, select the environment variable group name for which
connection to HiRDB is to be checked, and click the Connect button. The following
dialog box is displayed:

Click Yes.
If connection to HiRDB is successful, the following dialog box is displayed:

If connection to HiRDB fails, the following dialog box is displayed. If the error is due
to the contents of an environment variable, change the settings of the environment
variable group.

6. Client Environment Setup

617

(5) Deleting an environment variable group
From the environment variable group name list in the Tool for Registering HiRDB
Client Variables dialog box, select the environment variable group name to be
deleted, and click the Delete button.
The following dialog box is displayed:

(6) Setting an OLE DB provider trace
The OLE DB provider trace is for troubleshooting only. Do not set this trace for any
other investigation. Note that when a trace is performed, the performance of other
operations may drop dramatically.
To set an OLE DB provider trace when the HiRDB client is connected to an OLE DB,
open the Tool for Registering HiRDB Client Variables dialog box, and click the
OLE DB Trace button. The following dialog box is displayed:

To perform a trace, select TRACE ON and then click the OK button. Note that the
trace continues until you select TRACE OFF and click the OK button.

6. Client Environment Setup

618

For the log file name, always specify the absolute path name of the file.
For the data size, specify the output size, in bytes, of the void*-type data dump.

(a) Environment variables that become invalid when the multi-connection
facility is used
When the multi-connection facility is used, the following environment variables
cannot be set for each connection destination. These environment variables become
invalid even if they are registered to a normal file or registry and specified in each
connection destination.

• HiRDB_PDHOST
• HiRDB_PDNAMEPORT
• HiRDB_PDTMID
• HiRDB_PDXAMODE
• PDTMID
• PDXAMODE
• PDTXACANUM

6.7.3 Registering an environment variable group in a Windows
environment (file registration)

The client environment definitions can be set to a file and the environment variable
definitions can then be obtained from the file during HiRDB server connection.
To register an environment variable group to the file, you must specify [HIRDB] in the
first line.
An example of setting an environment variable group to a file
(c:\HiRDB_P\Client\HiRDB.ini) is shown below.
Example

[HIRDB]
PDCLTPATH=trace-file-storage-directory
PDHOST=system-manager-host-name
PDUSER="authorization-identifier"/"password"
PDNAMEPORT=name-service-port-number
PDCLTAPNAME=identification-name-of-UAP-to-be-executed

Note
For a UAP using the Type4 JDBC driver, follow the rules described in 6.7.1
Registering an environment variable group in a UNIX environment.

619

Chapter

7. UAP Creation

This chapter explains how to embed SQL statements in a UAP written in C, C++,
COBOL, or OOCOBOL.
This chapter contains the following sections:

7.1 Overview
7.2 Writing a UAP in C
7.3 Writing a UAP in COBOL
7.4 Writing a UAP in C++
7.5 Writing a UAP in OOCOBOL

7. UAP Creation

620

7.1 Overview

To create an embedded SQL UAP, embed SQL statements into a source program
written in the C or COBOL language. This section explains the basic configuration of
and rules for writing UAPs in which SQL statements will be embedded.

7.1.1 UAP basic configuration
The following is an example of the basic configuration of an embedded SQL UAP
written in C.

Figure 7-1: Example of the basic configuration of an embedded SQL UAP

7.1.2 UAP configuration elements
An embedded SQL UAP consists of the following four principal elements:

• Declaration of embedded variables and indicator variables
• Declaration of SQL Communications Areas

7. UAP Creation

621

• Specification of operations to be performed when unexpected events occur
• SQL statements to be executed

(1) Declaration of embedded variables and indicator variables
Embedded variables and indicator variables to be used in the SQL statement must be
declared. For details, see the HiRDB Version 8 SQL Reference manual.

(2) Declaration of SQL Communications Areas
Areas for receiving information (return codes) returned from HiRDB must be
declared. The SQL Communications Areas need not be described in the UAP because
they are expanded automatically within the source program when the UAP is
preprocessed (for details, see A. SQL Communications Area).

(3) Specification of operations to be performed when unexpected events occur
WHENEVER statements should be specified to set the operations the UAP must perform
for the various return codes returned by HiRDB after SQL statement execution.
Even when no WHENEVER statements are specified, it is possible to specify operations
to be performed when unexpected events occur, providing that the return codes are
identified directly after SQL statements execution. For details about how to specify the
WHENEVER statement and about return code identification, see 3.6 SQL error
identification and corrective measures.

(4) SQL statement execution
The SQL statement to be executed must be specified. For details about the coding rules
for C, see 7.2.1 Coding rules. For details about the coding rules for COBOL, see 7.3.1
Coding rules.

7. UAP Creation

622

7.2 Writing a UAP in C

This section explains, by way of examples, the coding rules for embedding SQL
statements in UAPs written in C.

7.2.1 Coding rules
When a UAP is created, the labelling rules, SQL coding rules, and SQL syntax rules
must be followed.

(1) Labeling rules
Labels must be assigned according to the C language rules. These types of labels
cannot be used:

• Labels that begin with uppercase SQL
• Labels that begin with lowercase p_
• Labels that begin with lowercase pd
• Labels that begin with uppercase PD

For naming embedded variables, indicator variables, and branching destination labels,
the labeling and the C language rules must be followed.

(2) SQL coding rules
1. Each SQL statement must be preceded by the SQL prefix (EXEC SQL) and

followed by the SQL terminator (;).
Valid example:
EXEC SQL SQL-statement;

2. The C language macro function cannot be used for an embedded SQL statement
or any part of it.
Invalid example:
#define X USER.MEMBER
EXEC SQL
 SELECT NAME INTO MANNAME FROM X;

3. The underline indicates the invalid portion.
SQL reserved words can be in uppercase letters, lowercase letters, or a mixture of
both.
Example 1:
EXEC SQL
 SELECT MEM INTO :NAME FROM TABLE;

7. UAP Creation

623

Example 2:
exec sql
select MEM into :NAME from TABLE;

Example 3:
exec SQL
 SELECT MEM Into :NAME From TABLE;

4. One line each must be used for the SQL prefix, the embedded SQL start
declaration, and the embedded SQL termination declaration. A blank space is
used to separate the words making up each item.
A line consists of a character string that begins with the character following the
linefeed character and ends with the next linefeed character. The maximum length
of a row in a UAP source program that can be preprocessed is 32,000 characters.
Valid specification:
EXEC SQL
 BEGIN DECLARE SECTION;
...
EXEC SQL
 END DECLARE SECTION;

EXEC SQL
 SELECT... ;

Invalid specification:
EXEC SQL
 BEGIN
 DECLARE SECTION;
 :

EXEC SQL
 END
 DECLARE SECTION;

EXEC \
 SQL
 SELECT ... ;

5. The embedded SQL declaration section must precede the SQL statements that use
the embedded variables and indicator variables.
Example:
EXEC SQL
 BEGIN DECLARE SECTION;
short SALES;
EXEC SQL
 END DECLARE SECTION;

7. UAP Creation

624

...
EXEC SQL
 SELECT PRICE INTO :SALES
 FROM TABLE;

6. The following rules apply to specifying embedded variables and indicator
variables.

• A declaration statement can span multiple lines. Multiple definition
statements can also be described in a single declaration statement.

Specification example:
short SALES,
 QUANTITY;
short SALES; short QUANTITY;

• Table 7-1 shows the items that can be described within an embedded SQL
declare section.

Table 7-1: Items that can be described within an embedded SQL declare section

D: Can be described.
: Cannot be described.

• The same embedded variable or indicator variable cannot be repeated within
the same source file.

• Multiple embedded variables or indicator variables can be declared in a
single declaration statement.

Specification example:
short SALES, QUANTITY; 1

short XSALES, XQUANTITY; 2

1: Declaration of embedded variables

Described Item Description within embedded declaration

Note D

C language instruction statement

C language control statement

SQL statement

Embedded variable declaration D

Indicator variable declaration D

7. UAP Creation

625

2: Declaration of indicator variables
• For details about the data types that can be used in embedded variables, see

E. SQL Data Types and Data Descriptions.
7. Embedded variables declared within a function become local variables;

embedded variables declared outside a function become global variables.
8. Although embedded SQL statements can also be described in locations within a

function block where C language instruction statements can be described, they
cannot be described on the same lines as another SQL statement or statements
written in C language.
Note

A label can be placed before an SQL prefix.
Table 7-2 shows the locations where SQL statements can be described.
Table 7-2: Locations where SQL statements can be described

D: Can be described.

Description location within a line SQL statement
description

C language and instruction statement Front

Middle

Back

C language control statement Front

Middle

Back

Label Front

Back D

Comments Front D

Middle

Back D

SQL statement* Front

Middle

Back

7. UAP Creation

626

: Cannot be described.
* Must begin with an SQL prefix and end with an SQL terminator.
9. To include a Microsoft Foundation Class (MFC) header file (AFXxxxxx.H) in a

UAP source program that uses HiRDB with the Visual C++ compiler, include the
HiRDB header file after the MFC header file by using the following SQL
statement:
EXEC SQL INCLUDE HIRDB_HEADERS;

• INCLUDE HIRDB_HEADERS includes the HiRDB header file that was
automatically included at the beginning of the post source file at the specified
location.

• INCLUDE HIRDB_HEADERS can be used only with C and C++. It cannot be
used with other languages.

• INCLUDE HIRDB_HEADERS can only be used once in a UAP.
• If INCLUDE HIRDB_HEADERS is not used, the HiRDB header file is included

at the beginning of the post source file.
The MFC header files provided by Visual C++ are sequentially related according
to the order in which they are included. If the WINDOWS.H header file (header file
used by HiRDB) is included first, an error may occur. In this case, use INCLUDE
HIRDB_HEADERS.
HiRDB uses the following Visual C++ header files:

• WINDOWS.H
• STRING.H

An example of using INCLUDE HIRDB_HEADERS is shown as follows.
#include <afx.h>
EXEC SQL INCLUDE HIRDB_HEADERS ;

10. Comments (/*...*/) specified between the SQL prefix and the SQL terminator
are deleted. However, SQL optimization specifications (/*>>...<<*/) are not
deleted but instead treated as SQL statements. For details about comments and
SQL optimization specifications in SQL statements, see the HiRDB Version 8
SQL Reference manual.

11. The backslash (\) symbol cannot be used to indicate row continuation.
12. When you use the -E option, the preprocessor declaration statement for the C

compiler becomes effective. Consequently, you can use #ifdef to specify SQL
statement switching and use macro literals to specify literals in the embedded
SQL declare section. However, the following restrictions apply:

• Preprocessor declaration statements cannot be specified between the SQL

7. UAP Creation

627

prefix and SQL terminator.
• Macros that change the column positions of the SQL prefix and SQL

terminator cannot be specified.
• Macro definitions of the SQL prefix and SQL terminator cannot be specified.

13. When you use the -E option, you can use an embedded variable, as long as you
declare the variable according to the C syntax rules, and the embedded variable
corresponds to an SQL data type. This is allowed even if you do not declare the
embedded variable in the embedded SQL declare section. If there is another
variable with the same name, the effective scope of each variable is determined
according to the C syntax rules. You can also use variables declared in an included
header. However, the following restrictions apply:

• Only the first 31 characters of the variable name are distinguished. The
subsequent characters are not distinguished.

• Nested structures cannot be used.
• Declare statements cannot contain embedded variables that use an

expression in a subscript.
• const-type embedded variables can be used only as input variables.
• varchar cannot be used for C language identifiers such as variable names

and function names, regardless of whether upper or lower case is used.
14. When you use the -E option, you can declare a structure that has multiple

embedded variables as members as an embedded variable. All members must
have a format that corresponds to an SQL data type. A structure cannot contain
another structure or a union. However, you can use a structure that corresponds to
the variable-length character string type or the BINARY type.

15. When you use the -E option, you can declare a pointer as an embedded variable.
The declaration format conforms to the C syntax rules. When using such an
embedded variable in an SQL statement, specify the variable with the same
format used for normal embedded variables. Do not add an asterisk in front of the
embedded variable name.

16. When you use the -E option and specify a structure member explicitly as an
embedded variable, include the structure name as a modifier. The format of the
structure member specification becomes :structure.member-name. If you are
using a pointer to the structure, include the pointer as a modifier. The format of
the structure member specification becomes :pointer->member-name.

17. When you specify the -E option in Windows, the following restrictions apply:
• The following keywords, each of which starts with two underscore (_)

characters, undergo syntax analysis but are treated as meaningless phrases.
These keywords are those defined by Visual C++ 6.0. For sources that are

7. UAP Creation

628

created with a older version of Visual C++, this restriction also applies to
keywords that begin with one underscore character.
__asm, __except, __forceinline, __int32, __stdcall, __based,
__far, __inline, __int64, __try, __cdecl, __fastcall, __int8,
__leave, __uuidof, __declspec, __finally, __int16, and __near

• Defining the same typedef name twice with typedef does not trigger a
syntax error. However, there is also no check for determining whether the
defined contents are the same.

• Members of anonymous structures cannot be used as embedded variables.
• Variable-length arrays cannot be used as embedded variables.
• Declarators specified without a storage class or data type cannot be used as

embedded variables.
18. When you specify the -E option, you cannot use the COPY statement.
19. When you specify the -E option, you cannot specify trigraphs, such as ?? or ??=.

Even if you do not specify the -E option, you cannot specify trigraphs in SQL
statements or the embedded SQL declare section. If you use trigraphs, they are
treated as normal characters.

7.2.2 Program example
This section provides an example of an embedded SQL UAP written in C language.
For details about the SQL syntax, see the HiRDB Version 8 SQL Reference manual.

(1) Examples of basic operations
(a) PAD chart

Figures 7-2 and 7-3 show a flowchart of the program example.

7. UAP Creation

629

Figure 7-2: Flowchart example of an embedded SQL UAP written in C

7. UAP Creation

630

Figure 7-3: Flowchart example of an embedded SQL UAP written in C

(b) Coding example
A coding example of an embedded SQL UAP written in C follows:
 1 #include <string.h>
 2 #include <stdlib.h>
 3
 4 #define MAXCOLUMN 80 /* max column in one line */

7. UAP Creation

631

 5 #define INFILE "inputf1" /* input data file name */
 6
 7 /* declare functions */
 8 void abnormalend();
 9 void connecterror();
 10
 11 FILE *input = NULL;
 12
 13 main()
 14 {
 15 /* input data */
 16 char indata[MAXCOLUMN + 1];
 17
 18 char in_userid[31];
 19 char in_passwd[31];
 20 char in_type;
 21 char in_pcode[5];
 22 char in_pname[17];
 23 char in_color[3];
 24 int in_price;
 25 int in_stock;
 26 char in_flux;
 27
 28 /* variables for SQL */
 29 EXEC SQL BEGIN DECLARE SECTION; 1
 30 char xuserid[31]; 1
 31 char xpasswd[31]; 1
 32 char xpcode[5]; 1
 33 char xpname[17]; 1
 34 char xcolor[3]; 1
 35 int xprice; 1
 36 int xstock; 1
 37 EXEC SQL END DECLARE SECTION; 1
 38
 39 /* input file open */ 2
 40 input = fopen(INFILE, "r"); 2
 41 if (input == NULL) { 2
 42 /* input file open error */ 2
 43 fprintf(stderr, "can't open %s.", INFILE); 2
 44 goto FIN; 2
 45 } 2
 46 2
 47 /* get userid/passwd */ 2
 48 fgets(indata, 81, input); 2
 49 sscanf(indata, "%30s %30s", xuserid, xpasswd); 2
 50 if (feof(input)) { 2
 51 fprintf(stderr, "*** error *** no data for connect
 ***"); 2

7. UAP Creation

632

 52 goto FIN; 2
 53 } 2
 54 printf("connect start,\n"); 2
 55 EXEC SQL WHENEVER SQLERROR PERFORM connecterror; (a) 2
 56 EXEC SQL CONNECT USER :xuserid USING :xpasswd; (b) 2
 57 printf("connected,\n"); 2
 58
 59 /* read data from inputfile */
 60 EXEC SQL WHENEVER SQLERROR PERFORM abnormalend;
 61 fgets(indata, MAXCOLUMN, input);
 62
 63 while (!feof(input)) {
 64 sscanf(indata, "%c %4s %16s %2s %8d %8d %c",
 65 &in_type, in_pcode, in_pname, in_color,
 66 &in_price, &in_stock, &in_flux);
 67 switch (in_type) {
 68 case 'I':
 69 strncpy(xpcode, in_pcode, 4);
 70 strncpy(xpname, in_pname, 8);
 71 strncpy(xcolor, in_color, 2);
 72 xprice = in_price;

 73 xstock = in_stock;
 74 EXEC SQL 3
 75 INSERT INTO
 STOCK(PCODE,PNAME,COLOR,PRICE,SQUANTITY) 3
 76 VALUES(:xpcode,:xpname,:xcolor,:xprice,:xstock);
 3
 77 break;
 78 case 'U':
 79 strncpy(xpcode, in_pcode, 4); 4
 80 xstock = in_stock; 4
 81 if (in_flux == '1') { 4
 82 EXEC SQL (a) 4
 83 UPDATE STOCK
 SET SQUANTITY =SQUANTITY+:xstock (a) 4
 84 WHERE PCODE=: xpcode; (a) 4
 85 } else { 4
 86 EXEC SQL (b) 4
 87 UPDATE STOCK
 SET SQUANTITY=SQUANTITY-:xstock (b) 4
 88 WHERE PCODE=:xpcode; (b) 4
 89 }
 90 break;
 91 case 'D':
 92 strncpy(xpcode, in_pcode, 4);
 93 EXEC SQL 5
 94 DELETE FROM STOCK WHERE PCODE=:xpcode; 5

7. UAP Creation

633

 95 break;
 96 }
 97 fgets(indata, MAXCOLUMN, input);
 98 }
 99
 100 /* print stock list */
 101 EXEC SQL 6
 102 DECLARE CR1 CURSOR FOR 6
 103 SELECT PCODE,PNAME,COLOR,PRICE,SQUANTITY FROM
 STOCK; 6
 104 EXEC SQL OPEN CR1; 7
 105
 106 /* print title */
 107 printf("\n\n");
 108 printf(" ***** Stock Table List *****\n\n");
 109 printf(" Product code Product name Color Price
 Current stock\n");
 110 printf(" ---- ---------------- -- --------
 --------\n");
 111
 112 /* FETCH */
 113 SQLCODE = 0;
 114 while (SQLCODE <= 100) {
 115 EXEC SQL WHENEVER NOT FOUND GO TO FINISH;
 116 EXEC SQL 8
 117 FETCH CR1 INTO :
 xpcode,:xpname,:xcolor,:xprice,:xstock; 8
 118 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 119 printf(" %4s %-16s %2s %8d %8d\n",
 120 xpcode, xpname, xcolor, xprice, xstock);
 121 }
 122
 123 FINISH:
 124 /* finish */
 125 EXEC SQL CLOSE CR1; (a) 9
 126 EXEC SQL COMMIT; (b) 9
 127 printf(" *** normal ended ***\n");
 128
 129 FIN:
 130 if (input != NULL) {
 131 fclose(input);
 132 }
 133 EXEC SQL WHENEVER SQLERROR CONTINUE;
 134 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 135 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 136 EXEC SQL DISCONNECT; 10
 137 return(0);
 138 }

7. UAP Creation

634

 139
 140
 141 Void connecterror()
 142 {
 143
 144 printf("\n************ error *** cannot connect ***\n");
 145 fclose(input);
 146 EXEC SQL DISCONNECT;
 147 exit(1);
 148 }
 149
 150
 151 void abnormalend()
 152 {
 153 int wsqlcode;
 154
 155 wsqlcode = -SQLCODE;
 156 printf("\n*** HiRDB SQL ERROR SQLCODE = %d \n",
wsqlcode);
 157 printf("SQLERRMC = %s\n", SQLERRMC);
 158
 159 EXEC SQL ROLLBACK; (a) 11
 160 EXEC SQL DISCONNECT; (b) 11
 161 exit(2);
 162 }

1. Starting and ending the embedded SQL declaration section
Encloses the variables to be used in the UAP between BEGIN DECLARE
SECTION and END DECLARE SECTION. The variables indicate the start and end
of the embedded SQL declaration section.

2. Connecting with HiRDB
Specifying the abnormal processing

Specifies the branch destination (connecterror) as the process to be
executed if an error (SQLERROR) occurs after execution of the subsequent
SQL statements.

Connecting to HiRDB
Informs HiRDB of the authorization identifier and the password so that the
UAP can use HiRDB.

3. Inserting rows into the stock table
Inserts the values read into the embedded variables into each column of the stock
table.

4. Updating stock table rows

7. UAP Creation

635

Incoming stock
Sets the product code that was read into the embedded variable (:xpcode)
as the key, and retrieves the row to be updated from the stock table. Updates
the row by adding the value that was read into the embedded variable
(:xquantity) to the QUANTITY value of the retrieved row.

Stock
Sets the product code that was read into the embedded variable (:xpcode)
as the key, and retrieves the row to be updated from the stock table. Updates
the row by deleting the value that was read into the embedded variable
(:xquantity) from the QUANTITY value of the retrieved row.

5. Deleting stock table rows
Sets the product code that was read into the embedded variable (:xpcode) as the
key, and deletes the rows that have a key equal to that value.

6. Declaring the CR1 cursor
Declares the CR1 cursor for retrieving rows from the stock table (STOCK).

7. Opening the CR1 cursor
Positions the cursor immediately in front of a row to be retrieved from the stock
table (STOCK) so that the row can be fetched.

8. Fetching stock table rows
Retrieves the row indicated by the CR1 cursor from the stock table (STOCK), and
sets the row values into the embedded variables.

9. Closing cursor CR1 and terminating a transaction
Closing the CR1 cursor

Closes the CR1 cursor.
Terminating HiRDB

Terminates the current transaction normally, and validates the results of the
database addition, update, and deletion operations that were executed in that
transaction.

10. Disconnecting from HiRDB
Disconnects the UAP from HiRDB.

11. Rolling back the transaction
Invalidating the transaction

Rolls back the current transaction to invalidate the results of the database
addition, update, and deletion operations that were executed in that

7. UAP Creation

636

translation.
Disconnecting from HiRDB

Disconnects the UAP from HiRDB.
(2) Example that uses an SQL descriptor area for user definitions

(a) PAD chart
Figures 7-4 through 7-7 show the PAD chart for program example 2.

Figure 7-4: PAD chart for program example 2 (1/4)

7. UAP Creation

637

Figure 7-5: PAD chart for program example 2 (2/4)

7. UAP Creation

638

Figure 7-6: PAD chart for program example 2 (3/4)

7. UAP Creation

639

Figure 7-7: PAD chart for program example 2 (4/4)

(b) Coding example
A coding example for program example 2 follows:
 1 /**/
 2 /* */
 3 /* ALL RIGHTS RESERVED, COPYRIGHT (C) 1997, HITACHI, LTD.
*/
 4 /* LICENSED MATERIAL OF HITACHI, LTD. */
 5 /* */
 6 /* SAMPLE OF FETCH WITH SQLDA */
 7 /* */
 8 /**/
 9
 10
 11 #include <stdio.h>
 12 #include <stdlib.h>
 13 #include <string.h>
 14 #include "pdbsqlda.h" 1

7. UAP Creation

640

 15
 16
 17 static void Describe();
 18 static void Fetch();
 19 static void ClearSqlda(short);
 20 static void errmsg();
 21
 22 /**/
 23 /* GLOBAL VARIABLE */
 24 /**/
 25 short ErrFlg;
 26
 27 /**/
 28 /* GLOBAL VARIABLE */
 29 /**/
 30
 31 /* sqlda */
 32 PDUSRSQLDA(10) xsqlda; 2
 33
 34 /* sqlcnda */ 3
 35 struct { 3
 36 short sqlnz; 3
 37 struct { 3
 38 short sqlnamel; 3
 39 char sqlnamec[30]; 3
 40 } SQLNAME[10]; 3
 41 } ucnda; 3
 42
 43
 44 /**/
 45 /* */
 46 /* MAIN ROUTINE */
 47 /* */
 48 /**/
 49 int main(
 50 int argc,
 51 char *argv[])
 52 {
 53
 54 /**/
 55 /* CONNECT */
 56 /**/
 57 EXEC SQL
 58 WHENEVER SQLERROR GOTO:ERR_EXIT
 59
 60 printf("***** connect start \n");
 61 EXEC SQL
 62 CONNECT; 4

7. UAP Creation

641

 63 printf("***** connect : END\n");
 64
 65 /**/
 66 /* DESCRIBE */
 67 /**/
 68 Describe(); 5
 69 if(ErrFlg <0){ 5
 70 goto ERR_EXIT; 5
 71 } 5

 72 5
 73 /***/ 5
 74 /* FETCH */ 5
 75 /***/ 5
 76 Fetch(); 5
 77 if(ErrFlg <0){ 5
 78 goto ERR_EXIT; 5
 79 } 5
 80
 81 /**/
 82 /* END OF ALL */
 83 /***/
 84 ERR_EXIT :
 85 if(SQLCODE <0){
 86 errmsg();
 87 ErrFlg = -1;
 88 }
 89
 90 EXEC SQL
 91 WHENEVER SQLERROR CONTINUE;
 92 EXEC SQL
 93 WHENEVER NOT FOUNT CONTINUE;
 94 EXEC SQL
 95 WHENEVER SQLWARNING CONTINUE;
 96
 97 EXEC SQL
 98 DISCONNECT; 6
 99
100 return (ErrFlg);
101 }
102
103
104 /***/
105 /* */
106 /* DYNAMIC CURSOR */
107 /* */
108 /***/
109 static void Fetch()

7. UAP Creation

642

110 {
111 EXEC SQL BEGIN DECLARE SECTION;
112 char XCUSTOM_CD[6];
113 char XCUSTOM_NAME[31];
114 char XTELNO[13];
115 char XZIPCD[4];
116 char XADDRESS[31];
117 EXEC SQL END DECLARE SECTION;
118
119 EXEC SQL
120 WHENEVER SQLERROR GOTO :Exit_Fetch;
121
122 EXEC SQL
123 DECLARE CUR2 CURSOR FOR SEL1; 7
124
125 /***/
126 /* OPEN CURSOR */
127 /***/
128 printf("***** DYNAMIC CURSOR open start\n");
129 EXEC SQL
130 OPEN CUR2; 8
131 printf("***** DYNAMIC CURSOR open : END\n");
132
133
134 /***/
135 /* FETCH */
136 /***/
137 printf("***** fetch (use sqlda) start\n");
138
139
140 EXEC SQL
141 WHENEVER NOT FOUND GOTO FETCH2_END;
142
143 for(;;) {
144 ClearSqlda(5); 9
145 PDSQLDATA(xsqlda, 0) = (void *)
 XCUSTOM_CD; (a) 9
146 PDSQLCOD(xsqlda, 0) = PDSQL_CHAR; (a) 9
147 PDSQLLEN(xsqlda, 0) = sizeof
 (XCUSTOM_CD)-1; (a) 9
148 PDSQLDATA(xsqlda, 1) = (void *)
 XCUSTOM_NAME; (b) 9
149 PDSQLCOD(xsqlda, 1) = PDSQL_CHAR; (b) 9
150 PDSQLLEN(xsqlda, 1) = sizeof
 (XCUSTOM_NAME)-1; (b) 9
151 PDSQLDATA(xsqlda, 2) = (void *)XTELNO; (c) 9
152 PDSQLCOD(xsqlda, 2) = PDSQL_CHAR; (c) 9
153 PDSQLLEN(xsqlda, 2) = sizeof(XTELNO)-1; (c) 9

7. UAP Creation

643

154 PDSQLDATA(xsqlda, 3) = (void *)XZIPCD; (d) 9
155 PDSQLCOD(xsqlda, 3) = PDSQL_CHAR; (d) 9
156 PDSQLLEN(xsqlda, 3) = sizeof(XZIPCD)-1; (d) 9
157 PDSQLDATA(xsqlda, 4) =
 (void *)XADDRESS; (e) 9
158 PDSQLCOD(xsqlda, 4) = PDSQL_CHAR; (e) 9
159 PDSQLLEN(xsqlda, 4) =
 sizeof(XADDRESS)-1; (e) 9
160
161 memset(XCUSTOM_CD, 0, sizeof(XCUSTOM_CD));
162 memset(XCUSTOM_NAME, 0, sizeof(XCUSTOM_NAME));
163 memset(XTELNO, 0, sizeof(XTELNO));
164 memset(XZIPCD, 0, sizeof(XZIPCD));
165 memset(XADDRESS, 0, sizeof(XADDRESS));
166
167 EXEC SQL FETCH CUR2
168 USING DESCRIPTOR :xsqlda; 10
169
170 printf("%s", XCUSTOM_CD);
171 printf("%s", XCUSTOM_NAME);
172 printf("%s", XTELNO);
173 printf("%s", XZIPCD);
174 printf("%s\n", XADDRESS);
175 }
176 FETCH2_END:
177 printf("***** fetch : END\n");
178
179 /***/
180 /* CLOSE CURSOR */
181 /***/
182 printf("***** close start\n");
183 EXEC SQL
184 WHENEVER NOT FOUND CONTINUE;
185 EXEC SQL
186 CLOSE CUR2; 11
187 printf("***** close : END\n");
188
189 /***/
190 /* */
191 /***/
192 Exit_Fetch:
193 if(SQLCODE <0){
194 errmsg();
195 ErrFlg = -1;
196 }
197 return;
198 }
199

7. UAP Creation

644

200
201 /***/
202 /* DESCRIBE */
203 /***/
204 static void Describe()
205 {
206 short I;
207
208 EXEC SQL
209 WHENEVER SQLERROR GOTO :Exit_Describe;
210
211 /***/
212 /* PREPARE */
213 /***/
214 printf("***** prepare start\n");
215 EXEC SQL 12
216 PREPARE SEL1 12
217 FROM 'SELECT * FROM CUSTOM' 12
218 WITH SQLNAME OPTION; 12
219 printf("***** prepare : END\n");
220
221 /***/
222 /* DESCRIBE */
223 /***/
224 PDSQLN(xsqlda) = 10;
225 printf("***** describe start\n");
226 EXEC SQL
227 DESCRIBE SEL1 INTO :xsqlda :ucnda; 13
228 printf("***** describe : END\n");
229
230 printf(" describe result\n");
231 printf(" NUMBER OF DATA =%d\n",
 PDSQLD(xsqlda));
232 printf(" NUMBER OF COLUMN NAME = %d\n",
 ucnda.sqlnz);
233 for (i=0 ; i < ucnda.sqlnz ; i++) {
234 printf(" [%d]), i);
235 printf(" DATA TYPE(%d)", PDSQLCOD(xsqlda,
 i));
236 printf(" DATA LENGTH(%d)",
 PDSQLLEN(xsqlda, i));
237 printf(" COLUMN NAME(%s)\n",
 ucnda.SQLNAME[i].sqlnamec);
238 }
239
240 /***/
241 /* */
242 /***/

7. UAP Creation

645

243 Exit_Describe:
244 if(SQLCODE <0){
245 errmsg();
246 ErrFlg = -1;
247 }
248 return;
249 }
250
251
252 /***/
253 /* Clear SQLDA */
254 /***/
255 static void ClearSqlda (
256 short num)
257 {
258 PDSQLN(xsqlda) = num; 14
259 PDSQLD(ssqlda) = num; 14
260 while(numzueng016.tif0){
261 PDSQLDATA(xsqlda, num) = NULL; 15
262 PDSQLIND(xsqlda, num) = NULL; 15
263 PDSQLDIM(xsqlda, num) = 0; 15
264 PDSQLXDIM(xsqlda, num) = 1; 15
265 PDSQLSYS(xsqlda, num) = 0; 15
266 PDSQLCOD(xsqlda, num) = 0; 15
267 PDSQLLEN(xsqlda, num) = 0; 15
268 }
269 return;
270 }
271
272
273 /***/
274 /* */
275 /* WARNING */
276 /* */
277 /***/
278 static void errmsg()
279 {
280 int wsqlcode;
281
282 if(SQLCODE > 0){
283 printf(">>> warning\n");
284 }
285 if(SQLCODE <0){
286 printf(">>> error occurred\n");
287 }
288 wsqlcode = SQLCODE;
289 printf(">>> sqlcode = %d\n", SQLCODE);
290 printf(">>> sqlwarn = %c", SQLWARN0);

7. UAP Creation

646

291 printf("%c", SQLWARN1);
292 printf("%c", SQLWARN2);
293 printf("%c", SQLWARN3);
294 printf("%c", SQLWARN4);
295 printf("%c", SQLWARN5);
296 printf("%c", SQLWARN6);
297 printf("%c", SQLWARN7);
298 printf("%c", SQLWARN8);
299 printf("%c", SQLWARN9);
300 printf("%c", SQLWARNA);
301 printf("%c", SQLWARNB);
302 printf("%c\n", SQLWARNC);
303
304 #if defined(HIUXWE2) || defined(WIN32)
305 printf(">>> message = %s\n", SQLERRMC);
306 #else
307 printf(">>> message = %Fs\n", SQLERRMC);
308 #endif
309 return;
310 }

1. Including the distributed header file
Declares the data code literals used for setting and referencing the SQL descriptor
area, and declare the data type of the SQL descriptor area itself.

