
uCosminexus Service Platform

Basic Development Guide

3020-3-Y43-40(E)

■ Relevant program products
See the description for relevant program products in the preface of the manual "Application Server Overview".

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law, and USA export
control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
IIOP is a trademark of Object Management Group, Inc. in the United States.

Internet Explorer is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Microsoft and Visio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Microsoft Office and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

OMG, CORBA, IIOP, UML, Unified Modeling Language, MDA and Model Driven Architecture are either registered trademarks or
trademarks of Object Management Group, Inc. in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates.

Process Modeler is a product name of Swiss itp-commerce Ltd.

SOAP is an XML-based protocol for sending messages and making remote procedure calls in a distributed environment.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

The other company names and product names are either trademarks or registered trademarks of the respective companies.

Eclipse is an open development platform for tools integration provided by Eclipse Foundation, Inc., an open source community for
development tool providers.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

■ Microsoft product screen shots
Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names.

Full name or meaning Abbreviation

Microsoft(R) Windows(R) Internet Explorer(R) 6 Internet Explorer 6

Microsoft(R) Windows(R) Internet Explorer(R) 7 Internet Explorer 7

Microsoft(R) Windows(R) Internet Explorer(R) 8 Internet Explorer 8

Microsoft(R) Cluster Service Microsoft Cluster Service

Microsoft(R) Windows(R) 7 Enterprise Windows 7 Windows

Microsoft(R) Windows(R) 7 Professional

Microsoft(R) Windows(R) 7 Ultimate

Microsoft(R) Windows Server(R) 2003, Enterprise Edition
Operating System (x86)

Windows Server 2003
Enterprise Edition

Windows Server
2003

Microsoft(R) Windows Server(R) 2003, Standard Edition
Operating System (x86)

Windows Server 2003
Standard Edition

Microsoft(R) Windows Server(R) 2003 R2, Enterprise Edition
Operating System (x86)

Windows Server 2003 R2
Enterprise Edition

Windows Server
2003 R2

Full name or meaning Abbreviation

Microsoft(R) Windows Server(R) 2003 R2, Standard Edition
Operating System (x86)

Windows Server
2003 R2

WindowsWindows Server 2003 R2
Standard Edition

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition
Operating System

Windows Server 2003
Enterprise x64 Edition

Windows Server
2003 (x64)

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition
Operating System

Windows Server 2003
Standard x64 Edition

Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64
Edition Operating System

Windows Server 2003 R2
Enterprise x64 Edition

Windows Server
2003 R2 (x64)

Microsoft(R) Windows Server(R) 2003 R2, Standard x64 Edition
Operating System

Windows Server 2003 R2
Standard x64 Edition

Microsoft(R) Windows Server(R) 2008 Enterprise 32-bit Windows Server 2008 x86

Microsoft(R) Windows Server(R) 2008 Standard 32-bit

Microsoft(R) Windows Server(R) 2008 Enterprise x64 Edition Windows Server 2008 x64

Microsoft(R) Windows Server(R) 2008 Standard x64 Edition

Microsoft(R) Windows Server(R) 2008 R2 Enterprise Windows Server 2008 R2

Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Vista(R) Business Windows Vista Business Windows Vista

Microsoft(R) Windows Vista(R) Enterprise Windows Vista Enterprise

Microsoft(R) Windows Vista(R) Ultimate Windows Vista Ultimate

Microsoft(R) Windows(R) XP Professional Operating System Windows XP

Process Modeler 5 for Microsoft(R) Visio Professional Edition Process Modeler 5 for Microsoft Visio Professional Edition

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The software
described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of the terms and
conditions governing your use of the software and documentation, including all warranty rights, limitations of liability, and disclaimers of
warranty.

Material contained in this document may describe Hitachi products not available or features not available in your country.

No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in Japan.

■ Issued
Oct. 2015: 3020-3-Y43-40(E)

■ Copyright
All Rights Reserved. Copyright (C) 2015, Hitachi, Ltd.

Preface
For details on the prerequisites before reading this manual, see the description in the introduction for the manual "Application
Server Overview".

I

Contents

1 Overview of System Development Based on SOA 1

1.1 Flow from Development up to Actual Operation 2

1.2 Relationship Between the Overall System and the Development Environment 6

2 Before Developing a System 9

2.1 Setup for Using the Development Environment 10

2.1.1 Prerequisites 10

2.1.2 Installation 11

2.1.3 Environment Setup 11

2.1.4 Creating embedded database 11

2.1.5 Uninstalling 14

2.2 Selecting the configuration format and the SOAP modes 15

2.2.1 Usage existence of database and Reliable Messaging 15

2.2.2 SOAP mode to be used 16

2.2.3 SOAP mode settings 18

2.3 Development Work Flow 19

2.4 Easy Setup of the Test Environment 22

2.4.1 Environment that can be Built with the HCSC Easy Setup Functionality 22

2.4.2 Executing HCSC easy setup functionality 24

2.4.3 Operating the test environment set up with HCSC easy setup functionality 31

2.4.4 Customizing a Test Environment 34

2.4.5 Checking the SOAP modes 38

2.5 Operating an embedded database set up with the HCSC Easy Setup functionality 39

2.5.1 Checking unused RD area 39

2.5.2 Deleting the execution history of process instances 40

2.5.3 Releasing empty pages and empty segments 40

2.6 Types of Available Service Components and Their Application Scopes 42

2.6.1 Applicability of the service components that use Web service 42

2.6.2 Application Scopes of Service Components That Use SessionBean 48

2.6.3 Application Scopes of Service Components That Use the Local Queue of Cosminexus RM 51

2.6.4 Application Scopes of Service Components That Use a Database Queue 51

2.6.5 Scoping of XML schema 52

2.7 Expanding code conversion 54

2.7.1 Creating character code conversion UOC 54

2.7.2 Embedding the user mapping table 54

i

3 Managing Project and Managing Repository 57

3.1 Managing a Project 58

3.1.1 Creating a Project 58

3.1.2 Setting up Properties 60

3.1.3 Exporting/Importing a Project 62

3.1.4 Deleting a Project 62

3.1.5 Changing SOAP modes 62

3.1.6 Notes at the time of development 62

3.2 Managing a Repository 63

3.2.1 Setting Up a Repository 63

3.2.2 Exporting a Repository 64

3.2.3 Importing a Repository 66

3.3 Output of design information 74

3.3.1 Information that can be output as design information 74

3.3.2 Items to be checked before output 81

3.3.3 How to output the design information 82

3.3.4 Notes on outputting design information 84

3.4 Notes regarding Eclipse 85

4 Creating Message Formats 87

4.1 Message Formats and Data Transformations 88

4.2 Message Format Types 90

4.3 Creating Message Formats (XML Format Definition File) 91

4.3.1 Creating a Message 91

4.3.2 Creating a Service Component Message (for Web Services) 91

4.3.3 Creating a Service Component Message (for SessionBean) 92

4.3.4 Creating a Service Component Message (for MDB (WS-R or Database Queue)) 92

4.4 Creating Message Formats (Binary Format Definition File) 93

4.4.1 Data types and character code types in the binary format definition file 94

4.4.2 Creating a New Binary Format Definition File 101

4.4.3 Defining Elements (for Non-CSV Format) 101

4.4.4 Defining Elements (for CSV Format) 106

4.4.5 Editing a Binary Format Definition File 107

4.4.6 Validating a Binary Format Definition File 108

4.4.7 Notes regarding binary format definition 123

4.5 Generating the binary format definition file from COBOL Library Text File 124

4.5.1 Description format of COBOL Library Text File that can be transformed 124

4.5.2 Support to data type of COBOL Library Text File and binary format definition file 127

4.5.3 Method of generating the binary format definition file 129

4.6 Generating an XML schema file from the binary format definition file 131

Contents

ii

4.7 Changing the message formats 132

5 Defining Business Processes 133

5.1 Definition Work Flow 134

5.2 Adding Business Processes 136

5.2.1 Adding New Business Processes 136

5.2.2 Using an Already Defined Business Process to Add Business Processes 138

5.3 Defining Business Process Contents 139

5.4 Deploying and Linking Activities 140

5.4.1 Deploying Activities 140

5.4.2 Linking Activities 140

5.4.3 Defining Fault Handling 143

5.5 Defining Variables and Correlation Sets 148

5.5.1 Defining Variables 148

5.5.2 Defining Correlation Sets 155

5.6 Defining Activities 163

5.6.1 Start Activity 164

5.6.2 Receive Activity 164

5.6.3 Reply Activity 165

5.6.4 Service Invocation Activity 166

5.6.5 Invoke Java Activity 168

5.6.6 Data Transformation Activity 171

5.6.7 Assign Activity 172

5.6.8 Empty Activity 174

5.6.9 Throw Activity 175

5.6.10 Standby Activity 175

5.6.11 Validate activity 179

5.6.12 Scope Activity 181

5.6.13 While Activity 183

5.6.14 Switch Activities 188

5.6.15 Flow Activities 190

5.6.16 End Activity 193

5.6.17 Sequence Activity 193

5.6.18 Specifying an XPath 193

5.7 Scheduling comments 203

5.8 Saving Business Processes 204

5.9 Editing Business Processes 205

5.9.1 Modifying the definition information for business processes and activities 205

5.9.2 Modifying Activity Names 206

5.9.3 Changing a Running Business Process Definition 206

5.9.4 Upgrading version of business processes 208

Contents

iii

5.10 Validating Business Processes 219

5.10.1 Validation Contents 219

5.10.2 Validation Method 229

5.10.3 Displaying the Validation Contents 230

5.11 Deleting Business Processes 231

6 Defining Data Transformation 233

6.1 Files and Definitions Necessary for Data Transformation 234

6.2 Creating Message Format Definition Files 235

6.3 Defining Data Transformation 237

6.3.1 Procedure for Defining Data Transformation 237

6.3.2 Procedure for defining changed message formats 239

6.3.3 Points to be considered for data transformation definition 240

6.4 Mapping 241

6.4.1 Assigning Transformation-source Node Values Directly to Transformation-destination Nodes 241

6.4.2 Processing the Transformation-source Node Values and Mapping Them to the Transformation-
destination Node 242

6.4.3 Specifying the Scope of Transformation-source and Destination Nodes and Mapping Automatically 245

6.4.4 Specifying a Target from the Element of the Transformation-destination Node and Mapping
Automatically 246

6.4.5 Canceling Mapping 247

6.4.6 Mapping Source Display Format 247

6.4.7 Making Mapping Lines and Functions Easier to View 248

6.4.8 Restricting mapping range 249

6.4.9 Determining Similarities during Automatic Mapping 249

6.4.10 Notes on Mapping 250

6.5 Using Functions to Process Values 252

6.5.1 Concatenating Multiple Strings 252

6.5.2 Extracting a Substring from a String 253

6.5.3 Assigning a String Character Count 254

6.5.4 Verifying That the Specified String Is Present or That the String Begins with the Specified String 255

6.5.5 Removing Spaces from a String 256

6.5.6 Converting the Number Format 257

6.5.7 Computing Numbers 258

6.5.8 Rounding Decimal Digits 259

6.5.9 Summing Up the Node Numbers of Multiple Node Sets 260

6.5.10 Using NOT operation 261

6.5.11 Using logical operation 263

6.5.12 Using shift operation 264

6.5.13 Assigning a Node Count 266

6.5.14 Assigning a Node Name 267

6.5.15 Verifying That a Node Exists 268

Contents

iv

6.5.16 Mapping Looping 269

6.5.17 Outputting Different Values According to Conditions 271

6.5.18 Assigning a Specified Value 273

6.5.19 Converting a Value with the Conversion Table 274

6.5.20 Performing basic number transformation 277

6.5.21 Assigning a Value to a Transformation-source Node Value 279

6.5.22 Doubling a Transformation-source Node Value 280

6.5.23 Invoke a Java program created by the user 281

6.6 Specifying Looping 284

6.6.1 Mapping Using the Loop Settings Dialog Box 284

6.6.2 Synthesizing Loops 284

6.6.3 Mapping Looping Dependent Targets 285

6.6.4 Checking Looping Dependent Targets 289

6.6.5 Changing Looping Dependent Targets 289

6.6.6 Displaying the Path of a Transformation-source Node for Which a Looping Dependent Target Is
Specified 290

6.6.7 Relating repeat process of each element by setting up the linkage path 293

6.7 Specifying Node Conditions 298

6.8 Copying Mapping Definitions 300

6.8.1 Flow of copying mapping definitions 300

6.8.2 Saving mapping definitions 301

6.8.3 Registering mapping definitions 301

6.8.4 Copying mapping definitions 301

6.8.5 Determining similarities 302

6.8.6 Notes on copying mapping definitions 304

6.9 Creating Java programs to be used in the custom function 308

6.9.1 Creating the Transformation Function Definition File 309

6.9.2 Creating the Java form file 311

6.9.3 Referring to external jar from transformation function 313

6.9.4 Coding, building and debugging Java programs 313

6.9.5 Packaging Java programs 314

6.10 Mapping Conditions 315

6.10.1 Mapping Targets and Non--Mapping Targets 315

6.10.2 Correspondences Between Nodes and Functions That Can Be Mapped 315

6.10.3 Number of Mapping Lines That Can Be Connected 321

6.11 Editing function name directly 323

6.11.1 Method of editing function name 323

6.11.2 Displaying function name after edition 323

6.12 Importing mapping definition using Excel 325

6.12.1 Creating table format XML file 326

6.12.2 Setting up the mapping definition 327

6.12.3 Importing mapping definition 343

Contents

v

6.12.4 Points to be considered when using mapping definition using Excel 343

6.13 Definition details of table format XML schema definition file 344

6.13.1 Namespaces (namespace information) 345

6.13.2 CopyObjects (mapping to transformation destination node) 346

6.13.3 ConcatenateObjects (Concatenate function) 349

6.13.4 SubstringObjects (Acquire substring function) 349

6.13.5 LengthObjects (Acquire string length function) 353

6.13.6 ContainObjects(Check string function) 354

6.13.7 TrimObjects (Trim node function) 355

6.13.8 FormatObjects(Convert number format function) 356

6.13.9 CalculateObjects(Perform node operation function) 357

6.13.10 RoundObjects(Round node function) 358

6.13.11 SumObjects(Sum up nodes function) 359

6.13.12 NotObjects(NOT operation function) 360

6.13.13 BitOpObjects(Logical operation function) 361

6.13.14 ShiftObjects(Shift operation function) 362

6.13.15 NameObjects(Acquire node name function) 363

6.13.16 CountObjects(Acquire node count function) 364

6.13.17 ExistObjects(Check node function) 365

6.13.18 LoopObjects(Repeat function) 366

6.13.19 ChooseObjects(Select function) 369

6.13.20 ReplaceObjects(Replace value function) 370

6.13.21 RadixObjects(radix conversion function) 372

6.13.22 CustomObjects(Custom function) 373

6.13.23 ConstantObjects(Set constant function) 375

6.13.24 Objects for which you can define the same Name element in multiple rows 377

6.14 Namespace prefix option 379

6.14.1 Setting up default value of namespace prefix option 379

7 Packaging HCSC Components and Defining Deployment 381

7.1 Packaging and Defining Deployment 382

7.2 Packaging 384

7.3 Defining Deployment of HCSC Components 385

7.3.1 Clusters (or Single HCSC Servers) to Which HCSC Components Can Be Deployed 387

7.3.2 Adding HCSC Components to a Cluster 387

7.3.3 Deleting HCSC Components from a Cluster 388

7.4 Referencing HCSC Component Information 389

7.4.1 HCSC Component Information That Can Be Referenced 389

7.4.2 Displaying HCSC Component Information 389

7.4.3 Updating the HCSC Component List 390

Contents

vi

7.5 Batch execution of processes for deploying HCSC components on the HCSC Server and then
starting 391

7.5.1 Flow of processes from deploying to starting HCSC components 391

7.5.2 How to deploy HCSC components in the HCSC server and start them 393

7.6 Batch execution of processes for stopping HCSC components and deleting them from the
HCSC server 397

7.6.1 Flow of processes from stopping to deleting HCSC Components 397

7.6.2 How to stop HCSC components and delete them from the HCSC server 398

8 Creating Service Requesters 403

8.1 Overview of Creating Service Requesters 404

8.2 Service Requester That Sends Requests to a Standard Synchronous Reception (Web Services)
(SOAP communication infrastructure) 405

8.2.1 Procedure for Creating a Service Requester (Standard Synchronous Reception (Web Services))
(SOAP communication infrastructure) 405

8.2.2 Acquiring the WSDL 407

8.2.3 Creating Stubs 408

8.2.4 Generating Objects 408

8.2.5 Specifying Parameters 410

8.2.6 Creating Request Messages 411

8.2.7 Acquiring Response Messages 413

8.2.8 Acquiring Error Information 414

8.2.9 Creating a service requester that sends a request for business process re-execution (Web Services
and SOAP communication infrastructure) 417

8.2.10 Creating a service requester that sends a request for the operating status of service adapter from an
application (Web Services and SOAP communication infrastructure) 419

8.3 Creating a service requester using standard synchronous reception (Web Services) (JAX-WS
engine) 427

8.3.1 Procedure for creating a service requester (Standard synchronous reception (Web Service)) (JAX-WS
engine) 427

8.3.2 Acquiring WSDL 429

8.3.3 Creating service classes 430

8.3.4 Generating objects 431

8.3.5 Specifying parameters 431

8.3.6 Creating request messages 432

8.3.7 Acquiring response messages 432

8.3.8 Acquiring error information 432

8.3.9 Creating a service requester requesting re-execution of a business process (Web service and JAX-
WS engine) 438

8.3.10 Creating service requester for requesting confirmation of operation status of service adapter (Web
Service and JAX-WS engine) 439

