
For Windows Systems
Scalable Database Server

HiRDB Version 8
Description

3020-6-351(E)

Relevant program products
List of program products:
For the Windows 2000, Windows XP Professional, Windows XP x64 Edition, Windows Server 2003, Windows Server 2003 x64
Edition, Windows Server 2003 R2, or Windows Server 2003 R2 x64 Edition operating system:
P-2462-7187 HiRDB/Single Server Version 8 08-00
P-2462-7387 HiRDB/Parallel Server Version 8 08-00
P-2462-7H87 HiRDB Non Recover Front End Server Version 8 08-00
P-2462-7J87 HiRDB Advanced High Availability Version 8 08-00
P-2462-7K87 HiRDB Advanced Partitioning Option Version 8 08-00
For the Windows XP x64 Edition or Windows Server 2003 x64 Edition operating system:
P-2962-7187 HiRDB/Single Server Version 8 08-00
P-2962-7387 HiRDB/Parallel Server Version 8 08-00
P-2962-1187 HiRDB/Run Time Version 8 08-00
P-2962-1287 HiRDB/Developer's Kit Version 8 08-00
For the Windows Server 2003 (IPF) operating system:
P-2862-7187 HiRDB/Single Server Version 8 08-00
P-2862-7387 HiRDB/Parallel Server Version 8 08-00
P-2862-1187 HiRDB/Run Time Version 8 08-00
P-2862-1287 HiRDB/Developer's Kit Version 8 08-00
P-2862-7H87 HiRDB Non Recover Front End Server Version 8 08-00
P-2862-7J87 HiRDB Advanced High Availability Version 8 08-00
P-2862-7K87 HiRDB Advanced Partitioning Option Version 8 08-00
For the Windows 2000, Windows XP, Windows XP x64 Edition, Windows Server 2003, or Windows Server 2003 x64 Edition
operating system:
P-2662-1187 HiRDB/Run Time Version 8 08-00
P-2662-1287 HiRDB/Developer's Kit Version 8 08-00
This edition of the manual is released for the preceding program products, which have been developed under a quality management
system that has been certified to comply with ISO9001 and TickIT. This manual may also apply to other program products; for
details, see Before Installing or Readme file.

Trademarks
ActiveX is a trademark of Microsoft Corp. in the U.S. and other countries.
AIX is a registered trademark of the International Business Machines Corp. in the U.S.
CORBA is a registered trademark of Object Management Group, Inc. in the United States.
DataStage, MetaBroker, MetaStage and QualityStage are trademarks of International Business Machines Corporation in the United
States, other countries, or both.
DB2 is a registered trademark of the International Business Machines Corp. in the U.S.
HACMP/6000 is a trademark of the International Business Machines Corp. in the U.S.
HP-UX is a product name of Hewlett-Packard Company.
IBM is a registered trademark of the International Business Machines Corp. in the U.S.
Itanium is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.
JBuilder is a trademark of Borland Software Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds.
Lotus, 1-2-3 are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
Microsoft Access is a registered trademark of Microsoft Corporation in the U.S. and other countries.

Microsoft Excel is a product name of Microsoft Corp.
Microsoft is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Motif is a registered trademark of the Open Software Foundation, Inc.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ODBC is Microsoft's strategic interface for accessing databases.
OLE is the name of a software product developed by Microsoft Corporation and the acronym for Object Linking and Embedding.
ORACLE is a registered trademark of Oracle Corporation.
Oracle8i is a trademark of ORACLE Corporation.
Oracle9i is a trademark of ORACLE Corporation.
Oracle 10g is a trademark of ORACLE Corporation.
OS/390 is a trademark of the International Business Machines Corp. in the U.S.
POSIX stands for Portable Operating System Interface for Computer Environment, which is a set of standard specifications
published by the Institute of Electrical and Electronics Engineers, Inc.
RISC System/6000 is a registered trademark of the International Business Machines Corp. in the U.S.
Solaris is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
Sun Microsystems is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
The right to use the trademark DCE in Japan is sub-licensed from OSF.
UNIFY2000 is a product name of Unify Corp.
UNIX is a registered trademark of The Open Group in the United States and other countries.
VERITAS is a trademark or registered trademark of Symantec Corporation in the U.S. and other countries.
Visual Basic is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual C++ is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Visual Studio is a registered trademark of Microsoft Corp. in the U.S. and other countries.
WebLogic is a registered trademark of BEA Systems, Inc.
Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows NT is a registered trademark of Microsoft Corp. in the U.S. and other countries.
Windows Server is a registered trademark of Microsoft Corp. in the U.S. and other countries.
X/Open is a registered trademark of X/Open Company Limited in the U.K. and other countries.
X Window System is a trademark of X Consortium, Inc.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3020-6-351(E)): March, 2007

Copyright
All Rights Reserved. Copyright (C) 2007, Hitachi, Ltd.

i

Preface

This manual provides an overview and description of the functions of HiRDB Version
8, a scalable database server program product.

Intended readers
This manual is intended for users who will be constructing or operating HiRDB
Version 8 ("HiRDB") relational database systems.
It is assumed that readers of this manual have the following:

• A basic knowledge of managing Windows systems
• A basic knowledge of SQL

Organization of this manual
This manual is organized as follows:
Chapter 1. Overview

Explains HiRDB features, system configurations, and access modes, and
describes HiRDB option program products and other HiRDB-related products.

Chapter 2. Linking to HiRDB Option Program Products and Other HiRDB-Related
Products

Explains the functions that can be implemented by linking HiRDB to HiRDB
option program products and other HiRDB-related products.

Chapter 3. Database Logical Structure
Explains the logical structure of a HiRDB database (RDAREAs, schemas, tables,
indexes, and expansion into an object relational database).

Chapter 4. Database Physical Structure
Explains the physical structure of a HiRDB database (segments, and pages).

Chapter 5. Database Access Using SQL
Explains the use of the SQL database manipulation language to manipulate data
in HiRDB.

Chapter 6. HiRDB Architecture
Explains the architecture of HiRDB.

ii

Chapter 7. Database Management
Explains how the HiRDB administrator manages a database.

Chapter 8. Error-handling Facilities
Explains error-handling facilities (system switchover facility and
recovery-unnecessary front-end servers).

Chapter 9. Facilities Related to Security Measures
Describes facilities that provide support for database security measures (security
facility, security audit facility, and connection security facility).

Chapter 10. Plug-ins
Provides an overview of the HiRDB plug-ins feature and explains its functions
and the functions of HiRDB when the plug-ins feature is used.

Chapter 11. 64-Bit-Mode HiRDB
Explains HiRDB operation in the 64-bit mode, which is provided for support of
large systems.

Appendix A. Functional Differences Between HiRDB Versions on Different Platforms
Explains the functional differences between HiRDB versions on different
platforms.

Appendix B. Data Dictionary Tables
Explains the HiRDB data dictionary tables.

Appendix C. HiRDB Client and HiRDB Server Connectivity
Provides lists by platform of connectable and non-connectable HiRDB clients and
servers.

Appendix D. Glossary
Explains the terms used in the HiRDB Version 8 manuals.

Related publications
This manual is related to the following manuals, which should be read as required.
HiRDB (for Windows)

• For Windows Systems HiRDB Version 8 Installation and Design Guide
(3020-6-352(E))

• For Windows Systems HiRDB Version 8 System Definition (3020-6-353(E))
• For Windows Systems HiRDB Version 8 System Operation Guide

(3020-6-354(E))

iii

• For Windows Systems HiRDB Version 8 Command Reference (3020-6-355(E))
HiRDB (for UNIX)

• For UNIX Systems HiRDB Version 8 Description (3000-6-351(E))
• For UNIX Systems HiRDB Version 8 Installation and Design Guide

(3000-6-352(E))
• For UNIX Systems HiRDB Version 8 System Definition (3000-6-353(E))
• For UNIX Systems HiRDB Version 8 System Operation Guide (3000-6-354(E))
• For UNIX Systems HiRDB Version 8 Command Reference (3000-6-355(E))
• HiRDB Staticizer Option Version 7 Description and User's Guide

(3000-6-282(E))
• For UNIX Systems HiRDB Version 8 Disaster Recovery System Configuration

and Operation Guide (3000-6-364)*

HiRDB (for both Windows and UNIX)
• HiRDB Version 8 UAP Development Guide (3020-6-356(E))
• HiRDB Version 8 SQL Reference (3020-6-357(E))
• HiRDB Version 8 Messages (3020-6-358(E))
• HiRDB Datareplicator Version 8 Description, User's Guide and Operator's

Guide (3020-6-360(E))
• HiRDB Dataextractor Version 8 Description, User's Guide and Operator's Guide

(3020-6-362(E))
* This manual has been published in Japanese only; it is not available in English.
You must use the UNIX or the Windows manuals, as appropriate to the platform you
are using.
Others

• HiRDB External Data Access Version 7 Description and User's Guide
(3000-6-284(E))

• Job Management Partner 1/Integrated Management - Manager System
Configuration and User's Guide (3020-3-K01(E))

• Job Management Partner 1/Base User's Guide (3020-3-K06(E))
• Job Management Partner 1/Automatic Job Management System 2 Description

(3020-3-K21(E))
• Job Management Partner 1/Integrated Manager - Console (3020-3-F01(E))

iv

• Job Management Partner 1/Base (3020-3-F04(E))
• Job Management Partner 1/Automatic Job Management System 2 Description

(3020-3-F06(E))
• JP1 V6 JP1/Automatic Job Management System 2 User's Guide (3020-3-980(E))
• JP1 V6 JP1/Base (3020-3-986(E))
• JP1 Version 6 JP1/VERITAS NetBackup v4.5 Agent for HiRDB License

Description and User's Guide (3020-3-D79(E))

Organization of HiRDB manuals
The HiRDB manuals are organized as shown below. For the most efficient use of these
manuals, it is suggested that they be read in the order they are shown, going from left
to right.

v

Conventions: Abbreviations
Unless otherwise required, this manual uses the following abbreviations for product
and other names.

vi

Name of product or other entity Representation

HiRDB/Single Server Version 8 HiRDB/Single
Server

HiRDB or
HiRDB Server

HiRDB/Single Server Version 8(64)

HiRDB/Parallel Server Version 8 HiRDB/Parallel
Server

HiRDB/Parallel Server Version 8(64)

HiRDB/Developer's Kit Version 8 HiRDB/
Developer's Kit

HiRDB Client

HiRDB/Developer's Kit Version 8(64)

HiRDB/Run Time Version 8 HiRDB/Run Time

HiRDB/Run Time Version 8(64)

HiRDB Datareplicator Version 8 HiRDB Datareplicator

HiRDB Dataextractor Version 8 HiRDB Dataextractor

HiRDB Text Search Plug-in Version 7 HiRDB Text Search Plug-in

HiRDB Spatial Search Plug-in Version 3 HiRDB Spatial Search Plug-in

HiRDB Staticizer Option Version 8 HiRDB Staticizer Option

HiRDB LDAP Option Version 8 HiRDB LDAP Option

HiRDB Advanced Partitioning Option Version 8 HiRDB Advanced Partitioning Option

HiRDB Advanced High Availability Version 8 HiRDB Advanced High Availability

HiRDB Non Recover Front End Server Version 8 HiRDB Non Recover FES

HiRDB Disaster Recovery Light Edition Version 8 HiRDB Disaster Recovery Light
Edition

HiRDB External Data Access Version 8 HiRDB External Data Access

HiRDB External Data Access Adapter Version 8 HiRDB External Data Access Adapter

HiRDB Adapter for XML - Standard Edition HiRDB Adapter for XML

HiRDB Adapter for XML - Enterprise Edition

HiRDB Control Manager HiRDB CM

HiRDB Control Manager Agent HiRDB CM Agent

vii

Hitachi TrueCopy TrueCopy

Hitachi TrueCopy basic

TrueCopy

TrueCopy remote replicator

JP1/Automatic Job Management System 2 JP1/AJS2

JP1/Automatic Job Management System 2 - Scenario Operation JP1/AJS2-SO

JP1/Cm2/Extensible SNMP Agent JP1/ESA

JP1/Cm2/Extensible SNMP Agent for Mib Runtime

JP1/Cm2/Network Node Manager JP1/NNM

JP1/Integrated Management - Manager JP1/Integrated Management or JP1/IM

JP1/Integrated Management - View

JP1/Magnetic Tape Access EasyMT

EasyMT

JP1/Magnetic Tape Library MTguide

JP1/NETM/DM JP1/NETM/DM

JP1/NETM/DM Manager

JP1/Performance Management JP1/PFM

JP1/Performance Management Agent for HiRDB JP1/PFM-Agent for HiRDB

JP1/Performance Management - Agent for Platform JP1/PFM-Agent for Platform

JP1/Performance Management/SNMP System Observer JP1/SSO

JP1/VERITAS NetBackup BS v4.5 NetBackup

JP1/VERITAS NetBackup v4.5

JP1/VERITAS NetBackup BS V4.5 Agent for HiRDB License JP1/VERITAS NetBackup Agent for
HiRDB License

JP1/VERITAS NetBackup V4.5 Agent for HiRDB License

JP1/VERITAS NetBackup 5 Agent for HiRDB License

OpenTP1/Server Base Enterprise Option TP1/EE

Name of product or other entity Representation

viii

Virtual-storage Operating System 3/Forefront System Product VOS3/FS VOS3

Virtual-storage Operating System 3/Leading System Product VOS3/LS

Extensible Data Manager/Base Extended Version 2
XDM basic program XDM/BASE E2

XDM/BASE E2

XDM/Data Communication and Control Manager 3
XDM Data communication control XDM/DCCM3

XDM/DCCM3

XDM/Relational Database XDM/RD XDM/RD XDM/RD

XDM/Relational Database Extended Version 2
XDM/RD E2

XDM/RD E2

VOS3 Database Connection Server DB Connection Server

DB2 Universal Database for OS/390 Version 6 DB2

DNCWARE ClusterPerfect (Linux Version) ClusterPerfect

Microsoft(R) Excel Microsoft Excel or Excel

Microsoft(R) Visual C++(R) Visual C++ or C++

Oracle 8i ORACLE

Oracle 9i

Oracle 10g

Sun JavaTM System Directory Server Sun Java System Directory Server or
Directory Server

HP-UX 11i V2 (IPF) HP-UX or HP-UX (IPF)

Red Hat Linux Linux

Red Hat Enterprise Linux

Red Hat Enterprise Linux AS 3 (IPF) Linux (IPF) Linux

Red Hat Enterprise Linux AS 4 (IPF)

Red Hat Enterprise Linux AS 3(AMD64 & Intel EM64T) Linux (EM64T)

Red Hat Enterprise Linux AS 4(AMD64 & Intel EM64T)

Red Hat Enterprise Linux ES 4(AMD64 & Intel EM64T)

turbolinux 7 Server for AP8000 Linux for AP8000

Name of product or other entity Representation

ix

Microsoft(R) Windows NT(R) Workstation Operating System Version
4.0

Windows NT

Microsoft(R) Windows NT(R) Server Network Operating System
Version 4.0

Microsoft(R) Windows(R) 2000 Professional Operating System Windows 2000

Microsoft(R) Windows(R) 2000 Server Operating System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating System

Microsoft(R) Windows(R) 2000 Advanced Server Operating System Windows 2000 or Windows 2000
Advanced Server

Microsoft(R) Windows ServerTM 2003, Standard Edition Windows Server 2003

Microsoft(R) Windows ServerTM 2003, Enterprise Edition

Microsoft(R) Windows ServerTM 2003 R2, Standard Edition Windows Server 2003 R2 or Windows
Server 2003

Microsoft(R) Windows ServerTM 2003 R2, Enterprise Edition

64 bit Version Microsoft(R) Windows ServerTM 2003, Enterprise
Edition (IPF)

Windows Server 2003 (IPF) or
Windows Server 2003

Microsoft(R) Windows ServerTM 2003, Standard x64 Edition Windows Server
2003 or Windows
Server 2003 x64
Editions

Windows (x64)

Microsoft(R) Windows ServerTM 2003, Enterprise x64 Edition

Microsoft(R) Windows ServerTM 2003 R2, Standard x64 Edition Windows Server
2003, Windows
Server 2003 R2 or
Windows Server
2003 x64 Editions

Microsoft(R) Windows ServerTM 2003 R2, Enterprise x64 Edition

Microsoft(R) Windows(R) XP Professional x64 Edition Windows XP or
Windows XP x64
Edition

Microsoft(R) Windows(R) XP Professional Operating System Windows XP
Professional

Windows XP

Microsoft(R) Windows(R) XP Home Edition Operating System Windows XP Home
Edition

Single server SDS

Name of product or other entity Representation

x

• Windows 2000, Windows XP, and Windows Server 2003 may be referred to
collectively as Windows.

• The HiRDB directory path is represented as %PDDIR%. The path of the Windows
installation directory is represented as %windir%.

• The hosts file means the hosts file stipulated by TCP/IP. As a rule, a reference
to the hosts file means the %windir%\system32\drivers\etc\hosts file.

This manual also uses the following abbreviations:

System manager MGR

Front-end server FES

Dictionary server DS

Back-end server BES

Abbreviation Full name or meaning

ACK Acknowledgement

ADM Adaptable Data Manager

ADO ActiveX Data Objects

ADT Abstract Data Type

AP Application Program

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

BES Back End Server

BLOB Binary Large Object

BOM Byte Order Mark

CD-ROM Compact Disc - Read Only Memory

CGI Common Gateway Interface

CLOB Character Large Object

CMT Cassette Magnetic Tape

COBOL Common Business Oriented Language

CORBA(R) Common ORB Architecture

Name of product or other entity Representation

xi

CPU Central Processing Unit

CSV Comma Separated Values

DAO Data Access Object

DAT Digital Audio Taperecorder

DB Database

DBM Database Module

DBMS Database Management System

DDL Data Definition Language

DF for Windows NT Distributing Facility for Windows NT

DF/UX Distributing Facility/for UNIX

DIC Dictionary Server

DLT Digital Linear Tape

DML Data Manipulate Language

DNS Domain Name System

DOM Document Object Model

DS Dictionary Server

DTD Document Type Definition

DTP Distributed Transaction Processing

DWH Data Warehouse

EUC Extended UNIX Code

EX Exclusive

FAT File Allocation Table

FD Floppy Disk

FES Front End Server

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GUI Graphical User Interface

Abbreviation Full name or meaning

xii

HBA Host Bus Adapter

HD Hard Disk

HTML Hyper Text Markup Language

ID Identification number

IP Internet Protocol

IPF Itanium(R) Processor Family

JAR Java Archive File

Java VM Java Virtual Machine

JDBC Java Database Connectivity

JDK Java Developer's Kit

JFS Journaled File System

JFS2 Enhanced Journaled File System

JIS Japanese Industrial Standard code

JP1 Job Management Partner 1

JRE Java Runtime Environment

JTA Java Transaction API

JTS Java Transaction Service

KEIS Kanji processing Extended Information System

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LIP loop initialization process

LOB Large Object

LRU Least Recently Used

LTO Linear Tape-Open

LU Logical Unit

LUN Logical Unit Number

LVM Logical Volume Manager

Abbreviation Full name or meaning

xiii

MGR System Manager

MIB Management Information Base

MRCF Multiple RAID Coupling Feature

MSCS Microsoft Cluster Server

NAFO Network Adapter Fail Over

NAPT Network Address Port Translation

NAT Network Address Translation

NIC Network Interface Card

NIS Network Information Service

NTFS New Technology File System

ODBC Open Database Connectivity

OLAP Online Analytical Processing

OLE Object Linking and Embedding

OLTP On-Line Transaction Processing

OOCOBOL Object Oriented COBOL

ORB Object Request Broker

OS Operating System

OSI Open Systems Interconnection

OTS Object Transaction Service

PC Personal Computer

PDM II E2 Practical Data Manager II Extended Version 2

PIC Plug-in Code

PNM Public Network Management

POSIX Portable Operating System Interface for UNIX

PP Program Product

PR Protected Retrieve

PU Protected Update

Abbreviation Full name or meaning

xiv

RAID Redundant Arrays of Inexpensive Disk

RD Relational Database

RDB Relational Database

RDB1 Relational Database Manager 1

RDB1 E2 Relational Database Manager 1 Extended Version 2

RDO Remote Data Objects

RiSe Real time SAN replication

RM Resource Manager

RMM Resource Manager Monitor

RPC Remote Procedure Call

SAX Simple API for XML

SDS Single Database Server

SGML Standard Generalized Markup Language

SJIS Shift JIS

SNMP Simple Network Management Protocol

SQL Structured Query Language

SQL/K Structured Query Language / VOS K

SR Shared Retrieve

SU Shared Update

TCP/IP Transmission Control Protocol / Internet Protocol

TM Transaction Manager

TMS-4V/SP Transaction Management System - 4V / System Product

UAP User Application Program

UOC User Own Coding

VOS K Virtual-storage Operating System Kindness

VOS1 Virtual-storage Operating System 1

VOS3 Virtual-storage Operating System 3

Abbreviation Full name or meaning

xv

Log representations
The application log that is displayed by Windows Event Viewer is referred to as the
event log. The following procedure is used to view the event log.
To view the event log:

1. Choose Start, Programs, Administrative Tools (Common), and then Event
Viewer.
2. Choose Log, and then Application.

3. The application log is displayed. Messages with HiRDBSingleServer or
HiRDBParallelServer displayed in the Source column were issued by HiRDB.
If you specified a setup identifier when you installed HiRDB, the specified setup
identifier follows HiRDBSingleServer or HiRDBParallelServer.

Conventions: Diagrams
This manual uses the following conventions in diagrams:

WS Workstation

WWW World Wide Web

XDM/BASE E2 Extensible Data Manager / Base Extended Version 2

XDM/DF Extensible Data Manager / Distributing Facility

XDM/DS Extensible Data Manager / Data Spreader

XDM/RD E2 Extensible Data Manager / Relational Database Extended Version 2

XDM/SD E2 Extensible Data Manager / Structured Database Extended Version 2

XDM/XT Extensible Data Manager / Data Extract

XFIT Extended File Transmission program

XML Extensible Markup Language

Abbreviation Full name or meaning

xvi

1 In some figures, a program is enclosed in a simple rectangle (without the shading).
2 Input data files, unload files, and backup files can be stored on magnetic cassette tape
(CMT) and digital audio tape (DAT), as well as on magnetic disk; only magnetic disk
storage is described in this manual.

Conventions: Fonts and symbols
Font and symbol conventions are classified as:

• General font conventions
• Conventions in syntax explanations

These conventions are described below.
General font conventions

The following table lists the general font conventions:

xvii

Examples of coding and messages appear as follows (although there may be some
exceptions, such as when coding is included in a diagram):
MakeDatabase
...
StoreDatabase temp DB32

In examples of coding, an ellipsis (...) indicates that one or more lines of coding are not
shown for purposes of brevity.
Conventions in syntax explanations

Syntax definitions appear as follows:
StoreDatabase [temp|perm] (database-name ...)
The following table lists the conventions used in syntax explanations:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes menus,
menu options, buttons, radio box options, or explanatory labels. For example, bold is used in
sentences such as the following:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text provided by the user or system.
Italics are also used for emphasis. For example:
• Write the command as follows:

copy source-file target-file
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as messages) output
by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

Example font or symbol Convention

StoreDatabase Code-font characters must be entered exactly as shown.

database-name This font style marks a placeholder that indicates where appropriate characters are
to be entered in an actual command.

SD Bold code-font characters indicate the abbreviation for a command.

perm Underlined characters indicate the default value.

[] Square brackets enclose an item or set of items whose specification is optional.

xviii

Notes on Windows path names
• In this manual, the Windows terms directory and folder are both referred to as

directory.
• Include the drive name when you specify an absolute path name.

Example: C:\win32app\hitachi\hirdb_s\spool\tmp
• When you specify a path name in a command argument, in a control statement

file, or in a HiRDB system definition file, and that path name includes a space or
a parenthesis, you must enclose the entire path name in double quotation marks
(").

Example: pdinit -d "C:\Program
Files(x86)\hitachi\hirdb_s\conf\mkinit"
However, double quotation marks are not necessary when you use the set command
in a batch file or at the command prompt to set an environment variable or when you
specify the installation directory. If you do use double quotation marks in such a case,
the double quotation marks become part of the value assigned to the environment
variable.
Example: set PDCLTPATH=C:\Program Files\hitachi\hirdb_s\spool

• HiRDB cannot use files on a networked drive, so you must install HiRDB and
configure the HiRDB environment on a local drive. Files used by utilities, such
as utility input and output files, must also be on the local drive.

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

| Only one of the options separated by a vertical bar can be specified at the same
time.

... An ellipsis (...) indicates that the item or items enclosed in () or [] immediately
preceding the ellipsis may be specified as many times as necessary.

() Parentheses indicate the range of items to which the vertical bar (|) or ellipsis (...)
is applicable.

Example font or symbol Convention

xix

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.
• Version 2.05 is written as 02-05.
• Version 2.50 (or 2.5) is written as 02-50.
• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

Important notes on this manual
The following facilities are explained, but they are not supported:

• Distributed database facility
• Server mode system switchover facility
• User server hot standby
• Rapid system switchover facility
• Standby-less system switchover (1:1) facility
• Standby-less system switchover (effects distributed) facility
• HiRDB External Data Access facility
• Inner replica facility (when described for the Windows version of HiRDB)
• Updatable online reorganization (when described for the Windows version of

HiRDB)
• Sun Java System Directory Server linkage facility
• Simple setup tool

The following products and option program products are explained, but they are not
supported:

• HiRDB Control Manager
• HiRDB Disaster Recovery Light Edition
• HiRDB External Data Access
• HiRDB LDAP Option

xxi

Contents

Preface i
Intended readers ...i
Organization of this manual ...i
Related publications ..ii
Organization of HiRDB manuals ...iv
Conventions: Abbreviations ..v
Log representations ...xv
Conventions: Diagrams ...xv
Conventions: Fonts and symbols..xvi
Notes on Windows path names ... xviii
Conventions: KB, MB, GB, and TB ... xviii
Conventions: Version numbers...xix
Important notes on this manual ..xix

1. Overview 1
1.1 Characteristics of HiRDB...2

1.1.1 Overview of HiRDB systems..2
1.1.2 Advantages of using HiRDB...6

1.2 HiRDB system configuration ...11
1.2.1 HiRDB/Single Server configuration ...11
1.2.2 HiRDB/Parallel Server configuration ...11
1.2.3 Multi-HiRDB configuration..15

1.3 Database access modes...17

2. Linking to HiRDB Option Program Products and Other HiRDB-Related
Products 23

2.1 HiRDB option program products ...24
2.1.1 HiRDB Advanced High Availability...24
2.1.2 HiRDB Advanced Partitioning Option ...25
2.1.3 HiRDB LDAP Option ...25
2.1.4 HiRDB External Data Access ...26
2.1.5 HiRDB Non-Recover FES ..30

2.2 Linkage to data linkage products..31
2.2.1 Linkage to HiRDB Datareplicator and HiRDB Dataextractor......................31
2.2.2 Linkage to HiRDB Adapter for XML ...35

2.3 Linkage to directory server products ..37
2.3.1 Overview of the Directory Server linkage facility ..37
2.3.2 Directory servers to which HiRDB can be linked...38

xxii

2.3.3 Capabilities provided by the Directory Server linkage facility 39
2.3.4 Prerequisite products .. 41

2.4 Linkage to OLTP products... 42
2.4.1 OLTP products to which HiRDB can be linked ... 42
2.4.2 HiRDB XA library.. 42
2.4.3 Functions provided by the HiRDB XA library... 43
2.4.4 System configuration.. 44
2.4.5 Registration of HiRDB in the transaction manager...................................... 46

2.5 Linkage to operation support products .. 48
2.5.1 HiRDB SQL Executer .. 48
2.5.2 HiRDB Control Manager.. 48
2.5.3 HiRDB SQL Tuning Advisor ... 49
2.5.4 JP1/Performance Management - Agent Option for HiRDB......................... 49
2.5.5 JP1/Base.. 50
2.5.6 JP1/Integrated Management ... 50
2.5.7 JP1/Automatic Job Management System 2 .. 51

2.6 Linkage to data mining products ... 53
2.7 Linkage to products that handle multimedia information.. 54
2.8 Linkage to Cosminexus ... 58

3. Database Logical Structure 61
3.1 RDAREAs ... 62

3.1.1 Types of RDAREAs ... 62
3.1.2 RDAREA creation.. 64

3.2 Schemas ... 67
3.3 Tables ... 68

3.3.1 Basic table structure.. 68
3.3.2 Table normalization .. 71
3.3.3 FIX attribute ... 73
3.3.4 Primary key... 73
3.3.5 Cluster key.. 73
3.3.6 Suppress option... 74
3.3.7 No-split option.. 74
3.3.8 Table row partitioning... 76
3.3.9 Table matrix partitioning .. 85
3.3.10 Changing the partitioning storage conditions of a table 91
3.3.11 Falsification-prevention table ... 93
3.3.12 Tables used in numbering ... 95
3.3.13 Repetition columns ... 96
3.3.14 View table ... 98
3.3.15 Shared tables... 99

3.4 Indexes ... 101
3.4.1 Basic structure of an index ... 101
3.4.2 Index row partitioning .. 103

xxiii

3.4.3 Index page splitting ...109
3.4.4 Exception key value ..112
3.4.5 Defining an index for a table that contains data..113
3.4.6 Index key value no-lock ..113

3.5 Expansion into an object relational database..118
3.5.1 Abstract data types ..118
3.5.2 Subtypes and inheritance...126
3.5.3 Encapsulation ..132

4. Database Physical Structure 137
4.1 Database physical structure ..138
4.2 Segment design...140
4.3 Page design ...146

5. Database Access Using SQL 149
5.1 Use of SQL in HiRDB..150

5.1.1 HiRDB SQL functions ..150
5.1.2 SQL execution methods ..150

5.2 Basic data manipulation ...152
5.2.1 Cursor ..152
5.2.2 Data retrieval ...152
5.2.3 Data updating ..153
5.2.4 Data deletion ...154
5.2.5 Data insertion ..154
5.2.6 Searching for specific data ..155
5.2.7 Data operations..157
5.2.8 Data processing ...158
5.2.9 Manipulation of data in a table containing an abstract data type159

5.3 Stored procedures and stored functions..163
5.4 Java stored procedures and Java stored functions ..169

5.4.1 Characteristics of a Java stored routine...169
5.4.2 System configuration (position of a Java virtual machine).........................169
5.4.3 Execution of Java stored routines..170
5.4.4 Java stored routine creation and execution procedure171

5.5 Triggers...174
5.6 Integrity constraints ..176

5.6.1 NOT NULL constraint ..176
5.6.2 Uniqueness constraint ...176

5.7 Referential constraints ..178
5.8 Check constraints..182
5.9 Check pending status ..184
5.10 Improving database access performance ..186

5.10.1 Block transfer facility..186
5.10.2 Rapid grouping facility..188

xxiv

5.10.3 Functions that use arrays .. 188
5.10.4 Holdable cursor... 191
5.10.5 SQL optimization ... 191

5.11 Narrowed search .. 197
5.12 Accessing databases using DB access products .. 200

5.12.1 ODBC Driver.. 200
5.12.2 HiRDB OLE DB Provider .. 200
5.12.3 HiRDB.NET Data Provider.. 200
5.12.4 JDBC Driver ... 200
5.12.5 SQLJ ... 201

6. HiRDB Architecture 203
6.1 HiRDB environment setup... 204
6.2 HiRDB file system areas.. 206
6.3 System files.. 209

6.3.1 System log files .. 209
6.3.2 Synchronization point dump files... 210
6.3.3 Status files... 212
6.3.4 System file components.. 214

6.4 Work table files .. 217
6.5 HiRDB system definitions ... 220

6.5.1 HiRDB system definitions for a HiRDB/Single Server 220
6.5.2 HiRDB system definitions for a HiRDB/Parallel Server 221
6.5.3 HiRDB system definition file creation ... 225
6.5.4 System reconfiguration command (pdchgconf command)......................... 225

6.6 HiRDB startup and termination ... 226
6.6.1 Startup and termination modes ... 226
6.6.2 HiRDB automatic startup ... 229
6.6.3 Reduced activation (applicable to HiRDB/Parallel Server only) 229

6.7 Delayed rerun... 230
6.8 Database access processing method .. 233

6.8.1 Global buffers ... 233
6.8.2 Prefetch facility... 236
6.8.3 Asynchronous READ facility... 237
6.8.4 Deferred write processing... 238
6.8.5 Facility for parallel writes in deferred write processing............................. 238
6.8.6 Incorporation during commit.. 239
6.8.7 LRU management method for global buffers... 239
6.8.8 Accessing pages using the snapshot method .. 240
6.8.9 Global buffer pre-writing.. 240
6.8.10 Local buffers... 242
6.8.11 BLOB data file output facility .. 244
6.8.12 BLOB and BINARY data addition update and partial extraction facility248
6.8.13 Locator facility ... 250

xxv

6.9 Transaction control ...254
6.9.1 Connection to and disconnection from HiRDB ..254
6.9.2 Multi-connection facility...254
6.9.3 Transaction startup and termination ..255
6.9.4 Commit and rollback...256
6.9.5 UAP transaction management under OLTP environment259
6.9.6 Automatic reconnect facility ...259

6.10 Locking...261
6.10.1 Units of locking...261
6.10.2 Lock modes ...262
6.10.3 Automatic locking by HiRDB...263
6.10.4 Changing the lock based on a user setting ..263
6.10.5 Lock period ...264
6.10.6 Deadlock..264

6.11 Operation without collecting a database update log ...265

7. Database Management 269
7.1 Database recovery...270

7.1.1 Overview of database recovery ...270
7.1.2 Times at which database can be recovered..270

7.2 Preparations for database errors ...272
7.2.1 Making backups ..272
7.2.2 Creating an unload log file (unloading system log)273
7.2.3 Differential backup facility ...277
7.2.4 Backup-hold ..279
7.2.5 Reducing the time needed to make backups of user LOB RDAREAs (frozen

update command)..280
7.2.6 NetBackup linkage facility..282

7.3 Reorganizing tables and indexes ..285
7.3.1 Table reorganization ..285
7.3.2 Index reorganization..291

7.4 Reusing used free pages and used free segments ...294
7.4.1 Reusing used free pages ..294
7.4.2 Reusing used free segments ..297

7.5 Adding, expanding, and moving RDAREAs ...299
7.5.1 Adding RDAREAs..299
7.5.2 Expanding an RDAREA ...299
7.5.3 RDAREA automatic extension ...299
7.5.4 Moving RDAREAs (HiRDB/Parallel Server only)301

7.6 Space conversion facility..303
7.7 Facility for conversion to a decimal signed normalized number............................306

8. Error-handling Facilities 309
8.1 System switchover facility ...310

xxvi

8.1.1 Overview of the system switchover facility ... 310
8.1.2 Monitor mode and server mode.. 316
8.1.3 System switchover facility configurations ... 318
8.1.4 System configuration examples.. 318
8.1.5 Functions that reduce system switchover time (user server hot standby and the

rapid system switchover facility) ... 325
8.2 Recovery-unnecessary front-end servers ... 327

8.2.1 Overview of recovery-unnecessary front-end servers 327
8.2.2 Configuration example of a system that uses a recovery-unnecessary front-end

server .. 328

9. Facilities Related to Security Measures 329
9.1 Security facility.. 330

9.1.1 User privileges.. 330
9.1.2 Operating the security facility .. 333

9.2 Security audit facility... 334
9.2.1 Overview of the security audit facility ... 334
9.2.2 Audit events .. 340

9.3 Connection security facility ... 345
9.3.1 Overview of the connection security facility.. 345
9.3.2 Restrictions on password character strings... 345
9.3.3 Restrictions on the number of consecutive certification failures 347

10. Plug-ins 349
10.1 Overview of HiRDB plug-ins .. 350
10.2 Applying a plug-in to a job .. 351
10.3 HiRDB plug-in facilities .. 354

10.3.1 HiRDB Text Search Plug-in ... 354
10.3.2 HiRDB Image Search Plug-in .. 355
10.3.3 HiRDB File Link .. 356
10.3.4 HiRDB Spatial Search Plug-in ... 356

10.4 Preparations for using plug-ins in HiRDB... 358
10.4.1 Setup and registration of a plug-in ... 358
10.4.2 Initialization of the registry facility .. 358
10.4.3 Table definition for plug-in usage... 359
10.4.4 Delayed batch creation of plug-in index... 359

11. 64-Bit-Mode HiRDB 361
11.1 Overview.. 362
11.2 Functions not available in 64-bit-mode HiRDB .. 363
11.3 Differences between 32- and 64-bit modes.. 365

11.3.1 Differences in HiRDB system definition.. 365
11.3.2 Differences in client environment definition .. 366
11.3.3 64-bit-mode HiRDB client support range... 366

xxvii

11.4 Migrating from 32-bit mode to 64-bit mode...368

Appendixes 373
A. Functional Differences Between HiRDB Versions on Different Platforms374
B. Data Dictionary Tables ..379
C. HiRDB Client and HiRDB Server Connectivity ...383
D. Glossary ...387

Index 437

xxviii

List of figures

Figure 1-1: Configuration of a HiRDB system .. 3
Figure 1-2: Overview of the XDM/RD E2 connection facility.. 6
Figure 1-3: HiRDB/Single Server configuration ..11
Figure 1-4: HiRDB/Parallel Server configuration ... 12
Figure 1-5: Floatable server ... 14
Figure 1-6: Example of HiRDB/Parallel Server in a heterogeneous system configuration..... 15
Figure 1-7: Multi-HiRDB configuration using HiRDB/Single Servers................................... 16
Figure 1-8: Accessing a database by executing UAPs from HiRDB clients 17
Figure 1-9: Accessing a database by executing a UAP running on the HiRDB server 18
Figure 1-10: Accessing a database by executing an OLTP UAP... 18
Figure 1-11: Accessing a HiRDB database from an ODBC-compatible application 19
Figure 1-12: Accessing a HiRDB database from an OLE DB-compatible application 20
Figure 1-13: Accessing a HiRDB database from a JDBC-compatible application 21
Figure 1-14: Accessing a database from an ADO.NET-compliant application 22
Figure 2-1: Overview of the HiRDB External Data Access facility .. 27
Figure 2-2: System configuration example when the HiRDB External Data Access facility is

being used ... 29
Figure 2-3: Example of using the replication facility .. 33
Figure 2-4: Overview of the Directory Server linkage facility .. 38
Figure 2-5: Overview of using the Directory Server linkage facility to perform user

authentication (Sun Java System Directory Server linkage facility).................... 40
Figure 2-6: Granting of table access privilege to a role ... 41
Figure 2-7: Position of HiRDB in X/Open DTP model ... 43
Figure 2-8: Linkage between HiRDB/Single Servers and OpenTp1 44
Figure 2-9: Linkage between HiRDB/Parallel Server and OpenTP1 45
Figure 2-10: Linkage to multiple OpenTP1 ... 46
Figure 2-11: Overview of event monitoring using JP1/Integrated Management..................... 51
Figure 2-12: Automatic control when system log files are unloaded by linking with JP1 52
Figure 2-13: System configuration of HiRDB-related products .. 55
Figure 2-14: Linking to Cosminexus ... 59
Figure 3-1: Relationship between RDAREA, table, and index ... 62
Figure 3-2: RDAREA configuration example (for HiRDB/Parallel Server) 66
Figure 3-3: Concept of schemas... 67
Figure 3-4: Example of a table... 68
Figure 3-5: Table normalization... 72
Figure 3-6: Normal data storage method when the actual data size of a variable-size character

string is at least 256 bytes... 75
Figure 3-7: Data storage method used when the no-split option is specified 75
Figure 3-8: Table row partitioning ... 76
Figure 3-9: Key range partitioning: Example of storage condition specification 77

xxix

Figure 3-10: Key range partitioning: Example of boundary value specification79
Figure 3-11: Example of hash partitioning ...81
Figure 3-12: Example of table row partitioning: HiRDB/Single Server82
Figure 3-13: Example of table row partitioning: HiRDB/Parallel Server83
Figure 3-14: Hash facility for hash row partitioning ..84
Figure 3-15: Example of matrix partitioning (combining with key range partitioning with

boundary values specified)..88
Figure 3-16: Example of matrix partitioning (combination of key range partitioning with

boundary values specified and hash partitioning) ...90
Figure 3-17: Example of the split facility (boundary value specification)92
Figure 3-18: Example of the combine facility (boundary value specification)93
Figure 3-19: Example of a table containing repetition columns...96
Figure 3-20: Example of a view table...98
Figure 3-21: B-tree structure of an index..102
Figure 3-22: Index row partitioning..103
Figure 3-23: Example of row-partitioning an index: HiRDB/Single Server104
Figure 3-24: Example of row-partitioning an index within the server106
Figure 3-25: Example of row-partitioning an index among servers107
Figure 3-26: Partitioning key index: Single-column partitioning...108
Figure 3-27: Partitioning key index: Multicolumn partitioning ...109
Figure 3-28: Example of even-split index page splitting..110
Figure 3-29: Example of unbalanced index split .. 111
Figure 3-30: Example of deadlock when the index key value no-lock option is not used115
Figure 3-31: Example of preventing deadlock by using the index key value no-lock option 116
Figure 3-32: Conceptual model based on real-world information and an abstract data type .119
Figure 3-33: STAFF_TABLE for which an abstract data type is defined121
Figure 3-34: Encapsulation ...122
Figure 3-35: STAFF_TABLE for which values are generated using a constructor function .124
Figure 3-36: Handling of null values in STAFF_TABLE for which an abstract data type is

defined...125
Figure 3-37: Conceptual model based on real-world information and an abstract data type (for

a salesperson) ..127
Figure 3-38: Operations related to employees and salespersons in the real world.................129
Figure 3-39: Override ...131
Figure 3-40: Encapsulation levels and access types ...134
Figure 4-1: Database physical structure..138
Figure 4-2: Ratio of free pages in a segment ..140
Figure 4-3: Overview of the free space reuse facility...143
Figure 4-4: Ratio of unused area in a page ...146
Figure 5-1: Jobs to which a stored procedure can be applied ...164
Figure 5-2: Stored procedure usage ..165
Figure 5-3: Communications processing for an SQL stored procedure166
Figure 5-4: Position of Java virtual machine in a HiRDB system..170
Figure 5-5: Flow from creation to execution of a Java stored routine....................................172

xxx

Figure 5-6: Overview of triggers.. 174
Figure 5-7: Example of referenced table and referencing table ... 178
Figure 5-8: Example of the action when update SQL code is executed for a referenced table

(with CASCADE specified) ... 179
Figure 5-9: Example of the action when update SQL code is executed for a referencing table

(with CASCADE specified) ... 180
Figure 5-10: Example of the action when update SQL code is executed for a referenced table

(with RESTRICT specified) ... 181
Figure 5-11: Overview of block transfer facility.. 187
Figure 5-12: Example of a search using a list .. 198
Figure 6-1: Relationship between HiRDB file system areas and file system areas provided by

the OS ... 206
Figure 6-2: Organization of system log files.. 210
Figure 6-3: Organization of synchronization point dump files ...211
Figure 6-4: Organization of status files.. 213
Figure 6-5: Configuration of system files in a HiRDB/Single Server 215
Figure 6-6: Configuration of system files in a HiRDB/Parallel Server 216
Figure 6-7: Example configuration of HiRDB system definition files (HiRDB/Single

Server) .. 221
Figure 6-8: Example configuration of HiRDB system definition files (HiRDB/Parallel

Server) .. 223
Figure 6-9: Example configuration of HiRDB system definition files (when the HiRDB External

Data Access facility is being used)... 224
Figure 6-10: Concept of delayed rerun .. 231
Figure 6-11: Concept of global buffers .. 235
Figure 6-12: Overview of the snapshot method... 240
Figure 6-13: Overview of global buffer pre-writing .. 241
Figure 6-14: Overview of local buffers.. 243
Figure 6-15: Overview of the BLOB data file output facility.. 245
Figure 6-16: Example of a retrieval using the BLOB data file output facility (retrieval of BLOB

columns) ... 247
Figure 6-17: Example of a retrieval using the BLOB data file output facility (retrieval of an

abstract data type with the BLOB attribute)... 248
Figure 6-18: Example of BLOB data addition updating.. 249
Figure 6-19: Example of BLOB data partial extraction... 250
Figure 6-20: Overview of the locator facility .. 252
Figure 6-21: Examples of transaction startup and termination .. 255
Figure 6-22: Processing for one-phase commit ... 257
Figure 6-23: Processing for two-phase commit ... 258
Figure 6-24: Locked resources and their inclusion relationships... 261
Figure 7-1: Overview of database recovery process .. 270
Figure 7-2: Transactions that are recovered (with recovery to the most recent synchronization

point before the failure occurred) ... 271
Figure 7-3: System log file status changes... 274

xxxi

Figure 7-4: Relationship between backup and unload log files..276
Figure 7-5: Overview of the differential backup facility ..278
Figure 7-6: Overview of frozen update command processing..281
Figure 7-7: How to use the frozen update command to make backups282
Figure 7-8: System configuration example of the NetBackup linkage facility283
Figure 7-9: Table reorganization...285
Figure 7-10: Reorganization of an entire table ...286
Figure 7-11: Reorganization of an RDAREA...287
Figure 7-12: Reorganization of a schema ...288
Figure 7-13: Overview of facility for predicting reorganization time290
Figure 7-14: Index reorganization ..292
Figure 7-15: Releasing used free pages ..294
Figure 7-16: Process of used free pages being created for index pages297
Figure 7-17: Releasing used free segments ..298
Figure 7-18: RDAREA automatic extension ..300
Figure 7-19: Moving RDAREAs..301
Figure 7-20: Level 1 processing ...304
Figure 7-21: Level 3 processing ...305
Figure 8-1: Overview of the system switchover facility (standby system switchover

facility) ..311
Figure 8-2: Overview of the standby-less system switchover (1:1) facility312
Figure 8-3: Overview of standby-less system switchover (effects distributed) facility (with

distribution alternates and multi-stage system switchover)315
Figure 8-4: One-to-one system switchover configuration ..319
Figure 8-5: Two-to-one system switchover configuration..320
Figure 8-6: Mutual system switchover configuration...320
Figure 8-7: System configuration example of a mutual alternating configuration.................321
Figure 8-8: System configuration example of a one-way alternating configuration (2-node

configuration) ..322
Figure 8-9: System configuration example of the standby-less system switchover (effects

distributed) facility ..323
Figure 8-10: System configuration example of a mixed standby-less (1:1) and standby type

setup ..324
Figure 8-11: Comparison of system switchover times..326
Figure 8-12: Operation with and without using a recovery-unnecessary front-end server.....327
Figure 8-13: Configuration example of a system that uses a recovery-unnecessary front-end

server ...328
Figure 9-1: HiRDB user privileges ...330
Figure 9-2: Overview of the security audit facility...334
Figure 9-3: Accessing audit trails ...340
Figure 10-1: Application of plug-ins to a job ...352
Figure 10-2: Delayed batch creation of plug-in index ..360
Figure 11-1: Comparison between 32- and 64-bit-mode HiRDBs ...362
Figure D-1: Partitioning key index: Single-column partitioning..415

xxxii

Figure D-2: Partitioning key index: Multicolumn partitioning.. 416
Figure D-3: Example of a table containing repetition columns ... 423

xxxiii

List of tables

Table 2-1: Products needed on the HiRDB side to use the HiRDB External Data Access
facility..28

Table 2-2: Products that can be linked to HiRDB by means of the replication facility............34
Table 2-3: Functions provided by the HiRDB XA library..43
Table 3-1: Types of RDAREAs ..62
Table 3-2: Server machines on which RDAREAs can be created ..65
Table 3-3: Available data types...70
Table 3-4: Types of hash partitioning ...80
Table 3-5: Executability of operations on falsification-prevented tables93
Table 3-6: Guidelines for row-partitioning an index: HiRDB/Single Server104
Table 3-7: Guidelines for row-partitioning an index: HiRDB/Parallel Server)105
Table 3-8: Encapsulation levels and access types...133
Table 4-1: Types of pages ...139
Table 4-2: Segment statuses..140
Table 4-3: Page statuses ..146
Table 5-1: Operations that cannot be performed on a check pending status table..................185
Table 5-2: SQL optimization specification facilities ..192
Table 5-3: Facilities of SQL optimization options..192
Table 5-4: Facilities of SQL extension optimizing options ..195
Table 6-1: Advantages and disadvantages of the environment setup methods.......................204
Table 6-2: Type of HiRDB file system area..207
Table 6-3: Maximum size of a HiRDB file system area...208
Table 6-4: System file components...214
Table 6-5: HiRDB system definitions (HiRDB/Single Server) ..220
Table 6-6: HiRDB system definitions (HiRDB/Parallel Server) ..221
Table 6-7: HiRDB startup modes..226
Table 6-8: HiRDB termination modes ..228
Table 6-9: Types of global buffers ..233
Table 6-10: Types of local buffers ..242
Table 6-11: Commitment control on a HiRDB/Parallel Server ..259
Table 6-12: Database update log acquisition modes...265
Table 6-13: Methods of specifying the database update log acquisition mode265
Table 6-14: Relationship between the specification value in the RECOVERY operand and

PDDBLOG operand or the -l option, and the value that is assumed during execution
of the UAP (or the utility) ...266

Table 6-15: Processing performed by HiRDB and the action to be taken by the user in the event
of abnormal termination of the UAP...267

Table 6-16: Times for recovering the database ...267
Table 7-1: Backup units ..272
Table 7-2: Backup acquisition modes ...273

xxxiv

Table 7-3: Types of backup-hold.. 280
Table 7-4: Benefits gained from releasing used free pages of a table.................................... 295
Table 7-5: Benefits gained from releasing used free space of an index................................. 296
Table 7-6: Space conversion levels .. 303
Table 7-7: Specification of the sign part of signed packed format... 306
Table 7-8: Rules for conversion of the sign part of signed packed format (other than "0"

data) .. 306
Table 7-9: Rules for conversion of the sign part of signed packed format ("0" data)............ 307
Table 8-1: Functional differences between the monitor mode and the server mode.............. 316
Table 8-2: Products needed to operate in the server mode... 318
Table 9-1: Access privilege types... 333
Table 9-2: Information collected in audit trails .. 337
Table 9-3: Audit events .. 341
Table 9-4: Overview of connection security facility.. 345
Table 9-5: Restrictions that can be specified for passwords .. 346
Table 10-1: HiRDB plug-ins .. 350
Table 10-2: RDAREAs for storing information related to registry facility 359
Table 11-1: Applicability of related products in 64-bit-mode HiRDB 363
Table 11-2: Operands with higher maximum value specifications (HiRDB system

definition) ... 365
Table 11-3: Operands with higher maximum value specifications (client environment

definition) ... 366
Table 11-4: 64-bit-mode HiRDB client support range... 367
Table 11-5: Operands with different default values ... 368
Table 11-6: Changes in linkage areas... 369
Table 11-7: Changes in descriptor areas... 369
Table 11-8: Changed C-language data descriptions ... 370
Table A-1: Functional differences between HiRDB versions on different platforms............ 374
Table B-1: Data dictionary tables... 379
Table C-1: HiRDB client and HiRDB server connectivity (HiRDB server Version 5.0 or

later).. 383
Table C-2: HiRDB client and HiRDB server connectivity (HiRDB server Version 4.0 or

older)... 385
Table D-1: Types of backup-hold... 390

1

Chapter

1. Overview

This chapter explains the characteristics, system configuration, and access modes of
HiRDB. This chapter also provides an overview of HiRDB option program products
and other HiRDB related products.

1.1 Characteristics of HiRDB
1.2 HiRDB system configuration
1.3 Database access modes

1. Overview

2

1.1 Characteristics of HiRDB

HiRDB is a database management system (DBMS) that enables you to construct
relational databases appropriate to the scale of your operations.
Interlinking enables HiRDB to connect independently-operating server machines.
HiRDB offers a high degree of flexibility, thanks to the adoption of the Shared Nothing
method, in which a processor works exclusively on a database residing on a single
disk. HiRDB can be adapted to a broad range of architectures, from a single-node
configuration in which HiRDB runs on a single server machine, to a parallel processor
configuration in which HiRDB runs on multiple server machines. HiRDB also makes
it possible to expand your database system by adding server machines subsequently,
which enables scalable system construction.
When HiRDB is configured for parallel processors, it is capable of executing data
retrievals and update requests internally and in parallel, thus achieving high
throughput and fast turnaround time.
Additionally, when used together with a middleware application suite (DataStage,
HITSENSER, DATAFRONT, or other suite), HiRDB supports the building of
database warehouses, which are needed for implementing leading-edge management
systems.

1.1.1 Overview of HiRDB systems
HiRDB is used in a network environment consisting of client/server systems. A server
system in which a database is installed is called a HiRDB server; a client system in
which UAPs are developed and executed is called a HiRDB client. HiRDB servers and
HiRDB clients are referred to as HiRDB systems. Figure 1-1 shows the configuration
of a HiRDB system.

1. Overview

3

Figure 1-1: Configuration of a HiRDB system

(1) HiRDB servers
The two types of HiRDB servers are the HiRDB/Single Server and the HiRDB/Parallel
Server. You must select one of these two types, as appropriate to your system mode or
the types of operations you will be performing.
A HiRDB server runs on one of the following platforms:

• HP-UX
• Solaris
• AIX 5L
• Linux
• Windows 2000
• Windows XP Professional
• Windows Server 2003

This manual describes the Windows version of HiRDB (which includes Windows
2000, Windows XP Professional, and Windows Server 2003).

1. Overview

4

(a) HiRDB/Single Server
You would use a HiRDB/Single Server for a database system that consists of a single
server machine. Because of its stable processing performance and simple operations as
compared with a HiRDB Parallel Server, a HiRDB/Single Server is well-suited for
small and medium-sized databases.

(b) HiRDB Parallel Server
A HiRDB/Parallel Server makes it possible to link multiple server machines into a
single database system so that a table can be split up and stored on multiple server
machines. Because it permits different servers to perform retrieval tasks in parallel, a
HiRDB Parallel Server provides improved performance. In addition, its capability to
add or update large amounts of data or back up a database concurrently means that a
HiRDB Parallel Server is able to maintain high performance even when the database
becomes very large.
The Shared Nothing method, which fully exploits the hardware's capabilities, enables
you to maintain stable performance by increasing the number of servers when the
volume of data to be handled increases. In addition, a HiRDB Parallel Server can
achieve well-balanced parallel processing in a manner that prevents concentration of
processing on a specific server by delegating sorting, joining, and similar
large-overhead tasks to other servers that have smaller workloads.

(2) HiRDB clients
The two types of HiRDB clients are the HiRDB/Developer's Kit and HiRDB/Run
Time.
A HiRDB/client runs on one of the following platforms:

• HP-UX
• Solaris
• AIX 5L
• Linux
• Linux for AP8000
• Windows 2000
• Windows XP Professional
• Windows XP Home Edition
• Windows Server 2003

(a) HiRDB/Developer's Kit
HiRDB/Developer's Kit is a program for developing (pre-processing, compiling,
linking) and executing UAPs. As the development language for UAPs, you can use C,

1. Overview

5

C++, COBOL85, OOCOBOL, COBOL 2002, or JavaTM (SQLJ).
Because a HiRDB server includes the HiRDB/Developer's Kit functions, a HiRDB/
Developer's Kit is not necessary for developing or executing a UAP on a HiRDB
server; a HiRDB/Developer's Kit is necessary, however, to develop or execute a UAP
on a client.

Hint:

Execute the UAP with a HiRDB/Developer's Kit that is running on the same
platform as the HiRDB/Developer's Kit that was used to develop the UAP.

(b) HiRDB/Run Time
HiRDB/Run Time is a run-time program that is used exclusively for executing
previously created UAPs. HiRDB/Run Time cannot be used to develop (preprocess,
compile, link) a UAP; it can only be used to execute a UAP.

(c) Connecting from a HiRDB client to XDM/RD E2
At a HiRDB client, you can develop and execute UAPs that access XDM/RD E2
databases. Such UAPs can be used to access XDM/RD E2 databases from HiRDB
clients. The function that performs this type of access is called the XDM/RD E2
connection facility. Figure 1-2 provides an overview of the XDM/RD E2 connection
facility.

1. Overview

6

Figure 1-2: Overview of the XDM/RD E2 connection facility

Explanation
Using the XDM/RD E2 connection facility, you can directly access XDM/RD E2
databases from UAPs that are running on HiRDB clients.
Although ODBC or other functions can also be used to access XDM/RD E2 from
a UAP running on a PC, there are limitations imposed by the application
language. Using the XDM/RD E2 connection facility enables you to perform a
wider variety of processing by coding SQL statements directly in the UAP, which
also improves UAP development efficiency.

1.1.2 Advantages of using HiRDB
HiRDB is a relational database that incorporates both concurrent batch updating and
parallel recovery techniques. The characteristics of HiRDB are discussed below.

(1) Excellent scalability
The two types of HiRDB are the HiRDB/Single Server that operates on a single server
machine, and the HiRDB/Parallel Server that operates on two or more server
machines. You can select either a HiRDB/Single Server or a HiRDB Parallel Server,
depending on the scope of the operations to which HiRDB will be applied. You can
change a HiRDB/Single Server into a HiRDB/Parallel Server, or you can increase the
number of server machines used in a HiRDB/Parallel Server. Thus, you can expand

1. Overview

7

your system gradually as the scale of your operations increases.
The Shared Nothing method that is incorporated into HiRDB is well-suited for parallel
processing and enables you to increase the processing capacity of HiRDB in
proportion to the number of processors that are used. In other words, you can increase
processing capacity without having to add server machines. When the flexible hash
partitioning function is used and a server machine is added, HiRDB modifies the hash
function automatically, so that the data is stored automatically in the new server
machine.

(2) Achieving a high-performance system
(a) Performance improvement through parallel processing

Concurrent retrieval and updating of tables
Database search and update operations can be distributed to multiple server
machines, and table data can also be divided among the server machines. This
feature permits concurrent searching and updating of tables, which improves
performance in direct proportion to the number of server machines deployed.

Distribution of high-overhead database processing operations
HiRDB enables you to assign high-overhead operations, such as sorting and
joining, to a separate server machine so that these operations can be performed
concurrently with data accesses. This feature reduces the amount of time required
to output search results.

Reduction in batch processing time for large amounts of data
HiRDB can reduce the amount of time required for processing because it can store
masses of data concurrently, such as during system creation.

Concurrent database reorganization
HiRDB can reduce the amount of time required for database reorganization
operations because it can concurrently reorganize databases by server.

Concurrent backup and recovery operations
In HiRDB, a single command can concurrently back up and recover a failed
database. This feature reduces the amount of time required for backup and
database recovery operations.

(b) Fine buffer control through the use of global buffers
HiRDB enables you to allocate index data and other frequently accessed data to special
buffers. This feature assures stable response by eliminating interference between
buffers even in an environment where different operations are performed on a mixed
basis, such as index searches and complete data searches.

1. Overview

8

(c) Performance improvement by using synchronization point dump
processing
In an operation called synchronization point dump processing, HiRDB stores update
information up to a specific point in the database and recovery information up to that
point in a file. Other systems stop accepting transactions during a synchronization
point dump operation, which results in a decrease in processing performance. HiRDB,
by contrast, does not limit the system's ability to accept transactions, so there is no
decrease in processing performance attributable to synchronization point dump
processing.

(d) Rapid system recovery by high-speed rerun
HiRDB reduces the range over which a recovery operation must be performed in the
aftermath of a system failure by periodically collecting synchronization point dumps,
which enables HiRDB to quickly complete recovery processing.
In addition, HiRDB performs during a system recovery operation a delayed rerun
operation that simultaneously starts a rollback operation and acceptance of new
transactions, which can speed up system restart.

(3) Achieving a highly reliable system
(a) Storing in files information needed for system restart and for database

recovery
Logging information needing for system restart

During operation, HiRDB stores in files system status information that will be
needed to restart the system in the event of a failure. These files are called status
files.

Logging information needed for database recovery
HiRDB stores in files a history of database update information (a system log) that
would be needed for recovery of the database during a recovery operation. The
files in which this information is stored are called system log files. In the event of
an error in the system, system log files make it possible for HiRDB to correctly
recover the database to its status just before the error occurred.

Duplicate files
HiRDB maintains duplicate status files and system log files, thus providing
redundant logging of the information it will need for system and database
recovery. File redundancy permits the use of the other file if a problem arises in
one of the files, thus increasing system reliability.

(b) Automatic system restart
In the event of a relatively minor error, HiRDB uses the status files to restart the system
automatically, so there is no need for operator intervention.

1. Overview

9

(c) Reducing system downtime by use of system switchover facility
In HiRDB, you can set up a standby server machine that is separate from the currently
operating server machine, so that if the current server machine fails, operations can be
switched smoothly to the standby machine. This feature is called the system switchover
facility.
Microsoft Cluster Server (MSCS) is used for the system switchover facility.

(4) Improved maintainability/operability
(a) Intensive control from a specific server machine

In the case of a HiRDB/Parallel Server, a specified server machine can integrally and
intensively control a HiRDB system running on multiple server machines. For
example, you can execute a command or a utility on one server machine to start or
terminate the HiRDB running on all server machines or on specified server machines.

(b) Support for setting up the HiRDB environment
Support tools are provided for setting up the HiRDB environment. The tools that are
provided are listed and described below.
Simple setup tool
A graphic user interface (GUI) is provided for setting up HiRDB. Choosing Standard
Setup, in which you simply specify the setup directory, enables you to easily configure
an environment. You can also choose Custom Setup in order to specify more detailed
settings. The simple setup tool can also be used to update or edit system definitions that
you have already created.
Batch files

By executing the batch files, you can automatically set up the basic HiRDB
environment.

(5) Implementing a flexible system in an open environment
(a) XA interface for X/Open

HiRDB can communicate with OLTP by means of the XA interface of X/Open. A
HiRDB XA library is provided so that HiRDB transactions can be controlled by the
Transaction Manager.

(b) ODBC, JDBC, and OLE DB interfaces
HiRDB complies with the ODBC, JDBC, and OLE DB industry standards, which
means that ODBC, JDBC, and OLE DB applications can be used in HiRDB. You can
also use ADO (ADO.NET is also supported), DAO, and RDO.

(6) Support for non-stop service
With the growing popularity of Internet businesses, there is an increasing need to

1. Overview

10

conduct online operations non-stop, 24 hours per day, 365 days per year. HiRDB
provides functionality based on the premise of continuous operation, 24 hours per day.
For details about functionality based on 24-hour-per-day operation, see the HiRDB
Version 8 System Operation Guide.

1. Overview

11

1.2 HiRDB system configuration

This section explains the configurations of a HiRDB/Single Server, a HiRDB/Parallel
Server, and a multi-HiRDB.

1.2.1 HiRDB/Single Server configuration
A HiRDB/Single Server consists of one unit (one single server). Figure 1-3 shows the
configuration of a HiRDB/Single Server.

Figure 1-3: HiRDB/Single Server configuration

(1) Unit
A HiRDB/Single Server is composed of the following server:

• Single server
The unit controls and monitors execution of the server. The unit can be compared
conceptually to a container in which the server is stored.

(2) Single server (SDS: Single Database Server)
The single server is the server that manages a database (tables and indexes) and the
data dictionaries (dictionary tables) that contain information about the database.

1.2.2 HiRDB/Parallel Server configuration
A HiRDB/Parallel Server is composed of multiple units (multiple servers). Figure 1-4
shows an example of a HiRDB/Parallel Server configuration.

1. Overview

12

Figure 1-4: HiRDB/Parallel Server configuration

Explanation
• This HiRDB/Parallel Server consists of three server machines.
• In the configuration in this example there are multiple front-end servers.
• Two back-end servers are provided per server machine.

1. Overview

13

(1) Unit
A HiRDB/Parallel Server consists of the following types of servers:

• System manager
• Front-end server
• Dictionary server
• Back-end server

A unit controls and monitors server execution and manages communication between
servers. A unit can be compared conceptually to a container in which servers are
stored.

(2) System manager (MGR)
The system manager is the server that controls HiRDB startup and termination. It also
manages system configuration information and detects server errors.
One system manager is required per system.

(3) Front-end server (FES)
A front-end server determines the procedure by which databases are accessed and
provides directives to back-end servers on the contents of tasks that are to be executed.
A front-end server also analyzes SQLs, optimizes SQLs, provides processing
instructions to back-end servers, and edits search results.
Each system must have at least one front-end server (up to a maximum of 1024
front-end servers). A configuration in which there are multiple front-end servers is
called a multi-front-end server configuration. When SQL processing results in a high
CPU workload that exceeds the processing capability of a single front-end server, a
multi-front-end server configuration is appropriate. A multi-front-end server
configuration can distribute the processing load among the machines on which
front-end servers are running.

(4) Dictionary server (DS)
The dictionary server provides batch management of the data dictionaries (dictionary
tables) that contain database definition information.
Each system requires one dictionary server.

(5) Back-end server (BES)
A back-end server manages the database. On the basis of execution directives received
from front-end servers, the back-end servers access and lock the database and perform
computational operations. Back-end servers also sort, merge, and join search results.
At least one back-end server is required per system (up to a maximum of 1024
back-end servers). When multiple back-end servers are provided, a table can be

1. Overview

14

divided among them so that it can be managed on a split basis.
Performance can be improved in a HiRDB/Parallel Server by providing back-end
servers that do not provide database management but instead are dedicated specifically
to processing high-overhead operations, such as sorting and joining. Such back-end
servers are called floatable servers. Figure 1-5 shows an example of a floatable server.

Figure 1-5: Floatable server

(6) Heterogeneous system configuration of HiRDB/Parallel Server
Normally, all HiRDB/Parallel Server units must be running on the same platform.
However, if the following conditions are satisfied, you can set up a HiRDB/Parallel
Server in what is called a heterogeneous system configuration in which some units run
on different platforms:

• All front-end servers run on the same platform (Windows Server 2003 (IPF) or
Windows (x64)).

• All back-end servers and dictionary servers run on the same platform (Windows
Server 2003 (IPF) or Windows (x64)).

• The system manager runs on the same platform as either the front-end servers or
the back-end servers.

Figure 1-6 shows an example of a heterogeneous system configuration.

1. Overview

15

Figure 1-6: Example of HiRDB/Parallel Server in a heterogeneous system
configuration

Explanation
• This HiRDB/Parallel Server configuration consists of three server machines.

Server machines A and B are used as application servers, and server machine
C is used as a database server.

• The platform for server machines A and B is Windows (x64), while the
platform for server machine C is Windows Server 2003 (IPF).

1.2.3 Multi-HiRDB configuration
You can install multiple, separately operating HiRDB systems on one server machine.
Such a system configuration is called a multi-HiRDB configuration. A multi-HiRDB
configuration would be appropriate under the following circumstances:

• Running an operational system and a test system on the same server machine
• Running systems for different applications on the same server machine

Note, however, that you cannot combine HiRDB/Single Servers and HiRDB Parallel
Servers in a multi-HiRDB system.
Figure 1-7 shows an example of a multi-HiRDB configuration implemented on a
HiRDB/Single Server.

1. Overview

16

Figure 1-7: Multi-HiRDB configuration using HiRDB/Single Servers

Explanation
This is a multi-HiRDB configuration implemented on a HiRDB/Single Server.
HiRDB/Single Server 1 is designated as the operational system, and HiRDB/
Single Server 2 serves as a test system.

1. Overview

17

1.3 Database access modes

You access a HiRDB database by means of the SQL that is provided by HiRDB. This
section explains the operating modes under which an SQL can be executed from a
UAP.

(1) Accessing a database by executing a UAP from a HiRDB client
This is the basic mode of operation. In it, you access a database by executing a UAP
on a HiRDB client.
Note however, that the HiRDB server platforms to which you can connect are limited,
depending on the version of the HiRDB client. For details, see Appendix C. HiRDB
Client and HiRDB Server Connectivity. Figure 1-8 shows a mode of operation in which
a database is accessed by executing UAPs running on HiRDB clients.

Figure 1-8: Accessing a database by executing UAPs from HiRDB clients

(2) Accessing a database by executing a UAP running on the HiRDB server
In this mode, you can access a database by executing a UAP running on the HiRDB
server.
Figure 1-9 illustrates the operating mode in which a database is accessed by executing
a UAP running on the HiRDB server.

1. Overview

18

Figure 1-9: Accessing a database by executing a UAP running on the HiRDB
server

(3) Accessing a database by executing an OLTP UAP
In this mode, a HiRDB database is accessed when a UAP running on an OLTP machine
(TP monitor) issues a service request. The client must have a service-requesting UAP;
the server must have a service-providing UAP. Figure 1-10 illustrates the operating
mode in which a database is accessed by executing an OLTP UAP.

Figure 1-10: Accessing a database by executing an OLTP UAP

1. Overview

19

(4) Linkage to ODBC-compatible applications
HiRDB provides an ODBC driver. When the ODBC driver is installed in a HiRDB
client, ODBC-compatible applications can access the HiRDB database.
ODBC-compatible applications include many commercially available programs, such
as Microsoft Access and PowerBuilder. UAPs that use the ODBC function provided
by HiRDB can also access the HiRDB database. Figure 1-11 shows a situation in
which an ODBC-compatible application accesses a HiRDB database.