2. Declaring the SQL descriptor area
Defines the individual SQL descriptor area for use with the UAP. The data type is
defined in the distributed header file.

3. Declaring the column name descriptor area
Defines the variable to be used when a column name is obtained with the
DESCRIBE statement.

4. Connecting to HiRDB
Uses the authorization identifier and password set in the PDUSER environment
variable to connect to the server.

5. Retrieving the customer table (CUSTOM)
Obtains the name of each column in the customer table (CUSTOM), and uses the
SQL descriptor area for user definitions to retrieve and display all rows stored in
the table.

6. Disconnecting from HiRDB
Disconnects the UAP from the server.

7. Declaring the CUR2 cursor

7. UAP Creation

647

Declares the CUR2 cursor for retrieving customer table (CUSTOM) rows.
8. Opening the CUR2 cursor

Positions the cursor immediately in front of a row to be retrieved from the
customer table (CUSTOM) so that the row can be retrieved.

9. Setting the SQL descriptor area for user definitions
Sets the SQL descriptor area for user definitions to be specified when the FETCH
statement is executed.

• Sets the storage area address, the data code, and the data length for the
column 1 data.

• Sets the storage area address, the data code, and the data length for the
column 2 data.

• Sets the storage area address, the data code, and the data length for the
column 3 data.

• Sets the storage area address, the data code, and the data length for the
column 4 data.

• Sets the storage area address, the data code, and the data length for the
column 5 data.

10. Fetching the customer table rows
Fetches the row indicated by the CUR2 cursor from the customer table (CUSTOM),
and sets it into the area indicated by the SQL descriptor area for user definitions.

11. Closing the CUR2 cursor
Closes the CUR2 cursor.

12. Preparing for SQL dynamic execution
Prepares the SELECT statement for retrieving the table so that the DESCRIBE
statement can fetch the column name, data type, and data length of each column
in the customer table (CUSTOM).

13. Fetching column names and data types
Fetches the data type and data length of each column in the customer table
(CUSTOM), and sets the information into the SQL descriptor area for user
definitions. Also, fetches the column name of each column, and sets the
information into the user column name descriptor area.

14. Setting the row count for the SQL definition area for user definitions
In the SQL descriptor area for user definitions, sets the size of the SQL descriptor
area and the number of rows to be fetched.

7. UAP Creation

648

15. Clearing the SQL descriptor area for user definitions
Clears each column area in the SQL descriptor area for user definitions.

(3) Example of manipulating LOB data
(a) PAD chart for program example 3

Figures 7-8 through 7-10 show the PAD chart for program example 3.
Figure 7-8: PAD chart for program example 3 (1/3)

7. UAP Creation

649

Figure 7-9: PAD chart for program example 3 (2/3)

7. UAP Creation

650

Figure 7-10: PAD chart for program example 3 (3/3)

7. UAP Creation

651

(b) Coding example
A coding example of program example 3 follows:
 1 /***/
 2 /* */
 3 /* ALL RIGHTS RESERVED, COPYRIGHT (C) 1997,
 HITACHI, LTD. */
 4 /* LICENSED MATERIAL OF HITACHI, LTD. */
 5 /* */
 6 /***/
 7
 8
 9 #include <stdio.h>
 10 #include <stdlib.h>
 11 #include <stddef.h>
 12 #include <ctype.h>
 13 #include <string.h>
 14
 15 static void InitTable();
 16 static void TestBlob();
 17 static void warning();
 18
 19
 20 /***/
 21 /* GLOBAL VARIABLE */
 22 /***/
 23 short ErrFlg;
 24
 25 EXEC SQL BEGIN DECLARE SECTION;
 26 short XSINT_IN;
 27 short XSINT_OUT;
 28 long XINT_IN;
 29 long XINT_OUT;
 30 SQL TYPE IS BLOB(16K) XBLOB_IN; 1
 31 SQL TYPE IS BLOB(16K) XBLOB_OUT; 1
 32 EXEC SQL END DECLARE SECTION;
 33
 34 /*
 35 * name = MAIN
 36 * func = SAMPLE
 37 * io = argc : i :
 38 * argv : i :
 39 * return = 0,-1
 40 * note = This program needs "RDUSER02" rdarea
 on Server.
 41 * date = 98.04.24 by matsushiba
 42 */
 43 int main(

7. UAP Creation

652

 44 int argc,
 45 char *argv[])
 46 {
 47 ErrFlg = 0;
 48
 49 /***/
 50 /* */
 51 /***/
 52 EXEC SQL
 53 WHENEVER SQLERROR goto ERR_EXIT;
 54
 55 EXEC SQL
 56 WHENEVER SQLWARNING PERFORM :warning;
 57
 58 EXEC SQL CONNECT; 2
 59
 60
 61 /***/
 62 /* INIT */
 63 /***/
 64 InitTable(); 3
 65 if(ErrFlg <0){ 3
 66 goto ERREXIT; 3
 67 } 3
 68
 69 /***/
 70 /* */
 71 /***/
 72 TestBlob(); 4

 73 if(ErrFlg <0){ 4
 74 goto ERR_EXIT; 4
 75 } 4
 76
 77 /***/
 78 /* */
 79 /***/
 80 ERREXIT:
 81 if(SQLCODE <0){
 82 printf(":> ERROR HAPPENED!!\n");
 83 warning();
 84 ErrFlg = -1;
 85 }
 86
 87 EXEC SQL
 88 WHENEVER SQLERROR CONTINUE;
 89 EXEC SQL
 90 WHENEVER NOT FOUND CONTINUE;

7. UAP Creation

653

 91 EXEC SQL
 92 WJEMEVER SQLWARNING CONTINUE;
 93
 94 EXEC SQL DISCONNECT; 5
 95
 96 return (ErrFlg);
 97 }
 98
 99
100 /***/
101 /* INIT */
102 /***/
103 static void InitTable()
104 {
105
106 /***/
107 /* */
108 /***/
109 EXEC SQL
110 WHENEVER SQLERROR CONTINUE;
111
112 EXEC SQL 6
113 DROP TABLE SMPTBL; 6
114 6
115 EXEC SQL 6
116 CREATE SCHEMA; 6
117
118 printf("## CREATE TABLE\n");
119
120 EXEC SQL
121 WHENEVER SQLERROR GOTO INIT_ERROR;
122
123 printf("## CREATE SMPTBL\n");
124 EXEC SQL 7
125 CREATE TABLE SMPTBL(CLM1 BLOB(30K) IN
 RDUSER02, 7
126 CLM2 SMALLINT, 7
127 CLM3 INTEGER); 7
128
129 return;
130
131 INIT_ERROR:
132 warning();
133 ErrFlg = -1;
134 return;
135 }
136
137

7. UAP Creation

654

138
139 /**/
140 /* TEST BLOB */
141 /**/
142 static void TestBlob()
143 {
144 short cnt;
145
146 EXEC SQL
147 WHENEVER SQL ERROR goto :ExitTestBlob;
148
149 EXEC SQL
150 WHENEVER SQLWARNING PERFORM :warning;
151
152 /***/
153 /* INSERT */
154 /***/
155 memset(XBLOB_IN.XBLOB_IN_data,
156 0x55,
157 sizeof(XBLOB_IN.XBLOB_IN_data));
158 XBLOB_IN.XBLOB_IN_length =
 sizeof(XBLOB_IN.XBLOB_IN_data);
159
160 printf("## INSERT \n");
161 for(cnt=1; cnt<5; cnt++){
162 XSINT_IN = cnt;
163 XINT_IN = 100+cnt;
164 EXEC SQL 8
165 INSERT INTO SMPTBL 8
166 VALUES(:XBLOB_IN, :XSINT_IN,
 :XINT_IN); 8
167 }
168 EXEC SQL COMMIT;
169
170 /***/
171 /* FETCH */
172 /***/
173 printf("## FETCH \n");
174
175 EXEC SQL 9
176 DECLARE CUR_BLOB CURSOR FOR 9
177 SELECT * FROM SMPTBL; 9
178
179 EXEC SQL
180 OPEN CUR_BLOB; 10
181
182 EXEC SQL
183 WHENEVER NOT FOUND GOTO FETCH_END;

7. UAP Creation

655

184
185 for(;;){
186 memset (XBLOB_OUT.XBLOB_OUT_data,
187 0
188 sizeof(XBLOB_OUT.XBLOB_OUT_data));
189 XBLOB_OUT.XBLOBL_OUT_length = 0;
190 EXEC SQL 11
191 FETCH CUR_BLOB INTO :XBLOB_OUT, 11
192 :XSINT_OUT, 11
193 :XINT_OUT; 11
194
195 printf("CLM1 XBLOB_length == %d\n",
196 XBLOB_OUT.XBLOB_OUT_length);
197 printf("CLM2 = %d\n", XSINT_OUT);
198 printf("CLM3 = %ld\n", XINT_OUT);
199 }
200 FETCH_END:
201 EXEC SQL
202 WHENEVER NOT FOUND CONTINUE;
203
204 EXEC SQL
205 CLOSE CUR_BLOB; 12
206
207 /***/
208 /* UPDATE */
209 /***/
210 memset(XBLOB_IN.XBLOB_IN_data,
211 0x38,
212 sizeof(XBLOB_IN.XBLOB_IN_data));
213 XBLOB_IN.XBLOB_IN_length =
 sizeof(XBLOB_IN.XBLOB_IN_data);
214
215 printf("## UPDATE\n");
216 EXEC SQL
217 UPDATE SMPTBL SET CLM1=:XBLOB_IN; 13
218
219 EXEC SQL COMMIT
220
221 /***/
222 /* */
223 /***/
224 ExitTestBlob:
225 if(SQLCODE < 0){
226 warning();
227 ErrFlg = -1;
228 }
229 return;
230)

7. UAP Creation

656

231
232
233 /***/
234 /* WARNING */
235 /***/
236 static void warning()
237 {
238 if(SQLCODE <0){
239 printf(">>>ERROR\n");
240 printf(">>> sqlcode = %d\n", SQLCODE);
241 #if defined(HIUXWE2) || defined(WIN32)
242 printf(":> message = %s\n", SQLERRMC);
243 #else
244 printf(":> message = %Fs\n", SQLERRMC);
245 #endif
246 }
247 else{
248 printf(">>>WARNING\n");
249 printf(">>>sqlwarn = %c", SQLWARN0)
250 printf("%c", SQLWARN1);
251 printf("%c", SQLWARN2);
252 printf("%c", SQLWARN3);
253 printf("%c", SQLWARN4);
254 printf("%c", SQLWARN5);
255 printf("%c", SQLWARN6);
256 printf("%c", SQLWARN7);
257 printf("%c", SQLWARN8);
258 printf("%c", SQLWARN9);
259 printf("%c", SQLWARNA);
260 printf("%c", SQLWARNB);
261 printf("%c\n", SQLWARNC);
262 }
263 return
264 }

1. Declaring LOB-type embedded variables
Declares the LOB-type embedded variable for writing data (:XBLOB_IN) and the
LOB-type embedded variable for reading data (:XBLOB_OUT).

2. Connecting to HiRDB
Uses the authorization identifier and password set in the PDUSER environment
variable to connect to the server.

3. Initializing the table
Defines an SMPTBL table that contains LOB-type columns.

4. Inserting, retrieving, and updating LOB data

7. UAP Creation

657

Inserts rows that include LOB-type columns in the empty SMPTBL table, retrieves
all rows, and then updates the contents of the LOB-type columns with new LOB
data.

5. Disconnecting from HiRDB
Disconnects the UAP from the server.

6. Preparing for SMPTBL creation
To create the SMPTBL table containing LOB-type columns, deletes any tables that
have the same name, and creates a schema in case there are no schemas.

7. Creating the SMPTBL table containing LOB-type columns
Creates the SMPTBL table containing LOB-type columns. A LOB RDAREA user
must be created, because the LOB data is defined for storage in a special
RDAREA for LOB data. If there is no LOB RDAREA user, an error occurs.

8. Adding LOB data
Adds the values that were set in the embedded variables (:XBLOB_IN,
:XINT_IN, and :XSINT_IN) to the SMPTBL table containing LOB-type columns.

9. Declaring the CUR_BLOB cursor
Declares the CUR_BLOB cursor for retrieving the SMPTBL table containing
LOB-type columns.

10. Opening the CUR_BLOB cursor
Positions the cursor immediately in front of a row to be retrieved from the
SMPTBL table containing LOB-type columns so that the row can be fetched.

11. Fetching LOB-type data
Fetches the row indicated by the CUR_BLOB cursor from the SMPTBL table
containing LOB-type columns, and sets the data to the embedded variables
(:XBLOB_OUT, :XINT_OUT, and :XSINT_OUT).

12. Closing the CUR_BLOB cursor
Closes the CUR_BLOB cursor.

13. Updating LOB data
Updates the values of the LOB-type columns in the SMPTBL table with the
embedded variable (:XBLOB_IN) values.

7. UAP Creation

658

7.3 Writing a UAP in COBOL

This section explains, by way of examples, the coding rules for embedding SQL
statements in UAPs written in COBOL.
Note that UAPs written in COBOL cannot be created for the Linux (IPF) and Linux
(EM64T) versions, Windows Server 2003 (IPF), and Linux for AP8000 clients.

7.3.1 Coding rules
When a UAP is written, the labeling rules, SQL coding rules, and SQL syntax rules
must be followed.

(1) Labeling rules
Labels must be assigned according to COBOL rules. These rules apply to labels:

(a) SQL reserved words
• Both uppercase and lowercase letters can be used
• Uppercase and lowercase letters can be mixed

(b) Host names
• Labels that begin with SQL cannot be used
• Blanks can be entered following a colon within a host name
• Host names are not case-sensitive
• Uppercase and lowercase letters can be mixed
• The corresponding double-byte and single-byte versions of letters, numeric

characters, symbols, katakana characters, and the space character are treated as
different characters.

Embedded variables, indicator variables, and branching destination labels must be
named in accordance with the COBOL labeling rules. The following types of labels,
which have the external attribute, cannot be used:

• Labels that begin with the uppercase SQL
• Labels that begin with the lowercase p_
• Labels that begin with the lowercase pd

(2) SQL coding rules
1. Each SQL statement must be preceded by the SQL prefix (EXEC SQL) and

followed by the SQL terminator (END-EXEC).
Example:

7. UAP Creation

659

EXEC SQL SQL-statement; END-EXEC.

2. COBOL statements and SQL statements can both be specified on the same line.
3. All SQL statements (from the SQL prefix through the SQL suffix) must be

entered in the B area (columns 12 - 72)

4. The SQL statement continuation rules are generally the same as the COBOL line
continuation rules.
A line break can occur in an SQL description wherever the blank must be
specified or can be specified; a description can span multiple lines.
To break a line where a blank cannot be specified in the SQL statement, a hyphen
(-) must be specified in the indicator area; the description can resume on the next
line in any column in the B area.
To break a line in the middle of a character string literal, the description must be
specified through column 72, and a quotation mark (") must be specified
anywhere in the B area on the next line. To continue the character string, first
specify a quotation mark or an apostrophe (whichever was specified at the
beginning of the character string), and resume the character string specification
from the next column after that quotation mark or apostrophe.

5. A paragraph header can be entered before the SQL prefix (but not on the same
line as the SQL prefix).

Valid specification:
FINISH.
 EXEC SQL SQL-statement END-EXEC.

Invalid specification:
FINISH.
 EXEC SQL SQL-statement END-EXEC.

Bold letters indicate the invalid portion.
6. One SQL statement is treated as one COBOL language instruction. Therefore, if

an SQL statement is the last instruction of a concluding statement, a period and
blank must be specified following the SQL terminator.
Example of when an SQL statement constitutes a concluding statement:
EXEC SQL

7. UAP Creation

660

 SQL-statement
END-EXEC.

Example of when an SQL statement is the last instruction of a concluding
statement:
IF U-FLUX = '2'
THEN
 EXEC SQL SQL-statement END-EXEC.

Example of when an SQL is an instruction in the middle of a concluding
statement:
IF U-FLUX = '1'
THEN
 EXEC SQL SQL-statement
 END-EXEC
ELSE IF U-FLUX = '2'
 THEN NEXT SENTENCE.

7. Although a comment cannot be specified within an SQL statement, any number
comment lines can be specified between the SQL prefix and the SQL terminator.
Example:
 EXEC SQL
*Declaration of cursor for SELECT statement (1)
*that retrieves STOCK table (1)
 SQL-statement
 END-EXEC.

(1): Comment lines
8. The following rules apply to declaring embedded variables.

• Specify the embedded SQL declare section in one of the following sections:
 FILE SECTION of DATA DIVISION
 WORKING-STORAGE SECTION
 LOCAL-STORAGE SECTION
 LINKAGE SECTION

• For details about embedded variables for SQL data types, see E. SQL Data
Types and Data Descriptions.

• SIGN, JUSTIFIED, BLANK, and the WHEN ZERO clause cannot be specified
in the data description item of an embedded variable.

• Although a level 66 re-instruction item or level 88 conditional name item
cannot be used as an embedded variable, such items can be defined in an
embedded SQL declaration section.

7. UAP Creation

661

• The COBOL line continuation rules apply to continuation of data description
item lines of an embedded SQL declaration section.

• FILLER cannot be used as an embedded variable.
• A data item that uses the TYPE, TYPEDEF, or SAME AS clause can be used as

an embedded variable.
• If you use the REDEFINES clause, the system does not check whether the

item that performs the redefining and item to be redefined use the same
column justification. The size of the larger area is used.

• A data item in which the PICTURE clause is omitted and only the VALUE
clause is specified cannot be used as an embedded variable.

• When you use the -E option, you can use the declared data item as an
embedded variable even if you do not use an embedded SQL declare section.
However, the only data items that can be used as embedded variables in SQL
statements are those that are declared with a format described in E. SQL Data
Types and Data Descriptions. Data items that are declared with other formats
cannot be used as embedded variables.
The effective scope of each data item name is determined by the COBOL
syntax rules. The data items that can be used as embedded variables must be
specified in the source program. Data items in library text that is included
with the COPY or INCLUDE statement cannot be used as embedded variables.

• Data items that are inherited from a parent class by the class inheritance
facility of COBOL2002 cannot be used as embedded variables.

• UNICODE characters cannot be used in PICTURE and VALUE clauses. If
they are used, the operation is not guaranteed.

9. The following rules apply to declaring indicator variables.
• An indicator variable must be either a basic item between level 01 and level

49 or an independent item of level 77.
• For details about the data description terms for embedded variables, see E.

SQL Data Types and Data Descriptions.
• The SIGN, JUSTIFIED, BLANK, and WHEN ZERO clauses cannot be specified

in the data description item of an indicator variable.
• FILLER cannot be used as an indicator variable name.
• When you use the -E option, you can use the declared data item as an

indicator variable even if you do not use an embedded SQL declare section.
However, the only data items that can be used as indicator variables in SQL
statements are those that are declared with a format described in E. SQL Data
Types and Data Descriptions. Data items that are declared with other formats

7. UAP Creation

662

cannot be used as indicator variables.
The effective scope of each data item name is determined by the COBOL
syntax rules. The data items that can be used as indicator variables must be
specified in the source program. Data items in library text that is included
with the COPY or INCLUDE statement cannot be used as indicator variables.

• Data items that are inherited from a parent class by the class inheritance
facility of COBOL2002 cannot be used as indicator variables.

10. Table 7-3 shows the divisions in COBOL in which SQL statements can be
described.
Table 7-3: Divisions in COBOL for describing SQL statements

D: Can be described.
: Cannot be described.

* Indicates the working section, file section, or linkage section.
11. Because the WHENEVER statement and cursor declaration are declaration

statements, they cannot be specified within an IF or EVALUATE instruction.
12. Do not specify a control word for compile list output (EJECT, SKIP1, SKIP2,

SKIP3, or TITLE) in the SQL statements that are enclosed between the SQL
prefix and SQL terminator. To use EJECT, SKIP1, SKIP2, SKIP3, or TITLE as a
table name or column name, close the word in double quotation marks. However,
if EJECT, SKIP1, SKIP2, SKIP3, or TITLE is contained in a word phrase, such

SQL statement Data division* Procedure
division

Definition SQL D

Data manipulation SQL D

Control SQL D

Embedded
language

BEGIN DECLARE SECTION D

END DECLARE SECTION D

COPY D D

WHENEVER D

DECLARE CONNECTION HANDLE UNSET

COMMAND EXECUTE

Other statement D

7. UAP Creation

663

as a table name or column name, enclosing the word in quotation marks is
unnecessary.

13. Comments (/*...*/) specified between the SQL prefix and the SQL terminator
are deleted. However, SQL optimization specifications (/*>>...<<*/) are not
deleted but instead treated as SQL statements. If a specified comment or SQL
optimization specification extends over several lines, each line is assumed to start
from the beginning of the B area until */ is specified. Do not use line continuation
characters. For details about comments and SQL optimization specifications in
SQL statements, see the manual HiRDB Version 8 SQL Reference.

14. A note (*>) can be specified in a line. However, notes within lines cannot be used
between the SQL prefix and the SQL terminator. If a note within a line is
specified, the note is treated as a character string instead of a note.

15. In lines specified in the embedded SQL declare section and SQL statements, the
tab code is treated as being one character in length. If you use the -E2 or -E3
option, the tab code is treated as being one character in length in all data sections.

16. When the object-oriented facility of COBOL2002 is used, the rules described in
7.5.1(2) SQL coding rules also apply.

7.3.2 Program example
This section provides an example of an embedded SQL UAP written in COBOL. For
details about the SQL syntax, see the HiRDB Version 8 SQL Reference manual.

(1) Example of basic operation
(a) PAD chart

Figures 7-11 through 7-13 show a PAD flowchart of example 4.

7. UAP Creation

664

Figure 7-11: Flowchart of program example 4 (1/3)

7. UAP Creation

665

Figure 7-12: Flowchart of program example 4 (2/3)

7. UAP Creation

666

Figure 7-13: Flowchart of program example 4 (3/3)

7. UAP Creation

667

(b) Coding example
A coding example of an embedded SQL UAP written in COBOL follows:
00010*STOCK MANAGEMENT PROG.
00020*
00030*
00040* ALL RIGHTS RESERVED,COPYRIGHT (C)1997 HITACHI,LTD.
00050* LICENSED MATERIAL OF HITACHI,LTD.
00060*
00070 IDENTIFICATION DIVISION.
00080 PROGRAM-ID. ECOBUAP.
00090*
00100 ENVIRONMENT DIVISION.
00110 CONFIGURATION SECTION.
00120 SOURCE-COMPUTER. HITAC.
00130 OBJECT-COMPUTER. HITAC.
00140 INPUT-OUTPUT SECTION.
00150 FILE-CONTROL.
00160 SELECT INPUT-CARD-FILE
00170 ASSIGN TO DISK
00180 ORGANIZATION IS LINE SEQUENTIAL.
00190 SELECT PRINT-STOCK-FILE
00200 ASSIGN TO LP.
00210*
00220 DATA DIVISION.
00230 FILE SECTION.
00240 FD INPUT-CARD-FILE
00250 DATA RECORD USER-CARD-REC I-STOCK-REC.
00260*
00270 01 USER-CARD-REC.
00280 02 IUSERID PIC X(20).
00290 02 IPSWD PIC X(20).

7. UAP Creation

668

00300 02 FILLER PIC X(40).
00310*
00320 01 I-STOCK-REC.
00330 02 ITYPE PIC X(1).
00340 02 FILLER PIC X(2).
00350 02 IPCODE PIC X(4).
00360 02 FILLER PIC X(2).
00370 02 IPNAME PIC N(8).
00380 02 ICOLOR PIC N(1).
00390 02 IPRICE PIC X(9).
00400 02 ISTOCK PIC X(9).
00410 02 IFLUX PIC X(1).
00420 02 FILLER PIC X(34).
00430*
00440 FD PRINT-STOCK-FILE RECORDING MODE IS F
00450 LABEL RECORD IS OMITTED
00460 DATA RECORD PRINT-STOCK-REC.
00470 01 PRINT-STOCK-REC PIC X(132).
00480*
00490 WORKING-STORAGE SECTION.
00500*
00510 EXEC SQL 1
00520 BEGIN DECLARE SECTION 1
00530 END-EXEC. 1
00540 77 XUSERID PIC X(30). 1
00550 77 XPSWD PIC X(30). 1
00560 77 XPCODE PIC X(4) VALUE '0000'. 1
00570 77 XPNAME PIC N(8). 1
00580 77 XCOLOR PIC N(1). 1
00590 77 XPRICE PIC S9(9) COMP. 1
00600 77 XSTOCK PIC S9(9) COMP. 1
00610* INDICATOR VARIABLE 1
00620 77 XIPCODE PIC S9(4) COMP VALUE 1040. 1
00630 77 XIPNAME PIC S9(4) COMP VALUE 1050. 1
00640 77 XICOLOR PIC S9(4) COMP VALUE 1060. 1
00650 77 XIPRICE PIC S9(4) COMP VALUE 1070. 1
00660 77 XISTOCK PIC S9(4) COMP VALUE 1080. 1
00670* 1
00680* 1
00690 EXEC SQL 1
00700 END DECLARE SECTION 1
00710 END-EXEC. 1
00720*
00730 01 HEADING-REC.
00740 02 FILLER PIC X(13) VALUE SPACE.
00750 02 FILLER PIC X(32)
00760 VALUE '****** STOCK TABLE LIST ******'.
00770 02 FILLER PIC X(87) VALUE SPACE.