8.4 Service Requester That Sends Requests to a Standard Synchronous Reception (SessionBean)
(JAX-WS engine) 441

8.4.1 Procedure for Creating a Service Requester (Standard Synchronous Reception (SessionBean)) 441

8.4.2 Acquiring Stubs 443

Contents

vii

8.4.3 Creating Instances 443

8.4.4 Specifying Parameters 444

8.4.5 Creating Request Messages 445

8.4.6 Acquiring Response Messages 446

8.4.7 Acquiring Error Information 446

8.4.8 Creating a Service Requester That Sends a Request for Business Process Re-execution (SessionBean)451

8.5 Service Requester That Sends Requests to a Standard Asynchronous Reception (MDB (WS-R)) 454

8.5.1 Procedure for Creating a Service Requester (Standard Asynchronous Reception (MDB (WS-R)) 454

8.5.2 Creating a Transmission Queue 456

8.5.3 Creating JMS Messages 457

8.5.4 Specifying Parameters 457

8.5.5 Creating Request Messages 461

8.5.6 Sending JMS Messages 461

8.5.7 Setting Up a Response Queue 462

8.5.8 Extracting Responses 462

8.5.9 Acquiring Response Messages 463

8.6 Service Requester That Sends Requests to a Standard Asynchronous Reception (MDB
(database queue)) 466

8.6.1 Service Requester (Standard Asynchronous Reception (MDB (Database Queue))) Creation Procedure 467

8.6.2 Creating a Shared Transmission Queue (JMS) 471

8.6.3 Creating JMS Messages (JMS) 471

8.6.4 Creating Binary Data (TP1/EE or JMS) 472

8.6.5 Specifying Parameters (TP1/EE or JMS) 475

8.6.6 Creating Request Messages (TP1/EE or JMS) 475

8.6.7 Specifying Binary Data in the Shared Receive Queue (TP1/EE) 477

8.6.8 Sending JMS Messages (JMS) 477

8.6.9 Setting Up a Response Queue (TP1/EE or JMS) 477

8.6.10 Extracting Responses (TP1/EE or JMS) 478

8.6.11 Acquiring Response Messages (TP1/EE or JMS) 480

8.7 Service Requester That Sends Requests to a User-defined Reception (Web Services) 482

8.7.1 Procedure (SOAP communication infrastructure)for creating a service requester (User-defined
reception (Web Service)) 482

8.7.2 Editing a WSDL 484

8.7.3 Creating Stubs 484

8.7.4 Generating Objects 484

8.7.5 Acquiring Response Messages 485

8.7.6 Acquiring Error Information 485

8.7.7 Procedure for creating a service requester (User-defined Reception (Web Service)) (JAX-WS engine) 487

9 Debugging Business Processes 491

9.1 Flow of Debugging 492

9.2 Preparing for Debugging of Business Processes 494

Contents

viii

9.2.1 Setting Breakpoints 494

9.2.2 Setting Service Emulation 495

9.3 Starting debugging of business processes 496

9.4 Sending requests 498

9.5 Debugging Business Processes 499

9.5.1 Step-by-Step Execution and Restarting 499

9.5.2 Checking Variables and Correlation Sets 506

9.5.3 Updating Variables 506

9.5.4 Evaluating XPath 507

9.5.5 Automatic Service Emulation 508

9.5.6 Manual Service Emulation 509

9.6 Ending Debugging of Business Processes 511

Appendixes 513

A. Migrating from an Earlier Version 514

A.1 Versions Wherein Migration Is to Be Performed 514

A.2 Migrating from an Earlier Version 514

A.3 Migrating procedure when a repository is shared between development environment and operating
environment in earlier version 517

B. Migrating from the Evaluation Version 521

C. System development using High Level Design Tools 523

C.1 Overview of system development using high level design tools 523

C.2 Procedure of system development using high level design tools 525

C.3 Prerequisites for using high level design tools 527

C.4 Troubleshooting when the high level design tools are used 529

D. Examples of System Development Using High Level Design Tools 542

D.1 Designing the business process overview 542

D.2 Reviewing the service overview interface 542

D.3 Detailing the business process 542

D.4 Output the business process 542

D.5 Reviewing the detailed interface of the service 542

D.6 Creating the service adapter 542

D.7 Importing the business process 542

D.8 Adding user-defined reception interfaces 542

D.9 Registering message schemas 542

D.10 Adding the message transformation and system exception processing 542

E. Support Range of BPEL Used by Linking with an High Level Design Tool 543

E.1 Importing business process definitions for BPEL1.1 544

E.2 Importing a business process definition of BPEL2.0 560

F. Inheriting HTTP header and Cookie information in which service adapter is used 578

G. Emulating the Service Requester 585

Contents

ix

G.1 Flow of service requester emulation 585

G.2 How to emulate the service requester 585

H. Component common UOC 589

H.1 Property file of component common UOC class 589

H.2 Method for specifying the component common UOC class 589

H.3 API for UOC class 590

H.4 API for message acquisition 593

H.5 Method of specifying jar file of UOC class 594

H.6 Notes 595

I. Character code conversion using character code conversion UOC 596

I.1 Developing jar file of character code conversion UOC 596

I.2 Settings for using the character code conversion UOC 596

I.3 CSCOwnCodeConverter interface 597

I.4 CSCOwnCodeReader interface 603

I.5 CSCOwnCodeReaderContext interface 612

J. Examples of transforming the format of data acquired by using the database adapter 619

J.1 Examples 619

J.2 Format transformation methods 620

K. Auto mapping of data acquired by DB adapter 625

L. Customizing WSDL using the external binding file 630

M. Changing IBM kanji code character set 631

M.1 Procedure for changing the character set of IBM kanji code 631

N. Glossary 632

Index 633

Contents

x

1 Overview of System Development
Based on SOA
This chapter provides an overview of how a system can be developed based on SOA.

1

1.1 Flow from Development up to Actual Operation
The following figure shows the workflow from system development using a Cosminexus Service Platform to the
actual application.

Figure 1‒1: Flow from development to actual application

1. Overview of System Development Based on SOA

2

Note#
In the development environment, you can also perform these operations in a batch; however, you perform the
batch execution when developing a system or during the unit testing and the integration testing. For details, see
"7.5 Batch execution of processes for deploying HCSC components on the HCSC Server and then starting".

This manual explains the workflow and tasks to be performed in the development environment shown in the figure.
For details about the tasks to be performed in the operating environment and execution environment, see "Service
platform System Setup and Operation Guide".

The following subsections provide overviews of the individual tasks shown in the figure.

(1) Creating a service component
Create the service components to be used on the Cosminexus Service Platform. The interface information needs to be
defined in a service component. For details on the types of available services, see "2.6 Types of Available Service
Components and Their Application Scopes".

(2) Installing Service Architect
Install Service Architect on the machine to be used as development environment.

For details on installing, see "2.1.2 Installation".

(3) Setting up the development environment
Set up the development environment by procuring the archive file of Eclipse.

1. Overview of System Development Based on SOA

3

For details, see Step 2 and 3 in "2.1 Setup for Using the Development Environment".

(4) Setting up the SOAP mode
Set up the SOAP mode to be used in the system. The SOAP mode includes the SOAP1.1 mode and the SOAP1.1/1.2
combined mode.

For details about the overview and setup methods of SOAP modes, see "2.2.2 SOAP mode to be used".

(5) Creating a project
Create an HCSCTE project with HCSCTE embedded Eclipse. Create a project and set up properties before developing
HCSC components.

For details on creating a project, see "3.1.1 Creating a Project" and for details on setting up properties, see " 3.1.2
Setting up Properties".

(6) Importing a repository
Import a repository that is set up in the operating environment with easy setup, into the development environment.

Import a repository set up with easy setup in operating environment, to the development environment. Import the
repository that was set up with easy setup in operating environment, to the development environment.

For details on how to import a repository, see "3.2.3 Importing a Repository".

(7) Creating HCSC components
Create HCSC components such as the service adapter for invoking the already created service components, business
process for invoking multiple service components and user-defined reception for receiving the execution request from
the service adapter.

Also, you must create a message format, which is the format of the message for invoking service components, before
defining the respective HCSC components.

(a) Creating a message format

Create a format (message format) of a message for invoking service components. The method of creating message
format differs depending on the type of service component to be invoked and the type of message to be used.

For creating a message format, see "4. Creating Message Formats". For the screen to be used in creating a message
format (binary format definition file), see "1.2.1 Binary Format Definition Window" in "Service Platform Reference
Guide". For the dialogs to be used when creating a message format (binary format definition file), see "1.3 Dialog
Boxes Related to Binary Format Definition" in "Service Platform Reference Guide".

You must use a command, to create message format for using DB adapter (service adapter for operating database). For
details on the command, see "csamkxmls (Creating XML format definition file for DB adapter)" in "Service Platform
Reference Guide".

(b) Defining adapters

Create adapters for invoking service components (including database manipulation) and define their details. The
following two types of adapters are available: service adapters for invoking service components and database adapters
for manipulating databases.

Create a service adapter for invoking service components (including database operations) and define the details.

For details on defining the service adapter, see "3. Defining Adapters" in "Service Platform Reception and Adapter
Definition Guide". For the details on screens and dialogs to be used when defining the service adapter, see "1.2.2
Service Adapter Definition Window" in "Service Platform Reference Guide".

(c) Defining business processes

Create business processes and define their details.

For details on defining a business process, see "5. Defining Business Processes".

1. Overview of System Development Based on SOA

4

Also, for the details on screens and dialogs to be used when defining a business process, see "1.2.3 Business Process
Definition window" in "Service Platform Reference Guide".

(d) Creating a data transformation definition

Crate data transformation definition when message format of the request message for invoking service component
differs than the message format of the service component to be invoked.

For the details on creating the data transformation definition, see " 6. Defining Data Transformation".

Also, for the details of screens and dialogs used when creating data transformation definition, see "1.2.5 Data
Transformation Definition Window" in "Service Platform Reference Guide".

(e) Defining a user-defined reception

Define user-defined reception, when you want to define any format as an interface that receives the service component
execution request and returns the response. Note that the business process is the only HCSC component that can
receive request with user-defined reception.

For details on defining the user-defined reception, see "2. Defining User-Defined Reception" in "Service Platform
Reception and Adapter Definition Guide".

Also, for details on screens and dialogs to be used when defining the user-defined reception, see "1.2.6 User-Defined
Reception Definition Window" in "Service Platform Reference Guide".

(8) Packaging
Enable packaging to the EAR file and deployment from operating environment to the execution environment for the
created HCSC component.

For details on packaging of HCSC component, see "7. Packaging HCSC Components and Defining Deployment".

(9) Deployment definition
Define how to deploy the packaged HCSC components from the operating environment to the execution environment
(create a deployment definition), and update the system configuration definition.

For details on the method of deployment definition, see "7. Packaging HCSC Components and Defining Deployment".

(10) Exporting the repository
Export repository for which creation, packaging and deployment definition of HCSC component has been executed, to
the operating environment.

For details on method of exporting repository, see "3.2.2 Exporting a Repository".

(11) Creating a service requester
Create a service requester for receiving a service component execution request from a task owner in the execution
environment and sending the execution request to the HCSC component.

For details on creating a service requester, see " 8. Creating Service Requesters".

1. Overview of System Development Based on SOA

5

1.2 Relationship Between the Overall System and the
Development Environment

A Cosminexus Service Platform consists of a development environment, an operating environment, and an execution
environment, which are interrelated. The positioning of the development environment is explained below.

(1) Positioning in terms of operation
The following figure shows how the development environment is positioned in the context of the overall system
operations.

Figure 1‒2: Positioning in terms of operation

1. Overview of System Development Based on SOA

6

In the development environment, the newly created HCSC components and deployment definitions are stored in a
repository, and data is transferred to the operating environment. Data that is created in the development environment
and stored in the repository is deployed from the operating environment to the execution environment.

To create a deployment definition, you need the information on the HCSC server that has been set up in the operating
environment. You need to use the repository to obtain this information from the operating environment. For details
about how to use a repository to exchange information with the operating environment, see "3.2 Managing a
Repository".

(2) Positioning within network
The development environment, the operating environment, and the execution environment are linked together using a
network, such as the Internet and an intranet, to configure a system.

The following figure shows the positioning of the development environment within a network in the overall system.

Figure 1‒3: Positioning within network

1. Overview of System Development Based on SOA

7

2 Before Developing a System
This chapter explains the tasks you need to perform and the items you need to know
prior to developing a Cosminexus Service Platform system.

9

2.1 Setup for Using the Development Environment
The setup procedures for using the development environment of a Cosminexus Service Platform are described below.

1. Install uCosminexus Service Architect.
For details, see "2.1.2 Installation".

2. Download an archive file of Eclipse and set up Eclipse.
For details, see 2.4 Set up using the Eclipse setup functionality and 2.5 Eclipse settings in the Application Server
Application Development Guide.

3. Build the test environment as and when required.

When using the HCSC Easy Setup functionality
For details, see "2.4 Easy Setup of the Test Environment".

When the HCSC Easy Setup functionality is not used
See the manual Cosminexus Service Platform System Setup and Operation Guide, and build the operating and
execution environments.
Also, for using an embedded database in the test environment, see "2.1.4 Creating embedded database".

4. Set up the environment.
For details, see "2.1.3 Environment Setup".

! Important note

• In a test environment, you can deploy the applications (service requester and service components) to be used for
testing in the HCSC server (J2EE server).
However, the following names are reserved, and therefore, cannot be used as the names of applications to be
deployed:
- Names beginning with CSC
- Service ID of the business process and service adapter
- Reception ID of user-defined reception

• Make sure you use the HCSC Easy Setup functionality to debug a business process in the test environment.

• When starting an instance of Eclipse in which HCSCTE plug-ins are embedded, make sure that the following
argument is specified in the -vmargs option in the eclipse.ini file:
-Djava.endorsed.dirs=service-platform-installation-directory\jaxp\lib

• Hitachi does not provide support for Eclipse, except for the Eclipse plug-in functions provided by Application
Server and Service Platform. Users are expected to investigate how to use Eclipse and take action in response to any
errors displayed by Eclipse.

2.1.1 Prerequisites
The following are the prerequisites for using the development environment of Service Platform.

Users that use the development environment
Users that use the development environment must belong to the Administrators or Power Users group.

Software programs that must be installed and set up
Before using the development environment, make sure that the following software programs have been installed
and set up:

• Eclipse

• WSDL4J 1.5.1#

#: This software is required when SOAP1.1 mode is used. For details about SOAP1.1 mode, see 2.2.2 SOAP
mode to be used.

2. Before Developing a System

10

2.1.2 Installation
Use the installer to install Service Architect. Install the software according to the instructions given by the installer.
Note that the installation work must be performed by a user with Administrator privileges. For details, see 2.2.2
Installing new Application Server (In Windows) in the Application Server System Setup and Operation Guide. Note
that the product name Application Server in the installation procedure must be replaced with Service Platform.

To specify the installation destination, specify a path name of up to 50 alphanumeric characters.

In the window for selecting the installation type, select Standard.

After installing Service Architect, restart the system.

Tip
When upgrading from a previous version, you can migrate the repository information used in the previous environment to a
format that enables the repository information to be used in the upgraded version.

For details about the migration method, see Appendix A. Migrating from an Earlier Version.

2.1.3 Environment Setup
To set up the environment in which HCSCTE is embedded in Eclipse, perform the following tasks:

• Setting up the SOAP mode

• Creating an HCSCTE project

• Setting up properties (setting up repositories and validation)

For details about the environment setup, see "2.2.3 SOAP mode settings" and "3. Managing Project and Managing
Repository".

Reference note
For displaying a message format and in the case of message format definition file with multi-byte characters, perform the
following operations and change the encoding to UTF-8:

1. Select Window, Settings, General, Workspace, and then Encode text file.

2. Set Others (UTF-8).

2.1.4 Creating embedded database
Service Architect includes embedded database that can be used as test environment to test the developed HCSC
components.

If you use embedded database to set up the HCSC server for testing in the development environment, you need not
arrange or set up a separate DB server.

! Important note

• You need to set up embedded database explained hereafter, when you want to set up the test environment by using the
HCSC easy setup function.
For details on HCSC easy setup function, see "2.4 Easy Setup of the Test Environment".

• Create HCSC server and embedded database for testing, on the same machine having development environment. You
cannot use embedded database, by setting up DB server on another machine.
Embedded database is based on HiRDB. When using other database (Oracle), set up DB server on another machine.

• When you have set up the embedded database, with HCSC easy setup function, you cannot connect to the embedded
database remotely from an external machine. When you want to operate embedded database by using HiRDB SQL
Executer, start HiRDB SQL Executer on the test environment machine and specify "localhost" in the host name of
[CONNECT] dialog.

The following points describe the settings required for using the embedded database.

2. Before Developing a System

11

(1) Settings on DB server
The embedded database is installed at the stage of installing Service Architect. Therefore, you need not install
embedded database separately.

You must execute the following tasks for using the embedded database.

• Installing HiRDB SQL Executer and setting up environment variables

• Setting up DB server and configuring the environment

• Setting up users and defining schemas

• Preparing RDAREAs

• Restarting the embedded database

Each of the above-listed tasks is explained as follows:

(a) Installing HiRDB SQL Executer and setting up environment variables

Install HiRDB SQL Executer included in the embedded database.

For details on how to install HiRDB SQL Executer when creating the embedded database, see "3.2 Installing HiRDB
SQL Executer" in the "Application Server Application Development Guide".

Once the installation is complete, add/setup the following environment variable PATH.

<Service platform installation directory>\DB\BIN;
<Service platform installation directory>\DB\CLIENT\UTL;

(b) Setting up DB server and configuring the environment

Use Eclipse for setting up DB server and configuring environment of the embedded database.

For the method to set up DB server and configure the environment, see "Appendix B.3 Creating embedded database"
in "Application Server Application Development Guide".

In DB server setup settings screen, select [Large (2GB)] as the size of the created database.

(c) Setting up users and defining schemas

Define the user and schema that will use the database.

For the method to set up the user and define schema of the embedded database, see "Appendix B.3 Creating the
embedded database" in "Application Server Application Development Guide".

(d) Preparing RDAREAs

Create, add or expanded RDAREAs as and when required, to store the management information table of HCSC
Messaging. Also, when you create, add or expanded RDAREAs, check whether it is processed properly.

Procedure for creating, adding or expanding RDAREAs is as follows:

1. If the connection information of HiRDB server which is different than the connection information of the
embedded database, is set up in the OS system variables (PDHOST, PDNAMEPORT, PDUSER), delete that
information with set command.

2. From [Start] menu of Windows, select [Cosminexus]-[Database console].
Environment variables that operate the embedded database are set.

3. Run the following command, depending on the operations.

• pdfmkfs command (for creating RDAREAs)

• pdmod command (for adding and expanding RDAREAs)

• pddbls command (for displaying the status of RDAREAs)

For the above-mentioned commands, see the "HiRDB Command Reference".

4. When you add or expand RDAREAs, add the pdbuffer operand of DB definition file (HiRDB system definition
file) of embedded database and expand the global buffer of the embedded database, as and when needed.
DB definition file of the embedded database is under the DB definition file directory specified at the time of
setting up the DB server.