Figure 1-11: Accessing a HiRDB database from an ODBC-compatible
application

For details about accessing a HiRDB database from an ODBC-compatible application,
see the HiRDB Version 8 UAP Development Guide.

(5) Linkage to OLE DB-compatible applications
HiRDB provides an OLE DB provider. By selecting the OLE DB provider when you
install a HiRDB client, you can enable applications that support the OLE DB to access
HiRDB databases. Figure 1-12 shows a situation in which a HiRDB database is
accessed from an OLE DB-compatible application.

1. Overview

20

Figure 1-12: Accessing a HiRDB database from an OLE DB-compatible
application

For details about accessing a HiRDB application from an OLE DB-compatible
application, see the HiRDB Version 8 UAP Development Guide.

(6) Accessing a database from a JDBC-compatible application
HiRDB provides a JDBC driver. By selecting the JDBC driver when you install a
HiRDB client, you can enable applications that support JDBC to access HiRDB
databases. Figure 1-13 shows a situation in which a HiRDB database is being accessed
from a JDBC-compatible application.

1. Overview

21

Figure 1-13: Accessing a HiRDB database from a JDBC-compatible
application

For details about accessing HiRDB from a JDBC-compatible application (using Java
stored procedures and Java stored functions), see the HiRDB Version 8 UAP
Development Guide.

(7) Accessing a database from an ADO.NET-compatible application
HiRDB uses ADO.NET to provide the HiRDB.NET data provider, which is needed to
access HiRDB. The HiRDB.NET data provider complies with the ADO.NET
specifications. By selecting the HiRDB.NET data provider when you install a HiRDB
client, you can enable applications that support ADO.NET to access HiRDB
databases.
HiRDB.NET data provider is bundled with a common set of basic interfaces provided
by the System.Data space of Net Framework. HiRDB.NET data provider also includes
its own extensions to perform array insertion and access repetition columns.
Figure 1-14 shows an example in which a HiRDB database is accessed from an
ADO.NET-compatible application.

1. Overview

22

Figure 1-14: Accessing a database from an ADO.NET-compliant application

For details about accessing HiRDB from an ADO.NET-compliant application, see the
HiRDB Version 8 UAP Development Guide.

23

Chapter

2. Linking to HiRDB Option Program
Products and Other HiRDB-Related
Products

This chapter describes the functionality enabled by linking HiRDB to HiRDB option
program products and other HiRDB-related products.

2.1 HiRDB option program products
2.2 Linkage to data linkage products
2.3 Linkage to directory server products
2.4 Linkage to OLTP products
2.5 Linkage to operation support products
2.6 Linkage to data mining products
2.7 Linkage to products that handle multimedia information
2.8 Linkage to Cosminexus

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

24

2.1 HiRDB option program products

This section describes the functions and operations that you can enable by using the
following HiRDB option program products:

• HiRDB Advanced High Availability
• HiRDB Advanced Partitioning Option
• HiRDB LDAP Option
• HiRDB External Data Access

• HiRDB Non Recover FES

2.1.1 HiRDB Advanced High Availability
Installing HiRDB Advanced High Availability allows you to use the following
functions:

• Standby-less system switchover facility
• System reconfiguration command (pdchgconf command)
• Dynamic updating of global buffers (pdbufmod command)

The standby-less system switchover facility implements a system switchover method
that enables HiRDB to continue providing services when a failure occurs by
transferring processing to another unit. Because the standby-less system switchover
facility does not require that standby resources be placed in reserve, it is significantly
more economical than the previously available system switchover facility (the standby
system switchover facility). With the previous system switchover facility, you had to
set aside a server, CPU, and memory resources to be available for transfer of operations
in the event of a failure. With the standby-less system switchover facility, there is no
need to provide these redundant resources. You simply register another server as the
alternate, and that server's unit takes over processing if a failure occurs. Although the
processing performance of the unit that has taken over may be degraded, the overall
cost of the system is reduced because you can make more effective use of resources.
The standby-less system switchover facility includes the standby-less system
switchover (1:1) facility and the standby-less system switchover (effects distributed)
facility. For details about the standby-less system switchover facility, see 8.1 System
switchover facility.
Previously, changing HiRDB system definitions meant having to stop HiRDB;
however, by using the system reconfiguration command (pdchgconf command), you
can change HiRDB system definitions without having to stop HiRDB. This allows you
to perform system-related operations while HiRDB is running, such as changing the
configuration of units or servers and adding system files. For details about the system

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

25

reconfiguration command, see 6.5.4 System reconfiguration command (pdchgconf
command).
Previously, adding, changing, or removing global buffers required you to change the
pdbuffer operand in the HiRDB system definitions, which meant you had to stop
HiRDB. Using the pdbufmod command, however, allows you to add, change, and
remove global buffers while HiRDB is running. This is called dynamic updating of
global buffers. For details about dynamic updating of global buffers, see 6.8.1(3)
Dynamic updating of global buffers.

2.1.2 HiRDB Advanced Partitioning Option
Installing HiRDB Advanced Partitioning Option enables you to use the following
functions:

• Table matrix partitioning
Table matrix partitioning is a function that performs key range partitioning by
using multiple columns as keys. The use of multiple columns as partitioning keys
improves the performance of SQL code that is executed in parallel, and the use of
multiple keys for searches accelerates processing by narrowing the searched
range. In addition, partitioning database storage areas (RDAREAs) into smaller
segments also reduces the time it takes to reorganize the database, to make
backups, and to recover the database. For details about table matrix partitioning,
see 3.3.9 Table matrix partitioning.

• Changing the partitioning storage conditions
Using ALTER TABLE, you can change the partitioning storage conditions of tables
that have been row-partitioned by key range partitioning.* Changing a table's
partitioning storage conditions enables you to reuse RDAREAs that contain
outdated data and reduces work time. For details about changing partitioning
storage conditions, see 3.3.10 Changing the partitioning storage conditions of a
table.

*
ALTER TABLE can be used to change a table's partitioning storage condition when
one of the following partitioning methods was used:

• Boundary value specification
• Storage condition specification (if the equal sign (=) was used as the

comparison operator for the storage condition)

2.1.3 HiRDB LDAP Option
Installing HiRDB LDAP Option allows you to link to the Sun Java System Directory
Server and manage user IDs and passwords of users connected to HiRDB under the
Sun Java System Directory Server. As an LDAP-compliant directory server, the Sun

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

26

Java System Directory Server is a product that centrally manages information about
users, machines, and other resources on a network. Linking HiRDB to a Sun Java
System Directory Server enables users utilizing Web applications, groupware, and
other products to be managed together with their user information, thus reducing the
workload on system administrators. For details about linking to the Sun Java System
Directory Server, see 2.3 Linkage to directory server products.
HiRDB High Availability runs on Windows 2000.

2.1.4 HiRDB External Data Access
Installing HiRDB External Data Access allows you to use the HiRDB External Data
Access facility. The HiRDB External Data Access facility can be used with the 32-bit
version of HiRDB.

(1) Overview of the HiRDB External Data Access facility
The HiRDB External Data Access facility allows you to access, through the HiRDB
interface, multiple database tables built by DBMSs on various types of machines,
including those built with third party products. It even allows you to view and update
in a single table information stored in different types of databases (if you are using a
foreign table or a view table). This facility is called the HiRDB External Data Access
facility. Figure 2-1 provides an overview of the HiRDB External Data Access facility.
For details about the HiRDB External Data Access facility, see the HiRDB External
Data Access Version 7 Description and User's Guide.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

27

Figure 2-1: Overview of the HiRDB External Data Access facility

Explanation
You can view and update external DBMS databases from a HiRDB client. An
external DBMS is called a foreign server.
A table that can be viewed or updated with the HiRDB External Data Access
facility is called a foreign table. A foreign table is a table defined on HiRDB based
on the definition information for a table on a foreign server. A foreign table is
required in order to view or update tables in foreign servers. Note that HiRDB
manages only the definition information for the table; the foreign server manages
the actual content of the table.

HiRDB External Data Access provides the following features:
• Ability to view and update in a single table database information derived from

multiple DBMSs in different locations
• Ability to access tables using only the HiRDB interface, even in environments

running multiple DBMSs

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

28

You can expect the following benefits when you use HiRDB External Data Access:
• Reduction in development times and operation costs through the use of legacy

assets
• Flexible support for modification and expansion of database environments
• Simplification of application development through use of the HiRDB interface

(SQL interface)
• Improvement in the ability to efficiently deploy information resources through

realization of on-demand access
• Ability to provide the latest information available

(2) Supported DBMSs
The following lists the DBMSs that HiRDB can connect to as a foreign server:

• HiRDB (HiRDB Version 5.0 05-06 or later)*

• XDM/RD E2 06-00 or later
• ORACLE (Oracle 8i 8.1.7)
• ORACLE (Oracle 9i 9.2)
• ORACLE (Oracle 10g 10.1)

*
• An instance of HiRDB connected to as a foreign server is called a foreign

HiRDB.
• Both HiRDB/Single Server and HiRDB/Parallel Server can be used as

foreign servers.
• Neither the Linux version nor the Windows version of HiRDB version 5.0

can be used as a foreign server.
(3) System configuration example

You must have a back-end server to connect to a foreign server (in order to view or
update a foreign table). Such a back-end server is referred to as a back-end server for
connecting to foreign servers (or a back-end server for viewing or updating foreign
tables). On the HiRDB side, you also need the products shown in Table 2-1.

Table 2-1: Products needed on the HiRDB side to use the HiRDB External Data
Access facility

Product name Description

HiRDB External Data Access Needed to execute the HiRDB External Data Access facility.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

29

Figure 2-2 shows an example of a system configuration when the HiRDB External
Data Access facility is being used.

Figure 2-2: System configuration example when the HiRDB External Data
Access facility is being used

HiRDB External Data Access Adapter Handles the interface differences between HiRDB and the
connection-target DBMS. A HiRDB External Data Access
Adapter is available for ORACLE .
Because HiRDB Data Access Adapter is included in HiRDB
External Data Access, you do not need a separate HiRDB
External Data Access Adapter when the connection-target
DBMS is either HiRDB or XDM/RD E2.

ORACLE client product Needed when the connection-target DBMS is ORACLE.

Product name Description

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

30

1
Back-end server for connecting to foreign servers

2
• If the foreign server is ORACLE, you need a HiRDB External Data Access

Adapter for ORACLE.
• If the foreign server is HiRDB or XDM/RD E2, you do not need HiRDB

External Data Access Adapter. The HiRDB External Data Access Adapter
functionality is included in HiRDB External Data Access.

3
• If the foreign server is ORACLE, you need the ORACLE client product.
• If the foreign server is HiRDB or XDM/RD E2, you need a HiRDB client.

However, the HiRDB server includes the HiRDB client functionality, which
means that you do not need to install a HiRDB client.

For details about the products you need when using the HiRDB External Data Access
facility, see the HiRDB External Data Access Version 7 Description and User's Guide.

2.1.5 HiRDB Non-Recover FES
Installing Non-Recover FES enables you to use front-end servers that do not need to
be recovered in the event of a failure. In this case, when the unit containing such a
front-end server fails and is forcibly terminated, HiRDB automatically completes any
uncommitted transactions, which means that the database is updated even if the unit
containing the front-end server is not restarted. For details about recovery-unnecessary
front-end servers, see 8.2 Recovery-unnecessary front-end servers.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

31

2.2 Linkage to data linkage products

This section describes the functions that you can enable by using the data linkage
products listed as follows:

• HiRDB Datareplicator and HiRDB Dataextractor
• HiRDB Adapter for XML

2.2.1 Linkage to HiRDB Datareplicator and HiRDB Dataextractor
Linking to HiRDB Datareplicator and HiRDB Dataextractor allows you to use the
replication facility. The replication facility provides the ability to duplicate the content
of a distributed database into another database. Using the replication facility, you can
duplicate information from one database into another database on a different system,
which helps support the management of data in a distributed system environment. The
replication facility includes the following two modes:

• Data linkage facility
• Database extraction/reflection service facility

(1) Data linkage facility
The data linkage facility causes the updates to a database residing on a mainframe
DBMS or a HiRDB system to be reflected automatically in HiRDB databases at local
nodes. The data linkage facility requires the HiRDB Datareplicator, which is a related
HiRDB product. The data linkage facility has the following characteristics:

• At fixed time intervals, the data linkage facility copies in sequence all updates to
a corporate database into departmental databases so that the latest data available
in the corporate database can be used from the departmental databases.

• The data linkage facility can extract selected data from a corporate database and
copy in sequence all updates to the selected data from the corporate database into
departmental databases. In this manner, the data linkage facility is able to provide
data that is well-suited for data warehouse applications.

Note
Some columns are not eligible for processing by the data linkage facility,
depending on the column attributes. For details about the column attributes that
are not supported by the data linkage facility, see the HiRDB Datareplicator
Version 8 Description, User's Guide and Operator's Guide.

(2) Database extraction/reflection service facility
The database extraction/reflection service facility transfers data stored in a mainframe
DBMS or another HiRDB system to HiRDB databases at local nodes. The database

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

32

extraction/reflection service facility requires HiRDB Dataextractor, which is a related
HiRDB product. The database extraction/reflection service facility has the following
characteristics:

• At a specific time, the database extraction/reflection service facility can copy in
batch information from a corporate database into departmental databases. In this
manner, departmental database tables can be initialized or all data can be updated
to the latest version.

• By specifying data extraction conditions, the database extraction/reflection
service facility can be used to extract selected data from a corporate database so
that departmental databases that are appropriate for particular types of operations
can be created.

• The database extraction/reflection service facility eliminates the need for UAPs
that extract data or provide such operations as character code conversion and file
transfer.

Note
Some columns are not eligible for processing by the database extraction/
reflection service facility, depending on the column attributes. For details about
the column attributes that are not supported by the database extraction/reflection
service facility, see the HiRDB Dataextractor Version 8 Description, User's
Guide and Operator's Guide.

(3) Example of using the replication facility
Figure 2-3 shows an example of using the replication facility.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

33

Figure 2-3: Example of using the replication facility

For details about application examples of the replication facility, see the HiRDB

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

34

Datareplicator Version 8 Description, User's Guide and Operator's Guide, and the
HiRDB Dataextractor Version 8 Description, User's Guide and Operator's Guide.

(4) Products required for replication facility
(a) Products required in HiRDB systems

The data linkage facility requires HiRDB Datareplicator. The database extraction/
reflection service facility requires HiRDB Dataextractor, except when the remote
system is RDB1 E2 or PDM II E2 of VOS1.

(b) DBMS products that can be linked to HiRDB using the replication facility
Table 2-2 lists DBMS products that can be linked to HiRDB by means of the
replication facility:

Table 2-2: Products that can be linked to HiRDB by means of the replication
facility

1 In the case of PDM II E2 of VOS3, it is possible to perform data linkage using a data
linkage product at the same time data linkage is being performed using a file transfer
program.
2 Both XFIT and an XFIT-related product are needed for the file transfer program. For
details, see the HiRDB Datareplicator Version 8 Description, User's Guide and
Operator's Guide.

Linkable DBMS product (and
applicable operating system)

Required replication facility product

Data linkage Database extraction/
reflection service

facility

XDM/RD E2 (VOS3) XDM/DS XDM/XT

XDM/SD E2 (VOS3)

ADM (VOS3) VOS3 Database Datareplicator or XDM/
DS

PDM II E2 (VOS3)1 VOS3 Database Datareplicator or XDM/
DS

File transfer program2

PDM II E2 (VOS1) File transfer program2 PDM II Dataextractor

TMS-4V/SP (VOS3) VOS3 Database Datareplicator or XDM/
DS

XDM/XT

RDB1 E2 (VOS1) File transfer program2 RDB1 Dataextractor

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

35

(5) Setting the HiRDB environment when the data linkage facility is used
When the data linkage facility is used (in conjunction with extracting data for updating
HiRDB databases), the following system definition operands must be specified:
pd_rpl_hdepath

Specify the HiRDB Datareplicator operation directory for the extracted side.
pd_rpl_init_start

Specify when the HiRDB linkage facility is to be started.
pd_log_rpl_no_standby_file_opr

Specify the action to be taken if system log information cannot be created in the
swapped-in file.

2.2.2 Linkage to HiRDB Adapter for XML
Linking to HiRDB Adapter for XML allows you to use the database mapping facility.

(1) Overview of the database mapping facility
XML text consists of tags in a tree structure and sets of character strings enclosed by
these tags. In contrast, databases consist of sets of related record data. HiRDB Adapter
for XML provides database mapping functionality that maps XML text tags to tables
and columns, and converts the character strings embedded in the XML text to
appropriate data types. The facility then saves the converted data to a database, and can
restore the data it has saved to the database back to the original XML text. The database
mapping functionality allows you to perform the following operations:

• Saving XML text to a database
• Deleting saved XML text from a database
• Updating XML text stored in a database
• Restoring XML text from the information in a database

There are two ways to map XML text to a database: using an API or using a simple
command. If you use the API, you can generate SQL code internally to access the
database, or you can use the pdload command of the database load utility (pdload).

(2) Advantages of the database mapping facility
The database mapping facility provides the following advantages:
Flexible support for changing XML text and databases

Information such as the XML text structure and table formats is maintained in a
definition file independent of the application. This allows you to develop
applications that flexibly support changes in the content and structure of the data
handled.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

36

An abundance of supported data types

In addition to numeric data and character strings, you can store not only XML text
itself in a database, but also image and other data that is referenced from within
XML text. You can delete and update the stored data, as well as restore it to its
original XML text structure.

Ability to perform a variety of processing with a single definition file

The definition file that is created when you save XML text to a database can be
used as a definition file for updating the data and restoring it to the original XML
text.

Easy manipulation of data elements

You can create callbacks to be invoked by HiRDB Adapter for XML when
mapping is being executed. Through the use of such callbacks, you can perform
the following processes on data extracted from XML text:

• Convert character strings to data of a specific type.
• Pass multiple data items as parameters to be manipulated as desired.
• Store data in abstract data type columns.

(3) Other features
In addition to the advantages described in the preceding subsection, the database
mapping facility also includes the following features:
Linkage to XML servers

When uCosminexus Interschema - Parsing Kit is used, HiRDB Adapter for XML
can link at an object level to DOM and SAX parsers.

Database access

When DABroker for C++ is used, C++ applications can be developed with
HiRDB Adapter for XML to access databases. When DABroker for Java (JDBC)
is used, Java applications can be developed to access databases as well. The
application developer can manage database connection, disconnection, and
transaction processing by directly issuing DABroker for C++ or DABroker for
Java (JDBC) APIs.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

37

2.3 Linkage to directory server products

Linking to a directory server product allows you to use the Directory Server linkage
facility. This section provides an overview of the Directory Server linkage facility. For
details about how to operate the Directory Server linkage facility, see the HiRDB
Version 8 System Operation Guide.

2.3.1 Overview of the Directory Server linkage facility
The Directory Server linkage facility is a program that provides a service (called the
directory service) for using the Internet or an intranet to achieve centralized
information management in a distributed system environment in order to minimize
management's workload. This is made possible by using an open protocol called the
Lightweight Directory Access Protocol (LDAP).
You can manage on a centralized basis in the Directory Server the organizational and
user information (user IDs, passwords, the organizational units to which users belong,
and user job titles) that is otherwise managed separately in HiRDB, Groupmax, and
other systems. The Directory Server also allows you to retrieve and update user
information from multiple nodes in the network. Figure 2-4 provides an overview of
the Directory Server linkage facility.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

38

Figure 2-4: Overview of the Directory Server linkage facility

* The Directory Server authenticates each user who attempts to access HiRDB,
provided that the requisite user information (user IDs and passwords) has been
registered in the Directory Server.
For details about setting the environment for and using the Directory Server linkage
facility, see the HiRDB Version 8 System Operation Guide.

2.3.2 Directory servers to which HiRDB can be linked
HiRDB can be linked to Sun Java System Directory Servers by means of a facility that
is called the Sun Java System Directory Server linkage facility (or simply the Directory
Server linkage facility).
Prerequisites

• HiRDB LDAP Option
• HiRDB LDAP Option running on Windows 2000
• 32-bit version of HiRDB

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

39

2.3.3 Capabilities provided by the Directory Server linkage facility
(1) Using a directory server to centrally manage HiRDB user information

You can use a directory server to centrally manage user information used by HiRDB
(such as authorization identifiers and passwords). You can also use a directory server
for user authentication when users connect to HiRDB.

Hint:

• If you use the Directory Server linkage facility, you do not need to assign
the CONNECT privilege to each user individually.

• Each HiRDB authorization identifier is registered as a user ID on the
directory server. Once registered, a user is assigned the CONNECT
privilege.

• The password corresponding to each HiRDB authorization identifier is
registered on the directory server.

Reference note:

The DBA, audit, schema definition, RDAREA usage, and table access
privileges are managed by HiRDB.

Figure 2-5 provides an overview of using the Directory Server linkage facility to
perform user authentication.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

40

Figure 2-5: Overview of using the Directory Server linkage facility to perform
user authentication (Sun Java System Directory Server linkage facility)

Explanation
When a user attempts to connect to HiRDB (using CONNECT), Sun Java System
Directory Server performs user authentication. If the user ID and password are
registered in Sun Java System Directory Server, connection to HiRDB
(CONNECT) is permitted.

(2) Granting table access privileges to a role
The concept of roles is supported in a Sun Java System Directory Server. You can
register organizations, departments, and other personnel groupings as a single role in
a directory server. You can then grant table access privileges to that role, which enables
all users belonging to that role to be granted table access privileges. In other words,
you can manage table access privileges by role. Figure 2-6 shows granting of table
access privilege by role.
To grant table access privileges to a role, you must use the name of a role to which a
filter is applied by Sun Java System Directory Server.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

41

Figure 2-6: Granting of table access privilege to a role

Explanation

Once the table owner grants the table access privilege to the Management
Division role, all users of the Management Division are able to access that table.

2.3.4 Prerequisite products
The requisite operating system and other products comply with the prerequisites for
HiRDB LDAP Option. The following lists the products required to use the Sun Java
System Directory Server linkage facility:

• Sun Java System Directory Server

• iPlanet Console (Sun ONE Console)*

• HiRDB LDAP Option
* Needed to register users and other directory-related information via a GUI.
For system configuration examples when the Sun Java System Directory Server
linkage facility is being used, see the HiRDB Version 8 System Operation Guide.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

42

2.4 Linkage to OLTP products

Transaction processing can be performed when HiRDB is linked to OLTP. This section
provides an overview of linking to OLTP products. For details about the OLTP linkage
procedures, see the HiRDB Version 8 Installation and Design Guide; for information
about creating a UAP that uses a linkage to OLTP, see the HiRDB Version 8 UAP
Development Guide.

2.4.1 OLTP products to which HiRDB can be linked
HiRDB can be linked to the following OLTP products:

• OpenTP1
• TPBroker
• TUXEDO
• WebLogic Server

However, you cannot link to Windows (x64) because there is no client library for
OLTP products running in the 64-bit mode.

2.4.2 HiRDB XA library
HiRDB uses the X/Open XA interface for linkage to OLTP. This interface, which is
based on the X/Open standards, specifies the connection between the transaction
manager (TM) and the resource manager (RM) in a distributed transaction processing
(DTP) system. Use of the XA interface enables the resource manager's transaction
processing to be controlled by the transaction manager. To do this, you must link the
library provided by the transaction manager to your UAP.
HiRDB provides the HiRDB XA library so that it can control UAP processing. This
library conforms to the XA interface specifications of the X/Open DTP software
architecture. Figure 2-7 shows the position of HiRDB in an X/Open DTP model.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

43

Figure 2-7: Position of HiRDB in X/Open DTP model

2.4.3 Functions provided by the HiRDB XA library
Table 2-3 lists the functions provided by the HiRDB XA library.

Table 2-3: Functions provided by the HiRDB XA library

Note
The HiRDB XA library does not provide the asynchronous XA call function
(function that allows the transaction manager to issue asynchronous calls to the
HiRDB XA library).

Facility Explanation

Transaction transfer Executes transaction commit processing in a process different from the one that was
used when the UAP accessed HiRDB. The UAP in this case uses the HiRDB XA
library to connect to HiRDB.
You specify in the PDXAMODE operand of the client environment definition whether or
not the transaction transfer function is to be used. For details on transaction transfer,
see the HiRDB Version 8 Installation and Design Guide.

Single-phase
optimization

Optimizes two-phase commitment control into a single phase.

Read-only Transaction manager performs optimization without issuing a commit request in the
second phase, if HiRDB resource has not been updated when a prepare request is
issued.

Dynamic transaction
registration

HiRDB registers dynamically a transaction immediately before executing a UAP.

Multi-connection
facility

This function separately executes multiple CONNECTs to a HiRDB server from a
single process. For details on the multi-connection facility under the X/Open XA
interface environment, see the HiRDB Version 8 UAP Development Guide.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

44

2.4.4 System configuration
This section uses OpenTP1 as an example for explaining the configuration of a system
that uses OLTP.

(1) Linkage to HiRDB/Single Server
By linking HiRDB/Single Servers to OpenTP1, processing at multiple HiRDB/Single
Servers can be executed centrally. In such a case, the database is partitioned and
allocated using a method such as key range partitioning, and OpenTP1 running on each
server machine allocates processing to each HiRDB/Single Server. In this way,
large-scale transaction processing can be implemented. Linkage with OpenTP1 is the
recommended means of integrating multiple HiRDB/Single Servers. Figure 2-8 shows
the linkage between HiRDB/Single Servers and OpenTP1.

Figure 2-8: Linkage between HiRDB/Single Servers and OpenTp1

Explanation
Each of the three server machines is provided with a HiRDB/Single Server and
OpenTP1; transaction processing is allocated to each of the three HiRDB/Single
Servers.

(2) Linkage to HiRDB/Parallel Server
By linking a HiRDB/Parallel Server to OpenTP1, high-performance, high-load

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

45

transaction processing can be achieved. Figure 2-9 shows the linkage between a
HiRDB/Parallel Server and OpenTP1.

Figure 2-9: Linkage between HiRDB/Parallel Server and OpenTP1

Explanation
OpenTP1 is provided at the server machine where the system manager and
front-end server are installed in order to control transaction processing.

(3) Linkage to multiple OpenTP1
Figure 2-10 shows linkage to multiple OpenTP1.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

46

Figure 2-10: Linkage to multiple OpenTP1

Note
The OLTP identifier (PDTMID in the client environment definition) of each
OpenTP1 must be unique.

2.4.5 Registration of HiRDB in the transaction manager
The two methods explained as follows are provided for registering HiRDB into the
transaction manager as a resource manager.
Dynamic registration

When this method is used, the UAP is placed under the control of the transaction
manager when the UAP issues the first SQL statement in a transaction. In the case
of a UAP that accesses multiple resource managers including HiRDB, or in the
case of a UAP that may not access HiRDB at all, dynamic registration reduces the
transaction manager's transaction control overhead with respect to HiRDB.

Static registration
When this method is used, the UAP is placed under the control of the transaction
manager, regardless of whether or not the UAP issues SQL statements. If the
transaction manager is OpenTP1 and the connection between the UAP and
HiRDB is severed (e.g., due to abnormal termination of the unit or the server

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

47

process), static registration eliminates the need to restart the UAP, because an
OpenTP1 facility will reconnect the UAP when a transaction is started.

For details about registering HiRDB into the transaction manager, see the HiRDB
Version 8 Installation and Design Guide.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

48

2.5 Linkage to operation support products

This section describes operation support products used with HiRDB.
• HiRDB SQL Executer
• HiRDB Control Manager
• HiRDB SQL Tuning Advisor
• JP1/Performance Management - Agent Option for HiRDB
• JP1/Base

• JP1/Integrated Management
• JP1/Automatic Job Management System 2

2.5.1 HiRDB SQL Executer
HiRDB SQL Executer enables interactive execution of SQL programs. Because it can
perform data validation, confirmation, modification, and relatively simple, routine
operations, HiRDB SQL Executer is well-suited for database maintenance and simple
validation tasks. In order to use HiRDB SQL Executer on a HiRDB client, you must
have either HiRDB/Developer's Kit or HiRDB/Run Time. For details on HiRDB SQL
Executer, see the README file for HiRDB SQL Executer.

2.5.2 HiRDB Control Manager
HiRDB Control Manager enables you to use GUI-based mouse operations on a PC to
perform basic operations, such as displaying and changing HiRDB server statuses, and
backing up and recovering databases. You can also centrally operate multiple HiRDB
systems from a single graphic user interface, which reduces the system operation
workload.
You can use a tool to transfer to the HiRDB Control Manager backup file, unload log
file, and catalog file information created with HiRDB Assist.
HiRDB Control Manager supports the following operations:

• Concurrent management of multiple HiRDB systems
• Display of HiRDB statuses
• Starting and stopping HiRDB
• Execution of the database copy utility and database recovery utility
• Operations on RDAREAs
• Operations on tables

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

49

• Operations on system log files
• Catalog registration and schedule execution
• Display of XDM/RD activity status together with RDAREA and table structure

information

2.5.3 HiRDB SQL Tuning Advisor
HiRDB SQL Tuning Advisor is a product designed to help you locate and resolve SQL
performance bottlenecks. It analyzes execution records output by HiRDB servers and
clients, and displays the results together with advice in an easy-to-understand format.
HiRDB SQL Tuning Advisor provides the following features:

• Efficiently locates SQL code that may cause performance problems.
• Efficiently tunes SQL code that may cause performance problems.

HiRDB SQL Tuning Advisor provides the following two main facilities:
• SQL trace analysis facility

The SQL trace analysis facility analyzes SQL trace information generated by the
HiRDB client, and displays on screen the aggregate time in the units occupied by
the UAP or SQL code. This enables you to locate SQL code bottlenecks by
summing the SQL processing time and extracting SQL code that is taking a long
time to execute.

• Access path analysis facility
The access path analysis facility analyzes and displays on screen access path
information generated by the HiRDB client. It can also graphically display the
join relationships between tables. It can locate areas that may cause performance
problems with respect to the methods used to join the tables (table scan,
cross-join, and so on) and display warning advice.

2.5.4 JP1/Performance Management - Agent Option for HiRDB
JP1/Performance Management - Agent Option for HiRDB is a JP1/Performance
Management agent product that collects HiRDB performance data. On distributed
systems combining various platforms, JP1/Performance Management allows you to
centrally manage the performance of the operating systems, server applications,
databases, and other resources. By using JP1/Performance Management - Agent
Option for HiRDB, you can monitor HiRDB from JP1/Performance Management.
This means that you can centrally manage HiRDB performance together with that of
the operating systems and other server applications. With JP1/Performance
Management - Agent Option for HiRDB, you can collect performance data on the
following HiRDB resources:

• Global buffers

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

50

• Server processes
• HiRDB file system area for work table files
• HiRDB units and servers
• RDAREAs
• Utilization rate of locked resources management tables

2.5.5 JP1/Base
Events such as HiRDB startup and termination can be reported to JP1/Base. JP1/Base
manages reported HiRDB events as JP1 events. This enables you to use JP1/Integrated
Management to manage events and to automatically execute jobs by linking with JP1/
Automatic Job Management System 2. For details about monitoring events with JP1/
Integrated Management, see 2.5.6 JP1/Integrated Management. For details about
executing jobs by linking with JP1/Automatic Job Management System 2, see 2.5.7
JP1/Automatic Job Management System 2.
For details about JP1/Base, see the manual that is applicable to the version of JP1 that
you are using:

• JP1 Version 8
Job Management Partner 1/Base User's Guide

• JP1 Version 6 and JP1 Version 7i
JP1 V6 JP1/Base or Job Management Partner 1/Base

(1) Reporting events
You specify the operands shown below to have HiRDB events reported to JP1/Base:

• pd_jp1_use operand: Y
• pd_jp1_event_level operand: 1 or 2

If you specify 1 for the pd_jp1_event_level operand, only basic attributes are
reported. If you specify 2, extended attributes are also reported.
For details about the events that can be reported, see the HiRDB Version 8 Installation
and Design Guide.

2.5.6 JP1/Integrated Management
JP1/Integrated Management optimizes (filters) JP1 events managed by JP1/Base and
allows events issued by the system to be managed centrally by means of JP1 events.
By reporting HiRDB events to JP1/Base, you can use JP1/Integrated Management to
manage HiRDB events as you would those of other products. You can check events on
the windows displayed by JP1/Integrated Management. Figure 2-11 provides an
overview of event monitoring when you use JP1/Integrated Management.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

51

Figure 2-11: Overview of event monitoring using JP1/Integrated Management

For details about the preparations for displaying HiRDB's native set of extended
attributes within an overview of event monitoring using JP1/Integrated Management,
see the HiRDB Version 8 Installation and Design Guide. For an overview of event
monitoring using JP1/Integrated Management, see the manual that is applicable to the
version of JP1 that you are using:

• JP1 Version 8
Job Management Partner 1/Integrated Management - Manager System
Configuration and User's Guide

• JP1 Version 7i
Job Management Partner 1/Integrated Manager - Console

2.5.7 JP1/Automatic Job Management System 2
In the case of a HiRDB/Parallel Server, operations such as unloading system log files
can become quite complex. For such cases, by reporting HiRDB events to JP1/Base,
you can use reported events as triggers for JP1/Automatic Job Management System 2
to automatically execute jobs, thereby automating HiRDB operations.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

52

Figure 2-12 shows automatic control when system files are being unloaded by linking
to JP1.

Figure 2-12: Automatic control when system log files are unloaded by linking
with JP1

For details about JP1/Automatic Job Management System 2, see the manual that is
applicable to the version of JP1 that you are using:

• JP1 Version 7i and JP1 Version 8
Job Management Partner 1/Automatic Job Management System 2

• JP1 Version 6
JP1/Automatic Job Management System 2 User's Guide

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

53

2.6 Linkage to data mining products

DATAFRONT is a data-mining tool for extracting rules/laws from a large volume of
data and finding information that is valuable to management strategies.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

54

2.7 Linkage to products that handle multimedia information

Linking to the following products allows you to build a system that can support
multimedia information, such as text and images, and distributed object environments:

• Plug-ins
• DocumentBroker
• Image Database Access
• Database access tools

Figure 2-13 shows the system configuration of the HiRDB-related products.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

55

Figure 2-13: System configuration of HiRDB-related products

(1) Plug-ins
(a) HiRDB Text Search Plug-in

The HiRDB Text Search Plug-in enables you to use an SQL to search both structured
SGML documents and unstructured documents. In the case of searching Japanese text,
the HiRDB Text Search Plug-in features an n-gram index method that stores the

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

56

positions in which n characters (n-gram) occur in a given document so that a
high-speed search of the entire document can be performed.

(b) HiRDB Image Search Plug-in
When a keyword search cannot sufficiently identify an image, the HiRDB Image
Search Plug-in is used to retrieve similar images using image data colors and shapes
as keys. The HiRDB Image Search Plug-in extracts and registers color and shape
features of image data in a HiRDB database and retrieves images that have the same
features as the image that is used as the key.

(c) HiRDB File Link
HiRDB File Link is used to implement a storage mode that minimizes the database
load while managing a large volume of large-scale data by means of a database. In the
data storage mode that uses HiRDB File Link, large-scale image data is stored in a file
server and only the linkage information to the image data is kept in the database.
Therefore, even if the volume of image data increases, the load on the database is kept
to a minimum. Moreover, an increasing volume of image data can be handled by
increasing the disk capacity or the number of file servers.

(d) HiRDB Spatial Search Plug-in
The HiRDB Spatial Search Plug-in is used to retrieve spatial data (2-dimensional
data), such as mapping information.

(2) DocumentBroker
The DocumentBroker product provides a basis for development and execution of
applications for constructing systems that efficiently manage large volumes of
documents in a distributed object environment and applied in mission-critical
operations in business and in government agencies. By storing in a HiRDB database
the documents to be handled by DocumentBroker and such attributes as the document
creation dates, you can assure scalability, which is a feature of HiRDB, and thus
construct high-performance, highly-reliable systems. By also using the HiRDB Text
Search Plug-in, you can further increase the speed of document searches.
DocumentBroker provides functions such as document history management and
management of multiple documents through grouping.

(3) Image Database Access
Image Database Access is a group of programs that support the building of an image
management system under a distributed object environment for efficient management
of a large volume of image data, such as is used by communications companies and
publishing houses. Image Database Access provides CORBA objects that are intended
to be executed by the Web Page Generator. Using these CORBA objects with the
HiRDB Image Search Plug-in, a system that can retrieve images in the WWW
environment can be built. A digital content input/output utility for registering image
data into a database is also provided. The digital content input/output utility can

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

57

generate thumbnails and synthesize mark stamps during image data registration.
(4) Database access tools

(a) DABroker
DABroker is a database access tool for achieving high-speed access to a large volume
of data. DABroker also supports a CORBA-based distributed object environment.
Database access in a distributed object environment

DABroker enables you to store multimedia information, such as documents,
images, and audio, in a HiRDB database and access that information in a
distributed object environment in a manner transparent to the specific location of
the database.

Database response improvement
Because a multi-thread environment can be used, the amount of memory required
for each connected client can be reduced. Therefore, even when the number of
connected clients increases, a uniform response can be expected from the HiRDB
server. Additionally, because data transfer from a client and data retrieval from the
database can be executed in parallel, response performance can be improved even
when the number of clients is small.

Realization of advanced database access
The Simple Interface facility, which consolidates complicated database access
processing into eight functions, can implement focused and random searches.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

58

2.8 Linkage to Cosminexus

Linking to Cosminexus enables you to do the following:
• By using standard J2EE interfaces, such as JTA, JCA, or JMS, Cosminexus

enables you to extend your legacy core systems onto a highly-reliable Web
system.

• Take advantage of your legacy COBOL resources from Java applications via
JavaBeans for accessing COBOL

• By linking with various uCosminexus Developer toolsets, you can improve the
productivity of application development.

Figure 2-14 shows linking to Cosminexus.

2. Linking to HiRDB Option Program Products and Other HiRDB-Related Products

59

Figure 2-14: Linking to Cosminexus

61

Chapter

3. Database Logical Structure

This chapter explains the logical structure of a database in the following sections:
3.1 RDAREAs
3.2 Schemas
3.3 Tables
3.4 Indexes
3.5 Expansion into an object relational database

3. Database Logical Structure

62

3.1 RDAREAs

This section describes the types of RDAREAs that exist and how to create them.

3.1.1 Types of RDAREAs
RDAREAs are logical areas in which tables and indexes are stored. Figure 3-1 shows
the relationship between an RDAREA, a table, and an index.

Figure 3-1: Relationship between RDAREA, table, and index

The types of RDAREAs are listed in Table 3-1.
Table 3-1: Types of RDAREAs

R: Required RDAREA
O: Optional RDAREA
Notes:

No. RDAREA type Number that can be
created

Required/optional

1 Master directory RDAREA 1 R

2 Data dictionary RDAREAs 1-41 R

3 Data directory RDAREA 1 R

4 Data dictionary LOB RDAREAs 2 O

5 User RDAREAs 1 to 8,388,589 R

6 User LOB RDAREAs 1 to 8,388,325 O

7 Registry RDAREA 1 O

8 Registry LOB RDAREA 1 O

9 List RDAREAs 1 to 8,388,588 O

3. Database Logical Structure

63

• The RDAREAs in Nos. 1 through 3 are called system RDAREAs.
• The RDAREAs in Nos. 4, 6, and 8 are called LOB RDAREAs.

(1) Master directory RDAREA
The master directory RDAREA, which is required, stores internal system information.

(2) Data dictionary RDAREA
A data dictionary RDAREA stores dictionary tables and indexes for dictionary tables.
Dictionary tables enable users to conduct HiRDB searches. For details about
dictionary tables, see the HiRDB Version 8 UAP Development Guide.
There must be at least one data dictionary RDAREA.

(3) Data directory RDAREA
The data directory RDAREA, which is required, stores internal system information.

(4) Data dictionary LOB RDAREA
The data dictionary LOB RDAREAs store definition sources and objects for stored
procedures and stored functions. When you define a trigger, the data dictionary LOB
RDAREA also stores the internally generated SQL object of that trigger. When you use
a stored procedure or a stored function, or when you define a trigger, make sure to
create a data dictionary LOB RDAREA.
The two data dictionary LOB RDAREAs are:

• Data dictionary LOB RDAREA that stores the definition sources
• Data dictionary LOB RDAREA that stores the SQL objects

Reference note:

Triggers also include triggers that HiRDB generates internally based on
referential constraint actions. Therefore, you must also create a data dictionary
LOB RDAREA when you define a referential constraint.

(5) User RDAREA
User RDAREAs, which are required, store tables and indexes. A table can be stored in
one or in multiple user RDAREAs. Similarly, a user RDAREA can store one or
multiple tables. The same applies to indexes. There are two types of user RDAREAs:
Public RDAREAs

All users who are registered in HiRDB can use the public RDAREAs.
Private RDAREAs

Only users who have the requisite privilege to access a private RDAREA can
access that RDAREA.

3. Database Logical Structure

64

User RDAREAs that can be referenced from all back-end servers are called shared
RDAREAs. For details about shared RDAREAs, see the HiRDB Version 8 Installation
and Design Guide.

(6) User LOB RDAREA
User LOB RDAREAs store long variable-size data, such as documents, images, and
audio. A user LOB RDAREA is required in order to use any of the following types of
data:

• A column specified as a BLOB-type column (LOB column)
• An attribute specified as BLOB type in an abstract data type
• Plug-in index

If a table contains multiple types of data (LOB column, BLOB-type attribute in an
abstract data type, or plug-in for a plug-in index), each type of data must be stored in
a separate user LOB RDAREA. There are two types of user LOB RDAREAs:
Public RDAREAs

All users who are registered in HiRDB can use the public RDAREAs.
Private RDAREAs

Only users who have the requisite privilege to access a private RDAREA can
access that RDAREA.

(7) Registry RDAREA
The registry RDAREA stores registry information. If plug-ins that use the registry
facility are used, it is necessary to create a registry RDAREA. When the registry
facility is used, both a registry RDAREA and a registry LOB RDAREA must be
created. The registry facility is required in order to use the HiRDB Text Search Plug-in.
Some plug-ins do not require the registry facility or a registry RDAREA.

(8) Registry LOB RDAREA
The registry LOB RDAREA stores registry information keys whose key length
exceeds 32,000 bytes. If you use plug-ins that use the registry facility, you must create
a registry LOB RDAREA. The registry facility is required in order to use the HiRDB
Text Search Plug-in. Some plug-ins do not require the registry facility or a registry
LOB RDAREA.

(9) List RDAREA
A list RDAREA stores lists created by the ASSIGN LIST statement. A list RDAREA
is required in order to perform a narrowed search.

3.1.2 RDAREA creation
The following facilities can be used to create RDAREAs:

3. Database Logical Structure

65

When HiRDB is first installed
If you use either of the following environment setup support tools, RDAREAs can
be created when you run the tool:

• Simple setup tool
• Batch file (SPsetup.bat)

If you use a command to set up the HiRDB environment, you can use the
following utility to create RDAREAs:

• Database initialization utility (pdinit)
When adding RDAREAs
You can use either of the following utilities to create (add) RDAREAs:

• Database structure modification utility (pdmod)
• Registry facility initialization utility (pdreginit)

For details about RDAREA creation, see the HiRDB Version 8 Installation and Design
Guide or HiRDB Version 8 System Operation Guide.

Hint:

• Pay particular attention to the value of the pd_max_rdarea_no operand.
This operand specifies the maximum number of RDAREAs. If the number
of RDAREAs exceeds the value of this operand, you can no longer start
HiRDB normally.

• In the case of a HiRDB/Parallel Server, there are restrictions concerning
the servers on which RDAREAs can be created, as shown in Table 3-2.
Figure 3-2 shows an example of an RDAREA configuration (for HiRDB/
Parallel Server).

Table 3-2: Server machines on which RDAREAs can be created

Type of RDAREA Server machine on which RDAREA is created

Master directory RDAREA Server machine on which the dictionary server is running.

Data dictionary RDAREA

Data directory RDAREA

Master directory LOB RDAREA

Registry RDAREA

Registry LOB RDAREA

3. Database Logical Structure

66

Figure 3-2: RDAREA configuration example (for HiRDB/Parallel Server)

User LOB RDAREA Server machine on which a back-end server is running.

List RDAREA

User RDAREA

Type of RDAREA Server machine on which RDAREA is created

3. Database Logical Structure

67

3.2 Schemas

Tables, indexes, abstract data types (user-defined types), index types, stored
procedures, stored functions, triggers, and access privileges are subsumed under a
concept known as a schema. Before you can define any of these resources, you must
define a schema. To define a schema, you use the definition SQL CREATE SCHEMA
statement. One schema can be defined for each user. Figure 3-3 shows the concept of
schemas.

Figure 3-3: Concept of schemas

3. Database Logical Structure

68

3.3 Tables

A table in HiRDB is a relational database with a tabular structure composed of rows
and columns. The following items should be evaluated when a table is being designed:

• What data, organized as data elements, is to be stored in the table?
• How will high-speed access be achieved?
• What security measures should be provided?

3.3.1 Basic table structure
(1) Columns and rows

The cells in a table's horizontal plane constitute rows; the cells in the vertical plane
constitute columns. The row is the unit for performing operations on a table. Each row
consists of data entries from one or more columns. Each column is given a column
name. When an operation is performed on a table, you identify the position of an item
in a row by its column name. Figure 3-4 shows an example of a table.

Figure 3-4: Example of a table

3. Database Logical Structure

69

Explanation
This example illustrates the structure of an inventory table (the table name is
STOCK). The columns are defined with the CREATE TABLE in the definition SQL.
Following is the definition of the STOCK table's columns:

CREATE TABLE STOCK
 (PCODE CHAR(4),
 PNAME NCHAR(8),
 COLOR NCHAR(1)
 PRICE INTEGER,
 SQUANTITY INTEGER);

(2) Data types
A data type must be specified for each column and for each attribute comprising an
abstract data type. Data types are classified broadly as predefined data types and
user-defined data types. A predefined data type is provided by HiRDB. A user-defined
data type is defined by a user as needed. Table 3-3 lists the available data types.

3. Database Logical Structure

70

Table 3-3: Available data types

: Not applicable
Data types are specified when a table is created with the CREATE TABLE of the

Classification Data type Data format

Predefined Numeric data INTEGER Integer

SMALLINT Integer

LARGE DECIMAL Fixed point

FLOAT Double-precision floating
point

SMALLFLT Single-precision floating
point

Character data CHARACTER Fixed-size character string

VARCHAR Variable-size character string

National character
data

NCHAR Fixed-size national character
string

NVARCHAR Variable-size national
character string

Mixed character
data

MCHAR Fixed-size mixed character
string

MVARCHAR Variable-size mixed character
string

Date data DATE Date

Time data TIME Time

Time-stamp data TIMESTAMP Precision for time-stamp data
in floating-point seconds

Date interval data INTERVAL YEAR TO DAY Date interval

Time interval data INTERVAL HOUR TO SECOND Time interval

Large object data BLOB Binary data string

Binary data BINARY Binary data string

Boolean data BOOLEAN Boolean value

User-defined Abstract data type

3. Database Logical Structure

71

definition SQL. The data type for an attribute comprising an abstract data type is
specified with the CREATE TYPE of the definition SQL. For details on abstract data
types, see Section 3.5 Expansion into an object relational database.

3.3.2 Table normalization
The operation of removing redundant data from one table into another table is called
table normalization. Table normalization should be used to improve the storage
efficiency of table data as well as to enhance the capacity for concurrent executions
during access processing. By normalizing a given table repeatedly, it becomes possible
to transform a complex database into an optimal database. Figure 3-5 illustrates table
normalization. For details about table normalization, see the HiRDB Version 8
Installation and Design Guide.

3. Database Logical Structure

72

Figure 3-5: Table normalization

3. Database Logical Structure

73

Explanation
Before normalization, the columns PCODE and PNAME in the STOCK table have a
1-to-1 correspondence; the information in these two columns is redundant. In
such a case, you can create another table, named PRODUCT in this example,
composed of the PCODE and PNAME columns from the STOCK table, so that in the
PRODUCT table there is no duplication of information in the PCODE and PNAME
columns.

3.3.3 FIX attribute
The attribute that is assigned to a table whose row size is fixed is called the FIX
attribute. Specifying the FIX attribute for a fixed-size table that contains no null values
speeds up column retrieval processing. Use of this technique improves access
performance even when there is a large number of columns. The FIX attribute should
be specified when all the following conditions are satisfied:

• No columns will be added
• No columns contain the null value
• There are no variable-size columns

The FIX attribute is assigned to a table by specifying the FIX option in the CREATE
TABLE of the definition SQL. For details about the FIX attribute, see the HiRDB
Version 8 Installation and Design Guide.

3.3.4 Primary key
A primary key makes it possible to uniquely identify the rows in a table. The columns
constituting a defined primary key are subject to the uniqueness constraint and the
NOT NULL constraint. The uniqueness constraint means that no value can be
duplicated in the key area (column or set of columns) i.e., there is a constraint that
all data entries in the key columns must be unique. The NOT NULL constraint means
that the null value is not permitted as a value in the key columns.
If there are one or more columns or sets of columns (called candidate keys) on the basis
of which the rows in a table can be uniquely identified, you can select a primary key
from among the candidate keys. You should define this primary key so that it is
mnemonically significant and appropriate for being assigned the uniqueness and NOT
NULL constraints.
The primary key is defined with the PRIMARY KEY option in the CREATE TABLE. For
details about the primary key, see the HiRDB Version 8 Installation and Design Guide.

3.3.5 Cluster key
You can store the rows in a table in either ascending or descending order. To do this,
you need to define a cluster key. Using a cluster key for storing the rows in a table in
ascending or descending order reduces the data I/O time for the following types of

3. Database Logical Structure

74

operations:
• Searching, updating, or deleting rows by specifying a range
• Searching or updating rows in cluster key sequence

Applicability
You should specify a cluster key when all the following conditions are satisfied:

• Data will be accumulated in either ascending or descending order of the key
values and the data will be accessed frequently in key value sequence.

• No key values are to be changed.
• The table's rows have a fixed row size.

A cluster key is defined with the CLUSTER KEY option in the CREATE TABLE. For
details about the cluster key, see the HiRDB Version 8 Installation and Design Guide.

3.3.6 Suppress option
The suppress option refers to abbreviating some of data in a table so that the data can
be stored in a smaller space than its actual size. When the suppress option is specified,
the system stores any decimal data in the table by taking only the significant digits
(ignoring leading zeros) and a value indicating the actual data size. Because the
suppress option stores data by truncating it to less than its actual size, less disk space
is used and I/O time for text and other search operations is reduced.
The suppress option is specified with the SUPPRESS option in the CREATE TABLE. For
details about the suppress option, see the HiRDB Version 8 Installation and Design
Guide.

3.3.7 No-split option
When any of the following data types is defined in a table and the actual size of the
data of any of these data types is equal to or greater than 256 bytes, the normal
procedure results in each row of data being stored on multiple pages:

• VARCHAR
• MVARCHAR
• NVARCHAR

Figure 3-6 shows the data storage method that is used normally.

3. Database Logical Structure

75

Figure 3-6: Normal data storage method when the actual data size of a
variable-size character string is at least 256 bytes

As illustrated, data that is not part of variable-size character strings and data belonging
to variable-size character string are stored on different pages, which reduces the data
storage efficiency. In this case, you can improve the data storage efficiency by
specifying the no-split option. When the no-split option is specified, the system stores
each entire row on the same page, even if the actual data size of a variable-size
character string is equal to or greater than 256 bytes. Figure 3-7 shows the data storage
method that is used when the no-split option is specified.

Figure 3-7: Data storage method used when the no-split option is specified

Explanation
The no-split option stores all data from a row on the same page, which improves
the data storage efficiency as compared to when the no-split option is not
specified.

The no-split option is specified with the NO SPLIT option in the CREATE TABLE or
CREATE TYPE. For details about the no-split option, see the HiRDB Version 8

3. Database Logical Structure

76

Installation and Design Guide.

3.3.8 Table row partitioning
The process by which a single table is split amongst multiple user RDAREAs or user
LOB RDAREAs is called table row partitioning. A table that is partitioned by this
method is called a row-partitioned table. When you row-partition a table, you can use
user RDAREAs or user LOB RDAREAs as the unit for storing the table's data,
reorganizing the table, and making backups.
For example, you could row-partition a table to match the different types of UAPs (job
types) that will access the table and then store the sections appropriate to the various
UAP types in different RDAREAs. Then, when it becomes necessary to make a
backup, you need stop only the UAPs that are accessing the RDAREA that is to be
backed up, which facilitates overall system operation.
In the case of a HiRDB/Parallel Server, it is possible to access concurrently a table in
user RDAREAs or user LOB RDAREAs under multiple back-end servers, resulting in
high-speed table access and better load distribution.
Figure 3-8 shows table row partitioning.

Figure 3-8: Table row partitioning

There are two methods for row-partitioning a table:
• Key range partitioning
• Hash partitioning (flexible hash partitioning and FIX hash partitioning)

(1) Key range partitioning
Key range partitioning is when ranges of values in a specified column are used as the
conditions for row-partitioning the table. The specific column that provides the
conditions for row partitioning is called the partitioning key. Key range partitioning is
used when the actual RDAREAs in which table data is stored must be known. There
are two ways to specify this type of row partitioning:

• Storage condition specification
• Boundary value specification

3. Database Logical Structure

77

(a) Storage condition specification
Comparison operators are used to specify conditions for selecting the data to be stored
in specific RDAREAs. Only one range of values, as specified by a storage condition,
can be set in each RDAREA. Figure 3-9 shows an example of key range partitioning
with a storage condition specified.

Figure 3-9: Key range partitioning: Example of storage condition specification

Explanation

3. Database Logical Structure

78

The STOCK table is row-partitioned using PCODE as the partitioning key; the
results of row-partitioning are stored in RDAREA01 and RDAREA02:
CREATE TABLE STOCK
 (PCODE CHAR(4) NOT NULL,PNAME NCHAR(8),
 COLOR NCHAR(1),PRICE INTEGER,SQUANTITY INTEGER
)IN ((RDAREA01)PCODE<='353M',(RDAREA02));

(b) Boundary value specification
Boundary values for the data to be stored in each RDAREA are specified with literals
in ascending order. Multiple ranges delimited by boundary values can be specified for
each RDAREA. Figure 3-10 shows an example of key range partitioning with
boundary values specified.

3. Database Logical Structure

79

Figure 3-10: Key range partitioning: Example of boundary value specification

Explanation
The STOCK table is row-partitioned using PCODE as the partitioning key; the
results of row-partitioning are stored in RDAREA01 and RDAREA02:
CREATE TABLE STOCK
 (PCODE CHAR(4) NOT NULL,PNAME NCHAR(8),
 COLOR NCHAR(1),PRICE INTEGER,SQUANTITY INTEGER
)PARTITIONED BY PCODE
 IN ((RDAREA01)'302S',(RDAREA02)'591S',(RDAREA01));

3. Database Logical Structure

80

(2) Hash partitioning
Hash partitioning is when a table is row-partitioned by using a hash function to store
evenly among the storage RDAREAs the values contained in the columns that make
up the table. The specific column that provides the conditions for row-partitioning is
called the partitioning key. Hash partitioning is used when it is necessary to store the
same amount of table data is each of the RDAREAs. Table 3-4 provides an overview
of the two types of hash partitioning.

Table 3-4: Types of hash partitioning

Figure 3-11 shows an example of hash partitioning.

Hash partitioning type Explanation

Flexible hash partitioning The RDAREAs in which the table is stored cannot be determined. Therefore,
a search process must check all back-end servers that may contain parts of the
table.

FIX hash partitioning HiRDB keeps track of the RDAREAs in which the table is stored.
Consequently, a search process has to check only the back-end servers that are
expected to contain the table's the data.

3. Database Logical Structure

81

Figure 3-11: Example of hash partitioning

Explanation
The STOCK table is row-partitioned using PCODE as the partitioning key; the
results of row-partitioning are stored in RDAREA01 and RDAREA02:
Note that the actual RDAREAs in which the data is stored may differ from those
in the example.

CREATE TABLE STOCK

3. Database Logical Structure

82

 (PCODE CHAR(4) NOT NULL,PNAME NCHAR(8),
 COLOR NCHAR(1),PRICE INTEGER,SQUANTITY INTEGER
) [FIX]* HASH HASH6 BY PCODE
 IN (RDAREA01,RDAREA02);
* This is specified for FIX hash partitioning.

(3) Examples of table row partitioning
The RDAREAs into which a row-partitioned table is stored should be allocated for
different disks. If they are allocated on the same disk, contention for access to these
RDAREAs can occur, resulting in decreased performance.
The concepts of row partitioning among servers and row partitioning within a server
apply to a HiRDB/Parallel Server. Row-partitioning among servers is the mode in
which a table is row-partitioned over multiple back-end servers. Row-partitioning
within a server is the mode in which a table is row-partitioned within a single back-end
server. In the case of a HiRDB/Single Server, row-partitioning is always within the
server.
Figure 3-12 shows an example of table row partitioning for a HiRDB/Single Server,
and Figure 3-13 shows an example of table row partitioning for a HiRDB/Parallel
Server.

Figure 3-12: Example of table row partitioning: HiRDB/Single Server

3. Database Logical Structure

83

Figure 3-13: Example of table row partitioning: HiRDB/Parallel Server

Explanation
The table is row-partitioned among back-end servers BES1 to BES4.

(4) Table row partitioning definition
To row-partition a table, the elements listed below must be specified in the CREATE
TABLE definition SQL:

• Allocation of the table to RDAREAs
• Row-partitioning method (specification of storage conditions, boundary values,

or hash partitioning)
For details about the row-partitioning design considerations for improving processing
performance, see the HiRDB Version 8 Installation and Design Guide.

(5) Hash facility for hash row partitioning
When new RDAREAs are added to accommodate an increase in the volume of data in
a hash-partitioned table (increase in the number of table partitions), there may be
significant differences in the amount of data stored in the existing RDAREAs and in
the new RDAREAs. The hash facility for hash row partitioning corrects this sort of
imbalance in the amount of data in RDAREAs as a result of increasing the number of
table partitions. Figure 3-14 illustrates the hash facility for hash row partitioning. This

3. Database Logical Structure

84

facility can be applied to both FIX hashing and flexible hashing.
For details about the hash facility for hash row partitioning, see the HiRDB Version 8
System Operation Guide.

Figure 3-14: Hash facility for hash row partitioning

Explanation
1. Because the hash-partitioned table became filled with data, an additional

RDAREA for storing table data was provided (the number of table partitions
was increased). No data is placed in the new RDAREA, which creates a data
volume imbalance.

2. The rebalancing utility (pdrbal command) is executed in order to correct
the data volume imbalance.

3. Execution of the rebalancing utility moves and re-allocates data in units of
hash groups in a process called table rebalancing. The hash facility for hash
row partitioning causes HiRDB to divide data into 1024 groups (called hash
groups) based upon the result of hashing the primary key. For each group, an

3. Database Logical Structure

85

RDAREA segment is allocated, and the data is stored. This reallocation of
data is also performed in units of hash groups.

Application criteria
• An increase in the amount of data to be stored is anticipated, so an RDAREA

is needed for potential future use.*

• Because of the large amount of data in the table, it would be prohibitively
difficult to re-create the table.

* Although normally an RDAREA cannot be added to a FIX hash-partitioned
table in which data is already stored, you can use the hash facility for hash row
partitioning to add an RDAREA.

Operating procedure
Following is a summary of the operating procedure for using the hash facility for
hash row partitioning:
1. When a hash partitioned table is defined, use one of the hash functions A to

F to define the table as a rebalancing table.
2. Add a table storage RDAREA in order to increase the number of table

partitions for the table.
3. Execute the rebalancing utility to rebalance the table.

3.3.9 Table matrix partitioning
Partitioning a table by a combination of partitioning methods using two table columns
as partitioning keys is called matrix partitioning. The first column used as a
partitioning key is called the first dimension partitioning column, and the second
column used as a partitioning key is called the second dimension partitioning column.
Matrix partitioning involves key range partitioning with boundary values specified for
the first dimension partitioning column and then partitioning the resulting data further
by the second dimension partitioning column. The following partitioning methods can
be specified for the second dimension partitioning column:

• Key range partitioning with boundary values specified
• Flexible hash partitioning
• FIX hash partitioning

A table that has been matrix-partitioned is called a matrix-partitioned table. You can
also perform matrix partitioning on indexes that have been mapped to a
matrix-partitioned table. Note that you must have HiRDB Advanced Partitioning
Option to perform matrix partitioning on a table.

3. Database Logical Structure

86

(1) Benefits of table matrix partitioning
The following describes the benefits that are provided by using multiple columns as
partitioning keys to split a table:

• Increase in SQL processing speed
You can execute SQL processes in parallel and more quickly perform searches by
using multiple keys to narrow the searched range.

• Decrease in operation time
Matrix partitioning creates smaller partitions, which decreases the size of any
single RDAREA, and reduces the time required to perform operations such as
reorganization, backup, and failure recovery.

(2) Application criteria
We recommend using key range partitioning with boundary values specified for both
partitioning columns when the following conditions are met:

• Partitioning by the first dimension partitioning column results in a vast amount of
data within each set of boundary values.

• Multiple columns need to be specified in the search condition for a UAP that
accesses the table and you wish to limit the RDAREAs that are accessed by
multiple columns. Or, you wish to limit the RDAREAs that are accessed only by
column n specified in the SQL statement.

When the following conditions are met, we recommend that you combine key range
partitioning with boundary values specified and hash partitioning:

• Partitioning by the first dimension partitioning column results in a vast amount of
data within each set of boundary values.

• You wish to uniformly segment the range of data that was partitioned by the first
dimension partitioning column.

(3) How matrix partitioning is defined
To define matrix partitioning, specify the following in the PARTITIONED BY
MULTIDIM operand of the CREATE TABLE definition SQL:

• Allocation of a table to an RDAREA
• The matrix partitioning method (partitioning key, partitioning method)

(4) Examples of matrix partitioning
(a) Key range partitioning with boundary values specified is used for the

second dimension partitioning column
In this example, boundary values are specified for the registration date (RDATE) and
the store number (SNUM) in a customer data table. The table is then matrix partitioned

3. Database Logical Structure

87

such that the user data is stored by registration date and store number in the user
RDAREAs USR01 to USR06. In this example, the number of user RDAREAs needed
to store this data is (the number of boundary values for RDATE +1) (the number of
boundary values for SNUM + 1), so the number of user RDAREAs needed is 3 2 = 6.

The following shows the SQL code used to matrix partition the table:

CREATE FIX TABLE CTBL
 (RDATE DATE, SNUM INT, CNAME NCHAR(10))
 PARTITIONED BY MULTIDIM(
 RDATE (('2000-12-31'),('2001-12-31')), . . .1.
 STORE_NO ((100)) . . .2.
)IN ((USR01,USR02),(USR03,USR04),(USR05,USR06))

Explanation
1. Specifies the name of the first dimension partitioning column (name of the

column that is used as the first partitioning key), and its list of boundary
values.

2. Specifies the name of the second dimension partitioning column (name of
the column that is used as the second partitioning key), and its list of
boundary values.

Figure 3-15 shows an example of matrix partitioning.

RDATE SNUM

100 or less 101 or greater

2000 and earlier USR01 USR02

2001 USR03 USR04

2002 and later USR05 USR06

3. Database Logical Structure

88

Figure 3-15: Example of matrix partitioning (combining with key range
partitioning with boundary values specified)

(b) Hash partitioning is used for the second dimension partitioning column
This example uses FIX hash partitioning for the second dimension partitioning
column.
In this example, boundary values are specified for the registration dates in a customer
table, and then a hash function is used to separate the data by store number and region
code into three segments. This results in a table that is matrix partitioned such that each
segment of customer data is stored in one of the user RDAREAs (USR01 to USR09)
shown below. The number of user RDAREAs needed to store the resulting data is
(number of boundary values + 1) (desired partitions to be obtained by hash
function). In this example, the number is 3 3 = 9.

3. Database Logical Structure

89

The following code shows the SQL statement used to define the table to be matrix
partitioned:

CREATE FIX TABLE customer-table
 (registration-date DATE, store-number INT, region-code INT, customer-name
NCHAR(10))
 PARTITIONED BY MULTIDIM
 (registration-date (('2002-12-31'),('2003-12-31')), ...1.
 FIX HASH HASH6 BY store-number, region-code ...2.
)IN ((USR01,USR02,USR03),
 (USR04,USR05,USR06),
 (USR07,USR08,USR09))

Explanation
1. Specifies the name of the first dimension partitioning column (name of the

column to be used as the first partitioning key) and its list of boundary
values.

2. Specifies the name of the second dimension partitioning column (name of
the column to be used as the second partitioning key) and the name of the
hash function.

Figure 3-16 shows an example of matrix partitioning.

Registration date Store number and region code (divided into 3 partitions by hash
function)

2002 and earlier USR01 USR02 USR03

2003 USR04 USR05 USR06

2004 and later USR07 USR08 USR09

3. Database Logical Structure

90

Figure 3-16: Example of matrix partitioning (combination of key range
partitioning with boundary values specified and hash partitioning)

3. Database Logical Structure

91

3.3.10 Changing the partitioning storage conditions of a table
You can use ALTER TABLE to change the partitioning storage conditions of tables that
have been row-partitioned by key range partitioning.* Changing the partitioning
storage conditions of a table can reduce your workload by enabling you to reuse
RDAREAs in which outdated data is stored. ALTER TABLE deletes a table whose
partitioning storage conditions are to be changed, eliminating the need to re-create the
table.
*

ALTER TABLE can be used to change a table's partitioning storage condition when
either of the following partitioning methods was used:

• Boundary value specification
• Storage condition specification (and the equal sign (=) was used as the

comparison operator for the storage condition)
To change the partitioning storage conditions of a table, you must have HiRDB
Advanced Partitioning Option.
The following two facilities are provided for changing the partitioning storage
conditions of tables.

3. Database Logical Structure

92

(1) Split facility
The split facility changes the table partitioning storage conditions, splitting data stored
in a single RDAREA into multiple RDAREAs. Figure 3-17 provides an example of the
split facility (using boundary value specification).

Figure 3-17: Example of the split facility (boundary value specification)

(2) Combine facility
The combine facility changes the table partitioning storage conditions, combining data
stored in multiple RDAREAs into a single RDAREA. Figure 3-18 provides an
example of the combine facility (using boundary value specification).

3. Database Logical Structure

93

Figure 3-18: Example of the combine facility (boundary value specification)

3.3.11 Falsification-prevention table
To prevent falsification of critical data due to human error or fraudulence, you can now
define a falsification-prevented table, which prevents all users, including the table
owner, from updating data in the table. Table 3-5 indicates the executability of
operations on falsification-prevented tables.

Table 3-5: Executability of operations on falsification-prevented tables

Legend:

Operation Falsification-prevention table

With deletion-prevention
duration specification

Without deletion-prevention
duration specification

INSERT Y Y

SELECT Y Y

Update by column (UPDATE) Y1 Y1

Update by row (UPDATE) N N

DELETE Y2 N

PURGE TABLE N N

Other data manipulation SQLs Y Y

3. Database Logical Structure

94

Y: Can be executed.
N: Cannot be executed.

1 Only updatable columns can be updated.
2 Only data for which the deletion-prevention duration has elapsed can be deleted. If a
deletion-prevention duration is not specified, the data in the table cannot be deleted.

(1) Specification method
To prevent falsification, you specify the INSERT ONLY option (falsification prevention
option) in the CREATE TABLE definition SQL. You can also use the INSERT ONLY
option of ALTER TABLE to change the definition of an existing table so that it becomes
a falsification-prevented table.
You can define the following types of columns when you create or change a table
definition:

• Updatable column
If you define an updatable column, you can use either of the following methods
to update the data by column:

• Always update (specify UPDATE)
• Update only once from the null value to a non-null value (specify UPDATE

ONLY FROM NULL)
You can define updatable columns at the following times:

• When you execute CREATE TABLE
• Before you execute ALTER TABLE CHANGE INSERT ONLY
• When you execute ALTER TABLE ADD column-name or ALTER TABLE

CHANGE column-name*

* You cannot execute ALTER TABLE CHANGE column-name on a
falsification-prevented table.

• Insert history maintenance column
By defining an insert history maintenance column, you can specify a
deletion-prevented duration. If you do not specify the deletion-prevented
duration, you will not be able to delete any of the data in the table. In addition,
because you cannot execute DROP TABLE on such a table if it contains any data,
you will not be able to delete either the table itself or the data in the table. To avoid
this situation, specify the deletion-prevention duration if the data hold time has
been determined, or if the data hold time can be determined.

3. Database Logical Structure

95

(2) Limitations
The limitations of falsification-prevented tables and the RDAREAs in which
falsification-prevented tables are stored are listed as follows. For details, see the
HiRDB Version 8 Installation and Design Guide.

• You cannot specify the updatable column attribute for all columns and then
specify the falsification prevention option.

• You cannot change existing columns to become updatable columns or change
updatable columns to become regular columns.