7. UAP Creation

669

00780*
00790 01 COLUMN-NAME-REC.
00800 02 FILLER PIC X(14) VALUE SPACE.
00810 02 FILLER PIC X(9) VALUE 'PCODE'.
00820 02 FILLER PIC X(16) VALUE 'PNAME'.
00830 02 FILLER PIC X(8) VALUE 'COLOR'.
00840 02 FILLER PIC X(8) VALUE 'PRICE'.
00850 02 FILLER PIC X(8) VALUE 'QUANTITY'.
00860 02 FILLER PIC X(69) VALUE SPACE.
00870*
00880 01 LINE-REC.
00890 02 FILLER PIC X(14) VALUE SPACE.
00900 02 FILLER PIC X(9) VALUE '----- '.
00910 02 FILLER PIC X(16) VALUE '-------- '.
00920 02 FILLER PIC X(8) VALUE '------- '.
00930 02 FILLER PIC X(8) VALUE '------- '.
00940 02 FILLER PIC X(8) VALUE '------- '.
00950 02 FILLER PIC X(69) VALUE SPACE.
00960*
00970 01 SELECT-OUT-REC.
00980 02 FILLER PIC X(14) VALUE SPACE.
00990 02 O-PCODE PIC X(5).
01000 02 FILLER PIC X(2) VALUE SPACE.
01010 02 O-KANJI CHARACTER TYPE KEIS.
01020 03 O-PNAME PIC N(8).
01030 03 FILLER PIC X(2) VALUE SPACE.
01040 03 O-COLOR PIC N(5).
01050 03 FILLER PIC X(6) VALUE SPACE.
01060 03 O-PRICE PIC X(8) JUST RIGHT.
01070 03 FILLER PIC X(2) VALUE SPACE.
01080 03 O-STOCK PIC X(8) JUST RIGHT.
01090 03 FILLER PIC X(69) VALUE SPACE.
01100 77 O-PCODE-NULL PIC X(5) VALUE '*****'.
01110 77 O-PNAME-NULL PIC N(10) VALUE NC'----------'.
01120 77 O-COLOR-NULL PIC N(5) VALUE NC'-----'.
01130 77 O-PRICE-NULL PIC X(8) VALUE '********'.
01140 77 O-STOCK-NULL PIC X(8) VALUE '********'.
01150*
01160 01 I-CARD-ERROR-REC.
01170 02 FILLER PIC X(14) VALUE SPACE.
01180 02 FILLER PIC X(41)
01190 VALUE '*** ERROR *** NO CARD FOR CONNECT ***'.
01200 02 FILLER PIC X(77) VALUE SPACE.
01210*
01220 01 CONNECT-ERROR-REC.
01230 02 FILLER PIC X(14) VALUE SPACE.
01240 02 FILLER PIC X(45)
01250 VALUE '*** ERROR *** CANNOT CONNECT *** CODE

7. UAP Creation

670

= '.
01260 02 CNCT-EC PIC X(5).
01270 02 FILLER PIC X(68) VALUE SPACE.
01280*
01290 01 NORMAL-END-REC.
01300 02 FILLER PIC X(14) VALUE SPACE.
01310 02 FILLER PIC X(22)
01320 VALUE '*** NORMAL ENDED ***'.
01330 02 FILLER PIC X(96) VALUE SPACE.
01340*
01350 01 SQLERR-PRINT-REC.
01360 02 FILLER PIC X(14) VALUE SPACE.
01370 02 FILLER PIC X(34)
01380 VALUE '*** HiRDB SQL ERROR MESSAGE-ID = '.
01390 02 RC-MSGID PIC X(8).
01400 02 FILLER PIC X(14) VALUE ' SQLERRORMC ='.
01500 02 RC-SQLERRMC PIC X(62).
01510*
01520 01 WSQLCODE PIC -(10)9.
01530*
01540 01 WMSGID.
01550 02 FILLER PIC X(8).
01560 02 MSGID PIC X(3).
01570*
01580 01 ERRORMSGID.
01590 02 FILLER PIC X(5) VALUE 'KFPA1'.
01600 02 E-MSGID PIC X(4).
01610 02 FILLER PIC X(2) VALUE '-E'.
01620*
01630 01 EOF PIC X(1) VALUE '0'.
01640 01 ERR-FLG PIC X(1) VALUE '0'.
01650*
01660*
01670 PROCEDURE DIVISION.
01680 MAIN SECTION.
01690 M-1.
01700 OPEN INPUT INPUT-CARD-FILE
01710 OUTPUT PRINT-STOCK-FILE.
01720 READ INPUT-CARD-FILE
01730 AT END
01740 MOVE '1' TO ERR-FLG
01750 GO TO M-3
01760 END-READ.
01770 MOVE IUSERID TO XUSERID.
01780 MOVE IPSWD TO XPSWD.
01790*
01800 EXEC SQL (a) 2
01810 WHENEVER SQLERROR (a) 2

7. UAP Creation

671

01820 GO TO M-2 (a) 2
01830 END-EXEC. (a) 2
01840 EXEC SQL (b) 2
01850 CONNECT USER :XUSERID USING :XPSWD (b) 2
01860 END-EXEC. (b) 2
01870 PERFORM CHANGE.
01880 GO TO M-3.
01890 M-2.
01900 MOVE '2' TO ERR-FLG.
01910*
01920 M-3.
01930 EVALUATE ERR-FLG
01940 WHEN '0'
01950 PERFORM NORMAL
01960 WHEN '1'
01970 WRITE PRINT-STOCK-REC
01980 FROM I-CARD-ERROR-REC
01990 AFTER ADVANCING 2 LINES
02000 WHEN '2'
02010 MOVE SQLCODE TO CNCT-EC
02020 WRITE PRINT-STOCK-REC
02030 FROM CONNECT-ERROR-REC
02040 AFTER ADVANCING 2 LINES
02050 WHEN '3'
02060 PERFORM ERROR
02070 END-EVALUATE.
02080 M-4.
02090 CLOSE INPUT-CARD-FILE
02100 PRINT-STOCK-FILE.
02110 M-EX.
02120 EXEC SQL
02130 WHENEVER SQLERROR CONTINUE
02140 END-EXEC.
02150 EXEC SQL
02160 WHENEVER NOT FOUND CONTINUE
02170 END-EXEC
02180 EXEC SQL
02190 WHENEVER SQLWARNING CONTINUE
02200 END-EXEC.
02210 EXEC SQL
02220 DISCONNECT
02230 END-EXEC.
02240 GOBACK.
02250 CHANGE SECTION.
02260 H-1.
02270 READ INPUT-CARD-FILE
02280 AT END
02290 MOVE '1' TO ERR-FLG

7. UAP Creation

672

02300 END-READ.
02310 EXEC SQL
02320 WHENEVER SQLERROR
02330 GO TO H-2
02340 END-EXEC.
02350 PERFORM UNTIL EOF = '1' OR ERR-FLG NOT = '0'
02360 EVALUATE ITYPE
02370 WHEN 'I'
02380 PERFORM ADDITION
02390 WHEN 'U'
02400 PERFORM UPDATE
02410 WHEN 'D'
02420 PERFORM DELETION
02430 END-EVALUATE
02440 READ INPUT-CARD-FILE
02450 AT END
02460 MOVE '1' TO EOF
02470 END-READ
02480 END-PERFORM.
02490 GO TO H-EX.
02500 H-2.
02510 MOVE '3' TO ERR-FLG.
02520 H-EX.
02530 EXIT.
02540*
02550 ADDITION SECTION.
02560 T-1.
02570 MOVE IPCODE TO XPCODE.
02580 MOVE IPNAME TO XPNAME.
02590 MOVE ICOLOR TO XCOLOR.
02600 MOVE IPRICE TO XPRICE.
02610 MOVE ISTOCK TO XSTOCK.
02620 EXEC SQL
02610 WHENEVER SQLERROR GO TO T-2
02620 END-EXEC.
02630 EXEC SQL 3
02640 INSERT INTO STOCK(PCODE, PNAME, COLOR, PRICE,
SQUANTITY) 3
02650 VALUES(:XPCODE, :XPNAME, :XCOLOR, :XPRICE,
:XSTOCK) 3
02660 END-EXEC. 3
02670 GO TO T-EX.
02680 T-2.
02690 MOVE '3' TO ERR-FLG.
02700 T-EX.
02710 EXIT.
02720 UPDATE SECTION.
02730 K-1.

7. UAP Creation

673

02740 MOVE IPCODE TO XPCODE.
02750 MOVE ISTOCK TO XSTOCK.
02760 EXEC SQL
02770 WHENEVER SQLERROR GO TO K-2
02780 END-EXEC.
02790 EVALUATE IFLUX
02800 WHEN '1' 4
02810 EXEC SQL (a) 4
02820 UPDATE STOCK SET SQUANTITY = SQUANTITY +
:XSTOCK (a) 4
02830 WHERE PCODE=:XPCODE (a) 4
02840 END-EXEC (a) 4
02850 WHEN '2' 4
02860 EXEC SQL (b) 4
02870 UPDATE STOCK SET SQUANTITY = SQUANTITY -
:XSTOCK (b) 4
02880 WHERE PCODE=:XPCODE (b) 4
02890 END-EXEC (b) 4
02900 END-EVALUATE.
02910 GO TO K-EX.
02920 K-2.
02930 MOVE '3' TO ERR-FLG.
02940 K-EX.
02950 EXIT.
02960*
02970 DELETION SECTION.
02980 S-1.
02990 MOVE IPCODE TO XPCODE.
03010 EXEC SQL
03020 WHENEVER SQLERROR GO TO S-2
03030 END-EXEC.
03040 EXEC SQL 5
03050 DELETE FROM STOCK 5
03060 WHERE PCODE=:XPCODE 5
03070 END-EXEC. 5
03080 GO TO S-EX.
03090 S-2.
03100 MOVE '3' TO ERR-FLG.
03110 S-EX.
03120 EXIT.
03130*
03140 NORMAL SECTION.
03150 F-0.
03160 WRITE PRINT-STOCK-REC
03170 FROM HEADING-REC
03180 AFTER ADVANCING 4 LINES.
03190 WRITE PRINT-STOCK-REC
03200 FROM COLUMN-NAME-REC

7. UAP Creation

674

03210 AFTER ADVANCING 2 LINES.
03220 WRITE PRINT-STOCK-REC
03230 FROM LINE-REC
03240 AFTER ADVANCING 2 LINES.
03250 F-1.
03260 EXEC SQL
03270 WHENEVER SQLERROR GO TO F-4
03280 END-EXEC.
03290 EXEC SQL (a) 6
03300 DECLARE CR1 CURSOR FOR (a) 6
03310 SELECT PCODE,PNAME,COLOR,PRICE,SQUANTITY FROM
STOCK (a) 6
03320 END-EXEC. (a) 6
03330 EXEC SQL (b) 6
03340 OPEN CR1 (b) 6
03350 END-EXEC. (b) 6
03360 F-2.
03370 EXEC SQL (a) 7
03380 WHENEVER NOT FOUND (a) 7
03390 GO TO F-3 (a) 7
03400 END-EXEC. (a) 7
03410 EXEC SQL (b) 7
03420 FETCH CR1 (b) 7
03430 INTO :XPCODE:XIPCODE, :XPNAME:XIPNAME,
(b) 7
03440 :XCOLOR:XICOLOR, :XPRICE:XIPRICE,
:XSTOCK:XISTOCK (b) 7
03450 END-EXEC. (b) 7
03460 EXEC SQL
03470 WHENEVER NOT FOUND
03480 CONTINUE
03490 END-EXEC.
03500 IF XIPCODE IS >= 0 THEN
03510 MOVE XPCODE TO O-PCODE
03520 ELSE
03530 MOVE O-PCODE-NULL TO O-PCODE
03540 END-IF.
03550 IF XIPNAME IS >= 0 THEN
03560 MOVE XPNAME TO O-PNAME
03570 ELSE
03580 MOVE O-PNAME-NULL TO O-PNAME
03590 END-IF.
03600 IF XICOLOR IS >= 0 THEN
03610 MOVE XCOLOR TO O-COLOR
03620 ELSE
03630 MOVE O-COLOR-NULL TO O-COLOR
03640 END-IF.
03650 IF XIPRICE IS >= 0 THEN

7. UAP Creation

675

03660 MOVE XPRICE TO O-PRICE
03670 ELSE
03680 MOVE O-PRICE-NULL TO O-PRICE
03690 END-IF.
03700 IF XISTOCK IS >= 0 THEN
03710 MOVE XSTOCK TO O-STOCK
03720 ELSE
03730 MOVE O-STOCK-NULL TO O-STOCK
03740 END-IF.
03750 WRITE PRINT-STOCK-REC
03760 FROM SELECT-OUT-REC
03770 AFTER ADVANCING 2 LINES.
03780 GO TO F-2.
03790 F-3.
03800 EXEC SQL
03810 WHENEVER SQLERROR CONTINUE
03820 END-EXEC.
03830 EXEC SQL
03840 WHENEVER NOT FOUND CONTINUE
03850 END-EXEC
03860 EXEC SQL
03870 WHENEVER SQLWARNING CONTINUE
03880 END-EXEC.
03890 EXEC SQL (a) 8
03900 CLOSE CR1 (a) 8
03910 END-EXEC. (a) 8
03920*
03930 EXEC SQL (b) 8
03940 COMMIT (b) 8
03950 END-EXEC. (b) 8
03960*
03970 WRITE PRINT-STOCK-REC
03980 FROM NORMAL-END-REC
03990 AFTER ADVANCING 2 LINES.
04000 GO TO F-EX.
04010 F-4.
04020 PERFORM ERROR.
04030 F-EX.
04040 EXIT.
04050 ERROR SECTION.
04060 I-1.
04070 MOVE SQLCODE TO WSQLCODE.
04080 MOVE WSQLCODE TO WMSGID.
04090 MOVE MSGID TO E-MSGID.
04100 MOVE ERRORMSGID TO RC-MSGID.
04110 MOVE SQLERRMC TO RC-SQLERRMC.
04120 WRITE PRINT-STOCK-REC
04130 FROM SQLERR-PRINT-REC

7. UAP Creation

676

04140 AFTER ADVANCING 2 LINES.
04150 EXEC SQL (a) 9
04160 WHENEVER SQLERROR CONTINUE (a) 9
04170 END-EXEC. (a) 9
04180 EXEC SQL (a) 9
04190 WHENEVER NOT FOUND CONTINUE (a) 9
04200 END-EXEC. (a) 9
04210 EXEC SQL (a) 9
04220 WHENEVER SQLWARNING CONTINUE (a) 9
04230 END-EXEC. (a) 9
04240 EXEC SQL (b) 9
04250 ROLLBACK (b) 9
04260 END-EXEC. (b) 9
04270 I-EX.
04280 EXIT.

1. Starting and ending the embedded SQL declaration section
Encloses the variables to be used in the UAP between BEGIN DECLARE SECTION
and END DECLARE SECTION. These variables indicate the start and end of the
embedded SQL declaration section.

2. Connecting with HiRDB
(a)Specifying the abnormal processing

Specifies the branch destination (M-2) as the process to be executed if an
error (SQLERROR) occurs after execution of the subsequent SQL statements.

(b)Connecting to HiRDB
Informs HiRDB of the authorization identifier (XUSERID) and the password
(XPSWD) so that the UAP can use HiRDB.

3. Inserting rows into the stock table
Inserts the values read into the embedded variables into each column of the stock
table.

4. Updating stock table rows
(a)Incoming stock

Sets the product code that was read into embedded variable :XPCODE as the
key, and retrieves the row to be updated from the stock table. Updates the
row by adding the value that was read into embedded variable :XQUANTITY
to the QUANTITY value of the retrieved row.

(b)Stock
Sets the product code that was read into embedded variable :XPCODE as the
key, and retrieves the row to be updated from the stock table. Updates the

7. UAP Creation

677

row by deleting the value that was read into embedded variable
:XQUANTITY from the QUANTITY value of the retrieved row.

5. Deleting stock table rows
Sets the product code that was read into embedded variable :XPCODE as the key,
and deletes the rows having a key equal to that value.

6. Declaring and opening the CR1 cursor
(a)Declaring the CR1 cursor

Declares the CR1 cursor for retrieving rows from the stock table (STOCK).
(b)Opening the CR1 cursor

Positions the cursor immediately in front of a row to be retrieved from the
stock table (STOCK) so that the row can be fetched.

7. Fetching stock table rows
(a)Specifying the abnormal processing

Retrieves the row indicated by the CR1 cursor from the stock table (STOCK),
and sets the row values into the embedded variables.

(b)Executing the FETCH statement
Fetches the row indicated by the CR1 cursor from the stock table (STOCK),
and sets the data to the embedded variables.

8. Terminating the transaction
(a)Closing the CR1 cursor

Closes the CR1 cursor.
(b)Terminating the transaction

Terminates the current transaction normally, and validates the results of the
database addition, update, and deletion operations that were executed in that
transaction.

9. Rolling back the transaction
Specifying the processing

Specifies continuation to the next instruction (without special processing) if
an error (SQLERROR) or warning (SQLWARNING) occurs during execution of
a subsequent SQL statement.

Invalidating the transaction
Rolls back the current transaction to invalidate the results of the database
addition, update, and deletion operations that were executed in that

7. UAP Creation

678

transaction.
(2) Example that uses a row interface

(a) PAD chart
Figures 7-14 through 7-17 show the PAD chart for program example 5.

7. UAP Creation

679

Figure 7-14: PAD chart for program example 5 (1/4)

7. UAP Creation

680

Figure 7-15: PAD chart for program example 5 (2/4)

7. UAP Creation

681

7. UAP Creation

682

Figure 7-16: PAD chart for program example 5 (3/4)

7. UAP Creation

683

Figure 7-17: PAD chart for program example 5 (4/4)

(b) Coding example
00010 **
00020 * *
00030 * EMBEDDED TYPE SQL COBOL UAP *
00040 * ROW INTERFACE SAMPLE *
00050 * 1997/11/27 *
00060 **
00070 IDENTIFICATION DIVISION.
00080 PROGRAM-ID. ROW-SAMPLE.
00090 AUTHOR. CLIENT.
00100 DATA-WRITTEN. 1997/11/27.
00110 DATA-COMPILED. ROW-SAMPLE.
00120 REMARKS.
00130 *
00140 ENVIRONMENT DIVISION.
00150 CONFIGURATION SECTION.
00160 SOURCE-COMPUTER. HITAC.

7. UAP Creation

684

00170 OBJECT-COMPUTER. HITAC.
00180 INPUT-OUTPUT SECTION.
00190 FILE-CONTROL.
00200 SELECT OUTLIST ASSIGN TO LP.
00210 *
00220 DATA DIVISION.
00230 FILE SECTION.
00240 FD OUTLIST RECORDING MODE IS F
00250 LABEL RECORD IS OMITTED
00260 DATA RECORD OUTREC.
00270 01 OUTREC PIC X(80).
00280 *
00290 WORKING STORAGE SECTION.
00300 EXEC SQL
00310 BEGIN DECLARE SECTION
00320 END-EXEC.
00330 01 IN-REC1 IS GLOBAL.
00340 02 IN-CHR1 PIC X(15) VALUE 'EVA-00'.
00350 02 IN-INT1 PIC S9(9) COMP VALUE 255.
00360 02 IN-INT2 PIC S9(9) COMP VALUE 1.
00370
00380 01 XSQLROW IS GLOBAL1
00390 02 ROW-CHR1 PIC X(30). 1
00400 02 ROW-INT1 PIC S9(9) COMP. 1
00410 02 ROW-INT2 PIC S9(9) COMP. 1
00420
00430 EXEC SQL
00440 END DECLARE SECTION
00450 END-EXEC.
00460
00470 01 DISP-REC IS GLOBAL.
00480 02 DISP-CHR1 PIC X(15).
00490 02 DISP-INT1 PIC S9(9).
00500 02 DISP-INT2 PIC S9(4).
00510 01 ERRFLG PIC S9(4) COMP IS GLOBAL.
00520
00530 01 MSG-ERR PIC X(10) VALUE '!! ERROR'.
00540 01 MSG-CODE IS GLOBAL.
00550 02 FILLER PIC X(15) VALUE '!! SQLCODE ='
00560 02 MSG-SQLCODE PIC S9(9) DISPLAY.
00570 01 MSG-MC IS GLOBAL.
00580 02 FILLER PIC X(15) VALUE '!! SQLERRMC ='
00590 02 MSG-SQLERRMC PIC X(100).
00600
00610 PROCEDURE DIVISION.
00620 **
00630 * DISPLAY TITLE
00640 **

7. UAP Creation

685

00650 MAIN SECTION
00660 CALL 'DISPLAY-TITLE'.
00670 MOVE ZERO TO ERRFLG.
00680
00690 **
00700 * CONNECT
00710 **
00720 EXEC SQL
00730 WHENEVER SQLERROR GOTO ERR-EXIT
00740 END-EXEC
00750
00760 DISPLAY '***** CONNECT '.
00770 EXEC SQL 2
00780 CONNECT 2
00790 END-EXEC. 2
00800 DISPLAY '***** CONNECT : END'.
00810
00820 **
00830 * INIT
00840 **
00850 DISPLAY '## TABLE WILL BE INITIALIZED'.
00860 CALL 'INIT-TABLE'.
00870 IF ERRFLG < ZERO
00880 GO TO ERR-EXIT
00890 END-IF
00900 DISPLAY '## IS NORMAL'.
00910
00920 **
00930 * INSERT
00940 **
00950 DISPLAY 'INSERT ## DATA'.
00960 CALL 'TEST-INSERT'.
00970 IF ERRFLG < ZERO
00980 GO TO ERR-EXIT
00990 END-IF
01000 DISPLAY '## IS NORMAL'.
01010
01020 **
01030 * ROW
01040 **
01050 DISPLAY '## ROW TYPE TEST WILL BE EXECUTED'.
01060 CALL 'TEST-ROW'.
01070 IF ERRFLG < ZERO
01080 GO TO ERR-EXIT
01090 END-IF
01100 DISPLAY '## IS NORMAL'.
01110
01120 **

7. UAP Creation

686

01130 * DISCONNECT
01140 **
01150 ERR-EXIT.
01160 IF SQLCODE < ZERO
01170 MOVE SQLCODE TO MSG-SQLCODE
01180 MOVE SQLERRMC TO MSG-SQLERRMC
01190 DISPLAY MSG-ERR
01200 DISPLAY MSG-CODE
01210 DISPLAY MSG-MC
01220 MOVE -1 TO ERRFLG
01230 END-IF
01240
01250 EXEC SQL
01260 WHENEVER SQLERROR CONTINUE
01270 END-EXEC
01280 EXEC SQL
01290 WHENEVER NOT FOUND CONTINUE
01300 END-EXEC
01310 EXEC SQL
01320 WHENEVER SQLWARNING CONTINUE
01330 END-EXEC
01340
01350 DISPLAY '##DISCONNECT'
01360
01370 EXEC SQL 3
01380 DISCONNECT 3
01390 END-EXEC 3
01400 STOP RUN.
01410
01420 **
01430 * INSERT STATEMENT TEST
01440 **
01450 IDENTIFICATION DIVISION.
01460 PROGRAM-ID. TEST-INSERT.
01470 DATA DIVISION.
01480 WORKING-STORAGE SECTION.
01490 01 DCNT PIC S9(9) COMP.
01500 PROCEDURE DIVISION.
01510 EXEC SQL
01520 WHENEVER SQLERROR GOTO :Exit-Test-Insert
01530 END-EXEC.
01540 **
01550 * INSERT HOST
01560 **
01570 DISPLAY 'INSERT start WITH ***** EMBEDDED
 VARIABLE'
01580 MOVE ZERO TO DCNT.
01590 INSERT-LOOP.

7. UAP Creation

687

01600 COMPUTE IN-INT1 = DCNT
01610 COMPUTE IN-INT2 = DCNT + 100
01620 COMPUTE DCNT = DCNT + 1
01630 EXEC SQL 4
01640 INSERT INTO TT1(CLM1, 4
01650 CLM2, 4
01660 CLM3) 4
01670 VALUES (:IN-CHR1, 4
01680 :IN-INT1, 4
01690 :IN-INT2) 4
01700 END-EXEC 4
01710 IF DCNT <20 THEN
01720 GO TO INSERT-LOOP
01730 END-IF
01740 DISPLAY '***** insert : SUCCESS'.
01750 **
01760 *
01770 **
01780 EXIT-TEST-INSERT.
01790 IF SQLCODE < ZERO
01800 MOVE SQLCODE TO MSG-SQLCODE
01810 MOVE SQLERRMC TO MSG-SQLERRMC
01820 DISPLAY MSG-CODE
01830 DISPLAY MSG-MC
01840 MOVE -1 TO ERRFLG
01850 END-IF
01860 DISPLAY '>> TEST-INSERT<<'
01870 GOBACK.
01880 **
01890 * WARNING
01900 **
01910 INSERT-WARNING.
01920 DISPLAY 'WARNING'
01930 MOVE SQLCODE TO MSG-SQLCODE
01940 MOVE SQLERRMC TO MSG-SQLERRMC
01950 DISPLAY MSG-CODE
01960 DISPLAY MSG-MC,
01970 END PROGRAM TEST-INSERT.
01980
01990 **
02000 * TEST ROW
02010 **
02020 IDENTIFICATION DIVISION.
02030 PROGRAM-ID. TEST-ROW.
02040 DATA DIVISION.
02050 WORKING-STORAGE SECTION.
02060 PROCEDURE DIVISION.
02070 DISPLAY '***** ROW CURSOR OPEN'

7. UAP Creation

688

02080 EXEC SQL 5
02090 DECLARE CUR_ROW CURSOR FOR 5
02100 SELECT ROW FROM TT15
02110 WHERE CLM2 = 10 5
02120 FOR UPDATE OF CLM35
02130 END-EXEC 5
02140 **
02150 * ROW CURSOR
02160 **
02170 DISPLAY '***** ROW CURSOR OPEN'.
02180 EXEC SQL
02190 WHENEVER SQLERROR GOTO :Exit-Test-Row
02200 END-EXEC
02210 EXEC SQL 6
02220 OPEN CUR_ROW 6
02230 END-EXEC 6
02240
02250 **
02260 * FETCH ROW CURSOR
02270 **
02280 DISPLAY '***** ROW CURSOR FETCH'
02290 EXEC SQL
02300 WHENEVER NOT FOUND GOTO :Exit-Test-ROW
02310 END-EXEC
02320 EXEC SQL
02330 WHENEVER SQLERROR GOTO :Exit-Test-ROW
02340 END-EXEC
02350 MOVE SPACE TO XSQLROW
02360 EXEC SQL 7
02370 FETCH CUR_ROW INTO :XSQLROW 7
02380 END-EXEC 7
02390 DISPLAY '## FETCH DATA'
02400 MOVE ROW-CHR1 TO DISP-CHR1
02410 MOVE ROW-INT1 TO DISP-INT1
02420 MOVE ROW-INT2 TO DISP-INT2
02430 DISPLAY DISP-REC
02440
02450 DISPLAY '***** ROW UPDATE'
02460 MOVE 'ANGEL' TO ROW-CHR1
02470 EXEC SQL 8
02480 UPDATE TT1 SET ROW = :XSQLROW 8
02490 WHERE CURRENT OF CUR_ROW 8
02500 END-EXEC 8
02510
02520 **
02530 * FETCH ROW CURSOR
02540 **
02550 DISPLAY '***** ROW CURSOR CLOSE'

7. UAP Creation

689

02560 EXEC SQL
02570 WHENEVER NOT FOUND CONTINUE
02580 END-EXEC
02590 EXEC SQL
02600 WHENEVER SQLERROR CONTINUE
02610 END-EXEC
02620 EXEC SQL 9
02630 CLOSE CUR_ROW 9
02640 END-EXEC. 9
02650 **
02660 *
02670 **
02680 EXIT-TEST-ROW.
02690 IF SQLCODE < ZERO THEN
02700 MOVE SQLCODE TO MSG-SQLCODE
02710 MOVE SQLERRMC TO MSG-SQLERRMC
02720 DISPLAY MSG-CODE
02730 DISPLAY MSG-MC
02740 MOVE -1 TO ERRFLG
02750 END-IF
02760 EXEC SQL
02770 WHENEVER NOT FOUND CONTINUE
02780 END-EXEC
02790 EXEC SQL
02800 WHENEVER SQLERROR CONTINUE
02810 END-EXEC
02820 EXEC SQL
02830 COMMIT
02840 END-EXEC
02850 DISPLAY '>> TEST-ROW END <<'
02860 GOBACK.
02870
02880 **
02890 * WARNING
02900 **
02910 ROW-WARNING.
02920 DISPLAY 'WARNING'
02930 MOVE SQLCODE TO MSG-SQLCODE
02940 MOVE SQLERRMC TO MSG-SQLERRMC
02950 DISPLAY MSG-CODE
02960 DISPLAY MSG-MC.
02970 END PROGRAM TEST-ROW.
02980
02990
03000 **
03010 * INITIALIZE TABLE
03020 **
03030 IDENTIFICATION DIVISION.

7. UAP Creation

690

03040 PROGRAM-ID. INIT-TABLE.
03050 DATA DIVISION.
03060 WORKING-STORAGE SECTION.
03070 PROCEDURE DIVISION.
03080 EXEC SQL
03090 WHENEVER SQLERROR CONTINUE
03100 END-EXEC
03110
03120 **
03130 * DROP TABLE
03140 **
03150 DISPLAY '***** DROP TABLE'.
03160 EXEC SQL 10
03170 DROP TABLE TT1 10
03180 END-EXEC 10
03190 DISPLAY '***** CREATE SCHEMA'.
03200 EXEC SQL 11
03210 CREATE SCHEMA 11
03220 END-EXEC 11
03230
03240 **
03250 * COMMIT
03260 **
03270 DISPLAY '***** COMMIT START'.
03280 EXEC SQL
03290 WHENEVER SQLERROR GOTO EXIT-INIT-TABLE
03300 END-EXEC
03310 EXEC SQL
03320 COMMIT
03330 END-EXEC
03340 DISPLAY '***** COMMIT : END '.
03350
03360 **
03370 * CREATE TABLE
03380 **
03390 DISPLAY '***** create table'.
03400 EXEC SQL 12
03410 CREATE FIX TABLE TT1(CLM1 CHAR(30), 12
03420 CLM2 INTEGER, 12
03430 CLM3 INTEGER) 12
03440 END-EXEC 12
03450
03460 DISPLAY '***** create table : SUCCESS'.
03470
03480 **
03490 *
03500 **
03510 EXIT-INIT-TABLE.

7. UAP Creation

691

03520 IF SQLCODE < ZERO THEN
03530 MOVE SQLCODE TO MSG-SQLCODE
03540 MOVE SQLERRMC TO MSG-SQLERRMC
03550 DISPLAY MSG-CODE
03560 DISPLAY MSG-MC
03570 MOVE -1 TO ERRFLG
03580 END-IF
03590 GOBACK.
03600
03610 **
03620 * WARNING
03630 **
03640 INIT-TABLE-WARNING.
03650 DISPLAY 'WARNING'
03660 MOVE SQLCODE TO MSG-SQLCODE
03670 MOVE SQLERRMC TO MSG-SQLERRMC
03680 DISPLAY MSG-CODE
03690 DISPLAY MSG-MC.
03700 END PROGRAM INIT-TABLE.
03710
03720 **
03730 * DISPLAY
03740 **
03750 IDENTIFICATION DIVISION.
03760 PROGRAM-ID. DISPLAY-TITLE.
03770 DATA DIVISION.
03780 WORKING-STORAGE SECTION.
03790 PROCEDURE DIVISION.
03800 DISPLAY '###################################'
03810 DISPLAY '# #'
03820 DISPLAY '# THIS PROGRAM IS A SAMPLE #'
03830 DISPLAY '# PROGRAM FOR THE ROW-TYPE #'
03840 DISPLAY '# INTERFACE #'
03850 DISPLAY '###################################'
03860 END PROGRAM DISPLAY-TITLE.
03870 END PROGRAM ROW-SAMPLE.

1. Declaring a ROW-type embedded variable
Declares the embedded variable (:XSQLROW) to be used by the row interface.

2. Connecting to HiRDB
Uses the authorization identifier and password set in the PDUSER environment
variable to connect to the server.

3. Disconnecting from HiRDB
Disconnects the UAP from the server.

7. UAP Creation

692

4. Adding rows
Adds data to the FIX table (TT1).

5. Declaring the CUR_ROW cursor
Declares the CUR_ROW cursor, because the row interface will be used to retrieve
the FIX table (TT1).

6. Opening the CUR_ROW cursor
Positions the cursor immediately in front of a row to be retrieved from the FIX
table (TT1) so that the row can be fetched.

7. Fetching rows
Fetches the row indicated by the CUR_ROW cursor from the FIX table (TT1),
and sets the value to the embedded variable (:XSQLROW).

8. Updating rows
Updates the FIX table (TT1) row where the CUR_ROW cursor is positioned with
the embedded variable (:XSQLROW) value.

9. Closing the CUR_ROW cursor
Closes the CUR_ROW cursor.

10. Dropping tables (TT1)
Deletes any existing tables of the same name so that the FIX table (TT1) can be
created.

11. Creating a schema
Creates a schema in case there are no schemas.

12. Creating the FIX table (TT1)
Creates the FIX table (TT1). The row interface can be used only for tables that
have the FIX attribute.

(3) Example that uses the TYPE, TYPEDEF, and SAME AS clauses
A coding example that uses the TYPE, TYPEDEF, and SAME AS clauses follows:

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CBL001.
000300 DATA DIVISION.
000400 WORKING-STORAGE SECTION.
000500 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
000600* -- type declaration --
000700 01 VCHR20 TYPEDEF.
000800 05 LEN PIC S9(4) COMP.