2. Before Developing a System

12

(e) Restarting the embedded database

Stop and restart the embedded database.

For the method to stop and restart the embedded database, see "6.2 Starting and stopping the embedded database" in
"Application Server Application Development Guide".

(2) Settings in DB client (HCSC server)
When using the embedded database, you must perform following operations, as the settings of DB client (HCSC
server).

• Setting up environment variables of DB client

• Setting up the environment variables group

• Setting up the concurrent connections count of embedded database

• Setting up user limitation and preparing RDAREAs for Reliable Messaging

Each operation is explained as follows:

(a) Setting up environment variables of DB client

Set up the environment variables PDXAMODE and PDTXACANUM.

(b) Setting up environment variables group

Register the environment variables group with "Client environment variable registration tool" in the following path.

<Service platform installation directory>\DB\CLIENT\UTL

For the details on registering the environment variables group with the client environment variable registration tool,
see the "HiRDB UAP Development Guide".

Specify the registered environment variable group name with XA_OPEN character string of the DB Connector
property. For XA_OPEN character string (XAOpenString) of DB Connector properties, see "<4.2.2 Defining DB
Connector properties" in "Application Server Application Setup Guide".

(c) Setting up the concurrent connections count of embedded database

Increase the concurrent connections count of embedded database, as and when required. Change the operand of the
DB definition file of embedded database. DB definition file exists in directory to be set up through the settings screen
of DB server setup, at the time of implementing work of "(1)(b) Setting up DB server and configuring the
environment".

Change the following operands in the DB definition file.

• pd_max_users (maximum concurrent connections count)

• pd_max_server_process (maximum number of concurrently started server processes)

• pd_process_count (number of resident processes)

Also, set the value of environment variable PDTXACANUM to the value greater than the specified value of
pd_max_users.

(d) Setting up user limitation and preparing RDAREAs for Reliable Messaging

Set up user limitation and prepare RDAREAs for Reliable Messaging, as and when required.

The method to set up user limitations is same as the method given in "(1)(c) Setting up users and defining schemas".

The method to prepare RD area is same as the method given in "(1)(d) Preparing RDAREAs".

2. Before Developing a System

13

2.1.5 Uninstalling
This section describes the method to uninstall Service Architect. For details, see "3.3 Unsetting up the system
environment and uninstalling Application Server" in "Application Server System Setup and Operation Guide". Read
the product name "Application Server" in the uninstallation procedure, as "Service Platform".

User with Administrator privileges must perform uninstallation.

Unset up the Eclipse environment, before implementing uninstallation. For unset up procedure, see "2.8.2 Unsetting
up Eclipse environment" in "Application Server Application Development Guide".

Implement uninstallation after stopping the components of execution environment such as J2EE server, Management
Server, PRF. When using embedded database, first stop the embedded database and then implement uninstallation.

Uninstallation procedure is as follows:

1. Execute either of the following operations.

• From [Start] menu of Windows, select [Cosminexus] - [Uninstall uCosminexus Service Architect].

• Select [uCosminexus Service Architect] from the [Add or Remove Programs] of [Control Panel].

Dialog for confirming uninstallation of Service Architect is displayed.

2. Click the [Yes] or [No] button.

When you click the [Yes] button
Uninstallation starts and all the configuration software of Service Architect are deleted.

When you click the [No] button
Dialog for selecting configuration software to be uninstalled is displayed. When you select the configuration
software to be uninstalled and click the [Next] button, uninstallation starts and the selected configuration
software is deleted.

2. Before Developing a System

14

2.2 Selecting the configuration format and the SOAP
modes

Before you develop a system on the Cosminexus Service Platform, you must clearly specify the functionality and
SOAP modes that will be used in the system.

This section describes the functionality used in the system and the usage of the database and Cosminexus RM. This
section also describes the standard specifications for the Web Services corresponding to the SOAP modes used.

2.2.1 Usage existence of database and Reliable Messaging
Usage existence of database and Reliable Messaging differ depending the functions of service platform to be used and
operations to be performed. Following table shows the usage of database and Reliable Messaging for each function to
be used.

Table 2‒1: Usage of database and Reliable Messaging for each function to be used

Function to be used Database Reliable Messaging

Following synchronous reception is to be used

• Standard reception (Web service)

• Standard reception (SessionBean)

• SOAP reception

• TP1/RPC reception

• FTP reception

• HTTP reception

• Message Queue reception

N N

Following asynchronous reception is to be used

• Standard reception (MDB(WS-R))

• Standard reception (MDB(DB queue))

• Message Queue reception

N N

Following synchronous service adapters are to be used

• SOAP adapter

• SessionBean adapter

• TP1 adapter

• File adapter

• Object Access adapter

• Message Queue adapter

• FTP adapter

• File operation adapter

• Mail adapter

• HTTP adapter

N N

Following asynchronous service adapters are to be used

• MDB (WS-R) adapter

• MDB (DB queue) adapter

Y Y

DB adapter is to be used N# N

Business process is to be
used

Persistence business process is to be used Y N

Non-persistence business process is to be used N N

2. Before Developing a System

15

Function to be used Database Reliable Messaging

Process instance execution history is to be managed Y N

(Legend)
Y: Mandatory
N: Not mandatory.

Note #
When you use DB adapter, database is not required on the machine on which HCSC server operates. However, database is
required on the service component operation machine connected from DB adapter.

When you use non-persistence business process, take note that the processes that you can define in the development
environment have a limitation. For details, see "5.2.1(3) Setting up status persistence".

From above mention table, one can understand that the configuration status depending on the usage existence of
database and Reliable Messaging has following 3 patterns:

• Using database and Reliable Messaging both

• Not using database and Reliable Messaging both

• Using database but not using Reliable Messaging

Settings contents of test environment differ depending on the pattern by which the concerned environment is set up.
For the details on usage existence of database and Reliable Messaging to be set up in test environment and the
concerned environment, see "1.3 Relationship between Test Environment and Production Environment" in "Service
Platform System Setup and Operation Guide". Also, for setting contents in test environment, see "2.4 Easy Setup of
the Test Environment".

2.2.2 SOAP mode to be used
Select the SOAP mode to be used, before developing system with the service platform.

This section describes the type of SOAP mode and support range of each mode.

(1) Types of SOAP mode
Types of SOAP mode and standard environment as well as execution environment of the corresponding Web service
are as follows:

• SOAP1.1 mode
Select this mode to develop a system corresponding to SOAP1.1. SOAP1.1 mode corresponds to WS-I Basic
Profile1.0a.
SOAP1.1 mode uses the SOAP communication base for transmission of SOAP messages.

• SOAP1.1/1.2 combined mode
Select this mode to develop a system corresponding to SOAP1.1 or SOAP1.2. SOAP1.1/1.2 combined mode
corresponds to WS-I Basic Profile1.1.
SOAP1.1/1.2 combined mode uses JAX-WS engine for transmission of SOAP messages.

(2) Support range of the SOAP modes
Following table shows the functions of reception, service adapter and business process as well as correspondence of
SOAP mode:

Table 2‒2: Support range of the SOAP modes

Classification Function name
SOAP mode

1.1 1.1/1.2 combined

Reception Standard reception(Web service(SOAP1.1)) Y Y

2. Before Developing a System

16

Classification Function name
SOAP mode

1.1 1.1/1.2 combined

Reception Standard reception(Web service(SOAP1.2)) N Y

Standard reception(SessionBean) Y Y

Standard reception(MDB(WS-R)) Y N

Standard reception(MDB(DB queue)) Y Y

User-defined reception Y Y

Service adapter SOAP adapter Y Y

SessionBean adapter Y N

MDB(WS-R)adapter Y N

MDB(DB queue)adapter Y Y

DB adapter Y Y

TP1 adapter Y Y

File adapter Y Y

Object Access adapter Y Y

Message Queue adapter Y Y

FTP adapter Y Y

File operation adapter Y Y

Mail adapter Y Y

HTTP adapter Y Y

Custom adapter Y Y

Business process Business process Y Y

(Legend)
Y: Supports.
N: Does not support.

Following table describes the correspondence between WSDL definition style and the SOAP mode:

Table 2‒3: Support range of the SOAP modes (WSDL definition style)

SOAP version WSDL definition style
SOAP mode

1.1 1.1/1.2 combined

SOAP1.1 rpc/literal Y N

document/literal Y Y

SOAP1.2 rpc/literal N N

document/literal N Y

Legend:
Y: Supports.
N: Does not support.

For the relation between service components that use SOAP mode and Web service, see "2.6.1 Applicability of the
service components that use Web service".

2. Before Developing a System

17

2.2.3 SOAP mode settings
You can set up the SOAP mode using the HCSC Easy Setup screen or the cscsoapmode command.

You can set up the SOAP mode for the development environment and execution environment using the HCSC Easy
Setup screen. For details about the settings in the HCSC Easy Setup screen, see "2.4.2(1)(c) Input items of HCSC easy
setup screen".

You can set up the SOAP mode for the development environment using the cscsoapmode command. For details
about how to set up the SOAP mode for the execution environment, see the manual Cosminexus Service Platform
System Setup and Operation Guide. For details about the cscsoapmode command, see the manual Cosminexus
Service Platform Reference.

You can set up the SOAP mode for the development environment using the cscsoapmode command. For details
about how to set up the SOAP mode for the execution environment, see "Service platform System Setup and
Operation Guide". For details about the cscsoapmode command, see "Service Platform Reference Guide".

For details about how to check the specified SOAP mode, see 2.4.5 Checking the SOAP modes.

For details about how to change the specified SOAP mode, see 3.1.5 Changing SOAP modes.

2. Before Developing a System

18

2.3 Development Work Flow
The following figure shows the workflow for using a Cosminexus Service Platform to develop a system.

Figure 2‒1: System development work flow

Note #1
For HCSC easy setup, see "1.3 Relationship between Test Environment and Production Environment" in "Service
Platform System Setup and Operation Guide". For exporting the repository, see "4.2 Exporting Repository
Information" in "Service Platform System Setup and Operation Guide".

Note #2
Create the test environment, using HCSC easy setup. For HCSC easy setup, see " 2.4 Easy Setup of the Test
Environment". If you do not use the HCSC easy setup function, see the "Service Platform System Setup and
Operation Guide" to operate and create the execution environment.

2. Before Developing a System

19

Note #3
For the definition of service adapter and user-defined reception, see "2. Defining user-defined reception" and "3.
Defining Adapters" in "Service Platform Reception and Adapter Definition Guide".

Note#4
You can execute above-mentioned work in a batch. However, batch execution is possible at the time of system
development or in the period from unit test through combined test. Deployment and start of HCSC components
implemented in operating environment is executed along with the above-mentioned batch execution. For details,
see "7.5 Batch execution of processes for deploying HCSC components on the HCSC Server and then starting".

Work to be performed in each process is as follows:

(1) Importing the repository (acquiring system configuration definition)
Import only the system configuration definition, to integrate the information of HCSC server created in operating
environment, with the master development environment. For details on importing the repository, see "3.2.3 Importing
a Repository".

(2) Creating message format
Define a format of messages (message format) exchanged between the service adapter and service components.
Created message format differs depending on whether XML format data or binary format (other than XML format)
data is to be handled in message used for executing service component. For details on creating message format, see "4.
Creating Message Formats".

(3) Defining a service adapter
When you develop a system using a service adapter, add the service adapter by using a wizard for adding a service
adapter as well as already defined service adapter. Define the added service adapter, by using the Define service
adapter screen. For details on defining a service adapter, see "3. Defining Adapters" in "Service Platform Reception
and Adapter Definition Guide".

(4) Defining a business process
When you develop a system by using a business process, add the business process by using the wizard for adding a
business process or already defined business process. Define the added business process, by using the Define business
process screen. For details on defining a business process, see "5.Defining Business Processes".

Also, when you receive a business process execution request, with non-standard reception, you must define the user-
defined reception. For details on defining a user-defined reception, see "2. Defining User-Defined Reception" in
"Service Platform Reception and Adapter Definition Guide".

(5) Creating data transformation definition
Define the data transformation, when data transformation is required in message exchange with service component.
For details on the data transformation definition, see "6. Defining Data Transformation".

(6) Defining the user-defined reception
Define the user-defined reception, to receive service component execution requests and define any format as the
interface that returns the response. For details on defining the user-defined reception, see "2. Defining User-Defined
Reception" in "Service Platform Reception and Adapter Definition Guide".

(7) Exporting a repository (integrating to master development environment)
When you develop HCSC components in multiple development environments (distributed development), export the
repository in which HCSC components developed in environment other than master development environment are
included.

For exporting the repository, see " 3.2.2 Exporting a Repository".

2. Before Developing a System

20

(8) Importing a repository (integrating to master development environment)
To integrate the information of HCSC component for which distributed development in performed on machines other
than master development environment, to the master development environment, import a part of repository exported
in " (7) Exporting a repository (integrating to master development environment)" to the master development
environment. For importing a repository, see " 3.2.3 Importing a Repository".

(9) Assembling (packaging) HCSC components
Consolidate the definition files related to definition of HCSC components defined from "(3) Defining a service
adapter"(6) Defining the user-defined reception" as well as the files provided by execution environment, and perform
packaging in EAR file. For details on packaging, see "7. Packaging HCSC Components and Defining Deployment".

(10) Deployment definition
Define the information of cluster (or unit HCSC server) that deploys HCSC components. For details on deployment
definition, see "7. Packaging HCSC Components and Defining Deployment".

Reference note
Before deploying the procedure to check Usage existence of database and Reliable Messaging, set in the cluster (or unit
HCSC server) to be deployed, is as follows:

1. From menu of Eclipse, select [HCSC-Definer]-[System configuration definitions list].
List of clusters to be deployed (or unit HCSC servers) is displayed in the system configuration definitions list of the Tree
view.

2. From the list of clusters (or unit HCSC servers) to be deployed, select the cluster (or unit HCSC server) to be checked
and double click the same.
Information about usage existence of database and Reliable Messaging set in the cluster (or unit HCSC server) to be
deployed is displayed.

(11) Exporting repository (data migration to operating environment)
Export the repository that stores the definition file required for deploying HCSC components, in master development
environment. Information exported from the master development environment is imported to operating environment.
For exporting repository, see "3.2.2 Exporting a Repository".

(12) Creating a service requester
Create a service requester for sending the message that requests HCSC components to execute service components.
You can create a service requester and define a service adapter or a business process at the same time. When you want
to create concurrently, check the interface information to be set in the definition of service adapter or business process
beforehand and set up the same information in service requester as well. For details on how to create HCSC
components, see "8. Creating Service Requesters".

(13) Debugging business processes
Test and debug the defined business processes in development environment, before using them in operating
environment. For details on debugging business processes, see "9. Debugging Business Processes".

2. Before Developing a System

21

2.4 Easy Setup of the Test Environment
Hitachi recommends that you test and debug the adapters and business processes developed with uCosminexus
Service Architect before deploying them in the execution environment and starting actual operations. It is, therefore,
necessary to build an operating and execution environment (test environment) for testing and debugging.

The uCosminexus Service Architect provides the HCSC Easy Setup functionality that supports the building of a test
environment. You need to set a variety of information in the operating and execution environment for testing and
debugging, so the building of a test environment takes a reasonable amount of time; however if you use the HCSC
Easy Setup functionality, all the required information can be automatically set for the test environment. The HCSC
Easy Setup functionality also has functionality to automatically unsetup the test environment set up by using the
HCSC Easy Setup functionality.

! Important note

You cannot use the HCSC Easy Setup functionality (csceasysetup command) when setting up the environment variable
CSCMNG_HOME for configuring multiple operating or execution environments (testing environments) on a single machine.

This section provides an overview of the HCSC Easy Setup functionality and explains how to use this functionality.

2.4.1 Environment that can be Built with the HCSC Easy Setup
Functionality

A test environment built with the HCSC Easy Setup functionality has the configuration shown in the figure below. If
you want to use processes other than those shown in the following figure in the test environment, separate settings will
be required.

2. Before Developing a System

22

Figure 2‒2: Configuration of test environment built with the HCSC Easy Setup functionality

If you use the HCSC Easy Setup functionality, the information such as the user ID, password, port number, and host
name can be automatically set up for each process of the test environment that is shown in Figure 2-2. For details
about the information set up in the test environment when you use the HCSC Easy Setup functionality, see "2.4.3(2)
Information required for operating the test environment".

The number of concurrent executions of the Web containers in an environment set up using the HCSC Easy Setup
functionality is 10. Therefore, if 11 or more requests are processed concurrently, the Web container threads might
deplete. To change the number of concurrent executions of the Web containers, change the definition of the
webserver.connector.inprocess_http.max_execute_threads property in the
simple_model.xml file or simple_model_cjl.xml file.

For details about the webserver.connector.inprocess_http.max_execute_threads property, see
the manual Cosminexus Application Server Function Guide - Basic Development for Web Container.

2. Before Developing a System

23

2.4.2 Executing HCSC easy setup functionality
This section describes the pre-conditions for setting up and unsetting up the test environment using HCSC easy setup
functionality and also the methods for setting up and unsetting up the test environment.

(1) Setting up the test environment
This section describes pre-conditions and method for setting up the test environment using HCSC easy setup
functionality.

(a) Pre-conditions

Following are pre-conditions for setting up the test environment.

Pre-requisite software for test environment
Following software must be installed for setting up the test environment by using HCSC easy setup functionality.

• Component Container#1

• XML Processor#1

• TPBroker#1

• Performance Tracer#1

• Reliable Messaging#1

• Service Coordinator#1

• WSDL4J 1.5.1#2

Note #1
This software is configuration software of Service Architect. You need not install the above mentioned
software again, in case of an environment where Service Architect is installed.
If installing above software again, install from Installer. Install the software as per instructions of Installer. The
user with Administrator privileges must perform the installation.

Note #2
Install WSDL4J 1.5.1 after installing the other pre-requisite software. WSDL4J 1.5.1 is required for using
SOAP1.1 mode.

Status of system when using HCSC easy setup functionality
When you setup the test environment using HCSC easy setup functionality, status of the system must be as
follows:

• Immediately after Service platform is newly installed

• Settings related to service platform should not have been performed.

However, value of variable name "TZ" should be valid in the system environment variables. Set time zone in the
environment variable "TZ". Specify "JST-9" in the time zone.
If you customize the test environment after setup, the customized information is deleted at the time of unset up. If
you do not want the customized information to be deleted, register the parameter information of definition files,
which you added or changed at the time of customizing.