• You must define updatable columns before you apply the falsification prevention
facility.

• You cannot apply the falsification prevention facility to an existing table that
already contains data. Instead, you must first unload the data from the existing
table, change the table to a falsification-prevented table, and then load the data
back into the table.

• You cannot delete a falsification-prevented table that contains data. The fact that
you cannot delete data in a falsification-prevented table for which no
deletion-prevention duration has been specified means that you cannot delete the
table itself.

• You cannot use the database structure reconfiguration utility (pdmod) to initialize
an RDAREA (initialize rdarea) in which a falsification-prevented table is
stored.

• Do not use a replication facility (HiRDB Dataextractor or HiRDB Datareplicator)
to duplicate data in or to reflect update results to a falsification-prevented table.
If you do so, the data in the copy source and copy target may become inconsistent,
resulting in errors.

3.3.12 Tables used in numbering
Numbering means the capability to perform other tasks using report numbers and
document numbers that have been created primarily for one task. The table used for
numbering is dedicated to number management only. Because multiple users need to
access to this table simultaneously, it is necessary to minimize the lock processing to
conduct speedy updating.
In this table, a function is provided that releases row locking as soon as the table update
is complete without waiting for transaction confirmation, and that prevents subsequent
rollbacks.
To define a table used for numbering, the WITHOUT ROLLBACK option must be
specified in the CREATE TABLE definition SQL.
For details about numbering, see the HiRDB Version 8 UAP Development Guide.

3. Database Logical Structure

96

3.3.13 Repetition columns
A repetition column is a column whose data values may consist of multiple elements.
An element means each item that is stored in the same row of the repetition column. A
column is defined as a repetition column in CREATE TABLE; the number of elements
must also be defined (however, the number of elements can be increased later with the
ALTER TABLE).
Defining a table to contain repetition columns offers the following benefits:

• If multiple tables contain identical information, the overlapping information can
be eliminated, thus reducing the amount of disk space that is required.

• The need for joining multiple tables is eliminated.
• Because related data (repetition data) is stored nearby, access performance is

better than when separate tables are accessed.
Figure 3-19 shows an example of a table containing repetition columns. For details
about repetition columns, see the HiRDB Version 8 Installation and Design Guide.

Figure 3-19: Example of a table containing repetition columns

(1) Example of defining a repetition column
Following is the CREATE TABLE SQL statement that defines the table containing the
repetition column in Figure 3-19:
CREATE TABLE employee list
 NAME NVARCHAR(10),
 QUALIFICATION NVARCHAR(20) ARRAY[10],

3. Database Logical Structure

97

 SEX NCHAR(1),
 FAMILY NVARCHAR(5) ARRAY[10],
 RELATIONSHIP NVARCHAR(5) ARRAY[10],
 SUPPORT SMALLINT ARRAY[10]);

(2) Operations for repetition columns
The operations listed below can be performed on a table containing repetition columns.
Retrieval using a structured repetition predicate

A structured repetition predicate is used to perform a search on multiple repetition
columns in a table, where the subscripts correspond directly with the elements.
Example 1

SELECT NAME FROM STAFF_TABLE WHERE
 ARRAY(RELATIONSHIP, SUPPORT) [ANY]
 (RELATIONSHIP='Father' AND SUPPORT=1)

Updating a repetition column
The following three repetition column updating methods are provided:

• Updating an existing element (SET clause of UPDATE statement)
• Adding a new element (ADD clause of UPDATE statement)
• Deleting an existing element (DELETE clause of UPDATE statement)

To update a table containing a repetition column, repetition-column-name
[{subscript | *}] is used to specify the element of the repetition column that is
to be updated.
Example 2: Updating an existing element

UPDATE STAFF_TABLE SET QUALIFICATION[2]=N'Accounting-II'
 WHERE NAME=N'Tom Jones'

Example 3: Adding a new element
UPDATE STAFF_TABLE ADD QUALIFICATION[*]=ARRAY{N'Systems
analysis'}
 WHERE NAME=N'Tom Jones'

Example 4: Deleting an existing element
UPDATE STAFF_TABLE DELETE QUALIFICATION[2]
 WHERE NAME=N'Tom Jones'

Other operations for repetition columns
To specify a repetition column in an SQL statement, repetition-column-name
[subscript] must be used.

For details about the operations for tables containing repetition columns, see the

3. Database Logical Structure

98

HiRDB Version 8 UAP Development Guide.

3.3.14 View table
You can create a virtual table by selecting specific rows and columns from a table that
is actually stored in a database (called a base table). Such a virtual table is called a view
table. By creating a view table that makes only specified columns available to the
public, you can effectively protect the remainder of the data. In addition, the resulting
reduction in the number of columns to be manipulated improves the operability of the
table.
To create a view table, you must execute the CREATE VIEW of the definition SQL.
Figure 3-20 shows an example of a view table.

Figure 3-20: Example of a view table

Explanation
The VSTOCK view table is created from the STOCK base table, and is composed of
the product code (PCODE), stock quantity (SQUANTITY), and unit price (PRICE)
columns and only those rows with Socks in the product name (PNAME) column.
The columns are arranged in the order of product code, stock quantity, and unit
price.
CREATE VIEW VSTOCK
 AS SELECT PCODE,SQUANTITY,PRICE
 FROM STOCK
 WHERE PNAME = N'Socks'

If the HiRDB External Data Access facility is being used

You can create a view table from a foreign table. However, you cannot update
such a view table.

3. Database Logical Structure

99

3.3.15 Shared tables
In the case of a HiRDB/Parallel Server, when multiple tables are joined, table data is
read from the back-end servers where the individual tables are located and then
matching is performed at a separate back-end server. This means that multiple servers
are connected to transfer data. If the range of data to be searched for matches is located
on a single back-end server, matching can be completed at the single back-end server
by creating that data as a shared table. A shared table is a table stored in a shared
RDAREA that can be referenced by all back-end servers. An index defined for a
shared table is called a shared index. For details about shared tables, see the HiRDB
Version 8 Installation and Design Guide.
Shared tables and shared indexes can also be defined for a HiRDB/Single Server. This
provides SQL and UAP compatibility with a HiRDB/Parallel Server. Shared tables and
shared indexes are usually used with a HiRDB/Parallel Server because they are
especially effective in HiRDB/Parallel Servers. This section describes the use of
shared tables with a HiRDB/Parallel Server. For details about using shared tables with
a HiRDB/Single Server, see (6) Using shared tables with a HiRDB/Single Server
below.

(1) Advantages of shared tables
Because join processing can be completed by a single back-end server, the overhead
associated with connecting between back-end servers and transferring data is reduced.
Additionally, the number of back-end servers required for each transaction can be
reduced, thereby improving the efficiency of parallel processing, particularly in the
event of multiple executions.

(2) Application criteria
We recommend that you create as a shared table a table that typically involves minor
update processing, but which is referenced by multiple transactions, such as for join
processing.

(3) Notes on updating shared tables
When you update a shared table, all back-end servers in which RDAREAs are
allocated are locked. If you execute any statement other than the UPDATE statement or
PURGE TABLE statement, which do not update index key values, you must specify IN
EXCLUSIVE MODE with the LOCK TABLE statement and lock all back-end servers to
update the shared table. This means that any jobs that access a locked RDAREA may
result in deadlock, or that global deadlock may occur among the servers.
When you use a local buffer to update a shared table, issue the LOCK statement before
you update. If you update without issuing the LOCK statement and the server process
terminates abnormally, the abort code Phb3008 is output (which indicates that the unit
may have terminated abnormally).

3. Database Logical Structure

100

(4) Definition method
To define a shared table, specify SHARE with CREATE TABLE in the definition SQL
(specify CREATE SHARE FIX TABLE). Note that shared tables must satisfy the
following conditions:

• The shared table is a non-partitioned FIX table.
• The RDAREA storing the shared table or shared index is a shared RDAREA

(specify SDB for the -k option of the pdfmkfs command).
• The WITHOUT ROLLBACK option is not specified.
• The table is not a referencing table defined with a referential constraint.

(5) Limitations
The following limitations apply to using a shared table:

• You cannot search a shared table while the LOCK TABLE statement is being
executed with IN EXCLUSIVE MODE specified.

• You cannot use the ASSIGN LIST statement to create a list of shared tables.
• You cannot specify a shared table as a replication copy destination

(6) Using shared tables with a HiRDB/Single Server
• You cannot define shared RDAREAs in a HiRDB/Single Server; therefore, you

must store shared tables and shared indexes in regular user RDAREAs. When you
do this, you must provide separate user RDAREAs for shared tables and shared
indexes; you must not store shared tables in user RDAREAs that store regular
tables and indexes that are not shared.

• When you migrate a HiRDB/Single Server to a HiRDB/Parallel Server, do not use
the database structure modification utility (pdmod) while shared tables or shared
indexes are defined. For details about the migration procedure, see the HiRDB
Version 8 Installation and Design Guide.

For details about the differences with a HiRDB/Parallel Server, see the HiRDB Version
8 Installation and Design Guide.

3. Database Logical Structure

101

3.4 Indexes

An index is a search-basis key that is assigned to one or more columns of a table for
the purpose of making retrievals from that table. An index can be either a B-tree index
provided by HiRDB or a plug-in index provided by a plug-in. B-tree indexes are
explained here; for an explanation of plug-in indexes, see Section 10.4 Preparations
for using plug-ins in HiRDB.
When an index is defined, the table columns on which the index is to be based must be
defined; columns that will improve retrieval performance should be selected.

3.4.1 Basic structure of an index
An index consists of a key and key values. A key is the column name of an indexed
column. The values in the column are called the key values. Creating an index for a
column that will be used as the basis for retrievals from the table will improve the
table's retrieval performance.
It is recommended that indexes be created for the following types of columns:

• Column used as a condition for narrowing the range of data to be searched
• Column used as a condition for joining tables
• Column used as a condition for sorting or grouping data
• Component column that defines a referential constraint (foreign key)

Indexes provided by HiRDB have a B-tree structure. The highest stage of an index in
a B-tree structure is called a root page; the lowest stage is called a leaf page; a page in
the middle is called a middle page. Root pages and middle pages point to pages at
lower stages. A leaf page has a key value for each index page and its address.
Figure 3-21 shows the B-tree structure of an index.

3. Database Logical Structure

102

Figure 3-21: B-tree structure of an index

Explanation
This is a B-tree structure index. The index is created in Step 3 on the basis of the
product code column, PCODE is the key, and 101L to 671M are key values.

(1) Single column index and multicolumn index
An index can be based either on a single column or on multiple columns (multicolumn
index). A single column index is created by indexing the values in a single column of
a table. A single column index is appropriate for retrievals that require a single column
as the key. A multicolumn index is created by indexing the values in more than one
column of a table. A multicolumn index is appropriate for the following purposes:

• To narrow the data that is to be retrieved to data that satisfies multiple conditions
• To group or sort the data that has been narrowed using a retrieval condition
• When some of the same columns are used in multiple multicolumn indexes

created for a table
(2) Optimizing based on cost

When multiple indexes have been created for a table, HiRDB selects and uses the
index that has the least access cost and that it evaluates as being optimal for the
conditions specified for the retrieval. This process in which HiRDB selects an index

3. Database Logical Structure

103

based on an evaluation of optimality is called optimizing based on cost. HiRDB
evaluates the following access costs:

• Hit rate based on the specified retrieval conditions
• Number of input/output processes required for SQL processing
• CPU load required for SQL processing

HiRDB performs optimizing based on cost in order to improve table retrieval
performance. Even when an SQL with retrieval conditions specified is executed, table
retrieval performance does not deteriorate. This means that it is possible to create
UAPs without being concerned about index access priority. However, in order for
HiRDB to use the optimal index, indexes must have been defined for those columns
for which retrieval conditions are specified.

(3) Index definition
The CREATE INDEX definition SQL is used to specify the columns in a table that are
to be indexed. For details about design considerations related to indexes, such as index
definition for retrieval performance improvement, see the HiRDB Version 8
Installation and Design Guide.

3.4.2 Index row partitioning
The process of row-partitioning an index for a table that has been row-partitioned is
called index row partitioning. The index must be partitioned so that it corresponds to
the row-partitioned table in terms of the multiple RDAREAs in which the table is
stored. Such an index is called a row-partitioned index. When an index is
row-partitioned, each user RDAREA or user LOB RDAREA can be handled
independently during index batch creation or re-creation. Figure 3-22 illustrates index
row partitioning.

Figure 3-22: Index row partitioning

Explanation

3. Database Logical Structure

104

You use the CREATE INDEX of the definition SQL to specify the RDAREAs in
which a row-partitioned index is to be stored.

(1) Example of index row partitioning: HiRDB/Single Server
When you have a row-partitioned table, you need to know whether an index being
defined is a partitioning key index or a non-partitioning key index. For details about
partitioning key indexes and non-partitioning key indexes, see Section (3) Partitioning
key index and non-partitioning key index as follows. Table 3-6 shows guidelines for
row-partitioning an index by index type.

Table 3-6: Guidelines for row-partitioning an index: HiRDB/Single Server

Figure 3-23 shows an example of row-partitioning an index for a HiRDB/Single
Server.

Figure 3-23: Example of row-partitioning an index: HiRDB/Single Server

Explanation

Index type Partitioning guidelines

Partitioning key
index

Row-partition the index so that it corresponds to the row-partitioned table.

Non-partitioning
key index

We recommend that the index not be row-partitioned, because row-partitioning the index
can reduce the performance of index-based searches.
However, if the table contains an extremely large amount of data, you may wish to consider
row-partitioning it. Row-partitioning an index allows the system to manage the table
storage RDAREAs and the index storage RDAREAs on a 1-to-1 basis, which will improve
the operability of the utilities. For example, if data is loaded by RDAREA, or if RDAREAs
are reorganized without the index having been row-partitioned, you will have to
batch-create an index after you have loaded the data or reorganized the RDAREAs. If the
index is row-partitioned, you will not have to batch-create an index after data loading or
RDAREA reorganization.

3. Database Logical Structure

105

• To prevent disk access contention, the RDAREAs storing the partitioned
table and the index are allocated to different disks.

• The partitioning key index is row-partitioned.
• If better performance is important, you would not row-partition

non-partitioning key indexes.
• If better operability is important, you would row-partition non-partitioning

key indexes.
(2) Example of index row partitioning: HiRDB/Parallel Server

In the case of a HiRDB/Parallel Server, the index row partitioning guidelines depend
on whether the table is partitioned within a server or among servers.

(a) Table is row-partitioned within a server
You need to know whether the index being defined is a partitioning key index or a
non-partitioning key index. For details on partitioning key indexes and
non-partitioning key indexes, see Section (3) Partitioning key index and
non-partitioning key index below. Table 3-7 shows guidelines for row-partitioning an
index by index type.

Table 3-7: Guidelines for row-partitioning an index: HiRDB/Parallel Server)

Figure 3-24 shows an example of row-partitioning an index within a server.

Index type Partitioning guidelines

Partitioning key
index

Row-partition the index so that it corresponds to the row-partitioned table.

Non-partitioning
key index

We recommend that the index not be row-partitioned, because row-partitioning the index
can reduce the performance of index-based searches.
However, if the table contains an extremely large amount of data, you may wish to consider
row-partitioning it. Row-partitioning an index allows the system to manage the table
storage RDAREAs and the index storage RDAREAs on a 1-to-1 basis, which will improve
the operability of the utilities. For example, if data is loaded by RDAREA, or if RDAREAs
are reorganized without the index having been row-partitioned, you will have to
batch-create an index after you have loaded the data or reorganized the RDAREAs. If the
index is row-partitioned, you will not have to batch-create an index after data loading or
RDAREA reorganization.

3. Database Logical Structure

106

Figure 3-24: Example of row-partitioning an index within the server

Explanation
• To prevent disk access contention, allocate the RDAREAs storing the

partitioned table and the index to different disks.
• Row-partition a partitioning key index.
• If better performance is important, do not row-partition non-partitioning key

indexes.
• If better operability is important, row-partition non-partitioning key indexes.

(b) Table is row-partitioned among servers
You must row-partition the index so that it corresponds to the row-partitioned table.
You need not know whether the index being defined is a partitioning key index or a
non-partitioning key index. Figure 3-25 shows an example of row-partitioning an
index among servers.

3. Database Logical Structure

107

Figure 3-25: Example of row-partitioning an index among servers

Explanation
• To prevent disk access contention, the RDAREAs storing the partitioned

table and the index are allocated on different disks.
• Both partitioning key indexes and non-partitioning key indexes are

row-partitioned.
(3) Partitioning key index and non-partitioning key index

An index that satisfies a particular condition becomes a partitioning key index. An
index that does not satisfy the condition is called a non-partitioning key index. The
condition is explained below. The condition is whether the table involved is partitioned
on the basis of single-column partitioning or multicolumn partitioning. When only one
column is used in the table partitioning condition, the partitioning is said to be
single-column partitioning; when multiple columns are used in the table partitioning
condition, the partitioning is said to be multicolumn partitioning.

(a) Single-column partitioning
An index satisfying one of the following conditions is a partitioning key index:
Conditions

• Single-column index defined in the column (partitioning key) specifying the
storage conditions when the table is row-partitioned.

• Multicolumn index with the column (partitioning key), defined as the first
member column, specifying the storage conditions when the table is

3. Database Logical Structure

108

row-partitioned.
Figure 3-26 shows an example (based on the STOCK table) of an index that becomes a
partitioning key index.

Figure 3-26: Partitioning key index: Single-column partitioning

Explanation
CREATE INDEX A12 ON STOCK (PCODE ASC) 1
CREATE INDEX A12 ON STOCK (PCODE ASC,PRICE DESC) 2
CREATE INDEX A12 ON STOCK (PRICE DESC,PCODE ASC) 3

1. If the PCODE column, which is the partitioning key, is used as an index, the
index becomes a partitioning key index. If any other column is used as an
index, the resulting index becomes a non-partitioning key index.

2. Specifying the PCODE column, which is the partitioning key, as the first
constituent column of the index makes the resulting multicolumn index a
partitioning key index.

3. Specifying the PCODE column, which is the partitioning key, as a column
other than the first constituent column of the index makes the resulting
multicolumn index a non-partitioning key index.

(b) Multicolumn partitioning
An index satisfying the following condition is a partitioning key index:
Condition

• The index is created on the basis of multiple columns, beginning with the
partitioning key and containing all the columns specified for partitioning
from the beginning and without any change in their order.

Figure 3-27 shows an example (based on the STOCK table) of an index that becomes a
partitioning key index.

3. Database Logical Structure

109

Figure 3-27: Partitioning key index: Multicolumn partitioning

Explanation
CREATE INDEX A12 ON STOCK (SCODE ASC,PRICE DESC) 1
CREATE INDEX A12 ON STOCK
 (SCODE ASC,PRICE DESC,SQUANTITY ASC) 2
CREATE INDEX A12 ON STOCK (PRICE DESC,PCODE ASC) 3
CREATE INDEX A12 ON STOCK
 (SCODE ASC,SQUANTITY DESC,PRICE ASC) 4

1. All partitioning keys (PCODE and PRICE columns) are specified, and these
keys are specified in the same order as in the table definition. Therefore, this
multicolumn index is a partitioning key index.

2. All partitioning keys (PCODE and PRICE columns) are specified, and these
keys are specified in the same order as in the table definition. Therefore, this
multicolumn index is a partitioning key index.

3. All partitioning keys (PCODE and PRICE columns) are specified, but these
keys are specified in an order that differs from the table definition order.
Therefore, this multicolumn index is a non-partitioning key index.

4. All partitioning keys (PCODE and PRICE columns) are specified, but these
keys are specified in an order that differs from the table definition order.
Therefore, this multicolumn index is a non-partitioning key index.

3.4.3 Index page splitting
When an attempt is made to add a key to an index page that does not contain any more
free space, HiRDB allocates space for a new index page and splits the index
information on the existing page. It then transfers the second portion of the index
information to the new page. This is called index page splitting.
An index page can be split so that the existing index information is divided evenly in
half, or it can be split unevenly (unbalanced index splitting).

3. Database Logical Structure

110

(1) Even-split index page splitting
Figure 3-28 shows an example of even-split index page splitting.

Figure 3-28: Example of even-split index page splitting

Explanation
The addition of key 5 to index page a causes index page splitting. Key 5, as well
as key 6 that follows, are moved to a new index page b so that the keys are
distributed evenly.

(2) Unbalanced index split
Adding many contiguous key values can degrade an index page's data storage
efficiency. In such a case, it is advisable to split the index information on the index
page unevenly; this is called unbalanced index splitting.
When unbalanced index splitting is used, the place in the index information at which

3. Database Logical Structure

111

the index page is split is determined by the location of the key value that is being
added. If the location of the new key value is in the top part of the index page, the
system assumes the subsequent keys will also be added in the top part. Therefore, it
stores the top part in the left-hand page, using the key value that is one greater than the
added key value as the partitioning position. If the location of the new key value is in
the bottom part of the index page, the system assumes the subsequent keys will also be
added in the bottom part. Therefore, it stores the bottom part in the right-hand page,
using the key value of the added key as the partitioning position. Figure 3-29 shows an
example of an unbalanced index split in which a key is added to the bottom part of an
index page.

Figure 3-29: Example of unbalanced index split

Explanation
Key 7 is added to the second half of index page a, so key 7, as well as key 8 that
follows, are moved to index page b on the right side.

3. Database Logical Structure

112

Application criteria
Use of unbalanced index splitting is advisable in the following cases, because it
can improve the data storage efficiency and reduce the number of times index
splitting is necessary:

• The index has a uniform degree of duplication of key values
• The index's key values are roughly uniform in size
• Index is one to which consecutive intermediate key values are added

frequently
Specifying an unbalanced index split

For an unbalanced index split, you specify the UNBALANCED SPLIT option in the
CREATE INDEX or CREATE TABLE of the definition SQL. For details on the
unbalanced index split option, see the HiRDB Version 8 System Operation Guide.

3.4.4 Exception key value
All data values in a column for which an index is defined, even null values, are
incorporated into the index as index key values. However, null-value keys in an index
serve no purpose, so their presence in the index is wasteful of space. Therefore, if an
entire column in an index is redundant null values, the null value can be specified as
an exception key value for the index. Assigning an exception key value to an index has
the following benefits:
Expected benefits

1. Because null-value keys are not used in the index, the size of the index is
reduced.

2. Overhead for index maintenance (CPU time, number of I/O operations,
number of lock requests, frequency of deadlock, etc.) during row insertion,
deletion, and updating operations is reduced.

3. If the only retrieval condition for a column of an index that has the null value
as an exception key value is IS NULL, that index will not be used.
Consequently, retrieval performance would be improved in the following
situation:

• When input/output processes have occurred on the same page because data
pages were accessed randomly using an index that contained many
redundant null values.

Specifying an exception key value
To set an exception key value, you specify the EXCEPT VALUES option in the
CREATE INDEX of the definition SQL. For details on index exception key values,
see the HiRDB Version 8 Installation and Design Guide.

3. Database Logical Structure

113

3.4.5 Defining an index for a table that contains data
Creation of an index for a table that contains a large amount of data (execution of the
CREATE INDEX) is a time-consuming process that delays execution of other definition
SQL statements.
The EMPTY option in the CREATE INDEX enables you to define an index without
actually creating the index entries. Such an index is called an unfinished index.
Because no index entries are created, execution of the CREATE INDEX terminates
immediately and other definition SQL statements can be executed.
Because the index entries are not created, it is not possible to perform searches using
an unfinished index or to update the columns in the table that define the unfinished
index (an SQL error may result). The index entries can be created by executing the
index re-creation facility (-k ixrc) of the database reorganization utility (pdrorg).
When the index entries are created, the index is released from unfinished index status.
Deleting all data in the table with the PURGE TABLE statement also resets indexes to
the table from unfinished index status.
For details on the use of the EMPTY option, see the HiRDB Version 8 System Operation
Guide.

3.4.6 Index key value no-lock
Index key value no-lock is the process by which a table is accessed by locking only the
table data without locking its index key values.
The index key value no-lock option prevents the following problems:

• Deadlock between data-updating and index-search processes
• Unreasonable delayed access to data with the same key
• Unreasonable delayed access to data with different keys

When the index key value no-lock option is used, search processing based on an index
does not lock the index key values. In the case of table updating (inserting rows,
deleting rows, updating column values), the index key values for any index that is
defined on the basis of a column being updated are not locked.

(1) Application criteria
The index key value no-lock option can be used for all operations. However, whether
or not it is to be used should be determined by taking into consideration the operation
of unique indexes, the presence of any residual entries, and the size of the index log.
For an explanation of uniqueness constraint assurance processing for unique indexes
and residual entries, see Section (4) Notes. For the implications of the size of the index
log when the index key value no-lock option is used, see the explanation on estimating
the size of the index log and the number of locked resources in the HiRDB Version 8
Installation and Design Guide.

3. Database Logical Structure

114

(2) Specification
To use the index key value no-lock option, specify NONE in the pd_indexlock_mode
operand in the system common definition.
If the value specified for the pd_inner_replica_control system definition
operand is greater than 1, NONE is assumed for the pd_indexlock_mode system
definition operand, regardless of the value specified for pd_indexlock_mode.

(3) Example of preventing deadlock by using the index key value no-lock option
This section explains how to prevent deadlock by using the index key value no-lock
option. Figure 3-30 shows an example of the deadlock described below. For a
description of the lock mode, see Section 6.10.2 Lock modes.

3. Database Logical Structure

115

Figure 3-30: Example of deadlock when the index key value no-lock option is
not used

Specifying the index key value no-lock option prevents the type of deadlock shown in
Figure 3-31. Figure 3-31 shows an example in which deadlock is prevented because
the index key value no-lock option is being used.

3. Database Logical Structure

116

Figure 3-31: Example of preventing deadlock by using the index key value
no-lock option

(4) Notes
(a) Operation of uniqueness constraint assurance processing for unique

indexes
In the case of a table for which the uniqueness constraint is specified, the operation of
the uniqueness constraint assurance processing that is performed during addition or
updating of rows depends on whether or not the index key value no-lock option is used.
Uniqueness constraint assurance processing is the processing by which locking is
applied during insertion of row data or updating of column values in order to ensure
the uniqueness of a key value being added; key value uniqueness is determined by
checking the index (unique index) to see whether or not the keyed data to be added
already exists. If uniqueness constraint assurance processing locates an index key
entry that uses the same key, an error occurs. Even if another party's transaction that is
manipulating the index key is incomplete, and there is a possibility of a rollback being
performed, an error occurs without a lock check being performed.
If you are performing table data insertion or updating processing with the uniqueness

3. Database Logical Structure

117

constraint specified and you want continuation of processing to take priority over
waiting, you should apply the index key value no-lock option. If the insertion or
updating processing must take priority, even if doing so will create delay, you should
not apply the index key value no-lock option.

(b) Residual entries in a unique index
When the index key value no-lock option is used, either lock-wait or deadlock can
arise in the unique index. With a unique index in the index key value no-lock option,
any index key prior to the execution of the DELETE or UPDATE statement is left intact,
instead of being deleted from the index. This is to maintain the uniqueness of the index.
The remaining index key is called a residual entry. Although residual entries are
deleted at an appropriate time when the transaction has been settled, if the INSERT or
UPDATE statement is executed on the same key as a residual entry, it is possible that an
unexpected delay or deadlock will result.
These problems can be prevented by creating the UAP so that it will not update any
columns that are subject to the uniqueness constraint.

(5) Deadlocks that cannot be prevented even with the index key value no-lock
option

A deadlock between index keys can arise depending on the order in which accesses are
made by a UAP. To prevent this, you must create UAPs so that they will not update
columns that are subject to the uniqueness constraint.

3. Database Logical Structure

118

3.5 Expansion into an object relational database

By applying object oriented concepts to a relational database model, you can build an
object relational database management system.
HiRDB is capable of handling data with a complex structure, such as multimedia data,
as well as operations performed on such data, by integrating this type of data as objects
and managing them in a database. This means that SQL statements can be used to
manipulate multimedia data, as in the case of a conventional relational database. For
example, you can manage and manipulate the following types of multimedia data:

• SGML/XML structured text data
You can perform operations such as text searches and highlighting of retrieval hit
positions by means of structure specifications.

• Image data
You can perform operations such as calculation of levels of similarities (the extent
to which a given image is similar to another image) by means of quantifying
image features.

The SGML/XML structured text data and image data manipulation functions are
provided as plug-ins. For details on using plug-ins, see Chapter 10. Plug-ins.

3.5.1 Abstract data types
By using abstract data types, which are user-defined types, together with various
routines, you can uniquely define and use data with complex structures and perform
operations on such data. When you define a column as having an abstract data type,
you can conceptualize and model its data based on object-oriented concepts. In
addition, by applying object-oriented software development techniques, you can
reduce the workload for database design, UAP development, and maintenance.
HiRDB makes it possible to use definition SQL statements to define unique abstract
data types and their structures. An abstract data type can be handled as a column data
type in the same way as HiRDB's predefined data types, such as the numeric type and
the character type. Operations on the values of abstract data types can also be defined
as routines by using definition SQL statements. In a UAP, you can use a routine to code
complex operations on abstract data types in SQL.
Abstract data types, routines, and their characteristic concepts are explained below by
means of examples.

(1) Defining an abstract data type
An example of managing and manipulating employee information in a database using
an abstract data type is explained below.

3. Database Logical Structure

119

Let's assume that employee information consists of such items as name, sex, date of
employment, position, and salary. Let' also assume that image information such as an
ID photo is also part of the employee information. Calculation of service years is one
possible operation on employee information.
When this information is handled in a database, the abstract concept of employee in a
data model can be considered to consist of attributes such as name, sex, employment
date, position, ID photo, and salary, all of which are common to this concept. An
operation such as calculation of service years for an employee can also be considered
to be an operation that indicates an employee characteristic.
Employee can capture all these characteristics (attributes and operations) in a single
concept.
In HiRDB, you can address as abstract concepts and handle in a database objects that
exist in the real world, and then use abstract data types to define such concepts as data
types.
Figure 3-32 shows a conceptual model based on real-world information and an abstract
data type.

Figure 3-32: Conceptual model based on real-world information and an abstract
data type

An abstract data type can be defined in a database using the CREATE TYPE definition
SQL shown as follows.
CREATE TYPE t_employee (
 Name CHAR(16),
 Sex CHAR(1),
 employment_date DATE,

3. Database Logical Structure

120

 position CHAR(10),
 id_photo BLOB(64K),
 salary INTEGER,

 FUNCTION service-years (p t_employee)
 RETURNS INTEGER
 BEGIN
 DECLARE service_years INTERVAL YEAR TO DAY;
 SET service_years = CURRENT_DATE -
p..employment_date;
 RETURN YEAR(service_years);
 END,

)

In this way, the user can use an abstract data type to define new data types by
specifying attributes and operations.

(2) Abstract data type as a data type
An abstract data type can be handled in the same way as the HiRDB system default
data types, such as the numeric type and the character type. For example, the table
STAFF_TABLE can be defined by the definition SQL shown below using the abstract
data type t_employee as a column data type:
CREATE TABLE STAFF_TABLE (
 employee_number INTEGER,
 employee t_employee
 ALLOCATE(id_photo IN(lobarea))
)

When the BLOB type is to be used as one of the attributes of an abstract data type, the
user LOB RDAREA in which the data is to be stored must be specified with the
ALLOCATE option in CREATE TABLE. In the example above, id_photo, which is an
attribute of t_employee, is of the BLOB type, so ALLOCATE is used to store it in user
LOB RDAREA lobarea.
Figure 3-33 shows a table called STAFF_TABLE, for which an abstract data type is
defined.

3. Database Logical Structure

121

Figure 3-33: STAFF_TABLE for which an abstract data type is defined

(3) Encapsulation
When an abstract data type is used, an application can handle the abstract data type
values without knowing the detailed configuration of the individual attributes or the
installed routines; it does this by using routines declared in that abstract data.
For example, it is possible to manipulate t_employee type values using the following
data manipulation SQL:
SELECT employee_number, employee_name,
 service-years(employee)
 FROM STAFF_TABLE

Handling of values based on an abstract data type and using only an external interface
without being concerned about the information in the values is called encapsulation.
Figure 3-34 shows encapsulation.

3. Database Logical Structure

122

Figure 3-34: Encapsulation

(4) Abstract data type values
(a) Value generation

By executing a function without arguments that is recognized by the same name as an
abstract data type, HiRDB can generate values for that abstract data type.
For example, for the t_employee type, t_employee type values can be generated
using the function t_employee().
A function that generates abstract data type values is called a constructor function.
BEGIN ... Start of SQL procedure.
 DECLARE p t_employee; ... Declares a t_employee type variable.
 SET p = t_employee(); ... Generates a t_employee type value
 and substitutes in the variable.
 SET p..name = 'Michael Brown' ... Setting of attribute value
 through component
 specification.
 RETURN p; ... Returns the function's return value
 (returns a t_employee type value).
END ... End of SQL procedure.

When CREATE TYPE is used to define an abstract data type in the database, HiRDB
automatically defines a function such as t_employee() that has the same name as the
data type but has no argument. Such a function is called the default constructor

3. Database Logical Structure

123

function.
(b) User-defined constructor function

The user may also define a constructor function.
A constructor function is defined by defining in a CREATE TYPE routine declaration a
function that has the same name as the abstract data type to be defined and that uses
the abstract data type as the return value type.
CREATE TYPE t_employee (
 name CHAR(16),
 sex CHAR(1),
 employment_date DATE,
 position CHAR(10),
 id_photo BLOB(64K),
 salary INTEGER,

 FUNCTION t_employee(
 p_name CHAR(16),
 p_sex CHAR(1),
 p_employment_date DATE,
 p_position CHAR(10),
 p_id_photo BLOB(64K),
 p_salary INTEGER)
 RETURNS t_employee
 BEGIN
 DECLARE d_employee t_employee;
 SET d_employee = t_employee();
 SET d_employee..name = p_name;
 SET d_employee..sex = p_sex;
 SET d_employee..employment_date
 = p_employment_date;
 SET d_employee..position = p_position;
 SET d_employee..id_photo = p_id_photo;
 SET d_employee..salary = p_salary;

 RETURN d_employee;
 END,
 ...
)

For example, using the user-defined constructor function t_employee() and the
following data manipulation SQL, values can be generated and stored in a database:
INSERT INTO STAFF_TABLE
 VALUES (
 650056, t_employee(:name AS CHAR(16),
 :sex AS CHAR(1),
 :yrs AS DATE,
 :post AS CHAR(10),

3. Database Logical Structure

124

 :picture AS BLOB(64K),
 :salary AS INTEGER)
)

Figure 3-35 shows a table called STAFF_TABLE for which values are generated by
constructor function t_employee() and inserted as column values.

Figure 3-35: STAFF_TABLE for which values are generated using a
constructor function

(5) Abstract data type null values
Null values can also be applied to an abstract data type, in the same manner as with the
HiRDB system default types. For example, executing the following data manipulation
SQL for the aforementioned STAFF_TABLE places null values in the EMPLOYEE
column:
INSERT INTO STAFF_TABLE(employee_number)
 VALUES(650056)

On the other hand, executing the following data manipulation SQL changes all
t_employee type attribute values to null values (the column values of the abstract
data type in which all attribute values are null values are regarded as values other than
null values):
INSERT INTO STAFF_TABLE (900123, t_employee ())

Figure 3-36 shows the handling of null values in STAFF_TABLE for which an abstract
data type is defined.

3. Database Logical Structure

125

Figure 3-36: Handling of null values in STAFF_TABLE for which an abstract
data type is defined

For example, executing the following data manipulation SQL retrieves the employee
numbers of those employees whose values in the EMPLOYEE column are not null
values (therefore, the employee numbers of those employees who have all of the
t_employee type attributes as null values will not be retrieved):
SELECT employee_number FROM STAFF_TABLE
 WHERE employee IS NOT NULL

Retrieval result:
900123

(6) Manipulation of abstract data type values
Let's plan an operation for calculating an employee's service years with the company.
Operations for abstract data type values can be defined in HiRDB by using a routine
declaration in CREATE TYPE. For example, an operation such as for calculating
service years and compensation rate can be defined with the following definition SQL:
CREATE TYPE t_employee (
 name CHAR(16),
 sex CHAR(1),
 employment date DATE,
 position CHAR(10),
 id-photo BLOB(64K),
 salary INTEGER,

3. Database Logical Structure

126

 FUNCTION service years (p t_employee)
 RETURNS INTEGER
 BEGIN
 DECLARE service_years INTERVAL YEAR TO DAY;
 SET service_years
 = CURRENT_DATE - p..employment date;
 RETURN YEAR(service_years);
 END,

)

In this way, routines defined for an abstract data type can be used for abstract data type
values. For example, an SQL for retrieving the employee number and employee name
of each employee with a service years value of 10 or more years can be described as
follows:
SELECT employee number, employee..name, service years (employee)
 FROM STAFF_TABLE
 WHERE service years(employee) >= 10

3.5.2 Subtypes and inheritance
(1) Subtype

Let's consider managing the information for employees who are in sales. Salesperson
can be considered a more specific and specialized (particular) concept in comparison
to the abstract concept of employee. The information on a salesperson may contain
information related to sales activities in addition to the information common to all
employees. Therefore, attributes such as charge client and number of clients are
assigned to a salesperson, in addition to being an employee.
Figure 3-37 shows a conceptual model for a salesperson based on both real-world
information and an abstract data type.

3. Database Logical Structure

127

Figure 3-37: Conceptual model based on real-world information and an abstract
data type (for a salesperson)

HiRDB makes it possible to take a particular data type and tailor it so as to define an
abstract data type as a subtype.
For example, the subtype clause of a CREATE TYPE definition SQL statement can be
used to define t_salesperson based on t_employee, as shown below:
CREATE TYPE t_salesperson UNDER t_employee(
 charge client VARCHAR(3000),

3. Database Logical Structure

128

 FUNCTION number of clients (...........)
 RETURNS INTEGER

)

Note that a high-order abstract data type, such as t_employee, is called a super type.
(2) Substitutability

Salesperson is also an employee. HiRDB can handle an abstract data type value that
was specialized (low-order) in a subtype also as a high-order abstract data type value.
For example, the SQL shown below can substitute the t_salesperson values as
t_employee column values in STAFF_TABLE.
Note

To handle t_salesperson values in the same manner as t_employee values,
it is necessary to re-create SQL objects by executing ALTER ROUTINE before
executing this SQL.

INSERT INTO STAFF_TABLE VALUES (51, t_salesperson(:name AS
CHAR(16),.....))

The capability of a low-order abstract data type value to be considered as a high-order
abstract data type value in this way is called substitutability.

(3) Inheritance
Because salesperson is also an employee, it also has attributes, such as name and sex,
just like employee, and it should be possible to calculate service years for a
salesperson.
Figure 3-37 shows that a lower-order abstract data type in a subtype inherits the
attributes and routines defined for the higher-order abstract data type.
This manner in which a lower-order abstract data type inherits the attributes and
routines of the higher-order abstract data type is called inheritance.
For example, the attribute name and the operation service years become available
for t_salesperson values through inheritance. Consequently, as shown below, the
SQL shown above can be executed without any changes for STAFF_TABLE into
whose columns t_salesperson values have been inserted.
Note

Before this SQL can be executed, it is necessary to re-create SQL objects by
executing ALTER ROUTINE.

SELECT employee number, employee..name, service years
(employee)
 FROM STAFF_TABLE

3. Database Logical Structure

129

 WHERE service years(employee) >= 10

Subtype and inheritance can provide the following benefits:
• The concept of substitutability (e.g., a salesperson is also an employee) can be

expressed quickly and clearly.
• Attributes and routine definitions can be shared, and new definitions can be added

based on existing definitions. Consequently, the overhead for database and
application development can be reduced, and a system with expandability can be
constructed.

(4) Override
Let's consider an operation for determining compensation for an employee. For
example, compensation can be determined based on the information that is set up by
salary, service years, and compensation rate based on service years and on work
performance.
Meanwhile, the operation compensation to be defined for employee is inherited by
salesperson, as explained above. However, the method of determining compensation
for salespersons may be different from that used for ordinary employees, and may
include such attributes as number of clients that are specific to salespersons.
Figure 3-38 shows operations related to employees and salespersons in the real world.

Figure 3-38: Operations related to employees and salespersons in the real world

3. Database Logical Structure

130

Here, let's define routines, such as employee compensation and salesperson
compensation, that have different names for each of the abstract data types.
In this case, despite the fact that employee values and salesperson values can be
handled together because of substitutability, it will be necessary to have a different
name for the routine to be called for each value type. Consequently, applications will
not be able to execute the data manipulation SQL described as follows:
SELECT employee number, employee..name,
 employee compensation(employee)
 FROM STAFF_TABLE
... Determination of compensation specific to salesperson cannot be executed.

SELECT employee number, employee..name,
 salesperson compensation (employee)
 FROM STAFF_TABLE
... Determination of compensation specific to salesperson will be executed also for employees
who are not salespersons.

In HiRDB, a routine that has the same name as a routine defined in a higher-order
abstract data type can be overwritten during the definition of a lower-order abstract
data type. This process of overwriting is called override.
Figure 3-39 shows an example of override.

3. Database Logical Structure

131

Figure 3-39: Override

HiRDB automatically executes an overridden routine based on the definition
appropriate to the type of value that is used as the argument.
Override eliminates the need to change the name of the routine to be called, according
to the value type. Therefore, it is possible to execute the data manipulation SQL shown
as follows.
Note

Before this SQL can be executed, it is necessary to re-create SQL objects by
executing ALTER ROUTINE.

SELECT employee_number, employee..name,

3. Database Logical Structure

132

 compensation (employee)
 FROM STAFF_TABLE

... The overriding routine compensation executes a routine that is appropriate to each
argument value.

During execution of this SQL, the routine compensation defined for the
t_employee type is executed for the t_employee type values, and the routine
compensation defined for the t_salesperson type is executed for the
t_salesperson type values.
An application can call a routine without being concerned with whether or not that
routine has been overridden, as in the above SQL. Even when routines are added
through override, it is possible to execute an SQL without changing the application.

3.5.3 Encapsulation
It may be desirable to prevent applications from directly accessing some of the
information related to employees, such as personal information (e.g., information to be
processed in the compensation operation and the value of the employment date
attribute). The reasons for this are listed as follows:

• Direct access from an application is not desirable in order to protect
confidentiality.
Example
The value of the salary attribute may be referenced in internal processing of
routines such as compensation but should not be directly accessible from the
outside.

• Direct access from an application is meaningless.
Example
If job performance evaluation results are encoded and held as attribute values,
accessing these values from an application will be of no use.

• It is necessary to prevent an application from directly altering internal
information.
Example
It is necessary to prevent an application from changing the value of the
employment date attribute to a different date.

(1) Encapsulation level
In HiRDB, it is possible to specify an encapsulation level during the declaration of
abstract data types and routines.
The following three encapsulation levels are available:

3. Database Logical Structure

133

PRIVATE
Attribute values can be accessed and routines can be used only within the
definition of an abstract data type.
For example, PRIVATE may be specified for the t_employee type attribute
employment date.
When PRIVATE is specified for an attribute, it will not be possible to access this
attribute or to use a routine from inside a subtype definition or an application.

PROTECTED
Attribute values can be accessed and routines can be used only within the
definition of an abstract data type and within the definition of subtypes of that
abstract data type.
For example, PROTECTED may be specified for the t_employee type routine
compensation. This will allow t_salesperson (i.e., a subtype of
t_employee type) to execute the compensation rate routine in order to
calculate compensation rate, without directly referencing the attribute
employment date or knowing the processing details of compensation rate
(calculation of service years based on the employment date, and calculation of a
compensation rate based on this value).

PUBLIC
No restrictions are placed, as with PRIVATE or PROTECTED, and attribute values
can be accessed and routines can be used from within the definitions of other
abstract data types and subtypes, as well as from applications.
For example, PUBLIC may be specified for the service years routine for
which there is no access restriction.

Table 3-8 shows the encapsulation levels and their degrees of accessibility to abstract
data type values and routines.

Table 3-8: Encapsulation levels and access types

Encapsulation
level

Access source

Within the
definition of
an abstract
data type

Within the
definition of a

subtype abstract
data type

Within the definitions
of abstract data types
other than those listed

on the left

Applications

PUBLIC Y Y Y Y

PROTECTED Y Y N N

PRIVATE Y N N N

3. Database Logical Structure

134

Y: Can access abstract data type values and can use routines.
N: Cannot access abstract data type values and cannot use routines (an SQL error
occurs).
Figure 3-40 shows an example of the relationship between encapsulation levels and
access types for abstract data type T.

Figure 3-40: Encapsulation levels and access types

For details about the procedures for designing and creating a table for which an

3. Database Logical Structure

135

abstract data type is defined, see the HiRDB Version 8 Installation and Design Guide.
For details about the procedures for manipulating a table for which an abstract data
type is defined, see the HiRDB Version 8 UAP Development Guide.

137

Chapter

4. Database Physical Structure

This chapter explains the physical structure (segments and pages) of a database.
This chapter contains the following sections:

4.1 Database physical structure
4.2 Segment design
4.3 Page design

4. Database Physical Structure

138

4.1 Database physical structure

Figure 4-1 shows the physical structure of a database.
Figure 4-1: Database physical structure

Explanation
• HiRDB file system area

This is an area in which HiRDB files are created.
• HiRDB file

This is a type of file unique to HiRDB that is used to store table and index
data.

• Segment
This is the smallest unit of table and index data storage. One segment stores
data from only one table or one index. A segment is composed of multiple,
consecutive pages.

• Page
This is the smallest unit of database I/O operations. If the page size is large,
one page can store several consecutive rows, thus reducing the number of I/

4. Database Physical Structure

139

O operations in situations where the data is processed in the same order in
which it is stored. Table 4-1 lists the available types of pages.

Table 4-1: Types of pages

Specifying the physical structure of a database
The physical structure of a database is specified when its RDAREAs are defined.
Specifically, the physical structure is specified in the following control
statements:

• create rdarea statement of the database initialization utility (pdinit)
• create rdarea statement of the database structure modification utility

(pdmod)
Following is an example of specifying the create rdarea statement:

Explanation
1. Specifies a name (USRRD01) for an RDAREA.
2. Specifies 4096 bytes as the page size.
3. Specifies 20 pages as the segment size.
4. Specifies the name of the HiRDB file system area where the RDAREA will

be stored and a HiRDB file name:
C:\rdarea01: Name of HiRDB file system area
file01: HiRDB file name

5. Specifies the number of segments.

Page type Explanation

Data page Stores row data for a table.

Index page Stores index key values.

Directory page Stores management information on the status of RDAREAs.

create rdarea USRRD01 for user used by PUBLIC 1
 page 4096 characters 2
 storage control segment 20 pages 3
 file name "C:\rdarea01\file01" 4
 initial 150 segments ; 5

4. Database Physical Structure

140

4.2 Segment design

(1) Segment statuses
Table 4-2 lists and describes the statuses that are assigned to segments.

Table 4-2: Segment statuses

* A used segment can only be used by a table or an index that has stored data in that
segment. Other tables or indexes cannot use the segment.

(2) Segment design policy
Segments must be designed with care, because the segment size (number of pages per
segment) affects I/O times and disk space requirements. The recommended segment
size for most purposes is 10-20 pages. For details about segment design, see the
HiRDB Version 8 Installation and Design Guide.

(3) Ratio of free pages in a segment
When you define a table, you can specify the ratio of free pages in a segment. This
concept is illustrated in Figure 4-2.

Figure 4-2: Ratio of free pages in a segment

Segment status Description

Used segment* A segment in which table or index data is stored. A used segment that is completely
filled with data such that no more can be added is called a full segment, and a used
segment from which data has been deleted so that only free pages remain (used free
pages or unused pages) is called a used free segment.

Unused segment A segment that is not being used. This segment can be used by any table or index
in the RDAREA.

Free segment A segment in which no data is stored. Both used free segments and unused segments
are called free segments.

4. Database Physical Structure

141

Explanation
• In this example, the segment free page ratio is set to 30%. Therefore, three

out of every 10 pages are free pages.
• The segment free page ratio is specified with the PCTFREE option of the

CREATE TABLE. This ratio can be specified in the 0-50% range; the default
is 10%.

• When data is loaded (including when reloading and reorganizing), it is not
stored in the free pages specified here.

The data storage efficiency improves as the segment free page ratio becomes smaller.
Increasing the segment free page ratio sometimes improves performance. For
example, when data is added to a table for which a cluster key is defined and a segment
free page ratio has been set, you can cause data to be stored in positions that are near
a cluster key value, which minimizes the number of data I/O operations that will be
needed.
For details about determining the segment free page ratio, see the HiRDB Version 8
Installation and Design Guide.

(4) Allocating and releasing segments
Segments are not allocated when the table is defined. Instead, segments are allocated
as needed when data is saved to the table. Once a segment is allocated (once it becomes
a used segment), no other table or index can use that segment until it is released.
Consequently, the RDAREA may run out of free space if data is added and deleted
repeatedly, even though the amount of data has not increased. To prevent this from
occurring, periodically perform the following operations to release segments:

• Reorganize tables or indexes using the database reorganization utility (pdrorg
command).

• Release used free segments using the free page release utility (pdreclaim
command).

For details about reorganizing tables and indexes, and about releasing used free
segments, see the HiRDB Version 8 System Operation Guide. In addition to these
operations, the following operations also release segments:

• Executing the PURGE TABLE statement
• Reinitializing the RDAREA
• Deleting the table definition
• Deleting the index definition
• Loading data in the creation mode (-d option specification)

4. Database Physical Structure

142

(5) Reusing free space
The free space reuse facility enables you to efficiently utilize free space made available
by deleting data.

(a) How searching is performed when data is saved
When data is saved to a table, there are two page search modes that are used to search
for a storage area:

New page allocate mode
In this mode, when the last page in a used segment becomes full, a new unused
segment is allocated. If the RDAREA runs out of unused pages, a search is then
conducted to find free space in a used page, starting at the beginning of the first
used segment. Once free space is found, the data is saved to that free space.
Free page reuse mode
In this mode, when the last page in a used segment becomes full, a search is
conducted to find free space in used pages starting in the first used segment. If no
free space is found, an unused segment is allocated. The next search start position
is also remembered, so that, the next time, searching for free space begins at this
position.

(b) Overview of the free space reuse facility
The free space reuse facility is designed to enable the free space in used pages to be
utilized by activating the free page reuse mode. This occurs when the number of used
segments in a table reaches the number of segments specified by the user, and the last
segment becomes full. Once the free space in every segment of the specified number
of segments runs out, the free space reuse facility activates the new page allocate
mode, and a new unused segment is allocated. If the number of segments is not
specified, free space is not reused until there are no more unused pages in the
RDAREA. If the free space reuse facility is not used, the system searches for free space
from the beginning of the used segment every time a search is performed. If the free
space reuse facility is used, the free page reuse mode is activated, the next search start
position is remembered, and the next search is performed from there. As such, use of
this facility enables searches to be performed more efficiently. Figure 4-3 provides an
overview of the free space reuse facility.

4. Database Physical Structure

143

Figure 4-3: Overview of the free space reuse facility

4. Database Physical Structure

144

Explanation
• If the free space reuse facility is not used

Every time data is to be inserted after the RDAREA has run out of unused
pages, the system searches for free space in a used page, starting at the
beginning of the first used segment. Once the space is found, the data is
saved to that free space.

• If the free space utility is used (with the number of segments specified)
When an attempt is made to insert data into a table after the specified number
of segments is reached, this facility searches for free space in a used page,
starting at the beginning of the first used segment. Once the space is found,
it saves the data to that free space. In addition, the facility remembers that
location as the next search start position and, the next time, begins searching
for free space from this position.

• If the free space utility is used (without the number of segments specified)
When an attempt is made to insert data after the RDAREA has run out of
unused pages, this facility searches for free space in a used page, starting at
the beginning of the first used segment. Once the space is found, it saves the
data to that free space. In addition, the facility remembers that location as the
next search start position and, the next time, begins searching for free space
from this position.

For details about the free space reuse utility, see the HiRDB Version 8 System
Operation Guide.

(c) Application criteria
For operations requiring frequent reorganization, use the free space reuse facility to
absolutely minimize the number of reorganizations you need to perform, especially
when repeated deletions and insertions of data are using up large numbers of segments.

(d) Environment settings
The following environment settings are used for the free space reuse facility. For
details, see the HiRDB Version 8 Installation and Design Guide.
1. In the pd_assurance_table_no operand, specify the number of tables that can

use the free space reuse facility.
2. Specify the number of segments in the SEGMENT REUSE option of the definition

SQL CREATE TABLE statement. For tables that have already been created, specify
this value in the SEGMENT REUSE option of the ALTER TABLE statement.

(e) Notes
The free space reuse facility does not operate in the following cases:

4. Database Physical Structure

145

• When data is being stored with the hash facility for hash row partitioning
• When a data dictionary table is being stored
• When data is being stored using the data load or database reorganization utility

(pdrorg)

4. Database Physical Structure

146

4.3 Page design

This section describes page statuses and explains page design policy.
(1) Page statuses

Table 4-3 lists and describes the statuses that are assigned to pages.
Table 4-3: Page statuses

(2) Page design policy
Pages must be designed with care, because the page size affects data I/O times. For
details about page design, see the HiRDB Version 8 Installation and Design Guide.

(3) Ratio of unused area in a page
When you define a table or index, you can specify the ratio of unused area in a page.
This concept is illustrated in Figure 4-4.

Figure 4-4: Ratio of unused area in a page

Explanation
• In this example, the page unused area ratio is set to 30%.

Page status Description

Used page A page in which table or index data is stored. A used page that is completely filled
with data such that no more can be added is called a full page, and a used page from
which data has been deleted so that it no longer contains data is called a used free
page.

Unused page A page that is not being used.

Free page A page in which no data is stored. Both used free pages and unused pages are called
free pages.

4. Database Physical Structure

147

• The page unused area ratio is specified with the PCTFREE option of the
CREATE TABLE or CREATE INDEX. This ratio can be specified in the 0-99%
range; the default is 30%.

• When data is loaded into the table, no data is stored in the unused area.
The data storage efficiency improves as the page unused area ratio becomes smaller.
Increasing the page unused area ratio sometimes improves performance. For example,
when data is updated, you can reduce the number of data I/O operations, provided that
either of the following occurs:

• The row size is increased as a result of the updating.
• A row is added to a table for which a cluster key is specified.

For details about determining the page unused area ratio, see the HiRDB Version 8
Installation and Design Guide.

(4) Allocating and releasing pages
(a) Allocating pages

Pages are not allocated when the table is defined. Instead, pages are allocated as
needed when data is saved to the table. Once a page is allocated (once it becomes a
used page), it cannot be reused until it is released.
When an index is defined, the system allocates pages according to the number of data
items to be included in the index. If there are no data items, only one page (root page)
is allocated. However, if the EMPTY option is specified in the CREATE INDEX (index
entries not to be created), no pages will be allocated.

Reference note:

• If data in a non-FIX table is updated and as a result there is a change in the
row size, any area freed up by a reduction in the row size cannot be reused.

• An index page cannot be reused until a key value that is identical to a key
value that was stored in the deleted page is added.

4. Database Physical Structure

148

Note:

Reusing a page freed up by deletion of data is subject to the following
restrictions:

• The page cannot be used by VARCHARs of 256 bytes or greater, BINARY
types, abstract data types, and branch rows of repetition columns.

• The page cannot be used when data is inserted until the segment utilization
rate reaches 100%.

• A transaction that executes DELETE cannot use the space freed by the
DELETE until COMMIT is issued.

(b) Releasing pages
• When a segment is released, the pages in that segment are released.
• When a UAP deletes all rows in a page in a table that is locked with the LOCK

statement in the EXCLUSIVE specification, that page is released.
• Because the used segments in a table or index are released when PURGE TABLE

is executed, all pages in that segment other than the index root page are also
released.

• You can use the free page release utility (pdreclaim command) to release used
pages. For details about releasing used free pages, see the HiRDB Version 8
System Operation Guide.

149

Chapter

5. Database Access Using SQL

This chapter explains the use of the SQL database manipulation language to
manipulate a database.
This chapter contains the following sections:

5.1 Use of SQL in HiRDB
5.2 Basic data manipulation
5.3 Stored procedures and stored functions
5.4 Java stored procedures and Java stored functions
5.5 Triggers
5.6 Integrity constraints
5.7 Referential constraints
5.8 Check constraints
5.9 Check pending status
5.10 Improving database access performance
5.11 Narrowed search
5.12 Accessing databases using DB access products

5. Database Access Using SQL

150

5.1 Use of SQL in HiRDB

This section provides an overview of using SQL for database access. For details about
the SQL syntax, see the HiRDB Version 8 SQL Reference; For details about creating
and designing a UAP, see the HiRDB Version 8 UAP Development Guide.

5.1.1 HiRDB SQL functions
Database manipulation language SQL statements are used to manipulate data in tables.
The following functions are provided in the HiRDB SQL:
Basic data manipulation

• Data retrieval
• Data updating
• Data deletion
• Data insertion
• Search for specific data
• Data operations
• Data processing
• Manipulation of data in a table containing an abstract data type

Reduction in number of steps required for UAP development and reduction of
communication and analysis overhead

• Stored procedures
• Stored functions

Improvement in database access performance
• Block transfer facility
• Rapid grouping facility
• FETCH facility using arrays
• Holdable cursor
• SQL optimization option

5.1.2 SQL execution methods
There are three methods of using SQL to access a HiRDB database:

• By coding SQL statements in a UAP and executing the executable-format file of
the UAP (a UAP in which SQL statements are directly coded is called an

5. Database Access Using SQL

151

embedded SQL UAP)
• By using the HiRDB SQL Executer to execute SQL statements interactively
• By using the database definition utility (pddef) to execute SQL statements

You can create a UAP to reference table data when complex operations or
computational processing are required, or you can execute SQL statements
interactively in order to perform simple data operations.
The following lists the high-level languages that can be used to code embedded UAPs:

• C
• C++
• COBOL
• OOCOBOL

5. Database Access Using SQL

152

5.2 Basic data manipulation

5.2.1 Cursor
Table retrieval results usually span multiple rows. A cursor is used by a UAP to
indicate the position from which the newest result is to be extracted one row at a time
out of retrieval results that span multiple rows. A cursor can be used for retrieving,
updating, and deleting data.
DECLARE CURSOR is specified in order to use a cursor. The OPEN statement is used to
open a cursor, and the CLOSE statement is used to close a cursor. The FETCH statement
advances the position of the cursor.

5.2.2 Data retrieval
Data retrieval is the process of selecting the rows from a table that satisfy conditions
that are specified with respect to a column. The data retrieval methods and an example
of specifying SQL statements are shown as follows.
Data retrieval methods
The SELECT statement is used to retrieve data. The following three methods are
available for data retrieval:

• Retrieval using a cursor
• Retrieval of multiple tables (specify the FROM clause in the SELECT

statement)
• Retrieval by row (specify ROW in the selection expression of the SELECT

statement)
Data retrieval SQL specification example

An example of retrieval using a cursor is explained as follows.
Example
1. Define cursor.

In this example, a cursor named CUR1 is used to retrieve from the stock table
(STOCK) the product names (PNAME), colors (COLOR), and prices (PRICE) of
products whose product name (PNAME) is skirt:

DECLARE CUR1 CURSOR FOR
SELECT PNAME,COLOR,PRICE FROM STOCK
WHERE PNAME='skirt'

2. Open cursor.

5. Database Access Using SQL

153

Cursor CUR1 is opened:

OPEN CUR1

3. Extract data.
While cursor CUR1 is open, it is advanced by one row and the contents of that
row are stored in the UAP in specified areas (:XPNAME, :XCOLOR,
:XPRICE):

FETCH CUR1 INTO
 :XPNAME,
 :XCOLOR,
 :XPRICE

4. Close cursor.
Cursor CUR1 is closed:

CLOSE CUR1

By specifying LIMIT following the ORDER BY clause, you can retrieve search results
from the first n rows. Specifying LIMIT may also improve SQL search performance.
For details about retrieving search results from the first n rows, see the HiRDB Version
8 UAP Development Guide.

5.2.3 Data updating
Data updating is the process of changing information in a table. The data updating
methods and an example of specifying SQL statements are shown as follows.

Data updating methods
The UPDATE statement is used to update data. The following three methods are
available for data updating:

• Updating the row being pointed to by the cursor
• Updating only those rows that satisfy a condition (specify the WHERE clause

in the UPDATE statement)
• Updating by row (specify ROW in the SET clause)

Data updating SQL specification example
An example of updating only those rows that satisfy a condition is explained as
follows.
Example

In this example, the UPDATE statement updates to 20 the stock quantity

5. Database Access Using SQL

154

(SQUANTITY) of products whose product code (PCODE) in the stock table
(STOCK) is 411M:

UPDATE STOCK
 SET SQUANTITY=20
 WHERE PCODE='411M'

5.2.4 Data deletion
Data deletion is the process of removing either the rows from a table that satisfy
conditions that are specified with respect to a column or all rows that constitute the
table. The data deletion methods and an example of specifying SQL statements are
shown as follows.
Data deletion methods

The DELETE or PURGE TABLE statement is used to delete data. The following
three methods are available for deleting data:

• Deleting the row being pointed to by the cursor
• Deleting only those rows that satisfy a condition (specify the WHERE clause

in the DELETE statement)
• Deleting all rows (PURGE TABLE statement)

Data deletion SQL specification example
An example of deleting only those rows that satisfy a condition is explained as
follows.
Example

In this example, the DELETE statement deletes from the stock table (STOCK)
only the data whose product name (PNAME) is skirt:

DELETE FROM STOCK
 WHERE PNAME='skirt'

5.2.5 Data insertion
Data insertion is the process of inserting rows into a table. The data insertion methods
and an example of specifying SQL statements are shown as follows.
Data insertion methods

The INSERT statement is used to insert rows. The following two methods are
available for inserting rows into a table:

• Inserting rows by column
• Inserting rows by row (specify ROW in the INSERT statement)

5. Database Access Using SQL

155

Data insertion SQL specification example
An example of inserting rows by column is explained as follows.
Example

In this example, the INSERT statement inserts in each column of the stock
table (STOCK) the values set in embedded variables (:ZPCODE, :ZPNAME,
:ZCOLOR, :ZPRICE, and :ZSQUANTITY) that are used for transferring
values between a table and UAPs:

INSERT INTO STOCK (PCODE,PNAME,COLOR,PRICE,SQUANTITY)
 VALUES(:ZPCODE,:ZPNAME,:ZCOLOR,:ZPRICE,:ZSQUANTITY)

5.2.6 Searching for specific data
A search condition is specified to manipulate specific data in a table. A search
condition is a condition for selecting rows. For example, a search condition can specify
a specific range of data or all data that is not the null value. It is also possible to use
Boolean operators to combine multiple conditions. The methods of searching for
specific data and SQL specification examples follow.

(1) Methods of searching for specific data
The following methods can be used to search for data in a table:

• Searching for data within a specific range
• Searching for a specific character string
• Searching for data that is not the null value
• Searching for data that satisfies multiple conditions
• Search using a subquery

(2) SQL examples for searching for specific data
(a) SQL specification example for searching for data within a specific range

The following three methods are available for searching for data within a specific
range:

• Comparison predicate (used for equivalence and size comparison)
• BETWEEN predicate (used for extracting data within a specific range)
• IN predicate (used for extracting only the data that matches multiple values that

are specified)
An example of using a comparison predicate for a data search is explained as follows.
Example

5. Database Access Using SQL

156

In this example, the SELECT statement searches the stock table (STOCK) for the
product codes (PCODE) and product names (PNAME) of products whose stock
quantity (SQUANTITY) is 50 or less:

SELECT PCODE,PNAME FROM STOCK
WHERE SQUANTITY<=50

(b) SQL specification example for searching for a specific character string
An example of conducting a search for rows in which there is a column that contains
a specific character string is explained as follows.
Example

The LIKE predicate is used in this example. The SELECT statement searches the
stock table (STOCK) for the product names (PNAME) and stock quantities
(SQUANTITY) of products whose product code (PCODE) has L as its second
character:

SELECT PNAME,SQUANTITY FROM STOCK
 WHERE PCODE LIKE '_L%'

(c) SQL specification example for searching for data that is not the null value
An example of conducting a search for rows in which a specified column does not
contain the null value is explained as follows.
Example

NOT of the NULL predicate is used in combination in this example. The SELECT
statement searches the stock table (STOCK) for the product codes (PCODE) of
products whose product name (PNAME) is not empty (not the null value):

SELECT PCODE FROM STOCK
 WHERE PNAME IS NOT NULL

(d) SQL specification example for searching for data that satisfies multiple
conditions
An example of conducting a search for rows that contain data that satisfies a
combination of multiple conditions is explained as follows.
Example

Boolean operators (AND, OR, and NOT) are used in this example. The SELECT
statement searches the stock table (STOCK) for the product codes (PCODE) of
products whose product name (PNAME) is blouse or polo shirt and whose
stock quantity (SQUANTITY) is 50 or greater:

SELECT PCODE, SQUANTITY FROM STOCK

5. Database Access Using SQL

157

 WHERE (PNAME='blouse'
 OR PNAME='polo shirt')
 AND SQUANTITY=>50

(e) SQL specification example for a search using a subquery
You can code a complex query by specifying a retrieval result of a search as a condition
in the SELECT statement. This is called a subquery. The following two subquery
methods are available:

• Quantified predicate
A quantified predicate is used to narrow the results of a subquery by determining
whether the results of the subquery satisfy a specified comparison condition.

• EXISTS predicate
The EXISTS predicate is used to determine whether the results of a subquery
constitute an empty set.

An example of conducting a search that uses a subquery that contains a quantified
predicate is explained as follows:
Example

In this example that uses a quantified predicate, the SELECT statement searches
the stock table (STOCK) for the product codes (PCODE) and product names
(PNAME) of products that have a greater stock quantity value than the stock
quantity (SQUANTITY) value for blouse:

SELECT PCODE,PNAME FROM STOCK
 WHERE SQUANTITY>ALL
 (SELECT SQUANTITY FROM STOCK
 WHERE PNAME='blouse')

5.2.7 Data operations
It is possible to retrieve numerical values or dates from a table's columns, to perform
operations on such values, and to extract the results. The data operation methods and
an SQL specification example follow.
Data operation methods

The following methods can be used to perform data operations:
• Concatenation operations on character string data
• Arithmetic operations on numeric data
• Operations on date and time data
• Operations using scalar functions

5. Database Access Using SQL

158

• Specification of conditional values using the CASE expression
• Explicit type conversion using a CAST specification

Data operation SQL specification example
An example of performing an arithmetic operation on numeric data is explained
as follows.
Example

In this example, the SELECT statement uses the price (PRICE) and stock
quantity (SQUANTITY) to compute the projected revenue for products with
sweat pants as the product name (PNAME) and extracts the product codes
(PCODE) and the computation results (in units of $10):

SELECT PCODE,PRICE*SQUANTITY/10 FROM STOCK
 WHERE PNAME='sweat pants'

5.2.8 Data processing
When data is extracted from a table, it is possible to process that data by grouping it or
by sorting it in ascending or descending order. The data processing methods and an
SQL specification example follow.
Data processing methods

The following operations can be used to process data in a table:
• Data grouping (GROUP BY clause specification and the set function)
• Sorting data in ascending or descending order (ORDER BY clause

specification)
• Excluding duplicate data (DISTINCT specification)
• Set operations between sets of rows (derived tables) (UNION or EXCEPT

specification)
Data processing SQL specification example

An example of rearranging (sorting) data into ascending order is explained as
follows.
Example

In this example, the SELECT statement retrieves from the stock table
(STOCK) the product codes (PCODE) and stock quantities (SQUANTITY) of
products and sorts so that the retrieved data is in ascending order of the
product codes (PCODE):

SELECT PCODE,SQUANTITY FROM STOCK
 ORDER BY PCODE

5. Database Access Using SQL

159

5.2.9 Manipulation of data in a table containing an abstract data type
This section describes how to manipulate data in a table containing abstract data types.

(1) Abstract data type provided by a plug-in
When a plug-in is used, creation of a UAP by specifying the facility provided by the
plug-in makes it possible to quickly and easily manipulate multimedia data such as
documents and images.
The following examples use the HiRDB Text Search Plug-in.