7. UAP Creation

693

000900 05 STR PIC X(20).
001000
001100* -- data declaration --
001200 01 D-4C.
001300 05 XCUT TYPE VCHR20.
001400 05 XCOLOR PIC X(10).
001500 05 XCLARITY SAME AS XCOLOR.
001600 05 XCARAT PIC S9(4) COMP.
001700
001800 EXEC SQL END DECLARE SECTION END-EXEC.
 : :
 : :
002000 PROCEDURE DIVISION.
002100 CB_001 SECTION.
 : :
 : :
003400 INS-1.
003500 EXEC SQL
003600 INSERT INTO A_DIM (C1, C2, C3, C4)
003700 VALUES (:XCUT, :XCOLOR, :XCLARITY, :XCARAT)
003800 END-EXEC.
 : :
 : :
005000 INS-EX.
005100 EXIT.
005200 END PROGRAM CBL001.

7. UAP Creation

694

7.4 Writing a UAP in C++

This section explains the coding rules for embedding SQL statements in UAPs written
in C++.

7.4.1 Coding rules
When a UAP is written, the labeling rules, SQL coding rules, and SQL syntax rules
must be followed.

(1) Labeling rules
The labeling rules are basically same as for C. These types of labels cannot be used:

• Labels that begin with uppercase letters SQL
• Labels that begin with lowercase letter p_
• Labels that begin with lowercase letters pd

For naming embedded variables, indicator variables, and branching destination labels,
the labeling rules and the C rules must be followed.

(2) SQL coding rules
• The notation // can be used to indicated a comment statement.
• Members of an object cannot be used as embedded variables.
• An object method cannot be specified in the WHENEVER statement.
• An SQL statement cannot be coded in a class definition.

All other coding rules are the same as for C. For details, see 7.2.1(2) SQL coding rules.

7. UAP Creation

695

7.5 Writing a UAP in OOCOBOL

This section explains the coding rules for embedding SQL statements in UAPs written
in OOCOBOL.

7.5.1 Coding rules
When a UAP is written, the labeling rules, SQL coding rules, and SQL syntax rules
must be followed.

(1) Labeling rules
The labeling rules are basically same as for COBOL. These rules apply to labels:

(a) SQL reserved words
• Both uppercase and lowercase letters can be used
• Uppercase and lowercase letters can be mixed

(b) Host names
• Labels that begin with SQL cannot be used
• Blanks can be entered following a colon within a host name
• Host names are not case-sensitive
• Uppercase and lowercase letters can be mixed

Embedded variables, indicator variables, and branching destination labels must be
named in accordance with the COBOL labeling rules.
The following labels, which have the external attribute, cannot be used:

• Labels that begin with the uppercase letters SQL
• Labels that begin with the lowercase letter p_
• Labels that begin with the lowercase letters pd

(2) SQL coding rules
1. Members of an object cannot be used as embedded variables.
2. An object method cannot be specified in the WHENEVER statement.
3. An SQL statement cannot be coded in a class definition.
All other coding rules are the same as for COBOL. For details, see 7.3.1(2) SQL coding
rules.

697

Chapter

8. Preparation for UAP Execution

This chapter explains the preparations required before a UAP is executed.
This chapter contains the following sections:

8.1 UAP execution procedure
8.2 Preprocessing
8.3 Compiling and linking
8.4 Notes on UAP execution

8. Preparation for UAP Execution

698

8.1 UAP execution procedure

A UAP in which SQL statements are embedded cannot be executed directly. This
section explains the procedure for executing such a UAP.

8.1.1 Executing a UAP written in C
A UAP in which SQL statements are embedded in a source program written in C must
be converted to a post-source program by an SQL preprocessor. The resulting post
source becomes a load module (executable file) when it is compiled and linked by a
dedicated language compiler.
Figure 8-1 shows the procedure for executing a UAP written in C.

8. Preparation for UAP Execution

699

Figure 8-1: Execution procedure for UAP written in C

8.1.2 Executing a UAP written in COBOL
A UAP in which SQL statements are embedded in a source program written in
COBOL must be converted to a post-source program by an SQL preprocessor. The

8. Preparation for UAP Execution

700

resulting post source becomes a load module (executable file) when it is compiled and
link edited by the COBOL85 compiler.
Figure 8-2 shows the procedure for executing a UAP written in COBOL.

Figure 8-2: Execution procedure for a UAP written in COBOL

8. Preparation for UAP Execution

701

8.2 Preprocessing

8.2.1 Overview
(1) What is preprocessing?

Because a UAP source file in which SQL statements are embedded cannot be executed
directly, an SQL preprocessor must be executed. Executing the SQL preprocessor
converts the embedded SQL statements into a high-level language description. This
process of converting a UAP source to a post source that can be converted by a
language compiler by executing the SQL preprocessor is called preprocessing.
The SQL preprocessor creates a high-level language function corresponding to the
SQL statements and embeds it in the source. During this process, the SQL
preprocessor checks the validity of the data types and values of the variables, as well
as the syntax of various names. If the checking results indicate that an error was
detected in the input source program, a message to that effect is output to the standard
error output.

(2) Items that are not checked by the SQL preprocessor
The SQL preprocessor does not check the following items:

• If there are any table names for which a query needs to be addressed to the server
• If there are any column names for which a query needs to be addressed to the

server
• If there are other identifiers, data types, or functions for which a query needs to

be addressed to the server
• Table access privileges

(3) Notes about preprocessing
1. The setting of environment variables and the command specification methods

differ depending on the language used in the source program and the
environment. The SQL preprocessor must therefore match the language and the
environment being used.

2. In the Windows environment, the SQL preprocessor cannot perform a rigorous
SQL syntax check unless /Xp is specified. Therefore, the preprocessor may not
be able to detect all syntax errors in the SQL statements. Also, with Linux for
AP8000 and AIX 5L clients, the SQL preprocessor cannot perform a rigorous
SQL syntax check if a character code type other than SJIS is used.

3. In the Windows environment, only sjis and lang-c character codes can be used
because EUC codes cannot be recognized. If a value other than sjis or lang-c
is specified as the character code type in the HiRDB server, an error occurs when

8. Preparation for UAP Execution

702

a HiRDB client executes a UAP.

8.2.2 Preprocessing in UNIX
(1) C

(a) Environment variable setting
The following environment variable can be set before a UAP is preprocessed:
PDDIR

This environment variable specifies the absolute path name for the installation
directory for HiRDB (server or client); the default directory is /HiRDB.
This variable need not be specified when the installation destination is /HiRDB.

LANG
This environment variable specifies the character code classification of the
HiRDB client environment. Table 8-1 shows the character codes that can be
specified for LANG.
Table 8-1: Character codes that can be specified for LANG

Legend:
: Cannot be specified.

Note

If the character code classification of the character strings described in a UAP
does not match the character code classification for UAP execution, the UAP does
not operate correctly. Therefore, the value of the LANG environment variable

Server character code
classification set with

pdsetup command

Value of LANG environment variable

HP-UX Solaris AIX 5L Linux1

sjis ja_JP.SJIS ja_JP.PCK Ja_JP Any value2

chinese chinese-s chinese-s chinese-s chinese-s

ujis ja_JP.eucJP ja ja_JP ja_JP.eucJP,
ia_JP, or
Ja_JP.ujis

lang-c Single-byte character codes of each language

utf-8 Any value2

No specification ja_JP.SJIS ja Ja_JP ja_JP.eucJP,
ia_JP, or
Ja_JP.ujis

8. Preparation for UAP Execution

703

specified for UAP creation must be the same as the LANG value specified for UAP
execution.

1 For locales that are not supported by HiRDB, lang-c is assumed.
2 Hitachi recommends that you set the LANG environment variable to a character code
classification that can be used by the corresponding HiRDB server. If the HiRDB
server cannot use the target character code classification, specify the lang-c value.

If this environment variable is not specified, or if the specified value is different
from the value that was set to the environment variable, ja_SP.SJIS is assumed.
In the HP-UX environment, only ja_JP.SJIS can be specified.
For details about the pdsetup command, see the HiRDB Version 8 Command
Reference manual.

PDCLTLANG
This environment variable specifies the character code classification to be used in
preprocessing instead of the character code classification specified by the LANG
environment variable. For details about the PDCLTLANG operand, see 6.6.4
Environment definition information.

Example 1: Setting the environment in sh (Bourne shell)
• HiRDB is being installed in the /prdb directory.

$ PDDIR="/prdb"$ export PDDIR

Example 2: Setting the environment in csh (C shell)
• HiRDB is being installed in the /prdb directory

% setenv PDDIR "/prdb"

(b) SQL preprocessor activation
To activate the SQL preprocessor, use the pdcpp command (for C) or the pdocc
command (for C++).
Following is the input format for starting the SQL preprocessor:
pdcpp input-file-name [options
[output-file-name|authorization-identifier]]

Note
In the case of C++, the underlined section must be changed to pdocc.

input-file-name
Specifies the name of the C source file. .ec must be used as the file identifier.

output-file-name

8. Preparation for UAP Execution

704

Specifies the name of the C source file. If the output filename is omitted, .c is
used as the file identifier.

authorization-identifier
Specifies the default authorization identifier to be used when an authorization
identifier is omitted in the SQL. This specification is invalid when the distributed
database facility is used and when remote database access is involved.
If the authorization identifier is omitted, the user identifier used during CONNECT
is assumed.

options
Specifies, as necessary, the options shown in Table 8-2. Upper-case and
lower-case characters are not discriminated in the options.
Table 8-2: Preprocessing options (for C in the UNIX environment)

Preprocessing option Description

-s Specifies that only syntax is checked and that no post source is to
be output; when this option is omitted, the post source is output.

-o file-name Specifies a filename for the post source that is to be output; when
this option is omitted, the input filename with its file identifier
changed to .c is used as the output filename.

-A authorization-identifier Specifies that the default authorization identifier, which is used
when no authorization identifier is specified in a static SQL
statement, is to be changed.
A static SQL statement refers to the INSERT, UPDATE, DELETE,
single-row SELECT, OPEN (format 1), CALL, LOCK, or PURGE
TABLE statement.

-h64 Specifies that a post source for 64-bit mode is to be created. If an
embedded variable that uses the long type is declared, an error
occurs.

-P Specifies that no syntax check is to be executed on the SQL. This
option can be specified when one of the following UAPs is
preprocessed:
• UAP for XDM/RD E2 connection
• UAP that uses the SQL reserved word deletion facility

If this option is not specified, the reserved words to be deleted by
the SQL reserved word deletion facility and the SQL statements
that can be used by XDM/RD E2 may cause syntax errors.

8. Preparation for UAP Execution

705

-Xo Specifies that the SQL statements extracted from the UAP are to be
output to standard output. The output method for outputting the
SQL statements is described below.
• Embedded variables in SQL statements are replaced with the ?

parameter.
• INTO clauses in single-row SELECT statements are deleted.
• Multiple space characters between word clauses in SQL

statements are replaced with one space character.
• Any SQL statement that is split across several lines is

consolidated into a single line.
• Only SQL statements that are sent to the server during

execution are output. SQL statements that are not executed
(such as WHENEVER statements and BEGIN DECLARE SECTION)
are not output.

• A semicolon (;) is added to the end of an SQL statement.
• Declarations of embedded variables are not output.
• A dynamic SQL statement is output only if the SQL is specified

with a literal. In all other cases, dynamic SQL statements are not
output.

• An OPEN statement outputs a query expression only if a format
1 cursor is used.

• A post source is not generated.

-Xe{y|n} Specifies whether the cursor for PREPARE statement execution is to
be closed automatically.
y: Creates a post source that closes the cursor automatically.
n: Creates a post source that does not close the cursor automatically.
If this option is omitted, the preprocessor creates a post source
according to the specification value in the PDPRPCRCLS client
environment definition.

-Xv Specifies that VARCHAR- and BINARY-type structures are to be
analyzed as normal structures when the -E2 option is specified. To
declare VARCHAR- and BINARY-type embedded variables, use the
SQL TYPE IS-type variable declaration. This option must be
specified together with the -E2 option. Do not specify this option if
the UAP uses macros for repetition columns.

Preprocessing option Description

8. Preparation for UAP Execution

706

Note 1

The following table shows the functions that can be used when the -E option
is specified.

Legend:
Y: The function can be used.
N: The function cannot be used.

Note 2

When the -E option is specified, the preprocessor calls the C compiler
internally. The following table shows the C compiler for each platform.

-E{1|2|3} ["option-character-string"] Specifies that preprocessor declaration statements used in the UAP
are to be validated or that embedded variables are to be used without
being declared in the embedded SQL declare section, or both.
-E1: Specifies that preprocessor declaration statements are to be
validated.
-E2: Specifies that embedded variables are to be used without being
declared in the embedded SQL declare section. This value can also
specify that pointers or structure references are to be used as
embedded variables.
-E3: Specifies that both -E1 and -E2 apply.
"option-character-string":
Specifies the path name of the directory from which the file to be
included is to be retrieved. Specify the path name in the format of
the -I option specified in the C compiler. When specifying multiple
options in option-character-string, use semicolons to separate the
options. You can also specify any C compiler. When the -E2 option
is specified, this value ignored.
When the -E1 option is specified, the path name to the compiler
must be specified in the PATH environment variable because the
preprocessor calls the C compiler internally.

Function Omitted -E1 -E2 -E3

Validate the macro defined with #define. N Y N Y

Validate the header file that was included with #include. N Y N Y

Enable conditional compilation with #if, #ifdef, and other statements. N Y N Y

Use variables declared anywhere in the UAP as embedded variables. N N Y Y

Use structures as embedded variables. N N Y Y

Use pointers as embedded variables. N N Y Y

Preprocessing option Description

8. Preparation for UAP Execution

707

If you wish to use any other C compiler, specify the absolute path name of
the compiler, including the load directory, at the beginning of the
option-character-string value. The directory name and the load name cannot
include spaces or semicolons. If a path name has been added to the PATH
environment variable, the path name does not have to be the absolute path
name.
When specifying a load name, separate the load name and the options with a
semicolon.
The compiler to be used must support the -C and -E options. This is because
to process pseudo-instructions such as #define and #include, the
preprocessor internally specifies the -C and -E options to the C compiler and
creates temporary work files. In Linux, the preprocessor uses the -xc option
in addition to the -C and -E options. In Solaris, the preprocessor also uses
the -Xs option.
The other options that can be specified in option-character-string depend on
the specifications of the compiler to be used. However, if an option that is
incompatible with the -C or -E option is specified, the preprocessor
produces an error. If an option that displays help information is used, the
operation is not guaranteed.
Examples are shown as follows.
Example 1: If the C compiler is not to be used

pdcpp connect.ec -E1"-I$PDDIR/include;-DDEBUG"

Example 2: If a user-specified C compiler is to be used

pdcpp connect.ec -E1"/usr/bin/gcc;-I$PDDIR/
include;-DDEBUG"

Note 3

Platform Compiler type Load name for calling

HP-UX HP-C compiler cc

Solaris SUN Workshop compiler cc

AIX C for AIX compiler xlc

Linux gcc compiler gcc

Windows Microsoft Visual C++ compiler CL.EXE

8. Preparation for UAP Execution

708

SQL statements and SQL TYPE IS-type variable declarations cannot be
specified in the included header file. If the preprocessor finds an SQL
statement or an SQL TYPE IS-type variable declaration in the header file, it
displays an error message and continues processing but does not generate a
post source. If you specify the -E1 option and also specify an embedded
SQL declare section in the header file, that section becomes invalid. To use
variables defined in the header file as embedded variables, specify the -E3
option. However, in this case as well, SQL TYPE IS-type variable
declarations cannot be specified in the include file.

1. Examples of command specification in C
Example 1
The C source filename is sample and post source is not to be output.
pdcpp sample.ec -s

Example 2
The C source filename is sample and the filename of the post source to be output
is main.
pdcpp sample.ec -o main.c

2. Examples of command specification in C++
Example 1
The C source filename is sample and post source is not to be output.
pdocc sample.EC -s

Example 2
The C source filename is sample and the filename of the post source to be output
is main.
pdocc sample.EC -o main.C

(c) SQL preprocessor return codes
The SQL preprocessor returns a return code to the OS when the processing is
complete. The return code can be referenced by displaying the contents of the $? shell
variable (in the case of Bourne shell) or the $status shell variable (in the case of C
shell).
Table 8-3 lists the return codes.

Table 8-3: SQL preprocessor return codes (for C programs in a UNIX
environment)

Return code Explanation

0 Normal termination

8. Preparation for UAP Execution

709

(d) Error output
When a syntax error is detected in an SQL statement, the SQL preprocessor ignores
the SQL statement and continues processing. If an error is detected in an option
specification, however, processing is suspended. Processing terminates abnormally
when a system error, such as a memory shortage or a file I/O error, occurs and
processing cannot be continued.
For a syntax error in an SQL statement, the SQL preprocessor outputs an error message
to the standard error output. By redirecting the standard error output, the error message
can be stored in a file. This file can be referenced for the error content, the UAP source
filename, and the error location (line number in the SQL statement).
Table 8-4 shows the standard input and output for the SQL preprocessor.

Table 8-4: SQL preprocessor standard input and output (for C programs in a
UNIX environment)

(2) COBOL
(a) Environment variable setting

The following environment variables can be set before a UAP is preprocessed:
PDDIR

This environment variable specifies the absolute path name for the installation
directory for HiRDB (server or client); the default directory is /HiRDB.
This variable need not be specified if the installation destination is /HiRDB.

PDCBLFIX
This environment variable specifies an optional file identifier other than the
standard identifier of the COBOL source file.
The specification must be a character string of 1-4 alphabetic characters
beginning with a period. The file identifier specified in this environment variable

4, 8 Error (preprocessing was completed)

12, 16 Error (preprocessing terminated abnormally)

File Application

Standard input File input (cannot be used by the user)

Standard output File output (cannot be used by the user)

Standard error output Output of error messages

Return code Explanation

8. Preparation for UAP Execution

710

can be used only for the input file.
PDCBLLIB

This environment variable specifies directories from which library texts to be
included in the source file are to be retrieved by the SQL COPY statement.
Multiple directories must be separated by a colon. When this environment
variable is omitted, only the current directory is retrieved.

LANG
This environment variable specifies the character code classification of the
HiRDB client environment.
For details about the character code classifications that can be specified in LANG,
see Table 8-1.
If you do not specify this environment variable or if you specify a different value
from the value that is specified in the environment variable, ja_JP.SJIS is
assumed.

PDCLTLANG
This environment variable specifies the character code classification to be used in
preprocessing instead of the character code classification specified by the LANG
environment variable. For details about the PDCLTLANG operand, see 6.6.4
Environment definition information.

Example 1: Setting the environment in sh (Bourne shell)
$ PDDIR="/prdb" 1
$ PDCBLFIX=".Cob" 2
$ PDCBLLIB=$HOME/cobol/include:$HOME/cobol/source 3
$ export PDDIR PDCBLFIX PDCBLLIB 4

1. Specifies the installation directory (/prdb in this example).
2. Specifies .Cob as the COBOL language source file identifier.
3. Specifies the two directories ($HOME/cobol/include and $HOME/

cobol/source) from which library text is to be retrieved.
4. Enables referencing by the SQL preprocessor.

Example 2: Setting the environment in csh (C shell)
% setenv PDDIR "/prdb" 1
% setenv PDCBLFIX ".Cob" 2
% setenv PDCBLLIB $HOME/cobol/include:$HOME/cobol/source 3

1. Specifies the installation directory (/prdb in this example).
2. Specifies .Cob as the COBOL language source file identifier.
3. Specifies two directories ($HOME/cobol/include and $HOME/cobol/

8. Preparation for UAP Execution

711

source) from which library text is to be retrieved.
(b) SQL preprocessor activation

To activate the SQL preprocessor, use the pdcbl command (for COBOL) or the
pdocb command (for OOCOBOL).
Following is the input format for starting the SQL preprocessor:
pdcbl input-file-name [options
[output-file-name|authorization-identifier]]

Note
In the case of OOCOBOL, the underlined section must be changed to pdocb.

input-file-name
Specifies the name of the COBOL source file. .ecb, .cob, or .cbl must be used
as the file identifier. If any other file identifier was registered during environment
setting, that identifier can also be used.

output-file-name
Specifies the name of the COBOL source file. If the output filename is omitted,
.cbl is used as the file identifier.

authorization-identifier
Specifies the default authorization identifier to be used when an authorization
identifier is omitted in the SQL. This specification is invalid when the distributed
database facility is used and when remote database access is involved.
If the authorization identifier is omitted, the user identifier used during CONNECT
is assumed.

options
Specifies, as necessary, the options shown in Table 8-5. Upper-case and
lower-case characters are not discriminated in the options.
Table 8-5: Preprocessing options (for COBOL in the UNIX environment)

Preprocessing option Description

-s Specifies that only syntax is checked and that no post source is
output; when this option is omitted, the post source is output.

-o file-name Specifies a filename for the post source; when this option is
omitted, the input filename with its file identifier changed to .cbl
is used as the output filename.
If the input file identifier is .cbl, this option must be specified to
change the post source filename to an identifier other than .cbl.

8. Preparation for UAP Execution

712

-Xc Specifies that the double quotation mark is used as the quotation
mark in the character string created by the SQL preprocessor; the
default quotation mark is the apostrophe.

-A authorization-identifier Specifies that the default authorization identifier, which is used
when no authorization identifier is specified in a static SQL
statement, is to be changed.
A static SQL statement refers to the INSERT, UPDATE, DELETE,
single-row SELECT, OPEN (format 1), CALL, LOCK, or PURGE
TABLE statement.

-P Specifies that no syntax check is to be executed on the SQL. This
option can be specified when one of the following UAPs is
preprocessed:
• UAP for XDM/RD E2 connection
• UAP that uses the SQL reserved word deletion facility

If this option is not specified, the reserved words to be deleted by
the SQL reserved word deletion facility and the SQL statements
that can be used by XDM/RD E2 may cause syntax errors.

-Xo Specifies that the SQL statements extracted from the UAP are to be
output to standard output. The output method for outputting the
SQL statements is described below.
• Embedded variables in SQL statements are replaced with the ?

parameter.
• INTO clauses in single-row SELECT statements are deleted.
• Multiple space characters between word clauses in SQL

statements are replaced with one space character.
• Any SQL statement that is split across several lines is

consolidated into a single line.
• Only SQL statements that are sent to the server during

execution are output. SQL statements that are not executed
(such as WHENEVER statements and BEGIN DECLARE SECTION)
are not output.

• A semicolon (;) is added to the end of an SQL statement.
• Declarations of embedded variables are not output.
• A dynamic SQL statement is output only if the SQL is specified

with a literal. In all other cases, dynamic SQL statements are not
output.

• An OPEN statement outputs a query expression only if a format
1 cursor is used.

• A post source is not generated.

-c {m|s} Specifies the COBOL compiler type.
m: Micro Focus COBOL
s: SUN Japanese COBOL

Preprocessing option Description

8. Preparation for UAP Execution

713

1. Examples of command specification in COBOL
Example 1
The UAP source filename is sample and no post source will be output.
pdcbl sample.ecb -s

Example 2
The UAP source filename is sample and the filename of the post source to be
output is main.
pdcbl sample.ecb -o main.cbl

2. Examples of command specification in OOCOBOL
Example 1
The UAP source filename is sample and no post source will be output.
pdocb sample.eoc -s

Example 2
The UAP source filename is sample and the filename of the post source to be
output is main.
pdocb sample.eoc -o main.ocb

(c) SQL preprocessor return codes
The SQL preprocessor returns a return code to the OS when the processing is
completed. The return code can be referenced by displaying the contents of the $? shell
variable (in the case of Bourne shell) or the $status shell variable (in the case of C
shell).
Table 8-6 lists the return codes.

-Xe{y|n} Specifies whether the cursor for PREPARE statement execution is to
be closed automatically.
y: Creates a post source that closes the cursor automatically.
n: Creates a post source that does not close the cursor automatically.
If this option is omitted, the preprocessor creates a post source
according to the specification value in the PDPRPCRCLS client
environment definition.

-E2 Specifies that embedded variables are to be used without being
declared in the embedded SQL declare section.

Preprocessing option Description

8. Preparation for UAP Execution

714

Table 8-6: SQL preprocessor return codes (for COBOL programs in a UNIX
environment)

(d) Error output
When a syntax error is detected in an SQL statement, the SQL preprocessor ignores
that SQL statement and continues processing. If an error is detected in an option
specification, however, processing is suspended. Processing terminates abnormally
when a system error, such as a memory shortage or a file I/O error, occurs and
processing cannot be continued.
For a syntax error in an SQL statement, the SQL preprocessor outputs an error message
to the standard error output. By redirecting the standard error output, the error message
can be stored in a file. This file can be referenced for the error content, the UAP source
filename, and the error location (line number in the SQL statement).
Table 8-7 shows the standard input and output of the SQL preprocessor.

Table 8-7: SQL preprocessor standard input and output (for COBOL programs
in a UNIX environment)

8.2.3 Preprocessing in Windows
(1) C

(a) Environment variable setting
Before a UAP is preprocessed, the environment variable described below can be
specified in the HiRDB.INI file, if necessary.
The HiRDB.INI file is installed in the %windir% directory.
PDCLTLANG

Specifies the character code classification to be used for preprocessing. If this
environment variable is omitted, sjis is assumed. For details about the

Return code Explanation

0 Normal termination

4, 8 Error (preprocessing was completed)

12, 16 Error (preprocessing terminated abnormally)

File Application

Standard input File input (cannot be used by the user)

Standard output File output (cannot be used by the user)

Standard error output Output of error messages

8. Preparation for UAP Execution

715

PDCLTLANG operand, see 6.6.4 Environment definition information.
(b) SQL preprocessor activation

Following are the three methods of activating the SQL preprocessor:
• Execution by means of overlaying icons
• Execution by means of filename specification
• Execution from the command prompt or MS-DOS prompt

Execution by overlaying icons
In Windows Explorer, drag the file to be preprocessed onto and overlay it on the
preprocessor file (PDCPP.EXE); execution then occurs automatically.
When this method is used, no options can be specified to be set during execution.
Execution by filename specification
Click the preprocessor icon (PDCPP.EXE), and follow the procedures below:
1. Select Run from the File menu.
2. Specify a filename and options on the command line.
Execution from the command prompt or MS-DOS prompt
Activate the command prompt or MS-DOS prompt. Execute the program by
entering either PDCPP.EXE (in C) or PDOCC.EXE (in C++).

A command is entered in the following format:
PDCPP.EXE input-file-name [options
[output-file-name|authorization-identifier]]

Note
In the case of C++, the underlined section must be changed to PDOCC.EXE.

input-file-name
Specifies the name of the C source file. .EC must be used as the file identifier.

output-file-name
Specifies the name of the C source file. If the output filename is omitted, .C is
used as the file identifier.

authorization-identifier
Specifies the default authorization identifier to be used when an authorization
identifier is omitted in the SQL. This specification is invalid when the distributed
database facility is used. If the authorization identifier is omitted, the user
identifier used during CONNECT is assumed.

8. Preparation for UAP Execution

716

options
Specifies, as necessary, the options shown in Table 8-8. Upper-case and
lower-case characters are not discriminated in the options.
Table 8-8: Preprocessing options (for C in the Windows environment)

Preprocessing option Description

/S Specifies that only syntax is checked and that no post source will be
output; when this option is omitted, the post source is output. Note
that the SQL preprocessor may not be able to detect all syntax errors
in the SQL statements because it does not perform a rigorous SQL
syntax check unless /Xp is also specified.

/O file-name Specifies a filename for the post source that is output; when this
option is omitted, the input filename with its file identifier changed
to .C is used as the output filename.

/A authorization-identifier Specifies that the default authorization identifier, which is used
when no authorization identifier is specified in a static SQL
statement, is to be changed.
A static SQL statement refers to the INSERT, UPDATE, DELETE,
single-row SELECT, OPEN (format 1), CALL, LOCK, or PURGE
TABLE statement.

/h64 Specifies that a post source for 64-bit mode is to be created. If an
embedded variable that uses the long type is declared, an error
occurs.

/Xe{y|n} Specifies whether the cursor for PREPARE statement execution is to
be closed automatically.
y: Creates a post source that closes the cursor automatically.
n: Creates a post source that does not close the cursor automatically.
If this option is omitted, the preprocessor creates a post source
according to the specification value in the PDPRPCRCLS client
environment definition.

/Xv Specifies that VARCHAR- and BINARY-type structures are to be
analyzed as normal structures when the /E2 option is specified. To
declare VARCHAR- and BINARY-type embedded variables, use the
SQL TYPE IS-type variable declaration. This option must be
specified together with the /E2 option. Do not specify this option if
the UAP uses macros for repetition columns.

/XA Specifies that an X/Open-compliant API is to be used to create the
UAP.

8. Preparation for UAP Execution

717

/Xo Specifies that the SQL statements extracted from the UAP are to be
output to standard output. The output method for outputting the
SQL statements is described below.
• Embedded variables in SQL statements are replaced with the ?

parameter.
• INTO clauses in single-row SELECT statements are deleted.
• Multiple space characters between word clauses in SQL

statements are replaced with one space character.
• Any SQL statement that is split across several lines is

consolidated into a single line.
• Only SQL statements that are sent to the server during

execution are output. SQL statements that are not executed
(such as WHENEVER statements and BEGIN DECLARE SECTION)
are not output.

• A semicolon (;) is added to the end of an SQL statement.
• Declarations of embedded variables are not output.
• A dynamic SQL statement is output only if the SQL is specified

with a literal. In all other cases, dynamic SQL statements are not
output.

• An OPEN statement outputs a query expression only if a format
1 cursor is used.

• A post source is not generated.

/E{1|2|3} ["option-character-string"] Specifies that preprocessor declaration statements used in the UAP
are to be validated or that embedded variables are to be used without
being declared in the embedded SQL declare section, or both.
/E1: Specifies that preprocessor declaration statements are to be
validated.
/E2: Specifies that embedded variables are to be used without being
declared in the embedded SQL declare section. This value can also
specify that pointers or structure references are to be used as
embedded variables.
/E3: Specifies that both /E1 and /E2 apply.
"option-character-string":
Specifies the path name of the directory from which the file to be
included is to be retrieved. Specify the path name in the format of
the /I option specified in the C compiler. When specifying multiple
options in option-character-string, use semicolons to separate the
options. You can also specify any C compiler. When the /E2 option
is specified, this value ignored.
When the /E1 option is specified, the path name to the compiler
must be specified in the PATH environment variable because the
preprocessor calls the C compiler internally.

/Xp Specifies that a rigorous SQL syntax check is to be executed.
However, do not specify this option when the SQL reserved word
deletion facility is used.

Preprocessing option Description

8. Preparation for UAP Execution

718

Note 1

The following table shows the functions that can be used when the /E option
is specified.

Legend:
Y: The function can be used.
N: The function cannot be used.