Pre-conditions when using database and Reliable Messaging both
Following conditions must be fulfilled when you use both database and Reliable Messaging (when you select
[Model with DB/RM] in HCSC easy setup screen).

• User must have knowledge of HiRDB

• User must not implement high load testing or performance measurement

Note
After you have unsetup the test environment, you can set up the test environment again by using HCSC easy
setup functionality. For unsetting up the test environment, see "2.4.2(2) Unsetting up the test environment".

2. Before Developing a System

24

(b) Setup method

Use HCSC easy setup screen for setting up the test environment by using HCSC easy setup functionality. Following is
the method to set up the test environment.

1. From [Start] menu of Windows, select [Cosminexus]-[Test building]-[Test environment setup].
HCSC easy setup screen is displayed.

2. Input the required information in HCSC easy setup screen.
For items to be input in HCSC easy setup screen, see " 2.4.2(1)(c) Input items of HCSC easy setup screen".

3. Click [Setup] function.
Setup of the test environment is started. Setup state is displayed in the console of HCSC easy setup screen. When
"Setup of the HCSC Easy Setup functionality is complete" is displayed on console, it
implies that the test environment is successfully set up.

! Important note
When error is displayed on the console, and test environment setup ends with an error, you must perform the setup
again. When setup ends with an error, procedure of re-setup differs depending on enabled or disabled status of [Setup]
button on HCSC easy setup screen.

When [Setup] button is enabled
Click [Setup] button, to perform setup again.

When [Setup] button is disabled
Unset up once by clicking [Un-setup] button and then perform the setup again.

(c) Input items of HCSC easy setup screen

HCSC easy setup screen is divided in [Main] tab and [Server name] tab. With [Server name] tab, you can change the
information like server name or class name at the time of setup.

This section describes the input items in HCSC easy setup screen, by using the items' relation with each process in the
environment to be configured with HCSC easy setup functionality.

Following figure shows HCSC easy setup screen.

Figure 2‒3: HCSC easy setup screen ([Main] tab)

2. Before Developing a System

25

Figure 2‒4: HCSC easy setup screen ([Server name] tab)

As the following figure shows, the items that are input in HCSC easy setup screen are set in each process of the
environment to be configured. Following figure shows the relation between input items and the values that are set.

2. Before Developing a System

26

Figure 2‒5:  Relation of input items in HCSC easy setup screen

Items to be set differ depending on which of [Model with DB/without RM], [Model without DB/RM] or [Model with
DB/RM] is selected. Following table describes details of setting values (input items in HCSC easy setup screen)
shown in (n) of Figure 2-5.

Table 2‒4: Items to be input in HCSC easy setup screen

Input items

Description Initial value#2

Tab Classification Item No.
Item names in HCSC
easy setup screen#1

Main Model -- Model with DB/without
RM

Select when you want to use database
and not use Reliable Messaging.

Selected

-- Model without DB/RM Select when you do not want to use
database and Reliable Messaging both.

--

-- Model with DB/RM Select when you want to use database
and Reliable Messaging both.

--

2. Before Developing a System

27

Input items

Description Initial value#2

Tab Classification Item No.
Item names in HCSC
easy setup screen#1

Main Embedded
database

(1) Database storing
destination

Specify a directory for specifying RD
area and a directory for specifying
system file. Specify any available
directory having size of 660MB or
more.

If you specify a non-existing directory,
specified directory is newly created.

Specify only when you select [Model
with DB/without RM] or [Model with
DB/RM].

Installation
directory of
<Service
platform>\CSC
\DB\area

(2) DB connection port
number

Specify a port number to be used for
accessing an embedded database from
Management Server or HCSC server.
Specify with any integer in the range
of 5001~65535.

Specify when you select [Model with
DB/without RM] or [Model with DB/
RM].

22200

Management
Server

(3) HCSC server operation
port number

Specify a port number to be used for
accessing Management Server from
HCSC-Manager. Specify with any
integer in the range of 1~65535.

28099

(4) Logical server operation
port number

Specify a port number to be used for
accessing Management Server from
Smart Composer or management
portal screen. Specify with any integer
in the range of 1~65535.

28080

(5) End request receipt port
number (for internal
management)

Specify a port number to be used by
Management Server for internal
management. Specify with any integer
in the range of 1~65535.

28005

(6) Internal communication
port number (for internal
management)

Specify a port number
(webserver.connector.ajp13.port key of
mserver.properties file) to be used by
Management Server for internal
management. Specify with any integer
in the range of 1~65535.

28009

(7) In-process Naming
Service port number (for
internal management)

Specify a port number
(ejbserver.naming.port key of
mserver.properties file) to be used by
Management Server for internal
management. Specify with any integer
in the range of 1~65535.

28900

Administration
Agent

(8) Agent connection port
number (for internal
management)

Specify a port number for internal
management to be used for accessing
Administration Agent from
Management Server. Specify with any
integer in the range of 1~65535.

20295

HCSC server -- SOAP1.1 mode Select when you want to use SOAP1.1
mode.

Selected

-- SOAP1.1/1.2 combined
mode

Select when you want to use
SOAP1.1/1.2 combined mode.

--

2. Before Developing a System

28

Input items

Description Initial value#2

Tab Classification Item No.
Item names in HCSC
easy setup screen#1

Main HCSC server (9) Web service /MDB
(WS-R) receipt port
number

Specify a port number to be used for
accessing standard receipt (Web
service or MDB (WS-R)) or user-
defined receipt from service requester.
Specify with any integer in the range
of 1~65535.

80

(10) SessionBean receipt port
number

Specify a port number to be used for
accessing HSCS server from
Management Server or standard
reception (SessionBean) from service
requester. Specify with any integer in
the range of 1~65535.

900

(11) MDB (DB queue)
reception port number

Specify a port number to be used when
accessing standard reception (MDB
(DB queue)) from service requester.
Specify with any integer in the range
of 1024~65535.

Specify when you select [Model with
DB/RM].

20351

(12) Operation check port
number

Specify a port number to be used by
HCSC server for internal management.
Specify with any integer in the range
of 1~65535.

23152

(13) Simple Web server port
number (for internal
management)

Specify a port number to be used by
HCSC server for internal management.
Specify with any integer in the range
of 1~65535.

8080

Server
name

Server name
selection

-- V7 compatible name Select to use name same as version 7,
for all types of server names of test
environment to be configured by
HCSC easy setup.

--

-- HCSC main
environment simple
setup name

Select to use name same as name to be
setup with HCSC actual environment
simple setup, for all types of server
names of test environment to be
configured with HCSC easy setup.

For HCSC actual environment simple
setup, see "3.5 Easy Setup of
production environment" in "Service
Platform System Setup and Operation
Guide".

Selected

-- Custom name Select to specify any name, for all
types of server name of test
environment to be configured with
HCSC easy setup.

--

Server name (14) Logical J2EE server
name

Specify connection destination J2EE
server name. Specify single byte
alphanumeric within the range of
1~128 characters, underscore and
hyphen.

J2EEServer

(15) Logical PRF name Specify server name of PRF to be
operated by linking with HCSC server.
Specify single byte alphanumeric
within the range of 1~128 characters,
underscore and hyphen.

PRF

2. Before Developing a System

29

Input items

Description Initial value#2

Tab Classification Item No.
Item names in HCSC
easy setup screen#1

Server
name

Server name -- Cluster name Specify name of the cluster to which
HCSC server to be set up belongs.
Specify a cluster name that is unique
within classes. Specify single byte
alphanumeric within 1~8 characters
and underscore.

Cluster

(16) HCSC server name Specify name of the HCSC server to
be set up. Specify single byte
alphanumeric within 1~8 characters
and underscore.

HCSC

(17) Manager name Specify HSCS-Manager independent
identification name for HCSC-
Manager to identify Manager. When
multiple HCSC servers are managed in
a single repository, specify
identification name that is unique in
Manager (host) unit. Specify single
byte alphanumeric within 1~16
characters and underscore.

Manager

(Legend)
--: Not applicable

Note#1
When you temporarily place the mouse cursor on an item corresponding to HCSC easy setup screen, description of that item is
temporarily displayed.

Note#2
Initial value is a value that is initially displayed when HCSC easy setup screen is displayed for the first time. When you execute
setup by changing an initial value, previous setting value is displayed in next HCSC easy setup screen, as an initial value.

(2) Unsetting up the test environment
This section describes pre-conditions and unsetting up method for unsetting up the test environment set up by using
HCSC easy setup functionality.

! Important note

When you unset up by using HCSC easy setup functionality, test environment returns to the status before setup. As service
adapter or business process that use the test environment are automatically deleted, take a backup of required data without
fail, before executing unsetup.

(a) Pre-conditions

Pre-conditions for unsetting up the test environment are as follows:

• Unsetup target should be the test environment set up using HCSC easy setup functionality

• Management Server and Administration Agent should be in started status

• When you set up the test environment by selecting [Model with DB/without RM] or [Model with DB/RM], in
HCSC easy setup screen, service components of embedded database should be started

(b) Method for unsetting up

Use HCSC easy setup screen, for unsetting up the test environment. Method for unsetting up the test environment is as
follows:

1. From [Start] menu of Windows, select [Cosminexus]-[Environment configuration]-[Test environment setup].
HCSC easy setup screen is displayed.

2. Click [Unset up] button on HCSC easy setup screen.

2. Before Developing a System

30

Unset up of the test environment is started. Unsetup state is displayed on the console of HCSC easy setup screen.
Display of "Unset up of the HCSC Easy Setup functionality is complete" on the console
implies that the test environment is successfully unset up.

2.4.3 Operating the test environment set up with HCSC easy setup
functionality

This section describes method to operate the test environment set up by using HCSC easy setup functionality and
information required for operating the test environment.

(1) Starting and stopping the test environment
Following table describes the method to start and stop the test environment.

Table 2‒5: Method to start and stop the test environment

Start and stop target Method to start and stop

Embedded database# To start:

From [Start] menu of Windows, select [Cosminexus]-[Start database].

To stop:

From [Start] menu of Windows, select [Cosminexus]-[Stop database].

Services of embedded database# When you start or stop the machine of test environment, the test
environment is automatically started or stopped.

• Management Server

• Administration Agent

When you start the machine of test environment, the test environment is
automatically started and when you stop the machine of test environment,
the test environment is automatically stopped.

• Performance Tracer

• J2EE server

• HCSC server

• Standard reception

To start:

From [Start] menu of Windows, select [Cosminexus]-[Start test server].

To stop:

From [Start] menu of Windows, execute [Cosminexus]-[Stop test server].

Note#
Implement only when you have selected [Model with DB/without RM] or [Model with DB/RM] in HCSC easy setup screen.

(2) Information required for operating the test environment
When you set up the test environment by using HCSC easy setup functionality, the required information is
automatically set up. To perform testing and debugging by using the test environment, you must know the information
set when setting up the test environment with HCSC easy setup functionality.

Information set in test environment set up by using the HCSC easy setup functionality is described as follows.

Tip
You can customize the information set in the test environment set up by using the HCSC easy setup functionality, after
setting up the test environment. For details on how to customize, see "2.4.4 Customizing a Test Environment".

(a) Information of user ID and password

Following table shows the information of user ID and password set in the test environment set up with HCSC easy
setup functionality:

2. Before Developing a System

31

Table 2‒6: User ID and password set in the test environment

Setting destination User ID and password that
is set Initial value Description

Embedded database#1 User ID admin#2 Authentication identifier of table owner
(USRID of environment variable)

Password admin#2 Password of table owner (PSWD of
environment variable)

Management Server Management user ID admin Management user ID for logging in to
Management Server(use with
cmx_build_system -change
command#3)

Password admin Password or logging in to Management
Server(use with cmx_build_system -
change command#3)

HCSC-Manager HCSC-Manager login user ID admin User ID for logging in to HCSC-Manager(use
with cscsvstart command #4)

HCSC-Manager login
password

admin Password for logging in to HCSC-
Manager(use in cscsvstart command#4)

HCSC server User ID of the database used
by HCSC server

admin User ID of database used by HCSC server(use
with csccompodeploy command#4)

Password of database used by
HCSC server

admin Password of database used by HCSC sever(use
with csccompodeploy command#4)

Note#1
Set when you select [Model with DB/without RM] or [Model with DB/RM] in HCSC easy setup screen.

Note#2
Handled with upper case characters "ADMIN" in the embedded database.

Note#3
For this command, see "cmx_build_system (building Web system)" in "Application Server Reference Guide".

Note#4
For cscsvstart command, see "cscsvstart(starting HCSC server)" in "Service Platform Reference Guide". For csccompodeploy
command, see "csccompodeploy(deploying HCSC component)" in "Service Platform Reference Guide".

(b) Information of the port number

Following port number is set in the test environment set up with HCSC easy setup functionality. For port number, you
can specify any value in HCSC easy setup screen. For details on value specified in HCSC easy setup screen, see
"Table2-4 Items to be input in HCSC easy setup screen".

Embedded database(only when [Model with DB/without RM] or [Model with DB/RM] is selected in HCSC easy
setup screen)

• DB connection port number

Management Server

• HCSC server operation port number

• Logical server operation port numberr

• End request receipt port number

• Internal communication port number

• In-process Naming Service port number

Administration Agent

• Agent connection port number

2. Before Developing a System

32

J2EE server

• Web service MDB(WS-R)receipt port number

• SessionBean receipt port number

• MDB(DB queue)receipt port number

• Operation check port number

• Simple Web server port number

(c) Information of name

Following table describes information such as host name or server name set in the test environment set up with HCSC
easy setup functionality. When you change the server name with [Server name] tab on HCSC easy setup screen, name
after change is set.

Table 2‒7: Name set in the test environment

Setting destination Name that is set Initial value Description

Embedded database#1 Host name Localhost Host name of embedded
database(DB_HOST of environment
variable)

Management Server Host name Localhost Host name of Management Server(use
with cmx_build_system -
change command#2)

HCSC-Manager Manager name Manager HCSC-Manager unique identification
name for HCSC-Manager to identify
Manager(use with cscsvstart
command#3)

PRF Server name PRF Server name of PRF

J2EE server Server name J2EEServer Name of connection destination J2EE
server(use with cjstartsv
command#2)

Host name Localhost Host name of connection destination
J2EE server

System name unique in
entire system to which
Reliable Messaging is
linked

RM System name unique in entire system to
be linked with Reliable
Messaging(HRM_SYSTEM_NAME of
environment variable)

Resource adapter name Reliable Messaging Display name of target RAR file(use
with cjdeployrar command#2)

DB_Connector_for_Hi
RDB_Type4

DB_Connector_for_Hi
RDB_Type4_Cosminexu
s_RM

Cluster Cluster name Cluster Cluster name

HCSC server HCSC server HCSC HCSC server name(use with
cscsvstart command#3)

Note#1
Set only when you select [Model with DB/without RM] or [Model with DB/RM] in HCSC easy setup screen.

Note#2
For cmx_build_system -change command, see "cmx_build_system (setting up Web system)" in "Application Server Command
Reference Guide". For cjstartsv command, see "cjstartsv (starting J2EE server)" in "Application Server Command Reference
Guide". For cjdeployrar command, see "cjdeployrar (deploying resource adapter)" in "Application Server Command Reference
Guide".

2. Before Developing a System

33

Note#3
For this command, see "cscsvstart (starting HCSC server)" in "Service Platform Reference Guide".

(d) Other information

When you select [Model with DB/without RM] or [Model with DB/RM] in HCSC easy setup screen, following
information is set in the embedded database of the test environment set up with HCSC easy setup functionality.

Data (RD area) storage destination
For information of RD area storing destination, you can specify any value in HCSC easy setup screen. For details
on the value specified in HCSC easy setup screen, see "Table2-4 Items to be input in HCSC easy setup screen".

Area size of the database e to be created
Area size (DB_SIZE of environment variable) of the database to be created is set.
Initial value is "660MB".

(3) Operating the embedded database
For the embedded database set up by using HCSC easy setup functionality, you must regularly check the unused area
of database. If unused area is less, release blank pages or blank segments, or delete the unnecessary execution history.
For details, see " 2.5 Operating an embedded database set up with the HCSC Easy Setup functionality".

(4) Troubleshooting
If you continue to set up or unset up HCSC server, deploying or deleting HCSC components and sending the requests
by using HCSC easy setup functionality, there is a risk of insufficiency of unused segments in the embedded database.

If you face the insufficiency of the unused segments, implement the following countermeasures:

Method 1: Release the empty segments within embedded database

1. Search the table within the embedded database with SQL Executer.
For details on how to search the table, see pdsql command in "HiRDB SQL Executer Online Help".

2. Issue pdreclaim command for all the tables starting with "CSC" and "RM" from the result of searching with
step 1., and re-use blank pages by releasing.
For details on pdreclaim command, see the "HiRDB Command Reference Guide".

Method 2: Re-edit tables within the embedded database

1. Search tables within the embedded database with SQL Executer.
For details on how to search tables, see pdsql command in "HiRDB SQL Executer Online Help".

2. Issue pdrorg command for all the tables starting with "CSC" and "RM" from the search results of step 1, and
reorganize tables.
For the details on how to reorganize tables, see the contents related to reorganization of table in "HiRDB
System Operation Guide".
For details on pdrorg command, see the "HiRDB Command Reference Guide".

Method 3: Resetting up the test environment built with HCSC easy setup functionality
Unset up the test environment built with HCSC easy setup functionality once and then reset up. Embedded
database is recreated with this work.
However, when you reset up the test environment, created service adapter or business processes are also deleted.
Therefore, export repository in advance, then reset up the test environment and import the repository after reset
up.

2.4.4 Customizing a Test Environment
The information described in "2.4.3(2) Information required for operating the test environment is specified in the test
environment that is set up with the HCSC Easy Setup functionality. You can customize this information after setting
up the test environment.

To customize a test environment, edit the values specified in definition files during the setup of the test environment
with the HCSC Easy Setup functionality.

2. Before Developing a System

34

The table below describes the editable definition files. For details about each definition file, see the manuals specified
in the Reference Destination column of the table.

Table 2‒8: Editable definition files

File name Explanation

Storag
e

destina
tion

Refere
nce

destina
tion

adminagent.properties
(Administration Agent property file)

The port number used in the communication with the
Administration Agent is set in this property file.

A a

cdsetupconfig.bat
(Embedded database setup batch file)

The environment variables of the embedded database
are set in this batch file.