(a) Data retrieval
An example of using a Boolean predicate for data retrieval is explained as follows.
Example

In this example, the SELECT statement retrieves medicine IDs that contain the
keyword headache in the efficacy section of the operation manual column
of the MEDICINE_MANAGEMENT_TABLE (the SQL uses the facility contains in
order to extract those documents that match the text search condition provided by
the plug-in):

SELECT medicine-ID FROM MEDICINE_MANAGEMENT_TABLE
 WHERE
contains(operation-manual,'attached-document-data[efficacy{
"headache"}]') IS TRUE

(b) Data updating
An example of data updating is explained as follows.
Example

In this example, the UPDATE statement updates the data in the operation
manual for those columns in the MEDICINE_MANAGEMENT_TABLE that have
medicine 2 as the medicine ID (the SQL uses the SGMLTEXT facility
provided by the plug-in):

UPDATE MEDICINE_MANAGEMENT_TABLE SET operation-manual =
SGMLTEXT(:sgml)
 WHERE medicine-ID = 'medicine-2'

The following sgml BLOB type embedded variable must be defined before the
UPDATE statement:

EXEC SQL BEGIN DECLARE SECTION; 1
 SQL TYPE IS BLOB(300K)sgml; 1
EXEC SQL END DECLARE SECTION; 1

5. Database Access Using SQL

160

strcpy(sgml.sgml_data,char_ptr_pointing_to_a_sgml_text); 2
sgml.sgml_length =
 strlen(char_ptr_pointing_to_a_sgml_text); 3

Explanation
1. Defines the sgml BLOB type embedded variable.
2. Stores the new data for updating in the sgml embedded variable.
3. Sets the attribute value sgml_length of the created BLOB data to the

length of the stored data.
(c) Data deletion

An example of data deletion is explained as follows:
Example

In this example, the DELETE statement deletes from the
MEDICINE_MANAGEMENT_TABLE those rows that have medicine 2 in the
medicine ID column:

DELETE FROM MEDICINE_MANAGEMENT_TABLE
 WHERE medicine-ID = 'medicine-2'

(d) Data insertion
An example of data insertion is explained as follows.
Example

In this example, the INSERT statement inserts into the
MEDICINE_MANAGEMENT_TABLE rows that have medicine 25 in the
medicine ID column (the SGMLTEXT facility provided by a plug-in is used in
the SQL):

INSERT INTO MEDICINE_MANAGEMENT_TABLE
(medicine-ID,operation-manual)
 VALUES('medicine-25',SGMLTEXT(:sgml))

The following sgml BLOB type embedded variable must be defined before the
UPDATE statement:

EXEC SQL BEGIN DECLARE SECTION; 1
 SQL TYPE IS BLOB(300K)sgml; 1
EXEC SQL END DECLARE SECTION; 1
strcpy(sgml.sgml_data,char_ptr_pointing_to_a_sgml_text); 2
sgml.sgml_length =
strlen(char_ptr_pointing_to_a_sgml_text); 3

5. Database Access Using SQL

161

Explanation
1. Defines the sgml BLOB type embedded variable.
2. Stores the new data for updating in the sgml embedded variable.
3. Sets the attribute value sgml_length of the created BLOB data to the length

of the stored data.
(2) User-defined abstract data type

A routine or a component specification is used to manipulate data of a table containing
a user-defined abstract data type. A component specification is used to manipulate the
attribute of a column that comprises an abstract data type. The following examples
manipulate the data of a table containing a user-defined abstract data type.

(a) Retrieving an abstract data type column
An example of retrieving a column of a table containing a user-defined abstract data
type is explained as follows.
Example

In this example, the SELECT statement uses the user-defined facility
service-years to retrieve from STAFF_TABLE the employee numbers of
employees whose service years are 20 years or more:

SELECT employee-no
 FROM STAFF_TABLE
 WHERE service-years (employee)>=20

(b) Updating an abstract data type column
An example of updating a column of a table containing a user-defined abstract data
type is explained as follows.
Example

In this example, the UPDATE statement updates to CHIEF the position
employee attribute of the employee whose EMPLOYEE_NO column in
STAFF_TABLE is 9001230; this UPDATE statement uses the
employee..position component specification for this updating:

UPDATE STAFF_TABLE
SET employee.position ='CHIEF'
WHERE employee_no = '900123'

(c) Deleting an abstract data type column
An example of deleting a column of a table containing a user-defined abstract data type
is explained as follows:

5. Database Access Using SQL

162

Example
In this example, the DELETE statement uses the employee..position
component specification to delete the data in which the position attribute of the
employee column in STAFF_TABLE is GENERAL:

DELETE FROM STAFF_TABLE
 WHERE employee..position='general'

(d) Data insertion
An example of insertion of data into a table containing a user-defined abstract data type
is explained as follows.
Example

In this example, the INSERT statement uses the t_employee constructor facility
to insert a row whose EMPLOYEE_NO column is 990070 into STAFF_TABLE
(:xidphoto is a BLOB type embedded variable in which the ID_photo image
has been set):

INSERT INTO STAFF_TABLE
 VALUES ('990070',t_employee('Mary Moore',
 'F',
 'GENERAL',
 '1999-04-01',
 :xidphoto AS BLOB,
 140000
))

5. Database Access Using SQL

163

5.3 Stored procedures and stored functions

When a set of operations on a database is defined as a procedure, it is called a stored
procedure; when a set of operations on a database is defined as a function, it is called
a stored function.
Defining a stored procedure or a stored function generates an SQL object that codes an
access procedure. The resulting stored procedure or stored function, together with its
definition information, is stored in the database. Processing procedures for stored
procedures or stored functions can be coded in either SQL or Java. A procedure that is
coded in SQL is called an SQL stored procedure or an SQL stored function; a procedure
that is coded in Java is called a Java stored procedure or a Java stored function. For
details about Java stored procedures and Java stored functions, see Section 5.4 Java
stored procedures and Java stored functions.
A stored procedure may or may not have input, output, or input/output parameters; it
is called by an SQL CALL statement. A stored function may or may not have input
parameters; it is able to return a return value, and thus can be called as a value
expression in an SQL. It should be noted, however, that a stored function can be used
only for processing data; it cannot be used for accessing tables in the database.

(1) Application of a stored procedure to a job
Explained as follows are the types of jobs for which a stored procedure may be useful.
For example, a product management job might involve the processing described as
follows for analyzing the sales status of a product.

• For each product, the total number of units ordered each month is computed and
the result is incorporated into a table that shows the cumulative number of units
ordered since the product was introduced.

This is accomplished through the multiple database access processes described as
follows.
1. Use a cursor to retrieve from the product orders table the product numbers, order

quantities, and order recording dates for products for which orders were received
during the month (SELECT statement).

2. Use a cursor to retrieve from the master order table the cumulative total number
of units ordered for each product whose product number is contained in both the
master orders table and the product orders table (SELECT statement).

3. For each applicable product, compute the sum of the total number of units ordered
during the month and the cumulative total number of units ordered from the time
the product was introduced through the end of the previous month, and update the
master orders table with the result (INSERT and UPDATE statements).

When a series of database accessing processes such as the job shown here is registered

5. Database Access Using SQL

164

at the database side rather than at the UAP side, the processes can be called for use
from multiple UAPs. Figure 5-1 shows jobs to which a stored procedure can be
applied.

Figure 5-1: Jobs to which a stored procedure can be applied

In the database access process shown in Figure 5-1, the total number of units ordered
during June 2000 is determined for each product from the PRODUCT ORDERS TABLE,
which has PRODUCT NO, ORDER QUANTITY, and RECORDING DATE as its columns.
The results are incorporated into the MASTER ORDERS TABLE, which has PRODUCT
NO and CUMULATIVE ORDER QUANTITY as its columns. In this case, the database
access process described as follows can be defined as a stored procedure and registered
in the database.
Processing contents of stored procedure

The number of units ordered for a specified period is determined, and the result is
incorporated into the master orders table.

A UAP can perform the product management job shown in Figure 5-1 by simply
calling the stored procedure with the argument described as follows specified.
Argument specified by UAP

5. Database Access Using SQL

165

Period for which number of units ordered is to be computed: (begin-date
20000601, end-date 20000630)

Figure 5-2 shows how a stored procedure is used.
Figure 5-2: Stored procedure usage

This illustrates how, when a stored procedure is used, it is possible to register a
database access process at the database side, thus turning the database access process
into a component.
Even when the database access process is changed, all that has to be done is to change
the stored procedure; there is no need to change the UAP, thus reducing the number of
steps required for UAP development.
In order to execute multiple SQL statements, an application typically has to access the

5. Database Access Using SQL

166

database as many times as there are SQL statements to be executed. By contrast,
storing multiple SQL statements to be executed in the database as a stored procedure
means that the multiple SQL statements can be executed with one call of the stored
procedure and only one access to the database. This greatly reduces communication
processing associated with the passing of data between the HiRDB server and HiRDB
client applications, as well as the overhead associated with the parsing of SQL
statements by the front-end server. Figure 5-3 shows the communications processing
for an SQL stored procedure.

Figure 5-3: Communications processing for an SQL stored procedure

(2) Application of a stored function
With a stored function, the user can define data processing in a database as an arbitrary

5. Database Access Using SQL

167

function, using conditional branching (IF statement) and a routine control SQL such
as SQL repetition (WHILE statement). Consequently, the user can turn data processing
into a component. When a plug-in is used, the function provided by the plug-in is
registered as a stored function in the database.

(3) Creating RDAREAs for storing stored procedures and stored functions
To use stored procedures or stored functions, the following types of RDAREAs must
be created:

• Data dictionary LOB RDAREAs
• Data dictionary RDAREAs

For details about creating RDAREAs for storing stored procedures and stored
functions, see the HiRDB Version 8 System Operation Guide.

(4) Creating a UAP for calling stored procedures and stored functions
Explained as follows are the methods of calling a stored procedure or a stored function.
For details about creating a UAP for calling stored procedures and stored functions,
see the HiRDB Version 8 UAP Development Guide.
Calling a stored procedure

You call a stored procedure by specifying, in the UAP, a CALL statement written
in SQL.

Invoking a stored function
You call a stored function by specifying a function call as a value in an SQL
statement. You can specify arguments when the function is called. The value will
be returned in the RETURN statement of the SQL.

(5) Overloading of stored functions
Multiple stored functions with the same name can be defined, as long as they have
different numbers of parameters and their data types are different. Stored functions
with the same name are mutually overloaded. Because the overload function can be
used to assign the same name to multiple functions with different parameter data types,
it is possible to standardize the names of functions that have the same function. When
a stored function is invoked, those facilities described as follows become the
candidates for execution from among the facilities with the specified name and the
same number of parameters as the number of specified arguments:

• Facilities in which the data type of each argument exactly matches the data type
of the corresponding parameter

• If the data type of each argument does not exactly match the data type of the
corresponding parameter, arguments and parameter data types are compared
sequentially from left to right, and the facility with a parameter with the highest
priority among the lower-priority parameters becomes the candidate.

5. Database Access Using SQL

168

For details about the rules for selecting the function to be invoked, see the HiRDB
Version 8 SQL Reference.

(6) SQL procedures and definition of user-defined functions
Explained as follows are the SQL procedures and the definition of user-defined
functions. For details about SQL procedures and the definition of user-defined
functions, see the HiRDB Version 8 UAP Development Guide.
Defining a procedure for creating a stored procedure

To create a stored procedure, one of the following SQLs must be used first to
define a procedure:

• CREATE PROCEDURE
• Procedure body specified by CREATE TYPE (for specifying a procedure for

an abstract data type)
Defining a user-defined function for creating a stored function

To create a stored function, one of the following SQLs must be used first to define
a user-defined function:

• CREATE FUNCTION
• Function body specified by CREATE TYPE (for specifying a function for an

abstract data type)
Procedures, user-defined functions, and system-defined functions are referred to
collectively as routines.

(7) Registering stored procedures and stored functions into the database
When an SQL that defines a procedure or a user-defined function is executed by
database definition (pddef), the procedure or user-defined function is compiled
automatically, thus creating an SQL object. Moreover, the definition source of the SQL
and the SQL object are stored in a data dictionary LOB RDAREA. This registers the
stored procedure or stored function into the database. For details about registration of
stored procedures and stored functions into the database, see the HiRDB Version 8
System Operation Guide.

(8) Re-creating stored procedures and stored functions
If the definition of a table or index is changed or a stored procedure is deleted by the
DROP PROCEDURE statement, you need to re-create the voided stored procedure by
executing the ALTER PROCEDURE statement. Similarly, if a stored function is deleted
by the DROP FUNCTION statement, you need to re-create the voided stored function by
executing the ALTER ROUTINE statement. For details about re-creating a stored
procedure or a stored function, see the HiRDB Version 8 System Operation Guide.

5. Database Access Using SQL

169

5.4 Java stored procedures and Java stored functions

Stored procedures and stored functions in which processing procedures are coded in
Java are called Java stored procedures and Java stored functions. Java stored
procedures and Java stored functions are referred to collectively as Java stored
routines. This section describes Java stored routines.

5.4.1 Characteristics of a Java stored routine
A Java stored routine has the following characteristics:
1. Absence of overhead between server and client

As in the case of SQL stored procedures and SQL stored functions, Java stored
routines are processed at the server, which eliminates communications overhead
between server and client.

2. Ability to code the procedure or function itself in Java
The Java coding language provides more sophisticated control than is possible
with SQL.

3. Ability to operate between dissimilar DBMSs
Because Java is a platform-independent language, programs coded in Java can
operate on dissimilar DBMSs that support Java stored routines.

4. Simple debugging
The debugging of an SQL stored procedure or an SQL stored function requires
actual execution at the server of the procedure or function. By contrast, Java
stored routines can be debugged by providing a Java debugger at the client;
moreover, this debugging process can address database access operations as well.

5.4.2 System configuration (position of a Java virtual machine)
Figure 5-4 shows the position of a Java virtual machine in a HiRDB system.

5. Database Access Using SQL

170

Figure 5-4: Position of Java virtual machine in a HiRDB system

1 The Java virtual machine is included in the JRE (Java Runtime Environment). You
can find information about and obtain the JRE from the Web sites of various platform
vendors.
2 The JDBC driver is a standard interface provided with HiRDB.
For details about how to obtain the JRE and system configuration examples, see the
HiRDB Version 8 System Operation Guide.

5.4.3 Execution of Java stored routines
Before you can execute Java stored routines, you must install the JDBC driver. To do
so, select the JDBC driver when you perform a HiRDB client installation.
For details about setting an environment for using Java stored procedures or Java
stored functions, see the HiRDB Version 8 System Operation Guide.

5. Database Access Using SQL

171

5.4.4 Java stored routine creation and execution procedure
Following is the procedure for creating and executing a Java stored routine:
Procedure

1. Code the Java stored routine.
2. Register into HiRDB.
3. Define the Java stored routine.
4. Execute the Java stored routine.

Figure 5-5 shows the flow of events from creation of a Java stored routine to its
execution.

5. Database Access Using SQL

172

Figure 5-5: Flow from creation to execution of a Java stored routine

5. Database Access Using SQL

173

(1) Coding a Java stored routine
In this step, you code either a procedure or a function in Java, then you compile the
resulting Java program. Compilation produces a Class file. You can then test and debug
the Class file, using the Java virtual machine at the client, and create a JAR file from
the Class file.

(2) Registering into HiRDB
In this step, you register the JAR file into HiRDB.
Registration by a HiRDB administrator:

The HiRDB administrator uses the pdjarsync command.
Registration by a programmer:

The programmer uses the INSTALL JAR or REPLACE JAR statement in the
embedded language. These SQL statements can be coded in either the pddef file
or the UAP, and then executed.

(3) Defining the Java stored routine
You use the CREATE PROCEDURE or the CREATE FUNCTION statement to define a
Java stored routine from the JAR file.

(4) Executing the Java stored routine
As in the case of executing a stored procedure or a stored function, you execute the
SQL by specifying either a CALL statement or a function call. The CALL statement
causes a Java method to be executed as a Java stored procedure. The function call
causes a Java method to be executed as a Java stored function. The Java stored routine
is executed on the Java virtual machine at the server.

5. Database Access Using SQL

174

5.5 Triggers

By defining a trigger, you can have SQL statements automatically execute when an
operation (updating, insertion, deletion) is performed on a particular table. A trigger
defines such specifications as the table to which the trigger applies, the SQL statement
that activates the trigger (trigger event SQL), the SQL statements that are to be
executed automatically (trigger SQL statements), and conditions for execution of the
action (trigger action search conditions). When an SQL statement that satisfies the
trigger action search conditions is executed on a table for which a trigger is defined,
the trigger SQL statements are automatically executed. Figure 5-6 provides an
overview of triggers.

Figure 5-6: Overview of triggers

Explanation
A trigger is defined to provide cumulative updating of data in the product
management historical table on price changes that occur in the product
management table. In this example, when the trigger event SQL statement
(UPDATE in this case) is executed from the UAP, the product number, the price
before the change, and the price after the change in the row containing the
changed price are added to the product management historical table.

Note, however, that when you define a trigger for a table, you must re-generate any
function, procedure, or trigger SQL object that uses that table, because any SQL object
that uses that table becomes invalid. Similarly, if you define, change, or delete any
resources that are used by the trigger (tables, indexes, and so on), the trigger SQL

5. Database Access Using SQL

175

object becomes invalid, so you must re-generate it as well. For details, see the HiRDB
Version 8 Installation and Design Guide.

(1) Application criteria
Consider using a trigger to perform the following actions when an associated UAP
operation occurs:

• To always update one table whenever a particular table is updated
• To always update particular columns associated with the updated row whenever

a particular table is updated (relating columns)
(2) Before you define a trigger

When you define a trigger, an SQL object that codes the specified trigger action
procedure is automatically generated and stored in the corresponding data dictionary
LOB RDAREA. Thus, before you define a trigger, you must make sure that the data
dictionary LOB RDAREA has sufficient capacity. For details about how to estimate
the capacity of data dictionary LOB RDAREAs, see the HiRDB Version 8 Installation
and Design Guide.
In addition, if you plan to execute trigger event SQL statements, you must also take
into consideration the trigger SQL object size when you specify the buffer length for
SQL objects. For details about how to estimate the buffer length for SQL objects, see
the manual HiRDB Version 8 System Definition.

(3) Trigger definition statements
The following definition SQL statements are used to define a trigger, to re-generate an
SQL object, and to delete a trigger.
CREATE TRIGGER

This statement defines a trigger. You can define triggers only for tables that you
own. You cannot define triggers for tables owned by other users.

ALTER TRIGGER
This statement re-generates the SQL object of a trigger that has already been
defined. You can also use the ALTER ROUTINE statement to re-generate SQL
objects.

DROP TRIGGER
This statement deletes a trigger.

5. Database Access Using SQL

176

5.6 Integrity constraints

A constraint that guarantees that data in a database is valid is called an integrity
constraint. Integrity constraints are set up in order to prevent accesses to the database
from causing the data to lose its integrity. HiRDB supports two integrity constraints:

• NOT NULL constraint
• Uniqueness constraint

5.6.1 NOT NULL constraint
You can define the NOT NULL constraint for a column, and thereby prohibit the null
value as data in the column. The NOT NULL constraint is specified on a
column-by-column basis. When the NOT NULL constraint is defined for a column, a
row containing the null value in that column cannot be added, nor can a row be updated
so as to set the null value in that column. A column for which the NOT NULL
constraint is defined must have a definite value in every row. An attempt to set the null
value in such a column results in a constraint violation.
The NOT NULL constraint is set by specifying the NOT NULL option in the CREATE
TABLE statement. For details about the NOT NULL constraint, see the HiRDB Version
8 UAP Development Guide.
Comment

The NOT NULL constraint is applied to columns for which the primary key is
defined.

5.6.2 Uniqueness constraint
You can define the uniqueness constraint for a column, and thereby prohibit
duplication of data in the column (each data entry in the column must be unique).
When the uniqueness constraint is defined for a column, a row cannot be added if it
contains a nonunique value in that column, nor can a row be updated so as to set a
nonunique value in that column. Because columns for which the uniqueness constraint
is defined are always required to have unique values, an attempt to assign a non-unique
value to such a column results in a constraint violation. The uniqueness constraint can
be specified for the following columns:

• Columns for which a cluster key is defined
• Columns for which an index key is defined

The uniqueness constraint is set for a column for which a cluster key is defined by
specifying the UNIQUE CLUSTER KEY option in the CREATE TABLE statement.
Similarly, the uniqueness constraint is set for a column for which an index key is
defined by specifying the UNIQUE option in the CREATE INDEX statement. For details

5. Database Access Using SQL

177

about the uniqueness constraint, see the HiRDB Version 8 UAP Development Guide.
Comment

The uniqueness constraint is applied to columns for which the primary key is
defined.

5. Database Access Using SQL

178

5.7 Referential constraints

Tables in a database are normally not independent entities, because typically there are
links between tables. The data in a table that is not linked is probably of no value to
other tables. To maintain referential integrity of data that is linked across tables, the
concept of referential constraints is introduced. A referential constraint is defined for
a specific column (called a foreign key) when a table is defined. A table in which a
referential constraint and a foreign key are defined is called a referencing table, while
a table that is referenced from a referencing table with a foreign key is called a
referenced table. In a referenced table, a primary key that is referenced by the foreign
key must be pre-defined.
Note that execution of SQL code or a utility may cause a loss of referential integrity
between a referenced table and a referencing table. When this occurs, the referencing
table is placed in check pending status. For details about check pending status, see 5.9
Check pending status.
Figure 5-7 shows an example of a referenced table and a referencing table. In this
example, the product table is the referencing table, and the manufacturer table is the
referenced table. The foreign key in the referencing table references the primary key
to determine the name of the manufacturer.

Figure 5-7: Example of referenced table and referencing table

For details about referential constraints, see the HiRDB Version 8 Installation and
Design Guide.
Advantages of referential constraints

Defining a referential constraint enables HiRDB to check the integrity of data
between tables and, because data operations can be automated, reduces the
workload to create UAPs. The downside is that updating referenced tables and
referencing tables takes longer because of the processing time required to check

5. Database Access Using SQL

179

the integrity of the data.
(1) Defining a referential constraint

To enable a referential constraint, you must first define in the referenced table the
primary key that is referenced by the foreign key. To do so, use the CREATE TABLE
definition SQL statement to specify PRIMARY KEY in the referenced table. To apply
check pending status, specify USE in the pd_check_pending operand or omit
specification of the pd_check_pending operand.
To define a referential constraint, you first specify FOREIGN KEY in the referencing
table. In the FOREIGN KEY clause, you specify the following:

• Column to be referenced
• Referenced table
• Referential constraint action

A referential constraint action is an insertion, update, or deletion action in the
referenced table; it is specified with CASCADE or RESTRICT.

The following subsections explain the actions in the referenced table and the
referencing table when CASCADE and RESTRICT are specified.

(a) When CASCADE is specified
When CASCADE is specified and a primary key of a referenced table is changed, the
foreign key is also changed. When a foreign key of a referencing table is changed, a
check is performed to determine if there is a row containing a primary key whose value
is the same as the value of the foreign key after the change; the foreign key is not
changed if such a change would result in a referential constraint violation.
Figures 5-8 and 5-9 show examples of the actions that occur when CASCADE is
specified when SQL code is executed for a referenced table and for a referencing table.

Figure 5-8: Example of the action when update SQL code is executed for a
referenced table (with CASCADE specified)

5. Database Access Using SQL

180

Explanation
If a row contains a foreign key with the same value as the primary key, then in
order to maintain constraints the foreign key is changed in the same way that the
primary key is changed. In this case, updating is performed on the referenced
table; insertion and deletion would be handled in the same manner.
Figure 5-9: Example of the action when update SQL code is executed for a
referencing table (with CASCADE specified)

Explanation
If a row contains a primary key with the same value as that of the foreign key after
updating, the update is executed on the foreign key. The update is also executed
if the foreign key contains a null value, even if there is no row containing a
primary key with the same value. If there is no null value, a referential constraint
violation results. If this occurs, there is no effect on the referenced table. Insertion
and deletion would be handled in the same manner.

(b) When RESTRICT is specified
When RESTRICT is specified, then when a primary key of a referenced table is
changed, a referential constraint violation occurs if there is a row that contains a
foreign key with the same value. If the foreign key can be changed, a check is
performed to determine if a row contains a primary key with the same value and, if a
referential constraint violation would result, the foreign key is not changed.
Figure 5-10 shows the actions that occur when RESTRICT is specified when SQL code
is executed for a referenced table. The action that occurs in a referencing table is the
same as when CASCADE is specified (see Figure 5-9).

5. Database Access Using SQL

181

Figure 5-10: Example of the action when update SQL code is executed for a
referenced table (with RESTRICT specified)

(2) Data manipulation and integrity
When you use a data manipulation SQL (other than PURGE TABLE) to manipulate data
in a referenced table or referencing table, HiRDB performs checking when the SQL
code is executed in order to guarantee data integrity. However, if you perform the data
operations shown below, HiRDB may no longer be able to guarantee data integrity.

• Loading data with the database load utility (pdload)
• Reorganization or reloading with the database reorganization utility (pdrorg)
• Re-initialization of an RDAREA (initialize rdarea) with the database

structure modification utility (pdmod)
• Execution of the PURGE TABLE statement
• Changing the partition storage conditions of a table with the ALTER TABLE

statement
If you do perform any of these data operations, you must verify the integrity of the
data. For details about how to verify data integrity, see the HiRDB Version 8
Installation and Design Guide. If USE is specified in the pd_check_pending
operand, the referencing table is placed in check pending status if you perform any of
these data operations.

5. Database Access Using SQL

182

5.8 Check constraints

A characteristic of databases is that value ranges, conditions, and other limitations are
often imposed on the data contained in the tables. For example, when product
information is stored in a database, the product cost cannot be a negative value. This
means that there must not be negative product cost values in the database, which
suggests that these values should be checked when they are inserted or updated. A
check constraint is a function that maintains the integrity of table data by checking a
constraint condition when data is inserted or updated and by suppressing operations on
data that does not satisfy the condition. In this manual, a table for which a check
constraint has been defined is called a check constraint table.
Note that execution of a utility may make it impossible to guarantee the integrity of
data in a check constraint table. When this occurs, the check constraint table is placed
in check pending status. For details about check pending status, see 5.9 Check pending
status.
For details about check constraints, see the HiRDB Version 8 Installation and Design
Guide.
Advantages of check constraints

Defining a check constraint reduces the workload required to create a UAP,
because the checking of data when it is inserted or updated is automated. The
downside is that updating check constraint tables takes longer because of the
processing time required to check the integrity of the data.

(1) Defining a check constraint
To define a check constraint, you first specify CHECK with CREATE TABLE of a
definition SQL, and then use a search condition to specify the constraint condition for
the table value To use the check pending status, specify USE in the
pd_check_pending operand or omit specification of the pd_check_pending
operand.

(2) Data manipulation and integrity
When you use a data manipulation SQL to update, add, or delete data in a check
constraint table, HiRDB performs checking when the SQL is executed in order to
guarantee data integrity. However, if you perform certain data operations with the
utilities listed below, HiRDB may no longer be able to guarantee data integrity.

• Loading data with the database load utility (pdload)
• Reloading data with the database reorganization utility (pdrorg)

If you do perform any of these data operations, you must verify the integrity of the
data. For details about how to verify data integrity, see the HiRDB Version 8

5. Database Access Using SQL

183

Installation and Design Guide. When USE is specified in the pd_check_pending
operand, the referencing table is placed in check pending status if you perform any of
these data operations.

5. Database Access Using SQL

184

5.9 Check pending status

When the integrity of table data can no longer be guaranteed, such as when SQL code
or a utility has been executed on a table for which a referential constraint or a check
constraint is defined, HiRDB limits the data operations that can be performed on the
referencing table or the check constraint table. The status in which data operations are
limited in this way because integrity cannot be guaranteed is called check pending
status. To place a referencing table or a check constraint table in check pending status
in order to limit data operations, either you must specify USE in the
pd_check_pending operand or you must omit specification of the
pd_check_pending operand. You can remove check pending status from a table by
executing the integrity check utility (pdconstck). You can also use the integrity check
utility to forcibly place a table in check pending status.
If you specify NOUSE in the pd_check_pending operand, data operations are not
limited even if referential integrity between tables can no longer be guaranteed. In such
a case, when you execute SQL code or a utility that may cause integrity to be lost, it is
advisable to use the integrity check utility to forcibly place the table in check pending
status and then check its integrity.
For details about check pending status and how to check the integrity of data on which
the integrity check utility has been applied, see the HiRDB Version 8 Installation and
Design Guide.

(1) Events that set or remove check pending status
In addition to the integrity check utility, the following utilities, commands, and SQL
code can assign or remove check pending status for a referencing table.

• Specification with the constraint statement of the database load utility
(pdload)

• Specification with the constraint statement of the database reorganization
utility (pdrorg) (reload or reorganize)

• Use of the database structure modification utility (pdmod) (re-initialization of an
RDAREA)

• PURGE TABLE statement
• ALTER TABLE (CHANGE RDAREA)

For details about these utilities and commands, see the manual HiRDB Version 8
Command Reference. For details about SQL, see the manual HiRDB Version 8 SQL
Reference.

(2) Operations that are limited for a check pending status table
Table 5-1 lists the operations that cannot be performed on a table that has been placed

5. Database Access Using SQL

185

in check pending status.
Table 5-1: Operations that cannot be performed on a check pending status table

Operation attempted on check pending
status table

Result

Rebalancing utility (pdrbal) Cannot be performed.

SELECT statement (searching a target table or
searching a list created from a target table)
INSERT statement (insertion of data into a target
table)
UPDATE statement (updating a target table)
DELETE statement (deleting rows from a target
table)
ASSIGN LIST statement (creating a list from a
target table)

Each of these operations can be performed if either of the
following conditions is satisfied; these operations cannot
be performed in any other case:
• The operation is performed on a partitioned table

whose storage condition is either key range partitioning
or FIX hash partitioning

• The RDAREA on which the operation is performed is
not in check pending status

pdrorg (reorganizing) You may not be able to perform reorganization on a
partitioned table that has been reorganized with flexible
hash partitioning. For details, see the section on the
Database Reorganization Utility (pdrorg) in the manual
HiRDB Version 8 Command Reference.

5. Database Access Using SQL

186

5.10 Improving database access performance

HiRDB provides the following functions that are designed to improve database access
performance:

• Block transfer facility
• Rapid grouping facility
• Functions that use arrays
• Holdable cursor

• SQL optimization

5.10.1 Block transfer facility
The facility for transferring data from a HiRDB server to a HiRDB client in blocks of
any number of rows is called the block transfer facility. The block transfer facility can
improve retrieval performance when it is used for accessing a HiRDB server from a
HiRDB client to retrieve a large volume of data. Although increasing the number of
rows to be transferred can decrease the communications overhead and reduce retrieval
time, it also increases the amount of memory required. Moreover, if the number of
rows to be transferred is too large, resend will occur during communication, which
requires additional time. The larger the number of rows to be transferred, the more
frequently resend occurs, negating the benefit of the block transfer facility. For this
reason, the number of rows specified for block transfer should not be too large. Figure
5-11 provides an overview of the block transfer facility.

5. Database Access Using SQL

187

Figure 5-11: Overview of block transfer facility

Using the block transfer facility
The block transfer facility can be used when the following conditions are
satisfied:
1. A value of 2 or greater is specified for PDBLKF in the client environment

definition or a value of 1 or greater is specified in PDBLKBUFFSIZE.
2. The FETCH statement is specified, except under any of the following

conditions:
 An update uses a cursor
 A search includes a BLOB-type selection expression
 A search includes a BINARY-type selection expression whose definition

length is more than 32,000 bytes, with the PDBINARYBLKF client

5. Database Access Using SQL

188

environment definition set to NO (or omitted)
 A search accepts a result that uses a BLOB locator type or BINARY

locator type variable, and uses a holdable cursor
For details about client environment definition, see the HiRDB Version 8 UAP
Development Guide.

5.10.2 Rapid grouping facility
When the GROUP BY clause of an SQL is used for grouping, sorting is performed
before grouping. The facility for combining this grouping with hashing to achieve
rapid grouping is called the rapid grouping facility. This facility can reduce the amount
of time required for grouping when the number of groups is small and there is a large
number of rows to be grouped.
Specifying the rapid grouping facility

To specify the rapid grouping facility, use an SQL optimization option, such as
one of the following operands:

• pd_optimize_level system definition operand
• PDSQLOPTLVL client environment definition
• CREATE PROCEDURE, CREATE TRIGGER, CREATE TYPE, ALTER

PROCEDURE, ALTER ROUTINE, or ALTER TRIGGER SQL optimization
options

For details about the pd_optimize_level operand, see the HiRDB Version 8 System
Definition. For specification of the PDSQLOPTLVL statement and details of the rapid
grouping facility, see the HiRDB Version 8 UAP Development Guide.

5.10.3 Functions that use arrays
(1) FETCH facility using arrays

When an arrayed embedded variable is specified for the INTO clause of a FETCH
statement, it becomes possible to obtain multiple rows of retrieval results at the same
time. The FETCH facility using arrays can improve retrieval performance when it is
used for accessing a HiRDB system from a HiRDB client to retrieve a large volume of
data. Unlike the block transfer facility, the FETCH facility using arrays requires the fact
that multiple rows of retrieval results will be obtained to be described in a program.
The FETCH facility using arrays is valid only when the embedded variables and
indicator variables specified in the INTO clause are all arrayed. For details about the
FETCH facility using arrays, see the HiRDB Version 8 UAP Development Guide.

(2) INSERT facility using arrays
The INSERT facility using arrays makes it possible to execute a single SQL INSERT
statement to insert multiple rows of data by specifying an array type variable in which

5. Database Access Using SQL

189

the multiple rows of data are set. By using the INSERT facility using arrays, you can
greatly reduce the frequency of communications between the HiRDB client and the
HiRDB server. If you are using HiRDB/Parallel Server, you can further reduce the
frequency of communications among server applications on the HiRDB server as well.
Accordingly, this facility works well for cases in which a HiRDB client accesses a
HiRDB server to quickly insert a large amount of data.
How to use the INSERT facility using arrays

Static execution

With the INSERT statement, specify an embedded variable in the FOR clause,
and change all embedded variables and indicator variables specified in the
VALUES clause to be array type variables. Use the embedded variable
specified in the FOR clause to control the number of rows that are inserted at
one time.

Dynamic execution

Using the following procedure to execute:
1. Using the PREPARE statement, preprocess the INSERT statement

(specify the ? parameter for all values in the VALUES clause that are to
be inserted).

2. In the USING clause of the EXECUTE statement, use an array to specify
the values to be assigned to the ? parameters entered in the preprocessed
INSERT statement, and specify the embedded variable in the BY clause.
Use the embedded variable specified in the BY clause to control the
numbers of rows that are inserted at one time.

For details about the INSERT facility using arrays, see the HiRDB Version 8 UAP
Development Guide.

(3) UPDATE facility using arrays
The UPDATE facility using arrays enables you to execute a single SQL UPDATE
statement to update multiple table columns by specifying an array-type variable in
which multiple data items are set. Because the frequency of communication between
the HiRDB client and the HiRDB server is reduced, this facility works well in cases
where a HiRDB client accesses a HiRDB server to perform high-speed updating of a
large amount of data.
How to use the UPDATE facility using arrays

Static execution

Specify an embedded variable in the FOR clause of the UPDATE statement,
and then change all of the embedded variables and indicator variables
specified in the search conditions so that they are array-type variables. Use
the embedded variable specified in the FOR statement to control the number

5. Database Access Using SQL

190

of data items that are updated at one time.
Dynamic execution

To perform dynamic execution:
1. Use a PREPARE statement to preprocess the UPDATE statement (specify

the ? parameter for the update values or in the search condition).
2. In the USING clause of the EXECUTE statement, use an array to specify

the values to be assigned to the ? parameter entered in the preprocessed
UPDATE statement, and specify an embedded variable in the BY clause.
Use the embedded variable specified in the BY clause to control the
number of data items that are updated at one time.

For details about the UPDATE facility using arrays, see the HiRDB Version 8 UAP
Development Guide.

(4) DELETE facility using arrays
The DELETE facility using arrays enables you to execute a single SQL DELETE
statement to delete multiple rows by specifying an array-type variable in which
multiple data items are set. Because the frequency of communication between HiRDB
client and HiRDB server is reduced, this facility works well in cases where a HiRDB
client accesses a HiRDB server to perform high-speed deletion of a large amount of
data.
How to use the DELETE facility using arrays

Static execution

Specify an embedded variable in the FOR clause of the DELETE statement,
and then change all of the embedded variables and indicator variables
specified in the search conditions so that they are array-type variables. Use
the embedded variable specified in the FOR statement to control the number
of data items that are deleted at one time.

Dynamic execution

To perform dynamic execution:
1. Use the PREPARE statement to preprocess the DELETE statement

(specify the ? parameter in the search conditions).
2. In the USING clause of the EXECUTE statement, use an array to specify

the values to be assigned to the ? parameter entered in the preprocessed
DELETE statement, and specify the embedded variable in the BY clause.
Use the embedded variable specified in the BY clause to control the
number of data items that are deleted at one time.

For details about the DELETE facility using arrays, see the HiRDB Version 8 UAP
Development Guide.

5. Database Access Using SQL

191

5.10.4 Holdable cursor
A cursor that is not to be closed even when a COMMIT statement is executed is called a
holdable cursor. When a holdable cursor is specified, it can be kept open until one of
the following SQL statements is executed:

• CLOSE statement
• DISCONNECT statement (including the DISCONNECT statement that is executed

automatically by the system after an error occurs)
• ROLLBACK statement (including the ROLLBACK statement that is executed

automatically by the system after an error occurs)
A holdable cursor can reduce the incidence of locked resources, because it is possible
that a COMMIT statement will be executed in the middle of a retrieval or in the midst of
updating a large volume of data. Furthermore, because the COMMIT statement can be
executed while the cursor is open, synchronization point dumps can be enabled to
reduce restart time even when a large volume of data must be retrieved or updated. For
details about holdable cursors, see the HiRDB Version 8 UAP Development Guide.
Specifying a holdable cursor

To use a holdable cursor, specify UNTIL DISCONNECT or WITH HOLD in
DECLARE CURSOR.

5.10.5 SQL optimization
Taking into account the database status to determine the most efficient access paths is
called SQL optimization. SQL optimization includes the SQL optimization
specifications, the SQL optimization options, and the SQL extension optimizing
options. Table 5-2 lists and describes the SQL optimization specification facilities,
Table 5-3 lists and describes the SQL optimization option facilities, and Table 5-4 lists
and describes the SQL extension optimizing option facilities. Note, however, that there
are additional SQL optimization facilities that are not described here. Because these
facilities invariably improve performance, they are not provided as options, but are
always used.

5. Database Access Using SQL

192

Table 5-2: SQL optimization specification facilities

Table 5-3: Facilities of SQL optimization options

SQL optimization specification
facility

Description

SQL optimization specification for index
utilization

Enables you to use table searches to specify which index to utilize. It
also enables you to use table searches to specify not to utilize an index
(by using a table scan).
You can use the following SQL methods to specify an SQL
optimization specification for index utilization:
• Table expressions
• DELETE statement
• UPDATE statement, format 1

SQL optimization specification for the
join method

Enables you to specify a join method (nest-loop-join, hash join, or
merge join) for join tables.
You can use the following SQL method to specify an SQL
optimization specification for the join method:
• Table expressions

SQL optimization specification for the
subquery execution method

Enables you to specify whether or not to set hash execution as the
method of executing subqueries in predicates.
You can use the following SQL method to specify the SQL
optimization specification for the subquery execution method:
• Subqueries

SQL optimization
option facility

Explanation

Forced nest-loop-join If an index is defined in the joining condition column, only nest loop join is used for
joining. For details about the nest-loop-joining method, see the HiRDB Version 8 UAP
Development Guide.

Creating multiple SQL
objects

Creates multiple SQL objects in advance and selects the optimal SQL object based on
an embedded variable or ? parameter value during execution. For details about the
creating multiple SQL objects, see the HiRDB Version 8 UAP Development Guide.

Increasing the target
floatable servers
(back-end servers for
fetching data)

Normally, a back-end server not used for fetching data is used as a floating server.
When this optimization method is used, a back-end server used for fetching data is also
used as a floating server. However, because the number of back-end servers that can
be used as floating servers is computed by HiRDB, not all back-end servers can be
used as floating servers. To use all back-end servers, specify both this facility and the
increasing the number of floatable server candidates facility. For details about floating
server allocation, see the HiRDB Version 8 UAP Development Guide.

Prioritized
nest-loop-join

If an index is defined for the joining condition column, nest-loop-join is used for the
joining process with a higher priority. For details about the nest-loop-join method, see
the HiRDB Version 8 Command Reference. For details about the nest-loop-joining
method, see the HiRDB Version 8 UAP Development Guide.

5. Database Access Using SQL

193

Increasing the number
of floatable server
candidates

Normally, the needed number of floating servers is computed by HiRDB from the
available floating servers and allocated. When this optimization method is applied, all
available floating servers are used. However, back-end servers used for fetching data
cannot be used as floating servers. To also use the back-end servers used for fetching
data as floating servers, specify this facility together with the increasing the target
floatable servers (back-end servers for fetching data) facility. For details about floating
server allocation, see the HiRDB Version 8 UAP Development Guide.

Priority of OR multiple
index use

Specify this facility to use a retrieval method that uses OR multiple indexes with a
higher priority. OR multiple index use is a method that evaluates a search condition by
using an index to retrieve each condition from multiple conditions joined with ORs in
a search condition and obtains a sum set of the retrieval results. For details about the
priority of OR multiple index use, see the HiRDB Version 8 UAP Development Guide.

Group processing,
ORDER BY processing,
and DISTINCT set
function processing at
the local back-end
server

Specify this facility to perform group processing, ORDER BY processing, and
DISTINCT set function processing at the back-end server that defines the table (local
back-end server), without having to use a floating server. For details about the group
processing method, see the HiRDB Version 8 UAP Development Guide.

Suppressing use of
AND multiple indexes

Ensures that an access path using AND multiple indexes is never used.
• When the search condition contains multiple conditions linked with AND and

different indexes are defined for the individual columns (e.g., SELECT ROW FROM
T1 WHERE C1=100 AND C2=200), use of AND multiple indexes means that
individual indexes are used to create work tables for the rows that satisfy the
condition and the product set of these rows is obtained. For details about the
suppressing use of AND multiple indexes, see the HiRDB Version 8 UAP
Development Guide.

Rapid grouping facility Uses hashing to rapidly process the grouping specified by the GROUP BY clause of an
SQL.
For details about the grouping method, see the HiRDB Version 8 UAP Development
Guide.

Limiting the target
floatable servers
(back-end servers for
fetching data)

Normally, a back-end server not used for fetching data is used as a floating server.
When this optimization method is used, only those back-end servers used for fetching
data are used as floating servers. For details about floating server allocation, see the
HiRDB Version 8 UAP Development Guide.

SQL optimization
option facility

Explanation

5. Database Access Using SQL

194

Separating data
collecting servers

If increasing the target floatable servers (back-end servers for fetching data) and
limiting the target floatable servers (back-end servers for fetching data) are both
specified, they will function as the facility for separating data collecting servers. If the
facility for separating data collecting servers is applied, a back-end server other than
the data transfer source is allocated for data collection to an SQL that needs to collect
data from multiple back-end servers into a single back-end server. Back-end servers
other than those used for collecting data (including back-end servers for fetching data)
are allocated as front-end servers for other purposes. For details about the floating
server allocation method, see the HiRDB Version 8 UAP Development Guide.

Suppressing index use
(forced table scan)

Normally, HiRDB determines whether indexes should be used. When this
optimization method is applied, methods that do not use indexes are given higher
priority. However, index use cannot be suppressed in the following cases: joining
results in a nest-loop-join, a structured repetition predicate is specified as the search
condition, or a condition includes the index type plug-in dedicated facility. For details
about the suppressing index use, see the HiRDB Version 8 UAP Development Guide.

Forcing use of multiple
indexes

Specify this optimization method to retrieve tables by forcibly selecting use of AND
multiple indexes. When this optimization method is not specified and multiple
conditions linked with AND have been specified, two indexes at most are used even if
use of AND multiple indexes is selected. The number of indexes to be used will vary
slightly depending on the table definition, index definition, and search condition.
When this optimization is specified, all conditions that can narrow the search range
using indexes will be used. When AND multiple indexes are used, search candidates
can be narrowed down to a certain degree using these indexes. Moreover, AND
multiple indexes are effective when there is little overlap in the product set. For details
about the forcing use of multiple indexes, see the HiRDB Version 8 UAP Development
Guide.

Suppressing creation of
update-SQL work tables

If this optimization is specified when index key value no locking is being applied,
HiRDB does not create work tables for internal processing even if an index is used for
a retrieval with the FOR UPDATE clause specified, an UPDATE statement, or a DELETE
statement. Therefore, SQL statements can be processed at high speed. Work tables will
be created if the index key value no-locking option is not being applied. Whether or
not indexes are being used can be determined from the access path display utility. For
details about the suppressing creation of update-SQL work tables, see the HiRDB
Version 8 UAP Development Guide.

Derivation of rapid
search conditions

If this optimization facility is specified, rapid search conditions are derived. Rapid
search conditions refer to conditions ranging from search conditions in the WHERE
clause and ON search conditions in the FROM clause, to new conditions derived from
CNF conversions or condition transitions. Deriving rapid search conditions improves
search performance because it allows you to narrow down the rows that are searched
at an early stage. However, generating and executing rapid search conditions takes
time, or unexpected access paths may be used. In general, we recommend that you
avoid specifying this optimization option. Instead, specify rapid search conditions
directly in an SQL statement. For details about deriving rapid search conditions, see
the HiRDB Version 8 UAP Development Guide.

SQL optimization
option facility

Explanation

5. Database Access Using SQL

195

Table 5-4: Facilities of SQL extension optimizing options

Application of scalar
operation-included key
conditions

If this optimization facility is specified, within the limitations that specify scalar
operations, if all columns included in the scalar operation are index configuration
columns, searching is narrowed by evaluating these columns by one index key value
at a time. These conditions are evaluated as key conditions. For details about applying
key conditions included in scalar operations, see the HiRDB Version 8 UAP
Development Guide.

Facility for batch
acquisition from
functions provided by
plug-ins

If you specify a function provided by a plug-in as a search condition and HiRDB
performs the search using a plug-in index, HiRDB normally acquires the results (row
location information and the passed value if needed) returned from the function
provided by the plug-in one row at a time. By applying this optimization, HiRDB can
acquire in a batch multiple rows of results returned from the function provided by the
plug-in, which reduces the number of times that HiRDB has to call the function. For
details about the facility for batch acquisition from functions provided by plug-ins, see
the HiRDB Version 8 UAP Development Guide.

SQL extension
optimizing option

facility

Explanation

Application of
optimizing mode 2
based on cost

Optimizes using optimizing mode 2 based on cost. For details about optimizing mode
2 based on cost, see the HiRDB Version 8 UAP Development Guide.

Hash-execution of a
hash join or a subquery

Optimizes by applying hash join for a joined retrieval. If the retrieval is accompanied
by a subquery, the subquery is processed by hashing. Whether or not hash-execution
of a hash join or a subquery is to be applied should be decided by taking into
consideration the join method and external reference. For details about join methods
and external reference, see the HiRDB Version 8 UAP Development Guide.

Suppression of foreign
server execution of SQL
statements that include a
join

Suppresses creation of an SQL statement containing a join when an SQL statement
that accesses a foreign table would be created from a query containing an access to a
foreign table. Instead of creating an SQL statement that includes a join, this facility
creates an SQL statement that retrieves the data from the foreign table that would have
been inserted by the join. Note that the join processing is performed by HiRDB. For
details about suppression of foreign server execution of SQL statements that include a
join, see HiRDB External Data Access Version 8.

Forced foreign server
execution of SQL
statements that include a
direct product

Attempts to create an SQL statement that includes a direct product when an SQL
statement that accesses a foreign table is created from a query containing an access to
a foreign table. For details about forced foreign server execution of SQL statements
that include a direct product, see HiRDB External Data Access Version 8.

SQL optimization
option facility

Explanation

5. Database Access Using SQL

196

Setting SQL optimization options and SQL extension optimizing options
The following methods can be used to specify SQL optimization options and SQL
extension optimizing options:
1. Specifying the pd_optimize_level or

pd_additional_optimize_level operand of the system common
definition or front-end server definition

2. Specifying PDSQLOPTLVL and PDADDITIONALOPTLVL in the client
environment definition

3. Specifying an SQL optimization option or SQL extension optimizing option
in an SQL statement of a stored routine or trigger.

If more than one of these methods is specified concurrently, the order of
precedence is 3, 2, 1. For details about SQL optimization options and SQL
extension optimizing options, see the HiRDB Version 8 UAP Development Guide.
If you also specify an SQL optimization specification at the same time, the SQL
optimization specification has precedence over any SQL optimization option or
SQL extension optimizing option that has been specified. For details about the
SQL optimization specifications, see the manual HiRDB Version 8 SQL
Reference.

Suppression of
unconditionally
generated derived rapid
search conditions that
can be executed on
foreign servers

Enables you to suppress unconditionally derived rapid search conditions that can be
executed on a foreign server. Generation and execution of derived rapid search
conditions may take time, or an unexpected access path may be used. Specify this
optimization facility for such cases. Note that, if derivation of rapid search conditions
is specified as an SQL optimization option, this optimization facility is ignored, even
if specified. For details about deriving rapid search conditions, see the HiRDB Version
8 UAP Development Guide.

SQL extension
optimizing option

facility

Explanation

5. Database Access Using SQL

197

5.11 Narrowed search

Narrowed search is the process of retrieving records by gradually narrowing the search
processing. In a narrowed search, the ASSIGN LIST statement generates a list, which
refers to either saved data or a set of saved data with a temporary name (list name). The
list is created during the process so that information can be retrieved by gradually
narrowing the search for data by specifying conditions until an appropriate number of
data items can be identified.
If an existing list created using known identical or substantially similar conditions is
available, processing performance can be improved by using it. When multiple
conditions are specified, a search can be performed by combining multiple lists. For
details about narrowed searches, see the HiRDB Version 8 UAP Development Guide.
Figure 5-12 shows an example of a search using a list.

5. Database Access Using SQL

198

Figure 5-12: Example of a search using a list

5. Database Access Using SQL

199

Preparations for performing a narrowed search
Following are the prerequisites for conducting narrowed searches:
Specifications in a system definition

It is necessary that the following two operands related to narrowed searches
be specified in the system common definition:

• pd_max_list_users: Specifies the maximum number of users who
are to be permitted to create lists.

• pd_max_list_count: Specifies the maximum number of lists that
one user will be permitted to create.

For details about the narrowed search operands in the system common
definition, see the HiRDB Version 8 System Definition.

Creating a list RDAREA
A list RDAREA can be created with either the database initialization utility
(pdinit) or the database structure modification utility (pdmod). For details
about list RDAREAs, see the HiRDB Version 8 Installation and Design
Guide.

5. Database Access Using SQL

200

5.12 Accessing databases using DB access products

You can also use DB access products to access your databases. The following DB
access products are discussed in this section:

• ODBC Driver
• HiRDB OLE DB Provider
• HiRDB.NET Data Provider
• JDBC Driver

• SQLJ
These DB access products are included in HiRDB/Run Time and HiRDB/Developer's
Kit.
For details about DB access products, see the HiRDB Version 8 UAP Development
Guide.

5.12.1 ODBC Driver
To access HiRDB from an ODBC-compatible application program, you use ODBC
Driver. ODBC-compatible application programs include Microsoft Access, Microsoft
Excel, and others.
ODBC Driver is also used when a UAP that uses ODBC functions accesses HiRDB.
Note that the only ODBC functions that can be used are ones provided by HiRDB.

5.12.2 HiRDB OLE DB Provider
To access HiRDB from an OLE DB-compatible application program, you use HiRDB
OLE DB Provider.
As with ODBC, OLE DB is an API designed for accessing a wide range of data
sources. Interfaces suitable for accessing non-SQL data sources are defined as well.

5.12.3 HiRDB.NET Data Provider
To access HiRDB using ADO.NET, you use HiRDB.NET Data Provider. HiRDB.NET
Data Provider complies with the ADO.NET specifications.
HiRDB.NET Data Provider bundles a set of common basic interfaces that are provided
in the System.Data space of .Net Framework. In addition, it provides as extensions the
INSERT facility using arrays and access to repetition columns.

5.12.4 JDBC Driver
To access HiRDB from a program written in Java, you use JDBC Driver. You also need
JDBC Driver when you use JBuilder to develop Java stored procedures and Java stored

5. Database Access Using SQL

201

functions.

5.12.5 SQLJ
SQLJ is a language specification for using Java to write and execute static SQL
statements as embedded SQL statements. SQLJ is made up of SQLJ Translator and
SQLJ runtime libraries.
SQLJ Translator interprets an SQLJ source program, and generates a profile in which
the Java source file and SQL information are stored. The user then runs a Java compiler
to compile the Java source file and create a class file (executable file).
The SQLJ runtime libraries are used when the generated profile and class file are
executed.

203

Chapter

6. HiRDB Architecture

This chapter explains the HiRDB architecture.
This chapter contains the following sections:

6.1 HiRDB environment setup
6.2 HiRDB file system areas
6.3 System files
6.4 Work table files
6.5 HiRDB system definitions
6.6 HiRDB startup and termination
6.7 Delayed rerun
6.8 Database access processing method
6.9 Transaction control
6.10 Locking
6.11 Operation without collecting a database update log

6. HiRDB Architecture

204

6.1 HiRDB environment setup

Hitachi provides tools designed to assist you in setting up a HiRDB environment. It is
highly recommend that you use one of these tools when you set up your HiRDB
environment:

• Simple setup tool
• Automatic generation from a batch file (SPsetup.bat)

Hint:

In general, you should use the simple setup tool to set up your HiRDB
environment.

Table 6-1 shows the advantages and disadvantages of the various environment setup
methods. For details about each of these setup methods, see the HiRDB Version 8
Installation and Design Guide.

Table 6-1: Advantages and disadvantages of the environment setup methods

Environment
setup method

Overview Advantage Disadvantage

Simple setup tool You enter HiRDB
environment setup
information as instructed on
windows that are displayed.
The HiRDB environment is
then set up based on the
information you provide.

This is the easiest method to
use to set up a HiRDB
environment. The simple
setup tool assures you of
being able to start HiRDB
operations. It also allows
you to change values
already specified in the
system definition.

There is a limited range of
HiRDB system
configurations that can be
set up with the simple
setup tool.

Commands1 You use HiRDB commands
to set up a HiRDB
environment.

This method gives you
complete flexibility to set
up a HiRDB system
configuration in any way
you wish.

A certain amount of
knowledge of HiRDB is
required in order to use
this method. Basically, an
understanding of the
facilities and settings
described in this manual is
required. This
environment setup
method is more difficult
than the other methods.

Batch file
(SPsetup.bat)2

You execute a batch file to set
up a HiRDB environment.

This is an easier method for
setting up a HiRDB
environment than the
commands method.

There is a limited range of
HiRDB system
configurations that can be
set up with a batch file.

6. HiRDB Architecture

205

1
Before you attempt to set up an actual system for production use, you should try
performing a simple installation. Once you become familiar with the procedures
for configuring a HiRDB system by using a sample file to set up a test system,
you should be ready to set up a production-use system that is more appropriate to
your needs.
For details about how to perform a simple installation, see the HiRDB Version 8
Installation and Design Guide.

2
The batch file method can be used only for a HiRDB/Single Server system. For
details about how to set up a HiRDB/Parallel Server environment, see
%PDDIR%\HiRDEF\readme.txt.

Note:

• You cannot use the simple setup tool to set up a plug-in environment.
• A batch file automatically configures HiRDB environment setting

information. The HiRDB system administrator can then make changes to
the values to configure a more appropriate environment.

6. HiRDB Architecture

206

6.2 HiRDB file system areas

A special file in HiRDB that stores various types of HiRDB information, such as the
information needed to restore the system status in the event of a table or index error, is
called a HiRDB file. An area in which HiRDB files are created is called a HiRDB file
system area. A HiRDB file system area must be provided before the special HiRDB
files that constitute the system files and RDAREAs are created.

(1) Relationship between a HiRDB file system area and a file system area
provided by the operating system

A disk used by the operating system for performing I/O operations is divided into
contiguous areas called partitions. A partition can be used as a file system area
provided by the operating system or as a HiRDB file system area. Figure 6-1 shows
the relationship between HiRDB file system areas and file system areas provided by
the OS.

Figure 6-1: Relationship between HiRDB file system areas and file system
areas provided by the OS

(2) Files used for HiRDB file system areas
The HiRDB file system areas are created in Windows partitions.

6. HiRDB Architecture

207

(a) Normal Windows files
Create a HiRDB file system area by creating files in a normal partition provided by
Windows. To do this, use the pdfmkfs command.

(b) Direct disk access (raw I/O)
You can use not only normal partitions but also Windows' direct disk access (raw I/O)
to create HiRDB file system areas. The latter uses the raw I/O facility. The raw I/O
facility lets you access partitions and logical drives in the same manner as files.
However, some of the HiRDB file system areas cannot be created with raw I/O. To use
the raw I/O facility, you need to provide unformatted partitions. In Windows, you can
create partitions from the window displayed by choosing Computer Management
and then Disk Management.
Note

• Do not use a partition that consists of multiple partitions (such as a volume
set or a stripe set).

• You need to assign a drive letter to each partition.
• The raw I/O facility supports only fixed disks with a sector length of 512

bytes as drives.
(3) HiRDB file system area creation units

We recommend that you create a separate HiRDB file system area for each of the items
listed and described in Table 6-2. For details about how to design the various HiRDB
file system areas, see the HiRDB Version 8 Installation and Design Guide.

Table 6-2: Type of HiRDB file system area

Type of HiRDB
file system area

Option1 Description

RDAREA DB HiRDB file system area in which RDAREAs (other than list
RDAREAs) are stored. This area is always needed.

Shared RDAREA SDB HiRDB file system area in which shared RDAREAs are created. This
area is needed if you use shared RDAREAs.

System file SYS HiRDB file system area in which system log files, synchronization
point dump files, and status files are stored. This area is always needed.

Audit trail file HiRDB file system area in which audit trail files are created. This area
is needed to use the security audit facility.

Work table file2 WORK HiRDB file system area in which work table files are stored. This area
is always needed.

6. HiRDB Architecture

208

1 The value of the -k option specification that is specified when you create a HiRDB
file system area with the pdfmkfs command.
2 Raw I/O cannot be used on a HiRDB file system area for work table files. Create this
area in a normal partition.
3 You cannot create a list RDAREA in a HiRDB file system area that uses raw I/O.

(4) Creating a HiRDB file system area
The pdfmkfs command is used to create a HiRDB file system area.

Reference note:

If you use either of the following environment setup support tools the first time
you install HiRDB, a HiRDB file system area will be created based on the
information you enter:

• Simple setup tool
• Batch file (SPsetup.bat)

For details about designing and creating HiRDB file system areas, see the HiRDB
Version 8 Installation and Design Guide.

(5) Maximum size of HiRDB file system areas
Table 6-3 shows the maximum size of a HiRDB file system area.

Table 6-3: Maximum size of a HiRDB file system area

Utility UTL HiRDB file system area in which files used by utilities (backup files,
unload data files, unload log files, index information files, or
differential backup management files) are created.

NUTL HiRDB file system area in which files used by utilities are created.
It differs from UTL in that the Windows cache is not used regardless of
the value specified for the pd_ntfs_cache_disable operand.

List RDAREA3 WORK HiRDB file system area in which list RDAREAs are stored. This area is
needed to perform narrowed searches.

Condition Maximum size of HiRDB file system
area

pd_large_file_use=N specified (default) 2,047 MB

pd_large_file_use=Y specified 1,048,575 MB

Type of HiRDB
file system area

Option1 Description

6. HiRDB Architecture

209

6.3 System files

A file that stores information that is needed in order to recover the system status after
an error is called a system file. System files are referred to in general as follows:

• System log files
• Synchronization point dump files
• Status files

6.3.1 System log files
A file in which system log information is stored is called a system log file. System log
refers to information on the history of database updating, which is commonly called a
log (or journal in mainframe terminology). HiRDB collects system log information in
system log files for use:

• By HiRDB for recovering the database after HiRDB or a UAP has terminated
abnormally.

• By HiRDB administrators as information that is input when using the pdrstr
command to recover a database.

• By the HiRDB administrator as the input information for acquiring statistical
information.

The HiRDB administrator should create system log files as a safeguard against
failures, as well as for acquiring statistical information.

(1) Organization of system log files
HiRDB operates with logical units of system log files called file groups. A file group
consists of either one or two system log files. A configuration of two system log files
is called a duplexed system log file. The respective system log files are distinguished
by referring to them as file A and file B. When duplexed system log files are used,
HiRDB acquires the same contents into both log files. Thus, if one of the files should
fail, the other file can be used, thus maintaining system reliability. Figure 6-2 shows
the organization of system log files.

6. HiRDB Architecture

210

Figure 6-2: Organization of system log files

(2) System log file creation
The pdloginit command is used to create system log files. Additionally, you specify
the following HiRDB system definition operands to create an environment in which
the system log files can be used:

• pdlogadfg operand (specifies the file group name of the system log files)
• pdlogadpf operand (specifies the system log file names that comprise the file

group)
For details about designing and creating system log files, see the HiRDB Version 8
Installation and Design Guide. For details about using the system log files, see the
HiRDB Version 8 System Operation Guide.

Reference note:

If you use either of the following environment setup support tools when you
install HiRDB for the first time, system log files will be created based on the
information you enter (the pdlogadfg and pdlogadpf operands will also be
configured):

• Simple setup tool
• Batch file (SPsetup.bat)

6.3.2 Synchronization point dump files
If system logs are the only system files used to recover HiRDB when it has terminated
abnormally, recovery processing must employ every system log from the point in time
that HiRDB was last started. For this reason, recovering the system from system logs
alone may take a significant amount of time. To mitigate this issue, points (called
synchronization points) are established at fixed time intervals while HiRDB is running,
and management information (synchronization point dumps) needed for recovery
operations is saved at these points. This eliminates the need for system logs prior to the
last synchronization point, which shortens the system recovery time.
At each synchronization point, HiRDB incorporates into the database the details of all

6. HiRDB Architecture

211

the database updates that have been made since the last synchronization point or since
HiRDB was started. The HiRDB administrator should create synchronization point
dump files as a safeguard against failures.

(1) Organization of synchronization point dump files
HiRDB operates with logical units of synchronization point dump files called file
groups. A file group consists of either one or two synchronization point dump files. A
configuration of two synchronization point dump files is called a duplexed
synchronization point dump file. The respective synchronization point dump files are
distinguished by referring to them as file A and file B. When synchronization point
dump files are duplexed, HiRDB collects and saves the same synchronization point
dump information into both files. This enhances system reliability because, even if an
error occurs in one of the files, the other file is still available. Figure 6-3 shows the
organization of synchronization point dump files.

Figure 6-3: Organization of synchronization point dump files

(2) Number of guaranteed valid generations
If the most recent synchronization point dump file that has been generated cannot be
read because an error has occurred in the file, HiRDB attempts to read the file that was
created one generation earlier. If HiRDB cannot read the file that was created one
generation earlier, it attempts to read the file that was created one generation previous
to that one. In this way, HiRDB continues attempting to read previous generations of
files if the read attempt fails.
The number of guaranteed valid generations refers to the number of previous
generations of synchronization point dump files for which overwriting is prohibited.
For example, if the number of guaranteed valid generations is 2, two generations of
synchronization point dump files (the most recent generation and one generation
previous to that one) cannot be overwritten. Thus, increasing the number of guaranteed
valid generations enhances system reliability because, even if an error occurs in a
synchronization point dump file, synchronization point dump files of the number set
in the number of guaranteed valid generations will always be available.
Note that the number of synchronization point dump files you need is the number of
guaranteed valid generations + 1.

6. HiRDB Architecture

212

(3) Synchronization point dump file creation
The pdloginit command is used to create synchronization point dump files.
Additionally, you specify the following HiRDB system definition operands to create
an environment in which the synchronization point dump files can be used:

• pdlogadfg operand (specifies the file group name of the synchronization point
dump files)

• pdlogadpf operand (specifies the synchronization point dump file names that
comprises the file group)

For details about designing and creating synchronization point dump files, see the
HiRDB Version 8 Installation and Design Guide. For details about using
synchronization point dump files, see the HiRDB Version 8 System Operation Guide.

Reference note:

If you use either of the following environment setup support tools when you
install HiRDB for the first time, synchronization point dump files will be
created based on the information you enter (the pdlogadfg and pdlogadpf
operands will also be configured):

• Simple setup tool
• Batch file (SPsetup.bat)

6.3.3 Status files
A file that stores system status information required by HiRDB for restarting the
system is called a status file. The two types of status files are unit status files that store
restart information for a unit and server status files that store restart information for a
server. The HiRDB administrator should create status files for use in restarting
HiRDB.

(1) Organization of status files
HiRDB operates with logical units of status files called logical files. A single logical
file consists of two status files. Status files are duplexed in this manner, and the
respective status files are distinguished by referring to them as file A and file B. HiRDB
acquires the same system status information into both files, so that if one of the files
fails, the other file can be used, thus maintaining system reliability. Figure 6-4 shows
the organization of the status files.

6. HiRDB Architecture

213

Figure 6-4: Organization of status files

(2) Unit status file creation
The pdstsinit command is used to create unit status files. Additionally, you specify
the pd_syssts_file_name operand of the unit control information definition to
create an environment in which unit status files can be used.
The logical file name of the status files and the names of the status files that belong to
the logical file are specified in the pd_syssts_file_name operand.
For details about designing and creating unit status files, see the HiRDB Version 8
Installation and Design Guide. For details about using unit status files, see the HiRDB
Version 8 System Operation Guide.

Reference note:

If you use either of the following environment setup support tools when you
install HiRDB for the first time, unit status files will be created based on the
information you enter (the pd_syssts_file_name operand will also be
configured):

• Simple setup tool
• Batch file (SPsetup.bat)

(3) Server status file creation
The pdstsinit command is used to create server status files. Additionally, you
specify the pd_sts_file_name operand of the server definition to create an
environment in which unit status files can be used. The logical file name of the status
files and the names of the status files that belongs to the logical file are specified in the
pd_sts_file_name operand.
For details about designing and creating server status files, see the HiRDB Version 8
Installation and Design Guide. For details about using server status files, see the
HiRDB Version 8 System Operation Guide.

6. HiRDB Architecture

214

Reference note:

If you use either of the following environment setup support tools when you
install HiRDB for the first time, server status files will be created based on the
information you enter (the pd_sts_file_name operand will also be
configured):

• Simple setup tool
• Batch file (SPsetup.bat)

6.3.4 System file components
Table 6-4 shows the components that comprise the system files.

Table 6-4: System file components

Y: Always duplexed
O: Duplexing optional

(a) Configuration of system files in a HiRDB/Single Server
Figure 6-5 shows the configuration of the system files in a HiRDB/Single Server.

Type of system file Creation unit Number Duplexed?

HiRDB/
Single
Server

System log file Needed for all units. 2 to 200 groups O

Synchronization
point dump file

2 to 60 groups O

Server status file 1 to 7 files number
duplexed

Y

Unit status file 1 to 7 files number
duplexed

Y

HiRDB/
Parallel
Server

System log file Needed on all servers other
than the system manager.

2 to 200 groups per
server

O

Synchronization
point dump file

Needed on all servers other
than the system manager.

2 to 60 groups per server O

Server status file Needed on all servers other
than the system manager.

1 to 7 files number
duplexed per server

Y

Unit status file Needed for all units. 1 to 7 files number
duplexed per server

Y

6. HiRDB Architecture

215

Figure 6-5: Configuration of system files in a HiRDB/Single Server

(b) Configuration of system files in a HiRDB/Parallel Server
Figure 6-6 shows the configuration of the system files in a HiRDB/Parallel Server.

6. HiRDB Architecture

216

Figure 6-6: Configuration of system files in a HiRDB/Parallel Server

6. HiRDB Architecture

217

6.4 Work table files

A file that stores temporary information needed for executing an SQL is called a work
table file. Work table files are created automatically by HiRDB. The HiRDB
administrator must create HiRDB file system areas for the work table files.

(1) SQL statements and operations that require a work table file
(a) SQL statements that require a work table file

A work table file is used when multiple tables are joined by a SELECT statement for
retrieval or during execution of certain SQL processing, such as CREATE INDEX.

The following types of SQL processing require work table files:
1. Retrieval specifying the UNION [ALL] or EXCEPT [ALL] clause
2. Specification in an UPDATE or DELETE statement of a retrieval condition based

on a column for which an index is defined
3. DROP SCHEMA
4. DROP TABLE
5. DROP INDEX
6. Revocation with REVOKE statement of access privileges
7. CREATE INDEX
8. Creation with ASSIGN LIST statement of a list from a base table
9. Specification in a SELECT statement of any of the following:

• Retrieval by joining multiple tables
• Specification of ORDER BY clause for a column for which an index is not defined
• Specification of ORDER BY clause for a row-partitioned table
• Specification of a value expression containing a set function in a selection

expression*

• Specification of a value expression containing the COUNT(*) OVER() window
function in a selection expression

• Specification of GROUP BY clause
• Specification of DISTINCT clause
• Specification of a retrieval condition based on multiple columns for which an

index is defined

6. HiRDB Architecture

218

• Specification of a retrieval condition for a column for which a repetition column
index is defined

• Specification of the facility for batch acquisition from functions provided by
plug-ins for the SQL optimization option, and specification of and searching for
functions provided by plug-ins that use a plug-index for a retrieval condition.