Note 2

When the /E option is specified, the preprocessor calls the Microsoft Visual
C++ compiler (load name during calling: CL.EXE) internally.
If you wish to use any other C compiler, specify the absolute path name of
the compiler, including the load directory, at the beginning of the
option-character-string value. The directory name and the load name cannot
include spaces or semicolons. If a path name has been added to the PATH
environment variable, the path name does not have to be the absolute path
name.
When specifying a load name, separate the load name and the options with a
semicolon.
The compiler to be used must support the /C and /E options. This is because
to process pseudo-instructions such as #define and #include, the
preprocessor internally specifies the /C and /E options to the C compiler and
creates temporary work files. The other options that can be specified in
option-character-string depend on the specifications of the compiler to be
used. However, if an option that is incompatible with the /C or /E option is
specified, the preprocessor produces an error. If an option that displays help
information is used, the operation is not guaranteed.

Note 3

SQL statements and SQL TYPE IS-type variable declarations cannot be

Function Omitted /E1 /E2 /E3

Validate the macro defined with #define. N Y N Y

Validate the header file that was included with #include. N Y N Y

Enable conditional compilation with #if, #ifdef, and other statements. N Y N Y

Use variables declared anywhere in the UAP as embedded variables. N N Y Y

Use structures as embedded variables. N N Y Y

Use pointers as embedded variables. N N Y Y

8. Preparation for UAP Execution

719

specified in the included header file. If the preprocessor finds an SQL
statement or an SQL TYPE IS-type variable declaration in the header file, it
displays an error message and continues processing but does not generate a
post source. If you specify the /E1 option and also specify an embedded
variable declare section in the header file, that section becomes invalid. To
use variables defined in the header file as embedded variables, specify the /
E3 option. However, in this case as well, SQL TYPE IS-type variable
declarations cannot be specified in the include file.

1. Examples of command specification in C
Example 1
The UAP source filename is SAMPLE and no post source will be output.
PDCPP SAMPLE.EC /S

Example 2
The UAP source filename is SAMPLE and the filename of the post source to be
output is MAIN.
PDCPP SAMPLE.EC /O MAIN.C

2. Examples of command specification in C++
Example 1
The UAP source filename is SAMPLE and no post source will be output.
PDOCC.EXE SAMPLE.ECP /S

Example 2
The UAP source filename is SAMPLE and the filename of the post source to be
output is MAIN.
PDOCC.EXE SAMPLE.ECP /O MAIN.CPP

(c) SQL preprocessor return codes
The SQL preprocessor returns a return code to the OS when the processing is
completed. The return code can be referenced by the OS batch command
ERRORLEVEL.
Table 8-9 lists the return codes.

Table 8-9: SQL preprocessor return codes (for C programs in a Windows
environment)

Return code Explanation

0 Normal termination

4, 8 Error (preprocessing was completed)

8. Preparation for UAP Execution

720

(d) Error output
When a syntax error is detected in an SQL statement, the SQL preprocessor ignores
that SQL statement and continues processing. If an error is detected in an option
specification, however, processing is suspended. Processing terminates abnormally
when a system error, such as a memory shortage or a file I/O error, occurs and
processing cannot be continued.
For a syntax error in an SQL statement, the SQL preprocessor outputs an error message
to the standard error output. By redirecting the standard error output, the error message
can be stored in a file. This file can be referenced for the error content, the UAP source
filename, and the error location (line number in the SQL statement).
Table 8-10 shows the standard input and output for the SQL preprocessor.

Table 8-10: SQL preprocessor standard input and output (for C programs in a
Windows environment)

(2) COBOL
(a) Environment variable setting

The following environment variables can be set in the HIRDB.INI file before a UAP
is preprocessed (the HIRDB.INI file is installed in the %windir% directory):
PDCBLFIX

This environment variable specifies an optional file identifier other than the
standard identifier of the COBOL source file.
The specification must be a character string of 1-4 alphabetic characters
beginning with a period. The file identifier specified in this environment variable
can be used only for the input file.

PDCBLLIB
This environment variable specifies directories from which library texts to be
included in the source file are to be retrieved by the COPY statement. When
specifying multiple directories, separate the directories with a colon. When this

12, 16 Error (preprocessing terminated abnormally)

File Application

Standard input File input (cannot be used by the user)

Standard output File output (cannot be used by the user)

Standard error output Output of error messages

Return code Explanation

8. Preparation for UAP Execution

721

environment variable is omitted, only the current directory is retrieved.
PDCLTLANG

This environment variable should be specified if a specific type of character codes
is to be used for preprocessing. The default is sjis. For details about the
PDCLTLANG operand, see 6.6.4 Environment definition information.

Example
[HiRDB] 1
PDCBLFIX=.AAA 2
PDCBLLIB=E:\USER\COPY 3

1. Specifies [HiRDB].
2. Specifies .AAA as a COBOL language source file identifier.
3. Specifies a directory (E:\USER\COPY in this example) from which library

text to be included by the COPY statement is to be retrieved.
(b) SQL preprocessor activation

Following are the three methods of activating the SQL preprocessor:
• Execution by means of overlaying icons
• Execution by means of filename specification
• Execution from the command prompt or MS-DOS prompt

Execution by overlaying icons
In Windows Explorer, drag the file to be preprocessed onto and overlay it on the
preprocessor file (PDCBL.EXE). Execution then occurs automatically.
When this method is used, no options can be specified to be set during execution.

Execution by filename specification
Click the preprocessor icon (PDCBL.EXE) and use the following procedure:
1. Select Run from the File menu.
2. Specify a filename and options on the command line.
Execution from the command prompt or MS-DOS prompt
Activate the command prompt or MS-DOS prompt. Execute the program by
entering either PDCBL.EXE (in COBOL) or PDOCB.EXE (in OOCOBOL).

A command is entered in the following format:
PDCBL.EXE input-file-name [options [output-file-name|authorization-identifier]]

Note

8. Preparation for UAP Execution

722

In the case of OOCOBOL, the underlined section must be changed to
PDOCB.EXE.

input-file-name
Specifies the name of the COBOL source file. .ECB, .COB, or .CBL must be used
as the file identifier. If any other file identifier was registered during environment
setting, that identifier can also be used.

output-file-name
Specifies the name of the COBOL source file. If the output filename is omitted,
.CBL is used as the file identifier.

authorization-identifier
Specifies the default authorization identifier to be used when an authorization
identifier is omitted in the SQL. This specification is invalid when the distributed
database facility is used. If the authorization identifier is omitted, the user
identifier used during CONNECT is assumed.

options
Specifies, as necessary, the options shown in Table 8-11. Upper-case and
lower-case characters are not discriminated in the options.
Table 8-11: Preprocessing options (for COBOL in the Windows environment)

Preprocessing option Description

/S Specifies that only syntax is checked and that no post source will be
output; when this option is omitted, the post source is output.
Note that the SQL preprocessor may not be able to detect all syntax
errors in the SQL statements because it does not perform a rigorous
SQL syntax check unless /Xp is also specified.

/O file-name Specifies that the filename for the output post source is to be
changed.
When this option is omitted, the input filename with its file
identifier changed to .CBL (for COBOL language) or .OCB (for
OOCOBOL language) and is used as the output filename.
If the input file identifier is .CBL (for COBOL language) or .OCB
(for OOCOBOL language), this option must be specified to change
the post source filename to an identifier other than .CBL (for
COBOL language) or .OCB (for OOCOBOL language).

/XC Specifies that the double quotation mark is used as the quotation
mark in the character string to be created by the SQL preprocessor;
the default quotation mark is the apostrophe.

8. Preparation for UAP Execution

723

/A authorization-identifier Specifies that the default authorization identifier, which is used
when no authorization identifier is specified in a static SQL
statement, is to be changed.
A static SQL statement refers to the INSERT, UPDATE, DELETE,
single-row SELECT, OPEN (format 1), CALL, LOCK, or PURGE
TABLE statement.

/XD Specifies that a DLL is to be created.
The prerequisite compiler for creating a DLL is COBOL85 Version
4.0 04-02 or a later version. Do not create an application that
contains both UAPs that were preprocessed by specifying the /XD
option and UAPs that were preprocessed without specifying the /
XD option. Otherwise, an error (KCCBO204R-S) occurs in the
COBOL runtime library during application execution.

/Xe{y|n} Specifies whether the cursor for PREPARE statement execution is to
be closed automatically.
y: Creates a post source that closes the cursor automatically.
n: Creates a post source that does not close the cursor automatically.
If this option is omitted, the preprocessor creates a post source
according to the specification value in the PDPRPCRCLS client
environment definition.

/XAD Specifies that a UAP that used an X/Open-compliant API is to be
created as a DLL.

/XA Specifies that the UAP is to be created by using an X/
Open-compliant API.

Preprocessing option Description

8. Preparation for UAP Execution

724

1. Examples of command specification in COBOL
Example 1
The UAP source filename is SAMPLE and no post source will be output.
PDCBL SAMPLE.ECB /S

Example 2
The UAP source filename is SAMPLE and the filename of the post source to be
output is MAIN.
PDCBL SAMPLE.ECB /O MAIN.CBL

2. Examples of command specification in OOCOBOL
Example 1
The UAP source filename is SAMPLE and no post source will be output.
PDOCB.EXE SAMPLE.EOC /S

/Xo Specifies that the SQL statements extracted from the UAP are to be
output to standard output. The output method for outputting the
SQL statements is described below.
• Embedded variables in SQL statements are replaced with the ?

parameter.
• INTO clauses in single-row SELECT statements are deleted.
• Multiple space characters between word clauses in SQL

statements are replaced with one space character.
• Any SQL statement that is split across several lines is

consolidated into a single line.
• Only SQL statements that are sent to the server during

execution are output. SQL statements that are not executed
(such as WHENEVER statements and BEGIN DECLARE SECTION)
are not output.

• A semicolon (;) is added to the end of an SQL statement.
• Declarations of embedded variables are not output.
• A dynamic SQL statement is output only if the SQL is specified

with a literal. In all other cases, dynamic SQL statements are not
output.

• An OPEN statement outputs a query expression only if a format
1 cursor is used.

• A post source is not generated.

/E2 Specifies that embedded variables are to be used without being
declared in the embedded SQL declare section.

/Xp Specifies that a rigorous SQL syntax check is to be executed.
However, do not specify this option when the SQL reserved word
deletion facility is used.

Preprocessing option Description

8. Preparation for UAP Execution

725

Example 2
The UAP source filename is SAMPLE and the filename of the post source to be
output is MAIN.
PDOCB.EXE SAMPLE.EOC /O MAIN.OCB

(c) SQL preprocessor return codes
The SQL preprocessor returns a return code to the OS when the processing is
completed. The return code can be referenced by the OS batch command
ERRORLEVEL.
Table 8-12 lists the return codes.

Table 8-12: SQL preprocessor return codes (for COBOL programs in a
Windows environment)

(d) Error output
When a syntax error is detected in an SQL statement, the SQL preprocessor ignores
that SQL statement and continues processing. If an error is detected in an option
specification, however, processing is suspended. Processing terminates abnormally
when a system error, such as a memory shortage or a file I/O error, occurs and
processing cannot be continued.

For a syntax error in an SQL statement, the SQL preprocessor outputs an error message
to the standard error output. By redirecting the standard error output, the error message
can be stored in a file. This file can be referenced for the error content, the UAP source
filename, and the error location (line number in the SQL statement).
Table 8-13 shows the standard input and output of the SQL preprocessor.

Table 8-13: SQL preprocessor standard input and output (for COBOL programs
in a Windows environment)

Return code Explanation

0 Normal termination

4, 8 Error (preprocessing was completed)

12, 16 Error (preprocessing terminated abnormally)

File Application

Standard input File input (cannot be used by the user)

Standard output File output (cannot be used by the user)

Standard error output Output of error messages

8. Preparation for UAP Execution

726

8.2.4 Validating preprocessor declaration statements
(1) Overview

The preprocessor features an option that allows you to use preprocessor declaration
statements of the C compiler.
By specifying the -E option, you can execute the following functions with the
preprocessor:

• Define literals and macros by using the #define declaration statement.
• Define literals and macros in include files that have been included with the

#include statement*.
• Execute conditional compilation based on #ifdef, #if, and other statements.
• Use macros to specify literals in embedded variable declarations.

* SQL statements and SQL TYPE IS-type variable declarations cannot be specified in
include files. (Otherwise, an error occurs during compilation because the preprocessor
does not generate a header post source.)

(2) Usage examples
(a) Literal usage

Assume that the following embedded variable declaration is specified in a UAP source
file:

#include "user.h"
EXEC SQL BEGIN DECLARE SECTION;
 char xchar1[MAX_CHAR_LEN];
EXEC SQL END DECLARE SECTION;

Also assume that the following literal is defined in the header file (user.h) that the
UAP has included:

#define MAX_CHAR_LEN 256

In this case, the preprocessor reads the include file and uses the MAX_CHAR_LEN
definition value to convert the embedded variable declaration to char
xchar1[256]; before analyzing the UAP source file. However, macro literals cannot
be used between the SQL prefix and the SQL terminator (in SQL statements).
Specify the directory path for include file retrieval as an option argument. The default
directory of the C compiler does not need to be specified.

8. Preparation for UAP Execution

727

(b) Conditional compilation
You can use the #ifdef statement to select the SQL statement to be preprocessed. An
example is shown as follows.

#ifdef DEF_SWITCH
 EXEC SQL DECLARE CUR1 CURSOR FOR SELECT * FROM TABLE1;
#else
 EXEC SQL DECLARE CUR1 CURSOR FOR SELECT * FROM TABLE2;
#endif

However, preprocessor declaration statements of the C compiler cannot be specified
between the SQL prefix and SQL terminator (in SQL statements).

8.2.5 Dispensing with the embedded SQL declare section
(1) Overview

When you specify the -E option, the preprocessor can use variables that correspond to
SQL data types as embedded variables regardless of where those variables are declared
in the UAP source file. However, variables of the register storage class cannot be
used as embedded variables.
The rules of the host language used to write the UAP source file determines the
effective scope of a variable. Only UAP source files written in C or COBOL can use
this function.
When this function is used, the following operations can be performed:

• Variable declarations can be used as embedded variables without having to be
specified between an embedded SQL begin declaration (BEGIN DECLARE
SECTION) and an embedded SQL end declaration (END DECLARE SECTION).
Variable declarations can also be used together with embedded variables.

• The effective scope of a global variable, local variable, or function argument is
determined by the syntax of the host language. If embedded variables have
different effective scopes, they are discriminated as different embedded variables
even if variables of the same name are declared. In this case, the preprocessor
assumes that the innermost variable that includes the SQL statement that uses that
variable was specified.

(2) Usage example
A usage example is shown as follows.

int fetchdata(long xprice){
 char xpcode[5];
 char xpname[17];
 char xcolor[3];

8. Preparation for UAP Execution

728

 long xstock;
:
 EXEC SQL
 DECLARE CR3 CURSOR FOR
 SELECT PCODE,PNAME,COLOR,SQUANTITY
 FROM STOCK WHERE PRICE=:xprice;
:
 EXEC SQL OPEN CR3 ;
:
 /* heading */
 printf(" ***** STOCK TABLE LIST *****\n\n");
 printf(" PRODUCT CODE PRODUCT NAME COLOR PRICE
CURRENT STOCK\n");
 printf(" ---- ---------------- -- --------
--------\n");

 EXEC SQL WHENEVER SQLERROR GOTO END;
 EXEC SQL WHENEVER NOT FOUND GOTO END;

 /* FETCH */
 for(;;){
 EXEC SQL
 FETCH CR3 INTO :xpcode,:xpname,:xcolor,:xstock;
 printf(" %4s %-16s %2s %8d %8d\n",
 xpcode, xpname, xcolor, xprice, xstock);
 }
 }
END:

8.2.6 Specifying pointers as environment variables
(1) Overview

In C, the -E option allows you to declare pointers as embedded variables. When you
use this function, you can directly specify dynamically allocated areas in SQL
statements.
For details about SQL preprocessor options, see the option descriptions in 8.2.2
Preprocessing in UNIX, or 8.2.3 Preprocessing in Windows. For details about SQL
statements that can use pointers, see 8.2.8 Use of pointers, structures, and structure
qualifiers when the -E2 or -E3 option of the preprocessor is specified.
Declare pointer variables according to the C syntax. An example is shown as follows.

long *xprice;
long *xstock;
char *xpname;
...

8. Preparation for UAP Execution

729

xprice = (long *)malloc(sizeof(long));
xstock = (long *)malloc(sizeof(long));
xpname = (char *)malloc(MAX_CHAR_LEN+1);
memset(xspname, ' ', MAX_CHAR_LEN);
xspname [MAX_CHAR_LEN] = '\0';
EXEC SQL FETC CUR1 INTO :xprice,:xstock,:xpname;

(2) Rules
1. When specifying a pointer variable, add a colon before the variable name in the

SQL statement. An asterisk cannot be used.
2. The size of the value to be referenced becomes the size of the data type specified

in the declaration. However, this does not apply to the fixed-length character
string type (CHAR).

3. The data length of a fixed-length character string-type pointer is determined
during execution, and not during preprocessing. The value size becomes the
length (strlen (pointer variable)) up to the end (\0) of the character string that
is stored in the area indicated by the pointer. When storing the search results of a
single-row SELECT statement or a FETCH statement, you must first clear the entire
area with a character other than \0 before executing the SQL statement and then
specify \0 at the end of the area.

4. You must allocate the area that the pointer points to. If the pointer is a fixed-length
character string-type pointer, allocate an extra byte to the area so that \0 can be
stored. If the pointer is an invalid value or if the area allocated for storing the data
is too small, the operation is not guaranteed.

5. Pointers to pointers cannot be used.
6. Pointers to structures can be specified.
7. Pointers to classes cannot be used.
8. Pointers to arrays cannot be used. To use a pointer to an array, use a structure and

declare the structure as follows:

struct {
long xprice[50];
long xstock[50];
char xpname[50][17];
} *xrec_ptr;

(3) Notes on using repetition-type pointers in machines that use a RISC-type
CPU

1. Because repetition column-type variables have the following structure, address

8. Preparation for UAP Execution

730

(1), which coincides with a word boundary, must be specified in the pointer.

Normally, there is no problem because areas allocated with malloc() are already
adjusted to word boundaries. However, if you calculate and allocate the memory
address on your own, you must adjust the address to a word boundary.
If the address specified in the pointer does not coincide with a word boundary, a
memory access exception occurs when the UAP uses macros for repetition
column manipulation to reference or set data. For details about the structure of
embedded variables in repetition columns, see B.2(5) Expansion format of
repetition columns.

2. For FLOAT-type repetition columns, the data length of the repetition elements
becomes larger than the area that stores the number of repetitions. The boundary
address must be adjusted to the word length of the repetition items. In the pointer,
specify address (2), which includes the leading free space.

The preprocessor creates a post source that automatically uses address (3), which
is 4 bytes from the beginning, as the beginning of the repetition column. Macros
that manipulate a FLOAT-type repetition column also use address (3) as the
beginning of the column. If you use the SQL descriptor area to specify the address
of the repetition column directly, specify address (3).

3. Because the maximum number of repetition elements is determined by the
declared value, a memory access exception may occur if an area smaller than the
declared value is allocated.
Normally, problems can be avoided by allocating the memory as shown in the
following coding.

PD_MV_SINT(32) *ptr; /* maximum element count 32 */
ptr = malloc(sizeof(*ptr));
EXEC SQL FETCH CUR1 INTO :ptr;

8. Preparation for UAP Execution

731

8.2.7 Referencing structures
(1) Overview

The preprocessor features an option that allows you to use a structure written in C to
specify multiple embedded variables at one time.
Structures can be used as embedded variables in the following locations:

• INTO clause of the single-row SELECT or FETCH statement
• VALUES clause of the INSERT statement
• USING or INTO clause of the EXECUTE statement

For details about SQL preprocessor options, see the option descriptions in 8.2.2
Preprocessing in UNIX or 8.2.3 Preprocessing in Windows. For details about SQL
statements that can use structures, see 8.2.8 Use of pointers, structures, and structure
qualifiers when the -E2 or -E3 option of the preprocessor is specified.

(2) Rules
1. When you specify a structure as an embedded variable, the preprocessor assumes

that each member of the structure was specified as an embedded variable and
generates the same post source it would generate if the members were specified
separately. The member expansion sequence in the post source is the same as the
member declaration sequence in the structure. The sequence of the retrieval items
and columns in SQL statements that specify the structure must match the member
sequence.

2. The members of a structure can also be specified individually as embedded
variables.

3. Structures that contain a union cannot be used.
4. Structures that contain another structure cannot be used. However, structures that

correspond to the variable-length character string type and the BINARY type can
be used.

(3) Usage examples
Structure usage example

A structure usage example is shown as follows.

 struct {
 char xpcode[5];
 char xpname[17];
 char xcolor[3];
 long xstock;
 long xprice;
 } xrec;

8. Preparation for UAP Execution

732

 ...
 EXEC SQL
 DECLARE CR3 CURSOR FOR
 SELECT PCODE,PNAME,COLOR,SQUANTITY, PRICE FROM STOCK;
 ...
 EXEC SQL OPEN CR3 ;

 /* heading */
 printf(" ***** STOCK TABLE LIST *****\n\n");
 printf(" PRODUCT CODE PRODUCT NAME COLOR PRICE
CURRENT STOCK\n");
 printf(" ---- ---------------- -- --------
--------\n");

 EXEC SQL WHENEVER SQLERROR GOTO END;
 EXEC SQL WHENEVER NOT FOUND GOTO END;

 /* FETCH */
 for(;;){
 EXEC SQL FETCH CR3 INTO :xrec;
 printf(" %4s %-16s %2s %8d %8d\n",
 xrec.xpcode, xrec.xpname, xrec.xcolor, xrec.xprice,
xrec.xstock);
 }
END:
 ...

Usage example of a structure that contains indicator variables
When you use a structure as an embedded variable and also want to use indicator
variables, declare the indicator variables in a structure as well. Associate the individual
members of the indicator variable structure in declaration sequence with the individual
members of the embedded variable structure. An example is shown as follows.

 struct {
 char xpcode[5];
 char xpname[17];
 char xcolor[3];
 long xstock;
 long xprice;
 } xrec;
 struct {
 short xpcode_ind;
 short xpname_ind;
 short xcolor_ind;
 short xstock_ind;
 short xprice_ind;

8. Preparation for UAP Execution

733

 } xrec_ind;
 ...
 /* FETCH */
 for(;;){
 EXEC SQL FETCH CR3 INTO :xrec :xrec_ind;
 printf(" %4s %-16s %2s %8d %8d\n",
 xrec.xpcode, xrec.xpname, xrec.xcolor, xrec.xprice,
xrec.xstock);
 }
 ...

Example in which a pointer to a structure is specified as an embedded variable
You can also specify a pointer to a structure as an embedded variable. The area
indicated by the pointer must be allocated beforehand.

struct tag_xrec {
 char xpcode[5];
 char xpname[17];
 char xcolor[3];
 long xstock;
 long xprice;
} *xrec_ptr;
struct tag_xrec_ind {
 short xpcode_ind;
 short xpname_ind;
 short xcolor_ind;
 short xstock_ind;
 short xprice_ind;
} *xrec_ind_ptr;
 ...
/* FETCH */
xrec_ptr = (struct tag_xrec *)malloc(sizeof(struct tag_xrec));
xrec_ind_ptr = (struct tag_xrec_ind *)
 malloc(sizeof(struct tag_xrec_ind));
 for(;;){
 EXEC SQL FETCH CR3 INTO :xrec_ptr :xrec_ind_ptr;
 printf(" %4s %-16s %2s %8d %8d\n",
 xrec_ptr->xpcode, xrec_ptr->xpname, xrec_ptr->xcolor,
 xrec_ptr->xprice, xrec_ptr->xstock);
 }
 ...

8.2.8 Use of pointers, structures, and structure qualifiers when the
-E2 or -E3 option of the preprocessor is specified

Table 8-14 shows whether or not pointers, structures, and pointer qualifiers can be used

8. Preparation for UAP Execution

734

when you specify the preprocessor's /E2 or /E3 option (-E2 or -E3 option in the
UNIX version).
A pointer refers to a variable declared with (type-name * variable-name). A
structure refers to a variable declared with (struct structure-name variable-name).
(However, structures that specify an SQL statement, as well as VARCHAR- and
BINARY-type structures, are excluded.) A structure qualifier refers to a variable that
has the (structure.member-variable-name)(structure->member-variable-name)
format.

Table 8-14: Use of pointers, structures, and pointer qualifiers when the -E2 or
-E3 option is specified

SQL statement that specifies embedded
variable or indicator variable

Pointer Structure Structure
qualifier

Data
manipulation
SQL statement

CALL statement Y N Y

DECLARE CURSOR Y N Y

DELETE statement Y N Y

DESCRIBE TYPE statement Y N N

EXECUTE statement with USING
specification

Y Y Y

EXECUTE statement with INTO
specification

Y Y Y

EXECUTE statement with USING
specification

Y Y Y

EXECUTE statement with BY
specification

Y N Y

EXECUTE IMMEDIATE statement
with SQL character string
location

Y N N

EXECUTE IMMEDIATE statement
with INTO specification

Y Y Y

EXECUTE IMMEDIATE statement
with USING specification

Y Y Y

FETCH statement with INTO
specification

Y Y Y

FETCH statement with USING
DESCRIPTOR specification

Y N Y

8. Preparation for UAP Execution

735

Legend:
Y: Can be specified.

INSERT statement with VALUES
specification

Y Y Y

OPEN statement Y N Y

PREPARE statement Y N N

SELECT statement with INTO
specification

Y Y Y

UPDATE statement Y N Y

FREE LOCATOR Y Y Y

SET Y N Y

ALLOCATE CURSOR Y N N

Control SQL
statement

CONNECT statement Y N Y

CONNECT statement with TO
specification

Y N Y

SET CONNECTION statement Y N Y

SET SESSION AUTHORIZATION
statement

Y N Y

Embedded
language

GET DIAGNOSTICS N N N

COMMAND EXECUTE N N N

INSTALL JAR Y N N

REPLACE JAR Y N N

REMOVE JAR Y N N

ALLOCATE CONNECTION
HANDLE

N N N

FREE CONNECTION HANDLE N N N

DECLARE CONNECTION HANDLE
SET

N N N

GET CONNECTION HANDLE N N N

SQL statement that specifies embedded
variable or indicator variable

Pointer Structure Structure
qualifier

8. Preparation for UAP Execution

736

N: Cannot be specified.

8. Preparation for UAP Execution

737

8.3 Compiling and linking

8.3.1 Libraries for compiling and linking
When executing compiling and linking, specify a library provided by HiRDB. Tables
8-15 and 8-16 show the libraries to be specified for compiling and linking.

Table 8-15: Libraries to be specified for compiling and linking (in non-OLTP
environment)

Platform Multi-
connection

facility

Library name

Shared library file Archive file

HP-UX 11.0 Used For a single thread:
libzclts.sl

For multiple threads (DCE
threads):

libzcltm.sl
For multiple threads (kernel
threads):

libzcltk.sl
For 64-bit mode multiple threads
(kernel threads):

libzcltk64.sl

For a single thread:
libclts.a

For multiple threads (DCE
threads):

libcltm.a
For multiple threads (kernel
threads):

libcltk.a
For 64-bit mode multiple
threads (kernel threads):

libcltk64.a

Not used For 32-bit mode:
libzclt.sl

For 64-bit mode:
libzclt64.sl

For 32-bit mode:
libclt.a

For 64-bit mode:
libclt64.a

HP-UX 11i V2 (IPF) Used For a single thread:
libzclts.so

For multiple threads (kernel
threads):

libzcltk.so
For 64-bit mode multiple threads
(kernel threads):

libzcltk64.so

Not used For 32-bit mode:
libzclt.so

For 64-bit mode:
libzclt64.so

8. Preparation for UAP Execution

738

Solaris Used For a single thread:
libzclts.so

For multiple threads (Solaris
threads):

libzcltk.so
libzcltm.so

For 64-bit mode multiple threads
(Solaris threads):

libzcltk64.so

For a single thread:
libclts.a

For multiple threads (Solaris
threads):

libcltk.a
libcltm.a

For 64-bitmode multiple
threads (Solaris threads):

libcltk64.a

Not used For 32-bit mode:
libzclt.so

For 64-bit mode:
libzclt64.so

For 32-bit mode:
libclt.a

For 64-bit mode:
libclt64.a

AIX 5L Used For a single thread:
libzclts.a

For multiple threads (POSIX
threads):

libzcltk.a
For 64-bit mode multiple threads
(POSIX threads):

libzcltk64.a

For a single thread:
libclts.a

For multiple threads (POSIX
threads):

libcltk.a
For 64-bit mode multiple
threads (POSIX threads):

libcltk64.a

Not used For 32-bit mode:
libzclt.a

For 64-bit mode:
libzclt64.a

For 32-bit mode:
libclt.a

For 64-bit mode:
libclt64.a

Linux Used For a single thread:
libzclts.so

For multiple threads (POSIX
threads):

libzcltk.so

For a single thread:
libclts.a

For multiple threads (POSIX
threads):

libcltk.a

Not used libzclt.so libclt.a

Linux (IPF) Used For a single thread:
libzclts64.so

For multiple threads (POSIX
threads):

libzcltk64.so

Not used libzclt64.so

Platform Multi-
connection

facility

Library name

Shared library file Archive file

8. Preparation for UAP Execution

739

Legend:
: Not applicable

Linux (EM64T) Used For a single thread:
libzclts.so

For multiple threads (POSIX
threads):

libzcltk.so
For 64-bit mode multiple threads
(POSIX threads):

libzcltk64.so

Not used For 32-bit mode:
libzclt.so

For 64-bit mode:
libzclt64.so

Windows Used PDCLTM32.LIB

Not used CLTDLL.LIB

Windows Server 2003
(IPF)

Used PDCLTM64.LIB

Not used PDCLTM64.LIB

Windows (x64) Used For 32-bit mode:
PDCLTM32.LIB

For 64-bit mode:
PDCLTM64.LIB

Not used For 32-bit mode:
PDCLTM32.LIB

For 64-bit mode:
PDCLTM64.LIB

Platform Multi-
connection

facility

Library name

Shared library file Archive file

8. Preparation for UAP Execution

740

Table 8-16: Libraries to be specified for compiling and linking (in OLTP
environment)

Platform Transaction
registration

method

Library name

Shared library file Archive file

HP-UX 11.0 Dynamic
registration

For a single thread:
libzcltx.sl
libzcltxs.sl (for OTS)

For multiple threads (kernel
threads):

libzcltxk.sl

For a single thread:
libcltxa.a
libzcltxas.a

For multiple threads (kernel
threads):

libcltxak.a

Dynamic or
static
registration

For a single thread:
libzclty.sl
libzcltys.sl (for OTS)

For multiple threads (kernel
threads):

libzcltyk.sl

For a single thread:
libcltya.a
libzcltyas.a

For multiple threads (kernel
thread):

libcltyak.a

HP-UX 11i V2 (IPF) Dynamic
registration

For a single thread:
libzcltx.so
libzcltxs.so (for OTS)

For multiple threads (kernel
threads):

libzcltxk.so
For 64-bit mode multiple threads
(kernel threads):

libzcltxk64.so

Dynamic
registration or
static
registration

For a single thread:
libzclty.so
libzcltys.so (for OTS)

For a 64-bit mode single thread
(kernel threads):

libzclty64.so
libzcltys.so (for OTS)

For multiple threads (kernel
threads):

libzcltyk.so
For 64-bit mode multiple threads
(kernel threads):

libzcltyk64.so

8. Preparation for UAP Execution

741

Solaris Dynamic
registration

For a single thread:
libzcltx.so
libzcltxs.so (for OTS)

For multiple threads (Solaris
threads):

libzcltxk.so

For a single thread:
libcltxa.a
libcltxas.a (for OTS)

For multiple threads (Solaris
threads):

libcltxak.a

Dynamic or
static
registration

For a single thread:
libzclty.so
libzcltys.so (for OTS)

For multiple threads (Solaris
threads):

libzcltyk.so

For a single thread:
libcltya.a
libcltyas.a (for OTS)

For multiple threads (Solaris
threads):

libcltyak.a

AIX 5L Dynamic
registration

For a single thread:
libzcltx.a
libzcltxs.a (for OTS)

For multiple threads (POSIX
threads):

libzcltxk.a

For a single thread:
libcltxa.a
libcltxas.a (for OTS)

For multiple threads (POSIX
threads):

libcltxak.a

Dynamic or
static
registration

libzclty.a
libzcltys.a (for OTS)

libcltya.a
libcltyas.a (for OTS)

Linux Dynamic
registration

libzcltx.so
libzcltxs.so (for OTS)

libcltxa.a
libcltxas.a (for OTS)

Dynamic or
static
registration

libzclty.so
libzcltys.so (for OTS)

libcltya.a
libcltyas.a (for OTS)

Linux (IPF) Dynamic
registration

For a 64-bit mode single thread
(kernel threads):

libzcltx64.so
libzcltxs64.so (for OTS)

For 64-bit mode multiple threads
(POSIX threads):

libzcltxk64.so

Dynamic
registration or
static
registration

For a 64-bit mode single thread
(kernel threads):

libzclty64.so
libzcltys64.so

For 64-bit mode multiple threads
(POSIX threads):

libzcltyk64.so

Platform Transaction
registration

method

Library name

Shared library file Archive file

8. Preparation for UAP Execution

742

Legend:
: Not applicable

Note

Linux (EM64T) Dynamic
registration

For a single thread:
libzcltx.so
libzcltxs.so (for OTS)

For multiple threads (POSIX
threads):

libzcltxk.so

Dynamic
registration or
static
registration

For a single thread:
libzclty.so
libzcltys.so (for OTS)

For multiple threads (POSIX
threads):

libzcltyk.so

Windows Dynamic
registration

Dynamic or
static
registration

For a single thread:
PDCLTX32.LIB
PDCLTXS.LIB (for OTS)

For multiple threads:
PDCLTXM.LIB

Windows Server 2003
(IPF)

Dynamic
registration

Dynamic
registration or
static
registration

For a single thread:
PDCLTX64.LIB
PDCLTXS64.LIB (for OTS)

For multiple threads:
PDCLTXM64.LIB

Windows (x64) Dynamic
registration

Dynamic
registration or
static
registration

For a single thread:
PDCLTX32.LIB
PDCLTXS.LIB (for OTS)

For multiple threads:
PDCLTXM.LIB

Platform Transaction
registration

method

Library name

Shared library file Archive file

8. Preparation for UAP Execution

743

For details about dynamic registration and static registration, see the description
of methods for registering HiRDB to the transaction manager in the HiRDB
Version 8 Installation and Design Guide.