B c

cmdconf.bat
(HCSC-Messaging command definition file)

The class path of HiRDB type4 JDBC Driver for
accessing the embedded database using the csmXXX
command of the uCosminexus Service Platform is set
in this batch file.

C d

Cosminexus_Reliable_Messaging.x
ml
(Connector attribute file)

The resource adapter attributes (configuration property
value and property value) are specified in this XML
file.

D b

csccmd.properties
(HCSC-Manager command definition file)

The omitted values (login user ID and login password)
of the commands used in the operating environment
are specified in this property file.

E d

cscmng.properties
(HCSC-Manager definition file)

The information required for HCSC-Manager
operations is specified in this property file.

E d

cscsvconfig.properties
(HCSC server runtime definition file)

The runtime information (execution history
management information and database information)
required for starting the HCSC server is specified in
this property file.

D d

cscsvsetup.properties
(HCSC server setup definition file(model with
DB/without RM))#1

This is property file in which information (J2EE
server, Reliable Messaging, database related
information) required for HCSC server setup to be
used in model without DB/RM is set.

D d

cscsvsetup.properties.esb
(HCSC server setup definition file(model with
DB/RM))# 1

This is property file in which information (J2EE
server, Reliable Messaging, database related
information) required for HCSC server setup to be
used in model with DB/RM is set.

D d

cscsvsetup.xml
(HCSC server configuration definition
file(model with DB/without RM))

This is XML file in which HCSC server configuration
information (definition of cosminexus-manager, jms-
physical-reception, ejb-reception) to be used in model
with DB/without RM is set.

D d

cscsvsetup.xml.esb
(HCSC server configuration definition file
(model without DB/RM))

This is XML file in which HCSC server configuration
information (definition of cosminexus-manager, jms-
physical-reception, ejb-reception) to be used in model
without DB/RM is set.

D d

cscsvsetup.xml.rm

(HCSC server configuration definition
file(model with DB/RM))

This is XML file in which configuration information
(definition of cosminexus-manager, jms-physical-
reception, ejb-reception) of HCSC server to be used in
the model with DB/RM is set

D d

DB_Connector_for_HiRDB_Type4.xm
l
(Connector attribute file)

The resource adapter attributes (configuration property
value and property value) are specified in this XML
file.

D b

2. Before Developing a System

35

File name Explanation

Storag
e

destina
tion

Refere
nce

destina
tion

DB_Connector_for_HiRDB_Type4_LT
.xml
(Connector attribute file)

This is XML file in which properties (value of
configuration property, property value) of resource
adapter is set.

This is definition for local application to be used in
environment without RM.

D b

DB_Connector_for_HiRDB_Type4_Co
sminexus_RM.xml
(Connector attribute file)

The resource adapter attributes (configuration property
value and property value) are specified in this XML
file.

D b

grantuser
(User-defined file)

This file is used for creating a HiRDB user and
schema.

B c

hrmqueue-transmit.xml
(Application attribute file)

The application attributes are specified in this XML
file.

D b

input.properties
(Property file wherein system information is
coded)

The information entered in the HCSC Easy Setup
screen and system information is specified in this
property file.

D -

inserttableshirdb.sql
(Insert table SQL file)

This SQL file is used to insert records in the system
management information table.

D -

mserver.cfg
(Option definition file for Management Server)

The start option of JavaVM that runs the Management
Server is specified in this file.

A a

mserver.properties
(Management Server environment setup file)

The port number used by the Management Server and
command operations in the case of failure detection
are specified in this property file.

A a

qconf.txt
(Queue definition file)

The queue information (DisplayName and
QueueName) is specified in this text file.

E e

setupscript
(Setup script file(For model with DB/without
RM and SOAP1.1 mode))

This is script file in which execution order of tasks in
the setup process, to be used in model with DB/
without RM is set. Use this file to setup environment
of SOAP1.1 mode.

D -

setupscript.cjw
(Setup script file(for model with DB/without
RM and SOAP1.1/1.2 combined mode))

This is script file in which tasks of the setup process to
be used in the model with DB/without RM are
described in execution order. Use this file to setup the
environment of SOAP1.1/1.2 combined mode.

D --

setupscript.esb
(Setup script file(for model without DB/RM
and SOAP1.1 mode))

This is script file in which execution order of tasks of
setup process to be used in model without DB/RM is
set. Use this file to setup the environment of SOAP1.1
mode.

D -

setupscript.esb.cjw
(Setup script file(for model without DB/RM
and SOAP1.1/1.2 combined mode))

This is script file in which tasks o setup process to be
used in model without DB/RM is described in
execution order. Use this file to setup the environment
of SOAP1.1/1.2 combined mode.

D --

setupscript.rm
(setup script file(for model with DB/RM and
SOAP1.1 mode))

This is script file in which tasks of setup process to be
used in model with DB/RM are described in execution
order.

Use this file to setup the environment of SOAP1.1
mode.

D --

setupscript.rm.cjw This is script file in which tasks of the setup process to
be used in model with DB/RM are described in
execution order.

D --

2. Before Developing a System

36

File name Explanation

Storag
e

destina
tion

Refere
nce

destina
tion

(setup script file(for model with DB/RM and
SOAP1.1/1.2 combined mode))

Use this file to setup environment of SOAP1.1/1.2
combined mode.

D --

simple_model.xml
(HCSC Easy Setup definition file or SOAP1.1
mode)#2

The Web system built with the commands of Smart
Composer functionality is defined in this XML file.
This file is used to set up the environment for the
SOAP1.1 mode.

D --

simple_model_cjl.xml
(HCSC Easy Setup definition file or
SOAP1.1/1.2 combined mode)#2

This XML file defines the Web system set up using the
commands of the Smart Composer functionality. This
file is used to set up the environment for the
SOAP1.1/1.2 combined mode.

D --

tablecreate
(Table definition file)

This file is used for creating the HiRDB schema and
tables.

B c

unsetupscript
(unsetup script file (model with DB/without
RM))

This is the script file in which execution order of tasks
for unsetup process to be used in model with DB/
without RM is set.

D -

unsetupscript.esb
(unsetup script file (model without DB/RM))

This is script file in which execution order of tasks for
unsetup process to be used in model without DB/RM
is set.

D -

unsetupscript.rm
(unsetup script file (model without DB/RM))

This is script file in which execution order of tasks for
unsetup process to be used in model with DB/RM is
set.

D -

Legend:
A: Cosminexus-installation-directory\manager\config
B: Cosminexus-installation-directory\CSC\DB\bats
C: Cosminexus-installation-directory\CSC\config\msg
D: Cosminexus-installation-directory\CSC\system\manager\setup
E: Cosminexus-installation-directory\CSC\config\manager
--: There is no manual for reference.
a: Cosminexus Application Server Server Definitions
b: Cosminexus Application Server Application and Resource Definitions
c: Cosminexus Application Server Application Development Guide
d: Cosminexus Application Server Cosminexus Service Platform Reference
e: Cosminexus Application Server Cosminexus Reliable Messaging

#1
You cannot change properties (db-use property, rm-use property, and hcscserver-data-filepath property) related to
the setup configuration.

#2
To change the number of concurrent executions of the Web containers in an environment set up using the HCSC Easy Setup
functionality, change the webserver.connector.inprocess_http.max_execute_threads property.
For details about the webserver.connector.inprocess_http.max_execute_threads property, see the manual
Cosminexus Application Server Function Guide - Basic Development for Web Container.

Reference note
To customize the test environment, you can use the files in the following directory as a reference for customization:

Cosminexus-installation-directory\CSC\log\manager\setup

If multiple testing environments (setup of the environment variable CSCMNG_HOME) are built in a single machine, you can
use the files saved in the following directory for customization:

%CSCMNG_HOME%\log\manager\setup

2. Before Developing a System

37

The files saved in these directories are described below:

Files with the names same as the definition files described in Table 2-8
These files (log files of the HCSC Easy Setup functionality) have the contents same as the definition files set up during
the execution of the HCSC Easy Setup functionality.

adminagent.properties.bak (back up file of adminagent.properties)
The settings of adminagent.properties, one version prior to the current adminagent.properties are
saved.

cmdconf.bat.bak (back up file of cmdconf.bat)
The settings of cmdconf.bat, one version prior to the current cmdconf.bat are saved.

csccmd.properties.bak (back up file of csccmd.properties)
The settings of csccmd.properties, one version prior to the current csccmd.properties are saved.

cscmng.properties.bak (back up file of cscmng.properties)
The settings of cscmng.properties, one version prior to the current cscmng.properties are saved.

mserver.cfg.bak (back up file of mserver.cfg)
The settings of mserver.cfg, one version prior to the current mserver.cfg are saved.

mserver.properties.bak (back up file of mserver.properties)
The settings of mserver.properties, one version prior to the current mserver.properties are saved.

2.4.5 Checking the SOAP modes
This subsection describes how the SOAP modes are checked currently.

(1) Checking the SOAP mode of the development environment
You can check the SOAP modes of the development environment on Eclipse.

1. From the Eclipse menu, choose Window and then Setup.
The Setup dialog box appears.

2. In the tree view on the left-hand side of the dialog box, choose HCSC-Definer.
On the right-hand side of the dialog box, the SOAP mode being used appears in Current SOAP mode.

(2) Checking the SOAP mode of the execution environment
To check the SOAP mode that is currently being used in the execution environment, use the cscrepls command.
When you execute the command, one of the following appears in the SOAP-mode display item:

• 1.1: Indicates the SOAP1.1 mode.

• 1.1/1.2: Indicates the SOAP1.1/1.2 combined mode.

Note that you can execute the cscrepls command when the setup of the HCSC server is complete.

For details about the cscrepls command, see the manual Cosminexus Service Platform Reference.

2. Before Developing a System

38

2.5 Operating an embedded database set up with the
HCSC Easy Setup functionality

This section describes operations of the embedded database set up with the HCSC Easy Setup functionality.

2.5.1 Checking unused RD area
Review the database usage status by checking the unused RD area. You must periodically check the unused RD area.
This section describes the pre-conditions and methods for checking the unused RD area.

(1) Pre-conditions
To check unused RD area, database must be in active status.

Also, connection information of HiRDB server other than the embedded database must not be set in the system
environment variables (PDHOST, PDNAMEPORT, PDUSER) of OS. If those are set, delete the system environment
variable with set command, after starting the database console.

(2) Method for checking
Method for checking the unused RD area is as follows:

1. From [Start] menu of Windows, select [Cosminexus]-[Database console].
Environment variables for operating the embedded database are set.

2. Execute pddbls command to display the status of RD area.
For details on pddbls command, see the "HiRDB Command Reference Guide".
Execution format o pddbls command is as follows:

pddbls -r ALL -a

3. Check the unused RD area from the command execution result.
Following figure shows the example of execution result.

4. When unused RD area is less, eliminate the shortage of unused area using the following methods:

• Delete the execution history of process instances.
See "2.5.2 Deleting the execution history of process instances".

• Releasing empty pages and empty segments
See "2.5.3 Releasing empty pages and empty segments".

2. Before Developing a System

39

2.5.2 Deleting the execution history of process instances
When the execution status of process instances of a business process is recorded in a database as history, the execution
history will be added day after day, which reduces the capacity of the database. Therefore, you must delete the
execution history of process instances periodically. The following are the prerequisites for deleting the execution
history of process instances and the confirmation method:

(1) Prerequisites
To delete the execution history of process instances, the database must be in the running status.

(2) Deletion methods

1. Determine the HCSC server to be accessed.
If the information set up with the HCSC Easy Setup functionality is not customized, HCSC will be set up in the
HCSC server name.

2. Execute the cscpidelete command in the test environment (Operating environment).
For details about how to delete the execution history of process instances, see the contents about deleting the
execution history of process instances (deletion of the execution history by commands), in Cosminexus Service
Platform System Setup and Operation Guide.

3. Release empty pages and empty segments.
For details about how to release empty pages and empty segments, see "2.5.3 Releasing empty pages and empty
segments".

2.5.3 Releasing empty pages and empty segments
Release the empty pages and empty segments generated due to data deletion and restore them to unused status. Pre-
conditions and method for releasing empty pages and empty segments is as follows:

! Important note

Release not only empty pages but empty segments as well without fail.

(1) Pre-conditions
Following conditions must be fulfilled for releasing empty pages and empty segments.

• HCSC server must be stopped

• Database must be started

(2) Method for releasing
Method for releasing empty pages and empty segments is as follows: If password input is requested, enter " admin "
as password.

1. From [Start] menu of Windows, select [Cosminexus]-[Database console].
Environment variables for operating the embedded database are set.

2. Execute pdreclaim command to release the empty pages in use.
Release the empty pages in use (pages in which data is not stored due to data deletion) and set those as unused
pages.
For details on pdreclaim command, see the "HiRDB Command Reference Guide".
Execution format of pdreclaim command is as follows:

For releasing empty pages, which are in use in table

pdreclaim -u admin -k table -t all -o

2. Before Developing a System

40

For releasing empty pages, which are in use in index

pdreclaim -u admin -k index -t all

3. Execute pdreclaim command to release empty segments in use.
Release the empty segments (segments where in all pages are empty) that are in use and set those as unused
segments.
For details on pdreclaim command, see the "HiRDB Command Reference Guide".
Execution format of pdreclaim command is as follows:

For releasing empty segments, which are in use in table

pdreclaim -u admin -k table -t all -o -j

For releasing empty segments, which are in use in index

pdreclaim -u admin -k table -t all -j

4. Check whether the insufficiency of unused area has been removed.
For checking method, see "2.5.1 Checking unused RD area".

2. Before Developing a System

41

2.6 Types of Available Service Components and Their
Application Scopes

This section explains the types of service components that can be used in the SOA provided by Service Platform, as
well as their application scopes.

Service components that can be used in the SOA must have interface information defined.

The following table lists the types of service components for SOA that can be used in Service Platform.

Table 2‒9: Available service component types

Service component type Communication mode Protocol

Web Services Synchronous SOAP (HTTP)

SessionBean RMI-IIOP

MDB Asynchronous WS-R

Database queue JMS

Note
In addition to the service components listed in this table, other service components can also be used by connecting to a system
based on non-SOA architecture. For details about calling service components when connecting to a system based on non-SOA
architecture, see Chapter 2. Functionality for Connecting to Various Types of Systems in the manual Service Platform Overview.

The following subsections explain the application scopes for each type of service components that can be used in
SOA.

2.6.1 Applicability of the service components that use Web service
The applicability of service components that use Web services is as follows:

Tip
WSDL and XML schema in this manual are described by mapping specific prefix and namespace URI. The following table
describes the mapping of prefix and namespace URI:

Table 2‒10: Mapping between the prefix and name space URI

Prefix Name space URI

wsdl http://schemas.xmlsoap.org/wsdl/

xsd http://www.w3.org/2001/XMLSchema

soap http://schemas.xmlsoap.org/wsdl/soap/

soap12 http://schemas.xmlsoap.org/wsdl/soap12/

(1) Pre-requisite specifications
This section separately describes pre-requisite specifications for service components that use Web services, for
SOAP1.1 mode and for SOAP1.1/1.2 combined mode.

• When using SOAP1.1 mode
When you use SOAP1.1 mode, service components that use Web services must be created by conforming to the
specifications of the following versions.

• SOAP1.1

• WSDL1.1

• SAAJ1.2

2. Before Developing a System

42

Also, in service platform, it is recommended to create service components by conforming to WS-I Basic Profile
1.0a.

• When using SOAP1.1/1.2 combined mode
When using SOAP1.1/1.2 combined mode, service components that use Web services must be created by
conforming to specifications of following versions:

• SOAP1.1 or SOAP1.2

• WSDL1.1

• SAAJ1.3

Also, in service platform, it is recommended to create service components by conforming to WS-I Basic Profile
1.1.

(2) Format of SOAP message
SOAP message is configured with SOAP header and SOAP body. SOAP header includes additional information (such
as identification information) of message and SOAP body includes the actual message.

In service components that use Web services, following conditions must be fulfilled as the format of SOAP message.

• Request message and reply message must be stored in the actual text of SOAP message.

Also, in service platform having version prior to 08-53, you can create SOAP adapter based on WSDL that defines
soap:header element, but soap:header element is ignored.

(3) Notes when defining WSDL (SOAP1.1 mode)
This section describes WSDL description format and notes when defining WSDL, when using SOAP1.1 mode. For
support range of WSDL1.1 specifications, see "2.6.1(5) Support range of WSDL1.1 specifications".

(a) wsdl:types elements

wsdl:types element defines the information related to types used in SOAP message. Describe wsdl:types
element according to the following rules.

• Describe wsdl:types element as the child element of wsdl:definitions element.

• You can describe 0 or 1 element. You cannot describe 2 or more elements.

• Describe this element after wsdl:documentation element and wsdl:import element.

• Describe it before all other elements except wsdl:documentation element and wsdl:import element.

(b) xsd:schema element

xsd:schema element describes XML schema. Describe xsd:schema element as the child element of
wsdl:types element. For the rules applicable when describing XML schema, see "2.6.5 Scoping of XML schema".

(c) wsdl:import element

wsdl:import element is to be defined when importing WSDL. Describe wsdl:import element as a child
element of wsdl:definitions element. Describe wsdl:import element according to the following rules:

• Describe wsdl:import element after wsdl:documentation element.

• Describe before all the elements, excluding wsdl:documentation element.

• Describe namespace attribute without fail.

• When you want to set percent encoded value in the value, set hexadecimal value in upper case characters.
Example is as follows:
Correct: location="%E3%81%82.wsdl"
Incorrect: location="%e3%81%82.wsdl"

• Notes when specifying location attribute of wsdl:import element are as follows:

2. Before Developing a System

43

• Use characters prescribed with RFC2396 and character that fulfills xsd:anyURI. However, you cannot use
RFC2732 (IPv6).

• When specifying location attribute of wsdl:import element with absolute URI, use either of http, https
and file protocol.

Example of specifying location attribute is as follows:

(Example1)Specify WSDL in local, with relative path
./example/sample.wsdl

(Example2) Specify WSDL in local with absolute path of URL format
file:///C:/example/sample.wsdl

(Example3)Specify WSDL in remote with URL
http://example.com/sample.wsdl

(d) soap:binding element

soap:binding element defines SOAP binding. Describe soap:binding element according to the following
rules.

• Describe soap:binding element as child element of wsdl:binding element.

• Describe only 1 element. You cannot describe 2 or more elements.