• Specification of a retrieval condition based on a column for which an index is
defined, and either a FOR UPDATE clause is specified or there is an update using
this cursor

• Specification of a FOR READ ONLY clause
• Specification of a subquery of a quantified predicate
• Specification of a subquery of the IN predicate
• Creation of an internally derived table in a retrieval from a view table or a retrieval

in which a WITH clause is specified
* Applies to a HiRDB/Parallel Server only; not applicable to a HiRDB/Single Server.

(b) Operations that require a work table file
The following operations require a work table file:

• Batch creation of an index
• Re-creation of an index
• Reorganization of an index
• Execution of the rebalancing utility

(2) Organization of work table files
Work table files are required at the following servers:

• Single servers
• Dictionary servers
• Back-end servers

(3) Creating a HiRDB file system area for work table files
The pdfmkfs command is used to create a HiRDB file system area for work table
files. Additionally, you specify the pdwork operand of the server definition to create
an environment in which a HiRDB file system area for work table files can be created.
The name of the HiRDB file system area for work tables is specified in the pdwork
operand.
For details (size, etc.) about designing and creating work table files, see the HiRDB
Version 8 Installation and Design Guide.

6. HiRDB Architecture

219

Reference note:

If you use either of the following environment setup support tools when you
install HiRDB for the first time, a HiRDB file system area for work table files
will be created based on the information you enter (the pdwork operand will
also be configured):

• Simple setup tool
• Batch file (SPsetup.bat)

6. HiRDB Architecture

220

6.5 HiRDB system definitions

The operating environment for HiRDB is set by specifications in the HiRDB system
definitions. The files in which the HiRDB system definitions are stored are called
HiRDB system definition files.

6.5.1 HiRDB system definitions for a HiRDB/Single Server
Table 6-5 lists the types of HiRDB system definitions and the files in which the HiRDB
system definitions are stored. Figure 6-7 shows an example of a configuration of
HiRDB system definition files.

Table 6-5: HiRDB system definitions (HiRDB/Single Server)

HiRDB system
definition type

Storage file name Description

System common definition %PDDIR%\conf\pdsys Defines the configuration of HiRDB and
common information. This file is required for
each HiRDB/Single Server.

Unit control information
definition

%PDDIR%\conf\pdutsys Defines unit control information. This file is
required for each unit.

Server common definition %PDDIR%\conf\pdsvrc Defines default values for single server definition
operands. This file is optional.

Single server definition %PDDIR%\conf\server-name Defines the execution environment for a single
server. This file is required for each single server.

UAP environment
definition

%PDDIR%\conf\pduapenv\
any-name

Defines the UAP execution environment. This
file is optional. You can create a maximum of
4096 UAP environment definitions.

SQL reserved word
definition

%PDDIR%\conf\pdrsvwd\a
ny-name

Defines SQL reserved words. This file is required
to use the SQL reserved word deletion facility.
For details about the SQL reserved word deletion
facility, see the HiRDB Version 8 UAP
Development Guide.

6. HiRDB Architecture

221

Figure 6-7: Example configuration of HiRDB system definition files (HiRDB/
Single Server)

6.5.2 HiRDB system definitions for a HiRDB/Parallel Server
Table 6-6 lists the organization of HiRDB system definitions. Figure 6-8 shows a
configuration example of HiRDB system definition files. Figure 6-9 shows a
configuration example of HiRDB system definition files when the HiRDB External
Data Access facility is used.

Table 6-6: HiRDB system definitions (HiRDB/Parallel Server)

HiRDB system definition
type

Storage file name Description

System common definition %PDDIR%\conf\pdsys Defines the configuration of HiRDB and
common information. This file is required
for each unit. All units must have the
same system common definition.

Unit control information
definition

%PDDIR%\conf\pdutsys Defines unit control information. This file
is required for each unit.

Server common definition %PDDIR%\conf\pdsvrc Defines default values for individual
server definition operands. This file is
optional.

Front-end server definition %PDDIR%\conf\server-name Defines the execution environment for a
front-end server. This file is required for
each front-end server.

Dictionary server definition %PDDIR%\conf\server-name Defines the execution environment for a
dictionary server. This file is required for
each dictionary server.

6. HiRDB Architecture

222

Back-end server definition %PDDIR%\conf\server-name Defines the execution environment for a
back-end server. This file is required for
each backend server.

UAP environment definition %PDDIR%\conf\pduapenv\an
y-name

Defines the execution environment for
UAPs. This file is optional. You must
create UAP environment definitions in a
unit that contains a front-end server. If
you have multiple front-end servers,
define these definitions on the front-end
server to which you wish to apply the
UAP environment definitions. You can
create a maximum of 4096 UAP
environment definitions.

SQL reserved word definition %PDDIR%\conf\pdrsvwd\any
-name

Defines SQL reserved words. This file is
required to use the SQL reserved word
deletion facility. For details about the
SQL reserved word deletion facility, see
the HiRDB Version 8 UAP Development
Guide.

Foreign server information
definition

%PDDIR%\conf\foreign-server-
name

Defines the connection environment for
foreign servers. You must define these
definitions in a unit that contains a
back-end server for connecting to foreign
servers. This file is needed when the
HiRDB External Data Access facility is
being used.

Hub optimization information
definition

%PDDIR%\conf\any-name Defines optimization information for the
HiRDB External Data Access facility.
This file is needed when the HiRDB
External Data Access facility is being
used. Identical hub optimization
information definitions must be defined
for each unit.

HiRDB system definition
type

Storage file name Description

6. HiRDB Architecture

223

Figure 6-8: Example configuration of HiRDB system definition files (HiRDB/
Parallel Server)

6. HiRDB Architecture

224

Figure 6-9: Example configuration of HiRDB system definition files (when the
HiRDB External Data Access facility is being used)

Explanation
• A foreign server information definition file is created in a unit that contains

a back-end server for connecting to foreign servers.
• Because this is a multiple front-end server environment, a hub optimization

6. HiRDB Architecture

225

information definition file is created for each unit.

6.5.3 HiRDB system definition file creation
During system building, the HiRDB administrator uses one of the following methods
to create HiRDB system definition files:
Batch file (SPsetup.bat)

Executing the batch file creates HiRDB system definition files automatically
under %PDDIR%\conf.

Windows editor
HiRDB system definition files can be created under %PDDIR%\conf with a
Windows editor such as Notepad and specification of required operands in the
HiRDB system definitions.

For details about creating HiRDB system definition files, see the HiRDB Version 8
Installation and Design Guide. For details about the operands of the HiRDB system
definitions, see the HiRDB Version 8 System Definition.
After creation of a HiRDB system definition

You can use the pdconfchk command to check the operands of a HiRDB system
definition. This command checks the integrity of the specifications of the
definition operands that are required to start HiRDB. We recommend that you
execute the pdconfchk command after a HiRDB system definition is created
(especially when a Windows editor such as Notepad was used to create the
HiRDB system definition).

6.5.4 System reconfiguration command (pdchgconf command)
With the exception of UAP environment definitions, normally you must stop HiRDB
before you can change any HiRDB system definitions. By using the system
reconfiguration command, you can change HiRDB system definitions while HiRDB is
running. This allows you to perform the following operations while HiRDB is running:

• Adding, removing, and moving units
• Adding, removing, and moving servers
• Adding system files
• Adding, removing, and modifying system buffers

The system reconfiguration command is extremely useful for systems that are running
continuously 24 hours a day. For details about how to use the system reconfiguration
command, see the HiRDB Version 8 System Operation Guide.
Note that you must have HiRDB Advanced High Availability to use the system
reconfiguration command.

6. HiRDB Architecture

226

6.6 HiRDB startup and termination

This section explains HiRDB startup and termination. To start HiRDB, you execute the
pdstart command; to terminate HiRDB, you execute the pdstop command. In
addition, there is a method (called automatic startup) that enables HiRDB to start
automatically when the operating system starts, as well as a method for HiRDB/
Parallel Servers (called reduced activation) that enables operable units to start, even if
there are units that cannot start.

6.6.1 Startup and termination modes
Starting HiRDB is governed by the startup mode; closing HiRDB is governed by the
termination mode. This section explains the startup and termination modes. For details
about the HiRDB startup and termination procedures, see the HiRDB Version 8 System
Operation Guide.

(1) Startup modes
Table 6-7 shows the HiRDB startup modes.

Table 6-7: HiRDB startup modes

Startup
mode

Explanation Input command

Startup on a
system basis

Startup on a
unit basis1

Startup on a
server basis1

Normal
startup

This startup mode is used when the
previous termination mode was
normal termination. Information
from the previous operation is not
inherited.

pdstart pdstart -u
pdstart -x

pdstart -s

Restart This startup mode is used when the
previous termination mode was one
of those listed as follows;
information from the previous
operation is inherited:
• Planned termination
• Abnormal termination
• Forced termination

N

6. HiRDB Architecture

227

N: Not usable (this startup method cannot be executed).
1 In the case of a HiRDB/Parallel Server, startup and termination can be executed on a
unit basis or on a server basis.
2 When HiRDB is started forcibly, all RDAREAs (including system RDAREAs) that
were updated since the last time HiRDB was started will have been destroyed. Thus,
when forced startup is used, the destroyed RDAREAs must be recovered with the
database recovery utility (pdrstr). If the RDAREAs are not recovered, correct
operation of HiRDB cannot be guaranteed. These RDAREAs can be recovered using
the system log only. See the KFPS01262-I message that was output the previous time
the pdstart command was used, and use as the input information to the database
recover utility (pdrstr) the log file group name that was used at that time, which is
shown in the message, as well as the system log that has been generated since then.

(2) Termination modes
Table 6-8 shows the HiRDB termination modes.

Forced
startup2

This startup mode is used to start
HiRDB forcibly when it cannot be
restarted. Information from the
previous operation is not inherited
during this process, so the database
cannot be recovered; the HiRDB
administrator must recover the
database.

pdstart
dbdestroy

pdstart -u
dbdestroy
pdstart -x
dbdestroy

N

Startup
mode

Explanation Input command

Startup on a
system basis

Startup on a
unit basis1

Startup on a
server basis1

6. HiRDB Architecture

228

Table 6-8: HiRDB termination modes

NA: Not applicable.
N: Not usable (this termination method cannot be executed).
1 Transactions that are being processed become rollback targets during a restart, except
in the following cases:

• Database load utility (pdload) or database reorganization utility (pdrorg) is
being executed in the no-log mode

• UAP is being executed in the no-log mode

Termination
mode

Explanation Input command

Termination
on a system

basis

Termination on
a unit basis

Terminati
on on a
server
basis

Normal
termination

Prohibits CONNECT requests, and
terminates HiRDB after all user
processes are finished.
If you cannot stop HiRDB by
executing the pdstop command
because a utility is active, the
KFPS05074-E message is output. If
a unit cannot be stopped, the
KFPS05070-E message is output. In
these cases, the pdstop command
ends with return code 8.

pdstop pdstop -u
pdstop -x

pdstop -s

Planned
termination

Prohibits acceptance of transactions;
terminates HiRDB after all users,
including utilities, have
disconnected.

pdstop -P N N

Forced
termination

Terminates HiRDB immediately
without waiting for completion of
transactions being processed (these
transactions become rollback
targets1 during a restart).

pdstop -f pdstop -f -u
pdstop -f -x

N

Abnormal
termination

Termination mode in which HiRDB
is terminated by an error. HiRDB
terminates immediately without
waiting for completion of
transactions being processed (these
transactions become rollback
targets1 during a restart).

NA NA NA

6. HiRDB Architecture

229

After HiRDB has been restarted, the HiRDB administrator must either recover the
RDAREAs from backup copies or re-execute the utility. For details about the no-log
mode, see the HiRDB Version 8 System Operation Guide. For details about the
procedure for recovering RDAREAs when the no-log mode is being used, see the
HiRDB Version 8 System Operation Guide.

6.6.2 HiRDB automatic startup
HiRDB automatic startup means that HiRDB starts automatically when OS starts.
Manual startup means that the pdstart command is entered after OS has started to
start HiRDB. Which startup method is to be used is specified in the pd_mode_conf
operand of the system common definition.
When automatic startup is specified, HiRDB (the unit) restarts automatically, even
after HiRDB (the unit) has terminated abnormally. However, if three restart attempts
in a row result in abnormal termination, there are no more attempts to restart the system
automatically.

Reference note:

• If HiRDB terminates abnormally during its startup or termination
processing, the next startup will have to be by manual startup.

• A startup mode (forced startup, unit-basis startup, server-basis startup) that
involves specification of pdstart command arguments (options) cannot
be specified when startup is by automatic startup.

6.6.3 Reduced activation (applicable to HiRDB/Parallel Server only)
Normally, a HiRDB/Parallel Server cannot be started if any of its units will not start.
If an event such as an error prevents a unit from starting, the error must be resolved
before HiRDB can be started. However, the reduced activation facility can be
implemented so that HiRDB can be started using only the normal units; this is called
reduced activation. To enable reduced activation, specify the following operands:

• pd_start_level
• pd_start_skip_unit

For details about using reduced activation, see the HiRDB Version 8 System Operation
Guide.

6. HiRDB Architecture

230

6.7 Delayed rerun

In HiRDB, a recovery process called delayed rerun reduces the downtime for
transaction processing when a system failure occurs. When a failure occurs in the
database, HiRDB uses the system log file to re-execute all update processing that
occurred since the most recent synchronization point up to the time the failure
occurred. During this processing, the transaction that was updating the database when
the failure occurred is re-executed first (rollforward) to the point at which the failure
occurred, and then the database is returned (rollback) to its status before the update
processing was executed.

HiRDB executes rollback for the data on the disk that was being updated when the
failure occurred and accepts new transactions for data that is not subject to the
rollback. In this way, the system downtime for transaction processing is minimized.
Figure 6-10 shows the concept of delayed rerun.

6. HiRDB Architecture

231

Figure 6-10: Concept of delayed rerun

Explanation
A failure occurs during transaction B that accesses the database on disk 1; this

6. HiRDB Architecture

232

failure occurs after completion of transaction C for disk 2. Consequently,
transactions A, B, and C that executed since the previous synchronization point
are rolled forward. Subsequently, transaction B, which was being executed when
the failure occurred, is rolled back. Because the transactions for the database on
disk 2 are not the targets of rollback, new transactions are being accepted.

6. HiRDB Architecture

233

6.8 Database access processing method

HiRDB uses global buffers to manage database input/output processes. This section
explains the HiRDB database access processing method that uses global buffers.
HiRDB provides the following facilities to improve the performance of the database
access processing method:

• Global buffers
• Prefetch facility
• Asynchronous READ facility

• Deferred write processing
• Facility for parallel writes in deferred write processing
• Incorporation during commit
• LRU management of global buffers
• Page access using the snapshot method
• Local buffers
• Global buffer pre-writing
• BLOB data file I/O facility
• BLOB and BINARY data addition update and partial extraction facility

6.8.1 Global buffers
A global buffer is a buffer that is used for input and output of data stored in the
RDAREAs of a disk. Global buffers are allocated in the common memory. Buffers
used for storing data for updating before the data in the database has been updated are
called update buffers. Buffers that are used for referencing data or for storing data that
has been updated in the database are called reference buffers.
Global buffers are always allocated for RDAREAs and indexes that store data. Table
6-9 lists the types of global buffers:

Table 6-9: Types of global buffers

Global buffer type Explanation

Data global buffers Global buffers used for input/output operations on table data. Data global buffers are
allocated in units of RDAREAs.

Index global buffers Global buffers used for input/output operations on index data. Index global buffers
are allocated in units of indexes.

6. HiRDB Architecture

234

You can improve performance even more by using these global buffers in combination.
For example, when you separately define data global buffers and index global buffers,
data and index searches each operate independently, even if they are running at the
same time. Consequently, the number of index inputs/outputs can be reduced even for
a full-text search of a large amount of data, resulting in reduced processing time.
Figure 6-11 shows the concept of global buffers.

LOB global buffers Global buffers used for input/output operations on LOB-attribute data. LOB global
buffers are allocated in units of LOB RDAREAs.

Global buffer type Explanation

6. HiRDB Architecture

235

Figure 6-11: Concept of global buffers

(1) Units for allocating global buffers
• Each RDAREA must have a data global buffer assigned to it. Multiple RDAREAs

can be assigned to the same global buffer.
• Index global buffers can be allocated to indexes as necessary.

6. HiRDB Architecture

236

• LOB global buffers can be allocated to LOB RDAREAs as necessary.
• Global buffers can be allocated to system RDAREAs as necessary.
• For details about designing global buffers (and allocating global buffers to

RDAREAs), see the HiRDB Version 8 Installation and Design Guide.
(2) Global buffer allocation procedures

You can allocate global buffers by specifying the pdbuffer operand. The following
examples show the use of the pdbuffer operand to allocate global buffers:
Examples

pdbuffer -a gbuf01 -r RDAREA01,RDAREA02 -n 1000 1
pdbuffer -a gbuf01 -r LOBAREA01 -n 1000 2
pdbuffer -a gbuf01 -i USER01.INDX01 -n 1000 3
pdbuffer -a gbuf01 -b LOBAREA02 -n 1000 4

Explanation
1. Allocates a data global buffer to two RDAREAs (RDAREA01 and

RDAREA02).
2. Allocates a data global buffer to a LOB RDAREA (LOBAREA01).
3. Allocates an index global buffer to an index (USER01.INDX01).
4. Allocates a LOB global buffer to a LOB RDAREA (LOBAREA01).

For details about the pdbuffer operand, see the HiRDB Version 8 System Definition.
(3) Dynamic updating of global buffers

Because you must modify the pdbuffer operand to add, change, or delete global
buffers, you normally need to stop HiRDB to perform this operation. However, if you
install HiRDB Advanced High Availability, you can use the pdbufmod command to
add, change, and delete global buffers while HiRDB is running. This is called dynamic
updating of global buffers. As use examples, we recommend that you perform
dynamic updating of global buffers in the following cases:

• Allocating global buffers for an RDAREA that was added
• Changing a global buffer allocated for an RDAREA
• Changing a global buffer definition as a result of global buffer tuning

For details about dynamic updating of global buffers, see the HiRDB Version 8 System
Operation Guide.

6.8.2 Prefetch facility
Table data on disk normally is read from a global buffer (or a local buffer) one page at
a time. However, this data can also be read in batches of multiple pages, rather than

6. HiRDB Architecture

237

one page at a time. This capability is provided by the prefetch facility. By using the
prefetch facility, you can reduce the number of I/O operations between the table data
on disk and the global buffer (or local buffer).

(1) Application criteria for the prefetch facility
The prefetch facility is available when the following conditions are satisfied:
1. The accessed data is in a HiRDB file system area for which the raw I/O facility is

used.
2. A large data set is being manipulated.
3. One of the following SQL statements is being executed:

• A SELECT, UPDATE, or DELETE statement that does not use an index

• A SELECT, UPDATE, or DELETE statement that performs an ascending search*
using an index or cluster key (except for = and IN conditions)

* For multi-column indexes, searching is performed in the order specified by the index
definitions.

(2) Specifying the prefetch facility
For a global buffer

The prefetch facility is enabled by specifying a value of at least 1 for the -m option
of the pdbuffer operand. The specification in the -p option of the pdbuffer
operand is of the number of pages to be fetched at a time. For details about the
pdbuffer operand, see the HiRDB Version 8 System Definition.

For a local buffer

The prefetch facility is enabled by specifying the number of pages to be fetched
at a time in the -p option of the pdlbuffer operand. For details about the
pdbuffer operand, see the HiRDB Version 8 System Definition.

6.8.3 Asynchronous READ facility
When you are using the prefetch facility to input multiple pages at a time into a global
buffer, pages are synchronously pre-fetched from the DB process and input to the
prefetch buffer. When the prefetch facility is being used, the asynchronous READ
facility sets up two prefetch buffers and, while the DB process is using one of the
buffers, a READ process pre-fetches pages from the other buffer asynchronously with
the DB process. By executing the DB processing and the prefetch input at the same
time, you can reduce the processing time. Moreover, with HiRDB/Parallel Server, by
alternating the threads for the I/O wait time, you can reduce the I/O wait time.
Note, however, that you cannot use the asynchronous READ facility with a local
buffer. Nor can you use it on an RDAREA that has a SCHEDULE attribute. Use the

6. HiRDB Architecture

238

prefetch facility in these cases.
Enabling the asynchronous READ facility

You specify the number of asynchronous READ processes using the
pd_max_ard_process operand. If you specify 0 (or do not specify anything) in
this operand, the asynchronous READ facility remains inactive. If it is active, you
must also specify the prefetch facility (by specifying a value of 1 or greater in the
-m option of the pdbuffer operand).

6.8.4 Deferred write processing
Deferred write processing is a process that writes pages that have been updated in the
global buffer onto the disk whenever a particular number of pages has been updated
(rather than when a COMMIT statement is issued). The point in time at which the
number of updated pages has reached the particular value (which is determined by
HiRDB) is called the deferred write trigger.
The number of updated pages to be written onto the disk is determined by HiRDB on
the basis on the updated output page rate at the deferred write trigger that is specified
in the -w option of the pdbuffer operand. When deferred write processing is in effect,
data is not written onto the disk even when a COMMIT statement is issued, thus reducing
the input/output processing load.
For details about using deferred write processing, see the HiRDB Version 8 Installation
and Design Guide.
Setting up deferred write processing

Deferred write processing is used by specifying both the pd_dbsync_point and
the pdbuffer operands of the system common definition. For details about the
pd_dbsync_point and pdbuffer operands, see the HiRDB Version 8 System
Definition.

6.8.5 Facility for parallel writes in deferred write processing
The facility for parallel writes in deferred write processing is a function that enables
multiple processes to execute deferred write processing. Because multiple processes
perform write processing, the facility reduces the amount of the time required to write
to disk. For details about the facility, see the HiRDB Version 8 Installation and Design
Guide.
Specifying the facility for parallel writes in deferred write processing

To use the facility for parallel writes in deferred write processing, specify in the
pd_dfw_awt_process operand the number of processes that can perform write
processing, and specify in the pd_dbbuff_rate_updpage operand the request
rate of the deferred write trigger. If the pd_dfw_awt_process operand is not
specified, the facility for parallel writes in deferred write processing does not
become effective.

6. HiRDB Architecture

239

Considerations about using the facility

Use of the facility for parallel writes in deferred write processing increases CPU
usage, because of the increase in the number of processes.

6.8.6 Incorporation during commit
Normally, pages that have been updated in the global buffer are written onto the disk
whenever a COMMIT statement is issued. This is called incorporation during commit.
When incorporation during commit is in effect, there is no need to recover the database
from a synchronization point during full recovery processing of the system, which
reduces the amount of time required for full recovery processing. For details about
using incorporation during commit, see the HiRDB Version 8 Installation and Design
Guide.
Setting up incorporation during commit

Incorporation during commit is used by specifying commit in the
pd_dbsync_point operand. For details about the pd_dbsync_point operand,
see the HiRDB Version 8 System Definition.

6.8.7 LRU management method for global buffers
The LRU management method for global buffers that is appropriate to the types of job
(online or batch) can be selected. The two LRU management methods are described as
follows.

(1) Management of reference buffers and update buffers in independent LRUs
This method manages reference buffers and update buffers in independent LRUs. If a
shortage of global buffers occurs, the reference buffer in the global buffer that was
accessed least recently is purged from the memory. If the number of references and
updates per transaction is relatively small, as in the case of online jobs, managing
reference buffers and update buffers in independent LRUs improves processing
performance.
To apply LRU management to global buffers, SEPARATE (default value) must be
specified in the pd_dbbuff_lru_option operand. For details about the
pd_dbbuff_lru_option operand, see the HiRDB Version 8 System Definition.

(2) Management of global buffers in a single LRU
This method manages all global buffers in a single LRU. If a shortage of global buffers
occurs, the buffer in the global buffer pool that was accessed least recently is purged
from the memory. If a large number of retrievals and updates coexist, as in a
combination of online jobs and batch jobs, managing the reference buffers in a single
LRU improves processing performance.
One of the following actions must be taken to manage global buffers in a single LRU:

• Specify MIX in the pd_dbbuff_lru_option operand.

6. HiRDB Architecture

240

• Specify the updated output page rate at the deferred write trigger in the -w option
of the pdbuffer operand.

For details about the pd_dbbuff_lru_option and pdbuffer operands, see the
HiRDB Version 8 System Definition.

6.8.8 Accessing pages using the snapshot method
When a search that cannot use a performance-enhancing facility (such as the rapid
grouping facility) is being performed, global buffers are accessed roughly the same
number of times as the number of rows there are that match the condition. With the
snapshot method, the first time data is accessed, all rows in the buffer that match the
search condition are copied to process private memory. The second and subsequent
times that the same page is accessed, process private memory is referenced, and the
search results are returned. This enables search times to be reduced after the first
search. It also reduces the number of times that a global buffer is accessed, and avoids
concentrating accesses to the same buffer.
Figure 6-12 provides an overview of the snapshot method.

Figure 6-12: Overview of the snapshot method

Specification method

Specify SNAPSHOT (default value) in the pd_pageaccess_mode operand.

6.8.9 Global buffer pre-writing
Global buffer pre-writing is a function that loads in advance data from a specified table
or index into global buffers. Figure 6-13 provides an overview of global buffer

6. HiRDB Architecture

241

pre-writing.
Figure 6-13: Overview of global buffer pre-writing

Explanation
• Global buffer pre-writing is not specified

When a UAP accesses HiRDB immediately after HiRDB starts, data must be
read from the table (a physical I/O occurs) because the global buffers do not
hold any data. When data in this table is accessed later, pages from this table
that have been written into global buffers are not read from the table.
However, accesses to data on other pages must still be read from the table.

• Global buffer pre-writing is specified
Table data is written into global buffers in advance, so the table can be
accessed without data having to be read from the table (no physical I/O
occurs). Subsequent accesses to this table do not require that data be read
from the table.

(1) Advantages of global buffer pre-writing
Because reading of table and index data from specified tables is performed in advance,
the global buffer hit ratio is improved. By specifying global buffer pre-writing before
online operations or other activities are started of tables or indexes that you believe will
be accessed frequently, you can expect to achieve a higher buffer hit ratio.

(2) Execution method
To enable global buffer pre-writing, specify the tables or indexes you wish to have
pre-written into the global buffers, and execute the global buffer residence utility
(pdpgbfon).

6. HiRDB Architecture

242

(3) Considerations when using
You should consider the following points about using global buffer pre-writing:

• You must have more global buffers than the number of pages stored in the tables
or indexes that are to be pre-read.

• If you do not have enough global buffers, older page information will be forced
out of the global buffers according to the LRU management method (the oldest
page in the accessed global buffers is forced out as specified by the value in the
pd_dbbuff_lru_option system definition operand). This means that
executing pdpgbfon is pointless if you do not have enough global buffers.

• When you specify pre-writing with the global buffer residence utility
(pdpgbfon), the pre-fetch facility becomes available. This makes it possible to
reduce execution time by specifying the prefetch facility when you define global
buffers.

6.8.10 Local buffers
A local buffer is a buffer that is used for input and output of data stored in RDAREAs
on disk, and is allocated in process private memory. Table 6-10 lists and describes the
types of local buffers available.

Table 6-10: Types of local buffers

You can use these local buffers to improve performance. For example, by separately
defining data local buffers and index local buffers, data and index searches each
operate independently, even if they are running at the same time. This enables the
number of index I/O operations to be reduced even for a full text search of a large
amount of data, resulting in reduced processing time. Figure 6-14 provides an
overview of local buffers.

Local buffer type Description

Data local buffer Local buffers used for table data I/O. Data local buffers are allocated on
a per-RDAREA basis.

Index local buffer Local buffers used for index data I/O. Index local buffers are allocated
on a per-index basis.

6. HiRDB Architecture

243

Figure 6-14: Overview of local buffers

(1) Local buffer application criteria
Defining local buffers is beneficial if all of the following conditions are satisfied:

• A large amount of data is being searched or updated.
• The RDAREA to be accessed cannot be accessed from another UAP.

However, do not define local buffers for a UAP that establishes an emergency
connection to HiRDB, due to the significant adverse effects it has on the system
(memory resource strain, process monopolization, and so on.).

(2) Local buffer allocation procedure
Use the pdlbuffer operand to allocate local buffers. The following example shows
how to use the pdlbuffer operand to allocate local buffers:
Example:

pdlbuffer -a localbuf01 -r RDAREA01,RDAREA02 -n 1000 . . .1
pdlbuffer -a localbuf02 -i USER01.INDX01 -n 1000 . . .2

6. HiRDB Architecture

244

Explanation
1. Allocates data local buffers to two RDAREAs (RDAREA01 and RDAREA02).
2. Allocates an index local buffer to an index (USER01.INDX01).

For details about the pdlbuffer operand, see the HiRDB Version 8 System Definition.

6.8.11 BLOB data file output facility
The following issues arise if BLOB data stored in a HiRDB server is to be retrieved by
a client:

• A memory area for storage of BLOB data must be provided at the client.
• The server requires memory for a send buffer for returning BLOB data and a

receive buffer to enable the client to receive BLOB data.
• Allocating large-object memory space for BLOB data reduces the available

memory resources.
• If the end-user's software includes a middleware program that operates as a

HiRDB client, the processes of sending and receiving BLOB data can further
increase memory requirements.

To mitigate such increases in the memory requirements associated with BLOB data
retrievals, you can provide settings so that, instead of retrieved BLOB data being
returned to the client, it is output to a unit in which either a single server or a front-end
server is running. This means that only the server IP address and the file name need to
be returned to the client. This is called the BLOB data file output facility.
Figure 6-15 provides an overview of the BLOB data file output facility.

6. HiRDB Architecture

245

Figure 6-15: Overview of the BLOB data file output facility

Explanation
1. When the BLOB data is retrieved from the client, it is output to the file row

by row, and column by column.
2. The name of the file to which the BLOB data is output in (1) is returned to

the client.
3. Based on the returned file name, access is made to the BLOB data file located

at the server.
(1) Application criteria

Use this technique to reduce memory requirements associated with BLOB data
retrievals. This technique reduces the memory required for the client program and for
inter-client communication buffers, at the expense of increased disk input/output time
and capacity at the server. Therefore, if this technique is to be used, the tradeoff
between memory requirements and disk input/output time must be evaluated.

(2) Specification
Use of the BLOB data file output facility is specified in a WRITE specification of the
SQL. A WRITE specification can be specified in either a cursor specification or a query
specification. For details about WRITE specifications, see the HiRDB Version 8 SQL
Reference.
The client can obtain as the SQL retrieval results only the IP address of the server, the

6. HiRDB Architecture

246

BLOB data storage location that is set in the SQL, and the file name of the BLOB data.
With this information, the client is able to identify the particular BLOB data stored at
the server.

(3) Notes on using the BLOB data file output facility
When BLOB data files are no longer needed, they should be deleted by the user.
The following point should be noted with regard to deleting a file (a file can be
deleted unconditionally once the cursor has been closed or the transaction
resolved):

• If the file is deleted immediately after a FETCH and the BLOB data is the
same as the result of the FETCH before the same cursor is searched, it may
not be possible to re-create the file under the same file name. Because of this,
you should make note of the file's original file name so that you will still be
able to delete it after its name has been changed.

The occurrence of an error or of rollback will not result in deletion of a BLOB
data file that has been created. Files that are left undeleted occupy OS resources,
such as disk space.
When any of the following facilities is used, you should check that the disk has
adequate free space:
FETCH facility with arrays
One execution of FETCH generates as many files as there are array elements.
Block transfer facility

The first execution of FETCH creates as many files as the number of rows
involved in a block transfer. Subsequently, after the same number of FETCH
operations as the number of block transfer rows, as many files as the number
of block transfer rows are created each time FETCH is executed, and this
process is repeated.

If the file name is the same as other transactions or cursor searches, there is a
potential for files to be overwritten or damaged. In such a case, for each
transaction or cursor, you should change the directory name or file name in the
file prefix to avoid duplicate names.

(4) Examples of using the BLOB data file output facility
Shown as follows are examples of retrievals using the BLOB data file output facility.

(a) Retrieval from BLOB columns
Retrieve columns C1 and C2 from table T1. The system outputs the BLOB data from
C1 to a file, and obtains the file name. Figure 6-16 shows this example retrieval using
the BLOB data file output facility (retrieval of BLOB columns).

6. HiRDB Architecture

247

Figure 6-16: Example of a retrieval using the BLOB data file output facility
(retrieval of BLOB columns)

(b) Retrieval of an abstract data type with the BLOB attribute
From table T2, retrieve column ADT1 that makes the CONTAINS function TRUE. In
this case, the BLOB value resulting from passing the column value to an argument of
the EXTRACTS function is output to a file, and the file name is obtained. In this
example, all entries are retrieved. Figure 6-17 shows this example retrieval using the
BLOB data file output facility (retrieval of an abstract data type with the BLOB
attribute).

6. HiRDB Architecture

248

Figure 6-17: Example of a retrieval using the BLOB data file output facility
(retrieval of an abstract data type with the BLOB attribute)

6.8.12 BLOB and BINARY data addition update and partial
extraction facility
(1) Overview of BLOB and BINARY data addition update and partial extraction
facility

When BLOB or BINARY data is updated after new data has been added to a registered
BLOB or BINARY data item, or when an entire BLOB or BINARY data item is
retrieved as the result of BLOB or BINARY data being searched, both the server and
the client must allocate a large amount of memory for the BLOB or BINARY data,
putting a strain on memory resources.

6. HiRDB Architecture

249

Use of the BLOB and BINARY data addition update and partial extraction facility
allows you to avoid straining memory resources, because it allocates only the memory
required for the actual amount of BLOB or BINARY data being added or extracted.
However, for BINARY data, the definition length must be 32,001 bytes or greater.
BLOB or BINARY data addition update:

By specifying a concatenation operation in the SET clause of the UPDATE
statement, you can add new data to BLOB or BINARY data that has been
registered.

BLOB and BINARY data partial extraction

By specifying the SUBSTR scalar function, you can extract only a specified
portion of the BLOB or BINARY data.

For details about the BLOB and BINARY data addition update and partial extraction
facility, see the HiRDB Version 8 UAP Development Guide.

(2) Usage examples of the BLOB and BINARY data addition update and partial
extraction facility

(a) BLOB data addition update
A single BLOB data item is stored across a number of files. Figure 6-18 shows an
example of BLOB data addition updating.

Figure 6-18: Example of BLOB data addition updating

6. HiRDB Architecture

250

Explanation
1. BLOB data from file 1 is inserted into column C2 of row A in table T1.
2. Addition updating is performed by concatenating BLOB data of file 2 to

column 2 of row A. Subsequent data additions are also performed in a similar
manner.

(b) BLOB data partial extraction
An area in file 2 is extracted from the BLOB data in column C2 of row A that was
stored using BLOB data addition updating. Figure 6-19 shows an example of BLOB
data partial extraction.

Figure 6-19: Example of BLOB data partial extraction

Explanation
Using the SUBSTR scalar function, from column 2 of row A, the length of the data
from the data column of file 2 (200 1024 = 204800 bytes) is extracted
beginning at the start position of the data column of file 2 (at the 100 1024 + 1
= 102401 byte position).

6.8.13 Locator facility
(1) Overview of the locator facility

If a retrieved BLOB or BINARY data item is received by a client UAP as a BLOB-type
or BINARY-type embedded variable, a memory area sufficient to store the received
data must be allocated on the client side. This may strain the memory resources on the
client side when large amounts of data are being retrieved. A large amount of data must

6. HiRDB Architecture

251

also be transferred from the server to the client. However, if only a portion of the data
is needed, or if the received data will be specified without change in another SQL
statement and then returned to the server, transferring the data to the client is a waste
of resources.
The locator facility is designed to overcome this problem. A locator is a four-byte
value that identifies data on the server. By specifying a locator embedded variable in a
single-row SELECT statement or in the INTO clause of the FETCH statement, you can
retrieve in the search results only the locator value that identifies the data rather than
the entire data item. You can also specify the locator embedded variable that identifies
such data in another SQL statement, which enables you to process the data identified
by the locator.

6. HiRDB Architecture

252

Figure 6-20 provides an overview of the locator facility.
Figure 6-20: Overview of the locator facility

Explanation
Locator facility is not used:

1. The BLOB data retrieved from the database is transferred from the server to
the client.

2. The BLOB data is transferred from the client to the server, and then stored in
the database.

Locator facility is used:

6. HiRDB Architecture

253

1. The server creates a locator data item that identifies the data retrieved from
the database.

2. The locator data item is transferred from the server to the client.
3. The locator data item is transferred from the client to the server.
4. The BLOB data on the server that was identified by the locator data item is

stored in the database.
(2) Application criteria

The locator facility is useful whenever you retrieve BLOB or BINARY data.
By using the locator facility, the client need only allocate enough memory to store the
size of the actual data being used. The amount of data transferred between the server
and the client is also reduced because a locator is used.

(3) Advantages
Using the locator facility reduces the amount of memory required on the client side. It
also reduces the amount of data transferred between the server and the client.

(4) How to use
To receive the value of a locator, replace in the SQL statement the embedded variable
that receives the BLOB-type or BINARY-type data with the applicable locator-type
embedded variable. To process the data allocated in the locator, specify the applicable
locator-type embedded variable in the SQL statement, rather than specifying a
BLOB-type or BINARY-type embedded variable.
For details about the locator facility, see the HiRDB Version 8 UAP Development
Guide.

6. HiRDB Architecture

254

6.9 Transaction control

This section explains the transaction control that is performed when a HiRDB
database is accessed from a UAP. A transaction is a logical unit of work. In the case
of HiRDB, transaction control has the following meaning:
Transaction control unique to HiRDB

This encompasses transactions that are within the range of HiRDB specifications,
and refers to processing in which either a COMMIT or a ROLLBACK statement is
issued by an SQL statement to determine whether an updating of table data is to
be put into effect or is to be invalidated.

Transaction control based on XA interface
This applies to a transaction that is executed by UAP processing when linkage to
OLTP is established using the XA interface; it refers to the process that
determines whether the UAP processing under OLTP using an XA interface
function (the tx_commit or tx_rollback function) is to be put into effect or is
to be invalidated.

6.9.1 Connection to and disconnection from HiRDB
Connection to the HiRDB system

Becoming able to access a HiRDB database by means of a UAP is called
connection to HiRDB. Connection must be made to the HiRDB system before a
transaction can be started. Connection to HiRDB is defined with the CONNECT
control SQL statement.

Disconnection from the HiRDB system
Terminating access to the HiRDB database by the UAP and disconnecting from
the HiRDB is called disconnection from HiRDB. When disconnection from
HiRDB occurs, transactions are terminated and a synchronization point is set.
Disconnection from HiRDB is defined with the DISCONNECT control SQL
statement.

6.9.2 Multi-connection facility
A UAP of a single HiRDB client can connect simultaneously to multiple HiRDB
servers. This is called the multi-connection facility. The multi-connection facility
enables a single application process at a HiRDB client to make multiple connections
to a single HiRDB server. A single application process can also connect to multiple
HiRDB servers. Each of the multiple connections is treated as an independent
transaction (i.e., it is handled by the HiRDB server as though each connection were
made from a separate process). Because a single UAP can make multiple connections,
the number of UAPs to be executed can be reduced, thus reducing the overall memory

6. HiRDB Architecture

255

requirements of the UAPs.
To use the multi-connection facility, a dedicated library that is provided must be
linked. For details about the multi-connection facility, see the HiRDB Version 8 UAP
Development Guide.
Setting up the multi-connection facility

The multi-connection facility is used by defining the following SQLs in the UAP
definition:

• Allocation of a connection handle (ALLOCATE CONNECTION HANDLE
statement)

• Declaration of connection handle setup (DECLARE CONNECTION HANDLE
SET statement)

• Cancellation of connection handle setup (DECLARE CONNECTION HANDLE
UNSET statement)

• Release of connection handle (FREE CONNECTION HANDLE statement)

6.9.3 Transaction startup and termination
A transaction is started when the first SQL is executed, and a transaction terminates
when a synchronization point is set (a commit or rollback). Any number of transactions
can be started and terminated while connection to HiRDB is maintained. Figure 6-21
shows examples of transaction startup and termination.

Figure 6-21: Examples of transaction startup and termination

6. HiRDB Architecture

256

6.9.4 Commit and rollback
The process of placing into effect in the database the updates made by a transaction is
called commit. The process of invalidating the updates made by a transaction is called
rollback. When commit and rollback occur is determined as follows:

• At the times defined by an SQL
• At the times that are set automatically by HiRDB

Each of these types of commit and rollback timing is explained as follows.
(1) Commit timing

This section explains commit timing.
Timing defined by an SQL

The COMMIT control SQL statement can be specified to commit a transaction
whenever a COMMIT statement is executed.

Commit set automatically by HiRDB
• Commit is performed automatically by HiRDB when a definition SQL or

PURGE TABLE statement is executed.
• Commit is performed automatically by HiRDB when a UAP terminates.

(2) Rollback timing
This section explains rollback timing.
Timing defined by an SQL

The ROLLBACK control SQL statement can be specified to roll back the process to
the previous commit point whenever a ROLLBACK statement is executed.

Rollback set automatically by HiRDB
• If a process cannot continue during SQL execution, HiRDB will roll back the

process implicitly to the previous commit point.
• If a UAP terminates abnormally, HiRDB will roll back the process to the

previous commit point.
(3) Commitment control on a HiRDB/Parallel Server

A HiRDB/Parallel Server provides the following two methods of commitment control:
• One-phase commit
• Two-phase commit

(a) One-phase commit
With one-phase commit, only commit processing is performed, rather than both

6. HiRDB Architecture

257

prepare processing and commit processing (which is the case with two-phase
commitment control). This means that the number of communication transactions for
synchronization point processing between the front-end server and the back-end server
(dictionary server) is the number of branches 2 (whereas, with two-phase commit,
it is the number of branches 4), which improves transaction processing
performance. To use one-phase commit, specify ONEPHASE (default) in the
pd_trn_commit_optimize operand.
One-phase commit is used only when one branch within a single transaction is being
updated. Otherwise, two-phase commit must be used.
Figure 6-22 shows the processing for one-phase commit.

Figure 6-22: Processing for one-phase commit

The process of executing one-phase commit for commitment control is called
one-phase optimization.

6. HiRDB Architecture

258

(b) Two-phase commit
Two-phase commit performs synchronization point processing of the transaction by
separating commitment control into two phases, prepare processing and commit
processing. The number of communication transactions for synchronization point
processing between the front-end server and the back-end server (dictionary server) is
the number of branches 4. Figure 6-23 shows the processing for two-phase commit.

Figure 6-23: Processing for two-phase commit

The type of commitment control used on a HiRDB/Parallel Server is determined by the
issuer of the commit and the execution environment of the transaction. Table 6-11
shows how commitment control is determined on a HiRDB/Parallel Server.

6. HiRDB Architecture

259

Table 6-11: Commitment control on a HiRDB/Parallel Server

: Not applicable

6.9.5 UAP transaction management under OLTP environment
When transaction processing that conforms to the XA interface is performed using a
UAP under the OLTP environment, commit or rollback of the transaction is executed
from the UAP using an API that is compatible with X/Open.
Transaction transfer

Execution of transaction commitment using a different process from the one the
UAP used to access HiRDB is called transaction transfer. UAP in this context
refers to the UAP that connects to HiRDB by means of the HiRDB XA library.

6.9.6 Automatic reconnect facility
When a connection to a HiRDB server is lost due to a server process going down,
system switchover, network failure, or other cause, the automatic reconnect facility
automatically re-establishes the connection. By using the automatic reconnect facility,
you can continue execution of a UAP without having to be aware that the connection
to the HiRDB server was lost. To use the automatic reconnect facility, specify YES in

Condition HiRDB
commitment

controlIssuer of the
commit

Commitment
control indicated

by the commit
issuer

Execution environment of the
transaction

UAP For a reference transaction One-phase commit

If one server is updated by the transaction
and ONEPHASE is specified (or nothing is
specified) in the
pd_trn_commit_optimize operand

Other than the above Two-phase commit

OLTP system One-phase commit For a reference transaction One-phase commit

If one server is updated by the transaction
and ONEPHASE is specified (or nothing is
specified) in the
pd_trn_commit_optimize operand

Other than the above Two-phase commit

Two-phase commit For a reference transactions One-phase commit

Other than the above Two-phase commit

6. HiRDB Architecture

260

the PDAUTORECONNECT client environment definition.
Application criteria

Whenever you execute the system reconfiguration command or whenever you are
updating to the HiRDB update version, all HiRDB clients are placed in wait status
until that processing is completed. While in wait status, the elapsed time is
monitored against the time specified in PDCWAITTIME. If the time specified in
PDCWAITTIME is exceeded, wait status is released, and a PDCWAITTIME timeout
error is returned to the UAPs. Depending on the timing of this error,
communications processing errors may occur because the UAPs may not be able
to detect that the system reconfiguration command is executing or that updating
to the HiRDB update version is being performed. If you know in advance that the
system reconfiguration command will be executed or that updating to the HiRDB
update version will be performed, consider using the automatic reconnect facility.
By using this facility, processing continues without an error being returned to the
UAPs, even when the system reconfiguration command is executing or updating
to the HiRDB update version is being performed.

6. HiRDB Architecture

261

6.10 Locking

When multiple users attempt to manipulate data in the same table at the same time, the
HiRDB system automatically implements locking in order to maintain data integrity.
Especially inasmuch as the individual servers in a HiRDB/Parallel Server do not in
principle share resources, an independent means of locking is used for each server.
Depending on the nature of the operation to be performed, you can modify a lock that
is implemented automatically by HiRDB.

6.10.1 Units of locking
This section explains the units of locking and their inclusion relationships.

(1) Locked resources and their inclusion relationships
HiRDB prevents illegal referencing and updating by applying locks based on a unit
called the locked resource. Locking is applied sequentially from top to bottom of the
locked resources. If when locking is applied there is a transaction that cannot execute
because it is in contention with other transactions for a resource, that transaction goes
onto wait status.
Locked resources have inclusion relationships. Therefore, once a lock is applied to a
higher-order resource, there is no need to apply locks to the resources that are below it
hierarchically. Figure 6-24 shows locked resources and their inclusion relationships.
For example, a table is a higher-order resource and a page is a lower-order resource.

Figure 6-24: Locked resources and their inclusion relationships

1 If index key value no-lock is applied, the key value is not locked. For details about
index key value no-lock, see the HiRDB Version 8 UAP Development Guide.
2 Logical file used by a plug-in.

(2) Setting the lowest-order locked resource unit
For each table, the user can set the lowest-order locked resource unit for the locking to
be applied automatically by HiRDB. The lowest-order locked resource unit, the setting
procedures, and their advantages and disadvantages are explained as follows.

6. HiRDB Architecture

262

(a) Locking by row
To set the row as the lowest-order unit of locking, LOCK ROW is specified in the
CREATE TABLE definition SQL. Locking that uses the row as the lowest-order unit of
locking is called row locking. Compared to locking by page, locking by row results in
better concurrent execution because it is a lower unit of locked resources. On the other
hand, locking by row increases the processing time required for locking and increases
memory usage.

(b) Locking by page
To set the page as the lowest-order unit of locking, LOCK PAGE is specified in the
CREATE TABLE definition SQL. Locking that uses the page as the lowest-order unit
of locking is called page locking. Compared to locking by row, locking by page
reduces the processing time required for locking and reduces memory usage. On the
other hand, locking by page results in poor concurrent execution.

6.10.2 Lock modes
HiRDB provides the following five lock modes for each type of locked resource (such
as table or page):
1. Shared mode (PR: Protected Retrieve)

One transaction monopolizes the locked resource and allows only referencing by
other transactions.

2. Exclusive mode (EX: EXclusive)
One transaction monopolizes the locked resource and does not allow referencing,
adding, updating, or deletion by other transactions.

3. Shared retrieval mode (SR: Shared Retrieve)
If the lock is applied to a certain resource in the shared mode, the shared retrieval
mode applies to the resources above that locked resource; referencing, adding,
updating, and deletion of the locked resource can be performed by other
transactions.

4. Shared update mode (SU: Shared Update)
If the lock is applied to a certain resource in the exclusive mode, the shared update
mode applies to the resources above that locked resource; referencing, adding,
updating, and deletion can be performed by other transactions.

5. Protected update mode (PU: Protected Update)
Referencing, adding, updating, and deletion can be performed; referencing only
can be performed by other transactions. Unlike modes 1-4, this mode occurs as a
result of lock mode transition.

6. HiRDB Architecture

263

6.10.3 Automatic locking by HiRDB
This section explains the locking of tables and rows that is performed automatically by
HiRDB during data updating, addition, and deletion and during data retrieval.

(1) Locking by HiRDB during data updating, addition, and deletion
Locking of a table

Referencing, adding, updating, and deletion of the table are allowed by other
transactions as well. In other words, the shared update (SU) mode goes into effect.

Locking of a row
The transaction monopolizes the resource and does not allow referencing, adding,
updating, or deletion of the row by other transactions. In other words, the
exclusive (EX) mode goes into effect.

(2) Locking by HiRDB during data retrieval
Locking of a table

Referencing, adding, updating, and deletion of the table are allowed by other
transactions as well. In other words, the shared retrieval (SR) mode goes into
effect.

Locking of a row
The transaction monopolizes the resource and allows only referencing of the row
by other transactions. In other words, the shared (PR) mode goes into effect.

6.10.4 Changing the lock based on a user setting
The user may change the lock that is implemented automatically by HiRDB. Locking
of tables and rows during data updating, addition, and deletion and during data
retrieval is explained as follows.

(1) Locking during data updating, addition, and deletion based on a user setting
When IN EXCLUSIVE MODE is specified in the LOCK TABLE statement, the user may
change the lock to be used during data updating, addition, and deletion. Referencing,
adding, updating, or deletion of data in the table by other transactions are not allowed.
In other words, the exclusive (EX) mode goes into effect. On the other hand, because
row-based locking is not applied, the overhead for applying the lock is reduced, thus
preventing a shortage of buffers for locking. However, because table-based locking is
applied, other transactions may have to wait for a long time.

(2) Locking during data retrieval based on a user setting
When either of the following SQLs is specified, the user may change the lock to be
used during data retrieval:
WITHOUT LOCK of SELECT statement

6. HiRDB Architecture

264

The data that is retrieved is not locked until the transaction terminates. Because
locking is released beginning with rows that have been retrieved, better
concurrent execution can be achieved.

IN SHARE MODE of LOCK TABLE statement
The transaction monopolizes the resource and allows only referencing of the data
in the table by other transactions. In other words, the shared (PR) mode goes into
effect. On the other hand, because row-based locking is not applied, the overhead
for applying the lock is reduced, thus preventing a shortage of buffers for locking.
However, because table-based locking is applied, other transactions may have to
wait for a long time.

6.10.5 Lock period
When a transaction locks a resource, it monopolizes that resource until commit or
rollback occurs. For example, when an update is made to a locked resource (row or
page), the automatic locking by HiRDB implements the exclusive mode, which does
not allow referencing, adding, updating, or deletion by other transactions.
Consequently, other transactions must wait until commit or rollback occurs before it
becomes possible to access the row that is being updated. However, if UNTIL
DISCONNECT is specified in the LOCK statement, the lock will remain in effect until
a DISCONNECT statement is executed or until commit occurs after the table is deleted.

6.10.6 Deadlock
Deadlock is the status when two transactions are both waiting for the other to release
resources when they have allocated the same resources but in a different order.
Consequently, processing by both transactions is stalemated and cannot proceed.
Deadlock often occurs between a referencing transaction and an updating or deletion
transaction. Changing the access order of the UAPs can reduce the incidence of
deadlocks. When deadlock occurs during operation of HiRDB, HiRDB outputs
deadlock information that includes information on deadlocks that have occurred
among multiple transactions in the server. For details about preventing deadlock, see
the HiRDB Version 8 UAP Development Guide.

6. HiRDB Architecture

265

6.11 Operation without collecting a database update log

HiRDB acquires a history of database updates (the database update log in the system
log) by UAPs (or utilities*). This information is collected into system log files.
Acquisition of database update log information can also be disabled; the advantage of
doing so is that processing time, and consequently, execution time, for the UAP (or
utility) is reduced.
* The following utility programs can be used:

• Database load utility (pdload)
• Database reorganization utility (pdrorg)
• Rebalancing utility (pdrbal)

(1) Acquiring a database update log
There are three modes for collecting the database update log that is used during
execution of a UAP (or a utility), as shown in Table 6-12.

Table 6-12: Database update log acquisition modes

(2) Specifying the database update log acquisition mode
Table 6-13 shows the methods for specifying the database update log acquisition
mode.

Table 6-13: Methods of specifying the database update log acquisition mode

Database update log acquisition mode Explanation

Log acquisition mode Acquires the database log needed for rollback or
roll-forward. Normally, the log acquisition mode is used.

Pre-update log acquisition mode Acquires only the database update log necessary for a
rollback.

No-log mode Does not acquire a database update log.

Database update log
acquisition mode

specification method

Explanation

UAP The database update log acquisition method is specified in the PDDBLOG
operand of the client environment definition. You can specify in the
PDDBLOG operand either the log acquisition mode or the no-log mode; the
pre-update log acquisition mode cannot be specified.

6. HiRDB Architecture

266

(3) Notes on the RECOVERY operand
The database update log acquisition method specified in the RECOVERY operand is
subject to change when either the PDDBLOG operand or the -l option is specified.
Table 6-14 shows the relationship between the specification value in the RECOVERY
operand and the PDDBLOG operand or the -l option, on the one hand, and the value
that is assumed during execution of the UAP (or the utility), on the other hand.

Table 6-14: Relationship between the specification value in the RECOVERY
operand and PDDBLOG operand or the -l option, and the value that is assumed
during execution of the UAP (or the utility)

ALL or a: log acquisition mode
PARTIAL or p: pre-update log acquisition mode

Database load utility (pdload) The database update log acquisition method is specified in the -l option of
the database load utility (pdload).

Database reorganization utility
(pdrorg)

The database update log acquisition method is specified in the -l option of
the database reorganization utility (pdrorg).

Rebalancing utility (pdrbal) The database update log acquisition method is specified in the -l option of
the rebalancing utility (pdrbal).

Using a user LOB RDAREA In the case of data stored in a user LOB RDAREA, the database update log
acquisition method is specified in the RECOVERY operand of CREATE
TABLE. If abstract data type data is stored in the LOB RDAREA, the
pre-update log acquisition mode cannot be specified (it is ignored if
specified).

Specification of PDDBLOG operand or -l option Specification of RECOVERY operand

ALL PARTIAL NO

ALL
a
(log acquisition mode)

ALL PARTIAL NO

PARTIAL
p
(pre-update log acquisition mode)

PARTIAL PARTIAL NO

NO
n
(no-log mode)

NO NO NO

Database update log
acquisition mode

specification method

Explanation

6. HiRDB Architecture

267

NO or n: no-log mode
(4) Differences in operating method depending on database update log
acquisition mode

The different database update log acquisition modes can result in differences in the
operating methods in the following two areas:

• Processing performed by HiRDB and action to be taken by the user in the event
of abnormal termination of the UAP

• Timing for database recovery
(a) Processing performed by HiRDB and the action to be taken by the user

in the event of abnormal termination of the UAP
Table 6-15 shows the processing performed by HiRDB and the action to be taken by
the user in the event of abnormal termination of the UAP.

Table 6-15: Processing performed by HiRDB and the action to be taken by the
user in the event of abnormal termination of the UAP

(b) Timing at which database can be recovered
Table 6-16 shows the times at which the database can be recovered by the database
recovery utility (pdrstr).

Table 6-16: Times for recovering the database

Database update log
acquisition mode

HiRDB processing User action

Log acquisition mode Rolls back an updated
RDAREA to its status before the
UAP executed or to the last
synchronization point set before
the abnormal termination.

If the RDAREA is rolled back to its status before
the UAP was executed, re-execute the UAP. If the
RDAREA is rolled back to the last
synchronization point that was set before the
abnormal termination, execute the processing
following the synchronization point.

Pre-update log
acquisition mode

No-log mode Does not perform roll back.
Error shutdown (logless
shutdown) is performed on the
updated RDAREA. The
contents of the RDAREA are
destroyed.

Using as input information a backup that was
made before execution of the UAP, execute the
database recovery utility (pdrstr) to recover the
RDAREA, and then re-execute the UAP.

Database update log acquisition more Time for database recovery

Log acquisition mode Either the backup acquisition point or any
synchronization point subsequent to the
backup acquisition point

6. HiRDB Architecture

268

(5) Notes on backup (important)
1. During execution of a UAP (or utility) in the no-log mode or the pre-update log

acquisition mode, do not make a backup using the updatable mode (-M s
specified).

2. After execution of a UAP (or utility) in the no-log mode or the pre-update log
acquisition mode, make a backup in one of the following modes:

• Referencing/updating-impossible mode (-M x specified)
• Referencing-permitted mode (-M r specified)

Pre-update log acquisition mode Backup acquisition point

No-log mode

Database update log acquisition more Time for database recovery

269

Chapter

7. Database Management

This chapter explains how the HiRDB administrator manages a database.
This chapter contains the following sections:

7.1 Database recovery
7.2 Preparations for database errors
7.3 Reorganizing tables and indexes
7.4 Reusing used free pages and used free segments
7.5 Adding, expanding, and moving RDAREAs
7.6 Space conversion facility
7.7 Facility for conversion to a decimal signed normalized number

7. Database Management

270

7.1 Database recovery

The database recovery utility (pdrstr) is provided in the event adatabase needs to be
recovered because of a disk error or for some other reason. This section briefly
explains how to recover databases. For details about how to recover databases, see the
HiRDB Version 8 System Operation Guide.

7.1.1 Overview of database recovery
To recover a database, you use the following files as input information for the database
recovery utility (pdrstr).

• Backup files
• Unload log files

Figure 7-1 provides an overview of the database recovery process.
Figure 7-1: Overview of database recovery process

* An unload log file is created by unloading system log files (system log information)
that contain information comprising a history of the updates to the database.
Explanation

• Backups are made by the database copy utility (pdcopy).
• The pdlogunld command creates an unload log file.
• Using the backup and unload log files as the input, the database recovery

utility (pdrstr) recovers the database.
For details about making backup files and of creating unload log files, see Section 7.2
Preparations for database errors.

7.1.2 Times at which database can be recovered
A database can be recovered to its status at the following times:

7. Database Management

271

• At the time a backup was made
• To its most recent status (the point of the most recent synchronization point)

(1) Recovering to the point a backup was made
To recover a database to its status when a backup was made, you do not need an unload
file. Only the backup file is required.

(2) Recovering to the most recent synchronization point before the failure
occurred

The point in time at which a transaction is completed is called a synchronization point.
Synchronization point processing that validates a transaction-induced update is called
a commit. Synchronization point processing that invalidates a transaction is called a
rollback. Recovering a database to a transaction synchronization point is called
recovering to the most recent synchronization point before the failure occurred.
Because any transaction being processed when the failure occurred (a transaction that
had not reached a synchronization point) is invalid, update processing performed by
such transactions is not recovered. Figure 7-2 shows the transactions that are
recovered.

Figure 7-2: Transactions that are recovered (with recovery to the most recent
synchronization point before the failure occurred)

Explanation
Because processing of transactions A and B finished and they reached their
synchronization points, the database is recovered to these synchronization points.
Because processing of transactions C and D was ongoing, the processing of these
transactions is invalid, and is not recovered.

To recover to the most recent synchronization point before the failure occurred, in
addition to backup files, you need the unload log files from which log files are output
after a backup was made.

7. Database Management

272

7.2 Preparations for database errors

If an error occurs in the database as a result of a disk error or for some other reason,
the HiRDB administrator must perform the database recovery operation. To be
prepared for database errors, the HiRDB administrator is responsible for performing
the following tasks:

• Making backups
• Creating unload log files (unloading system log information)

In addition, the following functions are available as options for making backups:

• Differential backup facility
• Backup hold
• Frozen update command (pddbfrz command)
• NetBackup linkage facility

7.2.1 Making backups
To be prepared for database errors, it is important to make backup copies of a database
on a regular basis; the database copy utility (pdcopy) is provided for this purpose.

(1) Backup units
Backups can be made in the units shown in Table 7-1. The unit is specified in an option
of the database copy utility (pdcopy).

Table 7-1: Backup units

* Applicable to HiRDB/Parallel Servers.
(2) Backup acquisition modes

A backup acquisition mode is specified in the -M option of the database copy utility
(pdcopy). Table 7-2 lists the backup acquisition modes.

Backup unit Explanation pdcopy option specification

System Makes a backup of all RDAREAs, including
RDAREAs used by the system (such as the master
directory RDAREA).

-a

Unit* Makes a backup of a specified unit's RDAREAs. -u unit-name

Server* Makes a backup of a specified server's RDAREAs. -s server-name

RDAREA Makes a backup of a specified RDAREA. -r RDAREA-name

7. Database Management

273

Table 7-2: Backup acquisition modes

1 A backup should not be made in the updatable mode during execution of a UAP
(including a utility) that is running in the no-log mode or the pre-update log acquisition
mode.
2 The LAN IDs and generation numbers of the system log files required to recover the
RDAREA are output to the process results output file of the database recovery utility.

(3) Server machine for storage of backup file
A backup file can be created anywhere on a server machine on which HiRDB is
running. A backup file need not be created on the server machine on which the
RDAREAs are located. Devices such as CMT and DAT may not be available on the
same server machine as the RDAREAs being backed up. The server machine on which
a backup file is to be stored is specified in an option of the database copy utility
(pdcopy).

7.2.2 Creating an unload log file (unloading system log)
The pdlogunld command can be used to unload system log information and create
an unload log file. Before you create an unload log file, you should check the status of
the system log files.

Backup acquisition mode
(-M option specification)

Explanation Difference in RDAREA
recovery depending on

backup acquisition point

Referencing/
updating-impossible mode (x)

While the backup is being made,
RDAREAs being backed up cannot be
referenced or updated. Before a
backup, you must use the pdhold -c
command to shut down and close the
affected RDAREAs.

A backup made with this method
can be used to recover the database
to its status when the backup was
made. In addition, by using system
log information, you can recover
the database to any
synchronization point since the
backup was made.Referencing-permitted mode (r) While the backup is being made, the

RDAREAs being backed up can be
referenced but not updated.

Updatable mode (s)1 While the backup is being made, the
RDAREAs being backed up can be
both referenced and updated.

The database cannot be recovered
to its status when the backup was
made, but it can be recovered to
any synchronization point since
the backup was made. Therefore,
to recover the database, you need
the backup and the system log
information2 from a
synchronization point subsequent
to when the backup was made.

7. Database Management

274

(1) Status of system log files
The file to which system log information is output is called the current file. If system
log information fills the current file, the output for the system log information is
changed to another system log file in a process called system log file swapping; what
was the current file becomes an unload-wait file. The HiRDB administrator uses the
pdlogunld command to unload unload-wait files. Figure 7-3 shows changes the
system log file status changes.

Figure 7-3: System log file status changes

System log information cannot be output to an unload-wait file. If all system log files
become unload-wait files, system log information cannot be output any longer, and
HiRDB terminates abnormally. For this reason, it is essential that system log
information be unloaded.
Notes on starting HiRDB normally

When HiRDB is started normally following a normal termination, system log
files are swapped, creating an unload-wait file. This file should be unloaded

7. Database Management

275

without fail. If termination and startup are repeated without unloading system log
information, HiRDB will eventually be unable to start.
Specifying pd_log_rerun_swap=Y in the server definition causes system log
files to be swapped when HiRDB is restarted.

(2) Determining the status of the system log files
You can check the status of the system log files with the pdlogls command, as shown
in the following example:
Example

Use the pdlogls command to check the status of the system log files.

Explanation
• The file (log1) for which there is a "u" in column 3 is an unload-wait file.

This file should be unloaded.
• The file (log2) for which there is a "c" in column 2 is the current file.

(3) Retaining unload log files
Repeated unloading of system log information results in a proliferation of unload log
files, which occupy disk space. The HiRDB administrator should delete unload log
files as soon as they are no longer needed.
When a backup is made, unload log files containing only data produced prior to the
backup are no longer needed. Figure 7-4 shows the relationship between a backup and
unload log files.

7. Database Management

276

Figure 7-4: Relationship between backup and unload log files

Explanation
• The system log information that was output from 9:00 to 12:00 is unloaded

to unload log file A.
• The system log information that was output from 12:00 to 15:00 is unloaded

to unload log file B.
• The system log information that was output from 15:00 to 18:00 is unloaded

to unload log file C.
• If a backup is made around 13:00, the backup and unload log files B and C

will be needed for any recovery of the database, but unload log file A will
not be needed.

Note:

Unload log files should be stored on a different disk from the disk containing
the database. If they are all stored on the same disk, an error affecting the disk
will prevent recovery of the database.

(4) Automatic log unloading facility for system log files
As explained above, the HiRDB administrator must use the pdlogunld command to
unload any unload-wait system log files. If this operation is not performed, you may
run out of system log files that can be swapped in when swapping occurs, causing
HiRDB to terminate abnormally.
HiRDB provides a facility called the automatic log unloading facility that automates
the unloading of system log files. When the unloading operation must be performed
frequently, consider automating it.
For details about the automatic log unloading facility, see the HiRDB Version 8 System
Operation Guide.

7. Database Management

277

7.2.3 Differential backup facility
Because backups are normally made on a per-RDAREA basis, the backup includes
pages that have been updated as well as pages that have not been updated since the last
backup. By using the differential backup facility, only the pages that have been updated
since the last time a backup was made are backed up. Making a backup of only the
differences since the last time a backup was made allows you to significantly reduce
the time required to make a backup. Use of the differential backup facility should be
considered in situations where the database is large and the amount of data updating is
relatively small. Figure 7-5 provides an overview of the differential backup facility.

7. Database Management

278

Figure 7-5: Overview of the differential backup facility

Explanation

7. Database Management

279

1. On Sunday, backups are made of RDAREAs 1 through 3. At this time, a
backup is made of the used pages in RDAREAs 1 through 3. This kind of
backup is called a full backup, and the grouped RDAREAs are called a
differential backup group.

2. Updates are performed with Monday's work.
3. At the end of Monday's work day, a backup is made of RDAREAs 1 through

3. This time, a backup is made only of the pages in RDAREAs 1 through 3
that were updated. This kind of backup is called a differential backup.

4. Updates are performed with Tuesday's work.
5. At the end of Tuesday's work day, a backup is made of RDAREAs 1 through

3. At this time, a backup is made only of the pages in RDAREAs 1 through
3 that were updated.

Database recovery procedure

To recover a database up to the point the differential backup was made on
Tuesday, as the input information for the database recovery utility, you use the full
backup made on Sunday, the differential backup made on Monday, and the
differential backup made on Tuesday. For details about how to operate the
differential backup facility, see the HiRDB Version 8 System Operation Guide.

Note:

A differential backup cannot be made of a LOB RDAREA.

Reference note:

The differential backup facility can also be used during operation without
unloading the system log.

7.2.4 Backup-hold
When a backup is made with a command other than the pdcopy command (i.e., when
another product's backup facility is used), the RDAREAs should be placed on
backup-hold. An RDAREA on backup-hold can be backed up using the backup facility
of another product while HiRDB is running. To place an RDAREA on backup-hold,
you specify the -b option in the pdhold command.

(1) Application example of backup-hold
If you execute the pdcopy command in updatable mode, you must place the RDAREA
to be backed up on backup-hold (-b u or -b wu).

(2) Backup-hold types
Table 7-3 lists and describes the four types of backup-hold.

7. Database Management

280

Table 7-3: Types of backup-hold

For details about how to make a backup using the backup shutdown, see the HiRDB
Version 8 System Operation Guide.

Reference note:

Reference-possible backup hold and reference-possible backup hold (update
WAIT mode) are also referred to as committing a database.

7.2.5 Reducing the time needed to make backups of user LOB
RDAREAs (frozen update command)

Using the frozen update command (pddbfrz command) allows you to reduce the time
needed to make backups of user LOB RDAREAs. Consider using the frozen update
command for the following operations:

• Making a backup of user LOB RDAREAs using a method other than the database
recovery utility (pdcopy command)

• Making a backup of HiRDB files on a file-by-file basis
• Performing operations that do not typically occur when updating or deleting

registered LOB data (operations that typically occur when adding LOB data)
• Making a backup of a user LOB RDAREA consisting of multiple HiRDB files

For details about how to make backups using the frozen update command, see the
HiRDB Version 8 System Operation Guide.

Backup-hold type Explanation

Referencing-permitted backup-hold During backup-hold, RDAREAs that have been backed up and held
can be referenced; an updating attempt will result in an SQL error
(-920).

Referencing-permitted backup-hold
(update WAIT mode)

During backup-hold, RDAREAs that have been backed up and held
can be referenced; an updating attempt goes onto lock-release wait
status until the backup-hold is released.

Updatable backup-hold During backup-hold, RDAREAs that have been backed up and held
can be referenced and updated. Even while an updating transaction
is being executed, an RDAREA is placed immediately on updatable
backup-hold status without placing the pdhold command on wait
status.

Updatable backup-hold (WAIT mode) During backup hold, RDAREAs that have been backed up and held
can be referenced and updated. If an updating transaction is being
executed, the pdhold command is kept waiting until the transaction
terminates.