8.3.2 Compiling and linking in UNIX
You must use a compiler that conforms to the language used for the UAP in which the
SQL statements are embedded to compile and link edit a post-source program created
by the SQL preprocessor.
This section explains how to specify commands for compiling and linking in the UNIX
environment, for each language.

(1) C
Post-source programs in C must be compiled with a compiler that conforms to the
ANSI C standards. Similarly, post-source programs in C++ must be compiled with a
compiler that conforms to the C++ standards. The cc command (lowercase) is used to
activate an ANSI C compiler, and the CC command (uppercase) is used to activate a
C++ compiler. These commands can also be used to compile and link. This is the
command format for activating a compiler:
cc [options] file-name directory distributed-library

Note
For C++, the underlined section must be changed to CC.

file-name
Specifies the name of the post-source file; the file identifier must be .c.

directory
Specifies the include directory (directory containing the header file of the library
provided by HiRDB).

distributed-library
Specifies the library provided by HiRDB. Normally, a shared library should be
used. An archive library should be used only to limit the version of the library
used, or if a shared library cannot be used. If the UAP uses a thread, link a
multi-connection library that corresponds to that thread.

options
Specifies the following options, as necessary:
-o

Specifies an optional name for the object file that is to be output; when this
option is omitted, the filename is a.out.

-I

8. Preparation for UAP Execution

744

Specifies that an include directory is designated; compilation does not
execute if this option is omitted.

-W1, +s
Specifies that different HiRDB distribution library directories are used for
UAP creation and for UAP execution. This option can be specified only
when the shared library is used.
When different distribution library directories are used for linkage and for
execution, the SHLIB_PATH environment variable must be used at the time
of execution to set the directory containing the distribution library.

(a) Examples of command specification in C
Examples of command specification in C are shown as follows. In these examples, the
underlined text specifies the HiRDB installation directory.

For UAPs that support the 32-bit mode
Example 1: Shared library

• The post-source filename is sample and an executable form filename is not
specified.

Example 2: Archive library
• The post-source filename is sample and the executable form filename is

SAMPLE.

Example 3: HP-UX (IPF)

Example 4: For multiple threads in HP-UX (IPF)

Example 5: Linux (EM64T)

cc -I/HiRDB/include sample.c -L/HiRDB/client/lib -lzclt

aCC +DD32 -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt

aCC -Ae -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt

aCC -Ae -mt -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzcltk

8. Preparation for UAP Execution

745

Example 6: For multiple threads in Linux (EM64T)

For UAPs that support the 64-bit mode
Example 1: Shared library

• The post-source filename is sample and an executable form filename is not
specified.

HP-UX 11.0

HP-UX (IPF)

Multiple threads in HP-UX (IPF)

Solaris 8 and Solaris 9

AIX 5L

Linux (IPF)

Multiple threads in Linux (IPF)

gcc -m32 -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt

gcc -m32 -D_REENTRANT -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzcltk

cc +DD64 -I/HiRDB/include sample.c -L/HiRDB/client/lib lzclt64

aCC -Ae +DD64 -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt64

aCC -Ae -mt +DD64 -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzcltk64

cc -xarch=v9 -I/HiRDB/include sample.c -L/HiRDB/client/lib -lzclt64 -lnsl -lsocket

xlc -q64 -I/HiRDB/include sample.c -Wl,-L/HiRDB/client/lib -lzclt64

gcc -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt64

8. Preparation for UAP Execution

746

Linux (EM64T)

Multiple threads in Linux (EM64T)

Note: Use libzcltk64.so even though the multi-connection facility is used by
a single-threaded UAP.

Example 2: Archive library
• The post-source filename is sample and an executable form filename is not

specified.
HP-UX 11.0

Solaris 8, and Solaris 9

AIX 5L

(b) Examples of command specification in C++
Examples of command specification in C++ are shown as follows. In these examples,
the underlined sections specify the HiRDB installation directory.

For UAPs that support the 32-bit mode
Example 1: Shared library

• The post-source filename is sample and an executable form filename is not
specified.

gcc -I /HiRDB/include sample.c -D_REENTRANT -L/HiRDB/client/lib -lzcltk64

gcc -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzclt64

gcc -D_REENTRANT -I /HiRDB/include sample.c -L/HiRDB/client/lib -lzcltk64

cc +DD64 -I/HiRDB/include sample.c /HiRDB/client/lib libclt64.a

cc -xarch=v9 -I/HiRDB/include sample.c -L/HiRDB/client/lib -lclt64 -lnsl -lsocket

xlc -q64 -I/HiRDB/include sample.c -Wl,-L/HiRDB/client/lib -lclt64

CC -I/HiRDB/include sample.C -L/HiRDB/client/lib -lzclt

8. Preparation for UAP Execution

747

Example 2: Archive library
• Post-source filename is sample and the executable form filename is

SAMPLE.

For UAPs that support the 64-bit mode
Example 1: Shared library

• The post-source filename is sample and an executable form filename is not
specified.

HP-UX 11.0

Solaris 8, and Solaris 9

AIX 5L

Example 2: Archive library
• The post-source filename is sample and an executable form filename is not

specified.
HP-UX 11.0

Solaris 8, and Solaris 9

AIX 5L

(2) COBOL
Post-source programs in COBOL must be complied with the COBOL85,
COBOL2002, MicroFocus COBOL, or SUN Japanese COBOL compiler. Post-source
programs in OOCOBOL must be compiled with a compiler that conforms to the
OOCOBOL standards.

CC -o SAMPLE -I/HiRDB/include sample.C /HiRDB/client/lib/libclt.a

CC +DA2.0w -I/HiRDB/include sample.C -L/HiRDB/client/lib lzclt64

CC -xarch=v9 -I/HiRDB/include sample.C -L/HiRDB/client/lib -lzclt64 -lnsl -lsocket

xlc -q64 -I/HiRDB/include sample.C -Wl,-L/HiRDB/client/lib,-lzclt64

CC +DA2.0w -I/HiRDB/include sample.C /HiRDB/client/lib libclt64.a

CC -xarch=v9 -I/HiRDB/include sample.C -L/HiRDB/client/lib -lclt64 -lnsl -lsocket

xlc -q64 -I/HiRDB/include sample.C -Wl,-L/HiRDB/client/lib,-lclt64

8. Preparation for UAP Execution

748

The ccbl command is used to activate a COBOL85 compiler, and the ocbl command
is used to activate an OOCOBOL compiler. These commands can also be used to
compile and link. Following is the command format for activating a compiler:
ccbl [options] file-name directory distributed-library

Note
For OOCOBOL, the underlined section must be changed to ocbl.

file-name
Specifies the name of the post-source filename; the file identifier must be .cbl.

directory
Specifies the include directory (directory containing the header file of the library
provided by HiRDB).

distributed-library
Specifies the COBOL library provided by HiRDB.

options
Specifies the following options, as necessary:
-W1, +s

Specifies that different HiRDB distribution library directories is used for
UAP creation and for UAP execution. This option can be specified only
when the shared library is being used.
When different distribution library directories are used for linkage and for
execution, the SHLIB_PATH environment variable must be used at the time
of execution to set the directory containing the distribution library.

-o
Specifies an optional name for the object file that is to be output; when this
option is omitted, the filename is a.out.

The -Kl and -Xb options must not be specified; the -Xc option must not be
specified together with the -Hf, -Hv, or -V3 option.

environment-variable
Specifies the following environment variable:
CBLLIB

Include directory.
(a) Examples of command specification in COBOL

Examples of command specification in COBOL are shown as follows. In these

8. Preparation for UAP Execution

749

examples, the underlined sections specify the HiRDB installation directory. For the
HP-UX (IPF) version of COBOL2002, ccbl becomes ccbl2002.
Example 1: Shared library

• The post-source filename is sample.

Example 2: Archive library
• The post-source filename is sample.

(b) Examples of command specification in OOCOBOL
Examples of command specification in OOCOBOL are shown as follows. In these
examples, the underlined sections specify the HiRDB installation directory.
Example 1: Shared library

• The post-source filename is sample.

Example 2: Archive library
• The post-source filename is sample.

(3) Note
When a UAP is created with the Solaris version of HiRDB, that UAP cannot be
connected to the HiRDB server when all of the following conditions are satisfied:

• The library that the HiRDB client uses is version 07-00-/C or later, and the library
that the HiRDB server uses is earlier than 07-00-/C.

• The UAP and the HiRDB server to be connected are on the same machine.
In this case, use the client library (shared library) of the HiRDB server.

CBLLIB=/HiRDB/include
export CBLLIB
ccbl sample.cbl -L/HiRDB/client/lib -lzclt

CBLLIB=/HiRDB/include
export CBLLIB
ccbl sample.cbl /HiRDB/client/lib/libclt.a

CBLLIB=/HiRDB/include
export CBLLIB
ocbl sample.ocb -L/HiRDB/client/lib -lzclt

CBLLIB=/HiRDB/include
export CBLLIB
ocbl sample.ocb /HiRDB/client/lib/libclt.a

8. Preparation for UAP Execution

750

8.3.3 Compiling and linking in Windows
You must use a compiler that conforms to the language used for the UAP in which the
SQL statements are embedded to compile and link edit a post-source program created
by the preprocessor.
For the compilation and linkage methods in the Windows environment, see the
manuals for the compilers applicable to the particular languages. This section explains
the compilation and linkage options for each language. The section also contains
instructions for Windows (x64).

(1) C
To compile post-source programs written in C, use Microsoft Visual C++.
To set options for compilation and linkage using Microsoft Visual C++, from the
Project menu, choose Setup. (The setup method differs depending on the Microsoft
Visual C++ version.)
Table 8-17 shows the items to be set in Setup.

Table 8-17: Items set with Setup

Note
The directory where HiRDB is installed is underlined.

* All libraries except CLTDLL are created with multiple threads.
For Windows Server 2003 (IPF), only the 64-bit mode client library can be used. When
creating a UAP in 64-bit mode, adhere to the following conditions:

• Alignment of configuration members: 8 bytes
• Runtime library used: Multi-thread DLL
• Include file path: \HiRDB\INCLUDE
• Linkage library: \HiRDB\LIB\PDCLTM64.LIB

(2) COBOL
To compile post-source programs in COBOL, use a compiler that conforms to the

Item Category Category setting Setting value

Compiler Code generation Alignment of structure
members

8 bytes

Runtime library to be used Multi-thread*

Preprocessor Include file path \HiRDB\include

Linker Input Library \HiRDB\lib\cltdll

8. Preparation for UAP Execution

751

COBOL85 or COBOL2002 standards. To compile a post-source program in
OOCOBOL, use a compiler that conforms to the OOCOBOL standard.
To set options for compilation and linkage using COBOL85 (version 1.0 or subsequent
versions), choose Edit, then Edit Project.
For Windows, choose Option, then Compile and Linker.
For COBOL2002, from the Project Setup menu, choose the Linker tab.
Table 8-18 shows the item to be set with Edit Project in COBOL85. Do not specify
the -Kl, -Xb, -Bb, or -Fb option. Also do not specify the -Xc option together with
-Hf, -Hv, or -V3. Table 8-19 shows the item to be set with Project Setup in
COBOL2002.

Table 8-18: Item to be set with Edit Project in COBOL85

Note
The directory where HiRDB is installed is underlined.
Table 8-19: Item to be set with Project Setup in COBOL2002

Note
The directory where HiRDB is installed is underlined.

COBOL85 has an option to be set for Compilation Environment. Table 8-20 shows
the item to be set for Compilation Environment in COBOL85. In COBOL2002, this
item is set to an environment variable.

Table 8-20: Item to be set for Compilation Environment in COBOL85

Note
The directory where HiRDB is installed is underlined.

Item Setting item Setting value

Linkage option setting Import library \HiRDB\lib\cltdll.lib

Compilation option /NOI (Upper-case and lower-case
characters are discriminated in the file
identifier.)

Item Setting item Setting value

Link Library specification \HIRDB\lib\cltdll.lib

Item Setting item Setting value

Environment variable setting* CBLLIB variable \HiRDB\include

8. Preparation for UAP Execution

752

* For COBOL2002, the item is set for Environment Variable.
(3) Instruction for Windows (x64)

Windows (x64) provides both 32-bit mode and 64-bit mode client libraries. To create
a UAP in 32-bit mode, specify the compilation options and library for 32-bit mode. To
create a UAP in 64-bit mode, specify the compilation options and library for 64-bit
mode.
The following table lists the UAP creation conditions:

Note: Specify an HiRDB installation directory for the area indicated by underscoring.
* Specify regardless of whether the multi-connection facility is to be used.
Note that the following UAPs cannot be created for the 64-bit mode:

• UAPs that use the XA interface
• UAPs written in COBOL or OOCOBOL.

8.3.4 Compiling and linking when the multi-connection facility is
used
(1) For multi-thread UAPs

This subsection explains how to compile and link normal, non-OLTP UAPs that use
the multi-connection facility.

(a) In the UNIX environment
For HP-UX 11.0, Solaris, AIX 5L, and Linux, link the libcltk.a and libzcltk.sl
libraries. Table 8-21 shows the libraries to be linked when the multi-connection facility
is used. For information about the libraries that must be linked for using multiple
threads, see the manual for each operating system.

Platform 32-bit mode
(Win32)

64-bit mode
(x64)

Alignment of structure
members

Default (8 bytes) Default (8 bytes)

Runtime library to be used Multi-thread DLL Multi-thread DLL

Include file directory \HiRDB\INCLUDE \HiRDB\INCLUDE

Linkage library* \HiRDB\LIB\PDCLTM32.LIB \HiRDB\LIB\PDCLTM64.LIB

8. Preparation for UAP Execution

753

Table 8-21: Libraries to be linked when the multi-connection facility is used

Legend:
: Not applicable

C examples
Examples of compiling and linking when the multi-connection facility is used by a
UAP written in C are shown as follows. In these examples, the underlined sections
specify the HiRDB installation library.
Example 1: Linking a UAP and a shared library in HP-UX 11.0

• The post-source file name is sample and an executable form file name is not
specified.

UAP operating
system

Thread used by UAP Library to be linked

Shared library file Archive file

HP-UX 11.0 Kernel thread
(native thread)

For 32-bit mode:
libzcltk.sl

For 64-bit mode:
libzcltk64.sl

For 32-bit mode:
libcltk.a

For 64-bit mode:
libcltk64.a

DCE thread libzcltm.sl libcltm.a

HP-UX 11i V2
(IPF)

Kernel thread
(native thread)

For 32-bit mode:
libzcltk.so

For 64-bit mode:
libzcltk64.so

Solaris Solaris thread
(native thread)

For 32-bit mode:
libzcltm.so
libzcltk.so

For 64-bit mode:
libzcltk64.so

For 32-bit mode:
libcltm.a
libcltk.a

For 64-bit mode:
libcltk64.a

AIX 5L POSIX thread For 32-bit mode:
libzcltk.a

For 64-bit mode:
libzcltk64.a

For 32-bit mode:
libcltk.a

For 64-bit mode:
libcltk64.a

Linux POSIX thread libzcltk.so libcltk.a

Linux (IPF) POSIX thread libzcltk64.so

Linux (EM64T) POSIX thread For 32-bit mode:
libzcltk.so

For 64-bit mode:
libzcltk64.so

8. Preparation for UAP Execution

754

Example 2: Linking a UAP and a 64-bit mode shared library in HP-UX 11.0
• The post-source file name is sample and an executable form file name is not

specified.

Example 3: Linking a Solaris-thread UAP and a shared library in Solaris
• The post-source file name is sample and an executable form file name is not

specified.

Example 4: Linking a POSIX-thread UAP and a shared library in Solaris
• The post-source file name is sample and an executable form file name is not

specified.

Example 5: Linking a Solaris-thread UAP and a 64-bit mode shared library in Solaris
• The post-source file name is sample and an executable form file name is not

specified.

Example 6: Linking a POSIX-thread UAP and a 64-bit mode shared library in Solaris
• The post-source file name is sample and an executable form file name is not

specified.

Example 7: Linking a UAP and a shared library in Linux
• The post-source file name is sample and an executable form file name is not

specified.

cc -I/HiRDB/include sample.c -D_REENTRANT -D_HP_UX_SOURCE -D_POSIX_C_SOURCE=199506L
-L/HiRDB/client/lib/ -lzcltk -lpthread

cc -I/HiRDB/include sample.c +DD64 -D_REENTRANT -D_HP_UX_SOURCE
-D_POSIX_C_SOURCE=199506L
-L/HiRDB/client/lib/ -lzcltk64 -lpthread

cc -I/HiRDB/include sample.c -D_REENTRANT -L/HiRDB/client/lib/ -lzcltk -lthread
-lnsl -lsocket

cc -I/HiRDB/include sample.c -D_REENTRANT -D_POSIX_PTHREAD_SEMANTICS
-L/HiRDB/client/lib/ -lzcltk -lthread -lnsl -lsocket

cc -I/HiRDB/include sample.c -xarch=v9 -D_REENTRANT -L/HiRDB/client/lib/
-lzcltk64 -lthread -lnsl -lsocket

cc -I/HiRDB/include sample.c -xarch=v9 -D_REENTRANT -D_POSIX_PTHREAD_SEMANTICS
-L/HiRDB/client/lib/ -lzcltk64 -lthread -lnsl -lsocket

8. Preparation for UAP Execution

755

Example 8: Linking a UAP and a shared library in AIX 5L
• The post-source file name is sample and an executable form file name is not

specified.

Example 9: Linking a UAP and a 64-bit mode shared library in AIX 5L
• The post-source file name is sample and an executable form file name is not

specified.

COBOL examples
UAPs written in COBOL must be compiled and linked with a multi-thread version
(03-01 or later) of the COBOL85 compiler.
During compilation, specify the -Mt option (for POSIX threads, you must also specify
the -Mp option). If an object compiled with the -Mt option is linked with an object
compiled without the -Mt option, the operation is not guaranteed. For details about
compiling UAPs written in COBOL, see the COBOL85 User's Guide.
Examples of compiling and linking when the multi-connection facility is used by a
UAP written in COBOL are shown as follows. In these examples, the underlined
sections specify the HiRDB installation directory.
Example 1: Using DCE threads in HP-UX 11.0

• The post-source file name is sample and an executable form file name is not
specified.

Example 2: Using kernel threads in HP-UX 11.0
• The post-source file name is sample and an executable form file name is not

specified.

cc -I/HiRDB/include sample.c -D_REENTRANT -L/HiRDB/client/lib/ -lzcltk -lthread

xlc_r -I/HiRDB/include sample.c -L/HiRDB/client/lib/ -lzcltk

xlc_r -I/HiRDB/include sample.c -q64 -L/HiRDB/client/lib/ -lzcltk64

setenv CBLLIB /HiRDB/include
ccbl -Mt sample.cbl -L/HiRDB/client/lib/ -lzcltm -ldce

setenv CBLLIB /HiRDB/include
ccbl -Mt -Mp sample.cbl -L/HiRDB/client/lib/ -lzcltk -lpthread

8. Preparation for UAP Execution

756

Example 3: Linking a Solaris-thread UAP and a shared library in Solaris
• The post-source file name is sample and an executable form file name is not

specified.

Example 4: Linking a POSIX-thread UAP and a shared library in Linux
• The post-source file name is sample and an executable form file name is not

specified.

Example 5: Linking a POSIX-thread UAP with a shared library in AIX 5L
• The post-source file name is sample and an executable form file name is not

specified.

(b) In the Windows environment
Link PDCLTM32.LIB instead of CLTDLL.LIB. The multi-connection facility cannot
be used for a UAP that uses an X/Open-base API in OLTP.

C
This explanation assumes that Microsoft Visual C++ Version 4.2 is used. Select Set
from the Project menu, and set the individual items. Table 8-22 shows the items that
can be set with Set. If multiple threads are to be used, see the Operating System manual
for details about the files that must be linked.

Table 8-22: Items to be set with Set

setenv CBLLIB /HiRDB/include
ccbl -Mt -Mp sample.cbl -L/HiRDB/client/lib/ -lzcltk -lpthread

setenv CBLLIB /HiRDB/include
ccbl -Mt -Mp sample.cbl -L/HiRDB/client/lib/ -lcltk -lpthread

setenv CBLLIB /HiRDB/include
ccbl -Mt -Mp sample.cbl -L/HiRDB/client/lib/ -lzcltk -lpthread

Item Category Category setting Setting value

Compiler Code generation Alignment of structure
members

8 bytes

Run time library to be used Multi-thread DLL

Preprocessor Include file path \HIRDB\INCLUDE

8. Preparation for UAP Execution

757

Note
The underlined sections specify the HiRDB installation library.
COBOL

UAPs written in COBOL must be compiled and linked with a multi-thread version of
the COBOL85 compiler. The descriptions in this subsection assume that COBOL85
Version 5.0 is being used.
During compilation, specify the -Mt option in the Compiler Option dialog box. If an
object compiled with the -Mt option is linked with an object compiled without the -Mt
option, the operation is not guaranteed. For details about compiling UAPs written in
COBOL, see the COBOL85 User's Guide.
Table 8-23 shows items to be specified with the Option menu.

Table 8-23: Items to be specified with the Option menu

Note: Specify the HiRDB installation directory in the underlined sections.
(2) For single-thread UAPs

This subsection explains how to compile and link single-thread UAPs that use the
multi-connection facility. HP-UX 11.0 is used as an example for explanatory purposes.

(a) Compiling and linking in HP-UX 11.0
Link the libclts.a or libzclts.sl instead of libclt.a or libzclt.sl.
During compilation, the following compilation options and libraries for multiple
threads cannot be specified:

• -D_REENTRANT
• -DRWSTD_MULTI_THREAD
• -D_THREAD_SAFE

Linker Input Library \HIRDB\LIB\PDCLTM32.LIB

Submenu Dialog box Setting item Setting value

Compiler COBOL85
Compiler Option

COBOL85 compiler
option

Check the -Mt item.

Environment variable
setting

CBLLIB=C:\HIRDB\INCLUDE

Linker Linker Option
Setting

Import/user-specified
library

C:\HIRDB\LIB\PDCLTM32

Item Category Category setting Setting value

8. Preparation for UAP Execution

758

• -lcma
• -lpthread

Also, pthread headers cannot be included.
C examples

Examples of compiling and linking when the multi-connection facility is used by a
single-thread UAP written in C are shown as follows. In these examples, the
underlined sections specify the HiRDB installation library.
Example 1: Shared library

• The post-source file name is sample and an executable form file name is not
specified.

Example 2: Archive library
• The post-source file name is sample and an executable form file name is not

specified.

cc -I/HiRDB/include sample.c -L/HiRDB/client/lib/ -lzclts

cc -I/HiRDB/include sample.c -L/HiRDB/client/lib/libclts.a

8. Preparation for UAP Execution

759

8.4 Notes on UAP execution

8.4.1 Executing UAPs that use an X/Open-based API (TX_function)
A UAP that uses an X/Open-based API (TX_function) uses a dedicated library. To
compile and link edit such a UAP, the library dedicated to the TX_function and the
library provided by HiRDB must be coupled.
Linux for AP8000 clients cannot execute UAPs that use an X/Open-based API (TX_
function).

(1) Preprocessing a UAP that uses an X/Open-based API (TX_ function)
This item describes notes on executing a UAP in a HiRDB system that is linked with
TP1/LiNK (transaction control).
Linking with TP1/LiNK is possible when both the HiRDB server and the HiRDB
client are Windows versions.

(a) UAP preprocessing and linkage
If a UAP is to be executed in a TP1/LiNK environment, execute UAP preprocessing
and linkage as described as follows.

Preprocessing
During SQL preprocessor execution, specify one of the following options:

• /XAD: Specify this option to create a UAP written in COBOL as a DLL.
• /XA: Specify this option in all other cases.

Command specification example for C

PDCPP SAMPLE /XA

Command specification example for COBOL

PDCBL SAMPLE.ECB /XAD

Linkage
Link the following library to the UAP:

• %PDDIR%\CLIENT\LIB\PDCLTX32.LIB
Do not link CLTDLL.LIB.

8. Preparation for UAP Execution

760

(2) Using OpenTP1
UAP compilation and linkage when OpenTP1 is used are explained here. For details
about compilation and linkage using OpenTP1, see the OpenTP1 Programming
Reference C Language manual or the OpenTP1 Programming Reference COBOL
Language manual.

(a) C
Transaction control object file creation

When OpenTP1 is used to create a UAP that accesses HiRDB, it is necessary to create
a transaction control object file with the OpenTP1 trnmkobj operation command;
following is the specification:
trnmkobj -o control-object-filename -r HiRDB_DB_server

Example
• The transaction control object filename is control.

trnmkobj -o control -r HiRDB_DB_server

Compilation and linkage
The following is specified to compile and link a UAP that uses API.
To use a shared library:

Notes
1. The directory for installing HiRDB is underlined.
2. The -W1, +s option must be specified if different HiRDB distribution library

directories are used for UAP creation and for UAP execution. When different
distribution library directories are used for linkage and for execution, the
SHLIB_PATH environment variable must be used at the time of execution to
set the directory containing the distribution library.

3. Depending on the method of OLTP registration that is used, the HiRDB
system provides the following four libraries for UAPs that use an X/
Open-compatible API. The library name that is specified for the linkage must
match the applicable OLTP registration method.
-lzcltx (dynamic registration)
-lzclty (static/dynamic registration)

/usr/bin/cc -c -l$DCDIR/include -I/HiRDB/include filename.c
 /usr/bin/cc -o UAP-executable-form-filename UAP-filename.o
 $DCDIR/spool/trnrmcmd/userobj/control-object-filename.o
 -L/HiRDB/client/lib -lzclty -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a, default -lbetran -L/usr/lib -ltactk -lbsd -lc

8. Preparation for UAP Execution

761

-lzcltxs (dynamic registration when the multi-connection facility is used)
-lzcltys (static/dynamic registration when the multi-connection facility is
used)
In static/dynamic registration, the registration type can be switched to static
registration or dynamic registration by the switch registered to TM. For
details about the registration procedure, see the explanation of registering a
HiRDB system in the transaction manager in the HiRDB Version 8
Installation and Design Guide.

4. To create a UAP that uses an X/Open-compatible API in AIX 5L, specify
-brtl in the linkage option.

Example
The filename (UAP name) is sample, UAP executable form filename is SAMPLE,
and the transaction control object filename is control.

To use an archive library:

Notes
1. The directory for installing HiRDB is underlined.
2. The archive library provided by HiRDB (-lcltxa) must be specified before

the library provided by OpenTP1 (-lbetran).
3. Depending on the method of OLTP registration that is used, the HiRDB

system provides the following two libraries for UAPs that use an X/
Open-compatible API. The library name that is specified for the linkage must
match the applicable OLTP registration method.
-lcltxa (dynamic registration)
-lcltya (static/dynamic registration)
In static/dynamic registration, the registration type can be switched to static
registration or dynamic registration by the switch registered to TM. For

/usr/bin/cc -c -I$DCDIR/include -I/HiRDB/include sample.c
 /usr/bin/cc -o SAMPLE sample.o
 $DCDIR/spool/trnrmcmd/userobj/control.o
 -L/HiRDB/client/lib -lzclty -L$DCDIR/lib
 -Wl,-B,immediate -Wl,-a,default
 -lbetran -L/usr/lib -ltactk -lbsd -lc

/usr/bin/cc -c -l$DCDIR/include -I/HiRDB/include filename.c
 /usr/bin/cc -o UAP-executable-form-filename UAP-filename.o
 $DCDIR/spool/trnrmcmd/userobj/control-object-filename.o
 -L/HiRDB/client/lib -lcltxa -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a, default -lbetran -L/usr/lib -ltactk -lbsd -lc

8. Preparation for UAP Execution

762

details about the registration procedure, see the explanation of registering a
HiRDB system in the transaction manager in the HiRDB Version 8
Installation and Design Guide.