• In transport attribute, specify " http://schemas.xmlsoap.org/soap/http" that shows HTTP
binding.

• Declare SOAP binding, as the binding declaration. You cannot declare binding other than SOAP binding.

(e) wsdl:operation element

Describe wsdl:operation element according to the following rules:

• Specify wsdl:operation element, which is child element of wsdl:portType element and
wsdl:operation element that is child element of wsdl:binding element, in 1 as to 1 relation.

• Describe name attribute within 255 bytes.

(f) soap:operation element

soap:operation element defines the operation information in SOAP binding. Describe soap:operation
element according to the following rules:

• Describe soap:operation element as child element of wsdl:operation element, which is grandchild
element of wsdl:binding element.

• Describe only 1 rlrmrny. You cannot describe 2 or more elements.

• When style attribute is "rpc", do not specify element attribute having "operation name" or "operation name"
+ "Response" as name element, in namespace attribute of soap:body element.

(g) soap:body element

soap:body element defines messages under soap:body element of SOAP message. Describe soap:body
element according to the following rules.

• Describe soap:body element as child element of wsdl:input element or wsdl:output element, which is
child grandchild element of wsdl:binding element.

• Describe only 1 element. You cannot describe 2 or more elements.

• You cannot describe child element.

When style attribute is "document", you can specify parts attribute but it is ignored.

(h) wsdl:fault element

wsdl:fault element defines fault. Describe wsdl:fault element according to the following rules:

2. Before Developing a System

44

• Describe wsdl:fault element as child element of wsdl:portType element and wsdl:binding element.

• Do not describe multiple wsdl:fault elements having value of same name attribute.

• You must define wsdl:fault element in wsdl:operation element, which is child element of
wsdl:binding element, so that correspondence with wsdl:fault element defined in wsdl:operation
element, which is child element of wsdl:portType element.

(i) soap:fault element

soap:fault element defines messages under detail child element included in soap:fault element of SOAP
message. Describe soap:fault element according to the following rules:

• Describe soap:fault element as child element of wsdl:fault element, which is child element of
wsdl:binding element.

• Specify only 1 element. You cannot describe 2 or more elements.

Conditions when using fault
In SOAP Fault returned from service components, fault name is set as faultCode and handled as fault, when
following conditions are fulfilled:

• SOAP communication base(Web Services) must be used in service components

• Element name# that shows exception type complexType defined in WSDL fault name(name attribute value
of wsdl:fault element)and schema(in wsdl:types), must match including namespace.

When you use the WSDL that do not fulfill these conditions and you want to handle SOAP Fault returned from
service component, define SOAP Fault operation definition file and set it as user-defined exception.

Note#
Element nameimplies "element that wsdl:part element referred by wsdl:fault specifies by using
element attribute". Element name indicates element that WSDL can specify by striding over the following
order.
1. wsdl:fault
2. wsdl:message (striding over of this element does not happen in some cases)
3. wsdl:part
4. xsd:element

When you generate WSDL file having style attribute of operation as "rpc", by using Java2WSDL command,
which is development support command of service platform, WSDL file referred by type element and not by
element is generated.
Therefore, use WSDL file by revising or re-generating, rather than using the generated WSDL file as it is. For
details on revising or re-generating WSDL file, see Notes in "4.3.2 Creating a Service Component Message (for
Web Services)".
When you use fault in service platform, it is recommended to use WSDL of document style.

(j) soap:header element

soap:header element defines messages under soap:header element of SOAP message. Describe
soap:header element according to the following rules:

• Describe soap:header element as child element of wsdl:input element and wsdl:output element,
which is grandchild element of wsdl:binding element.

• You cannot describe child element.

• In message attribute, specify wsdl:message element different than wsdl:message element referred from
wsdl:input element or wsdl:output element.

• In part element, specify wsdl:part element, which is child element of wsdl:message element specified in
message attribute.

2. Before Developing a System

45

(k) wsdl:service element

wsdl:service element defines SOAP services. Specify only 1 wsdl:port element in 1 wsdl:service
element. You cannot describe 2 or more elements.

(4) Notes when defining and using WSDL(SOAP1.1/1.2 combined mode)
When you use SOAP1.1/1.2 combined mode, describe WSDL with reference of "4.3.1 Creating WSDL file" in
"Application Server Web Service Development Guide".

However, contents described in "4.3.1 Creating WSDL file" in "Application Server Web Services Development
Guide" differ with operations of service platform in some aspects. This section describes notes at the time of defining
WSDL, when using SOAP1.1/1.2 combined mode.

(a) Available WSDL definition styles

WSDL definition style is document/literal.

(b) wsdl:port element

If name attribute of wsdl:port element gets duplicated, error occurs. Specify unique name attribute in entire
WSDL.

(c) wsdl:types element

When you define schema as child element of wsdl:types element, describe comments by using
xsd:annotation.

Also, JAXB namespace "http://java.sun.com/xml/ns/jaxb" is added to the namespace declaration of
message format created from WSDL in the service adapter.

(d) wsdl:operation element

Describe name attribute of wsdl:operation element with less than 255 bytes.

(e) Definition when using SOAP communication base in service components

When you use SOAP communication base in service components, match name attribute of wsdl:fault element
with name element of xsd:element referred by wsdl:part element.

(f) Validating WSDL

• Errors occurring in Basic Profile based verification are considered as warning in service platform. Following table
describes warning message ID, corresponding error ID and occurrence conditions due to the Basic Profile based
verification.

Table 2‒11: Warnings (errors) occurring due to Basic Profile-based validation

No. Warning message ID Corresponding error ID Occurrence condition

1 KDJW51209-W KDJW51208-E This warning occurs when you describe namespace attribute in
soap:body element.

2 KDJW51211-W KDJW51210-E This warning occurs when you describe namespace attribute in
soap:fault element.

3 KDJW51213-W KDJW51212-E This warning occurs when you describe wsdl:required
attribute in extended element.

• Verification based on the following conditions is not executed in service platform:

• Verification related to number of elements defined in WSDL

• Verification when reserved expressions of Java are described

2. Before Developing a System

46

(5) Support range of WSDL1.1 specifications
Following table shows the support range of WSDL1.1 specifications when using SOAP1.1 mode.

For support range of WSDL 1.1 specifications when using SOAP1.1/1.2 combined mode, see "20.1 Support range of
WSDL 1.1 specifications" in "Application Server Web Service Development Guide".

Table 2‒12: Support range of the WSDL1.1 specifications

Classification

Support RemarksMajor
classification Minor classification

Service definition:
WSDL document
structure

Document Naming and
Linking

Y Has description about scoping of namespace

Authoring
Style(acquisition of
components by import
element)

Y Has description about acquisition by import element of other file

Language Extensibility
and Binding

N Has description about deploying wsdl:required attribute

Documentation Y Has description about comments in the element.

Service definition: wsdl:types Y Has description about data types that are handled

Service definition: wsdl:message Y Has description about logical definition of message

Service definition:
Port type

One-way Operation N Has description about one way operations of the message.

Request-response
Operation

Y Has description about request/response operations of the message.

Solicit-response
Operation

N Has description about send request/response operations of the
message.

Notification Operation N Has description about notification operation of the message.

Names of Elements
within an Operation

Y Shows name attribute of input and output element. You cannot
perform overload. Name must be unique in WSDL.

Parameter Order within
an Operation

Y Has description about order of parameter within operation. You can
specify list of parameters according to parameterOrder attribute.

Service definition: wsdl:binding Y Has description about the definition of details on message format and
protocol.

Service definition: wsdl:port Y Has description about physical definition of services.

Service definition: wsdl:service Y Has description about position of services. You cannot have
correspondence of multiple SOAP services to a single WSDL.

SOAP binding soap:binding Y Has description about binding of SOAP format

soap:operation Y Has description about information of SOAP operation in SOAP
message

soap:body Y Has description about display method of message part of SOAP body
within SOAP message. You can describe parts attributes but it is
ignored.

soap:fault Y Has description about contents of SOAP fault within SOAP message.

soap:header Y Has description about contents in SOAP header element within SOAP
message.

soap:headerfault N

soap:address Y Has description about address of port element

2. Before Developing a System

47

Classification

Support RemarksMajor
classification Minor classification

MIME binding mime:content N Has description about MIME type

mime:multipartRe
lated

N Optional set of MIME parts has been consolidated.

mime:part N Has description about each MIME part.

mime:mimeXml N Has description about XML payload having specific schema. It does
not conform to SOAP.

(Legend)
Y: Supports
N: Does not support

(6) Life cycle
Even if it is set (setting up "Session", "Application" in DeployScope) to maintain session between execution
environment and service components of service platform, you cannot perform stateful calling. It is always calling in
"Request" in service platform.

2.6.2 Application Scopes of Service Components That Use SessionBean
This subsection describes the application scope of service components that use SessionBean.

(1) Prerequisite specifications
Service components that use SessionBean must be created according to the EJB 2.0 specifications.

(2) Deployment destination of the available service component
Only service components deployed on Cosminexus can be used as service components that use SessionBean.

(3) SessionBean creation conditions
Service components that use SessionBean must be created according to the following conditions:

Classes that can be specified for the arguments and return values
The classes to be specified for the arguments and return values of service components that use SessionBean must
satisfy the following conditions:

• A user-defined class must consist of the basic class.

• The user-defined class specified for an argument or return value must have a private field and a public
access method (setXX and getXX) for allowing access to that field from outside (JavaBeans format).

• A user-defined interface class must not be specified for an argument or return value of a method that is
public.

• A user-defined abstract class must not be specified for an argument or return value of a method that is
public.

• A user-defined class that inherits a class other than java.lang.Object must not be specified for an
argument or return value of a method that is public.

• A user-defined class of a different package must not be specified for an argument or return value of a method
that is public.

• The following table shows the Java data types that can be used as an argument or return value of a method.
Only those data types that are shown as usable in a given mode can be used.

2. Before Developing a System

48

Table 2‒13: Java data type usability

Data type in Java

Usability as an argument or return
value of a method

When
used

directly

When
used as

an
array

When used as a
member

variable of a
user-defined
data class

boolean Y Y Y

javax.xml.rpc.holders.BooleanHolder Y -- --

byte Y Y Y

javax.xml.rpc.holders.ByteHolder Y -- --

byte[] Y Y Y

javax.xml.rpc.holders.ByteArrayHolder Y -- --

double Y Y Y

javax.xml.rpc.holders.DoubleHolder Y -- --

float Y Y Y

javax.xml.rpc.holders.FloatHolder Y -- --

int Y Y Y

javax.xml.rpc.holders.IntHolder Y -- --

long Y Y Y

javax.xml.rpc.holders.LongHolder Y -- --

short Y Y Y

javax.xml.rpc.holders.ShortHolder Y -- --

java.lang.Byte Y Y Y

javax.xml.rpc.holders.ByteWrapperHolder Y -- --

java.lang.Byte[] Y Y Y

java.lang.Double Y Y Y

javax.xml.rpc.holders.DoubleWrapperHolder Y -- --

java.lang.Float Y Y Y

javax.xml.rpc.holders.FloatWrapperHolder Y -- --

java.lang.Integer Y Y Y

javax.xml.rpc.holders.IntegerWrapperHolder Y -- --

java.lang.Long Y Y Y

javax.xml.rpc.holders.LongWrapperHolder Y -- --

java.lang.Object -- -- --

javax.xml.rpc.holders.ObjectHolder -- -- --

java.lang.Object[] -- -- --

2. Before Developing a System

49

Data type in Java

Usability as an argument or return
value of a method

When
used

directly

When
used as

an
array

When used as a
member

variable of a
user-defined
data class

java.lang.Short Y Y Y

javax.xml.rpc.holders.ShortWrapperHolder Y -- --

java.lang.String Y Y Y

javax.xml.rpc.holders.StringHolder Y -- --

java.math.BigDecimal Y Y Y

javax.xml.rpc.holders.BigDecimalHolder Y -- --

java.math.BigInteger Y Y Y

javax.xml.rpc.holders.BigIntegerHolder Y -- --

java.util.Date Y Y Y

javax.xml.namespace.QName Y Y Y

javax.xml.rpc.holders.QNameHolder Y -- --

java.lang.Boolean Y Y Y

javax.xml.rpc.holders.BooleanWrapperHolder Y -- --

java.util.Calendar Y Y Y

javax.xml.rpc.holders.CalendarHolder Y -- --

Legend:
Y: Can be used.
--: Cannot be used.

Method overload
Methods having the same name cannot be specified for service components that use SessionBean.

Transactions
Set the transaction attribute (trans-attribute) to be assigned to the transaction control type
(transaction-type) and method of SessionBean so that it does not inherit transactions from the HCSC
server. Transactions cannot be inherited by service components that use SessionBean.
The following table shows whether the transaction attribute can be specified for the service component transaction
modes.

Table 2‒14: Specification of the transaction attribute in service components

Transaction mode of the service
component Tx attribute Usability

BMT N/A Y

CMT Required --

RequiresNew Y

Supports --

NotSupported Y

Mandatory --

2. Before Developing a System

50

Transaction mode of the service
component Tx attribute Usability

CMT Never --

Legend:
Y: Can be used (works according to the EJB specifications).
--: Cannot be used.
N/A: Not applicable

Method exceptions
Classes inherited from java.rmi.RemoteException and java.lang.RuntimeException are the
only exceptions that can be described in the throws clause of a method.

SessionBean type
The SessionBean service component must be created as Stateless Session Bean.
In the execution environment of a Cosminexus Service Platform, connection (create) and disconnection
(remove) are issued for each execution request to the EJB service. Therefore, service components that maintain
an internal state by using Stateful Session Bean cannot be used.

(4) Schema format
The schema used in a service component in which SessionBean is used must satisfy the conditions explained in 2.6.5
Scoping of XML schema. For details on schema conditions, see "2.6.5 Scoping of XML schema".

2.6.3 Application Scopes of Service Components That Use the Local
Queue of Cosminexus RM

This subsection describes the application scopes of service components that use the local queue of Cosminexus RM.

(1) Prerequisite specifications
Service components that use the local queue of Cosminexus RM must be created according to the EJB 2.0
specifications.

(2) Message type
When a service component uses the local queue of Cosminexus RM, you can use one of the following message types
for sending a message from a service requester to a service component:

• BytesMessage

• ObjectMessage

• TextMessage

Only these message types can be used.

(3) Schema format
The schema used in a service component in which Cosminexus RM local queue is used must satisfy the conditions
explained in "2.6.5 Scoping of XML schema". For details on schema conditions, see "2.6.5 Scoping of XML schema".

2.6.4 Application Scopes of Service Components That Use a Database
Queue

This subsection describes the application scopes of service components that use a database queue.

2. Before Developing a System

51

(1) Prerequisite specifications
Service components that use a database queue must be created according to the following version specifications:

• TP1/Server Base Enterprise Option 02-00 or later

• EJB 2.0 (when the service component is installed as MDB)

(2) Message type
When a service component uses a database queue, you can use BytesMessage as the message type for sending a
message from a service requester to a service component.

BytesMessage is the only message type that can be used.

(3) Database that can be used
HiRDB is the only database that can create a database queue.

(4) Schema format
The schema used in the service component in which a database queue is used must satisfy the conditions explained in
"2.6.5 Scoping of XML schema". For details on schema conditions, see "2.6.5 Scoping of XML schema".

2.6.5 Scoping of XML schema
This section describes the scoping of XML schema to be used in each service component.

(1) Format of XML schema to be used

• XML schema must fulfill the following conditions:

• XSD namespace of schema must be " http://www.w3.org/2001/XMLSchema".

• Root element must be described in the selected XML schema.

• When you specify a file for XML schema, length of the file name must be 128 bytes or less.

• White space character (single byte space (#x20), tab (#x9) and linefeed code (#xA or #xD) must not be used
in start or end of XML schema attributes.

• If you specify a large value in maxOccurs attribute, large size memory is consumed. It is recommended to use
unbounded as much as possible, in maxOccurs attribute.

• You can use type attribute, ref attribute or internal definition (complexType or simpleType) for defining
types of xsd:element element.

• If you use standard reception as the reception of business process, it is recommended to specify qualified in
elementFormDefault attribute of xsd:schema element.

! Important note

• If a SOAP specific attribute (mustUnderstand attribute, role attribute, encodingStyle attribute, actor attribute and
relay attribute) appears in the child element of SOAP header or SOAP body and you convert with data
transformation activity without defining this attribute in XML schema, SOAP specific attribute is not reflected in
variable after conversion. Also, verification error occurs when you execute the verification process. Therefore,
when SOAP specific attribute appear, mention xsd:anyAttribute in XML schema.

• When you want to specify a percent encoded value in XMLschema file, specify a hexadecimal value with upper
case characters. Example is as follows:
Correct: schemaLocation="%E3%81%82.xsd"
Incorrect: schemaLocation="%e3%81%82.xsd"

2. Before Developing a System

52

(2) Notes when referring to external XML schema
Notes when referring and using external schema from XML schema, are as follows:

• When schemaLocation attribute of xsd:import element of XML schema defined under wsdl:types
element of WSDL is not specified, namespace must be resolved by using the XML schema under wsdl:types
element.

• Specify schemaLocation attribute of xsd:import element of XML schema without fail.

• Specify namespace attribute in xsd:import element without fail.

• In xsd:import element and xsd:includ element, call reference and set hierarchy to less than 20 hierarchy.

• In schemaLocation attribute, do not specify schema (redefine having 2 or more hierarchies) in schema
having redefine element.

• Do not include schema for which targetNamespace attribute is not specified, rom the schema for which
targetNamespace attribute of xsd:schema element is specified.

• When using SOAP1.1 mode, you can set value percent encoded with UTF-8 as well as value not percent encoded,
in schemaLocation attribute of xsd:import element and schemaLocation attribute of xsd:include
element. However, when percent encoding is done and directory is included in file path, do not encode the
directory delimiter (/).

• When using SOAP1.1/1.2 combined mode, specify value percent encoded with UTF-8, in schemaLocation
attribute of xsd:import element and schemaLocation attribute of xsd:include element. However,
when value is percent encoded and directory is included in file path, do not encode the directory delimiter (/).

• Use a forward slash (/) as a directory delimiter in the schemaLocation attribute. (You cannot use \).

• Use "/" in directory delimiter of schemaLocation attribute (you cannot use "\").

• Do not use following characters in the file path of XML schema.
";", "?", ":", "@", "&", "=", "+", "$", ", ", "<", ">", "#", "%", """, "{", "}", "|", "^", "[", "]", "`".