7. Database Management

281

(1) Overview of the frozen update command
When you execute the frozen update command, HiRDB files with data pages that are
entirely full (all pages are allocated) in a user LOB RDAREA are placed in frozen
update status. Data in a HiRDB file that has been placed in frozen update status cannot
be updated or deleted. Figure 7-6 provides an overview of frozen update command
processing.

Figure 7-6: Overview of frozen update command processing

Explanation
• A user LOB RDAREA exists that contains HiRDB files 1 through 4. All data

pages in HiRDB files 2 and 3 are full.
• Executing the frozen update command on this user LOB RDAREA places

HiRDB files 2 and 3 into frozen update status. HiRDB files that are in frozen
update status are indicated in the KFPH27024-I message.

• HiRDB files 1 and 4 are placed in permit update status.
(2) How to use the frozen update command to make backups

Figure 7-7 shows how to use the frozen backup command to make backups.

7. Database Management

282

Figure 7-7: How to use the frozen update command to make backups

Explanation
The frozen update command is executed before the backup is made. As a result,
HiRDB files 2 and 3 are placed in frozen update status.
1. The first time the backup is made, a backup is made of all HiRDB files

(HiRDB files 1 through 4).
2. Because HiRDB files 2 and 3 are in frozen update status, their contents do

not change after the first time the backup is made. Therefore, the next time a
backup is made, HiRDB files 2 and 3 do not need to be backed up. Only
HiRDB files 1 and 4 are backed up.

Remark

Because the first HiRDB file (HiRDB file 1 in Figure 7-7) contains a management
record, even if the data area becomes full, the file is still written to on a regular
basis. Consequently, backups are always made of the first HiRDB file.

7.2.6 NetBackup linkage facility
Using the NetBackup linkage facility allows you to create backup files for use by the
database copy utility (pdcopy) or database recovery utility (pdrstr) on a medium
managed by a NetBackup server. To use the NetBackup linkage facility, you need JP1/
VERITAS NetBackup Agent for HiRDB License.

7. Database Management

283

Note:

The NetBackup linkage facility cannot be used with the Windows Server 2003
(IPF) and Windows (x64) versions of HiRDB.

(1) System configuration example of the NetBackup linkage facility
By using the NetBackup linkage facility, you can create backup files on a medium that
is managed by the NetBackup server. Figure 7-8 shows a system configuration
example of the NetBackup linkage facility.

Figure 7-8: System configuration example of the NetBackup linkage facility

For details about the NetBackup linkage facility, and about the products required to use
the NetBackup linkage facility, see JP1/VERITAS NetBackup v4.5 Agent for HiRDB
License Description and User's Guide.

(2) Advantages of using the NetBackup linkage facility
The following describes the advantages of using the NetBackup linkage facility:

• Ability to manage backup files with NetBackup
Because NetBackup manages the output destination of backup files as well as the
backup date and time, you do not need to change the name of the backup file when
you make a backup. In addition, when you are recovering (restoring), and simply
specifying the volume name and backup date and time, NetBackup selects the

7. Database Management

284

correct backup file for you. Moreover, if you are using the most recent backup
file, you do not even have to specify the backup date and time.

• Ability to create backup files on storage devices connected to server machines on
which HiRDB is not installed
You can create backup files on a storage device that is connected to a server
machine on which HiRDB is not installed. If you do not use the NetBackup
linkage facility, you can only create backup files on storage devices connected to
server machines on which HiRDB is installed.

• Ability to use a wide variety of media types for backup files
You can create backup files on any media that are supported by NetBackup. For
details about the media that are supported by NetBackup, see the NetBackup
documentation.

• Ability to use different operating systems for the HiRDB server and the
NetBackup server
You can use the NetBackup linkage facility even if the operating systems on
which the HiRDB server and the NetBackup server run differ.

7. Database Management

285

7.3 Reorganizing tables and indexes

It is recommend that the table owner or the DBA privilege holder execute periodically
the database reorganization utility (pdrorg) to reorganize tables and indexes.

7.3.1 Table reorganization
Deleting data does not release the segments and pages in which the deleted data has
been stored. Therefore, when deletion of data has been performed many times, the
amount of dead space in the table becomes significant, resulting in a decrease in data
storage efficiency. Eventually, this can mean a shortage of space for RDAREAs, even
though there has not been an increase in the amount of data.
Similarly, if data is added repeatedly, problems arise with respect to data not being
stored in pages near the cluster key and to proliferation in the number of data I/O
operations. The result is degradation of data retrieval performance. Executing the
database reorganization utility (pdrorg) to reorganize a table causes the system to
re-store the table's data, which can prevent these problems from arising. Figure 7-9
illustrates table reorganization.

Figure 7-9: Table reorganization

Explanation
• First, the table is stored temporarily in an unload file; this process is called

table unloading. Subsequently, the data is re-stored in the table; this process
is called table data reloading. The entire process is called table
reorganization.

7. Database Management

286

• If an index is defined for the table, the index information is output to an index
information file when the data is reloaded. Based upon this information,
HiRDB re-creates the index in the batch mode, which reorganizes the index
as well.

(1) Execution units for table reorganization
Table reorganization can be executed in the following units:

• By table
• By RDAREA
• By schema

(a) Reorganization by table
Reorganization processing can be performed on an entire table; this is the method that
is usually used. You should first execute the database condition analysis utility to
determine whether or not the entire table needs to be reorganized. If so, you can then
execute reorganization of the entire table. Figure 7-10 illustrates reorganization of an
entire table.

Figure 7-10: Reorganization of an entire table

Note
The data indicated by shading is subject to reorganization.

Explanation
The table to be reorganized is specified in the -t option of the database
reorganization utility.

(b) Reorganization by RDAREA
Reorganization processing is performed on a per-RDAREA basis. This method can be
used only if the table is row-partitioned. Reorganization of RDAREAs is executed
when the results of the database condition analysis utility indicate that it would suffice

7. Database Management

287

to reorganize only a portion of a row-partitioned table. This reduces the processing
time compared with reorganization of the entire table. Figure 7-11 illustrates
reorganization of an RDAREA.

Figure 7-11: Reorganization of an RDAREA

Explanation
The table to be reorganized is specified in the -t option and the RDAREAs to be
reorganized are specified in the -r option of the database reorganization utility.

(c) Reorganization by schema
This processing reorganizes all tables in a schema in the batch mode. Reorganization
by schema can be used when you wish to reorganize all the tables you own on a batch
basis. Figure 7-12 illustrates reorganization of a schema.

7. Database Management

288

Figure 7-12: Reorganization of a schema

Explanation
The authorization identifier of the schema to be reorganized is specified in the -t
option of the database reorganization utility. The specification format is: -t
authorization-identifier.all.

(2) Reorganizing a table containing a large quantity of data
When a table containing a large quantity of data is to be reorganized, you must consider
whether or not reorganization with synchronization points set should be executed.
Normally, while a table is being reorganized, transactions cannot be reconciled until
storage processing of all the data has been completed. This means that synchronization
point dumps cannot be obtained during execution of the database reorganization utility.
If HiRDB terminates abnormally during reorganization of a large quantity of data, it
will take a long time to restart HiRDB. To resolve this problem, you can set
synchronization points at intervals of any number of data items during storage of the
data (reload processing) in order to reconcile transactions. This is called reorganization
with synchronization points set.
To perform reorganization with synchronization points set, you must specify a
synchronization point lines count, which is the number data items to be stored before
a synchronization point is set. This value is specified in the option statement of the
database reorganization utility.
Synchronization point setting can also be specified in the database load utility; this is
called data loading with synchronization points set.

(3) Facility for predicting reorganization time
The decision on whether to reorganize tables or indexes or whether to extend an

7. Database Management

289

RDAREA must be made by the user based on using messages that are output and the
execution results of the pddbst command to make a comprehensive evaluation of
which tables to reorganize and when to reorganize them. It is possible that the user may
reorganize a table that does not need to be reorganized or may neglect to reorganize a
table that does need reorganizing because of an overlooked message that was output.
To simplify this operation, HiRDB is now able to predict when reorganization will be
necessary. The function that performs this prediction is called the facility for predicting
reorganization time. Figure 7-13 provides an overview of this facility.

7. Database Management

290

Figure 7-13: Overview of facility for predicting reorganization time

* A day on which RDAREA maintenance needs to be performed is called a scheduled
database maintenance day.
Predicting when reorganization will be needed is divided into two phases:

Phase 1: Get reorganization prediction data
• The pddbst command is executed periodically, and analysis results from the

7. Database Management

291

database are accumulated in the database state analyzed table.
• Whenever SQL code or a command is executed, an operation log from the

database is output to the database management table.
Phase 2: Analyze reorganization prediction data
Using the database state analyzed table and database management table as the
input information, the pddbst command is used to analyze the reorganization
prediction data. The user checks the execution results of the pddbst command
and performs one of the following operations as needed:

• Uses the pdrorg command to reorganize tables or indexes
• Uses the pdreclaim command to release used free pages and free segments
• Uses the pdmod command to extend an RDAREA
• Uses the pdmod command to automatically extend an RDAREA
• Uses the pdmod command to reinitialize an RDAREA.

The facility for predicting reorganization time also provides the two levels described
below. Prediction level 1, which predicts the time required for pddbst to accumulate
database analysis results, can be run in a relatively short amount of time. However,
Prediction level 2 may require a much longer time to run.

Prediction level 1
This level predicts when an RDAREA will no longer have sufficient free space.
This level is designed for users who do not want to reorganize frequently while
there is still sufficient free space for the RDAREA.
Prediction level 2
In addition to predicting when an RDAREA will no longer have sufficient free
space, this level predicts degradation of storage efficiency in tables and indexes.
This level is designed for users who want to reorganize as soon as table or index
access performance is reduced, regardless of the amount of free space for the
RDAREA.

For details about the facility for predicting reorganization time, see the HiRDB Version
8 System Operation Guide and the section about the database condition analysis utility
in the manual HiRDB Version 8 Command Reference.

7.3.2 Index reorganization
It is possible to reorganize an index only. Figure 7-14 illustrates index reorganization
of an index.

7. Database Management

292

Figure 7-14: Index reorganization

Explanation
Index reorganization involves retrieving index key information, creating an index
information file, and rearranging the index based on this information. Index
reorganization can be executed by index or by RDAREAs that store an index.

(1) Applicability and application criteria
Index reorganization can be applied to normal indexes only; it cannot be used to
reorganize plug-in indexes. Index reorganization should be executed in order to release
dead space in index storage pages that has been generated by addition, deletion, or
updating of large amounts of data.

(2) Index reorganization and its use
• When data updating (UPDATE) has been performed frequently, reorganization of

the indexes only is recommended.
• When data deletion (DELETE) or addition (INSERT) has been performed

frequently, reorganization of the table is recommended.
• If there is not enough time to reorganize a table, you can reorganize the index only

in order to reduce index search time.
(3) Differences from re-creation of an index

Index re-creation involves a search of the table data; index reorganization does not
involve a search of the table data. For this reason, index reorganization requires less
processing time than re-creation,* sorting is not required, and processing performance
is improved.

7. Database Management

293

* Processing time is reduced if the following condition is satisfied:
Number of pages used in table storage RDAREA > Number of pages used in index
storage RDAREA

(4) Notes on index reorganization
Before reorganizing simultaneously multiple indexes that are stored in the same
RDAREA, you should use the pdhold command to place the RDAREA on shutdown
status. When reorganization processing has been completed, you can use the pdrels
command to release the RDAREA from shutdown status.

(5) Technique for reducing reorganization execution time
The processing time involved in index reorganization can be reduced by not collecting
database update log information (setting either the no-log mode or the pre-update log
acquisition mode in the -l option of the database reorganization utility (pdrorg)).

(6) Reorganizing an index in an RDAREA that has insufficient free space
The amount of unused area per page is specified in the PCTFREE operand of CREATE
TABLE or CREATE INDEX when the index is reorganized is applied. However, if the
index being reorganized is in an RDAREA that has insufficient free space to
accommodate the specified percentage of unused area, the RDAREA can run out of
space during index reorganization processing. To prevent this, you should specify the
idxfree operand in the option statement of the database reorganization utility
(pdrorg), and use the PCTFREE operand of CREATE TABLE or CREATE INDEX to
change the percentage of unused area per page.
It must be noted that this is a temporary measure that is used during reorganization. In
normal operations, the RDAREA should be expanded by executing the database
structure modification utility (pdmod).

7. Database Management

294

7.4 Reusing used free pages and used free segments

You can reuse used free pages in tables and indexes by converting them to unused
pages. Similarly, you can reuse used free segments by converting them to unused
segments. Before reading the descriptions in this section, however, you must be
familiar with page statuses and segment statuses. For details about page statuses, see
4.3 Page design. For details about segment statuses, see 4.2 Segment design.

7.4.1 Reusing used free pages
(1) Releasing used free pages

When a large amount of table data is deleted by a batch job or some other operation,
some of the pages in which that table data is being stored (data pages) may become
used free pages. Similarly, when an index is defined, some of the pages in which index
key values are being stored (index pages) also become used free pages. By executing
the free page release utility (pdreclaim), you can convert used free pages to unused
pages, and reuse them. This is called releasing used free pages. Figure 7-15 provides
an overview of releasing used free pages.

Figure 7-15: Releasing used free pages

Hint:

• You cannot release used free pages of data stored in LOB RDAREAs.
• You cannot release used free pages of plug-in indexes.

For details about releasing used free pages, see the HiRDB Version 8 System Operation
Guide.

(2) Benefits gained from releasing used free pages
(a) Benefits gained from releasing used free pages of tables

Table 7-4 lists and describes the benefits gained from releasing used free pages of a

7. Database Management

295

table.
Table 7-4: Benefits gained from releasing used free pages of a table

Legend:
Good: Always beneficial.
Varies: The degree of benefit varies depending on conditions.

(b) Benefits gained from releasing used free pages of indexes
Table 7-5 lists and describes the benefits gained from releasing used free space of an
index.

Benefit Description Degree of
benefit

Ability to increase the
table reorganization cycle

The ability to reuse used free pages improves data storage efficiency.
In turn, this can increase (improve) the table reorganization time
cycle.

Good

Improvement in
performance when
searching large data sets

Because they are a type of used page, used free pages are searched.
However, searching is not performed on unused pages (they are
skipped by the search). Thus, converting to unused pages improves
the search performance in direct proportion to the ratio converted.
The benefits are particularly evident when large data sets are
searched.

Varies

Improvement in
performance when
INSERT and UPDATE
are used.

If sufficient contiguous free space cannot be allocated when an
attempt is made to save data to a used page, HiRDB performs a
process called page compaction. Page compaction refers to a process
whereby data in the affected page is repacked to secure sufficient
contiguous free space in which to store the new data. When free used
pages are released, page compaction is also performed at the same
time. This eliminates the need to perform page compaction
which prolongs INSERT and DELETE processing and improves
performance by the corresponding amount. The pages on which page
compaction is performed are used pages other than full pages and
used free pages.

Varies

Potential reduction in
errors when INSERT and
UPDATE are performed
on branch rows.

If you execute INSERT or UPDATE on a branch row when there are
no unused pages, an error occurs (KFPA11756-E message). The
increase in unused pages due to the release of used free pages tends
to reduce the frequency of this error.

Varies

7. Database Management

296

Table 7-5: Benefits gained from releasing used free space of an index

Legend:
Great: Particularly beneficial.
Good: Always beneficial.
Varies: The degree of benefit varies depending on conditions.

Using this utility is particularly beneficial when deleted key values are not
re-registered. Because used free pages are reused when the same key value is added or
deleted repeatedly, large numbers of used free pages do not appear. However, for
indexes that are defined for rows that increase or decrease by a fixed number (such as
date, sequence number, and so on), and if past data is deleted in order with the
increases in data, a large number of used free pages that are not reused appear in the
first half of the index pages. Figure 7-16 shows the processing of a used free page being
created for index pages.

Benefit Description Degree of
benefit

Potential reduction of
insufficient capacity in
RDAREAs storing
indexes

If capacity runs out even though free pages (used free pages) exist,
release the used free pages. Note that this tends to reduce the
occurrence of insufficient capacity in RDAREAs that store indexes
with key values that are frequently updated or deleted.

Great

Ability to increase the
index reorganization
cycle

The ability to reuse used free pages improves data storage efficiency.
In turn, this can increase (improve) the index reorganization time
cycle.

Good

Improvement in
performance when
searching large data sets
that use indexes

Because they are a type of used page, used free pages are searched.
However, searching is not performed on unused pages (they are
skipped by the search). Thus, converting to unused pages improves
the search performance in direct proportion to the ratio converted. The
benefits are particularly evident when large data sets are searched.

Varies

7. Database Management

297

Figure 7-16: Process of used free pages being created for index pages

Note that, after the used free pages are released, the key values are stored in the
released pages, which improves data storage efficiency.

(3) Differences from table or index reorganization
From the standpoint of performance and data storage efficiency, reorganizing tables or
indexes is superior to releasing used free pages. However, while releasing used free
pages, you can still access the tables or indexes on which the utility is operating. With
reorganization, you cannot access the tables or indexes on which the utility is
operating. This means that you do not need to interrupt normal operations when
releasing free pages.
Use the execution results of the database condition analysis utility to evaluate whether
to reorganize tables or indexes, or to release used free pages. The following lists the
evaluation criteria:

• If there is a large number of used free pages, release the used free pages.
• If the page utilization ratio of the used pages differs significantly from the

segment free page ratio (value of the PCTFREE operand of CREATE TABLE),
perform reorganization.

7.4.2 Reusing used free segments
(1) Releasing used free segments

By executing the free page release utility, you can convert used free segments to
unused segments, and reuse them. This is called releasing used free segments. Figure
7-17 provides an overview of releasing used free segments.

7. Database Management

298

Figure 7-17: Releasing used free segments

For details about releasing used free segments, see the HiRDB Version 8 System
Operation Guide.

(2) Benefits gained from releasing used free segments
Once segments are allocated, only the table (or index) that is assigned to use a
particular segment can use it; no other table can do so. Releasing used free segments
converts used free segments to unused segments, which allows other tables to use
them.

7. Database Management

299

7.5 Adding, expanding, and moving RDAREAs

As the scale of operations increases, the amount of data in your databases increases as
well. However, even if a database becomes larger than your original estimate, with
HiRDB, you can subsequently add, expand, or move the database. With HiRDB/
Parallel Server, you can also add a server machine and add or move a database onto the
new server machine.
HiRDB provides the following functions to support increases in the amount of data in
your databases:

• Adding RDAREAs
• Expanding RDAREAs
• RDAREA automatic extension
• Moving RDAREAs (HiRDB/Parallel Server only)

7.5.1 Adding RDAREAs
RDAREAs can be added with the create rdarea statement of the database structure
modification utility (pdmod). RDAREAs should be added when a new table is created.
To use a newly added RDAREA, it is necessary to allocate a global buffer to it. For
this purpose, you should use the pdbufls command to check for an available
(previously defined) global buffer.

7.5.2 Expanding an RDAREA
As more and more data is added to a table, the available space in its RDAREAs
becomes smaller and smaller. When the amount of remaining space becomes too
small, it is possible to expand RDAREAs with the expand rdarea statement of the
database structure modification utility (pdmod).

7.5.3 RDAREA automatic extension
When a space shortage occurs in an RDAREA, the size of the RDAREA can be
expanded by means of automatic addition of segments, provided that there is sufficient
free space in the HiRDB file system area. This process is called RDAREA automatic
extension. Figure 7-18 illustrates RDAREA automatic extension.

7. Database Management

300

Figure 7-18: RDAREA automatic extension

A set of contiguous areas in a HiRDB file system area is called an extent. The
maximum number of extents for a single HiRDB file is 24. With automatic extension,
the number of extents does not increase if contiguous free space can be secured in the
last extent allocated in the target HiRDB file. However, if non-contiguous free space
is allocated, the number of extents is increased. Extent information can be checked
with the pdfls command. Fragmentation of free space in a HiRDB file system area
can occur because previously allocated extents may be deleted or their sizes may be
reduced when an RDAREA is deleted, reinitialized (its allocation size is reduced or the
with reconstruction operand is specified), or integrated. Caution must be
exercised if you add, extend, or reinitialize an RDAREA while it is in this status,
because multiple extents may be allocated to a single HiRDB file regardless of whether
or not automatic extension is being performed.

(1) RDAREAs eligible for automatic extension
Automatic extension can be applied to the following RDAREAs:

• Data dictionary RDAREAs
• User RDAREAs
• Registry RDAREA
• Data dictionary LOB RDAREAs
• User LOB RDAREAs
• Registry LOB RDAREA

(2) Setting automatic extension
Following is the procedure for setting automatic extension:
1. When the HiRDB file system area is created with the pdfmkfs command, specify

the maximum number of extensions (in the -e option).

7. Database Management

301

2. When an RDAREA is created, use a utility control statement* to specify use of
the automatic extension facility.
* This can be specified in the create rdarea, expand rdarea, initialize
rdarea, or alter rdarea statement of the database initialization utility, the
database structure modification utility, or the registry facility initialization utility.

For details about RDAREA automatic extension, see the HiRDB Version 8 System
Operation Guide.

7.5.4 Moving RDAREAs (HiRDB/Parallel Server only)
You can use the move rdarea statement of the database structure modification utility
(pdmod command) to move an RDAREA to another back-end server. The capability
of moving an RDAREA is provided only by HiRDB/Parallel Server. The following
lists the RDAREAs that can be moved:

• User RDAREAs
• User LOB RDAREAs

Figure 7-19 provides an overview of moving RDAREAs.
Figure 7-19: Moving RDAREAs

7. Database Management

302

For details about moving RDAREAs, see the HiRDB Version 8 System Operation
Guide.

7. Database Management

303

7.6 Space conversion facility

In a data comparison, one double-byte space character and two single-byte space
characters will be recognized as different data. Therefore, table data containing a
mixture of double-byte and single-byte space characters can produce incorrect
retrieval results.
Example

The following data are recognized as being different:

The space conversion facility enables double-byte space characters and single-byte
space characters to be intermixed in table data.
The double-byte space character being discussed here is coded as shown as follows.
Two single-byte space characters are coded as X'2020'.

• Shift-JIS Kanji Code: X'8140'
• Unicode (UTF-8)*: X'E38080'

* NCHAR and NVARCHAR cannot be used if the character encoding is Unicode (UTF-8).
(1) Space conversion levels

As shown in Table 7-6, three levels of space character conversion are provided by the
space conversion facility.

Table 7-6: Space conversion levels

Level Explanation

Level 0 No space conversion.

7. Database Management

304

Figure 7-20 illustrates Level 1 processing. Figure 7-21 illustrates Level 3 processing.
Figure 7-20: Level 1 processing

Level 1 Converts as follows data spaces that occur in literals, embedded variables, and ? parameters
in the data manipulation SQL or data spaces that are stored by utilities:
• When a character string literal is being handled as a national character string literal, two

single-byte space characters in succession are converted into one double-byte space
character; in the case of a single occurrence of a single-byte space, no conversion is
performed.

• When a character string literal is being handled as a mixed character string literal, one
double-byte space character is converted into two single-byte space characters.

• During storage of data in a national character string-type column or during comparison of
data with a national character string-type value expression, two single-byte space
characters in succession in an embedded variable or ? parameter are converted into one
double-byte space character; in the case of a single occurrence of a single-byte space, no
conversion is performed.

• During storage of data in a mixed character string-type column or during comparison of
data with a mixed character string-type value expression, one double-byte space character
is converted into two single-byte space characters.

Level 3 Adds the following processing to the processing of space conversion level 1:
• During retrieval of data in a national character string-type value expression, one

double-byte space character is converted into two single-byte space characters.

Level Explanation

7. Database Management

305

Figure 7-21: Level 3 processing

(2) Setting the space conversion level
The desired space conversion level can be specified in the following operands:

• pd_space_level operand in the system common definition
• PDSPACELVL operand in the client environment definition
• spacelvl operand in the option statement of the database load utility

(pdload)
• spacelvl operand in the option statement of the database reorganization utility

(pdrorg)
For details about using the space conversion facility, see the HiRDB Version 8 System
Operation Guide.

7. Database Management

306

7.7 Facility for conversion to a decimal signed normalized number

The decimal, date interval, and time interval data formats are signed packed formats
consisting of a value's integer and sign parts. Normally, HiRDB handles X'C'
(positive), X'D' (negative), and X'F' (positive) as the sign parts of signed
packed-format data as valid values, and stores directly in the database any signs that
are input from a UAP or utility.* In addition, HiRDB treats +0 (sign part X'C' or X'F')
and -0 (sign part X'D') as distinct values.
Use of the facility for conversion to a decimal signed normalized number enables
conversion of the sign part of a signed packed decimal, date interval, or time interval
data format.
* Type conversions and operations during the execution of SQL statements sometimes
result in conversion of signs. In addition, the use of multicolumn indexes can result in
conversion of signs.

(1) Specification of the sign part of signed packed format
In HiRDB, specification of the sign part of signed packed format is as listed in Table
7-7.

Table 7-7: Specification of the sign part of signed packed format

(2) Rules on conversion of the sign part of signed packed format
When the facility for conversion to a decimal signed normalized number is used,
HiRDB converts during data input the sign part of signed packed format according to
the rules in Tables 7-8 and 7-9. The process of converting a sign part is called
normalization. When the sign part is converted, the codes +0 and -0 can be treated as
being the same value.

Table 7-8: Rules for conversion of the sign part of signed packed format (other
than "0" data)

Sign part Meaning

X'C' Indicates a positive value.

X'D' Indicates a negative value.

X'F' Indicates a positive value.

Sign part of embedded variable Not normalized Normalized

X'A' Error Converts to X'C'.

X'B' Error Converts to X'D'.

7. Database Management

307

Table 7-9: Rules for conversion of the sign part of signed packed format ("0"
data)

(3) Application criteria
When UAPs with different sign part specifications are used, it may be beneficial to use
the facility for conversion to a decimal signed normalized number. In such a case, this
facility should be used after the sign conversion rules are adequately confirmed.
For example, if a UAP is transferred from XDM/RD E2 to HiRDB, it may be
beneficial in some situations to use the facility for conversion to a decimal signed
normalized number, because XDM/RD E2 and HiRDB have different specifications
for the sign part of the decimal type.

(4) Environment setup
To use the facility for conversion to a decimal signed normalized number, you must
specify pd_dec_sign_normalize=Y in the system common definition.
The facility for conversion to a decimal signed normalized number should be specified
as soon as HiRDB is installed. If sign parts are to be normalized once operation of
HiRDB is underway, it may be necessary to reload all table data in which the decimal
type is defined.
For details about using the facility for conversion to a decimal signed normalized

X'C' No conversion No conversion

X'D' No conversion No conversion

X'E' Error Converts to X'C'.

X'F' No conversion Converts to X'C'.

X'0' - X'9' Error Error

Sign part of "0" data Not normalized Normalized

X'A' Error Converts to X'C'.

X'B' Error

X'C' No conversion

X'D' No conversion

X'E' Error

X'F' No conversion

Sign part of embedded variable Not normalized Normalized

7. Database Management

308

number, see the HiRDB Version 8 System Operation Guide.

309

Chapter

8. Error-handling Facilities

This chapter describes error-handling facilities.
8.1 System switchover facility
8.2 Recovery-unnecessary front-end servers

8. Error-handling Facilities

310

8.1 System switchover facility

Linking to a cluster software product allows you to use the system switchover facility,
which is designed to improve system reliability and availability. This section provides
an overview of the system switchover facility. For details about how to operate the
system switchover facility, see the HiRDB Version 8 System Operation Guide.
Note that, to use the system switchover facility, you must use Microsoft Cluster Server
(MSCS) as your cluster software.

8.1.1 Overview of the system switchover facility
The system switchover facility includes the standby system switchover facility and the
standby-less system switchover facility.

(1) Overview of the standby system switchover facility
By deploying a standby HiRDB separate from the HiRDB that is actively processing
jobs, if a failure occurs on the server machine or on HiRDB, job processing can be
automatically switched over to the standby HiRDB. This ability is called the system
switchover facility (standby system switchover facility). Job processing is interrupted
from the time the failure occurs to the time processing is switched over to the standby
HiRDB. The system switchover facility is used to keep system downtime to a
minimum when a failure occurs.
You implement the system switchover facility with a cluster system configuration
consisting of multiple server machines. For HiRDB/Single Server, the system is
switched over on a per-system basis. For HiRDB/Parallel Server, the system is
switched over on a per-unit basis.
The system on which jobs are currently being processed is called the running system,
and the system that is currently in reserve is called the standby system. Whenever a
system switchover occurs, the running system and the standby system are swapped. In
addition, to distinguish between the two systems while you are building the systems
and configuring the environments, the system that is initially started as the running
system is called the primary system, and the system that is first started as the standby
system is called the secondary system. Although the running system and the standby
system change when a system switchover occurs, the primary system and secondary
system do not. Figure 8-1 provides an overview of the system switchover facility
(standby system switchover facility).

8. Error-handling Facilities

311

Figure 8-1: Overview of the system switchover facility (standby system
switchover facility)

* For details about shared disk unit, see (3) Shared disk unit, as follows.
Explanation

If a failure occurs on the running system while it is processing jobs, the failure
occurrence is reported to the standby system, and the system is switched over. The
standby system becomes the running system, and resumes job processing.

(2) Overview of the standby-less system switchover facility
The system switchover facility includes the previously described standby system
switchover facility and the standby-less system switchover facility. The standby-less
system switchover facility is further classified as follows:

• Standby-less system switchover (1:1) facility
• Standby-less system switchover (effects distributed) facility

The standby-less system switchover facility can be used in a back-end server unit of a
HiRDB/Parallel Server; it cannot be used in a unit in which a server other than a
back-end server resides.

8. Error-handling Facilities

312

Unlike the standby system switchover facility, with the standby-less system
switchover facility you do not have to allocate a standby unit. When a failure occurs,
the system does not switch over to a standby unit; instead, the system switches over to
another unit whose currently running back-end server takes over the back-end server
processing of the failed unit. This is called the standby-less system switchover facility.

(a) Standby-less system switchover (1:1) facility
With the standby-less system switchover (1:1) facility, there is a one-to-one
relationship between the unit on which the failure occurs and the unit to whose
back-end server processing is switched.
A back-end server whose processing is transferred to another unit when a failure
occurs is called a normal BES, and a back-end server that takes over processing is
called an alternate BES. Similarly, the unit containing the normal BES is called the
normal BES unit, and the unit containing the alternate BES is called the alternate BES
unit. Figure 8-2 provides an overview of the standby-less system switchover (1:1)
facility.

Figure 8-2: Overview of the standby-less system switchover (1:1) facility

Explanation
• Normally, both BES1 and BES2 perform processing.
• If a failure occurs on the normal BES unit (UNT1), the system switches over,

and processing is taken over by the alternate BES. The area in which

8. Error-handling Facilities

313

processing is taken over is called the alternate portion and, when the
alternate portion is performing processing, it is said to be alternating.

• After the failure is resolved and the normal BES unit is started, the
processing taken over by the alternate BES is switched over to the normal
BES, and returned to normal status. This is called reactivating the system.

Remarks
Using the concepts of the primary and other systems in the standby system
switchover facility, consider the following with respect to the standby-less system
switchover (1:1) facility:

• Think of the normal BES unit as the primary system, and the alternate BES
unit as the secondary system.

• Under normal conditions, think of the normal BES unit as the running
system, and the alternate portion as the standby system. During alternating,
think of the alternate portion as the running system, and the normal BES unit
as the standby system.

Prerequisites
To use the standby-less system switchover (1:1) facility, all of the following must
be satisfied:

• HiRDB Advanced High Availability is installed.
• Hitachi HA Toolkit Extension is installed.
• The system switchover facility is running in server mode.

Advantages of the standby-less system switchover facility
The following describes the advantages of the standby-less system switchover
facility over the standby system switchover facility:

• You do not need to set aside a standby system unit, which means you can use
system resources more efficiently. However, remember that the load
increases on the back-end server that takes over processing when the system
is switched over, which may adversely affect processing performance.

• The server processes and system servers are already running, which allows
you to reduce system switchover time to be about the same as when the rapid
system switchover facility is used. For details about the rapid system
switchover facility, see 8.1.5 Functions that reduce system switchover time
(user server hot standby and the rapid system switchover facility).

(b) Standby-less system switchover (effects distributed) facility
When a failure occurs, processing requests directed to back-end servers in the failed
unit can be distributed to and executed in multiple active units. This is called the

8. Error-handling Facilities

314

standby-less system switchover (effects distributed) facility. This facility enables you
to use your system resources more efficiently, without having to allocate a standby
server machine or a standby unit. Of course, there may be adverse effects on
transaction processing performance because of the increased processing load on the
units that have taken over processing for the servers in the failed unit. However,
because the processing requests directed to the failed servers are distributed to and
executed in a number of units, the workload increase for each unit is minimized,
reducing overall degradation of system performance.
The standby-less system switchover (effects distributed) facility distributes the
workload to and switches over among multiple back-end servers. The workload can
also be distributed among multiple units. If another failure occurs, this time on a unit
that was a switchover destination from the previous error, processing can be continued
by again switching to a running unit (this is called multi-stage system switchover).
Multi-stage system switchover cannot be performed with the standby-less system
switchover (1:1) facility, so if a failure occurs at a switchover destination under that
facility, processing for the failed unit cannot be continued.
It is appropriate to use the standby-less system switchover (effects distributed) facility
in a system in which system resources must always be used at high efficiency and for
which degradation of system performance must be minimized.
With the standby-less system switchover (effects distributed) facility, a back-end
server that relinquishes processing when a failure occurs is called a host BES, and a
back-end server that takes over processing is called a guest BES. The unit containing
the host BESs is called the regular unit, and a unit containing a guest BES is called an
accepting unit. All accepting units must be pre-defined as an HA group. The resources
for back-end servers associated with guest BESs are called guest areas.
Figure 8-3 provides an overview of the standby-less system switchover (effects
distributed) facility (with distribution alternates and multi-stage system switchover).

8. Error-handling Facilities

315

Figure 8-3: Overview of standby-less system switchover (effects distributed)
facility (with distribution alternates and multi-stage system switchover)

8. Error-handling Facilities

316

Prerequisites
To use the standby-less system switchover (effects distributed) facility, the
following conditions must be satisfied:

• HiRDB Advanced High Availability is installed
• The standby-less system switchover (effects distributed) facility can switch

only to a unit dedicated to back-end servers (a unit that consists only of
back-end servers).

• A unit that uses the standby-less system switchover (effects distributed)
facility must consist of one or more back-end servers for the primary system.
It cannot be used as a dedicated accepting unit.

(3) Shared disk unit
System switchover requires that there be an external hard disk that is shared by the
primary and secondary systems. This hard disk is called the shared disk unit; it is used
to transfer information from the running system to the standby system when system
switchover occurs. The following HiRDB files must be created on the shared disk unit:

• HiRDB files that comprise RDAREAs
• System files (system log files, synchronization point dump files, status files)
• Back-up files
• Unload log files
• HiRDB file system area for audit trail files (if the security audit facility is being

used)

8.1.2 Monitor mode and server mode
(1) Functional difference between the monitor mode and the server mode

You can operate the system switchover facility in either the monitor mode or the server
mode. In the monitor mode, only system failures are monitored. In the server mode,
both system failures and server failures are monitored. In addition, system switchover
can take less time in the server mode than in the monitor mode. Table 8-1 indicates the
functional differences between the monitor mode and the server mode.

Table 8-1: Functional differences between the monitor mode and the server
mode

Item or function Monitor mode Server mode

Monitored failure System failure1 Y Y

Server failure2 N Y

8. Error-handling Facilities

317

Legend:
Y: Item is monitored, or the function can be used.
N: Item is not monitored, or the function cannot be used.

1 In this table, the following failures are assumed to be system failures; however,
system failure conditions differ depending on the cluster software used. We
recommend you to check your cluster software documentation to verify.

• Hardware failure
• OS failure
• Power outage
• Cluster software failure
• System slowdown

2 In this table, the following failures are assumed to be server failures; however, server
failure conditions differ depending on the cluster software used. We recommend you
to check your cluster software documentation to verify.

• Abnormal termination of HiRDB (or unit if HiRDB/Parallel Server)
• Slowdown of HiRDB (or unit if HiRDB/Parallel Server)
• Database path errors

3 Functions that reduce the system switchover time. For details about user server hot
standby and the rapid system switchover facility, see 8.1.5 Functions that reduce
system switchover time (user server hot standby and the rapid system switchover
facility).

(2) Products needed to operate in the server mode
Table 8-2 lists the products you need to operate the system switchover facility in the
server mode.

Functions provided to
system switchover time

User server hot standby3 N Y

Rapid system switchover facility3 N Y

Standby-less system
switchover facility

Standby-less system switchover (1:1)
facility

N Y

Standby-less system switchover
(effects distributed) facility

N Y

Item or function Monitor mode Server mode

8. Error-handling Facilities

318

Table 8-2: Products needed to operate in the server mode

Legend:
Y: The indicated product is needed to use the facility.

: Not required.
As of the publication date, Hitachi HA Toolkit Extension runs on Windows 2000
Advanced Server only, which means that this functionality can be used only in a
Windows 2000 Advanced Server environment.

8.1.3 System switchover facility configurations
The system switchover facility provides the following three switchover modes:

• Automatic system switchover
The running system is switched over automatically when a failure occurs on it.

• Planned system switchover
The cluster administrator moves a HiRDB group to switch over the system
intentionally.

• Grouped system switchover
This is the system switchover mode used when HiRDB is linked to another
product, such as an OLTP product. When a failure occurs on the running system,
the OLTP product and HiRDB (unit) are grouped, and the grouped system is
switched over. With grouped system switchover, you can use either automatic
system switchover or planned system switchover. To determine whether you can
use grouped system switchover, check your cluster software documentation.

8.1.4 System configuration examples
This subsection provides system configuration examples when the system switchover
facility is being used.

Function HiRDB Advanced High
Availability

Hitachi HA Toolkit
Extension

Server mode Y

User server hot standby Y

Rapid system switchover facility Y

Standby-less system switchover (1:1)
facility

Y Y

Standby-less system switchover (effects
distributed) facility

Y Y

8. Error-handling Facilities

319

(1) System configuration examples of the standby system switchover facility
(a) One-to-one system switchover configuration

This configuration provides a one-to-one correspondence between running systems
and standby systems. Use this configuration when you wish to guarantee response
times, even when a system has been switched over. However, you cannot use the
resources on the standby server machines (one set of server machine resources cannot
be used for every two server machines). Figure 8-4 illustrates a one-to-one system
switchover configuration.

Figure 8-4: One-to-one system switchover configuration

(b) Two-to-one system switchover configuration
This configuration provides a two-to-one correspondence between running systems
and standby systems. The secondary system is configured as a multi-HiRDB system.
Use this configuration with operations for which you wish to guarantee response times,
even when a system has been switched over (response times deteriorate, though, if the
two running systems have both been switched over). However, you cannot use the
resources on the standby server machines (one set of server machine resources cannot
be used for every three server machines). Figure 8-5 illustrates a two-to-one system
switchover configuration.

8. Error-handling Facilities

320

Figure 8-5: Two-to-one system switchover configuration

(c) Mutual system switchover configuration
This configuration provides an alternating standby system on each server machine
while, at the same time, the server machine is operating as a running system. Every
server machine is configured as a multi-HiRDB system consisting of a HiRDB running
system and a HiRDB standby system. Use this configuration when you wish to utilize
server machine resources most efficiently. However, response times deteriorate when
a system has been switched over. Figure 8-6 illustrates a mutual system switchover
configuration.

Figure 8-6: Mutual system switchover configuration

8. Error-handling Facilities

321

(2) System configuration examples of standby-less system switchover (1:1)
facility

This subsection provides examples of typical system configurations when the
standby-less system switchover (1:1) facility is used.

(a) Mutual alternating configuration
This configuration example employs reciprocal alternate BESs on two back-end
servers using standby-less system switchover (1:1). Figure 8-7 illustrates a system
configuration example of such a mutual alternating configuration.

Figure 8-7: System configuration example of a mutual alternating configuration

Explanation
• BES1 is the alternate BES for BES2. If a failure occurs on BES2, the

alternate portion for BES2 takes over the BES2 processing.
• BES2 is the alternate BES for BES1. If a failure occurs on BES1, the

alternate portion for BES1 takes over the BES1 processing.
(b) One-way alternating configuration

This configuration example employs an alternate BES on one back-end server only
using standby-less system switchover (1:1). Figure 8-8 illustrates a system
configuration example of a one-way alternating configuration (2-node configuration).

8. Error-handling Facilities

322

Figure 8-8: System configuration example of a one-way alternating
configuration (2-node configuration)

Explanation
BES2 is the alternate BES for BES1. If a failure occurs on BES1, the alternate
portion for BES1 takes over the BES1 processing. If a failure occurs on BES2,
BES1 does not take over its processing.

(3) System configuration examples of the standby-less system switchover
(effects distributed) facility

Figure 8-9 illustrates a system configuration example of the standby-less system
switchover (effects distributed) facility. When a failure occurs in a regular unit,
processing directed to the back-end servers of the failed primary system is distributed
to and executed on multiple active server machines at their back-end servers.

8. Error-handling Facilities

323

Figure 8-9: System configuration example of the standby-less system
switchover (effects distributed) facility

Explanation
1. If a failure occurs in unit 1, unit 2 executes the processing as a guest BES for

BES1 and unit 3 executes the processing as a guest BES for BES2.
2. If a failure occurs in unit 2 while unit 1 is still down, unit 3 executes the

processing as guest BESs for BES1, BES2, BES3, and BES4.
(4) System configuration example of a mixed standby-less (1:1) and standby type
setup

Figure 8-10 shows a configuration example of a mixed standby-less (1:1) and standby
type setup.

8. Error-handling Facilities

324

Figure 8-10: System configuration example of a mixed standby-less (1:1) and
standby type setup

Explanation
• The units containing a MGR (system manager), FES (front-end server), and

DS (dictionary server) employ the standby system switchover facility in a
mutual system switchover configuration.

• The units containing a BES (back-end server) employ the standby-less
system switchover (1:1) facility in a mutual alternating configuration.

8. Error-handling Facilities

325

• HiRDB Advanced High Availability is needed on all server machines.
HiRDB Advanced High Availability is also required on server machines for
which neither the standby-less system switchover facility nor the standby
system switchover facility is employed.

8.1.5 Functions that reduce system switchover time (user server hot
standby and the rapid system switchover facility)

HiRDB offers the following functions to reduce system switchover time:
• User server hot standby
• The rapid system switchover facility

Note that, to use these functions, the system switchover facility must be operating in
the server mode. You cannot use these functions if the system switchover facility is
operating in the monitor mode.

(1) User server hot standby
When a system switchover occurs, the following processing is performed to start the
standby HiRDB:

• System server startup processing
• System file transfer processing
• Server process startup processing
• Roll forward processing

Of the preceding, the time needed for the server process startup processing accounts
for a large proportion of the entire system switchover time. The time required for
server process startup processing is directly proportional to the number of resident
server processes, which means that system switchover time increases as the number of
resident processes increases. You can reduce this time, however, by starting the server
processes of the standby HiRDB beforehand, so that server process startup processing
is not performed when the system is switched over. This allows you to reduce the
system switchover time by the amount of time required for system process startup
processing. This concept is called user server hot standby. For example, on a server
machine that runs at a speed of approximately 100 MIPS, one second is required to
start a single server process. In this case, user server hot standby would reduce the
system switchover time by about one second for each resident server process.
For details about user server hot standby, see the HiRDB Version 8 System Operation
Guide.

(2) Rapid system switchover facility
A facility is provided to start the server processes and the system server on the standby
HiRDB beforehand, so that startup processing of the system processes and system

8. Error-handling Facilities

326

server need not be performed when the system is switched over. This facility is called
the rapid system switchover facility. With it, you can reduce the system switchover
time by the amount of time required to perform startup processing of system processes
and the server system. For details about the rapid system switchover facility, see the
HiRDB Version 8 System Operation Guide.
Note that the rapid system switchover facility can reduce the system switchover time
more than user server hot standby can (the rapid system switchover facility includes
the user server hot standby function). Figure 8-11 compares the system switchover
times of various operating modes.

Figure 8-11: Comparison of system switchover times

Explanation
The processing indicated in the shaded area is performed in advance, after which
the associated processes stand by; therefore, this processing does not need to be
performed when a system is switched over. Thus, system switchover time is
reduced by the amount of time required to perform the processing indicated in the
shaded area.

8. Error-handling Facilities

327

8.2 Recovery-unnecessary front-end servers

Installing HiRDB Non Recover FES enables you to use recovery-unnecessary
front-end servers. This section provides a brief description of recovery-unnecessary
front-end servers. For details about recovery-unnecessary front-end servers, see the
HiRDB Version 8 Installation and Design Guide.

8.2.1 Overview of recovery-unnecessary front-end servers
When an error in a unit that contains a front-end server causes the front-end server to
terminate abnormally, transactions that were being executed by that front-end server
may remain uncommitted. Transactions in uncommitted status maintain an exclusive
hold on the database, restricting access to and updating of that locked portion of the
database. Normally, the front-end server error must be cleared and the server restarted
to commit the uncommitted transactions. However, if a front-end server that is
terminated abnormally is a recovery-unnecessary front-end server, HiRDB
automatically commits its uncommitted transactions. You can then you use another
front-end server or back-end server to resume processing on the database. A unit that
contains a recovery-unnecessary front-end server is called a recovery-unnecessary
front-end server unit. Figure 8-12 shows the operation with and without using a
recovery-unnecessary front-end server.

Figure 8-12: Operation with and without using a recovery-unnecessary
front-end server

Note that HiRDB Non Recover FES must be installed in order to use
recovery-unnecessary front-end servers.
Application criteria

This feature enables the front-end servers that remain after an error to resume

8. Error-handling Facilities

328

online operations without the erroneous front-end server having to be restarted. It
is recommended that this feature be used with systems that require continuous,
24-hour per day operation.

Specification method
To use a recovery-unnecessary front-end server, specify stls in the -k option of
the pdstart operand.

8.2.2 Configuration example of a system that uses a
recovery-unnecessary front-end server

Figure 8-13 shows a configuration example of a system that uses a
recovery-unnecessary front-end server.

Figure 8-13: Configuration example of a system that uses a
recovery-unnecessary front-end server

Explanation
• Set up the recovery-unnecessary front-end server in a stand-alone unit.
• UAPs that connect using the X/Open XA interface cannot be executed on a

recovery-unnecessary front-end server. Specify PDFESHOST and
PDSERVICEGRP in the client environment definition to direct them to
connect to front-end servers other than a recovery-unnecessary front-end
server.

• You can still execute the pdrplstart and pdrplstop commands, even if
a recovery-unnecessary front-end server or a recovery-unnecessary
front-end server unit is stopped.

329

Chapter

9. Facilities Related to Security
Measures

This chapter describes facilities that provide support for database security measures.
9.1 Security facility
9.2 Security audit facility
9.3 Connection security facility

9. Facilities Related to Security Measures

330

9.1 Security facility

To prevent database access by outsiders, HiRDB provides a security facility. Based on
a concept called user privileges, the security facility allows only users who have an
appropriate privilege to access the database.
This section provides an overview of the security facility. For details about how to
operate the security facility, see the HiRDB Version 8 System Operation Guide.

9.1.1 User privileges
This section explains the user privileges that are set up by HiRDB. Figure 9-1 shows
the HiRDB user privileges.

Figure 9-1: HiRDB user privileges

These HiRDB user privileges are granted to various users, such as HiRDB
administrators, DBA privilege holders, and schema owners.
Privileges granted to HiRDB administrators

The administrator's own DBA privilege, audit privilege, and RDAREA usage
privilege

Privileges granted to DBA privilege holders

DBA privilege, schema definition privilege, RDAREA usage privilege, and
CONNECT privilege

Privilege granted to schema owners

Access privilege
(1) DBA privilege

The DBA privilege is required in order to grant and revoke DBA privileges,
CONNECT privileges, and schema definition privileges. It permits the following
actions:

• Granting DBA privileges, CONNECT privileges, and schema definition
privileges to other people

9. Facilities Related to Security Measures

331

• Revoking DBA privileges, CONNECT privileges, and schema definition
privileges granted to other people

• Defining other users' schemas
Defining a schema allows the schema owner to define base tables, view tables,
indexes, abstract data types, foreign tables,1 foreign indexes,1 stored procedures,
stored functions, and triggers.

• Deleting other users' schemas, base tables, view tables, indexes, abstract data
types, foreign tables,1 foreign indexes,1 stored procedures, stored functions, and
triggers

• Defining items related to the connection security facility

• Connecting to HiRDB (CONNECT privilege holders2)

• Defining and modifying foreign servers1

• Defining user mapping1

1 Operation that can be performed when using HiRDB External Data Access. For
details about HiRDB External Data Access, see HiRDB External Data Access Version
8.
2 The CONNECT privilege is not needed to use the Directory Server linkage facility.
For details about the Directory Server linkage facility, see Section 2.3 Linkage to
directory server products.

(2) Audit privilege
This privilege is required for auditors. This privilege allows a user to perform the
following actions:

• Accessing audit trail tables
• Loading data to audit trail tables
• Granting and revoking the SELECT privilege to audit trail tables
• Deleting audit trail tables
• Changing auditor passwords
• Defining and deleting audit events
• Swapping audit trail files

To use the security audit facility, you need to set the audit privilege. For details about
the security audit facility, see 9.2 Security audit facility.

9. Facilities Related to Security Measures

332

(3) CONNECT privilege
The CONNECT privilege is required in order to use HiRDB. This privilege permits a
user to connect to the database. An attempt to connect to the database by a user who
does not have the CONNECT privilege results in an error.
Using the Hitachi Directory Server linkage facility

When user information (user ID and password) is registered into the Directory
Server, the CONNECT privilege is granted to the user. For details about the
Directory Server linkage facility, see Section 2.3 Linkage to directory server
products.

(4) Schema definition privilege
The schema definition privilege is required in order to define a schema. This privilege
permits a user to take the following actions:

• Defining the user's own schema
Defining a schema allows the schema owner to define base tables, view tables,
indexes, abstract data types, foreign tables,* foreign indexes,* stored procedures,
stored functions, and triggers.

• Deleting the user's own schemas, base tables, view tables, indexes, abstract data
types, foreign tables,* foreign indexes,* stored procedures, stored functions, and
triggers

* Operation that can be performed when using HiRDB External Data Access. For
details about HiRDB External Data Access, see HiRDB External Data Access Version
8.

(5) RDAREA usage privilege
The RDAREA usage privilege is required in order to use an RDAREA. This privilege
permits a user to define tables and indexes in the RDAREA to which the privilege
applies. An RDAREA for which the RDAREA usage privilege is granted by
specifying an authorization identifier is called a private user RDAREA, and an
RDAREA for which the RDAREA usage privilege is granted by specifying PUBLIC
is called a public user RDAREA.

(6) Access privileges
An access privilege is required in order to access a table. Only those users who have
an access privilege are allowed to access a table. Access privileges are set for each
table. The types of access privilege are listed in Table 9-1.

9. Facilities Related to Security Measures

333

Table 9-1: Access privilege types

9.1.2 Operating the security facility
HiRDB administrators, DBA privilege holders, and schema administrators operate the
security facility by assigning various privileges to HiRDB users. For details about
assigning privileges, see the HiRDB Version 8 System Operation Guide.

Access privilege type Explanation

select privilege Allows retrieval (select) of row data from the table.

INSERT privilege Allows addition (INSERT) of row data to the table.

DELETE privilege Allows deletion (DELETE) of row data from the table.

UPDATE privilege Allows updating (UPDATE) of row data in the table.

9. Facilities Related to Security Measures

334

9.2 Security audit facility

This section describes the security audit facility. For details about how to operate the
security audit facility, see the HiRDB Version 8 System Operation Guide.

9.2.1 Overview of the security audit facility
(1) Functional overview

HiRDB security is protected by means of privileges. The information that can be
accessed or updated, and the objects that can be manipulated (tables, indexes, and so
on), are controlled with privileges. To check whether or not these privileges are being
applied properly, HiRDB can record a variety of actions that are performed on the
databases. This functionality is called the security audit facility, and the operations
record that it outputs is called an audit trail. By examining the output audit trail, you
can check whether there has been fraudulent access. This check is performed by users,
called auditors, who have been assigned the audit privilege. Figure 9-2 provides an
overview of the security audit facility.

Figure 9-2: Overview of the security audit facility

The security audit facility collects information about who is using privileges, which
privileges they are using, and the objects on which they are using the privileges to
perform operations. The auditor uses the CREATE AUDIT statement to specify the
operations on which the security audit facility is to collect information. Once specified,
an audit trail is collected whenever an operation for which an audit trail is specified to
be collected is performed.

9. Facilities Related to Security Measures

335

Reference note:

The purpose of the security audit facility is not to enhance security. It is
designed simply to output an operation log that enables checking of whether or
not privileges are being used correctly.

(2) Audit trail collection times
HiRDB collects an audit trail when any of the following events occurs:

• When a privilege check is performed because a command or SQL statement is
executed

• When an event ends
The security audit facility does not collect an audit trail when an SQL syntax error
occurs or when an incorrectly keyed command is entered.
For details about audit trail collection triggers, see the HiRDB Version 8 System
Operation Guide.

(3) Audit trail collection examples
Examples of audit trail collection are provided in this subsection.
Example 1: Collecting an audit trail when a table is searched

The table access privilege (SELECT privilege) is used when a table is searched, so
an audit trail is collected.

Item searched
(SQL specification)

Contents of audit trail

User Privilege
used

Type of
manipulated

object

Name of
manipulated

object

Operation
type

A user (USR1)
issues the
following SELECT
statement:
SELECT C1 FROM
USR1.T1

Privilege USR1 Table access
privilege
(SELECT
privilege)

Table USR1.T1 Table access
(SELECT)

End USR1 Table USR1.T1 Table access
(SELECT)

9. Facilities Related to Security Measures

336

Legend:
Privilege: Audit trail is collected at time of privilege checking.
End: Audit trail is collected when the event terminates.

: Not applicable
Example 2: Collecting an audit trail when a table is defined or deleted

The schema owner privilege, table owner privilege, and RDAREA owner
privilege are used when a table is defined or deleted, so an audit trail is collected.

A user (USR2)
issues the
following SELECT
statement:
SELECT
T1.C1,T2.C1
FROM USR1.T1
T1,USR2.T2 T2
WHERE
T1.C1=T2.C1

Privilege USR2 Table access
privilege
(SELECT
privilege)

Table USR1.T1 Table access
(SELECT)

USR2 Table access
privilege
(SELECT
privilege)

Table USR2.T2 Table access
(SELECT)

End USR2 Table USR1.T1 Table access
(SELECT)

USR2 Table USR2.T2 Table access
(SELECT)

Item searched
(SQL specification)

Contents of audit trail

User Privilege
used

Type of
manipulated

object

Name of
manipulated

object

Operation
type

A user (USR1)
issues the
following CREATE
TABLE:
CREATE TABLE
T1(C1 INT) IN
RDAREA1

Privilege USR1 RDAREA
usage
privilege

RDAREA RDAREA1 Definition
creation

USR1 Owner Schema USR1 Definition
creation

USR1 Owner Table USR1.T1 Definition
creation

End USR1 Table USR1.T1 Definition
creation

Item searched
(SQL specification)

Contents of audit trail

User Privilege
used

Type of
manipulated

object

Name of
manipulated

object

Operation
type

9. Facilities Related to Security Measures

337

Legend:
Privilege: Audit trail is collected at time of privilege checking.
End: Audit trail is collected when the event terminates.

: Not applicable
(4) Information collected in audit trails

Table 9-2 lists and describes the information collected in audit trails.
Table 9-2: Information collected in audit trails

A user (USR2)
issues the
following DROP
TABLE:
DROP TABLE T1

Privilege USR2 Owner Table USR2.T1 Definition
deletion

End USR2 Table USR2.T1 Definition
deletion

Information collected Description

User identifier Authorization identifier of the executor of the audit event

Event execution date Year, month, and date the event was executed

Event execution time Time the event was executed

Event execution duration Amount of time it took for the event to execute (in microseconds)

Event type Event type

Event subtype Event subtype

Event result Execution results of the event (whether or not the privilege check
was successful)

Privilege used Privilege used when the event was executed

UAP name UAP name specified in the PDCLTAPNAME operand of the client
environment definition

Service name Service name requested by the UAP that issued the event.
This is the item that corresponds to the service name when an
OpenTP1 SUP (service using program) requests a service from an
SPP (service providing program), or when TP1/Message Control
requests a service from an MHP (message handling program).

Item searched
(SQL specification)

Contents of audit trail

User Privilege
used

Type of
manipulated

object

Name of
manipulated

object

Operation
type

9. Facilities Related to Security Measures

338

IP address Client IP address at which the UAP that issued the event is
running*

Process number Process ID from the UAP that issued the event*

Thread number Thread ID from the UAP that issued the event*

Host name Name of the host to which the UAP that issued the event is
connected

Unit identifier Identifier of the unit to which the UAP that issued the event is
connected

User name Name of the front-end server or single server to which the UAP
that issued the event is connected

Connection sequence number Connection sequence number of the event issuer

SQL sequence number SQL sequence number of the event

Object owner name Name of the owner of the object on which the event privilege
check is performed

Object name Name of the object on which the event privilege check is
performed

Object type Type of the object on which the event privilege check is
performed

Assigned, revoked, or modified privilege Privilege that was assigned, revoked, or modified due to the event

Identifier of the user who assigned, revoked,
or modified a privilege, and the user
identifier for the event

Identifier of the user who assigned, revoked, or modified the
privilege with the event and the authorization identifier for the
event

Values of security audit facility-related
operands

Values of operands related to the security audit facility (values at
HiRDB startup)

Audit trail type Indicator of privilege check or event end

SQL code or end code Code issued when the SQL, utility, or command ends

Swap source audit trail file name Name of audit trail file at swap source when a swap occurs

Swap target audit trail file name Name of audit trail file at swap target when a swap occurs

Configuration change type of connection
security facility

Configuration change type set in the connection security facility
(a change type is also set when the password is changed)

Values of operands related to connection
security facility (before change)

Values of operands related to the connection security facility
before they have been changed

Information collected Description

9. Facilities Related to Security Measures

339

Note
The information items that are collected depends on the event. For a list of the
types of information that are collected for each event, see the HiRDB Version 8
System Operation Guide.

* For events provided via an application running under OpenTP1 or provided via a
Web server or similar product, information is collected from the application to which
HiRDB is connected, not from the application that the end user is running.

(5) Accessing an audit trail
Audit trails are output to an audit trail file. Data in an audit trail file can be accessed
using SQL once the data has been loaded into an audit trail table by the database load
utility (pdload command). Note that the auditor can access (but not update) this audit
trail table. Users other than the auditor can access (but not update) an audit trail table
only if they are granted access privilege by the auditor. Figure 9-3 shows how to access
audit trails.

Values of operands related to connection
security facility (after change)

Values of operands related to the connection security facility after
they have been changed

Audit trail table options Flag for handling events that target an audit trail table, a view
base table of an audit trail table, or a list base table of an audit trail
table

Information collected Description

9. Facilities Related to Security Measures

340

Figure 9-3: Accessing audit trails

Explanation
1. When an audit event occurs, an audit trail is output to an audit trail file. The

audit trail file is created in a HiRDB file system area allocated for audit trail
files. For details about audit events, see 9.2.2 Audit events.

2. Using as the input audit trails that were output to the audit trail file, the
database load utility (pdload command) is used to load the data into a table.

3. The auditor uses the audit trail table to perform an audit.

9.2.2 Audit events
Operations that are collected in audit trails are called audit events. Table 9-3 lists and
describes audit events.

9. Facilities Related to Security Measures

341

Table 9-3: Audit events

Event type Description and list of audit events Selectable?

System administrator
security event

1. Audits security events generated by HiRDB administrators and
DBA privilege holders.

2. Audits changes to connection security facility settings.
3. Audits security events generated automatically by the system.
An audit trail is output when any of the following events is
generated:
• HiRDB startup (pdstart command)1

• HiRDB termination (pdstop command)1, 2

• Auditor registration (pdmod command)
• Audit trail table creation (pdmod command)
• Audit trail file deletion (pdaudrm command)3

• Start of audit trail collection5

• End of audit trail collection6

• Start of audit trail file overwrite
• Transition to consecutive certification failure account lock state
• Release of consecutive certification failure account lock state

This occurs at the following times:
 When CONNECT is executed after the account lock period

expires
 When DROP CONNECTION SECURITY is executed
 When the pdacunlck command is executed

• Transition to password invalid account lock state
• Release of password invalid account lock state
• Change in a connection security facility setting:

 Permitted number of consecutive certification failures
 Account lock period
 Items set with password character string restrictions

(including pre-checking)
• Execution of the pdacnlck command

No (an audit
trail is always
output)

Auditor security event Audits security events generated by the auditor. An audit trail is
output when any of the following events is generated:
• Loading of data into an audit trail table (pdload command)
• Swapping of audit trail files (pdaudswap command)
• Definition of an audit event (CREATE AUDIT)4

• Deletion of an audit trail event (DROP AUDIT)4

• Changing an auditor password (GRANT AUDIT)4

No (an audit
trail is always
output)

Session security event Audits events generated by user authentication based on an
authorization identifier and password. An audit trail is output when
either of the following events is generated:
• Connection to HiRDB (CONNECT statement)
• Changing users (SET SESSION AUTHORIZATION statement)

Yes

9. Facilities Related to Security Measures

342

Privilege control event Audits events generated by granting and revoking user privileges.
An audit trail is output when either of the following events is
generated:
• Granting a user privilege (GRANT statement)
• Revoking a user privilege (REVOKE statement)

Yes7

Object definition event Audits events generated by definition, deletion, or modification of
objects. An audit trail is output when any of the following events is
generated:
• Definition of an object; audits the following SQL statements:

CREATE FUNCTION
CREATE INDEX
CREATE PROCEDURE
CREATE PUBLIC VIEW
CREATE SCHEMA
CREATE TABLE
CREATE TRIGGER
CREATE TYPE
CREATE VIEW

Yes7

• Deletion of an object; audits the following SQL statements:
DROP DATA TYPE
DROP FUNCTION
DROP INDEX
DROP PROCEDURE
DROP PUBLIC VIEW
DROP SCHEMA
DROP TABLE
DROP TRIGGER
DROP VIEW

• Modification of an object; audits the following SQL statements:
ALTER PROCEDURE
ALTER ROUTINE
ALTER TABLE
ALTER TRIGGER
COMMENT

Event type Description and list of audit events Selectable?

9. Facilities Related to Security Measures

343

1 In the case of a HiRDB/Parallel Server, startup and termination of a single server are
not audit events.
2 Normal termination and planned termination are audit events; forced termination and
abnormal termination are not audit events. For these cases, check the messages output
by HiRDB or the operating system.
The following termination commands are not monitored:

• pdstop -f
• pdstop -f -q
• pdstop -f -x host-name
• pdstop -f -u unit-identifier
• pdstop -f -s server-name
• pdstop -f -u unit-identifier -s server-name
• pdstop -z
• pdstop -z -q

Object operation event Audits events generated by object manipulation. An audit trail is
output when any of the following events is generated:
• Searching a table (SELECT statement)
• Insertion of rows in a table (INSERT statement)
• Updating of rows in a table (UPDATE statement)
• Deletion of rows from a table (DELETE statement)
• Deletion of all rows from a table (PURGE TABLE statement)
• Execution of a stored procedure (CALL statement)
• Locking a table (LOCK TABLE statement)
• Creation of a list (ASSIGN LIST statement)

Yes7

Utility operation event Audits security events generated from operations on objects by
utilities or commands. An audit trail is output when any of the
following events is generated:
• Database load command (pdload command)

Object: TABLE
• pddefrev command

Object: PROCEDURE, TABLE, TRIGGER, and VIEW
• Database reorganization utility (pdrorg command)

Object: TABLE
• Dictionary import/export utility (pdexp command)

Object: PROCEDURE, TABLE, TRIGGER, and VIEW
• Integrity check utility (pdconstck command)

Object: TABLE

Yes7, 8

Event type Description and list of audit events Selectable?

9. Facilities Related to Security Measures

344

• pdstop -z -c
• pdstop -z -s server-name

3 Creation of an audit trail file is not an audit event. To audit creation of audit trail files,
use the audit facility provided by the OS.
4 You can also output an audit trail by executing the database definition utility (pddef
command) or the interactive SQL execution utility.
5 An audit trail is output when the pdaudbegin command is executed or when an
audit trail is collected at HiRDB startup.
6 An audit trail is output when the pdaudend command is executed or when an audit
trail is collected during performance of normal or planned termination of HiRDB.
7 An audit trail is output unconditionally when the event terminates in the case of
privilege control events, object definition events, object operation events, and utility
operation events that target an audit trail table, a view base table of an audit trail table,
or a list base table of an audit trail table. You can select whether or not to collect an
audit trail when a privilege check is performed.
8 An audit trail is output unconditionally when the database reorganization utility
(pdrorg command) is used to reload a dictionary table.

9. Facilities Related to Security Measures

345

9.3 Connection security facility

This section provides a brief description of the connection security facility. For details
about operating the connection security facility, see the HiRDB Version 8 System
Operation Guide.

9.3.1 Overview of the connection security facility
One means of enhancing system security is to use passwords. HiRDB enables you to
set a password for each user. However, if simple, easy-to-guess passwords are used
(for example, one's authorization identifier or birth date), there is an increased
possibility that a fraudulent user could use that password to gain access to the system.
To prevent fraudulent use of passwords, use of the connection security facility is
recommended. Table 9-4 provides an overview of the connection security facility.

Table 9-4: Overview of connection security facility

By combining these two functions, fraudulent use of passwords based on ease of
discovery can be made more difficult, which enhances system security.

Note:

You cannot use a directory server linkage facility and the connection security
facility at the same time. If you use a directory server linkage facility, you must
clear the settings for the connection security facility.

9.3.2 Restrictions on password character strings
(1) Restrictions that can be specified for passwords

Table 9-5 lists the restrictions that can be specified for passwords.

Function Description

Restrictions on password character
strings

You can place restrictions on the character strings that can be specified as
passwords. For example, you can prohibit passwords such as 012345 or
aaaaa. Prohibiting simple passwords tends to increase password security.

Restrictions on the number of
consecutive certification failures

If an incorrect password is entered a specified number of times in
succession, you can bar that user from connecting (CONNECT) to HiRDB.
To do so, you set the maximum number of times an incorrect password can
be entered in consecutive connection attempts, and any user who exceeds
the set number of attempts can no longer connect to HiRDB.
For example, you might permit a user three attempts to enter the correct
password. On the fourth unsuccessful attempt, the user would be
prohibited from connecting to HiRDB.

9. Facilities Related to Security Measures

346

Table 9-5: Restrictions that can be specified for passwords

* Only the following types of characters can be used in passwords:
• Uppercase alphabetic characters: A to Z, #, @, \
• Lowercase alphabetic characters: a to z
• Numeric characters: 0 to 9

Reference note:

You cannot set password character string restrictions for individuals users. The
settings you specify here apply to all users of HiRDB (including DBA privilege
holders and auditors).

(2) Effects on existing users
When you set restrictions on passwords, the account of any user who violates a
restriction is placed in password-invalid account lock state. Users placed in this status
can no longer connect (CONNECT) to HiRDB.
Such a user's password must be changed in order to release the password-invalid
account lock state.
Before setting restrictions on passwords, you should check how many user accounts
are likely to be placed in password-invalid account lock state due to restriction
violations.

(3) Effects on new users
If a password set for a new user with a GRANT DBA, GRANT AUDIT, or GRANT
CONNECT statement violates a restriction, the GRANT statement will not execute.

(4) Specification method
You use CREATE CONNECTION SECURITY to set restrictions on password character
strings.

Item Description

Set a minimum password
length

You can set a minimum length for a password (minimum number of bytes).

Prohibit specification of
authorization identifier

You can prohibit use of one's authorization identifier as a password.

Prohibit only one type of
characters*

You can prohibit passwords that consist of only one type of characters (for
example, only uppercase alphabetic characters, or only numeric characters, etc.).

9. Facilities Related to Security Measures

347

9.3.3 Restrictions on the number of consecutive certification
failures
(1) Restrictions that can be specified

You can specify that when an incorrect password is entered a specified number of times
in succession, that user is to be prohibited from connecting (CONNECT) to HiRDB. You
make this specification by setting a maximum number of consecutive connection
failures (permitted number of consecutive certification failures). Any user who
exceeds this number of unsuccessful password entry attempts will be barred from
connecting to HiRDB.
For example, if you specify 3 for the permitted number of consecutive certification
failures, any user's fourth consecutive failed attempt to gain user certification will
place that user in consecutive certification failure account lock state Users placed in
this status can no longer connect (CONNECT) to HiRDB.

Reference note:

You cannot set restrictions on the number of consecutive certification failures
for individual users. The settings you specify here apply to all users of HiRDB
(including DBA privilege holders and auditors).

You can also set a time period during which an account will be kept in consecutive
certification failure account lock state (account lock period). For example, if you set
the account lock period at 1 hour, a consecutive certification failure account lock state
will remain in effect for one hour. After one hour, the consecutive certification failure
account lock state will be released and the user will be permitted once again to connect
to HiRDB.