Example
The filename (UAP name) is sample, UAP executable form filename is SAMPLE,
and the transaction control object filename is control.

(b) COBOL
Transaction control object file creation

When OpenTP1 is used to create a UAP that accesses HiRDB, it is necessary to create
a transaction control object file with the OpenTP1 trnmkobj operation command;
following is the specification:
trnmkobj -o control-object-filename -r HiRDB_DB_SERVER

Example
• The transaction control object filename is control.

trnmkobj -o control -r HiRDB_DB_SERVER

Compilation and linkage
The following is specified to compile and link a UAP that uses API.

To use a shared library:

Notes
1. The directory for installing HiRDB is underlined.
2. The -Wl, +s option must be specified if different HiRDB distribution library

directories are used for UAP creation and for UAP execution. When different
distribution library directories are used for linkage and for execution, the
SHLIB_PATH environment variable must be used at the time of execution to
set the directory containing the distribution library.

3. Depending on the method of OLTP registration that is used, the HiRDB

/usr/bin/cc -c -I$DCDIR/include -I/HiRDB/include sample.c
 /usr/bin/cc -o SAMPLE sample.o
 $DCDIR/spool/trnrmcmd/userobj/control.o
 -L/HiRDB/client/lib -lcltxa -L$DCDIR/lib
 -Wl,-B,immediate -Wl,-a,default
 -lbetran -L/usr/lib -ltactk -lbsd -lc

ccbl -o UAP-executable-form-filename -Mw filename.cbl
 $DCDIR/spool/trnrmcmd/userobj/control-object-filename.o
 -L/HiRDB/client/lib -lzclty -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a, default -lbetran -L/usr/lib -ltactk -lbsd -lc

8. Preparation for UAP Execution

763

system provides the following two libraries for UAPs that use an X/
Open-compatible API. The library name that is specified for the linkage must
match the applicable OLTP registration method.
-lzcltx (dynamic registration)
-lzclty (static/dynamic registration)
In static/dynamic registration, the registration type can be switched to static
registration or dynamic registration by the switch registered to TM. For
details about the registration procedure, see the explanation of registering a
HiRDB system in the transaction manager in the HiRDB Version 8
Installation and Design Guide.

Example
The filename (UAP name) is sample, the UAP executable form filename is
SAMPLE, and the transaction control object filename is control.

To use an archive library:

Notes
1. The directory for installing HiRDB is underlined.

2. The archive library provided by HiRDB (-lcltxa) must be specified before
the library provided by OpenTP1 (-lbetran).

3. Depending on the method of OLTP registration that is used, the HiRDB
system provides the following two libraries for UAPs that use an X/
Open-compatible API. The library name that is specified for the linkage must
match the applicable OLTP registration method.
-lcltxa (dynamic registration)
-lcltya (static/dynamic registration)
In static/dynamic registration, the registration type can be switched to static
registration or dynamic registration by the switch registered to TM. For
details about the registration procedure, see the explanation of registering an
HiRDB system in the transaction manager in the HiRDB Version 8
Installation and Design Guide.

ccbl -o SAMPLE -Mw sample.cbl
 $DCDIR/spool/trnrmcmd/userobj/control.o
 -L/HiRDB/client/lib -lzclty -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a,default -lbetran -L/usr/lib -ltactk -lbsd -lc

ccbl -o UAP-executable-form-filename -Mw filename.cbl
 $DCDIR/spool/trnrmcmd/userobj/control-object-filename.o
 -L/HiRDB/client/lib -lcltxa -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a,default -lbetran -L/usr/lib -ltactk -lbsd -lc

8. Preparation for UAP Execution

764

Example
The filename (UAP name) is sample, the UAP executable form filename is
SAMPLE, and the transaction control object filename is control.

(3) Using TPBroker
UAP compilation and linkage when TPBroker is used are explained here. The UAP is
assumed to use the multi-thread XA interface. For details about compilation and
linkage using TPBroker, see the TPBroker User's Guide manual. The libraries that are
dedicated to the multi-thread XA interface support only C and C++.

(a) Transaction control object file creation
When TPBroker is used to create a UAP that accesses HiRDB, it is necessary to create
a transaction control object file with the TPBroker tsmkobj operation command;
following is the specification:

(b) Compilation and linkage
The following is specified to compile and link a UAP.

Notes
1. The directory for installing the HiRDB client is underlined.
2. The -Wl, +s option must be specified if different HiRDB distribution library

directories are used for UAP creation and for UAP execution. When different
distribution library directories are used for linkage and for execution, the
SHLIB_PATH environment variable must be used at the time of execution to set
the directory containing the distribution library.

3. Depending on the method of OLTP registration that is used (dynamic registration
or static registration), the HiRDB system provides two libraries (-lzcltxk and

ccbl -o SAMPLE -Mw sample.cbl
 $DCDIR/spool/trnrmcmd/userobj/control.o
 -L/HiRDB/client/lib -lcltxa -L$DCDIR/lib -Wl,-B,immediate
 -Wl,-a,default -lbetran -L/usr/lib -ltactk -lbsd -lc

tsmkobj -o control-object-filename -r HiRDB_DB_SERVER

aCC +inst_implicit_include +DAportable -c -I$TPDIR/include
 -I$TPDIR/include/dispatch -I/HiRDB/include -D_REENTRANT
 -D_HP_UX_SOURCE -D_POSIX_C_SOURCE=199506Lfilename.c
aCC +inst_implicit_include +Daportable -o
 UAP-executable-form-filename UAP-filename.o
 $TPDIR/otsspool/XA/control-object-filename.o
 -L/HiRDB/client/lib -lzcltxk -L$TPDIR/lib -Wl,+s -lots_r
 -lorb-r
 -Wl,-B,immediate -Wl,-a,default -L/usr/lib -lpthread

8. Preparation for UAP Execution

765

-lzcltyk) for UAPs that use an XA interface that supports multiple threads. The
library name that is specified for the linkage must match the applicable OLTP
registration method.

(4) Using TUXEDO
UAP compilation and linkage when TUXEDO is used are explained here. The libraries
that are dedicated to the XA interface support only C and C++.

(a) UNIX
Load module construction for the transaction manager server (TMS)

Load module construction for the TUXEDO system server

Load module creation for the TUXEDO client

(b) Windows
Load module construction for the transaction manager server (TMS)

Load module construction for the TUXEDO system server

Load module creation for the TUXEDO client

(5) Using TP1/EE (limited to UNIX)
UAP compilation and linkage when TP1/EE is used are explained here. For details
about the TP1/EE commands, see the TP1/Server Base Enterprise Option User's
Guide.

buildtms -r HiRDB_DB_SERVER -o TMSload-module-filename

buildserver -r HiRDB_DB_SERVER -s service-name
 -o server-load-module-filename -f server-filename.o

buildclient -o client-load-module-name -f client-filename.c

set LINK=/EXPORT:_imp_pdtxa_switch=pdtxa_switch
 /EXPORT:_inp_pdtxa_switch_y=pdtxa_switch_y
buildtms -r HiRDB_DB_SERVER -o TMSload-module-filename

set LINK=/EXPORT:_imp_pdtxa_switch=pdtxa_switch
 /EXPORT:_inp_pdtxa_switch_y=pdtxa_switch_y
buildserver -r HiRDB_DB_SERVER -s service-name
 -o server-load-module-filename -f server-filename.obj

buildclient -o client-load-module-name -f client-filename.c

8. Preparation for UAP Execution

766

(a) C
Object file creation for resource manager linking
When using TP1/EE to create a UAP that accesses HiRDB, you must use a TP1/
EE operation command to create an object file for linking with the resource
manager. Use the eetrnmkobj command to create the object file.
The specification for creating an object file for linking with the resource manager
is as follows:

Example
The name of the object file for linking with the resource manager is
control, and the static registration method is used to create the object file.

Compilation and linkage
The following is specified to compile and link a UAP that uses the multi-thread
XA interface.

• Using a shared library

Notes
1. The directory for installing the HiRDB client is underlined.
2. When the multi-thread XA interface is used, specify -lzcltyk as the library

for the TP1/EE UAP, and specify a corresponding name as the library name
to be specified during linkage. For details about the registration procedure,
see the HiRDB Version 8 Installation and Design Guide.

Example

eetrnmkobj -o name-of-object-file-for-resource-manager-linking -r HiRDB_DB_SERVER \
 -s RM-switch-name -O RM-object-file-name \
 -i header-path-provided-by-HiRDB

eetrnmkobj -o control -r HiRDB_DB_SERVER -s pdtxa_switch_y \
 -O /HiRDB/client/lib/libzcltyk.sl -i /HiRDB/include

/usr/vac/bin/xlc_r -o executable-file-name $DCDIR/lib/ee_main.o
 resource-manager-linking-object -brtl -bdynamic -L/HiRDB/lib -L/HiRDB/client/lib
 -L$DCDIR/lib -lpthread -lisode -lc_r -ldl -lzcltyk -lee -lee_rm
 -lbetran2 -ltactk

8. Preparation for UAP Execution

767

The name of the UAP executable file is SAMPLE, and the name of the object file
for linking with the resource manager is control.

(b) COBOL
Creating an object file for resource manager linking
When TP1/EE is used to create a UAP that accesses HiRDB, a TP1/EE operation
command must be used to create an object file for linking with the resource
manager. The eetrnmkobj command is used for this purpose.
The following is specified to create an object file for resource manager linking:

Example
The name of the object file for resource manager linking is control, and the
file is created by the static registration method.

Compilation and linkage
For details about compilation and linkage of a UAP that uses the multi-thread XA
interface, see the TP1/Server Base Enterprise Option User's Guide.

8.4.2 Creating UAPs that support the 64-bit mode
This section explains how to use a HiRDB client to create UAPs that support the 64-bit
mode.

(1) Languages and facilities that UAPs that support the 64-bit mode can use
(a) Languages

UAPs that support the 64-bit mode can be created in C or C++. COBOL and
OOCOBOL cannot be used.

/usr/vac/bin/xlc_r -o SAMPLE $DCDIR/lib/ee_main.o control.o
 -brtl -bdynamic -L/HiRDB/lib -L/HiRDB/client/lib -L$DCDIR/lib
 -lpthread -lisode -lc_r -ldl -lzcltyk -lee -lee_rm -lbetran2 -ltactk

eetrnmkobj -o name-of-object-file-for-resource-manager-linking -r HiRDB_DB_SERVER \
 -s RM-switch-name -O RM-related-object-file-name \
 -i header-path-provided-by-HiRDB

eetrnmkobj -o control -r HiRDB_DB_SERVER -s pdtxa_switch_y \
 -O /HiRDB/client/lib/libzcltyk.sl -i /HiRDB/include

8. Preparation for UAP Execution

768

(b) Facilities
UAPs that support the 64-bit mode cannot use the XA interface. However, they can
basically use all other facilities. In 64-bit mode, the multi-connection facility provides
real threads instead of pseudo threads.

(2) Converting a HiRDB client from 32-bit mode to 64-bit mode
Before a HiRDB client can be converted from 32-bit mode to 64-bit mode, the HiRDB
client must be upgraded to a 64-bit mode version. (Install the 64-bit mode HiRDB
client and set up the client environment.) For details about how to set up the client
environment, see 6. Client Environment Setup.
When the 64-bit mode HiRDB client is installed, files for 64-bit mode are created. For
details about the files that are created when the 64-bit mode HiRDB client is installed,
see 6.4 Organization of directories and files for a HiRDB client.
After the client environment setup is completed, convert the UAP to 64-bit mode
support according to the following procedure.
Procedure

1. If long type is used in the declaration of an embedded variable, change the
location to int type

2. Execute UAP preprocessing. When executing UAP preprocessing, specify
the -h64 option for creating a 64-bit mode post source.

3. Execute UAP compilation. When executing UAP compilation, specify the
option for creating 64-bit mode objects.

4. Execute UAP linkage. When executing UAP linkage, specify a 64-bit mode
client library as the client library to be linked.

Note
For details about UAP preprocessing, compilation, and linkage, see 8.2
Preprocessing and 8.3 Compiling and linking.

8.4.3 Converting UAPs created with XDM/RD or UNIFY2000
If a UAP created with XDM/RD or UNIFY2000 possesses SQL compatibility, it can
use HiRDB by executing the SQL preprocessor (a UAP that does not possess SQL
compatibility must be rewritten). For details about the SQLs used by HiRDB, see 1.2.2
List of SQL statements usable in HiRDB. For details about SQLs, see the HiRDB
Version 8 SQL Reference manual.
Table 8-24 shows UAP compatibility from XDM/RD or UNIFY2000.

8. Preparation for UAP Execution

769

Table 8-24: UAP transferability from XDM/RD or UNIFY2000

T: Can be transferred
: Cannot be transferred

NA: Not applicable

8.4.4 Notes on UAP execution
Notes on UAP execution are described below.

• To execute a UAP, specify the LANG environment variable, or the PDLANG or
PDCLTLANG client environment definition as appropriate to the character code
classification of the HiRDB server (the character code classification specified by
the pdsetup command for UNIX or the pdntenv command for Windows). If the
HiRDB server and HiRDB client use different character code classifications, an
error occurs when the UAP executes. Table 8-25 lists the LANG and PDLANG
settings for each platform.
Table 8-25: LANG and PDLANG settings for each platform

Creation
system

How to operate
database

Transferability Transfer condition

XDM/RD Embedding SQL
statements

T Re-execution of SQL preprocessor

Module type NA

CALL type NA

UNIFY2000 Embedding SQL/A
statements

T Re-execution of SQL preprocessor

Using RHLI NA

Character code
classification#1

HP-UX Solaris AIX 5L Linux

lang-c LANG C C C C

PDLANG

sjis LANG ja_JP.SJIS ja_JP.PCK Ja_JP Optional#2

PDLANG SJIS

ujis LANG ja_JP.eucJP ja ja_JP ja_JP.eucJP#3

PDLANG

8. Preparation for UAP Execution

770

Legend:
: Not applicable

#1
Character code classification of the HiRDB server, as specified in pdsetup or
pdntenv.
#2
If a character code supported by the platform being used is supported by the UAP,
specify that character code in the LANG environment variable. If the platform does not
support one of these character codes, specify C.
#3
ja_JP is handled in the same way as ja_JP.eucJP.

• When executing a UAP, add $PDDIR/client/lib to SHLIB_PATH. When
working with a different platform, replace SHLIB_PATH with the corresponding
environment variable of that platform.

• If the HiRDB system has a recovery-unnecessary front-end server and a UAP that
uses the X/Open XA interface to connect to the recovery-unnecessary front-end
server, SQL statements cannot be executed from that UAP. In this case, specify
the PDFESHOST and PDSERVICEGRP client environment definitions and connect
to a front-end server that is not a recovery-unnecessary front-end server.

chinese LANG chinese-s Optional#2 Optional#2 Optional#2

PDLANG CHINESE CHINESE CHINESE CHINESE

utf-8 LANG Optional#2 Optional#2 Optional#2 Optional#2

PDLANG UTF-8 UTF-8 UTF-8 UTF-8

Character code
classification#1

HP-UX Solaris AIX 5L Linux

771

Chapter

9. Java Stored Procedures and Java
Stored Functions

This chapter explains the procedures for creating and executing Java stored procedures
and Java stored functions that code procedures in Java. Note that Linux for AP8000
clients cannot use Java stored procedures and Java stored functions.
This chapter contains the following sections:

9.1 Overview
9.2 Procedure from Java stored routine creation to execution
9.3 Sample programs of Java stored routine
9.4 Notes about Java program creation
9.5 Notes about testing and debugging
9.6 Notes about JAR file creation

9. Java Stored Procedures and Java Stored Functions

772

9.1 Overview

Java stored procedures and Java stored functions are the stored procedures and stored
functions coded in Java.
In this chapter, Java stored procedures and Java stored functions are collectively
referred to as Java stored routines.
Java stored routines cannot be used in all HiRDB operation platforms. For details, see
the section that describes environments in which Java stored procedures and Java
stored functions can be used in the HiRDB Version 8 System Operation Guide.

Procedures for an SQL stored procedure or an SQL stored function are coded during
definition. Procedures for a Java stored routine are not coded during definition;
instead, the Java program registered at the server is specified. The specified Java
program then functions as a stored procedure or stored function.
Figure 9-1 shows the procedure from Java stored routine creation to execution.

9. Java Stored Procedures and Java Stored Functions

773

Figure 9-1: Procedure from Java stored routine creation to execution

Explanation

9. Java Stored Procedures and Java Stored Functions

774

1. Code a Java stored routine. For details, see 9.2.1 Coding a Java stored
routine.

2. Test and debug the Java stored routine as a client AP. For details, see 9.2.1
Coding a Java stored routine.

3. Register the JAR file in HiRDB. For details, see 9.2.2 Registering the JAR
file in HiRDB.

4. Define the Java stored routine. For details, see 9.2.3 Defining the Java stored
routine.

5. Execute the Java stored routine. For details, see 9.2.4 Executing the Java
stored routine.

Features of Java stored routines
1. There is no overhead between the server and a client.

Java stored routines are processed at the server in the same manner as for
SQL stored procedures and SQL stored functions. Therefore, there is no
communication overhead between server and client.

2. The procedure or function itself can be coded in Java.
Because Java is used as the programming language, more advanced control
is available than SQL.

3. Java stored routines are supported by different types of DBMS.
Java is a programming language independent of platform. Therefore, a
program created in Java can be run in different types of DBMS that support
Java stored routines.

4. Debugging is easy.
To debug an SQL stored procedure or an SQL stored function, you need to
execute it at the server. On the other hand, a Java stored routine can be
debugged at the client, including database accesses, as long as the Java
debugger is installed at the client.

Preparations for Java stored routine execution
To execute a Java stored routine, you need to install the JDBC driver beforehand.
For details about installing the JDBC driver, see 16.1 Installation and
environment setup.

9. Java Stored Procedures and Java Stored Functions

775

9.2 Procedure from Java stored routine creation to execution

This section describes the procedure for creating and executing a Java stored routine:
1. Coding a Java stored routine
2. Registering the JAR file in HiRDB
3. Defining the Java stored routine
4. Executing the Java stored routine

9.2.1 Coding a Java stored routine
To code a Java stored routine, use the following procedure:
1. Coding a Java program (creating a Java file)
2. Compiling (creating a Class file)
3. Testing and debugging
4. Archiving in the JAR format (creating the JAR file)

(1) Coding a Java program (creating a Java file)
Code the program that is to be registered as a Java stored routine.
For notes about Java program coding, see 9.4 Notes about Java program creation.
Figure 9-2 shows an example of Java program coding.

Figure 9-2: Example of Java program coding

(2) Compiling (creating a Class file)
Create a Class file from the Java file using the javac command.
Figure 9-3 shows an example of compilation.

9. Java Stored Procedures and Java Stored Functions

776

Figure 9-3: Example of compilation

Explanation
If you specified package for the Java file, specify the -d option during
compilation. When the Java file is compiled, a directory with the specified
package name is created and a Class file is created in that directory.

(3) Testing and debugging
Execute the compiled file on the client's Java virtual machine to test and debug it.
For notes about testing and debugging, see 9.5 Notes about testing and debugging.
Figure 9-4 shows an overview of testing and debugging.

9. Java Stored Procedures and Java Stored Functions

777

Figure 9-4: Overview of testing and debugging

(4) Archiving in the JAR format (creating a JAR file)
Use the jar command to create a JAR file from multiple Class files.
For notes about JAR file creation, see 9.6 Notes about JAR file creation.
Figure 9-5 shows an example of archiving in the JAR format.

Figure 9-5: Example of archiving in the JAR format

9. Java Stored Procedures and Java Stored Functions

778

9.2.2 Registering the JAR file in HiRDB
Register (copy) the created JAR file into the server.
There are three ways to do this:

Executing SQL "INSTALL JAR"
Use a UAP or the database definition utility to specify and execute INSTALL
JAR.
For details about INSTALL JAR, see the HiRDB Version 8 SQL Reference
manual.
Executing the pdjarsync command
Execute the pdjarsync command (specifying the -i option).
For details about the pdjarsync command, see the HiRDB Version 8 Command
Reference manual.
Calling a Java method for installation
Call a Java method for installation, which is Jdbh_JARReInstall in the
Jdbh_JARAccss class, to register the JAR file.

Figure 9-6 shows an overview of JAR file registration.
Figure 9-6: Overview of JAR file registration

9. Java Stored Procedures and Java Stored Functions

779

9.2.3 Defining the Java stored routine
To define a Java stored routine, use CREATE PROCEDURE or CREATE FUNCTION.
CREATE PROCEDURE or CREATE FUNCTION defines association of a Java method
with a procedure name or function name.
For details about CREATE PROCEDURE or CREATE FUNCTION, see the HiRDB Version
8 SQL Reference manual.
Figure 9-7 shows an example of Java stored routine definition.

Figure 9-7: Example of a Java stored routine definition

(1) Java stored procedure
Use CREATE PROCEDURE to register a Java method as a Java stored procedure.

(2) Java stored function
Use CREATE FUNCTION to register a Java method as a Java stored function.

9.2.4 Executing the Java stored routine
To execute a Java stored routine, use the CALL statement or a function call. When the
CALL statement or an SQL statement specifying the function call is executed, the Java
method is called as the Java stored routine and executed at the server's Java virtual
machine.
For details about the CALL statement and function calls, see the HiRDB Version 8 SQL
Reference manual.
Figure 9-8 shows an example of executing a Java stored routine.

9. Java Stored Procedures and Java Stored Functions

780

Figure 9-8: Example of Java stored routine execution

(1) Java stored procedure
Use the CALL statement to execute a Java method as a Java stored procedure.

(2) Java stored function
Use an SQL statement specifying a function call to execute a Java method as a Java
stored function.

9. Java Stored Procedures and Java Stored Functions

781

9.3 Sample programs of Java stored routine

9.3.1 Sample program
This section presents an example of a stored procedure that uses the SELECT statement
to retrieve BLOB data stored in the pics table, zips the data (compresses the data in
the ZIP format), then returns it to the calling program.

Definition of the Java stored procedure

Explanation
1. Defines the procedure name and parameters.
2. Specifies LANGUAGE.
3. Associates with the Java method.
4. Specifies PARAMETER STYLE.
Body of the Java stored procedure

CREATE PROCEDURE get_pic(IN pic_num INTEGER
 , OUT pic_data BLOB(1M) 1
 LANGUAGE JAVA 2
 EXTERNAL NAME 'mypack.jar:JStrPics.getZippedPic
 (int, byte[][])' 3
 PARAMETER STYLE JAVA; 4

import java.sql.*;

import java.io.*;

import java.util.zip.*;

public class JStrPics{ 1

 public static void getZippedPic(int jpic_num

 , byte[][] jpic_data) ..2

 throws SQLException, IOException{ 3

 Connection con = DriverManager.getConnection(...4

 "jdbc:hitachi:PrdbDrive","USER1","PASS1"); 4

 PreparedStatement pstmt = con.prepareStatement ..5

 ("select p_name,p_data from pics where

9. Java Stored Procedures and Java Stored Functions

782

 p_num = ?"); 5

 pstmt.setInt(1, jpic_num); 5

 ResultSet rs = pstmt.executeQuery(); 6

 String name; 7

 byte[] srcPic; 7

 while(rs.next()){

 name = rs.getString("p_name"); 8

 srcPic = rs.getBytes("p_data"); 9

 }

 ByteArrayOutputStream baos = new

 ByteArrayOutputStream(); 10

 ZipOutputStream zos = new

 ZipOutputStream(baos); 10

 ByteArrayInputStream bais = new

 ByteArrayInputStream(srcPic); ...10

 ZipEntry ze = new ZipEntry(name); 10

 zos.putNextEntry(ze); 10

 int len = 0; 10

 byte[] buff = new byte[1024]; 10

 while((len = bais.read(buff)) != -1){ 10

 zos.write(buff, 0, len); 10

 } ...10

 zos.closeEntry(); 11

 bais.close(); 11

9. Java Stored Procedures and Java Stored Functions

783

Explanation
1. Defines the class name.
2. Defines the method name and parameter name.
3. Defines an action to be taken in the event of an exception.
4. Obtains the Connection object.
5. Preprocesses the SELECT statement.
6. Executes the SELECT statement and obtains the result set.
7. Declares variables.
8. Obtains the value of the p_name column from the result set.
9. Obtains the value of the p_data column from the result set.
10. Compresses the data in the srcPic array in the ZIP format and stores it in

the zos stream.
11. Closes the input and output streams.
12. Specifies the byte column of the baos stream in the method's OUT

parameter.
13. End of method execution.
Execution of the Java stored procedure

 zos.close(); 11

 jpic_data[0] = baos.toByteArray(); 12

 baos.close(); 12

 return; ..13

 }

}

import java.sql.*;

import java.io.* ;

public class Caller{ 1

9. Java Stored Procedures and Java Stored Functions

784

Explanation
1. Defines the class name.
2. Defines the method name and parameter name.
3. Defines an action to be taken in the event of an exception.
4. Obtains the Connection object.
5. Preprocesses the CALL statement.
6. Executes the CALL statement.
7. Obtains the OUT parameter of the byte array type.

 public static void main(String[] args) 2

 throws SQLException, IOException{ 3

 Connection con = DriverManager.getConnection(....4

 "jdbc:hitachi:PrdbDrive","USER1"

 ,"PASS1"); 4

 CallableStatement cstmt = con.prepareCall("{call

 get_pic(?,?)}"); 5

 cstmt.setInt(1, 10); 5

 cstmt.registerOutParameter(2,

 java.sql.Types.LONGVARBINARY); ..5

 cstmt.executeUpdate(); 6

 byte[] getPic = cstmt.getBytes(2); 7

 }

}

9. Java Stored Procedures and Java Stored Functions

785

9.3.2 Sample Java stored routines provided with HiRDB
(1) Sample 1

This sample Java stored procedure obtains a calendar of the specified year and month.
Java procedure (filename: sample1.java)

/* ALL RIGHTS RESERVED,COPYRIGHT (C)2000,HITACHI,LTD. */

/* LICENSED MATERIAL OF HITACHI,LTD. */

/**/

/* name = HiRDB 06-00 sample program of Java stored procedure 1 */

/**/

import java.lang.*;

import java.util.*;

/**/

/* name = sample_1 class */

/**/

public class sample1 {

 /*==*/

 /* name = main method for debugging */

 /*==*/

 public static void main(java.lang.String[] args) {

 java.lang.Integer year = new Integer(args[0]);

 java.lang.Integer month = new Integer(args[1]);

 java.lang.String calendar[] = new String[1];

 calendar(year, month, calendar);

 System.out.println(calendar[0]);

 }

 /*==*/

 /* name = sample_1 method */

9. Java Stored Procedures and Java Stored Functions

786

 /*==*/

 public static void calendar(java.lang.Integer year,

 java.lang.Integer month,

 java.lang.String[] calendar) {

 int DayOfWeek; // first day of the week in the specified month

 int week; // For linefeed control

 int wyear = year.intValue(); // Year work

 int wmonth = month.intValue(); // Month work

 // Creating the calendar header

 calendar[0] = " " + wyear + " / " + wmonth + "\n";

 calendar[0] += "Sun Mon Thu Wed Tue Fri Sat\n";

 // Generating the calendar object

 Calendar target_cal = new GregorianCalendar(wyear, wmonth - 1, 1);

 // Calculating the first day of the week in the specified month

 DayOfWeek = target_cal.get(Calendar.DAY_OF_WEEK);

 // Specifying spaces up to the first day of the week

 for (week = 1; week < DayOfWeek; week++) {

 calendar[0] += " ";

 }

 // Specifying the date

 for (;

 target_cal.get(Calendar.MONTH) == wmonth - 1;

 target_cal.add(Calendar.DATE, 1), week++) {

 // Adjusting spaces according to the date and digits

 if (target_cal.get(Calendar.DATE) < 10) {

9. Java Stored Procedures and Java Stored Functions

787

The following shows an example of defining and executing the Java stored procedure
using the previous Java procedure:

Compiling the Java file (for HP-UX)

Creating the JAR file (for HP-UX)

Registering the JAR file in HiRDB (using INSTALL JAR SQL statement)

Defining the Java stored procedure

 calendar[0] += " " + target_cal.get(Calendar.DATE);

 } else {

 calendar[0] += " " + target_cal.get(Calendar.DATE);

 }

 // Specifying padding characters between dates

 if (week == 7) {

 calendar[0] += "\n";

 week = 0;

 } else {

 calendar[0] += " ";

 }

 }

 return;

 }

}

javac sample1.java

jar -cvf sample1.jar sample1.class

INSTALL JAR 'sample1.jar' ;

9. Java Stored Procedures and Java Stored Functions

788

Executing the Java stored procedure

(2) Sample 2
This example accepts the specified date as a processing range and updates the total for
the goods_no column in that range.
The example assumes that the table is defined as follows:
CREATE TABLE master_t1 (goods_no int,total_quantity dec(17,2))
CREATE TABLE tran_t1(goods_no int,quantity_1
dec(17,2),entrydate date)

Java procedure (filename: sample2.java)

CREATE PROCEDURE calendar(IN pyear INT, IN pmonth INT, OUT
 calendar VARCHAR(255))
 LANGUAGE JAVA
 EXTERNAL NAME 'sample1.jar:sample1.calendar(java.lang.Integer,
 java.lang.Integer,java.lang.String[])
 returns void'
 PARAMETER STYLE JAVA
end_proc;

CALL calendar(?,?,?)