• Notes when specifying schemaLocation attribute are as follows:

• User character prescribed in RFC2396 and character that fulfills xsd:anyURI. However, you cannot use
RFC2732 (IPv6).

• When you want to specify schemaLocation attribute with absolute URI, use enter of the http, https, and
file protocol.

Example of specifying schemaLocation attribute is as follows:

(Example1) Specify XML schema in local with relative path
./example/sample.xsd

(Example 2) Specify XML schema in local with absolute path of URL format
file:///C:/example/sample.xsd

(Example 3) Specify XML schema in remote, with URL
http://example.com/sample.xsd

2. Before Developing a System

53

2.7 Expanding code conversion
You can expand the code conversion functionality provided by service platform. For expanding, you must separately
purchase the following products.

• Code conversion - Development Kit

• Code conversion - Server Runtime (for Windows)

• Code conversion - Runtime (for UNIX)

The following sub-section describes the tasks which you must perform for expanding the code conversion.

2.7.1 Creating character code conversion UOC
By creating character code conversion UOC, you can handle the character code that is not supported by service
platform, as standard process. When you want to use API of code conversion in character code conversion UOC, you
must install following products on the execution environment on which Service Platform is installed.

• Code conversion - Server Runtime (for Windows)

• Code conversion - Runtime (for UNIX)

The settings to be performed after installing required products in the execution environment are as follows:

(1) Embedding JAR
Procedure for embedding JAR is as follows:

1. Take backup of <Service platform installation directory>\CSC\lib\external\codeconv.jar.

2. Copy codeconv.jar of the installed unit version code conversion.
Copy destination is as follows:
<Service platform installation directory>\CSC\lib\external\codeconv.jar

(2) Setting up the path for code conversion table
To set the path of code conversion table, add following path in <Service platform installation directory>\CC\server
\usrconf\ejb\<J2EE server name>\usrconf.properties.

csc.dt.codetablepath=<Code conversion installation directory>/table

It is recommended to execute these settings with Smart Composer functionality or management portal. For Smart
Composer functionality and management portal, see "1.1 Tools of management functionality" in "Application Server
System Setup and Operation Guide".

2.7.2 Embedding the user mapping table
You can create a user mapping table of user-specific external character mapping by using Code conversion -
Development Kit and embed it in Service platform.

You require the following products for creating the user mapping table.

• Code conversion - Development Kit

For order for creating the user mapping, see the "Code Conversion User Guide (Java version) ".

This kit describes settings for embedding the user mapping table required for execution environment.

1. Take backup of <Service platform installation directory>#\CSC\lib\external\table directory.

2. Overwrite the created user mapping table on the <Service platform installation directory>#\CSC\lib\external\table
directory.

2. Before Developing a System

54

Note#
When Code conversion - Server Runtime has been installed, replace <Service platform installation directory> with
<Code conversion installation directory>.

2. Before Developing a System

55

3 Managing Project and Managing
Repository
This chapter explains project management, including creating and deleting HCSCTE
projects in Eclipse with HCSCTE embedded. It also explains how to manage the
repository specified when the project properties are set up.

57

3.1 Managing a Project
Before developing a HCSC component, create an HCSCTE project and set up its properties. Additionally, export or
import the created project as needed.

3.1.1 Creating a Project
Before creating an HCSCTE project, select Window - Preferences - Java - Build Path from the Eclipse menu, and
then click Project in Source and Output Folder.

When you create an HCSCTE project, you can specify a desired prefix for the ID (service ID and reception ID) used
in the service and user-defined reception. Note that you can also specify a prefix after creating the HCSCTE project.

To create an HCSCTE project:

1. Start Eclipse.

2. On the File menu, choose New, and then Project.
The New Project dialog box opens.

3. Select HCSCTE Project and click Next.
The HCSCTE Project dialog box (the page for creating a new HCSCTE project) opens.

4. Specify the following items and click Next.

Project name
Specify the desired name.

Use default location
Select the Use default location check box.

The HCSCTE Project dialog box (the page for specifying an HCSCTE repository) opens.

5. Specify the following items.

Repository directory
Specify the desired directory for saving the repository information. You consider the following points to
specify a repository directory:
- Do not specify the same path for a repository directory and for a project.

3. Managing Project and Managing Repository

58

- Specify the path as an absolute path.
- The length of the path is to be checked as a normalized absolute path.
- You cannot use a repository directory that was set up in an HCSCTE project of a SOAP mode different from
the SOAP mode specified before creating the HCSCTE project.

Login user name
Specify the user name to be used for logging on to the repository. Only single-byte alphanumeric characters
can be used in the user name having a length of 1 to 16 characters.

6. To set up a prefix for the service ID and reception ID, click the Next button. If you do not want to set up a prefix,
go to step 8.
The HCSCTE Project dialog box (page for HCSCTE prefix settings) appears.

7. Specify the prefix for the service ID and reception ID.
Specify the prefix for the service ID and reception ID using up to 3 one-byte alphanumeric characters and
underline (_).

8. Click the Finish button.
The HCSCTE project is created and the perspective of the created HCSCTE project starts.

3. Managing Project and Managing Repository

59

! Important note
Only a single HCSCTE project can be created in each workspace.

3.1.2 Setting up Properties
This section describes the property settings to be implemented after creating the HCSCTE project.

(1) Setting up a Repository
Specify a directory to be used as repository as and when needed, when using a repository different than the repository
at the time of creating HCSCTE project.

For details on setting up the repository, see "3.2.1 Setting Up a Repository".

(2) Specifying the Java build path
Add the JAR files used for compilation into the build path.

1. From Eclipse menu, select [Project]-[Property].
[Property: HCSCTE#] dialog is displayed.

Note#
Project name is displayed in "HCSCTE" part.

2. Select [Java build and path] from Tree view on the left side of dialog and add the following JAR file.
<Service Platform installation directory>\CSC\lib\cscbp_ejb.jar

(3) Validation Settings
In Validation settings, specify the character set to be used in the database.

! Important note

Note

Implement the character code change of the database to be set in HCSCTE project, before creating HCSC components#. Do
not make changes after creating HCSC components#.

Note#
Specifies the service adapter, business process and user-defined reception.

Procedure for specifying the character code in verification settings is as follows:

1. From Eclipse menu, select [Project]-[Property].
[Property: HCSCTE#] dialog is displayed.

Note#
Project name is displayed in "HCSCTE" part.

2. From Tree view on the left side of dialog, select [HCSC-Definer]-[Verification settings].
Setting items related to verification settings are displayed on right side of dialog.

3. Managing Project and Managing Repository

60

3. In [Character code], specify character code to be used in database.
The value specified here is used to verify the character string length of service name and activity name of business
process.

4. Click the [Apply] button and then [OK] button.

(4) Settings for the prefix added to the service ID and reception ID
To specify a desired prefix to the service ID and reception ID:

1. From Eclipse menu, select [Project]-[Property].
[Property: HCSCTE#] dialog is displayed.

Note#
Project name is displayed in "HCSCTE" part.

2. From Tree view on the left side of dialog, select [HCSC-Definer]-[Prefix settings].
Setting items related to prefix settings are displayed on the right side of the dialog.

3. Specify ID to be added to [Service ID] and [Reception ID].
Specify prefix of service ID and reception ID with maximum 3 single byte alphanumeric characters and
underscore (_).

4. Click the [Apply] button and then [OK] button.

3. Managing Project and Managing Repository

61

3.1.3 Exporting/Importing a Project
You can use the standard functionality of Eclipse to export an HCSCTE project. You can also import an HCSCTE
project that has been exported. However, you cannot create more than one HCSCTE project in each workspace at the
same time.

For details about exporting and importing methods, see the documentation supplied with Eclipse.

3.1.4 Deleting a Project
To delete an HCSCTE project:

1. In the Package Explorer of Eclipse, select the project to be deleted.

2. On the Edit menu, choose Delete.
The selected project is deleted.

3.1.5 Changing SOAP modes
To change the SOAP mode after creating the HCSCTE project, the HCSCTE project must be re-created.

To change the SOAP mode:

1. Delete the created HCSCTE project.
For details about deleting the HCSCTE project, see "3.1.4 Deleting a Project".

2. Terminate Eclipse.

3. Set up the SOAP mode.
For details about how to set up the SOAP mode, see "2.2.3 SOAP mode settings".

4. Start Eclipse.

5. Create an HCSCTE project.
For details about creating an HCSCTE project, see "3.1.1 Creating a Project".

3.1.6 Notes at the time of development
Do not register link of the files in file system, under the lib directory or src directory of HCSCTE project. The files
registered with link are not stored in EAR file at the time of service packaging.

3. Managing Project and Managing Repository

62

3.2 Managing a Repository
A repository is a directory that stores the information shared by the development environment and the operating
environment. Set up a repository when you create an HCSCTE project in the development environment. You can also
export or import the specified repository as needed.

! Important note

In the version 07-60 or later, you cannot share the same repository in a development environment and an operating
environment. If the repository is shared in an earlier version, prepare the separate repositories in the development
environment and the operating environment, and then migrate to a higher version. For details about how to migrate, see
"Appendix A.3 Migrating procedure when a repository is shared between development environment and operating
environment in earlier version".

3.2.1 Setting Up a Repository
This sub section explains how to change a repository specified while creating an HCSCTE project.

(1) Specifying a repository
Specify the directory that is to be used as the repository.

To specify a repository:

1. On the Eclipse menu, choose Project, and then Property.
The Properties for HCSCTE# dialog box opens.
The actual project name is displayed in place of HCSCTE.

2. In the directory tree in the left pane of the dialog box, choose HCSC-Definer, and then Repository settings.
Repository settings items are displayed in the right pane of the dialog box.

3. In Repository directory, specify the desired directory to be used as the repository.
When specifying a repository directory, consider the following points:

• Specify a directory that already exists.

• Do not specify the same path for a repository directory and for a project.

• Specify the path as an absolute path.

• The length of the path is checked as a normalized absolute path.

• You cannot use a repository directory that was set up in an HCSCTE project of a SOAP mode other than the
SOAP mode specified before creating the HCSCTE project.

3. Managing Project and Managing Repository

63

4. In Login user name, enter the desired user name to be used as the login user name.
Only single-byte alphanumeric characters can be used in the user name having a length of 1 to 16 characters.

5. Click Apply and then OK.

(2) Initializing a repository
Initializing a repository erases all of its contents and returns it to its initial state.

Before initializing a repository, be sure to close all editors. Also, do not access the lib directory and the src
directory of the HCSCTE project. If an error occurs, confirm the following points:

• Make sure that editors (including external editors), used for opening files below the src directory of the HCSCTE
project, are closed.

• Make sure that programs, that use libraries below the lib directory of the HCSCTE project, are not running.

To initialize a repository:

1. On the Eclipse menu, choose HCSC-Definer, Definition information management, and then Definition
information initialization.
A message box opens.

(3) Changing a repository
The procedure for changing a repository is the same as the procedure in 3.2.1(1) Specifying a repository. When
changing a repository, terminate all tasks such as adapter definition and business process definition, except for the
repository change task.

Clicking Restore Default sets up the repository that was previously specified.

(4) Notes on repositories
Do not directly manipulate the repository file or directory. If the file or directory name is changed or deleted, of if the
contents of the file or directory are modified, correct operation cannot be guaranteed.

3.2.2 Exporting a Repository
In exporting the repository, you can consolidate repository in 1 ZIP file and save in the specified directory.

Following are the 2 methods to export a repository.

• Saving all the information in a repository, by consolidating in a ZIP file

• Selecting information of the required services and saving in a ZIP file

(1) Exporting a repository
Procedure for exporting a repository is as follows:

1. From Eclipse menu, select [HCSC-Definer]-[Definition information management]-[Export entire definition
information].
[Export repository] dialog is displayed.

2. Specify a directory for saving and input a name for the ZIP file to be saved.

3. Click the [Save] button.
ZIP file is saved in the specified directory.
If the save destination directory has a file with the same name, a dialog is displayed to confirm overwriting of the
file. If you want to overwrite the file, click the [Yes] button and save file.
Reference note

It is recommended to export the repository as and when required and take backup of the data of repository.

3. Managing Project and Managing Repository

64

(2) Exporting only a part of service definition
When exporting by selecting the required services, you can save the following information in specified directory.

• Definition related to HCSC components (service adapter, business process)

• Source file of user-defined Java class

• Pre-requisite library file of user-defined Java class

You can select multiple export targets. User-defined reception related to the business process to be exported, is also
exported concurrently.

Procedure for exporting only a part of service definitions is as follows:

1. From Eclipse menu, select [HCSC-Definer]-[Definition information management]-[Export services].
Select service screen of the service export wizard is displayed.

2. Check the checkbox of the service to be exported.
When you want to check only the publicized services, click [Select only the publicized services].

3. Specify directory for saving by clicking [Browse] button and input the name of ZIP file to be saved.
Existence of user-defined Java class is checked and either of [Next] button or [Finish] button is enabled.

4. Perform either of the following operations:

When user-defined Java class does not exist
Click [End] button
Selected service definition is saved in ZIP file.

When user-defined Java class exists
Click [Next] button.
Select file screen of service export wizard is displayed. Proceed with the following steps:

3. Managing Project and Managing Repository

65

5. Check the checkbox of user-defined Java class to be exported and pre-requisite library file for the same.

6. Click [End] button.
Selected service definition is saved in ZIP file.

3.2.3 Importing a Repository
In importing the repository, you can read the repository which was consolidated to ZIP file during export. You can
import the definition information such as service definition and system configuration definition saved in the
repository. You can import a repository, when SOAP mode of the exported repository match with SOAP mode of the
import destination repository.

Following are the 2 methods to import a repository.

• Import service definition and system configuration definition both, or either of those in ZIP file.

• Import only a part of service definitions in the ZIP file.

Following figure shows the example of different usages of the 2 methods of importing.

3. Managing Project and Managing Repository

66

Figure 3‒1: Different usages of the 2 methods of importing (example)

As shown in the example in the above figure, when developing HCSC components concurrently in multiple
development environments, export the repositories of respective development environments and import in the master
repository. At that time, import only the information required in the service definition. Also, when importing the
information of a repository exported in operation environment, to the repository (master) of development
environment, import service definition and system configuration definition.

You can also receive the exported information through network, without using media.

! Important note

When importing repository, close all the editors such as service adapter definition or business process definition. Also, set
such that lib directory or src directory of HCSCTE project is not accessed. If error occurs, check the following points.

• Whether the editor (including external editor) in which file under src directory of HCSCTE project is opened, is closed

• Whether program in which library under lib directory of HCSCTE project is used, is executed

Details of the 2 methods of importing are as follows:

3. Managing Project and Managing Repository

67

(1) Importing the service definition and the system configuration definition

(a) Procedure of importing

Procedure for importing service definition and system configuration definition in the repository is as follows:

1. From the Eclipse menu, select [HCSC-Definer]-[Definition information management]-[Import entire definition
information].
Dialog for confirming the importing is displayed.

2. Click [Yes] button.
Dialog [Import repository] for selecting the ZIP file of repository information is displayed.

3. Specify ZIP file to be read.

4. Click [Open] button.
Dialog [Import repository] for selecting the definition information to be imported is displayed.

5. Insert check mark in the check box of definition to be imported.
When importing for the first time, insert check mark in [Service definition] and [System configuration definition]
both.

6. Click [OK] button.
Repository is read in the directory specified in "3.2.1(1) Specifying a repository".

(b) Notes

• When you import the repository of old version, the repository information is inherited to current version.

• When you imported user-defined Java class or pre-requisite library of user-defined Java class to be used in Java
calling activity, build the HCSCTE project.

• When you want to import only either of service definition or system configuration definition, integration between
definition information of import target within ZIP file and information (service definition or system configuration
definition) within current repository must be consistent. In case of non-consistency, you cannot import the service
definition or system configuration definition in the repository.
Contents for checking the consistency during the import of repository are as follows:

When importing only the service definition
Following table describes error conditions when checking consistency between publicized service definition in
repository and service definition in corresponding ZIP file.

Table 3‒1: Error conditions in consistency check performed while importing a repository (in case of
importing only service definition 1)

No. Error conditions

1 Service IDs do not match

2 Service names do not match#1

3 Types (service adapter or business process) do not match#1

3. Managing Project and Managing Repository

68

No. Error conditions

4 Versions of business process do not match#1#2

5 Number of user-defined receptions defined in business process do not match#1

6 IDs of user-defined reception defined in the business process do not match#1

7 Names of the user-defined reception defined in business process do not match#1

8 Packaging of service definition in ZIP file is not performed#1#2

Note#1
Check the interrelation between service definitions for which service IDs match.

Note#2
Do not check in case of repository created in old version.

Following table describes error conditions when checking consistency between publicized service definition in
repository and service definition in corresponding ZIP file for which service IDs match. Error conditions differ
depending on server configuration defined in system configuration definition in the repository.

Table 3‒2: Error conditions in consistency check performed while importing a repository (in case of
importing only system configuration definition 2)

No.

Information in repository

Error conditions

(service definition in ZIP file for
which service IDs match)

Server configuration defined in system
configuration definition Publicized service definition

(types of service)Usage of
database

Usage of Reliable
Messaging

1 Used Not used All --

2 Not used Not used Business process yes is set in persistence of status

3 • SOAP adapter

• SessionBean adapter

• DB adapter

• TP1 adapter

• File adapter

• Object Access adapter

• Message Queue adapter

• FTP adapter

• File operation adapter

• Mail adapter

• HTTP adapter

• General custom adapter

MDB_WSR or MDB_DBQ has been set
in types of service

4 Used Not used • SOAP adapter

• SessionBean adapter

• DB adapter

• TP1 adapter

• File adapter

• Object Access adapter

• Message Queue adapter

• FTP adapter

• File operation adapter

• Mail adapter

MDB_WSR or MDB_DBQ has been set
in types of service

3. Managing Project and Managing Repository

69

No.

Information in repository

Error conditions

(service definition in ZIP file for
which service IDs match)

Server configuration defined in system
configuration definition Publicized service definition

(types of service)Usage of
database

Usage of Reliable
Messaging

4 Used Not used • HTTP adapter

• General custom adapter
MDB_WSR or MDB_DBQ has been set
in types of service

(Legend)
--: Error condition does not exist.

Troubleshooting in case of error occurrence
Non-publicize all services in the current repository and re-import only the service definition.