Reference note:

• You can also set the account lock period to be indefinite (permanent).
• You can release an account from consecutive certification failure account

lock state before the account lock period has expired.
(2) Specification method

You use CREATE CONNECTION SECURITY to set restrictions on the number of
consecutive certification failures.

349

Chapter

10. Plug-ins

This chapter provides an overview of and explains the functions of the HiRDB
plug-ins; it also explains the HiRDB preparations for using plug-ins.
This chapter contains the following sections:

10.1 Overview of HiRDB plug-ins
10.2 Applying a plug-in to a job
10.3 HiRDB plug-in facilities
10.4 Preparations for using plug-ins in HiRDB

10. Plug-ins

350

10.1 Overview of HiRDB plug-ins

HiRDB is based on a plug-in architecture, in which abstract data types for multimedia
data, such as documents and images, and facilities that enable simple, high-speed
operations on data can be used as a packaged product. With a plug-in architecture,
facilities can be expanded to build a system that can handle multimedia data simply by
registering plug-ins into HiRDB.
Moreover, application programs can handle multimedia data easily and at high speed
without the programmer having to be concerned with complex operational details
typical of multimedia data, and application programs can thus provide information
services to customers efficiently. Table 10-1 lists the HiRDB plug-ins.

Table 10-1: HiRDB plug-ins

For details about the HiRDB plug-in products, see the manuals for the applicable
HiRDB plug-ins.

Plug-in Explanation

HiRDB Text Search Plug-in Provides a function for retrieving a large volume of document information
accurately and quickly.

HiRDB Image Search
Plug-in

Provides a function for extracting feature quantities from the colors and shapes of
images and a function for retrieving similar images by comparing features.

HiRDB File Link Implements a mode for storing a large volume of large-scale, data, such as image
data, at any server (file server) and registers data linkage information in the HiRDB
database. This storage mode minimizes the database workload even when the
amount of data increases. When the amount of data increases, this plug-in can
increase the disk capacity or the number of file servers.

HiRDB Spatial Search
Plug-in

Provides a function for retrieving spatial data (two-dimensional data), such as map
information.

10. Plug-ins

351

10.2 Applying a plug-in to a job

Let's assume that a company needs to use a database to manage data for its personal
computer products catalog. The company's personal computer products catalog may
contain document data on desktop machines, notebook computers, CPUs, and memory
devices, as well as image data on personal computers. When these documents and
image data are stored in a HiRDB database, and the HiRDB Text Search Plug-in and
HiRDB Image Search Plug-in are registered into HiRDB, it becomes possible to use
keywords to retrieve at high speed both document data and image data. When a large
volume of image data must be handled, HiRDB File Link can be used to store the
image data at any server (file server) and link this data to columns in a table of the
HiRDB database. Figure 10-1 shows the application of plug-ins to a job.

10. Plug-ins

352

Figure 10-1: Application of plug-ins to a job

Explanation
• This example uses the HiRDB Text Search Plug-in (SGML plug-in and

n-gram index plug-in) and the HiRDB Image Search Plug-in (features search
plug-in and features search index creation plug-in), which are plug-in

10. Plug-ins

353

package products.
• The product catalog database is built by registering into HiRDB the HiRDB

Text Search Plug-in (SGML plug-in and n-gram index plug-in) and the
HiRDB Image Search Plug-in (HiRDB Image Search Plug-in and a plug-in
for creating an image search index).

• It is possible to retrieve documents using the keyword "notebook personal
computer A" and retrieve personal computer image data using "WHITE" as
the key.

For details about the function and operation of each plug-in, see the manual for the
respective plug-in.

10. Plug-ins

354

10.3 HiRDB plug-in facilities

HiRDB provides the following plug-in products:
• HiRDB Text Search Plug-in
• HiRDB Image Search Plug-in
• HiRDB File Link
• HiRDB Spatial Search Plug-in

The benefits of each of these plug-ins are explained as follows.

10.3.1 HiRDB Text Search Plug-in
The HiRDB Text Search Plug-in provides the following text structure search facilities:

• SGML and XML document registration
• Flat document registration
• Retrieval with structure specification
• Synonym and spelling variation retrieval
• Score retrieval
• Retrieval result text data extraction
• Embedding of retrieval hit location highlighting tag

Each of these facilities is explained as follows.
(1) SGML and XML document registration

A utility provided by the HiRDB Text Search Plug-in can be used to register into the
HiRDB database a DTD file, which defines tag names that indicate the structure and
elements of an SGML and XML document. When the SGMLTEXT constructor
facility based on the registered DTD file is used, the SGML and XML document
together with the document structure information can be registered into the HiRDB
database.

(2) Flat document registration
Flat documents that do not have a structure can be registered into the HiRDB database.

(3) Retrieval with structure specification
A full-text search for SGML and XML documents can be performed by using the
contains abstract data type function to specify the columns to be retrieved and the
retrieval condition (document structure name to be retrieved, a conditional expression
that specifies the keyword to be retrieved).

10. Plug-ins

355

(4) Synonym and spelling variation retrieval
A utility provided by the HiRDB Text Search Plug-in can be used to register synonyms
and spelling variations into a local file. Based on the registered synonyms and spelling
variations, synonyms or spelling variations of a keyword used for a search can also be
retrieved during a full-text search for SGML documents. For example, a search for the
keyword "computer" can also retrieve a synonym such as "electronic computing
machine" and spelling variations such as "COMPUTER" and "Computer".

(5) Score retrieval
The contains_with_score and score abstract data type facilities provided by the
HiRDB Text Search Plug-in can be used to compute points (scores) based on the
frequency of occurrence of the keyword and to display the retrieval results according
to the scores.

(6) Note
HiRDB Text Search Plug-in versions 02-02 and earlier do not support UTF-8 as a
character code classification. If you use a version of HiRDB Text Search Plug-in that
does not support UTF-8, do not specify UTF-8 for the character code classification
with the pdntenv command. For details about support for UTF-8, see the HiRDB Text
Search Plug-in documentation or the Readme file.

10.3.2 HiRDB Image Search Plug-in
The HiRDB Image Search Plug-in provides the following facilities:

Extraction and registration of image data features
Retrieval based on image features
Creation of column index for image features

(1) Extraction and registration of image data features
The HiRDB Image Search Plug-in can extract image features from the colors and
shapes of image data and register them into the HiRDB database. PBM is the only data
type that the HiRDB Image Search Plug-in can handle.
When the digital contents input/output utility provided by Image Database Access is
used, image data is first converted to the PBM format before being transferred to the
HiRDB Image Search Plug-in, and therefore image features can be extracted from
image data in other formats.

(2) Retrieval based on image features
Image Database Access (CORBA object) is used to compare image features that have
been registered in the database with the image features of the image to be retrieved and
to determine their similarity.

10. Plug-ins

356

(3) Creation of column index for image features
The index creation plug-in for image searches can be used to create an index for a
column that stores image features (ImageFeature-type column). When such an index
has been created, images can be retrieved at high speed when image data is specified
as the retrieval condition.

10.3.3 HiRDB File Link
When you are handling large volumes of image data, you can use HiRDB File Link to
store the image data on a file server and to store, in a table column, the information
needed for linking to this image data stored on the file server. This storage mode
minimizes the database load even when the amount of data increases. In addition,
increases in data volume can be handled by increasing the disk capacity or the number
of file servers. Data registration and retrieval are implemented as explained as follows.

(1) Data registration
A utility provided by Image Database Access is used to store image data in a file server
and to store information on the linkage to the image data in a FileLink-type column of
the HiRDB database.

(2) Data retrieval
Image Database Access (CORBA object) is used to retrieve image data based on the
linkage information to image data.

10.3.4 HiRDB Spatial Search Plug-in
The HiRDB Spatial Search Plug-in provides the following facilities:

• Spatial data registration
• Spatial data retrieval

(1) Spatial data registration
The GEOMETRY abstract data type facility provided by the HiRDB Spatial Search
Plug-in makes it possible to define positional information in a map as spatial data
(two-dimensional data with X and Y coordinates specified) and to register it into the
HiRDB database.

(2) Spatial data retrieval
The Within abstract data type facility provided by the HiRDB Spatial Search Plug-in
can be used to evaluate the spatial relationships between the graphic object specified
in a retrieval condition expression and a GEOMETRY-type graphic object, and to
determine whether or not the specified graphic object is included. For example, one
could retrieve "banks located within 100 m of the train station."
The IntersectsIn abstract data type facility can also be used to evaluate the spatial
relationships between the graphic object specified in a retrieval condition expression

10. Plug-ins

357

and a GEOMETRY-type graphic object, and to determine whether or not the specified
graphic object is included or intersects. For example, one could retrieve "roads, train
tracks, and rivers that pass through a certain area."

10. Plug-ins

358

10.4 Preparations for using plug-ins in HiRDB

The preparations explained in this section must be made in order to use plug-ins in
HiRDB.

• Setup and registration of a plug-in
To use a plug-in, it must be set up and registered into HiRDB.

• Initialization of the registry facility
The registry facility must be initialized before registry information can be
registered.

• Table definition for plug-in usage
An object relational database must be created using the abstract data types and
index types provided by the plug-in.

• Delayed batch creation of plug-in index
Instead of adding (updating) plug-in index data when row data is added (updated),
it is possible to use the database reorganization utility later to add (update) the
plug-in index data in a batch.

Each of these preparatory items for using plug-ins is explained as follows.

10.4.1 Setup and registration of a plug-in
To use a plug-in, the plug-in must first be installed, and then it must be set up and
registered in the HiRDB environment. For details about how to set up and register
plug-ins, see the HiRDB Version 8 Installation and Design Guide. For details about
installing plug-ins, see the documentation for the applicable plug-ins.

10.4.2 Initialization of the registry facility
An SGML document may have a structure such as chapter, section, item, and list in the
document itself. If the individual items of data have structures, the user must enable
the plug-in to recognize the each data item's structure when the document is registered.
This type of information that is specific to a plug-in and that is to be used by the plug-in
for data manipulation is called registry information. The facility by which HiRDB
maintains registry information is called the registry facility.
Before the registry facility can be used for a plug-in, it must be initialized; HiRDB's
registry facility initialization utility (pdreginit) is used for this purpose.
Initializing the registry facility creates a registry RDAREA and a registry LOB
RDAREA and stores in HiRDB RDAREAs a table for managing registry information
(registry management table) and data manipulation stored procedures (such as for
registering information into the registry management table).

10. Plug-ins

359

Table 10-2 shows the RDAREAs used for storing information related to the registry
facility.

Table 10-2: RDAREAs for storing information related to registry facility

* The RDAREA to be used for storing information is determined automatically on the
basis of the length of the data to be registered (up to 32,000 bytes is stored in the
registry RDAREA; 32,000 bytes or longer is stored in the registry LOB RDAREA).
For details about registry facility initialization, see the HiRDB Version 8 Installation
and Design Guide. For details about the registry facility setup utility (pdreginit),
see the HiRDB Version 8 Command Reference.

10.4.3 Table definition for plug-in usage
Once a plug-in has been set up and registered, it provides abstract data types and index
types, thus enabling the user to easily build an object relational database that can
handle complex data, such as multimedia information, without having to define a
complex data structure or operations using abstract data types.
To define a table, an abstract data type provided by the plug-in is specified as the data
type of the column in the table. To define an index, an index type provided by the
plug-in is specified as the index. An index for which an index type provided by a
plug-in is specified is called a plug-in index. The specifics of the plug-in index facility
depend on the particular plug-in; for details, see the manual for the applicable plug-in.
For details about designing and creating an object relational database to be used with
plug-ins, see the HiRDB Version 8 Installation and Design Guide.

10.4.4 Delayed batch creation of plug-in index
Addition or updating of row data in a table for which a plug-in index is defined requires
that keys be added to the plug-in index. When a large amount of row data is added or
updated, the resulting addition of keys to the plug-in index can degrade performance.
Instead of adding the plug-in index data at the time the row data is added, the database
reorganization utility (pdrorg) can be used at a later time to add the plug-in index data
in a batch; this is called delayed batch creation of a plug-in index. Figure 10-2 shows
delayed batch creation of a plug-in index.

Registry facility information Storage RDAREA

Registry management table Registry RDAREA or registry LOB RDAREA*

Data manipulation stored procedures, such as for
registering information into the registry
management table

Data dictionary LOB RDAREA

10. Plug-ins

360

Figure 10-2: Delayed batch creation of plug-in index

Prerequisite
It must be determined whether or not the plug-in being used supports delayed
batch creation of plug-in index. Delayed batch creation of plug-in index cannot
be used for a plug-in that does not support this facility.
The HiRDB Text Search Plug-in supports delayed batch creation of plug-in index.

Advantage
Because data is not added to the plug-in index, the execution time (table data
creation time) for a UAP that adds or updates a large volume of data can be
reduced considerably.

Operating procedure
For details about the operating procedure for using delayed batch creation of
plug-in index, see the HiRDB Version 8 System Operation Guide.

361

Chapter

11. 64-Bit-Mode HiRDB

To accommodate larger systems, a 64-bit-mode HiRDB is now supported. This chapter
explains the 64-bit-mode HiRDB.

11.1 Overview
11.2 Functions not available in 64-bit-mode HiRDB
11.3 Differences between 32- and 64-bit modes
11.4 Migrating from 32-bit mode to 64-bit mode

11. 64-Bit-Mode HiRDB

362

11.1 Overview

The 64-bit-mode HiRDB can allocate a larger memory area than the 32-bit-mode
HiRDB, thus reducing the number of input/output operations on databases and work
tables and enhancing performance. Moreover, operating HiRDB in a 64-bit space
enables the 32-bit space that was used previously by HiRDB to be allocated as an area
for application operations, such as a common library. Figure 11-1 compares the 32- and
64-bit modes.

Figure 11-1: Comparison between 32- and 64-bit-mode HiRDBs

11. 64-Bit-Mode HiRDB

363

11.2 Functions not available in 64-bit-mode HiRDB

Not all HiRDB-related products are compatible with the 64-bit mode. Functions that
require incompatible products cannot be used in the 64-bit-mode HiRDB. Table 11-1
shows the applicability of related products in 64-bit-mode HiRDB.

Table 11-1: Applicability of related products in 64-bit-mode HiRDB

Type Product Applicable
?

Related facilities

IPF x64

HiRDB
option
program
products

HiRDB External Data Access N N • HiRDB External Data
Access facility

HiRDB External Data Access Adapter N N

HiRDB Advanced High Availability Y Y • Dynamic update of global
buffer

• System reconfiguration
command

• Standby-less system
switchover (1:1) facility

• Standby-less system
switchover (effects
distributed) facility

HiRDB LDAP Option N N • Sun Java System Directory
Server linkage facility

HiRDB Advanced Partitioning Option Y Y • Table matrix partitioning
• Changing the partition

storage conditions

HiRDB Non Recover FES Y Y • Recovery-unnecessary
front-end server settings

HiRDB
operation
support
products

HiRDB SQL Executer Y Y • SQL interactive execution

HiRDB Control Manager Y Y • HiRDB operations support

HiRDB SQL Tuning Advisor Y Y • SQL trace information
analysis

Plug-ins HiRDB Text Search Plug-in N N • HiRDB Text Search Plug-in

HiRDB Image Search Plug-in N N • HiRDB Image Search
Plug-in

11. 64-Bit-Mode HiRDB

364

Legend:
IPF: Windows Server 2003 (IPF)
x64: Windows (x64)
Y: This product can be used in the 64-bit mode version of HiRDB (the facility can
be used).
N: This product cannot be used in the 64-bit mode version of HiRDB (the facility
cannot be used).

HiRDB Spatial Search Plug-in N N • HiRDB Spatial Search
Plug-in

HiRDB File Link N N • HiRDB File Link

Data linkage HiRDB Datareplicator N N • Data linkage facility

HiRDB Dataextractor N N • Database extraction/
reflection service facility

JP1 JP1/Base Y N • Linkage with JP1

JP1/System Event Service N N

JP1/Automatic Operation Monitor N N

JP1/Integrated Management Y N

Backup
support
products

JP1/VERITAS NetBackup Agent for
HiRDB License

Y Y • NetBackup linkage facility

DABroker DABroker Y Y • DABroker

DABroker for C++ Y Y

DABroker for ORB Y Y

DABroker for COBOL Y Y

DABroker for Java Y Y

Related
products

TP1/Server Base Y Y • OpenTP1

Sun Java System Directory Server N N • Sun Java System Directory
Server linkage facility

Type Product Applicable
?

Related facilities

IPF x64

11. 64-Bit-Mode HiRDB

365

11.3 Differences between 32- and 64-bit modes

In the 64-bit mode, some HiRDB system definition and client environment definition
operands have higher maximum specification values. The two modes also support
different UAP languages.

11.3.1 Differences in HiRDB system definition
The 64-bit mode enables higher maximum values to be specified in some definition
operands, as shown in Table 11-2.

Table 11-2: Operands with higher maximum value specifications (HiRDB
system definition)

Operand Specification item Max value in 32-bit
mode

Max value in 64-bit
mode

pd_hash_table_size Hash table size when
application of hash
execution for a hash
join or a subquery is
specified

524,288 kilobytes 2,097,152 kilobytes

pd_sql_object_cache_s
ize

SQL object buffer size 256,000 kilobytes 2,000,000 kilobytes

pd_table_def_cache_si
ze

Table definition
information buffer
size

65,535 kilobytes 2,000,000 kilobytes

pd_view_def_cache_siz
e

View analysis
information buffer
size

32,000 kilobytes 2,000,000 kilobytes

pd_type_def_cache_siz
e

User-defined type
information buffer
size

65,536 kilobytes 2,000,000 kilobytes

pd_routine_def_cache_
size

Routine definition
information buffer
size

65,536 kilobytes 2,000,000 kilobytes

pd_sds_shmpool_size Single-server shared
memory size

200,000 kilobytes 4,000,000,000 kilobytes

pd_dic_shmpool_size Dictionary server
shared memory size

200,000 kilobytes 4,000,000,000 kilobytes

pd_bes_shmpool_size Back-end server
shared memory size

200,000 kilobytes 4,000,000,000 kilobytes

11. 64-Bit-Mode HiRDB

366

* Total of 1600 definitions per system.

11.3.2 Differences in client environment definition
The 64-bit mode enables higher maximum values to be specified in some definition
operands, as shown in Table 11-3.

Table 11-3: Operands with higher maximum value specifications (client
environment definition)

11.3.3 64-bit-mode HiRDB client support range
With the 64-bit-mode HiRDB/Developer's Kit, you can create UAPs for both the
64-bit mode and the 32-bit mode. With the 64-bit-mode HiRDB/Run Time, you can
create UAPs for both the 64-bit mode and the 32-bit mode. However, not all UAP
languages can be used to create and execute UAPs in the 64-bit mode. Table 11-4
shows the client support range of 64-bit-mode HiRDB.

pd_lck_pool_size Lock pool size per
server

2,000,000 kilobytes 2,000,000,000 kilobytes

pd_fes_lck_pool_size Lock pool size for
front-end servers

2,000,000 kilobytes 2,000,000,000 kilobytes

pd_work_buff_size Work table buffer size 1,000,000 kilobytes 4,000,000,000 kilobytes

pdbuffer Number of global
buffer definitions

500 per server* 1,000 per server*

pdbuffer -n Number of global
buffer sectors

460,000 1,073,741,824

SHMMAX Maximum shared
memory segment size

2,047 megabytes 4,194,304 megabytes

Operand Specification item Max value in 32-bit
mode

Max value in 64-bit
mode

PDAGGR Number of groups resulting from
grouping

30,000,000 2,147,483,647

PDHASHTBLSIZE Hash table size when application
of hash execution for a hash join
or a subquery is specified

524,288 kilobytes 2,097,152 kilobytes

Operand Specification item Max value in 32-bit
mode

Max value in 64-bit
mode

11. 64-Bit-Mode HiRDB

367

Table 11-4: 64-bit-mode HiRDB client support range

Y: Can be created and executed.
N: Cannot be created or executed.
* Because, in 64-bit mode, kernel threading (native threading) is supported instead of
DCE threading, pay particular attention to which libraries you link. For details about
the libraries to link, see the HiRDB Version 8 UAP Development Guide.

Language/functionality Creation and
execution of UAPs for

32-bit mode

Creation and
execution of UAPs

for 64-bit mode

Language C Y Y

C++ Y Y

COBOL Y N

OOCOBOL Y N

XA interface Y N

Multi-connection facility Y Y*

11. 64-Bit-Mode HiRDB

368

11.4 Migrating from 32-bit mode to 64-bit mode

This section provides notes on migrating an application from the 32-bit mode to the
64-bit mode. For details on migrating from 32-bit-mode to 64-bit-mode HiRDB, see
the HiRDB Version 8 Installation and Design Guide.
In order to migrate a HiRDB client from the 32-bit mode to the 64-bit mode, you must
first install the 64-bit-mode HiRDB and set the environment appropriately; For details
on HiRDB client environment setup, see the HiRDB Version 8 UAP Development
Guide.

(1) Incompatible file types
For the most part, files used in the 32-bit mode can be used in the 64-bit mode.
However, the following types of files created in the 32-bit mode are incompatible with
and cannot be used in the 64-bit-mode HiRDB:

• Backup files
• HiRDB files comprising the master directory RDAREA and data directory

RDAREA
(2) Operands with different default values

Changing HiRDB from the 32-bit mode to the 64-bit mode results in changes in the
default values for the HiRDB system definition operands shown in Table 11-5.

Table 11-5: Operands with different default values

* Value if the pd_work_buff_mode operand is omitted, or the default value if pool
is specified. The default value does not change if each is specified in
pd_work_buff_mode.

Operand Specification item Default in 32-bit mode Default in 64-bit mode

pd_work_buff_si
ze

Work table buffer size • HiRDB/Single Server:
384*

• HiRDB/Parallel
Server: 1024*

5120*

pd_fes_lck_pool
_size

Lock pool size for front-end
servers

(Value of pd_max_users
+ 3) (value of
pd_max_access_tables
+ 4) 6

(Value of pd_max_users
+ 3) (value of
pd_max_access_tables
+ 4) 4

SHMMAX Maximum shared memory
segment size

200 megabytes 1024 megabytes

11. 64-Bit-Mode HiRDB

369

(3) Differences in memory requirements
Changing from the 32-bit mode to the 64-bit mode increases HiRDB's memory
requirements. For details on the memory requirement calculations, see the HiRDB
Version 8 Installation and Design Guide.

(4) Differences in UOC interface
Changing to the 64-bit mode requires changes in the UOC interface for the database
load utility (pdload), with the result that the UOC must be re-created. For details on
the UOC interface, see the section on the database load utility (pdload) in the HiRDB
Version 8 Command Reference.

(5) Differences in SQL linkage areas
Changing to the 64-bit mode changes the configuration and sizes of the SQL linkage
areas shown in Table 11-6. For details on the SQL linkage areas, see the HiRDB
Version 8 UAP Development Guide.

Table 11-6: Changes in linkage areas

(6) Changes in SQL descriptor areas
Changing to the 64-bit mode changes the configuration of the SQL descriptor areas, as
well as the sizes and data types of the linkage descriptor areas, as shown in Table 11-7.
For details on the SQL descriptor areas, see the HiRDB Version 8 UAP Development
Guide.

Table 11-7: Changes in descriptor areas

Linkage area Size (bytes)

32-bit mode 64-bit mode

SQLCA 336 368

SQLCABC 4 8

SQLCODE 4 8

SQLERRD 4 6 8 6

Descriptor area 32-bit mode 64-bit mode

Size (bytes) Data type Size (bytes) Data type

SQLDA 16 + 16 n 24 + 24 n

SQLDABC 4 8

SQLVAR 16 n 24 n

11. 64-Bit-Mode HiRDB

370

n: Number of SQLVAR variables specified in the SQLN descriptor area.
: No change in size or data type.

(7) Differences in SQL data types and C-language data descriptions
Because in UAPs written in C that support the 64-bit mode, the long-type is 8-byte
long, the embedded variables that had used long will use int instead, and the
C-language data descriptions listed in Table 11-8 will be changed. For details on the
C-language data descriptions, see the HiRDB Version 8 UAP Development Guide.

Table 11-8: Changed C-language data descriptions

: Cannot be coded.
(8) Procedure for converting a 32-bit-mode UAP into a 64-bit-mode UAP

Following is the procedure for converting a 32-bit-mode UAP into a 64-bit-mode UAP.
1. In the declarations of embedded variables, replace all occurrences of the long type

with the int type.

SQLVAR_LOB 16 n 24 n

SQLLOBLEN long int

SQLDATA 4 8

SQLIND 4 8

SQLLOBIND 4 long 8 int

Data type of SQL Data description in C Data
structure

Remarks

INTEGER Simple
type

int variable-name; Variable

Array type int variable-name [n]; Array 1 n 4096

BLOB indicator variable int
indicator-variable
-name;

SQL statement struct{
 int len;
 char str[n];
} variable-name;

Structure

Descriptor area 32-bit mode 64-bit mode

Size (bytes) Data type Size (bytes) Data type

11. 64-Bit-Mode HiRDB

371

2. Execute UAP preprocessing, specifying the /h64 option, which generates a
64-bit-mode post-source.

3. Compile the UAP, specifying the option that generates 64-bit-mode object code.
4. Link the UAP, specifying the 64-bit-mode HiRDB client library as the library to

be linked.

373

Appendixes

A. Functional Differences Between HiRDB Versions on Different Platforms
B. Data Dictionary Tables
C. HiRDB Client and HiRDB Server Connectivity
D. Glossary

A. Functional Differences Between HiRDB Versions on Different Platforms

374

A. Functional Differences Between HiRDB Versions on Different
Platforms

Table A-1 lists the functional differences between HiRDB versions on different
platforms. Note that some facilities cannot be used, depending on the operating
environment. For details, check the description of each facility.

Table A-1: Functional differences between HiRDB versions on different
platforms

Item Facility, operand, or
command

HP-UX Solaris AIX 5L Linux Windows

Facilities Facility for monitoring the
memory size of server processes

Y Y Y N N

Utility special unit Y Y Y Y N

Sharing of HiRDB system
definitions

Y Y Y Y N

Access from HiRDB VOS3
version clients

Y Y Y Y N

Shell script for creating an unload
statistics log file on a specific
server machine (pdstjacm)

Y Y Y Y N

Facility for parallel output of
system logs

N N Y N N

Option
program
product
related

Inner replica facility (HiRDB
Staticizer Option)

Y Y Y Y N

Updatable online reorganization
(HiRDB Staticizer Option)

Y Y Y Y N

HiRDB External Data Access
facility that uses DB2 as a foreign
server

Y N Y N N

Linkage to
related
products

Sun Java System Directory
Server linkage facility

Y Y Y N Y

Real Time SAN Replication Y N Y N N

Distributed database facility Y N Y N N

A. Functional Differences Between HiRDB Versions on Different Platforms

375

Linkage to JP1/OmniBack II Y N N N N

HiRDB event registration with
JP1/Base (or JP1/System Event
Service)

Y Y Y N Y

Linkage to JP1/Performance
Management - Agent Option for
HiRDB

Y Y Y N Y

Linkage to OLTP (TPBroker) Y Y N N Y

Linkage to OLTP (TUXEDO) N Y N N Y

Linkage to OLTP (WebLogic
Server)

Y Y N N Y

Linkage to OLTP (TP1/EE) N N Y N N

EasyMT, MTguide Y N Y N N

HiRDB
system
definitions

Fixing in shared memory
pd_shmpool_attribute =
fixed

Y Y Y Y N

Global buffer page-fixing option
function
pd_dbbuff_attribute =
fixed

Y Y Y N N

Specification of the maximum
number of consecutive abnormal
terminations during HiRDB
restart processing
pd_term_watch_count

Y Y Y Y N

Specification of the maximum
number of files and pipes that can
be accessed by HiRDB processes
pd_max_open_fds

Y Y Y Y N

Specification of the range of port
numbers to use during
communications processing
pd_registered_port

N N N Y Y

Specification of the maximum
memory size to use for a server
process
pd_svr_castoff_size

Y Y Y N N

Item Facility, operand, or
command

HP-UX Solaris AIX 5L Linux Windows

A. Functional Differences Between HiRDB Versions on Different Platforms

376

Specification of the maximum
size of the communication
buffers used for server intra-unit
communication (TCP-UNIX
domain)
pd_ipc_unix_bufsize

Y Y Y Y N

Specification of the maximum
size of the communication
buffers used for communication
with the HiRDB clients
(TCP-UNIX domain)
pd_tcp_unix_bufsize

Y Y Y Y N

Use of the no-cache access
method
pd_ntfs_cache_disable

N N N N Y

Use of immediate
acknowledgment between
HiRDB servers
pd_ipc_tcp_nodelayack

N N Y N N

Commands pddbadset Y N Y N N

pddbchg Y Y Y Y N

pdgen Y Y Y Y N

pdgeter Y Y Y Y N

pditvstop Y Y Y Y N

pditvtrc Y Y Y Y N

pdlodsv Y Y Y N N

pdmemsv Y Y Y Y N

pdobjconv Y Y Y N N

pdopsetup Y Y Y Y N

pdorbegin Y Y Y Y N

pdorcheck Y Y Y Y N

pdorchg Y Y Y Y N

pdorcreate Y Y Y Y N

Item Facility, operand, or
command

HP-UX Solaris AIX 5L Linux Windows

A. Functional Differences Between HiRDB Versions on Different Platforms

377

pdorend Y Y Y Y N

pdplgset Y Y Y Y N

pdrpause Y Y Y Y N

pdsetup Y Y Y Y N

pdsql Y Y Y Y N

pdprgcopy Y Y Y Y Y

pdprgrenew Y Y Y Y Y

pdkill N N N N Y

pdntenv N N N N Y

Acquisition of a core file with the
pdcancel command

Y Y Y Y N

EasyMT date check with the
pdload command

Y N Y N N

Use or fixed-length tape with the
pdcopy, pdload, pdrstr, and
pdrorg commands

Y Y Y N Y

Client ODBC Driver N N N N Y

OLE DB Provider N N N N Y

HiRDB.NET Data Provider N N N N Y

Third-party COBOL support
facilities

N Y N N N

XA interface for the XDM/RD
E2 connection facility

Y N N N N

Multi-connection facility (kernel
threads)

Y Y Y Y N

HiRDB Java stored procedure/
function distribution wizard

N Y N Y Y

Use of immediate
acknowledgment between
HiRDB servers and clients
PDNODELAYACK

N N Y N N

Item Facility, operand, or
command

HP-UX Solaris AIX 5L Linux Windows

A. Functional Differences Between HiRDB Versions on Different Platforms

378

Legend:
Y: Supported
N: Not supported

B. Data Dictionary Tables

379

B. Data Dictionary Tables

HiRDB creates and manages the data dictionary tables that store table, index, and other
types of definition information. Data manipulation SQL statements are used to
reference data dictionary tables in order to check and confirm table, index, and other
types of definition information.
Table B-1 lists the HiRDB data dictionary tables. For examples of SQL coding for
referencing data dictionary tables and columns in the data dictionary tables, see the
HiRDB Version 8 UAP Development Guide.

Table B-1: Data dictionary tables

No. Table name Contents Information
coverage (per

row)

1 SQL_PHYSICAL_FILES HiRDB file information
(correspondence between HiRDB file
system name and RDAREA names)

1 HiRDB file

2 SQL_RDAREAS Information such as RDAREA name,
definition information, RDAREA type,
number of tables stored, and number of
indexes

1 RDAREA

3 SQL_TABLES Owner and table names of tables in a
database (including dictionary tables)

1 table

4 SQL_COLUMNS Definition information related to a
column, such as column name and data
type

1 column

5 SQL_INDEXES Owner and index names of indexes in a
database (including dictionary tables)

1 index

6 SQL_USERS Authorization identifier of the user who
granted a user execution privilege and
database access

1 user

7 SQL_RDAREA_PRIVILEGES RDAREA usage privilege status 1 RDAREA of 1
authorization
identifier

8 SQL_TABLE_PRIVILEGES Table access privilege granting status 1 table of 1
authorization
identifier

9 SQL_VIEW_TABLE_USAGE Name of base table on which a view
table is based

1 view table

B. Data Dictionary Tables

380

10 SQL_VIEWS View definition information 1 view table

11 SQL_DIV_TABLE Table division information (division
condition and name of RDAREA for
storage, as specified in CREATE TABLE)

1 table per n rows

12 SQL_INDEX_COLINF Name of column to which an index is
assigned

1 index per n
rows

13 SQL_DIV_INDEX Index division information (name of
RDAREA for storage)

1 index per n
rows

14 SQL_DIV_COLUMN BLOB type column division
information (name of RDAREA for
storage, as specified in CREATE TABLE)

1 column per n
rows

15 SQL_ROUTINES Routine definition information 1 routine per row

16 SQL_ROUTINE_RESOURCES Information on resources used in a
routine

1 routine per n
rows

17 SQL_ROUTINE_PARAMS Parameter definition information in a
routine

1 routine per n
rows

18 SQL_ALIASES Information used by the system (empty) None

19 SQL_TABLE_STATISTICS Table statistical information 1 table

20 SQL_COLUMN_STATISTICS Column statistical information 1 column

21 SQL_INDEX_STATISTICS Index statistical information 1 index

22 SQL_DATATYPES User-defined type information 1 user-defined
type

23 SQL_DATATYPE_DESCRIPTORS Information on an attribute that
comprises a user-defined type

1 attribute

24 SQL_TABLE_RESOURCES Resource information to be used in a
table

1 resource

25 SQL_PLUGINS Plug-in information 1 plug-in

26 SQL_PLUGIN_ROUTINES Plug-in routine information 1 plug-in routine

27 SQL_PLUGIN_ROUTINE_PARAMS Parameter information of a plug-in
routine

1 parameter
information item

28 SQL_INDEX_TYPES Index type information 1 index type

No. Table name Contents Information
coverage (per

row)

B. Data Dictionary Tables

381

29 SQL_INDEX_RESOURCES Resource information to be used for an
index

1 resource
information item

30 SQL_INDEX_DATATYPE Index item information 1 applicable
information item
(1 step)

31 SQL_INDEX_FUNCTION Information on an abstract data type
facility to be used for an index

Information on 1
abstract data type
facility

32 SQL_TYPE_RESOURCES Resource information to be used in a
user-defined type

1 resource
information item

33 SQL_INDEX_TYPE_FUNCTION Information on an abstract data type
facility that can be used by an index for
which index type has been defined

1 index per n
rows

34 SQL_EXCEPT Information on index exception key
values

Exception key
group of 1 index
per n rows

35 SQL_FOREIGN_SERVERS DBMS information on foreign servers
accessed by HiRDB when the HiRDB
External Data Access facility is used

1 foreign server
per row

36 SQL_USER_MAPPINGS Mapping information on foreign servers
accessed by HiRDB when the HiRDB
External Data Access facility is used

1 mapping item
for each user on
HiRDB per row

37 SQL_IOS_GENERATIONS Information used by the system (empty) None

38 SQL_TRIGGERS Trigger information in schemas 1 trigger per row

39 SQL_TRIGGER_COLUMNS Event column list information on
UPDATE triggers

1 event column
data item per row

40 SQL_TRIGGER_DEF_SOURCE Definition resource information on
triggers

1 trigger
definition source
data item per n
rows

41 SQL_TRIGGER_USAGE Resource information referenced by
trigger action conditions

1 resource name
referenced by the
trigger action
conditions per
row

No. Table name Contents Information
coverage (per

row)

B. Data Dictionary Tables

382

42 SQL_PARTKEY Information on partitioning keys of
matrix-partitioned tables

1 partitioning key
data item per row

43 SQL_PARTKEY_DIVISION Information on partitioning condition
values of matrix-partitioned tables

1 partitioning
condition value
data item per row

44 SQL_AUDITS Information on audits 1 event data item
for an object or
user per row

45 SQL_REFERENTIAL_CONSTRAINTS Match state of referential constraints 1 constraint per
row

46 SQL_KEYCOLUMN_USAGE Information on columns comprising
foreign keys

1 column per row

47 SQL_TABLE_CONSTRAINTS Information on integrity constraints in
schemas

1 integrity
constraint per row

48 SQL_CHECKS Information on check constraints 1 check constraint
per row

49 SQL_CHECK_COLUMNS Information on columns used by check
constraints

1 column used by
a check constraint
per row

50 SQL_DIV_TYPE Information on partitioning keys in
matrix partitioning tables that combine
key range partitioning and hash
partitioning

1 partitioning key
per row

51 SQL_SYSPARAMS Information on restrictions on number of
consecutive certification failures and on
password character string restrictions

1 setting item per
row, or one
permitted number
of consecutive
certification
failures
specifications or
one password
character string
restriction
specification per
n rows

No. Table name Contents Information
coverage (per

row)

C. HiRDB Client and HiRDB Server Connectivity

383

C. HiRDB Client and HiRDB Server Connectivity

HiRDB clients and HiRDB servers can be connected even though their versions or
platforms are different. Tables C-1 and C-2 show HiRDB client and server
connectivity.
A HiRDB server and a HiRDB client that have the right connectivity may not be able
to actually connect if the client does not support compatible character encodings.

Table C-1: HiRDB client and HiRDB server connectivity (HiRDB server
Version 5.0 or later)

HiRDB client
version (type)

HiRDB server version (type)

Version 6 or later Version 5.0

E H S A L W E H S L W

Version 6 or
later

E Y Y Y Y Y Y Y Y Y

H Y Y Y Y Y Y Y Y Y

S Y Y Y Y Y Y Y Y Y

A Y Y Y Y Y Y Y Y Y

L Y Y Y Y Y Y Y Y Y Y

W Y Y Y Y Y Y Y Y Y Y Y

Version 5.0 E Y Y Y Y Y Y Y

H Y Y Y Y Y Y Y

S Y Y Y Y Y Y Y

A Y Y Y Y Y Y Y

L Y Y Y Y Y Y Y Y Y

W Y Y Y Y Y Y Y Y Y Y Y

Version 4.0
04-03 or later

E Y Y Y Y Y Y Y

H Y Y Y Y Y Y Y

S Y Y Y Y Y Y Y

A Y Y Y Y Y Y Y

W Y Y Y Y Y Y Y Y Y Y Y

C. HiRDB Client and HiRDB Server Connectivity

384

E: HI-UX/WE2 version
H: HP-UX version
S: Solaris version
A: AIX version
L: Linux version
W: Windows version
V: VOS3 version
Y: Connectable

: Not connectable

Version 4.0
04-02 or older

E Y Y Y Y Y Y Y

H Y Y Y Y Y Y Y

W Y Y Y Y Y Y Y Y Y Y Y

Version 03-03
or older

E Y Y Y Y Y Y Y

H Y Y Y Y Y Y Y

S Y Y Y Y Y Y Y

W Y Y Y Y Y Y Y Y Y Y Y

VOS3 client V Y Y Y Y

HiRDB client
version (type)

HiRDB server version (type)

Version 6 or later Version 5.0

E H S A L W E H S L W

C. HiRDB Client and HiRDB Server Connectivity

385

Table C-2: HiRDB client and HiRDB server connectivity (HiRDB server
Version 4.0 or older)

HiRDB client
version (type)

HiRDB server version (type)

Version 4.0 Version 03-03
or olderVersion 04-03

or later
Version 04-02

or older

E H S A W E H W E H S W

Version 6 or
later

E Y Y Y Y

H Y Y Y Y

S Y Y Y Y

A Y Y Y Y

L Y Y Y Y

W Y Y Y Y Y

Version 5.0 E Y Y Y Y

H Y Y Y Y

S Y Y Y Y

A Y Y Y Y

L Y Y Y Y

W Y Y Y Y Y

Version 4.0
04-03 or later

E Y Y Y Y

H Y Y Y Y

S Y Y Y Y

A Y Y Y Y

W Y Y Y Y Y

Version 4.0
04-02 or older

E Y Y Y Y C C

H Y Y Y Y C C

W Y Y Y Y Y C C C

C. HiRDB Client and HiRDB Server Connectivity

386

E: HI-UX/WE2 version
H: HP-UX version
S: Solaris version
A: AIX version
L: Linux version
W: Windows version
V: VOS3 version
Y: Connectable

C: Limited connectivity; can be connected if the version of the HiRDB server is the
same as or higher than the version of the HiRDB client. In other cases, cannot be
connected except in the following cases:

• HiRDB client 04-01 can be connected to HiRDB server 04-00
• HiRDB client 03-02 can be connected to HiRDB server 03-01
• HiRDB client 02-06 can be connected to HiRDB server 02-05
• HiRDB client 02-04 can be connected to HiRDB server 02-03 (but not in the

Windows NT version)
• HiRDB clients 02-05 and 02-06 can be connected to HiRDB server 02-03

(Windows NT version only)
: Not connectable

Version 03-03
or older

E Y Y Y Y Y Y C C C

H Y Y Y Y Y Y C C C

S Y Y Y Y Y Y C C C

W Y Y Y Y Y Y Y Y C C C C

VOS3 client V Y Y

HiRDB client
version (type)

HiRDB server version (type)

Version 4.0 Version 03-03
or olderVersion 04-03

or later
Version 04-02

or older

E H S A W E H W E H S W

D. Glossary

387

D. Glossary

This Appendix defines terms used in the HiRDB manuals.
abstract data type

An abstract data type is a unique data type defined by the user so that data with a
complex structure and operations involving it can be handled in SQL.

abstract data type column structure base table
A table containing abstract data type columns and from which the abstract data type
columns have been removed is called an abstract data type column structure base table.

accepting unit
A unit in which is located a guest BES when the standby-less system switchover
(effects distributed) facility is used.

access privilege
An access privilege is a permission that enables you to access a table; access privileges
are set on a table-by-table basis. There are four access privileges:

• SELECT privilege
• INSERT privilege
• DELETE privilege
• UPDATE privilege

account lock period
Period during which a consecutive certification failures account lock state is to be in
effect (will be detected by the connection security facility).

ADT (Abstract Data Type)
See abstract data type.

alias IP address
A technique by which different IP addresses can share the same LAN adapter through
assignment of multiple IP addresses to the LAN adapter.

all asynchronous method
One of the processing methods used in Real Time SAN Replication. When an update
of a database file or system file occurs at the main site, copying to the corresponding
file at the remote site is performed asynchronously.
This term has no practical application for Windows users, because it is related to a

D. Glossary

388

facility that cannot be used with a Windows version of HiRDB.
all synchronous method

One of the processing methods used in Real Time SAN Replication. When an update
of a database file or system file occurs at the main site, copying to the corresponding
file at the remote site is performed synchronously.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

alternate BES
A back-end server that takes over processing when an error occurs while the
standby-less system switchover (1:1) facility is being used. Similarly, a unit containing
an alternate BES is called an alternate BES unit.

asynchronous copy
One of the processing methods used to update-copy data to a remote site.
Update-copying at the main site is completed without waiting for update-copying at
the remote site to be completed.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

asynchronous group
A group made up entirely of asynchronous pair volumes.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

asynchronous pair volume
A pair volume that has been created by specifying async as the fence level. When data
is written to the P-VOL, it is not mirrored synchronously onto the S-VOL. Thus,
differences may arise between the data on the P-VOL and the data on the S-VOL, even
though they are paired.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

asynchronous READ facility
When the prefetch facility is being used, the asynchronous READ facility sets up two
prefetch buffers and, while the DB process is using one of the buffers, a READ process
prefetches pages to the other buffer asynchronously with the DB process. By
overlapping the DB processing with the prefetch input, you can reduce the processing
time.

D. Glossary

389

audit privilege
A privilege required for auditors. A user needs the audit privilege to perform
operations such as the following:

• Loading data to audit trail tables
• Swapping audit trail files
• Searching, updating, and deleting audit trail files

audit trail
Operations performed on HiRDB such as audit commands and SQL execution records
are output to a file. This record is called an audit trail, and the file to which this record
is output is called an audit trail file.

audit trail table
A table used by the auditor to perform audits. It is created by loading into it
information saved in an audit trail file.

auditor
A person who audits a HiRDB system. An auditor must be assigned the audit privilege.
Only one auditor can be registered.

automatic log unloading facility
Normally, when system log information is unloaded by the HiRDB administrator using
the pdlogunld command, it is also necessary to unload any system log file that is
waiting to be unloaded. The facility that automates the process of unloading system log
files is called the automatic log unloading facility.

automatic reconnect facility
When a connection to a HiRDB server is lost due to a server process going down,
system switchover, network failure, or other cause, this capability automatically
re-establishes the connection. By using the automatic reconnect facility, a user can
continue executing the UAP without having to be aware that the connection to the
HiRDB server was lost.

back-end server
A back-end server is a constituent element of a HiRDB/Parallel Server that performs
database access, locking, and operational processing in accordance with execution
instructions received from a front-end server.

back-end server for connecting to foreign servers
A back-end server that connects to foreign servers.

D. Glossary

390

backup acquisition mode
The backup acquisition mode allows you to specify whether or not referencing and
updating requests from other UAPs for an RDAREA being backed up are to be
accepted while a backup is being made by the database copy utility. The backup
acquisition mode is specified in the -M option of the database copy utility; there are
three modes:

• Referencing/updating-impossible mode (-M x specification)
During backup, an RDAREA being backed up cannot be referenced or updated.

• Referencing-permitted mode (-M r specification)
During backup, an RDAREA being backed up can be referenced but not updated.

• Updatable mode (-M s specification)
During backup, an RDAREA being backed up can be both referenced and
updated.

backup file
A backup file stores a copy of an RDAREA that can be used to recover the RDAREA
after a failure.

backup-hold
When a backup is made using a command other than the pdcopy command (backup
using a function provided by another product), an RDAREA to be backed up should
be placed on backup-hold. An RDAREA on backup-hold can be backed up by the
backup facility of another product while HiRDB is running. To apply backup-hold to
an RDAREA, specify the -b option in the pdhold command. There are four types of
backup-hold, as shown in Table D-1.

Table D-1: Types of backup-hold

Types of backup-hold Explanation

Referencing-permitted
backup-hold

During backup-hold, RDAREAs that have been backed up and held can be
referenced; an updating attempt will result in an SQL error (-920).

Referencing-permitted
backup-hold (update WAIT
mode)

During backup-hold, RDAREAs that have been backed up and held can be
referenced; an updating attempt goes onto lock-release wait status until the
backup-hold is released.

Updatable backup-hold During backup-hold, RDAREAs that have been backed up and held can be
referenced and updated. Even while an updating transaction is being executed,
an RDAREA is placed immediately on updatable backup-hold status without
placing the pdhold command on wait status.

D. Glossary

391

The following types of backup-hold are referred to collectively as committing a
database:

• Referencing-permitted backup hold
• Referencing-permitted backup hold (update WAIT mode)

base row
The row that contains the base data for all columns. If a branch row has been created,
the base row contains the branch target information.

BLOB (Binary Large Object)
BLOB is large data, such as large text, image, and audio data.

BLOB and BINARY data addition update and partial extraction facility
A facility that consists of the two functions described below. Data with a defined
length of 32,001 bytes or more is handled as BINARY data.

• Function for specifying a concatenation operation in the UPDATE statement's SET
clause in order to add new data to registered BLOB or BINARY data

• Function for specifying the SUBSTR scalar function in order to extract only a
specified portion of BLOB or BINARY data

This facility can reduce the memory requirement to the amount of BLOB or BINARY
data that is to be added or extracted.

BLOB data file output facility
With this facility, instead of retrieved BLOB data being returned to the client, it is
output to a file in a unit that contains either a single server or a front-end server, and
only the name of the file is returned to the client. Use of this facility prevents large
increases in memory use during data retrieval operations.

block transfer facility
The block transfer facility transfers data from any number of rows from a HiRDB
server to a HiRDB client.

branch row
Data is partitioned onto another page when its length exceeds one page. Rows that are
stored on the other page in this manner are called branch rows.

Updatable backup-hold (WAIT
mode)

During backup-hold, RDAREAs that have been backed up and held can be
referenced and updated. If an updating transaction is being executed, the
pdhold command is kept waiting until the transaction terminates.

Types of backup-hold Explanation

D. Glossary

392

changing the partition storage conditions
Use of ALTER TABLE to change the partition storage conditions for a key range
partitioned table. By changing a table's partition storage conditions, RDAREAs
containing old data can be reused, thereby saving time.
Note:

You can use ALTER TABLE to change the partition storage conditions of tables
that have been partitioned using one of the following methods:

 Boundary value specification
 Storage condition specification (when the equal sign (=) was used as the storage

condition comparison operator)
character code set

The sets of character codes that can be used in the UNIX version of HiRDB and in the
Windows version of HiRDB are somewhat different. The following table lists the
character code sets that can be used on each platform:

Legend:
Y: Can be used
N: Cannot be used

check constraint
A constraint used to maintain data integrity in tables by checking specified constraint
conditions when data is inserted or updated and suppressing operations on data that
does not meet the conditions.

check pending status
HiRDB limits the data operations that can be performed on referencing tables and
check constraint tables when the integrity of table data can no longer be guaranteed due
to execution of SQL code or a utility on a table in which a referential constraint or a
check constraint is defined. This status indicates such a state, in which data operations
have been limited because data integrity cannot be guaranteed.

Character code set UNIX version Windows version

sjis (Shift JIS Kanji Code) Y Y

ujis (EUC Japanese Kanji Code) Y N

chinese (EUC Chinese Kanji Code) Y Y

utf-8 (Unicode) Y Y

lang-c (Single Byte Character Code Y Y

D. Glossary

393

closing RDAREAs
Process of prohibiting accesses from HiRDB to RDAREAs (closing the RDAREAs).
To execute a utility that re-creates RDAREAs, the RDAREAs must first be closed.
When an RDAREA is closed, some RDAREA definition information retained in
memory by HiRDB and data storage information are discarded from memory and must
be re-created the next time the RDAREA is opened.
For example, when pdmod is to be used to re-initialize or delete RDAREAs or pdrstr
is to be used to recover a database, the RDAREAs must first be closed.
To close an RDAREA whose open attribute is not SCHEDULE, the RDAREA must be
shut down before it can be closed.

cluster key
A cluster key is a table column that is specified as the key for storing rows in ascending
or descending order of the values in the specified column.

compiling
Compiling is the process of converting a post-source program created by an SQL
preprocessor in order to create a machine language program (object code).

concurrent connections, maximum number of
The number of connections that can be established at the same time to a HiRDB server
(single front-end server in a HiRDB/Parallel Server system); this value is specified in
the pd_max_users operand. Connection requests that exceed the maximum number
of concurrent connections result in a CONNECT error.

connection frame guarantee facility for client groups
Facility that groups clients connected to HiRDB and guarantees the maximum number
of HiRDB connections allowed for each client group.

connection security facility
Facility for enhancing password security. This facility enables the user to set a
minimum size for passwords (in bytes) in order to prohibit use of simple or
easily-guessed passwords. It can also set a maximum number of consecutive
unsuccessful attempts to enter a password (consecutive certification failures).

 consecutive certification failure account lock state
If user authentication fails because of too many consecutive failures to enter the correct
password, that user is placed in consecutive certification failure account lock state. A
user in this status can no longer establish connection with HiRDB (CONNECT).

consistency group
A group that guarantees maintenance of the update order integrity of S-VOLs.

D. Glossary

394

Integrity is maintained between the order in which data is written on the P-VOL and
the order in which data is updated to the S-VOL on all asynchronous pair volumes that
make up the consistency group.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

constructor function
The constructor function is used to generate an abstract data type value.

cursor
A cursor is used during data retrieval or updating to maintain the most recent extraction
position, in order to extract multiple rows of a retrieval result one row at a time.
DECLARE CURSOR is used to declare a cursor, the OPEN statement is used to open a
cursor, the FETCH statement is used to retrieve search results and advance the cursor
to the next row, and the CLOSE statement is used to close a cursor.

database
A database is a system that organizes systematically tables, indexes, user-defined
types, stored procedures, stored functions, and access privileges that are created for
processing jobs.

data definition language
A language for defining the structure and contents of a database.

data dictionary
A data dictionary stores database design specifications, including database table
structures, column definitions, and index definitions. In the case of a HiRDB/Single
Server, the single server provides centralized management of the data dictionary. With
a HiRDB/Parallel Server, centralized management of the data dictionary is provided
by the dictionary server.

data dictionary LOB RDAREA
A data dictionary LOB RDAREA stores either stored procedures or stored functions.
The two data dictionary LOB RDAREAs are one for storing the definition sources and
one for storing the objects of stored procedures or stored functions.

data directory RDAREA
A data directory RDAREA stores dictionary tables for managing the analysis results
of a definition SQL and the dictionary table indexes.

data loading
Data loading is the process of storing data in a table. Data loading is performed by the
database load utility (pdload).

D. Glossary

395

data loading with synchronization points set
Normally, while data is being loaded, transactions cannot be reconciled until the
storage processing of all the data has been completed. This means that synchronization
point dumps cannot be obtained during execution of the database load utility. If
HiRDB terminates abnormally during loading of a large quantity of data, it will take a
long time to restart HiRDB. To resolve this problem, you can set synchronization
points for any number of data items during data loading in order to reconcile
transactions. This is called data loading with synchronization points set.
To perform data loading with synchronization points set, you must specify a
synchronization point lines count, which is the number data items to be stored before
a synchronization point is set. This value is specified in the option statement of the
database load utility. When a large amount of data is to be loaded into a table, you
should consider whether or not to execute data loading with synchronization points set.
Synchronization points can also be specified in the database reorganization utility; this
is called reorganization with synchronization points set.

data manipulation language
A language for specifying database operations so that a business application program
can perform operations on the data in a database.

data warehouse
A data warehouse is the database system concept that enables databases residing at a
mainframe, UNIX servers, and PC servers to be linked, so that they can be accessed in
a manner transparent to the various different operating systems. With a data
warehouse, end-users can access a database from PCs and the system administrator can
access it by means of a system analysis tool, so that the data warehouse provides to
each the necessary database management functions. The replication functions
(HiRDB/Datareplicator and HiRDB Dataextractor) that can be used in data warehouse
databases are available in HiRDB.

deadlock
Deadlock occurs when multiple transactions are competing for the same resources and
are waiting for each other to release their resources.

default constructor function
The default constructor function is created automatically by HiRDB and identified
with the same name as an abstract data type; the default constructor function does not
take any arguments.

default RD node
The HiRDB system assumed as the connection target in a client environment definition
(when using the CONNECT statement to connect without specifying an RD node name).
DBMS nodes other than HiRDB are called distributed RD nodes.

D. Glossary

396

This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

deferred write processing
Deferred write processing writes pages that have been updated in the global buffer
onto the disk when the number of updated pages reaches a certain value, rather than
when a COMMIT statement is issued. The point at which the number of updated pages
reaches the certain value (as determined by HiRDB) is called the deferred write trigger.

delayed batch creation of plug-in index
Instead of adding plug-in index data when row data is added to a table, the plug-in
index delayed batch creation facility can be used to add the plug-in index data in a
batch later with the database reorganization utility.
This facility is used for adding (or updating) a large volume of row data to a table for
which a plug-in index is defined.

delayed rerun
Delayed rerun is the mode that enables rollback and acceptance of new transactions to
be started simultaneously during system recovery.

dictionary server
The server that centrally manages data dictionaries that contain database definition
information is called the dictionary server.

differential backup facility
The differential backup facility backs up only the information that has changed since
the previous backup was made, which reduces the amount of time required to make a
backup. Consider using the differential backup facility when the database is large and
the amount of data updating has been relatively small.

differential backup management file
A file required to use the differential backup facility. A differential backup
management file stores information obtained when differential backups are made.
HiRDB uses this file when backups are made and during recovery of a database using
backups.

Directory Server linkage facility
A facility (such as Sun Java System Directory Server) that is used to manage and
authenticate HiRDB users. This capability is provided by a process called the
Directory Server linkage facility. By using a directory server, you can centrally
manage organizational and user information (user IDs, passwords, affiliations, and job
titles) that is otherwise managed separately in HiRDB, Groupmax, and other systems.

D. Glossary

397

distributed client
A distributed client is a source of requests to access a remote database (a node with a
DBMS that a UAP accesses directly).
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

distributed client facility
A facility that enables the HiRDB system on the local node to function as a distributed
client, thus providing remote database access to a distributed server.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

distributed database facility
Use of a remote database access facility provided by the DF/UX distributed database
products allows the user to access other database systems to retrieve and update data.
There are two remote database access facilities:

• Distributed client facility
• Distributed server facility

This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

distributed nest-loop-join
A distributed join in which nested-type loop processing is performed on retrieved rows
that match a join condition: more specifically, nested-type processing is conducted by
retrieving each row from a particular table, issuing an SQL statement for each row, and
matching up the row to the other row of the counterpart table residing on a foreign
server.

distributed RD node
RD nodes that are not default RD nodes. Nodes on DBMSs other than HiRDB are
referred to as distributed RD nodes.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

distributed server
A distributed server is a node (with a database) that accepts requests from distributed
clients and performs operations on the database.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

D. Glossary

398

distributed server facility
A facility that enables the HiRDB system on the local node to function as a distributed
server, so that it can accept requests from distributed clients and perform database
operations.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

dynamic SQL
A method of generating SQL while a UAP is executing. Contrast with static SQL,
which is a method of coding SQL within a program when a UAP is created.

dynamic update of global buffer
Dynamic update of global buffer refers to the ability to add, change, and delete global
buffers with the pdbufmod command while HiRDB is running.

embedded UAP
An embedded UAP is a UAP in which an SQL is written directly into a source program
that is written in a high-level language (C or COBOL).

encapsulation
The process of separating an abstract data type interface from its implementation
method and keeping this implementation method hidden from the user is called
encapsulation.

exceptional key value
An exceptional key value is a key value that is to be excluded in order not to create a
useless index key during index definition. If an index has the null value in all rows of
the column or has key values that are duplicated multiple times, the null value can be
specified as the exceptional key value.

facility for conversion to a decimal signed normalized number
The facility for conversion to a decimal signed normalized number converts the sign
part of signed packed-format data (decimal, date interval, time interval) that has been
input; the conversion is performed in accordance with the rules described in Section
7.7 Facility for conversion to a decimal signed normalized number. The process of
converting a sign is called normalization of the sign part.

facility for monitoring abnormal process terminations
A facility that monitors the number of times a server process terminates abnormally
over a given period of time and terminates HiRDB (or the unit in the case of a HiRDB/
Parallel Server) abnormally when the number of server abnormal terminations exceeds
the value specified in the pd_down_watch_proc operand. You should use this
facility in conjunction with the system switchover facility. Because this facility

D. Glossary

399

terminates HiRDB abnormally when a specified number of server process abnormal
terminations occurs, the system switchover facility will provide rapid system
switchover. If you do not use this facility, the system will not be switched over in such
a situation because HiRDB will not terminate abnormally.

facility for parallel writes in deferred write processing
A facility for performing deferred write processing by executing multiple processes in
parallel, which reduces the amount of time required for write processing.

facility for predicting reorganization time
Typically, the user must determine the necessity for and timing of table or index
reorganization or RDAREA expansion on the basis of the results of executing the
pddbst command. This sometimes results in tables being reorganized unnecessarily
or in tables not being reorganized when needed because of human error (such as failure
to read messages that have been output).
To simplify these operations, the facility for predicting reorganization time enables
HiRDB to predict when reorganization should be performed.

facility using arrays
Array-type variables enable multiple processes to be executed by a single execution of
an SQL statement. Use of this facility reduces the number of communications between
HiRDB client and server.
The facility using arrays can be applied to the FETCH, INSERT, UPDATE, and DELETE
statements.

falsification prevention facility
Facility that prevents updating of table data other than the data in updatable columns
in order to protect table data from errors or unauthorized tampering. Tables on which
the falsification prevention facility is applied are called falsification-prevented tables.
When the falsification prevention option is specified, the only operations permitted on
the table are row addition, retrieval, deletion of data whose deletion-prevented
duration has expired, and updating of updatable columns. A table definition can also
be changed to convert an existing falsification-unprevented table into a
falsification-prevented table. If no deletion-prevented duration is specified, the table
and its data cannot ever be deleted.

fence level
A pair volume copying method or a level for guaranteeing the integrity of data on pair
volumes when an update-copy error occurs. The fence levels are data, never, and
async. For details about the levels, see the RAID Manager documentation.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

D. Glossary

400

FIX attribute
FIX is the attribute assigned to a table whose row length is fixed.

FIX attribute table
A table whose row length is fixed.

FIX hash partitioning
FIX hash partitioning is a method of row-partitioning a table using a hash function that
divides the table by row and stores the values of the columns that comprise the table
evenly among RDAREAs. The column specified as the condition for row partitioning
of the table is called the partitioning key. When FIX hash partitioning is used, HiRDB
recognizes the portion of the table that is partitioned into each RDAREA.
Consequently, during retrieval processing, only those back-end servers in which the
applicable data is presumed to be located must become retrieval targets.

flexible hash partitioning
Flexible hash partitioning is a method of row-partitioning a table using a hash function
and dividing the values of the columns that comprise the table evenly among
RDAREAs. The column specified as the condition for row partitioning of the table is
called the partitioning key. When flexible hash partitioning is used for partitioning and
storage of a table in RDAREAs, it is not possible to tell which portion of the table is
in which RDAREA. Consequently, during retrieval processing, all back-end servers in
which the applicable table is located must become retrieval targets.

floatable server
A floatable server is a back-end server that is dedicated to sort and merge operations
that involve a heavy processing load; it is not used to access table data. Use of floatable
servers improves the overall performance of HiRDB. Table data is not stored in a
back-end server that is assigned as a floatable server. A back-end server that does not
perform data accesses due to the nature of a particular transaction can be used
temporarily as a floatable server. A floatable server can be set up only on a HiRDB/
Parallel Server.

foreign index
Definition information of an index that is defined for a table in a foreign database that
is mapped to a foreign table. Foreign indexes are used during optimization. The actual
index is not on HiRDB. It can be defined when you are using the HiRDB External Data
Access facility.

foreign key
One or more columns defined for a referencing table. The value of a foreign key is
restricted in such a manner that it takes either the same value as the primary key that
references it or a value that includes the null value.

D. Glossary

401

foreign server
An external DBMS that is accessed from HiRDB by using the HiRDB External Data
Access facility. Once a foreign server has been defined in HiRDB, HiRDB can access
foreign tables.

foreign table
A table defined in HiRDB based on the definition information for a table on a foreign
server. This table is needed to access tables on foreign servers. Note that HiRDB
manages only the definition information for the table; the foreign server manages the
actual table. It can be defined when you are using the HiRDB External Data Access
facility.

free page
A page in which no data is stored. A free page may be either a used free page or an
unused free page.

free page reuse mode
A method of searching for free space in an RDAREA when HiRDB is saving data.
When a segment becomes full, a search is conducted to find free space in used pages
before an unused segment is allocated. The next search start position is also
remembered, so that, the next time, searching for free space begins at this position.

free segment
A segment in which no data is stored. A free segment may be either a used free
segment or an unused free segment.

free space reusage facility
A facility by which free space in used segments is utilized once the number of
segments specified by the user is reached and the last segment becomes full. This is
done by switching the page search mode to the free page reuse mode. Once the free
space in all the segments of the specified number of segments runs out, the free space
reuse facility activates the new page allocate mode, and a new unused segment is
allocated.

front-end server
A front-end server is a constituent element of a HiRDB/Parallel Server that determines
the method of database access to be used from an executed SQL and provides
execution instructions to back-end servers.

global buffer
A buffer that is used for input and output of data stored in RDAREAs on disk. Global
buffers are allocated in common memory. Global buffers are always allocated to an
RDAREA or an index.

D. Glossary

402

A LOB global buffer is allocated in the following cases:
• When a plug-in index is being stored
• When benefits can be expected from buffering because there is a relatively small

amount of data
• When LOB data that will be accessed frequently is being stored

global buffer pre-writing
A facility that writes specified tables and indexes into global buffers in advance. This
improves the buffer hit rate.

global deadlock
A form of deadlock that occurs between servers in a HiRDB/Parallel Server
configuration.

guest area
Resources for a back-end server that is associated with a guest BES.

guest BES
A back-end server whose processing has been moved to another unit by the
standby-less system switchover (effects distributed) facility in the aftermath of an
error. The unit for a guest BES is called the accepting unit.

HA monitor
A cluster software program for implementing a system switchover facility. It is
packaged with the Hitachi HA Toolkit Extension.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

hash facility for hash row partitioning
The addition of RDAREAs to accommodate an increase in the amount of data in a
hash-partitioned table (increasing the number of row partitions in a table) can create
an imbalance in the amount of data in the existing RDAREAs and in the new
RDAREAs. The hash facility for hash row partitioning can correct any such imbalance
resulting from an increase in the number of table row partitions.
The hash facility for hash row partitioning can be applied to both FIX hashing and
flexible hashing.

heterogeneous system configuration
Typically with a HiRDB/Parallel Server, all units must be based on the same platform.
However, if certain conditions are satisfied, a HiRDB/Parallel Server system made up
of units on different platforms can be configured. This type of configuration is called
a heterogeneous system configuration.

D. Glossary

403

HiRDB administrator
Of the users who log onto the operating system using a system administrator user ID,
the HiRDB administrator is the user who has the privilege to manipulate HiRDB itself.
The HiRDB administrator's privilege permits execution of HiRDB commands and
conveys ownership of HiRDB directories and files.

HiRDB client
A workstation or personal computer on which HiRDB/Developer's Kit or HiRDB/Run
Time has been installed.

HiRDB External Data Access Adapter
A product that handles the interface differences with a foreign server (an external
DBMS). The following HiRDB External Data Access Adapters are available:

• HiRDB External Data Access Adapter for HiRDB and XDM/RD E2
• HiRDB External Data Access Adapter for ORACLE

The HiRDB External Data Access Adapter functionality for HiRDB and XDM/RD E2
is included in HiRDB External Data Access.

HiRDB External Data Access facility
A facility for accessing external DBMSs (ORACLE, and so on) from a HiRDB
interface. This facility provides the following benefits:

• Enables you to view and update in a single table information from databases built
with multiple DBMSs residing at multiple locations.

• Even when there are multiple environments on which the DBMSs are running,
you can access tables from the HiRDB interface.

HiRDB file
A file that is used by HiRDB. A HiRDB file is composed of contiguous segments in a
HiRDB file system area. It stores tables, indexes, and information necessary to recover
the status of the system in the event of an error.

HiRDB file system area
An area in which HiRDB files are created. Separate HiRDB file system areas are
created for different application purposes, for system files, for work table files, and for
RDAREA files.

HiRDB.ini file
A file that contains information required by utilities that execute on HiRDB clients and
for the HiRDB SQL Executer to connect to a HiRDB server. This file must be available
on both the server PC and the client PC.

D. Glossary

404

HiRDB.NET data provider
Data provider required in order to access databases from applications compatible with
ADO.NET. The HiRDB.NET data provider complies with the ADO.NET
specifications.

HiRDB system definition files
The HiRDB system definition files store the HiRDB system definition information that
is used to determine the HiRDB operation environment (system configuration, control
information, and each server's execution environment).

host BES
A back-end server that is defined on an applicable unit by the standby-less system
switchover (effects distributed) facility. The unit for a host BES is called a regular unit.

Hub optimization information definition
A definition file that specifies whether or not queries that target a foreign server are to
be executed on the foreign server and that provides cost parameters related to
optimization. Use of this definition file is optional, but it is recommended that the
provided sample file be used without modification.

hybrid method
One of the processing methods used in Real Time SAN Replication. When an update
of a system file at the main site occurs, copying to the corresponding file at the remote
site is performed synchronously. When an update of a database file at the main site
occurs, copying to the corresponding file at the remote site is performed
asynchronously.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

incorporation during commit
Incorporation during commit is the process of writing pages that have been updated in
the global buffer onto the disk when a COMMIT statement is issued.

index
An index is assigned to a column as a key for retrieving the table. An index consists of
a key and key values. The key is the column name that describes the contents of the
column, and the key values are the actual values in the column.
An index can be either a single-column index or a multicolumn index. A single-column
index is based on a single column of a table; a multicolumn index is based on more
than one column of a table.

index page split
HiRDB indexes have a B-tree structure. Consequently, an index page split occurs when

D. Glossary

405

there is no free area available in an index page to which a key is to be added. An index
page split occurs when HiRDB splits the index information of an index page in order
to allocate a free area and moves the second half of this information to a new page.

index reorganization
Rearrangement of an index based on information derived by retrieving index key
information to create an index information file. Index reorganization can be performed
by index or by index RDAREA.
Over time, deleting (DELETE) and updating (UPDATE) data degrades an index's storage
efficiency, which reduces performance when the index is used for searches. Index
reorganization is performed to minimize such performance degradation.

inheritance
Inheritance is the process by which a lower-order abstract data type inherits attributes
and routines defined in a higher-order abstract data type.

inheriting a database
The operations after a site switchover has occurred that involve shutting down HiRDB
after the log application processing has been completed and the site status has been
changed. Inheriting a database is performed with the pdrisedbto command.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

inner replica facility
A facility by which duplicate RDAREAs (replica RDAREAs) are defined and
manipulated. Using a disk system or software that provides mirroring, the inner replica
facility allows you to access the duplicated database. For details about the inner replica
facility, see the HiRDB Staticizer Option Version 7 Description and User's Guide.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

integrity constraint
An integrity constraint is a constraint that is available for guaranteeing the validity of
data in a database.
There are two integrity constraints:

• NOT NULL constraint (does not permit the null value to be set in a specified
column)

• Uniqueness constraint (requires that the values in a specified column be unique
and does not permit value duplication in the column)

D. Glossary

406

interface area
An area used for exchanging information between HiRDB and UAPs. HiRDB
provides the following seven interface areas:

• SQL Communications Area
• SQL descriptor area
• Column Name Descriptor Area (SQLCNDA)
• Type Name Descriptor Area (SQLTNDA)
• Embedded variables
• Indicator variables
• Parameters

inter-process memory communication facility
When a HiRDB server and a HiRDB client are running on the same server machine,
memory is used for inter-process communication to increase communication speed
between the HiRDB server and the HiRDB client. This functionality is provided by the
inter-process memory communication facility, which is used by specifying MEMORY in
the PDIPC operand of the client environment definition.