/* ALL RIGHTS RESERVED,COPYRIGHT (C)2000,HITACHI,LTD. */

/* LICENSED MATERIAL OF HITACHI,LTD. */

/**/

/* name = HiRDB 06-00 Java stored sample 2 */

/**/

import java.lang.*;

import java.math.*;

import java.sql.*;

/**/

/* name = sample_2 class */

/**/

public class sample2 {

 /*==*/

 /* name = main method for debugging */

9. Java Stored Procedures and Java Stored Functions

789

 /*==*/

 public static void main(String args[]) throws SQLException {

 java.sql.Date fromdate = Date.valueOf("1996-06-01");

 java.sql.Date todate = Date.valueOf("1996-06-30");

 try {

 // Registering the Driver class

 Class.forName("JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDriver");

 } catch (ClassNotFoundException ex) {

 System.out.println("\n*** ClassNotFoundException caught ***\n");

 ex.printStackTrace();

 System.out.println ("");

 System.out.println("\n*************************************\n");

 return;

 }

 jproc1(fromdate, todate);

 }

 /*==*/

 /* name = sample_2 method */

 /*==*/

 public static void jproc1(java.sql.Date fromdate, java.sql.Date todate)

 throws SQLException {

 java.lang.Integer x_goods_no;

 java.math.BigDecimal x_quantity_1, x_total_quantity;

 try {

 // Creating a connection object (CONNECT not issued within the Java

 procedure)

 java.sql.Connection con =

9. Java Stored Procedures and Java Stored Functions

790

 DriverManager.getConnection("jdbc:hitachi:PrdbDrive",

 "\"USER1\"", "\"PASS1\"");

 con.setAutoCommit(false); // Suppressing automatic commit

 // SELECT (stmt1) preprocessing

 java.sql.PreparedStatement stmt1 =

 con.prepareStatement("SELECT goods_no, quantity_1

 , entrydate FROM tran_t1

 WHERE entrydate BETWEEN ? AND ? ORDER BY entrydate");

 // SELECT (stmt2) preprocessing (outside the loop)

 java.sql.PreparedStatement stmt2 =

 con.prepareStatement("SELECT total_quantity FROM master_t1

 WHERE goods_no = ?");

 // INSERT (stmt3) preprocessing (outside the loop)

 java.sql.PreparedStatement stmt3 =

 con.prepareStatement("INSERT INTO master_t1 VALUES(?, ?)");

 // UPDATE (stmt4) preprocessing (outside the loop)

 java.sql.PreparedStatement stmt4 =

 con.prepareStatement("UPDATE master_t1 SET total_quantity = ?

 WHERE goods_no = ?");

 // Specifying SELECT (stmt1) input parameters

 stmt1.setDate(1, fromdate);

 stmt1.setDate(2, todate);

 // Executing SELECT (stmt1)

 java.sql.ResultSet rs1 = stmt1.executeQuery();

9. Java Stored Procedures and Java Stored Functions

791

 while (rs1.next()) {

 // Obtaining the retrieval result of SELECT (stmt1)

 x_goods_no = (Integer)rs1.getObject("goods_no");

 x_quantity_1 = rs1.getBigDecimal("quantity_1");

 // Specifying SELECT (stmt2) input parameter

 stmt2.setObject(1, x_goods_no);

 // Executing SELECT (stmt2)

 java.sql.ResultSet rs2 = stmt2.executeQuery();

 // Checking whether or not goods_no has been registered to

 determine action

 if (!rs2.next()) { // Not registered ==> Add a new entry

 // Closing the SELECT (stmt2) cursor before updating

 rs2.close();

 // Specifying INSERT (stmt3) input parameters

 stmt3.setObject(1, x_goods_no);

 stmt3.setBigDecimal(2, x_quantity_1);

 // Executing INSERT (stmt3)

 stmt3.executeUpdate();

 } else { // Registered ==> Update the

 existing entry

 // Obtaining the current value

 x_total_quantity = rs2.getBigDecimal("total_quantity");

 // Incrementing

9. Java Stored Procedures and Java Stored Functions

792

 x_total_quantity = x_total_quantity.add(x_quantity_1);

 // Closing SELECT (stmt2) cursor before updating

 rs2.close();

 // Specifying UPDATE (stmt4) input parameters

 stmt4.setBigDecimal(1, x_total_quantity);

 stmt4.setObject(2, x_goods_no);

 stmt4.executeUpdate() ;

 }

 }

 // Closing SELECT (stmt1) cursor

 rs1.close();

 // Releasing each statement object

 stmt1.close();

 stmt2.close();

 stmt3.close();

 stmt3.close();

 // Disconnecting

 con.close();

 } catch (SQLException ex) { // SQL error handling procedure

 SQLException fast_ex = ex;

 System.out.println("\n***** SQLException caught *****\n");

9. Java Stored Procedures and Java Stored Functions

793

The following shows an example of defining and executing the Java stored procedure
using the previous Java procedure:

Compiling the Java file (for HP-UX)

Creating the JAR file (for HP-UX)

Registering the JAR file in HiRDB (using INSTALL JAR SQL statement)

Defining the Java stored procedure

 while (ex != null) {

 System.out.println ("SQLState: " + ex.getSQLState ());

 System.out.println ("Message: " + ex.getMessage ());

 System.out.println ("Vendor: " + ex.getErrorCode ());

 ex.printStackTrace();

 ex = ex.getNextException ();

 System.out.println ("");

 }

 System.out.println("*******************************\n");

 throw fast_ex;

 }

 return;

 }

}

javac sample2.java

jar cvf sample2.jar sample2.class

INSTALL JAR 'sample2.jar' ;

CREATE PROCEDURE jproc1(IN fromdate DATE, IN todate DATE)
 LANGUAGE JAVA
 EXTERNAL NAME 'sample2.jar:sample2.jproc1(java.sql.Date, java.sql.Date)
 returns void'
 PARAMETER STYLE JAVA
end_proc;

9. Java Stored Procedures and Java Stored Functions

794

Executing the Java stored procedure

(3) Sample 3
This example compresses and decompresses BLOB data using gzip and ungzip.

Java function (filename: sample3.java)

CALL jproc1(IN ?,IN ?)

/* ALL RIGHTS RESERVED,COPYRIGHT (C)2000,HITACHI,LTD. */

/* LICENSED MATERIAL OF HITACHI,LTD. */

/**/

/* name = HiRDB 06-00 Java stored sample 3 */

/**/

import java.util.zip.*;

import java.io.*;

public class sample3 {

 private final static int BUFF_SIZE = 4096;

 /*==*/

 /* name = main method for debugging */

 /*==*/

 public static void main(String[] args) throws IOException {

 // Obtaining input data

 String sin = args[0];

 byte[] bin = args[0].getBytes();

 System.out.println("input data : " + sin);

 // GZIP(BLOB)

 byte[] bwork = gzip(bin);

 System.out.println("gzip(BLOB) : " +

 bin.length + "=>" + bwork.length +

9. Java Stored Procedures and Java Stored Functions

795

 "(" + (bwork.length * 100 / bin.length) + "%): " +

 "");

 // GUNZIP(BLOB)

 byte[] bout = gunzip(bwork);

 System.out.println("gunzip(BLOB): " +

 bwork.length + "=>" + bout.length +

 "(" + (bout.length * 100 / bwork.length) + "%): " +

 new String(bout));

 return;

 }

 /*==*/

 /* name = sample_3 method [gzip(BLOB)] */

 /*==*/

 public static byte[] gzip(byte indata[]) {

 // Creating a stream for output of compressed data

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 // Output of compressed data

 try {

 GZIPOutputStream zos = new GZIPOutputStream(baos);

 zos.write(indata, 0, indata.length);

 zos.close();

 baos.close();

 } catch (IOException ex) {

 System.out.println("gzip(BLOB): IOException: " + ex);

 ex.printStackTrace();

9. Java Stored Procedures and Java Stored Functions

796

 }

 // Creating a byte array after compressing return value

 byte[] outdata = baos.toByteArray();

 return outdata;

 }

 /*==*/

 /* name = sample_3 method [gunzip(BLOB)] */

 /*==*/

 public static byte[] gunzip(byte[] indata) {

 int rlen; // Actual input/output length

 byte[] buff = new byte[BUFF_SIZE]; // Input/output buffer

 // Creating a stream for input of compressed data

 ByteArrayInputStream bais = new ByteArrayInputStream(indata);

 // Creating a stream for output of decompressed data

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 // Input of compressed data and output of decompressed data

 try {

 GZIPInputStream zis = new GZIPInputStream(bais);

 while ((rlen = zis.read(buff, 0, buff.length)) >= 0) {

 baos.write(buff, 0, rlen);

 }

 zis.close();

 bais.close();

9. Java Stored Procedures and Java Stored Functions

797

The following shows an example of defining and executing the Java stored procedure
using the previous Java function:

Compiling the Java file (for HP-UX)

Creating the JAR file (for HP-UX)

Registering the JAR file in HiRDB (using INSTALL JAR SQL statement)

Defining the Java stored procedure

Executing the Java stored procedure

 baos.close();

 } catch (IOException ex) {

 System.out.println("gunzip(BLOB): IOException: " + ex);

 ex.printStackTrace();

 }

 // Creating a byte array after decompressing return value

 byte[] outdata = baos.toByteArray();

 return outdata;

 }

}

javac sample3.java

jar -cvf sample3.jar sample3.class

INSTALL JAR 'sample3.jar' ;

CREATE FUNCTION gzip(indata BLOB(1M)) RETURNS BLOB(1M)
 LANGUAGE JAVA
 EXTERNAL NAME 'sample3.jar:sample3.gzip(byte[]) returns byte[]'
 PARAMETER STYLE JAVA
end_proc;
CREATE FUNCTION gunzip(indata BLOB(1M)) RETURNS BLOB(1M)
 LANGUAGE JAVA
 EXTERNAL NAME 'sample3.jar:sample3.gunzip(byte[]) returns byte[]'
 PARAMETER STYLE JAVA
end_proc;

9. Java Stored Procedures and Java Stored Functions

798

(4) Sample 4
This example uses a dynamic result set to return the result of retrieving two tables.

Java procedure (filename: sample4rs.java)

INSERT INTO t1 values(10, ?, gzip(? AS BLOB(1M)))
 :
SELECT c1, c2, gunzip(c3), length(c2), length(c3) from t1

/* ALL RIGHTS RESERVED,COPYRIGHT (C)2000,HITACHI,LTD. */

/* LICENSED MATERIAL OF HITACHI,LTD. */

/**/

/* name = HiRDB 06-00 Java stored Result Set connection job */

/**/

import java.lang.*;

import java.math.*;

import java.sql.*;

/**/

/* name = Result Set connection class (procedure side) */

/**/

public class sample4rs {

 /*==*/

 /* name = main method for debugging */

 /*==*/

 public static void main(String args[]) throws SQLException {

 java.lang.Integer p1 = new Integer(10);

 int[] cr_cnt = null;

 java.sql.ResultSet[] rs1 = null;

 java.sql.ResultSet[] rs2 = null;

 try {

 // Registering Driver class

9. Java Stored Procedures and Java Stored Functions

799

 Class.forName("JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDriver");

 } catch (ClassNotFoundException ex) {

 System.out.println("\n***** ClassNotFoundException caught *****\n");

 ex.printStackTrace();

 System.out.println ("");

 System.out.println("*******************************\n");

 return;

 }

 rs_proc(p1, cr_cnt, rs1, rs2);

 }

 /*==*/

 /* name = Result Set connection method */

 /*==*/

 public static void rs_proc(java.lang.Integer p1,int icnt_cr[],

 java.sql.ResultSet[] rs1,

 java.sql.ResultSet[] rs2) throws SQLException {

 java.lang.Integer x_goods_no;

 java.math.BigDecimal x_quantity_1, x_total_quantity;

 try {

 // Creating a connection object (CONNECT not issued within

 Java procedure)

 java.sql.Connection con =

 DriverManager.getConnection("jdbc:hitachi:PrdbDrive"

 ,"\"USER1\"", "\"PASS1\"");

 con.setAutoCommit(false); // Suppressing automatic commit

9. Java Stored Procedures and Java Stored Functions

800

 // SELECT (stmt1) preprocessing

 java.sql.PreparedStatement stmt1 =

 con.prepareStatement("SELECT c1, c2 FROM rs_t1 WHERE c1 > ?");

 // Specifying SELECT (stmt1) input parameter

 stmt1.setInt(1, p1.intValue());

 // SELECT (stmt2) preprocessing

 java.sql.PreparedStatement stmt2 =

 con.prepareStatement("SELECT c1, c2 FROM rs_t2 WHERE c1 > 10");

 // Executing SELECT (stmt1)

 rs1[0] = stmt1.executeQuery();

 // Executing SELECT (stmt2)

 rs2[0] = stmt2.executeQuery();

 // Number of dynamic result sets

 icnt_cr[0] = 2;

 // Executing SELECT (stmt2) (retrieving only one row)

 rs2[0].next();

 } catch (SQLException ex) { // SQL error handling procedure

 SQLException fast_ex = ex;

 System.out.println("\n***** SQLException caught *****\n");

 while (ex != null) {

 System.out.println ("SQLState: " + ex.getSQLState ());

9. Java Stored Procedures and Java Stored Functions

801

UAP (sample4ap.java)

 System.out.println ("Message: " + ex.getMessage ());

 System.out.println ("Vendor: " + ex.getErrorCode ());

 ex.printStackTrace();

 ex = ex.getNextException ();

 System.out.println ("");

 }

 System.out.println("*******************************\n");

 throw fast_ex;

 }

 return;

 }

}

/* ALL RIGHTS RESERVED,COPYRIGHT (C)2000,HITACHI,LTD. */

/* LICENSED MATERIAL OF HITACHI,LTD. */

/**/

/* name = HiRDB 06-00 Java stored Result Set connection object */

/**/

import java.lang.*;

import java.math.*;

import java.sql.*;

/**/

/* name = Result Set connection class (CALL side) */

/**/

public class sample4ap {

 /*==*/

 /* name = main method for debugging */

9. Java Stored Procedures and Java Stored Functions

802

 /*==*/

 public static void main(String args[]) throws SQLException {

 try {

 // Registering Driver class

 Class.forName("JP.co.Hitachi.soft.HiRDB.JDBC.PrdbDriver");

 } catch (ClassNotFoundException ex) {

 System.out.println("\n***** ClassNotFoundException caught *****\n");

 ex.printStackTrace();

 System.out.println ("");

 System.out.println("*******************************\n");

 return;

 }

 rs_call();

 }

 /*==*/

 /* name = Result Set connection method */

 /*==*/

 public static void rs_call() throws SQLException {

 java.lang.Integer xc1;

 java.lang.String xc2;

 int cr_cnt[] = new int[1];

 try {

 // Creating a connection object (CONNECT not issued within

 Java procedure)

 java.sql.Connection con =

 DriverManager.getConnection

 ("jdbc:hitachi:PrdbDrive", "\"USER1\""

9. Java Stored Procedures and Java Stored Functions

803

 , "\"PASS1\"");

 con.setAutoCommit(false); // Suppressing automatic commit

 // CALL (stmt1) preprocessing

 java.sql.CallableStatement stmt1 =

 con.prepareCall("{CALL rs_proc(?,?)}");

 // Specifying CALL (stmt1) input parameters

 stmt1.setInt(1, 10);

 stmt1.registerOutParameter(2, java.sql.Types.INTEGER);

 // Executing CALL (stmt1)

 stmt1.execute();

 // Obtaining CALL (stmt1) output parameter

 cr_cnt[0] = stmt1.getInt(2);

 System.out.println("cr_cnt=" + cr_cnt[0] + "\n");

 // Obtaining dynamic result set

 java.sql.ResultSet rs = stmt1.getResultSet();

 while (rs.next()) {

 // Obtaining SELECT (stmt1) retrieval result

 xc1 = (Integer)rs.getObject("c1");

 xc2 = (String)rs.getObject("c2");

 System.out.println("xc1=" + xc1 + ",xc2=" + xc2 + "\n");

 }

9. Java Stored Procedures and Java Stored Functions

804

 // Closing the cursor

 rs.close();

 if (stmt1.getMoreResults()) {

 rs = stmt1.getResultSet();

 while (rs.next()) {

 // Obtaining SELECT (stmt1) retrieval result

 xc1 = (Integer)rs.getObject("c1");

 xc2 = (String)rs.getObject("c2");

 System.out.println("xc1=" + xc1 + ",xc2=" + xc2 + "\n");

 }

 }

 // Closing the cursor

 rs.close();

 // Releasing each statement object

 stmt1.close();

 // Disconnecting

 con.close();

 } catch (SQLException ex) { // SQL error handling procedure

 SQLException fast_ex = ex;

 System.out.println("\n***** SQLException caught *****\n");

 while (ex != null) {

 System.out.println ("SQLState: " + ex.getSQLState ());

9. Java Stored Procedures and Java Stored Functions

805

Defining the Java stored procedure

 System.out.println ("Message: " + ex.getMessage ());

 System.out.println ("Vendor: " + ex.getErrorCode ());

 ex.printStackTrace();

 ex = ex.getNextException ();

 System.out.println ("");

 }

 System.out.println("*******************************\n");

 throw fast_ex;

 }

 return;

 }

}

CREATE PROCEDURE rs_proc(IN p1 INT,OUT cr_cnt INT)
 DYNAMIC RESULT SETS 2
 LANGUAGE JAVA
 EXTERNAL NAME 'sample4.jar:sample4rs.rs_proc(java.lang.Integer, int[]
 , java.sql.
ResultSet[], java.sql.ResultSet[]) returns void'
 PARAMETER STYLE JAVA
end_proc;

9. Java Stored Procedures and Java Stored Functions

806

9.4 Notes about Java program creation

This section describes the points to be observed when creating a Java program. There
are the following limitations to the specification of control processing in Java:

• No thread can be created.
• A GUI cannot be used.
• Connection cannot be established with another DBMS.
• File manipulation is not supported.

• Do not change the Java Runtime Environment security policy.

9.4.1 Unsupported methods
On a Java virtual machine, you can limit available methods by specifying the access
privilege with the security policy. The Java virtual machine in HiRDB does not allow
any method to be executed without the access privilege.
For the specification of the access privilege with the security policy and a list of
unsupported methods, see the manual provided with JDK.
Figure 9-9 shows method execution control using the security policy.

9. Java Stored Procedures and Java Stored Functions

807

Figure 9-9: Method execution control using security policy

9.4.2 Package, class, and method definitions
This section describes the points to be observed when defining packages, classes, and
methods. For details about the packages, classes, and methods, see the manual
provided with JDK.

(1) Package
1. Specification of a package name is optional.

9. Java Stored Procedures and Java Stored Functions

808

2. If you specify the package name, the length of the package-name.class-name
character string must be no longer than 255 characters.

3. You cannot use either of the following package names:
• Package name existing in JRE
• Package name provided by HiRDB

(2) Class
1. A class name must be no longer than 255 characters.
2. Define a class in the format public class <class-name>.

(3) Method
1. A method name must be no longer than 255 characters.
2. Define a method as follows:

Java stored procedure
public static void <method-name>

Java stored function
public static <return-value> <method-name>

3. If there is a possibility of an exception occurring in the method, you must either
declare the exception in the throw section or specify try.catch. For Java
stored procedures, there is a possibility of an SQLException exception
occurring in nearly all JDBC methods.

4. A method can reference a class included in the Java platform core API or a class
included in the JAR file that contains the current method.

9.4.3 Parameter input/output mode mapping (Java stored
procedures only)

This section explains the mapping of the SQL parameter input/output mode (IN, OUT,
or INOUT) with Java stored procedures. You cannot specify a parameter input/output
mode for a Java stored function.
For details about mapping, see the type mapping in the HiRDB Version 8 SQL
Reference manual.
Figure 9-10 shows an example of parameter input/output mode mapping.

9. Java Stored Procedures and Java Stored Functions

809

Figure 9-10: Example of parameter input/output mod mapping

(1) IN parameter
For a parameter defined as an IN parameter with SQL, a Java program uses the
corresponding data type as is.
Suppose that the IN parameter is defined as an INTEGER type with the CREATE
PROCEDURE SQL statement. With a Java program, it is defined as the corresponding
int type or java.lang.Integer type (param1 and jparam1 in Figure 9-10).

(2) OUT or INPUT parameter
For a parameter defined as an OUT or INOUT parameter with SQL, a Java program
defines it as the array type of the corresponding data type. The OUT and INOUT
parameters are implemented in this manner because a parameter is to be passed as a
one-element array of the corresponding data type with the pointer representation
method in the Java language.
Suppose that the OUT parameter is defined as SMALLINT type with the CREATE
PROCEDURE SQL statement. With a Java program, it is defined as the array type of the
corresponding short or java.long.Short type (param2 and jparam2; param3
and jparam3 in Figure 9-10). To return a value to the OUT or INOUT parameter, set the
value at the beginning of the array (jparam2 and jparam3 in Figure 9-10).

9.4.4 Results-set return facility (Java stored procedures only)
You can use the results-set return facility by specifying 1 or a greater value in the
DYNAMIC RESULT SETS clause in CREATE PROCEDURE during Java stored procedure
definition. The results-set return facility is not supported for Java stored functions.

(1) What is the results-set return facility?
The results-set return facility enables the Java stored procedure caller to reference the
cursor that is acquired by the execution of the SELECT statement within the Java stored
procedure.
Figure 9-11 shows an overview of the results-set return facility.

9. Java Stored Procedures and Java Stored Functions

810

Figure 9-11: Overview of the results-set return facility (for a Java stored
procedure)

(2) Calling-source languages supporting the results-set return facility
The calling-source languages that support the results-set return facility are as follows:

• Java
• C
• C++

• COBOL*

• OOCOBOL
* COBOL can be used if the RDB file input/output facility is not used.

(3) Example of using the results-set return facility
This example obtains columns rank, name, and age, which satisfy condition
rank<10 in tables emps_1 and emps_2 within a Java stored procedure. The caller
receives two result sets to manipulate them.

Defining the Java stored procedure

9. Java Stored Procedures and Java Stored Functions

811

Explanation
1. Defines the procedure name and parameters.
2. Specifies the number of retrieval result sets to be returned.
3. Specifies LANGUAGE.
4. Associates with the Java method.
5. Specifies PARAMETER STYLE.
Java stored procedure

CREATE PROCEDURE proc2(IN param1 INTEGER) 1
 DYNAMIC RESULT SETS 2 2
 LANGUAGE JAVA 3
 EXTERNAL NAME 4
 'mypack.jar:JStrSmp1.getEmp2(int, ResultSet[]
 , ResultSet[])' ..4
 PARAMETER STYLE JAVA; 5

import java.sql.*; 1

public class JStrSmp1{ 2

 public static void getEmp2 3

 (int jparam1, ResultSet[] rs1_out

 , ResultSet[] rs2_out) 4

 throws SQLException { 4

 Connection con = DriverManager.getConnection (...5

 "jdbc:hitachi:PrdbDrive","USER1"

 ,"PASS1"); 5

 PreparedStatement pstmt1 = con.prepareStatement ..6

 ("select rank,name,age from emps_1 where

 rank < ? 6

 order by rank"); 6

 pstmt1.setInt(1, jparam1); 6

 ResultSet rs1 = pstmt1.executeQuery(); 7

9. Java Stored Procedures and Java Stored Functions

812

Explanation
1. Imports the java.sql package.
2. Defines the class name.
3. Defines the method name.
4. Defines the parameter name (the second and third arguments are for

returning result sets).
5. Obtains the Connection object.
6. Preprocesses the SELECT statement.
7. Executes the SELECT statement.
8. Sets the obtained result set rs1 in the second argument of the ResultSet[]

type.
9. Preprocesses the SELECT statement.
10. Executes the SELECT statement.
11. Sets the obtained result set rs1 in the third argument of the ResultSet[]

type.
12. Terminates the call and returns the result sets.
Executing the Java stored procedure (caller)

 rs1_out[0] = rs1; 8

 PreparedStatement pstmt2 = con.prepareStatement ..9

 ("select rank,name,age from emps_2 where

 rank < ? 9

 order by rank"); 9

 pstmt2.setInt(1, jparam1); 9

 ResultSet rs2 = pstmt2.executeQuery(); 10

 rs2_out[0] = rs2; 11

 return; ..12

 }

}

import java.sql.*; 1

9. Java Stored Procedures and Java Stored Functions

813

public class Caller{ 2

 public static void main(String[] args)

 throws SQLException { 3

 Connection con = DriverManager.getConnection(.....4

 "jdbc:hitachi:PrdbDrive","USER1"

 ,"PASS1");4

 CallableStatement cstmt = con.prepareCall

 ("{call proc2(?)}");5

 cstmt.setInt(1, 10); 5

 ResultSet rs; 6

 int emp_rank; 6

 String emp_name; 6

 int emp_age; 6

 if(cstmt.execute()){ 7

 rs = cstmt.getResultSet(); 8

 System.out.println("*** emps_1 ***"); 9

 while(rs.next()){ 9

 emp_rank = rs.getInt(1); 9

 emp_name = rs.getString(2); 9

 emp_age = rs.getInt(3); 9

 System.out.println("RANK =" + emp_rank + ...9

 " NAME = " + emp_name + " AGE =

 " + emp_age); 9

 }

9. Java Stored Procedures and Java Stored Functions

814

Explanation
1. Imports the java.sql package.
2. Defines the class name.
3. Defines the method name.
4. Obtains the Connection object.
5. Preprocesses the CALL statement.
6. Declares variables.
7. Executes the CALL statement.
8. Obtains the result set.
9. Outputs information obtained from the first result set.

 }

 if(cstmt.getMoreResults()){ 10

 rs= cstmt.getResultSet(); 11

 System.out.println("*** emps_2 ***"); 12

 while(rs.next()){ 12

 emp_rank = rs.getInt(1); 12

 emp_name = rs.getString(2); 12

 emp_age = rs.getInt(3); 12

 System.out.println("RANK =" + emp_rank + ..12

 " NAME = " + emp_name + " AGE =

 " + emp_age); 12

 }

 rs.close(); 13

 }

 }

}

9. Java Stored Procedures and Java Stored Functions

815

10. Checks to see if there are any more result sets.
11. Obtains the next result set.
12. Outputs information obtained from the second result set.
13. Closes the result sets.

(4) Notes about using the results-set return facility
(a) When defining a Java stored procedure with CREATE PROCEDURE

1. In the DYNAMIC RESULT SETS clause, specify the maximum number of result
sets to be returned from within the Java stored procedure. If a value of 0 is
specified, the system does not use the results-set return facility.

2. For a parameter in CREATE PROCEDURE, do not specify the OUT parameter of
ResultSet[] type that is specified for a parameter in the Java stored procedure.

3. When using EXTERNAL NAME to define correspondence with a Java program,
include arguments of the ResultSet[] type.

(b) When creating a caller's method
1. In the CALL statement's parameters, do not include a parameter of the

ResultSet[] type in the method for Java stored procedure.
2. If there is more than one result set to be returned, to receive the second or

subsequent result set, use the getMoreResult method (to determine whether
there are more result sets) and the getResultSet method (to receive the next
result).

(c) When creating a method for a Java stored procedure
Specify the retrieval result (ResultSet) in the OUT parameter of the ResultSet[]
type without closing it.

9.4.5 Connection in a Java stored procedure
You can create only one active connection within a Java stored procedure. Database
manipulation using a connection object is not available if the database and JDBC
resources are released by the garbage collector, or the close() method is used to
explicitly release the database and JDBC resources before the Java stored procedure is
terminated.

9.4.6 Releasing the result sets
To release a result set object, use the close() method. Implicit release using the
garbage collector does not release the resources until the Java stored procedure is
terminated.

9. Java Stored Procedures and Java Stored Functions

816

9.5 Notes about testing and debugging

Java stored routines are based on the architecture of running a normal Java program on
a DBMS server; therefore, their testing and debugging methods are the same as for
Java applications.
After creating a Java program, you need to test it and debug it so that the Java program
runs successfully as a stored procedure or stored function. This section describes the
points to be observed when testing and debugging a Java program.

9.5.1 Java program for a Java stored procedure
When testing or debugging a Java program for a Java stored procedure, note the
following:
1. You can use a Java program for a Java stored procedure during server execution

without having to modify the debugged program.
2. A caller Java program directly calls the method of the Java program for a Java

stored procedure during debugging. During server execution, it uses the CALL
statement.

3. Available methods may be different because the Java virtual machine
environment is different between debugging and server execution. For details
about the methods that cannot be executed, see 9.4.1 Unsupported methods.

Figure 9-12 shows the procedure for testing and debugging a Java program for a Java
stored procedure.

9. Java Stored Procedures and Java Stored Functions

817

Figure 9-12: Procedure for testing and debugging a Java program for a Java
stored procedure

9.5.2 Java program for a Java stored function
When testing or debugging a Java program for a Java stored function, note the
following:
1. You can use a Java program for a Java stored function during server execution

without having to modify the debugged program.
2. A caller Java program directly calls the method of the Java program for a Java

9. Java Stored Procedures and Java Stored Functions

818

stored function during debugging. During server execution, it uses a function call.
3. Available methods may be different because the Java virtual machine

environment is different between debugging and server execution. For details
about the methods that cannot be executed, see 9.4.1 Unsupported methods.

Figure 9-13 shows the procedure for testing and debugging a Java program for a Java
stored function.

Figure 9-13: Procedure for testing and debugging a Java program for a Java
stored function

9. Java Stored Procedures and Java Stored Functions

819

9.6 Notes about JAR file creation

This section describes the points to be observed when creating a JAR file.
Java has a concept called package to classify and manage programs by their function.
A package is actually expressed as a directory structure; therefore, a Class file is
created in the directory with the package name after compilation.
Figure 9-14 shows the location at which class files are created.

Figure 9-14: Location at which class files are created

When creating Java files, you can integrate and compress the files, including the
directory structure.
You can integrate not only Class files but also Java files at the same time. When
obtaining the Java program source with a specified Class from the JAR files registered
in HiRDB by conducting a retrieval specifying
GET_JAVA_STORED_ROUTINE_SOURCE, you need to integrate the Java files at the
same time. For details about the GET_JAVA_STORED_ROUTINE_SOURCE
specification, see the HiRDB Version 8 SQL Reference manual.

9. Java Stored Procedures and Java Stored Functions

820

9.6.1 Integrating Class files
If a package is specified during Java program creation, integration in the JAR file takes
place for each package directory. Do not specify individual Class files only.
Figure 9-15 shows an example of integrating Class files in JAR files.

Figure 9-15: Example of integrating Class files in JAR files

The Class files with the same name can be integrated in the same JAR file if their
packages are different.

9.6.2 Integrating Java files
The following describes the points to be observed when integrating Java files:
1. To retrieve a Java program source corresponding to a Class file, the Java file must

be integrated at the same time as the Class file.
2. A Java file to be integrated in a JAR file can be stored in any directory.
3. If multiple packages have the same Class filename, you can retrieve each Java

program source by storing the corresponding Java file in a different directory. The
following shows an example:
Example

If the Class files consist of the following packages, pack1.aaa.JStrAAA
and pack2.ccc.JStrAAA, they will have the same Class filename:

9. Java Stored Procedures and Java Stored Functions

821

./pack1/aaa/JstrAAA.class

./pack1/bbb/JstrBBB.class

./pack2/ccc/JstrAAA.class
There is no need to manage the Java files with the same directory structure,
but if there are multiple files with the same name, they cannot be stored under
the same directory. In this case, individual files can be stored as follows:
./src1/JStrAAA.java
./src1/JStrBBB.java
./src2/JStrAAA.java

This example cannot identify each Java file corresponding to a specified Class
file; therefore, all Java files with the specified name are retrieved. For example, a
retrieval of JStrAAA.java results in both pack1.aaa.JStrAAA.java and
pack2.ccc.JStrAAA.java. A retrieval of JStrBBB.java results in
pack1.bbb.JStrBBB.java.

Reader’s Comment Form
We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