IP address
An address used by the IP protocol.

Java stored function
A Java stored function is a stored function in which procedures are coded in Java.

Java stored procedure
A Java stored procedure is a stored procedure in which procedures are coded in Java.

JDBC driver
A driver created for HiRDB based on the interface defined in the JDBC standard. The
JDBC driver is needed to execute Java stored procedures and Java stored functions. It
is installed by selecting it when you install a HiRDB client.

join
Processing that combines two or more tables.

JP1
JP1 is a series of products that provide functions for batch job operations, automatic
system operation, document output control, and file backup.
JP1 is used to automate system operations and reduce labor costs.

D. Glossary

407

key range partitioning
Key range partitioning is a method of table partitioning that divides a table into groups
of rows, using ranges of values in a column of the table as the partitioning condition.
The column specified as the condition for row partitioning is called the partitioning
key.

LAN adapter
Hardware that converts data for connecting a computer to a LAN.

language compiler
A program that converts a post-source program created by an SQL preprocessor into a
machine-language program (object).

large file
A HiRDB file system area of at least 2 gigabytes in size is called a large file. Normally,
the maximum size of a HiRDB file system area is 2047 megabytes (approximately 2
gigabytes). A HiRDB file system area whose size needs to exceed this limit must be
created as a large-file HiRDB file system area. The maximum size of a HiRDB file
system area created as a large file is as follows:

• HP-UX version: 131,071 megabytes
• Solaris, AIX 5L, or Linux version: 1,048,575 megabytes

This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

linkage
The process of creating a single executable program file (load module) by combining
the object modules created by a language compiler.

linker
A program that combines the object modules created by a language compiler into a
single executable program file (load module).

list
A set of data items saved under a single name (list name). Lists include sets of data
items that may be saved with temporary names at intermediate stages during the
process of filtering information in a series of hierarchical steps based on specification
of conditions that are designed to retrieve an appropriate number of data items.

list RDAREA
Lists created by the ASSIGN LIST statement are stored in a list RDAREA. A list
RDAREA is created when a narrowed search is performed.

D. Glossary

408

load module
A UAP source that has been preprocessed, compiled, and linked into a single
executable file.

LOB column structure base table
A table containing LOB columns from which the LOB data has been removed is called
a LOB column structure base table. Data can be loaded and the database can be
reorganized by LOB column structure base table or LOB column.

LOB data
Large variable object data such as documents, images, and sounds is called LOB data.
LOB data is stored in user LOB RDAREAs. Data loading and database reorganization
can be performed separately from the user RDAREA that stores the LOB column
structure base table.

local buffer
A buffer that is used for input and output of data stored in RDAREAs on disk. Local
buffers are allocated in process private memory.

locator facility
Facility that reduces a client's memory resource overload and data transfer volume
during BLOB or BINARY data searches.
A locator is a 4-byte data value that is used to identify data at a server. When a
locator-embedded variable is specified, such as in the INTO clause of a single-row
SELECT statement or FETCH statement, the value of the locator indicating the data, not
the data itself, is received as the search result. Processing that handles the data
identified by a locator can be performed when a locator-embedded variable is specified
in other SQL statements.

lock
A form of control managed by HiRDB to maintain database integrity.

locking
Locking is a type of control managed by HiRDB in order to maintain database
integrity.

log acquisition mode
The log acquisition mode is one of the modes for acquiring a database update log
during execution of a UAP or utility. This mode acquires the database update log that
will be needed for rollback or rollforward when the UAP or utility is updating the
contents of an RDAREA.

D. Glossary

409

log application
In the log-only synchronous method, update processing of a database based on system
logs copied from the transaction execution site. Log application is performed at the log
application site.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

log application not possible status
The state in which integrity of the databases at the transaction execution site and the
log application site is not established or the information required for log application
cannot be copied correctly. If a natural disaster occurs while the system is in this status,
data will be lost if the transaction execution site goes down.
When the preparations for system log application are performed while the system is in
log application not possible status, the system is placed in log application possible
status.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

log application possible status
The state in which integrity of the databases at the transaction execution site and the
log application site is established and the information required for log application can
be copied correctly. If a natural disaster occurs while the system is in this status, job
processing can be transferred to the log application site without loss of data, even if the
transaction execution site goes down.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

log application site
In the log-only synchronous method, the site at which update processing of databases
is performed based on system logs copied from the transaction execution site. As with
the transaction execution site, the log application site must be operational at all times.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

LVM
A disk device management facility that can create and manage multiple virtual devices
from a set of one or more real devices. LVM enables the user to achieve disk device
management with high availability and management simplicity, such as by dividing a
single real device into multiple small virtual devices or by grouping multiple real
devices into a single large virtual device. LVM also provides functions for improving
performance and achieving redundancy.

D. Glossary

410

main site
Site where the system normally used by Real Time SAN Replication is located.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

master directory RDAREA
The master directory RDAREA stores information on the RDAREAs that store
dictionary tables and user-created tables and indexes; it also stores RDAREA
registration location (server) information.

matrix partitioning
A method of partitioning a table by a combination of partitioning methods using two
of the table columns as the partitioning key. The first column used as the partitioning
key is called the first dimension partitioning column, and the second column used as
the partitioning key is called the second dimension partitioning column. Matrix
partitioning always involves key range partitioning with boundary values specified for
the first dimension partitioning column and then partitioning the resulting data further
by the second dimension partitioning column. A table partitioned by the matrix
partitioning method is called a matrix partitioning table.

message queue monitoring facility
A facility that monitors for the server process not responding state. HiRDB uses the
message queue during server process allocation processing. If a server process not
responding state occurs, messages can no longer be fetched from the message queue.
If messages cannot be fetched from the message queue after a certain amount of time
has elapsed (called the message queue monitoring time), HiRDB outputs a warning
message or error message (KFPS00888-W or KFPS00889-E). Output of one of these
messages indicates the possibility that a server process not responding state may have
occurred.

module trace
A type of troubleshooting information used for isolating errors. The executed
functions and macro history of most HiRDB processes are recorded in a
process-specific memory. If a process terminates abnormally and a core file is output,
the contents of the process-specific memory are output to the core file, which allows a
module trace to be obtained from the core file.

monitor mode
The system switchover facility can be operated in either the monitor mode or the server
mode. In the monitor mode, only system failures are monitored. In the server mode,
both system failures and server failures (such as HiRDB abnormal termination) are
monitored. System switchover can take less time in the server mode than in the
monitor mode because a standby HiRDB is started beforehand in the server mode. The

D. Glossary

411

system switchover facility must also be operating in the server mode to use the
following functions:

• user server hot standby
• rapid system switchover facility
• standby-less system switchover facility

monitoring free area for system log file
A facility that outputs a warning message or suspends scheduling of new transactions
and forcibly terminates all transactions on the server when the percentage of free space
in the system log file drops below a warning value.

multi-connection facility
The multi-connection facility enables a UAP running on a HiRDB client to connect
simultaneously to multiple HiRDB servers.

multi-HiRDB
Multi-HiRDB is the mode in which multiple HiRDB systems run on a single server
machine.

multiple front-end servers
The configuration in which multiple front-end servers are set up is used when the CPU
load for SQL processing is too heavy for a single front-end server.

narrowed search
A narrowed search is the process of narrowing in steps the records retrieved in
successive searches.
A narrowed search requires creation of a list using the ASSIGN LIST statement of the
data manipulation SQL. When such a list is created under appropriate conditions, its
use can reduce processing time. If there are multiple conditions, multiple lists can be
combined for the search.

NetBackup linkage facility
A facility designed to create backup files for use by the database copy utility (pdcopy)
or database recovery utility (pdrstr) on a medium managed by NetBackup Server.

new page allocate mode
A method of searching for free space in an RDAREA when HiRDB is saving data.
When a segment becomes full, first, a new unused segment is allocated. If the
RDAREA runs out of unused pages, a search is then conducted to find free space in a
segment already allocated to that table (in a used segment), starting at the beginning of
the first used segment. Once free space is found, the data is saved to that free space.

D. Glossary

412

node
In a distributed system, each communication control device making up the network,
and the systems connected to these devices.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

no-log mode
The no-log mode is one of the modes for acquiring a database update log during
execution of a UAP or utility. This mode does not acquire a database update log when
the UAP or utility is updating the contents of an RDAREA.

normal BES
A back-end server whose processing is transferred to another server in the event of an
error, through use of the standby-less system switchover (1:1) facility. Similarly, a unit
containing a normal BES is called a normal BES unit.

no-split option
Normally, the data part of a variable-size character string that is at least 256 bytes in
length is stored in different pages. The no-split option allows you to store one row of
data in one page even when the actual data size of a variable-size character string is
256 bytes or greater. The no-split option improves the data storage efficiency. The
no-split option is used by specifying NO SPLIT in the CREATE TABLE or CREATE
TYPE statement.

NOT NULL constraint
The NOT NULL constraint is a limitation that does not permit the null value to be set in
a column.

no transaction loss (no data loss)
With no transaction loss, update processing on transactions committed at the main site
is guaranteed to be mirrored to the database at the remote site.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

null value
The null value is a special value that indicates that no value has been set.

object
A program that has been translated into machine language by a language compiler.

object relational database
An object relational database is a database that has been expanded by incorporating the
concept of object orientation into a relational database model. HiRDB can handle data

D. Glossary

413

that has a complex structure, such as multimedia data, and the operations for such data
as a unified object and can manage it in a database.

operation releasing check of unload status
A system log file can become a swap target only if it is in one of the following two
statuses:

• Overwriting enabled status
• Extraction completed status (HiRDB Datareplicator)

The unloading status is unrelated to the statuses required in order for a system log file
to be a swap target. Performing this operation eliminates the need to unload or release
system log files.

operation unloading system log
The operation of unloading system logs. When a database is recovered, unload logs
that have been unloaded from the system logs are used as the input to the database
recovery utility.

operation without unloading system log
Operating mode in which system log files are not unloaded. When a database is
recovered, system logs are entered directly as input information to the database
recovery utility, without unload logs being used.

optimizing based on cost
When multiple indexes have been created for a table, HiRDB selects and uses the
index that has the least access cost and that it evaluates to be optimal based on the
conditions specified for the table retrieval. This process in which HiRDB selects the
index it evaluates to be optimal is called optimizing based on cost.

overload
Multiple stored functions can be defined with the same name as long as their parameter
counts and data types are different. Stored functions that have the same name are said
to be mutually overloaded.

override
Override is the process of overwriting the definition of a lower-order abstract data type
with a routine that has the same name as the routine defined for the higher-order
abstract data type.

page
The page is one of the data storage units; it is the smallest unit for database input/output
operations. There are three types of pages:

• Data page: Page for storing rows of a table

D. Glossary

414

• Index page: Page for storing index key values
• Directory page: Page for storing RDAREA status management information

pair logical volume group
A group of pair logical volumes. Pair logical volumes on which files have been
distributed are handled in units of pair logical volume groups.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

pair logical volumes
Volumes paired between servers that have been logically named and configured.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

pair status
A designation that indicates the status of a pair volume. The pair statuses include
PAIR, SMPL, and PSUS. For details about these statuses, see the RAID Manager
documentation.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

pair volumes
With Lightning/Thunder series volumes, a volume at the main site and a volume at the
remote site that correspond to each other.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

paired
A status in which a pair logical volume or pair logical volume group is paired.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

partitioning key index
An index that satisfies a particular condition becomes a partitioning key index. An
index that does not satisfy the condition is called a non-partitioning key index. The
condition is explained as follows.
The condition is whether the table involved is partitioned on the basis of single-column
partitioning or multicolumn partitioning. When only one column is used in the table
partitioning condition, the partitioning is said to be single-column partitioning; when
multiple columns are used in the table partitioning condition, the partitioning is said to
be multicolumn partitioning.

D. Glossary

415

(a) Single-column partitioning
An index satisfying one of the following conditions is a partitioning key index:
Conditions

• Single-column index is defined for the column (partitioning key) on the basis of
which storage conditions were specified when the table was row partitioned

• Multicolumn index is defined, and the column (partitioning key) on the basis of
which storage conditions were specified when the table was row partitioned is the
first constituent column

Figure D-1 shows an example (based on the STOCK table) of an index that becomes a
partitioning key index.

Figure D-1: Partitioning key index: Single-column partitioning

Explanation
CREATE INDEX A12 ON STOCK (PCODE ASC) 1
CREATE INDEX A12 ON STOCK (PCODE ASC, PRICE DESC) 2
CREATE INDEX A12 ON STOCK (PRICE_DESC, PCODE ASC) 3

1. If the PCODE column, which is a partitioning key, is used as an index, the index
becomes a partitioning key index. If any other column is used as an index, the
resulting index becomes a non-partitioning key index.

2. Specifying the PCODE column, which is the partitioning key, as the first
constituent column of the index makes the resulting multicolumn index a
partitioning key index.

3. Specifying the PCODE column, which is the partitioning key, as a column other
than the first constituent column of the index makes the resulting multicolumn
index a non-partitioning key index.

(b) Multicolumn partitioning
An index satisfying the following condition is a partitioning key index:
Condition

D. Glossary

416

• Index is created on the basis of multiple columns, beginning with the partitioning
key and containing all the columns specified for partitioning from the beginning
and without any change in their order.

Figure D-2 shows an example (based on the STOCK table) of an index that becomes a
partitioning key index.

Figure D-2: Partitioning key index: Multicolumn partitioning

Explanation
CREATE INDEX A12 ON STOCK (PCODE ASC, PRICE DESC) 1
CREATE INDEX A12 ON STOCK
 (PCODE ASC, PRICE DESC, SQUANTITY ASC) 2
CREATE INDEX A12 ON STOCK (PRICE DESC, PCODE ASC) 3
CREATE INDEX A12 ON STOCK
 (PCODE ASC, SQUANTITY DESC,PRICE DESC) 4

1. All partitioning keys (PCODE and PRICE columns) are specified, and these keys
are specified in the same order as in the table definition. Therefore, this
multicolumn index is a partitioning key index.

2. All partitioning keys (PCODE and PRICE columns) are specified, and these keys
are specified in the same order as in the table definition. Therefore, this
multicolumn index is a partitioning key index.

3. All partitioning keys (PCODE and PRICE columns) are specified, but these keys
are specified in an order that differs from the table definition. Therefore, this
multicolumn index is a non-partitioning key index.

4. All partitioning keys (PCODE and PRICE columns) are specified, but these keys
are specified in an order that differs from the table definition. Therefore, this
multicolumn index is a non-partitioning key index.

password-invalid account lock state
When limitations are set on password character strings by the connection security
facility, a user violating any of the limitations is placed in password-invalid account

D. Glossary

417

lock state. A user in this status can no longer establish connection with HiRDB
(CONNECT).

plug-in
A plug-in is a HiRDB package product that provides abstract data types in which
documents, images, and other multimedia entities are defined, and a facility for rapid
manipulation of complex data.

plug-in index
A plug-in index is a type of index provided by a plug-in.

POSIX library version
A HiRDB execution environment required for the Directory Server linkage facility,
Java stored procedures, Java stored functions, and the HiRDB External Data Access
facility. To use the POSIX library version, you specify the -l option of the pdsetup
command.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

post-source
The source program generated by preprocessing embedded SQL statements.

predefined data type
A data type provided by the HiRDB system is called a predefined data type. The
predefined data types include INTEGER, CHARACTER, DATE, etc.

prefetch facility
A facility that reads multiple pages at a time from a global buffer or a local buffer. It
can reduce the I/O time when searches on large volumes of data are performed in
HiRDB file system areas that use the raw I/O facility. It is particularly effective for
searches that do not use an index, or for ascending-order searches on large data sets in
tables that do use an index.

 preparations for system log application
A procedure that enables performance of log application in which database integrity is
established and information in files required to perform log application is set in the
proper state by temporarily synchronizing the databases at the transaction execution
site and the log application site.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

preprocessing
Processing performed on code before it is compiled by a language compiler.

D. Glossary

418

Preprocessing converts SQL statements to high-level language code.
pre-update log acquisition mode

Pre-update log acquisition mode is one of the modes for collecting a database update
log when a UAP or utility executes. This mode acquires only the database update log
needed for rollback when a UAP or utility is updating the contents of an RDAREA.

primary key
The primary key enables you to uniquely identify a row in a table. Columns for which
the primary key is defined are subject to the uniqueness constraint and the NOT NULL
constraint. The uniqueness constraint is the limitation that does not permit duplicate
data in a key (a column or a set of columns) i.e., all data in the key must be unique.
The NOT NULL constraint is the limitation that does not permit the null value in the
key columns.

process
An instance of execution of a program. Each process is allocated a virtual space and
CPU resources on a time-sharing basis. Executing more than one process in parallel
(multi-processing) is one way to increase throughput.

protection mode
A protection mode can be used to select a processing method when synchronous
copying to a remote site cannot be performed. A protection mode can be selected when
the all synchronous method or the hybrid method is being used. The protection modes
include data and never, and their processing methods are explained below:

• data: Stops update processing at the main site (update processing of volumes
containing files that cannot be copied synchronously).

• never: Continues update processing at the main site.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

RAID Manager instance
A suite of facilities that identify the scope of operations and management that can be
performed by RAID Manager. Each instance is identified by an instance number.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

range specification recovery
One of the methods used by the database recovery utility for recovering a database. It
is a technique by which the database can be recovered to a user-specified point
between the time a backup was made and the time the failure occurred. The -T option
of the database recovery utility is used to specify the recovery time.

D. Glossary

419

rapid grouping facility
When the GROUP BY clause of an SQL is used for grouping, sorting is performed
before grouping. This is the rapid grouping facility, and it combines grouping with
hashing.

rapid system switchover facility
A facility whereby server processes and the system server are started on a standby
HiRDB beforehand, so that startup processing of server processes and the system
server is not performed when the system is switched over. The system switchover time
is reduced by the amount of time required to perform startup processing of server
processes and the server system. In addition to the rapid system switchover facility,
user server hot standby is available for reducing system switchover time. The rapid
system switchover facility can reduce the system switchover time more than user
server hot standby can (the rapid system switchover facility includes the user server
hot standby functionality).

RD node
In the distributed database facility, a DBMS on a server connected on a distributed
network. In the OSI-RDA protocol, it is called a resource.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

RD node name
In the distributed database facility, the node name used to specify a target server
DBMS connected on a distributed network. In the OSI-RDA protocol, it is called a
resource name.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

RDAREA
The RDAREA is the basic unit for storing data; an RDAREA may store 1-16 HiRDB
files. Following are the types of RDAREAs:

• Master directory RDAREA
• Data dictionary RDAREA
• Data directory RDAREA
• Data dictionary LOB RDAREA
• User RDAREA
• User LOB RDAREA
• Registry RDAREA

D. Glossary

420

• Registry LOB RDAREA
• List RDAREA

RDAREA automatic extension
When RDAREA automatic extension is being used and a space shortage occurs in an
RDAREA, segments are added automatically to expand the capacity of the RDAREA,
provided that there is adequate unused free space in the HiRDB file system area.

RDAREAs, shutting down
To limit accesses by UAPs and utilities to an RDAREA, the RDAREA can be shut
down (command shutdown). If an error (such as an I/O error) occurs on an RDAREA,
HiRDB may shut down the RDAREA automatically (error shutdown).
There are various shutdown modes, such as one that allows referencing and updating;
the user selects the appropriate shutdown mode.
For example, when pdload is to be used to load data or pdrorg is to be used to
re-organize a table, the applicable RDAREAs should first be shut down because such
processing usually takes a considerable amount of time.

Real Time SAN Replication
A facility that enables jobs to continue being processed on a standby system set up at
a remote site in the event of a disaster (earthquake, fire, etc.) that makes it physically
impossible to quickly restore the system that is normally used.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

recovery-unnecessary front-end server
If an error occurs on the unit where the front-end server is located, transactions that
were executing from that front-end server may be placed in uncomplete status for
transaction determination. Because a transaction in this status has locked the database,
some database referencing or updating becomes restricted. Normally, to complete a
transaction that is in uncomplete status for transaction determination, the front-end
server must be recovered from the error and restarted. However, if the abnormally
terminated front-end server is a recovery-unnecessary front-end server, HiRDB
automatically completes any transaction that was placed in uncomplete status for
transaction determination. This enables other front-end and back-end servers to be
used to restart database update processing. A unit containing a recovery-unnecessary
front-end server is called a recovery-unnecessary front-end server unit.

reduced activation
Reduced activation is the process of starting HiRDB using only the normal units, when
there are units that cannot be started. Normally, a HiRDB/Parallel Server cannot be
started if any of its units cannot be started. In such a case, the reduced activation

D. Glossary

421

facility enables the HiRDB/Parallel Server to be started using only the remaining units
even if some units cannot be activated due to errors.

reference buffer
When data is referenced, it is referenced in a global buffer. A buffer that is used for
referencing data, or a buffer for a database that has been updated, is called a reference
buffer.

reference-only back-end server
A back-end server in which shared tables and shared indexes of shared RDAREAs can
be referenced but not updated.

referential constraint
A constraint that is defined for a specific column (foreign key) during table definition
in order to maintain referential conformity in data between tables. A table for which
referential constraints and a foreign key are defined is called a referencing table, and a
table that is referenced from the referencing table using the foreign key is called a
referenced table. For the referenced table, the primary key that is referenced by the
foreign key must be defined.

registry facility
The registry facility enables HiRDB to maintain information unique to plug-ins; such
information is used by the plug-ins for data manipulation.

registry LOB RDAREA
The registry LOB RDAREA stores a table for managing registry information (registry
table). This RDAREA is required in order to use the registry facility. Not all plug-ins
use the registry facility. The system determines automatically whether data is to be
stored in the registry LOB RDAREA or the registry RDAREA on the basis of the
length of the data. Stored procedures for data manipulation, such as ones that register
information in the registry management table, are also stored in this RDAREA.

registry RDAREA
The registry RDAREA stores a table for managing registry information (registry
table). This RDAREA is required in order to use the registry facility. Not all plug-ins
use the registry facility.

regular expression
A method of representation that allows different character strings, such as any
character strings, repetitions of the same character string, or any number of characters,
to be expressed in a specific sequence (pattern) of characters forming part of a larger
character string. Regular expressions are specified in a pattern character string of the
SIMILAR predicate.

D. Glossary

422

regular unit
The unit where a host BES is located when the standby-less system switchover (effects
distributed) facility is used.

remote site
Site where the backup system is located for Real Time SAN Replication.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

reorganization by schema
Reorganization by schema is the process of reorganizing in a batch all the tables in a
schema. To reorganize in a batch all the tables you own, you should execute the
reorganization by schema by specifying the authorization identifier of the schema to
be reorganized in the -t option of the database reorganization utility. The
specification format is -t authorization-identifier.all.
In addition to reorganization by schema, the other units of reorganization are as
follows:

• Reorganization by table
• Reorganization by RDAREA

reorganization with synchronization points set
Normally, while a table is being reorganized, transactions cannot be reconciled until
the storage processing of all the data has been completed. This means that
synchronization point dumps cannot be obtained during execution of the database
reorganization utility. If HiRDB terminates abnormally during reorganization of a
large quantity of data, it will take a long time to restart HiRDB. To resolve this
problem, you can set synchronization points for any number of data items during
storage of the data (reload processing) in order to reconcile transactions. This is called
reorganization with synchronization points set.
To perform reorganization with synchronization points set, you must specify a
synchronization point lines count, which is the number data items to be stored before
a synchronization point is set. This value is specified in the option statement of the
database reorganization utility. When a table containing a large quantity of data is to
be reorganized, you should consider whether or not to execute reorganization with
synchronization points set.
Synchronization point setting can also be specified in the database load utility; this is
called data loading with synchronization points set.

repetition column
A column that consists of multiple elements in a single row is called a repetition
column. An element is one of the multiple items in the repetition column row. A

D. Glossary

423

repetition column is defined by CREATE TABLE with the maximum number of
elements specified. However, the number of elements can be increased later with
ALTER TABLE. Figure D-3 shows an example of a table that contains repetition
columns.

Figure D-3: Example of a table containing repetition columns

replication facility
The replication facility enhances the efficiency of data utilization in a data warehouse
by linking a database in a Hitachi mainframe with a HiRDB database or a HiRDB
database with another HiRDB database.

reserved word
A character string that has been registered as a keyword used in SQL statements.
Reserved words cannot be used as table names or column names. Otherwise, a
reserved word can be used as a name if it is enclosed in double quotation marks (").
A keyword that has been registered as a reserved word can be deleted by the SQL
reserved word deletion facility; however, some functions may become disabled if a
reserved word is deleted.

rollback
Rollback is the process of invalidating the database processing performed by a
transaction when an error has occurred in the transaction.

D. Glossary

424

row partitioning
Row partitioning is the process of storing a table, index, or LOB column by dividing
it into multiple user RDAREAs or user LOB RDAREAs. When a table is
row-partitioned, its indexes can also be row partitioned in correspondence with the
row-partitioned table. When a table contains a LOB column, it can be partitioned and
stored in multiple user LOB RDAREAs in correspondence with the row-partitioned
table. When a table is to be row-partitioned, it is necessary to specify storage
conditions for the row partitioning; this is done with the CREATE TABLE statement of
the definition system SQL. When an index is row-partitioned, it is necessary to specify
the user RDAREAs in which the row-partitioned index is to be stored; this is done with
the CREATE INDEX statement of the definition system SQL.

schema
A concept that encompasses tables, indexes, abstract data types (user-defined types),
index types, stored procedures, stored functions, triggers, and access privileges.

schema definition privilege
The privilege required to define a schema.

security facility
The security facility prevents anyone who does not have the required authorization
from accessing the database.

segment
The segment is a unit of data storage consisting of multiple contiguous pages. It is the
unit of allocation for storage of tables and indexes. A segment can store either one table
or one index.

server machine
A workstation or personal computer that runs HiRDB server software.

server mode
The system switchover facility can be operated in either monitor mode or server mode.
In monitor mode, only system failures are monitored. In server mode, both system
failures and server failures (such as HiRDB abnormal termination) are monitored.
System switchover can take less time in server mode than in monitor mode because a
standby HiRDB is started beforehand in server mode. In addition, the system
switchover facility must be operating in server mode to use the following functions:

• user server hot standby
• rapid system switchover facility
• standby-less system switchover facility

D. Glossary

425

shared index
An index that is stored in a shared RDAREA and can be referenced from all back-end
servers. In order to achieve SQL and UAP compatibility with HiRDB/Parallel Servers,
shared indexes can also be defined in HiRDB/Single Servers. If defined, however, such
shared indexes are stored in user RDAREAs because shared RDAREAs cannot be
defined in a HiRDB/Single Server.

shared RDAREA
A user RDAREA that can be referenced from all back-end servers. Only a HiRDB/
Parallel Server can define shared RDAREAs.

shared table
A table that is stored in a shared RDAREA and can be referenced from all back-end
servers. In order to achieve SQL and UAP compatibility with HiRDB/Parallel Servers,
shared tables can also be defined in HiRDB/Single Servers. If defined, however, such
shared tables are stored in user RDAREAs because shared RDAREAs cannot be
defined in a HiRDB/Single Server.

site status
The status of a site as recognized by the log-only synchronous method. There are four
statuses: initial, ready, transaction, and log application.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

skipped effective synchronization point dump monitoring facility
With the pd_spd_syncpoint_skip_limit system common definition operand,
you can specify the maximum number of times synchronization point dumps can be
skipped during a transaction.
If, for example, an infinite loop occurs in a UAP, synchronization point dump
processing may not be performed several times in succession (processing may be
skipped a number of times). If the number of times this processing is skipped exceeds
a value specified by the user, the affected transaction is forcibly suspended and rolled
back. This facility keeps track of the number of times in succession that
synchronization dumps are skipped.

space conversion facility
The space conversion facility unifies coding of single-byte and double-byte spaces that
are intermixed in table data. Double-byte spaces are coded as X'8140' in JIS Kanji
code and as X'A1A1' in EUC Chinese Kanji code. Two single-byte spaces are coded
as X'2020'.

SQL connection
The logical connection of a UAP to an RD node for the purpose of executing an SQL

D. Glossary

426

statement.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

SQL extension optimizing options
SQL extension optimizing options enable optimization of SQL at execution time by
determining the most efficient access paths that can be specified, taking into
consideration the status of the database.
The following SQL extension optimizing options are provided:
1. Application of optimizing mode 2 based on cost
2. Hash-execution of a hash join or a subquery
3. Suppression of foreign server execution of SQL statements that include a join
4. Forced foreign server execution of SQL statements that include a direct product
5. Suppression of unconditionally generated derived rapid search conditions that can

be executed on foreign servers
SQL object

An SQL object is the object that is compiled by HiRDB when SQL statements are
defined and executed.

SQL optimization options
SQL optimization options enable optimization of SQL at execution time by
determining the most efficient access paths that can be specified, taking into
consideration the status of the database.
The following SQL optimization options are provided:
1. Forced nest-loop-join
2. Creating multiple SQL objects
3. Increasing the target floatable servers (back-end servers for fetching data)
4. Prioritized nest-loop-join
5. Increasing the number of floatable server candidates
6. Priority of OR multiple index use
7. Group processing, ORDER BY processing, and DISTINCT set function processing

at the local back-end server
8. Suppressing use of AND multiple indexes
9. Rapid grouping facility

D. Glossary

427

10. Limiting the target floatable servers (back-end servers for fetching data)
11. Separating data collecting servers
12. Suppressing index use (forced table scan)
13. Forcing use of multiple indexes
14. Suppressing creation of update-SQL work tables
15. Derivation of rapid search conditions
16. Application of scalar-operation-included key conditions
17. Batch acquisition from plug-in-provided functions

SQL optimization specification
Optimizations to enhance SQL search efficiency can be specified for SQL statements.
The following three SQL optimization specifications are available:

• SQL optimization specification for index utilization
• SQL optimization specification for the join method
• SQL optimization specification for the subquery execution method

SQL optimization specifications take precedence over any specifications of SQL
optimization options and SQL extension optimizing options.

SQL preprocessor
A program that converts SQL statements into high-level language code so that they can
be compiled by a high-level language compiler.

SQL runtime warning output facility
After SQL code is executed, HiRDB checks its runtime. If this check determines that
the SQL code's runtime is greater than the time specified (set as a ratio of the
PDCWAITTIME value), this facility is used to output the following warning information
for that SQL code:

• SQL runtime warning information file
• Warning message (KFPA20009-W)

SQL stored function
An SQL stored function is a stored function in which procedures are coded in SQL.

SQL stored procedure
An SQL stored procedure is a stored procedure in which procedures are coded in SQL.

standby system switchover facility
A standby HiRDB separate from the HiRDB that is actively processing jobs is

D. Glossary

428

deployed, and if a failure occurs on the server machine or on HiRDB, job processing
can be automatically switched over to the standby HiRDB. This is called the standby
system switchover facility.

standby-less system switchover (effects distributed) facility
A type of standby-less system switchover facility. In the event of an error, this facility
distributes to multiple active units the processing requests for back-end servers (BESs)
in the erroneous unit; this is called the standby-less system switchover (effects
distributed) facility.

standby-less system switchover facility
Unlike a standby system HiRDB that has been prepared for the standby system
switchover facility, with the standby-less system switchover facility a standby HiRDB
need not be prepared. If an error occurs, there is no system switchover to a standby
HiRDB system, but another operating unit takes over the processing. This is called the
standby-less system switchover facility.
The standby-less system switchover facility can be further subdivided as follows:

• Standby-less system switchover (1:1) facility
• Standby-less system switchover (effects distributed) facility

standby-less system switchover (1:1) facility
Unlike the standby system switchover facility that provides a standby HiRDB system,
the standby-less system switchover facility does not require that a standby HiRDB
system be kept in reserve. In the event of an error, the standby-less system switchover
facility transfers processing to another active unit without switching over to a standby
HiRDB system. This is called the standby-less system switchover facility.
The standby-less system switchover (1:1) facility can perform 1-to-1 unit switchover
in the event of an error and assign processing to another, designated back-end server.

static SQL
A method of coding SQL within a program when a UAP is created. Contrast with
dynamic SQL, which is a method of generating SQL code while a UAP is executing.

statistics log file
A file that stores statistical information (statistics logs) output by HiRDB.

status file
A file that stores system status information that may be needed to restart HiRDB is
called a status file. There are two types of status files:

• Server status files
• Unit status files

D. Glossary

429

status file for log application processing
A status file required by the log-only synchronous method. It is used to obtain system
status information when log application processing is performed at the log application
site. Its counterpart, the status file for transaction processing, is required at the
transaction execution site.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

status file for transaction processing
A status file required by the log-only synchronous method. It is used when log
application processing is performed at the log application site. Its counterpart, the
status file for log application processing, is required at the transaction execution site.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

stored function
A facility for registering as a function in the database a data process coded in SQL or
Java. Because input parameters can be assigned to a stored function and because a
stored function can generate return values, a stored function can be called by
specifying it as a value expression in an SQL statement. A stored function can be
defined in a function in the CREATE FUNCTION or CREATE TYPE statement. Data
processes coded in SQL or Java are compiled during definition, an SQL object coding
of the procedure is generated, and the object, together with the definition information,
is stored in the database.

stored procedure
A stored procedure enables a sequence of database access procedures coded in SQL or
Java to be stored as a procedure in a database. Output or input/output parameters can
be assigned to a stored procedure, and a stored procedure can be called by the CALL
statement in SQL. A stored procedure can be defined in a procedure in the CREATE
PROCEDURE or CREATE TYPE statement. Database operations coded in SQL or Java
are compiled at definition time, an SQL object coding the access procedures is
generated, and the object, together with definition information, is stored in the
database.

substitutability
Substitutability is the capability to substitute a value in a lower-order abstract data type
for the value in the higher-order abstract data type.

subtype
A subtype is an abstract data type that is created by customizing an abstract data type.

D. Glossary

430

Sun Java System Directory Server linkage facility
By using the Sun Java System Directory Server, you can manage and authenticate
HiRDB users. This capability is provided by a process called the Sun Java System
Directory Server linkage facility. By using this facility, you can centrally manage
organizational and user information (user IDs, passwords, affiliations, job titles) that
is otherwise managed separately in HiRDB, Groupmax, and other systems.

supertype
An abstract data type that is higher in order than a specialized abstract data type
(subtype) is called the supertype.

synchronization point
The point at which a transaction is completed is called a synchronization point.
Synchronization point processing that validates a transaction-induced update is called
a commit, and synchronization point processing that invalidates a transaction is called
a rollback.

synchronization point dump file
In the event of abnormal termination of HiRDB, recovering it using system log
information only will require system log information covering the entire time since
HiRDB was startup, which will require a significant amount of time for recovery
processing. Therefore, points can be established at fixed intervals during HiRDB
operation, and required HiRDB management information can be saved at those points.
This means that all system log information produced prior to the point to be used for
recovery is no longer needed, thus reducing the recovery time. The file that stores the
HiRDB management information obtained at each such point is called a
synchronization point dump file.

 synchronization point dump file for log application processing
A synchronization point dump file that is required by the log-only synchronous
method. It is used to obtain synchronization points when log application processing is
performed at the log application site. Its counterpart, the synchronization point dump
file for transaction processing, is required at the transaction execution site.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

 synchronization point dump file for transaction processing
A synchronization point dump file that is required by the log-only synchronous
method. It is used when log application processing is performed at the log application
site. Its counterpart, the synchronization point dump file for log application
processing, is required at the transaction execution site.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

D. Glossary

431

synchronous copy
One of the processing methods used to update-copy data to a remote site. After
update-copy processing at the remote site is completed, update-copy processing at the
main site is completed (update-copy processing at the main site waits for completion
of the update-copy processing at the remote site).
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

synchronous group
A group made up entirely of synchronous pair volumes.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

synchronous pair volume
A pair volume that has been created by specifying either data or never as the fence
level. When data is written to the P-VOL, it is mirrored synchronously onto the
S-VOL. When paired, no differences exist between the data on the P-VOL and the data
on the S-VOL.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

system file
A system file stores information that will be needed if it becomes necessary to recover
the system in the event of an error. System file is a generic term that includes the
following files:

• System log files
• Synchronization point dump files
• Status files

system generator
The system generator is a facility that enables a HiRDB system to be constructed
interactively by selecting displayed values.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

system log file
A system log file stores a history of database updates; it is also called a journal file.
Historical information on database updates is called the system log (or system log
information), and it is used by HiRDB to recover the database in the event of abnormal
termination of either HiRDB or a UAP. The system log is also used as input

D. Glossary

432

information for recovery of the database.
system RDAREA

System RDAREA is a generic term for the following types of RDAREAs:
• Master directory RDAREA
• Data directory RDAREA
• Data dictionary RDAREA

system switchover facility
When a standby server machine is provided separately from the server machine that is
processing jobs, job processing can be switched automatically by HiRDB to the
standby server machine in the event the running server machine fails. This is called the
system switchover facility.

table reorganization
Over time, additions and updates of data in a table tend to fragment the arrangement
of rows, giving rise to unusable free space. Table reorganization reorganizes table data
in a user RDAREA or LOB data in a LOB RDAREA to eliminate unusable free space.
The database reorganization utility (pdrorg command) is used to reorganize a table.

tape device access facility
A facility that enables access to files on DAT, DLT, and LTO. The tape device access
facility is used for the following types of files:

• Input data files (input data files specified in the source statement of the pdload
command)

• Unload data files (unload data files specified in the unload statement of the
pdrorg command)

• Unload data files (LOB data unload data files specified in the lobunld statement
of the pdrorg command)

• Backup files (backup files specified with the -b option of the pdcopy or pdrstr
command)

This term has no practical application for UNIX users, because it is related to a facility
that cannot be used with a UNIX version of HiRDB.

transaction
A transaction is a unit of logical work; for example, a series of database operations.
The transaction is also the basic unit for recovery and locking.

transaction execution site
In the log-only synchronous method, the site that accepts transactions.

D. Glossary

433

This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

trigger
By defining a trigger, you can have SQL statements automatically execute when an
operation (updating, insertion, deletion) is performed on a particular table. When a
particular table is updated, a trigger based on the associated event allows you to
automatically perform operations such as updating another table as well.

unbalanced index split
Unlike normal page split, the unbalanced index split method splits the data in an index
page into two unequal parts, rather than into two equal parts. Index storage efficiency
is improved by using this method when an ascending or descending middle key is to
be added.

uniqueness constraint
The uniqueness constraint is a limitation that prohibits a data value from appearing
more than once in a column (all data values in the column must be unique).

unit
A unit refers to the HiRDB operation environment within a single server machine.

unit controller
A unit controller is a system that controls and monitors server execution in a unit and
that controls communication between units.

unload log file
A file created by unloading a system log file (system log information) with the
pdlogunld command is called an unload log file.

unload statistics log file
A file created by unloading the contents of a statistics log file.

unused page
A page that is not being used.

unused segment
A segment that is not being used. Such a segment can be used by any table (or index)
in the RDAREA.

updatable back-end server
A back-end server on which shared tables and shared indexes in shared RDAREAs can
be updated.

D. Glossary

434

updatable online reorganization
Refers to functionality that allows databases to be accessed and updated during
database reorganization. Processes that access or update a database perform the
operation on a replica database. To perform updatable online reorganization, you must
install HiRDB Staticizer Option, and you must also specify related operands in the
HiRDB system definitions.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

update buffer
When data is updated, the data is first updated into a global buffer, before being
updated in the database. The buffer that stores this data before the database is updated
is called an update buffer.

update copy
An operation in which, when updating of data on a primary volume occurs, the updated
data is also mirrored (copied) onto a secondary volume. Update copying maintains
integrity between the primary volume and the secondary volume.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

used page
A page in which a table or an index is stored. A used page that is completely filled with
data such that no more can be added is called a full page, and a used page from which
data has been deleted so that it no longer contains data is called a used free page.

used segment
A segment in which table or index data is stored. A used segment that is completely
filled with data such that no more can be added is called a full segment, and a used
segment from which data has been deleted so that only free pages remain (used free
pages or unused pages) is called a used free segment.

user-defined type
A data type that can be defined by the user is called a user-defined type. Abstract data
types are user-defined types.

user LOB RDAREA
A user LOB RDAREA stores large variable object data, such as documents, images,
and sounds. The following types of data must be stored in a user LOB RDAREA:

• Column with the BLOB type specification (BLOB column)
• Attribute with BLOB specification in an abstract data type

D. Glossary

435

• Plug-in index
user mapping

Information defining the user ID and password required to log into a foreign server.
This information is defined for each foreign server and is used to establish connection.

user RDAREA
A user RDAREA stores tables and indexes created by a user.

user server hot standby
A facility that starts server processes on a standby HiRDB beforehand, so that startup
processing of server processes is not performed when the system is switched over. The
system switchover time is reduced by the amount of time required to perform startup
processing of server processes.
In addition to user server hot standby, the rapid system switchover facility is available
for reducing system switchover time. The rapid system switchover facility can reduce
the system switchover time more than user server hot standby can (the rapid system
switchover facility includes the user server hot standby functionality).

utility special unit
A utility special unit is a server machine in which only input/output devices to be used
for executing a utility are set up. A utility special unit can be set up only in a HiRDB/
Parallel Server. The following utilities can use a utility special unit:

• Database load utility
• Database reorganization utility
• Dictionary import/export utility
• Database copy utility
• Database recovery utility

This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

value (instance)
The term value refers to a specific value of an abstract data type.

view table
A newly defined virtual table in which specific rows and columns are selected from a
table that actually exists (called a base table).
If you are using HiRDB External Data Access, you can create a view table from
foreign tables.

D. Glossary

436

volume attribute
There are three types of volumes, primary volumes (P-VOL), secondary volumes
(S-VOL), and simplex volumes (SMPL). The volume attribute refers to the attribute
indicating one of these three volume types.
This term has no practical application for Windows users, because it is related to a
facility that cannot be used with a Windows version of HiRDB.

work table file
A file that stores temporary information needed in order to execute an SQL statement
is called a work table file.

437

Index

Symbols
-M option (pdcopy command) 272

Numerics
24-hour-per-day continuous operation 10, 225

A
abstract data type 118, 387

as data type 120
defining 118
null value of 124

abstract data type column
deleting 161
retrieving 161
structure base table 387
updating 161

accepting unit 314, 387
access privilege 332, 387

granting of (role) 40
access processing method 233
account lock period 347, 387
ADO.NET-compatible application 21
ADT 387
alias IP address 387
all asynchronous method 387
all synchronous method 388
ALTER TRIGGER 175
alternate BES 312, 388
alternate BES unit 312
alternate portion 313
alternating 313
API, compatible with X/Open 259
application

ADO.NET-compatible 21
JDBC-compatible 20
ODBC-compatible 19
OLE DB-compatible 19

ASSIGN LIST statement 64, 197

asynchronous copy 388
asynchronous group 388
asynchronous pair volume 388
asynchronous READ facility 237, 388
asynchronous XA call 43
audit event 340
audit privilege 331, 334, 389
audit trail 334, 389

file 339
table 339, 389

auditor 334, 389
auditor security event 341
automatic extension 299
automatic log unloading facility 276, 389
automatic reconnect facility 259, 389
automatic startup 229
automatic system switchover 318

B
B-tree index 101
B-tree structure 101
back-end server 389

for connecting to foreign servers 28, 389
for viewing or updating foreign tables 28
HiRDB/Parallel Server 13

backup
acquisition mode 272, 390
made in unit 272
making 272
operation without collecting database update
log 268
reducing time needed to make (user LOB
RDAREA) 280

backup file 270, 390
storage of 273

backup-hold 279, 390
RDAREA placed on 279

base row 391
base table 98

Index

438

basic attributes (linkage with JP1) 50
batch file 9
BINARY 70
BINARY data

addition update of 249
partial extraction of 249

binary data 70
binary data string 70
BLOB 70, 391
BLOB and BINARY data addition update and partial
extraction facility 248, 391
BLOB data

addition update of 249
file output facility of 244, 391
partial extraction of 249

block transfer facility 186, 391
BOOLEAN 70
boolean data 70
boolean value 70
boundary value specification 78
branch row 391

C
CALL statement 167
candidate key 73
CHARACTER 70
character code set 392
character data 70
character string

fixed-size 70
variable-size 70

check constraint 182, 392
check pending status 184, 392
Class file 173
CLOSE statement 152
cluster key 73, 393
CLUSTER KEY option (CREATE TABLE) 74
cluster system 310
column 68
commit 256, 271
commit processing 258
commitment control 256
communications overhead 186
compiling 393

concurrent connections, maximum number of 393
CONNECT privilege 332
CONNECT statement 254
connection frame guarantee facility for client
groups 393
connection security facility 345, 393
consecutive certification failure account lock
state 347, 393
consecutive certification failures, restrictions on
number of 347
consistency group 393
constructor function 122, 394

user-defined 123
Cosminexus, linkage to 58
CREATE CONNECTION SECURITY 346
CREATE INDEX 103
create rdarea statement 299

specifying 139
CREATE SCHEMA 67
CREATE TABLE 69
CREATE TRIGGER 175
CREATE TYPE 71
CREATE VIEW 98
current file 274
cursor 152, 394

D
DABroker 57
data

basic manipulation of 152
deleting 154
deleting (abstract data type) 160
inserting 154
inserting (abstract data type) 160, 162
manipulation of, in table containing abstract
data type 159
operation of 157
processing 158
retrieving 152
retrieving (abstract data type) 159
searching for specific 155
updating 153
updating (abstract data type) 159

data definition language 394

Index

439

data dictionary 394
LOB RDAREA 63, 394
RDAREA 63

data dictionary table 379
data directory RDAREA 63, 394
data global buffer 233
data linkage facility 31
data linkage product, linkage to 31
data loading 394

with synchronization points set 288, 395
data local buffer 242
data manipulation language 395
data page 139
data type 69

predefined data type 69
user-defined data type 69

data warehouse 395
database

access mode 17
access tool 57
committing 280
inheriting 405
logical structure of 61
management system 2
managing 269
physical structure of 137
preparation for error of 272
recovery of 270

database access
improving performance of 186
using SQL 149

database copy utility 272
database extraction/reflection service facility 31
database management table 291
database mapping facility 35
database recovery utility 270
database reorganization utility 285
database state analyzed table 291
database update log

acquiring 265
operation without collecting 265

DATAFRONT 53
DATE 70
date 70

date data 70
date interval data 70
DB access product 200
DBA privilege 330
DBMS 2
DCE threading 367
deadlock 264, 395

example of (when index key value no-lock
option is not used) 115
example of preventing 114

decimal signed normalized number, facility for
conversion to 306, 398
DECLARE CURSOR 152, 191
default constructor function 123, 395
default RD node 395
deferred write processing 238, 396
deferred write trigger 238
definition source 63
delayed rerun 230, 396
delayed rerun operation 8
DELETE facility using arrays 190
DELETE privilege 333
DELETE statement 154
deletion-prevented duration 94
dictionary server 396

HiRDB/Parallel Server 13
dictionary table 63
differential backup 279
differential backup facility 277, 396
differential backup group 279
differential backup management file 396
direct disk access (raw I/O) 207
directory page 139
Directory Server linkage facility 331, 396
directory server product, linkage to 37
directory service 37
DISCONNECT statement 254
DISTINCT 158
distributed client 397
distributed client facility 397
distributed database facility 397
distributed nest-loop-join 397
distributed RD node 397
distributed server 397

Index

440

distributed server facility 398
distributed transaction processing 42
DocumentBroker 56
double-precision floating point 70
DROP TRIGGER 175
DTP 42
duplexed synchronization point dump file 211
duplexed system log file 209
dynamic registration 46
dynamic SQL 398
dynamic transaction registration 43

E
element 96
embedded SQL UAP 151
embedded UAP 398
EMPTY option (CREATE INDEX) 113
encapsulation 121, 132, 398

level 132
error shutdown 267
event monitoring, using JP1/Integrated
Management 51
events, reporting (linkage with JP1) 50
EX, lock mode 262
EXCEPT 158
EXCEPT VALUES option (CREATE INDEX) 112
exception key value 112, 398
EXISTS predicate 157
expand rdarea statement 299
extended attributes (linkage with JP1) 50
extent 300

F
facility

for monitoring abnormal process
terminations 398
for parallel writes in deferred write
processing 238, 399
for predicting reorganization time 288, 399
using arrays 399

falsification prevention facility 399
falsification-prevented table 93
fence level 399
FETCH facility using array 188

FETCH statement 152
file group

synchronization point dump file 211
system log file 209

first dimension partitioning column 85
FIX attribute 73, 400
FIX attribute table 400
FIX hash partitioning 80, 400
FIX option (CREATE TABLE) 73
fixed point 70
flexible hash partitioning 80, 400
FLOAT 70
floatable server 14, 400
foreign HiRDB 28
foreign index 400
FOREIGN KEY 179
foreign key 178, 400
foreign server 27, 401
foreign table 27, 401
free page 401
free page release utility 294
free page reuse mode 142, 401
free segment 401
free space reuse facility 142, 401
front-end server 401

HiRDB/Parallel Server 13
frozen update command 280
frozen update status 281
full backup 279
function 163
function call 167
functional differences between HiRDB versions on
different platforms 374

G
global buffer 233, 401

allocation procedure for 236
dynamic update of 236, 398

global buffer pre-writing 240, 402
global buffer residence utility 241
global deadlock 402
GROUP BY clause 158

Index

441

group processing, ORDER BY processing, and
DISTINCT set function processing at local back-end
server 193
grouped system switchover 318
guaranteed valid generation, number of 211
guest area 314, 402
guest BES 314, 402

H
HA group 314
HA monitor 402
hash facility for hash row partitioning 83
hash group 84
hash partitioning 80
heterogeneous system configuration 14, 402
HiRDB

64-bit-mode 361
administrator 403
advantages of using 6
architecture of 203
characteristics of 2
environment setup for 204
file 138, 403
functions not available in 64-bit-mode 363
migrating from 32-bit mode to 64-bit
mode 368
option program product of 24

HiRDB Adapter for XML 35
HiRDB Advanced High Availability 24, 225
HiRDB Advanced Partitioning Option 25, 85, 91
HiRDB client 4, 403

connectivity to HiRDB server 383
HiRDB/Developer's Kit 4
HiRDB/Run Time 5
support range of 64-bit-mode 366

HiRDB Dataextractor 31
HiRDB Datareplicator 31
HiRDB External Data Access 26, 28
HiRDB External Data Access Adapter 29, 403
HiRDB External Data Access facility 403

overview of 26
HiRDB file 206
HiRDB File Link 56, 350, 356
HiRDB file system area 138, 206, 403

creation unit of 207
maximum size of 208

HiRDB Image Search Plug-in 56, 350, 355
HiRDB LDAP Option 25, 41
HiRDB server 3

connectivity to HiRDB client 383
HiRDB/Parallel Server 4
HiRDB/Single Server 4

HiRDB Spatial Search Plug-in 56, 350, 356
HiRDB SQL Executer 48, 151
HiRDB SQL Tuning Advisor 49
HiRDB system 2

configurations of 11
connection to 254
disconnection from 254
overview of 2

HiRDB system definition 220
after creation of 225
back-end server definition 222
dictionary server definition 221
foreign server information definition 222
front-end server definition 221
hub optimization information definition 222
server common definition 220, 221
single server definition 220
SQL reserved word definition 220, 222
system common definition 220, 221
UAP environment definition 220, 222
unit control information definition 220, 221

HiRDB system definition file 404
creating 225

HiRDB Text Search Plug-in 55, 350, 354
HiRDB XA library 42

functions provided by 43
HiRDB.ini file 403
HiRDB.NET data provider 21, 404
HiRDB/Developer's Kit 4
HiRDB/Parallel Server 4

back-end server 13
configuration of 11
consisting of unit 13
front-end server 13
system manager 13
unit 13

Index

442

HiRDB/Run Time 5
HiRDB/Single Server 4

configuration of 11
consisting of unit 11

holdable cursor 191
host BES 314, 404
Hub optimization information definition 404
hybrid method 404

I
image 56
image data 118
Image Database Access 56
IN SHARE MODE (LOCK TABLE statement) 264
incorporation during commit 239, 404
index 101, 404

basic structure of 101
example of row partitioning of (HiRDB/
Parallel Server) 105
example of row partitioning of (HiRDB/Single
Server) 104
for dictionary table 63
guidelines for row-partitioning of (HiRDB/
Parallel Server) 105
guidelines for row-partitioning of (HiRDB/
Single Server) 104
local buffer 242
reorganization of 291, 405
row partitioning of 103

index global buffer 233
index key value no-lock 113
index page 139
index page split 109, 404
inheritance 128, 405
inner replica facility 405
INSERT facility using arrays 188
insert history maintenance column 94
INSERT ONLY option 94
INSERT privilege 333
INSERT statement 154
instance 435
INTEGER 70
integer 70
integrity check utility 184

integrity constraint 176, 405
inter-process memory communication facility 406
interface area 406
INTERVAL HOUR TO SECOND 70
INTERVAL YEAR TO DAY 70
IP address 406
iPlanet Console 41

J
JAR file 173
Java stored function 169, 406
Java stored procedure 169, 406
Java stored routine 169

characteristics of 169
creation and execution procedure 171

Java virtual machine 173
position of 169

JDBC driver 20, 406
JDBC-compatible application 20
join 406
journal 209
JP1 406
JP1/Automatic Job Management System 2 51
JP1/Base 50
JP1/Integrated Management 50
JP1/Performance Management - Agent Option for
HiRDB 49
JP1/VERITAS NetBackup Agent for HiRDB
License 282

K
kernel threading 367
key range partitioning 76, 407

with boundary values specified 78
with storage condition specified 77

key values 101

L
LAN adapter 407
language compiler 407
LARGE DECIMAL 70
large file 407
large object data 70

Index

443

LDAP 37
leaf page 101
linkage 407
linker 407
list 197, 407

example of search, using 197
list RDAREA 64, 407

creating 199
load module 408
LOB column structure base table 408
LOB data 408
LOB global buffer 234
LOB RDAREA 63
local buffer 242, 408
locator facility 250, 408
lock 408
lock mode 262

exclusive mode 262
protected update mode 262
shared mode 262
shared retrieval mode 262
shared update mode 262

LOCK PAGE (CREATE TABLE) 262
lock period 264
LOCK statement 264
LOCK TABLE statement 264
locked resource 261
locking 261, 408

automatic 263
by page 262
by row 262
units of 261

log acquisition mode 265, 408
log application 409
log application not possible status 409
log application possible status 409
log application site 409
logical file 212
logless shutdown 267
LRU management method 239

for global buffer 239
LVM 409

M
main site 410
manual startup 229
master directory RDAREA 63, 410
matrix partitioning 85, 410
matrix-partitioned table 85
MCHAR 70
message queue monitoring facility 410
Microsoft Cluster Server 310
middle page 101
minimum password length 346
mixed character data 70
mixed character string

fixed-size 70
variable-size 70

module trace 410
monitor mode 316, 410
monitoring free area for system log file 411
move rdarea statement 301
MSCS 310
multi-connection facility 43, 254, 411
multi-front-end server 13
multi-HiRDB 15, 411

configuration of 15
multi-stage system switchover 314
multicolumn index 102
multicolumn partitioning 107
multiple front-end server 411
mutual alternating configuration 321
mutual system switchover configuration 320
MVARCHAR 70

N
n-gram index method 55
n-gram index plug-in 352
narrowed search 197, 411
national character data 70
national character string

fixed-size 70
variable-size 70

native threading 367
NCHAR 70
NetBackup linkage facility 282, 411
new page allocate mode 142, 411

Index

444

NO SPLIT option
CREATE TABLE 75
CREATE TYPE 75

no transaction loss (no data loss) 412
no-log mode 265, 412
no-split option 74, 412
node 412
non-partitioning key index 107
non-stop service, support for 9
normal BES 312, 412
normal BES unit 312
normalization 71
NOT NULL constraint 176, 412
NOT NULL option (CREATE TABLE) 176
null value 412
numbering 95
numeric data 70
NVARCHAR 70

O
object 412
object definition event 342
object operation event 343
object relational database 412

expansion into 118
ODBC driver 19
ODBC-compatible application 19
OLE DB provider 19
OLE DB-compatible application 19
OLTP product, linkage to 42
one-phase commit 256, 257
one-to-one system switchover configuration 319
one-way alternating configuration 321
OPEN statement 152
OpenTP1 42
operation releasing check of unload status 413
operation unloading system log 413
operation without unloading system log 413
optimizing based on cost 102, 413
option program product 24
ORDER BY clause 158
overload 167, 413
override 129, 130, 413

P
page 138, 413

allocating 147
designing 146
free page 146
full page 146
ratio of unused area in 146
releasing 148
status of 146
unused page 146
used free page 146
used page 146

page compaction 295
page locking 262
pair 414
pair logical volume group 414
pair logical volumes 414
pair status 414
pair volumes 414
partition 206
partition storage conditions, changing 392
partitioning key 76, 80
partitioning key index 107, 414
partitioning storage conditions, changing 91
password character string restrictions 345
password restrictions, specifiable 345
password-invalid account lock state 346, 416
PCTFREE option

page unused area ratio 147
segment free page ratio 141

pd_assurance_table_no operand 144
pd_check_pending operand 179, 182
pd_dbbuff_lru_option operand 239
pd_dbbuff_rate_updpage operand 238
pd_dbsync_point operand 238, 239
pd_dfw_awt_process operand 238
pd_indexlock_mode operand 114
pd_jp1_event_level operand 50
pd_jp1_use operand 50
pd_large_file_use operand 208
pd_max_ard_process operand 238
pd_max_list_count operand 199
pd_max_list_users operand 199
pd_mode_conf operand 229

Index

445

pd_pageaccess_mode operand 240
pd_trn_commit_optimize operand 257
pdbuffer operand 236, 238

-m option of 237
-p option of 237
-w option of 238, 240

pdbufls command 299
pdbufmod command 236
pdchgconf command 225
pdconfchk command 225
pdconstck command 184
pdcopy command (-M option) 272
pddbfrz command 280
PDDBLOG operand 265
pdfmkfs command 208
pdlbuffer operand 243

-p option of 237
pdloginit command

creating synchronization point dump
files 212
creating system log files 210

pdlogls command 275
pdlogunld command 273
pdpgbfon 241
pdrbal command 84
pdreclaim command 294
pdstart command 226
pdstop command 226
pdstsinit command

creating server status files 213
creating unit status files 213

permit update status 281
permitted number of consecutive certification
failures 347
planned system switchover 318
plug-in 349, 417

setup 358
plug-in architecture 350
plug-in index 101, 359, 417

delayed batch creation of 359, 396
POSIX library version 417
post-source 417
PR, lock mode 262
pre-update log acquisition mode 265, 418

predefined data type 417
prediction level 1 (facility for predicting
reorganization time) 291
prediction level 2 (facility for predicting
reorganization time) 291
prefetch facility 236, 417
prepare processing 258
preprocessing 417
primary key 73, 418
PRIMARY KEY option (CREATE TABLE) 73
primary system 310
PRIVATE 133
private RDAREA 63, 64
private user RDAREA 332
privilege control event 342
procedure 163, 168
process 418
products that handle multimedia information, linkage
to 54
prohibit only one type of characters 346
prohibit specification of authorization identifier 346
PROTECTED 133
protection mode 418
PU, lock mode 262
PUBLIC 133
public RDAREA 63, 64
public user RDAREA 332
PURGE TABLE statement 154

Q
quantified predicate 157

R
RAID Manager instance 418
range specification recovery 418
rapid grouping facility 188, 419
rapid system switchover facility 325, 419
raw I/O facility 207
RD node 419
RD node name 419
RDAREA 62, 419

adding 299
automatic extension of 299, 420
closing 393

Index

446

creating 64
expanding 299
moving 301
relationship between RDAREA and index 62
relationship between RDAREA and table 62
reorganization by 286
shutting down 420
types of 62
usage privilege 332

reactivating system 313
read-only 43
Real Time SAN Replication 420
rebalancing facility 83

for hash row partitioning 402
rebalancing utility 84
recovery

of database 270
to most recent synchronization point before
failure occurred 271
to the point backup was made 271

RECOVERY operand (CREATE TABLE) 266
recovery-unnecessary front-end server 327, 420
recovery-unnecessary front-end server unit 327
reduced activation 229, 420
reference buffer 233, 421
reference-only back-end server 421
referenced table 178
referencing table 178
referencing-permitted backup-hold 280

update WAIT mode 280
referencing-permitted mode 273
referencing/updating-impossible mode 273
referential constraint 178, 421
registry facility 421

initialization of 358
registry information 64, 358
registry LOB RDAREA 64, 421
registry management table 358
registry RDAREA 64, 421
regular expression 421
regular unit 314, 422
reloading 285
remote site 422
reorganization

by schema 422
with synchronization points set 288, 422

reorganization processing
by RDAREA 286
by schema 287
by table 286
with synchronization point 288

reorganization time prediction data
analyzing 291
getting 290

repetition column 96, 422
replication facility 31, 423

example of using 32
products required for 34

reserved word 423
resource manager 42
RETURN statement 167
RM 42
role 40
rollback 230, 256, 271, 423
rollforward 230
root page 101
routine 168
row 68
row locking 262
row partitioning 76, 103, 424

among servers 82, 106
within server 82, 105

row-partitioned index 103
row-partitioned table 76
running system 310

S
scheduled database maintenance day 290
schema 67, 424

reorganization by 287
schema definition privilege 332, 424
search condition 155
second dimension partitioning column 85
secondary system 310
security audit facility 334
security facility 330, 424
segment 138, 424

allocating 141

Index

447

designing 140
free segment 140
full segment 140
ratio of free pages in 140
releasing 141
status of 140
unused segment 140
used free segment 140
used segment 140

SEGMENT REUSE option 144
SELECT privilege 333
SELECT statement 152
server failure 317
server machine 424
server mode 316, 424
server status file 212
session security event 341
SGML document registration 354
SGML plug-in 352
SGML structured text data 118
shared disk unit 316
shared index 425
Shared Nothing method 2
shared RDAREA 64, 425
shared table 99, 425
simple setup tool 9
single column index 102
single server, HiRDB/Single Server 11
single-column partitioning 107
single-phase optimization 43
single-precision floating point 70
site status 425
skipped effective synchronization point dump
monitoring facility 425
SMALLFLT 70
SMALLINT 70
snapshot method 240
space conversion facility 303, 425
spatial data 56
SQL 17, 150

execution method of 150
in HiRDB, use of 150
object 63, 168, 426
optimization of 191

SQL connection 425
SQL extension optimizing option 191, 426
SQL extension optimizing option facility

application of optimizing mode 2 based on
cost 195
forced foreign server execution of SQL
statements that include direct product 195
hash-execution of hash join or subquery 195
suppression of foreign server execution of
SQL statements that include join 195
suppression of unconditionally generated
derived rapid search conditions that can be
executed on foreign servers 196

SQL optimization option 191, 426
SQL optimization option facility

application of scalar operation-included key
conditions 195
creating multiple SQL objects 192
derivation of rapid search conditions 194
for batch acquisition from functions provided
by plug-ins 195
forced nest-loop-join 192
forced table scan 194
forcing use of multiple indexes 194
increasing number of floatable server
candidates 193
increasing target floatable servers 192
limiting target floatable servers 193
prioritized nest-loop-join 192
priority of OR multiple index use 193
rapid grouping facility 193
separating data collecting servers 194
suppressing creation of update-SQL work
tables 194
suppressing index use 194
suppressing use of AND multiple
indexes 193

SQL optimization specification 191, 427
SQL optimization specification facility

for index utilization 192
for join method 192
for subquery execution method 192

SQL preprocessor 427
SQL runtime warning output facility 427

Index

448

SQL stored function 163, 427
SQL stored procedure 163, 427
SR, lock mode 262
standby system 310
standby system switchover facility 427

overview of 310
standby-less system switchover (1:1) facility 312,
428
standby-less system switchover (effects distributed)
facility 313, 428

system configuration examples of 322
standby-less system switchover facility 428

overview of 311
startup mode 226

forced startup 227
normal startup 226
restart 226

static registration 46
static SQL 428
statistics log file 428
status file 212, 428

for log application processing 429
for transaction processing 429

storage condition specification 77
stored function 63, 163, 429

application of 166
invoking 167
overloading of 167
re-creating 168

stored procedure 63, 163, 429
calling 167
re-creating 168

structured repetition predicate 97
SU, lock mode 262
subquery 157
substitutability 128, 429
subtype 126, 429
Sun Java System Directory Server linkage facility 38,
430
Sun ONE Console 41
super type 128, 430
suppress option 74
SUPPRESS option (CREATE TABLE) 74
synchronization point 210, 254, 271, 430

synchronization point dump 210
synchronization point dump file 210, 430

for log application processing 430
for transaction processing 430

synchronization point dump processing 8
synchronization point lines count 288
synchronous copy 431
synchronous group 431
synchronous pair volume 431
system administrator security event 341
system failure 317
system file 209, 431

component comprising 214
configuration of (HiRDB/Parallel
Server) 216
configuration of (HiRDB/Single Server) 215

system generator 431
system log 209

unloading 273
system log application, preparation for 417
system log file 209, 431

automatic log unloading facility for 276
swapping 274

system manager, HiRDB/Parallel Server 13
system RDAREA 63, 432
system reconfiguration command 225
system switchover facility

configurations of 318
overview of 310

system switchover time, comparing 326

T
table 68

containing large quantity of data,
reorganizing 288
examples of row partitioning of 82
execution unit for reorganization of 286
matrix partitioning of 85
normalization of 71
reorganization by 286
reorganization of 285
row partitioning definition of 83
row partitioning of 76

table access privilege (role) 40

Index

449

table rebalancing 84
table reorganization 432
tape device access facility 432
termination mode 227

abnormal termination 228
forced termination 228
normal termination 228
planned termination 228

TIME 70
time 70
time data 70
time interval data 70
time-stamp data 70
TIMESTAMP 70
TM 42
TPBroker 42
transaction 432

control of 254
startup of 255
termination of 255
transfer 43

transaction execution site 432
transaction manager 42

registration in 46
transaction transfer 259
trigger 174, 433
trigger action search condition 174
trigger event SQL 174
trigger SQL statement 174
TUXEDO 42
two-phase commit 258
two-to-one system switchover configuration 319

U
UAP transaction management under OLTP
environment 259
unbalanced index split 110, 433
UNBALANCED SPLIT option

CREATE INDEX 112
CREATE TABLE 112

unfinished index 113
UNION 158
UNIQUE CLUSTER KEY option (CREATE
TABLE) 176

UNIQUE option (CREATE INDEX) 176
uniqueness constraint 176, 433
unit 433

HiRDB/Parallel Server consisting of 13
HiRDB/Single Server consisting of 11

unit controller 433
unit status file 212
unload log file 270, 433

creating 273
relationship between backup and unload log
file 275
retaining 275

unload statistics log file 433
unload-wait 274
unloading 285
UNTIL DISCONNECT (LOCK statement) 264
unused page 433
unused segment 433
updatable back-end server 433
updatable backup-hold 280

WAIT mode 280
updatable column 94
updatable mode 273
updatable online reorganization 434
update buffer 233, 434
update copy 434
UPDATE facility using arrays 189
UPDATE privilege 333
UPDATE statement 153
used free page

being created, process of 297
releasing 148, 294
reusing 294

used free segment
releasing 141, 297
reusing 297

used page 434
used segment 434
user authentication 39
user LOB RDAREA 64, 434
user mapping 435
user privilege 330
user RDAREA 63, 435
user server hot standby 325, 435

Index

450

user-defined function 168
user-defined type 434
utility operation event 343
utility special unit 435

V
value 435
VARCHAR 70
view table 98, 435
volume attribute 436

W
Web Page Generator 56
WebLogic Server 42
WITHOUT LOCK (SELECT statement) 263
WITHOUT ROLLBACK option (CREATE
TABLE) 95
work table file 217, 436

creating HiRDB file system area for 218
operation requiring 218
SQL statement requiring 217

WRITE specification 245

X
X/Open XA interface 42
XA interface, transaction control based on 254
XDM/RD E2 connection facility 5
XML document registration 354
XML server, linkage to 36
XML structured text data 118

Reader’s Comment Form
We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