When importing only the system configuration definition
Following table describes error conditions when checking consistency between publicized service definition in
repository and service definition in corresponding ZIP file.

Table 3‒3: Error conditions in consistency check performed while importing a repository (in case of
importing only the system configuration definition 1)

No. Error conditions

1 Service IDs do not match

2 Service names do not match#1

3 Types (service adapter or business process) do not match#1

4 Versions of business process do not match#1#2

5 Number of user-defined receptions defined in business process do not match#1

6 ID of user-defined reception defined in business process do not match#1

7 Names of user-defined receptions defined in business process do not match#1

8 Packaging is not performed of service definition in ZIP file#1#2

Note#1
Check the interrelation between service definitions for which service ID match.

Note#2
Do not check in case of repository created in old version.

Following table describes error conditions when checking consistency between publicized service definition in
ZIP file and service definition in repository for which service IDs match. Error conditions differ depending on
server configuration defined in system configuration definition in ZIP file.

Table 3‒4: Error conditions in consistency check performed while importing a repository (in case of
importing only system configuration definition 2)

No.

Information in ZIP file

Error condition

(service definition in ZIP file for
which service IDs match)

Server configuration defined in system
configuration definition Publicized service definition

(type of service)Usage of
database

Usage of Reliable
Messaging

1 Used Used All --

2 Not used Not used Business process yes is set in persistency of status

3. Managing Project and Managing Repository

70

No.

Information in ZIP file

Error condition

(service definition in ZIP file for
which service IDs match)

Server configuration defined in system
configuration definition Publicized service definition

(type of service)Usage of
database

Usage of Reliable
Messaging

3 Not used Not used • SOAP adapter

• SessionBean adapter

• DB adapter

• TP1 adapter

• File adapter

• Object Access adapter

• Message Queue adapter

• FTP adapter

• File operation adapter

• Mail adapter

• HTTP adapter

• General custom adapter

MDB_WSR or MDB_DBQ has been set
in types of service

4 Used Not used • SOAP adapter

• SessionBean adapter

• DB adapter

• TP1 adapter

• File adapter

• Object Access adapter

• Message Queue adapter

• FTP adapter

• File operation adapter

• Mail adapter

• HTTP adapter

• General custom adapter

MDB_WSR or MDB_DBQ has been set
in types of service

(Legend)
--: Error condition does not exist.

Troubleshooting in case of error occurrence
Take measures by executing the following procedure:
1. Export (rep.zip) and save the current repository.
2. Import service definition and system configuration definition both from the archive file tried to be imported.
3. Non-publicize all the service definitions imported in procedure 2.
4. Import only the service definition from the rep.zip saved in procedure 1.

(2) Importing only a part of the service definitions
When importing only a part of service definitions, you can select following information as import target:

• Definitions related to HCSC components (service adapter and business process)

• Source file of user-defined Java class

• Pre-requisite library files of the user-defined Java class

You can select multiple sets of information for importing. Service adapters and business processes invoked from
business processes that are selected for importing are imported simultaneously as needed. User-defined reception
related to the business process to be imported is also imported simultaneously.

3. Managing Project and Managing Repository

71

While importing, you can specify any service ID or reception ID to import the service and user-defined reception.

(a) Procedure for importing

Procedure for importing only a part of service definition is as follows:

1. From the Eclipse menu, select [HCSC-Definer]-[Definition information management]-[Import service].
Dialog for selecting archive file (ZIP file) is displayed.

2. Select the archive file that includes the information to be imported and click [Open] button.
[Import service] dialog (service selection) is displayed.

3. Check the checkbox of the service to be imported.

4. Change the [Post-incorporation ID] of the service to be imported, as and when required.
Specify ID by taking note of the following points:

• Specify with 8 or less alphanumeric characters and underscore (_).

• You cannot specify an ID that is already used in import destination.
However, even if it is ID used in import destination, if that ID is no longer used depending on the concurrently
imported services, you can specify that ID.

• You cannot specify ID same as other services or user-defined reception.

• When integrating services distributed and developed across multiple repositories, interface inconsistency
occurs till all the services are imported and warming message might be displayed in Remarks column. If
inconsistency occurring till service integration is anticipated, there is no problem even if warning message is
displayed in Remarks column.
However, when inconsistency occurs in interfaces, correct design information is not output and hence do not
output the design information.

5. Click the [OK] button.
Existence of user-defined Java class is checked.
When user-defined Java class exists, [Import service] dialog (selection of user-defined Java class) is displayed.
Proceed with the following steps:
When user-defined Java class does not exist, contents of the selected repository are read in the directory specified
in "3.2.1(1) Specifying a repository".

6. Check the checkbox of user-defined Java class to be imported and its pre-requisite library files.

3. Managing Project and Managing Repository

72

7. Click the [OK] button.
Existence of user-defined class is checked.
When user-defined Java class exists, [Import service] dialog (selection of user-defined Java class) is displayed.
Contents of selected repository are read in the directory specified in "3.2.1(1) Specifying a repository".
Tip

• If you cannot select an import target such as in case where HCSC component of same name is publicized in the
repository, the display of service in [Import service] dialog (service selection) becomes inactive. Eliminate the cause
with reference to contents in [Remarks] column and import again.

• Always perform packaging of the imported HCSC component (service adapter, business process). For details on the
method of packaging, see "7.2 Packaging".

• When you import user-defined Java class or pre-requisite library of user-defined java class to be used in Java calling
activity, build HCSCTE project.

(b) Notes

• You cannot import, when HCSC component with same name has been publicized in the repository. Non-publicize
that component before importing.

• When you import only a part of service definitions of repository, system configuration definition is not imported.
When you import a publicized HCSC component, the imported HCSC component is non-publicized.

• When import destination directory has HCSC component with same name as the HCSC component to be
imported, all the contents are overwritten. Also, all the format IDs are updated.

• You cannot import only a part of service definitions from repository created in old version. Move the repository as
per the following procedure and then import a part of service definition.
1. Export the current directory to archive file.
2. Import the entire definition information from archive file of old version.
3. Export the definition information imported in Step.2 to a different archive file.
4. Import the entire definition information from the archive file imported in Step.1.
5. Import a part of service definitions from the archive file exported in Step.3

• When you want to import an exported repository to the development environment, immediately after setting up
HCSC server in operation environment, do not import only a part of service definitions, but import the entire
definition information by selecting [HCSC-Definer]-[Definition information management]-[Import entire
definition information] from the Eclipse menu.

3. Managing Project and Managing Repository

73

3.3 Output of design information
In the development environment, you can output an overview of repository, the definition information of business
processes, and the definition information of service adapters as the design information in an HTML file. When you
output the design information, the efficiency of operations can be improved because the defined information can be
checked without using windows of the development environment. Also, the design information is output into the
HTML file in a uniform format.

The following figure shows an overview of the design information output:

Figure 3‒2: Overview of design information output

3.3.1 Information that can be output as design information
You can select the information that can be output as the design information using the Design Information Output
Wizard. The following figure shows the information that can be output as the design information:

3. Managing Project and Managing Repository

74

Figure 3‒3: FigureInformation that can be output as design information

Title
The character string specified in Title in the output wizard of the design information is output.

Date and time of creation
This is the date and time when the output of design information is started. This is displayed in the YYYY/MM/DD
hh:mm:ss format.

Created by
When a creator who created the document is specified in Created by in the output wizard of the design
information, the specified creator's name is output. This is displayed in the Created by format.
indicates the name of the creator.
If the name of the creator is not specified, the name will not output and only Created by will be displayed.

Table of contents
The table of contents of the output information is output.

Overview of the repository
The product version and overview about all the service components that exist in the repository and the dependence
of each service is output.

Business process information
The information defined by the user in the Business Process Definition screen is output in each service
component. The definition information of a business process also contains a figure showing the placement of
activities defined in the Business Process Definition screen.

Service adapter information
The information defined by the user in the Service Adapter Definition screen is output in each service component.

The information that can be output as the repository overview, business process information, and service adapter
information is described here. The definition information about the data transformation that is included in the business
process information is also described.

(1) Overview of the repository
The following figure provides an overview of repository.

3. Managing Project and Managing Repository

75

Figure 3‒4: FigureOverview of the repository

Version information
The product version of uCosminexus Service Architect is output.

Service list
The overview information of the service components selected in the Design Information Output Wizard is output.

Dependency relation
The dependence of each service component selected in the Design Information Output Wizard is output.

(2) Business process information
The output business process information differs depending upon whether the scope activity and the iteration
activity is defined.

The following figure shows the business process information:

Figure 3‒5: FigureBusiness process information

3. Managing Project and Managing Repository

76

Common information of
The information set up when creating a business process, dependency of service components, and a list of
activities will be output. The business process name will be displayed in .

Operation information of
A list of operations of a business process and the definition information of the communication model and
messages of each operation will be output as the detailed operation information.

Variable information of
The information of all the global variables defined in a business process will be output.

Correlation set information of
The information of all the correlation sets defined in a business process will be output.

User-defined reception information of
A list of user-defined receptions defined in a business process and the detailed information of each user-defined
reception will be output.

Activity information within a business process
The information of each activity placed on the campus will be output.

Activity information within

The information of the scope activity and the while activity will be output in loops. Scope or While is

displayed in , and the scope activity name or the while activity name is displayed in

.

(3) Service adapter information
The following figure shows the service adapter information:

3. Managing Project and Managing Repository

77

Figure 3‒6: FigureService adapter information

Common information of
The service component control information and invoking service are output. The service name is displayed in

 .

Operation information of
A list of operations of an adapter and the definition information of the communication model and messages of
each operation will be output as the detailed operation information.

Specific information of
The information set up when an adapter is defined in the Development Environment screen will be output in each
service type. The service type is displayed in . The following are the points to be considered when
referencing the specific information for each service type:

Web Services

• When using basic authentication, **** is displayed irrespective of the set password.

• If the client definition file contains the characters that cannot be used in XML, the client definition file
will not be output properly.

SessionBean
If the client definition file contains the characters that cannot be used in XML, the client definition file will
not be output properly.

MDB (WS-R)
When using basic authentication, **** is displayed irrespective of the set password.

MDB (DBQueue)
The specific information is not output.

For a general purpose custom adapter
When the self-defined file is not in the XML format, the information will not be output properly.

(4) Definition information of data transformation
When the data transformation is defined in a business process or a service adapter, the corresponding table of the data
transformation will be displayed. The following figure shows the corresponding table of the data transformation:

3. Managing Project and Managing Repository

78

Figure 3‒7: FigureCorresponding table of data transformation

Transformation destination
Each node included in the transformation destination schema is output.

Assigned value
A value assigned to the transformation-destination node is output.
One or more functions and the transformation source node will be output.

Function details
If the function output in the assigned value contains detailed information, the detailed information will be
output. If the function output in assigned value contains multiple instances of the detailed information, the
multiple instances of detailed information will be output.

Dependency target
The loop node function on which the assigned value depends will be output.

The following table describes the information output in the assigned value and function details for the
function:

Table 3‒5: TableInformation output in the assigned value and function details

No. Function name Output format of the substitution value Output format of function details

1 Concatenate concat* (target-to-be-
concatenated, ...)

--

2 Acquire
substring

substr*(target-to-be-split) Any of the following is output after .substr*:

• acquisition-method = range-specified-from-
the-beginning, start-position = start-
position, character-count = character-count
| acquire-from-the-start-position-until-the-end

• acquisition-method = range-specified-from-
the-end, start-position = start-position,
character-count = character-count |
acquire-from-the-start position-until-the-
beginning

• acquisition-method = split-character-string-
specified, split-character-string =
'character-string-used-for-splitting',
acquisition-position = forward | backward

3 Acquire string
length

length*(target-to-acquire-character-
count)

--

4 Check string contain*(target-to-check-whether-or-not-
a-specific-character-string-is-included)

.contain*
check-type = specified-character-string-included
| start-from-specified-character-string, check-
character-string = 'check-character-string'

5 Trim node trim*(target-from-which-blanks-are-to-be-
removed)

--

3. Managing Project and Managing Repository

79

No. Function name Output format of the substitution value Output format of function details

6 Convert number
format

format*(number-to-be-formatted) .format*
pattern = 'format-pattern', symbol-change =
none | (decimal-point-character = 'decimal-
point-character', digit-delimiter = 'digit-
delimiter')

7 Perform node
operation

calc*(target-for-first-operation, '+ |
- | * | / | %', target-for-second-
operation)

--

8 Round node round*(target-for-which-fraction-
processing-is-to-be-performed)

.round*
fraction-processing-type = round-off | round-
down | round-up

9 Sum up nodes sum*(target-for-which-the-sum-is-to-be-
acquired, ...)

--

10 Acquire node
count

count*(node-for-which-the-node-count-is-
to-be-acquired)

--

11 Acquire node
name

name*(node-for-which-the-node-name-is-
to-be-acquired)

--

12 Check node exist*(node-whose-existence-is-to-be-
confirmed)

--

13 Loop node loop*(path-forming-the-reference-for-the-
loop)

.loop*
sort-conditions none | key = key-node, order
= ascending-order | descending-order,
language = auto | Japanese | English, type
= text | number, priority-order = upper-case
| lower-case

14 Choose node choose*([condition-value]=>[output-
value], ..., [When no condition
is matching]=>[output-value])
Any one of the following is output in [output-
value]:

• Node is not output

• Empty node

• output-value

• Value is output

--

15 Set constant const*(character-string: 'value' |
number: 'value' | logical-value: real
| fake | special-node: no-node-output
| empty-node)

--

16 Replace value replace*(node-to-be-replaced) .replace*
transformation-table-ID = 'Transformation-
table-ID', path-property =
'csc.dt.valueTable.transformation-table-
ID', code-property =
'csc.dt.encodeType.transformation-table-
ID', search-key-column-specification = left-
column | right-column, operation-during-
search-failure = replace-default-value, value =
'value' | transformation-error

17 Custom custom*(input-value-of-argument, ...) . custom*

3. Managing Project and Managing Repository

80

No. Function name Output format of the substitution value Output format of function details

17 Custom Note
If no arguments exist, nothing is
displayed within the round brackets.

jar file ='jar-file-name', Class='class-
name', Method='method-name', Method
description ='method-description'

Note
If arguments exist, the argument name and the
argument description are displayed in a list
immediately under the information displayed in
the above format.

Legend:
--: No information is to be output.

3.3.2 Items to be checked before output
The following are the items to be checked before the output of design information:

(1) Usable Web browsers
Use the following Web browsers to reference the output design information (HTML):

• Internet Explorer 6

• Internet Explorer 7

• Internet Explorer 8

(2) Repository status
When you output the design information, Hitachi recommends that you use a repository in which no error occurs
during the packaging of HCSC components. If an error occurs during the packaging, due to a validation error in the
data transformation definition, the corresponding table of the data transformation definition, in which the validation
error occurred, will not be output.

Note that when a validation error of a data transformation definition occurs, the message reporting the occurrence of
an error in the console view is displayed. When the design information output terminates, a dialog box reporting the
occurrence of an error is displayed.

(3) Output destination of the design information
Specify a location containing no directories or files as the output destination of the design information. If directories
or files exist, a file might be overwritten or unnecessary files might remain. Note that if a directory or file exists at the
output destination of the specified design information, a dialog box enquiring whether to proceed with the processing
will be displayed.

(4) Output time of the design information
A significant amount of time might be consumed in the output of the design information if the data to be output is
large, or depending upon the performance of the machine used. Note that during the output of the design information,
you will not be able to perform any other task on Eclipse.

(5) Printing the design information
When you print from a browser, the right end of the output contents might be truncated during the printing if the size
of the print paper is small. Therefore, Hitachi recommends that you check the printing contents with the print preview
functionality before printing, and set up the correct paper size and margins.

3. Managing Project and Managing Repository

81

(6) When using with Windows Vista and Windows 7
When you want to specify a directory that requires administrator privileges, as the output destination of the design
information, execute Eclipse for Cosminexus with administrator privileges. If administrator privileges are not granted,
an error will occur during the output of the design information.

3.3.3 How to output the design information
The method of outputting design information is described below.

1. From the menu, select HCSC-Definer - Design Information Output.

When a service or user-defined reception is being edited
A dialog box that confirms whether to save (privatize) the service or user-defined reception being edited
appears. If multiple services or user-defined receptions are being edited, the dialog box appears multiple times.
To save, click the Yes button. To save all without displaying the confirmation dialog box thereafter, click the
Yes to All button. If you do not want to save the service or user-defined reception, click the Cancel button and
end the processing.
Proceed to step 2.

When a service or user-defined reception is not being edited
The output wizard of the design information will be displayed. Proceed to step 3.

2. Click Yes or Yes to All.
The output wizard of the design information (Input Basic Information page) will be displayed. Note that the
processing will differ as follows depending upon whether the deployment definition is performed (public) or not
performed (private) for the service or user-defined reception being edited:

When deployment definition is performed for a service or user-defined reception
If deployment definition is performed for a service or user-defined reception, set to a state in which
deployment definition is not performed. Subsequently, save the service or user-defined reception being edited
and proceed with the processing.

When deployment definition is not performed for the service or user-defined reception
Save the service or user-defined reception being edited and proceed with the processing.

3. Set up the required information, such as the output destination directory, in the output wizard of the design
information (Input Basic Information page):

Output destination directory
Specify the directory to output the design information. When you specify the output destination of the design
information, consider the following points:

3. Managing Project and Managing Repository

82

- Specify a location containing no directories or files as the output destination. If the specified directory
contains a directory or a file with the same name, that directory or file will be overwritten. If the number of
business processes is different, unnecessary image files will remain.
- Specify the path as an absolute path.
- Specify a path of 239 bytes or lesser with the character code MS932.
- When an error occurs after the output of the design information is started and the output processing is
interrupted, directories or files will remain until the time of interruption.

Title
Specify the character string to be output as the title of the design information.
Note that you can use the following character codes as the character strings to be specified in the title:
U+0009, U+0020-U+D7FF, U+E000-U+FFFD, U+10000-U+10FFFF.
You can also use a tab (U+0009), single-byte blank (U+0020), and double-byte blank (U+3000) only
between the characters.

Created by
Specify a character string to be output as the name of the creator who created the design information.
Note that you can use the following character codes as the character strings to be specified as the name of the
creator:
U+0009, U+0020-U+D7FF, U+E000-U+FFFD, U+10000-U+10FFFF.
You can also use a tab (U+0009), single-byte blank (U+0020), and double-byte blank (U+3000) only
between the characters

Format
Specify the format of the output image of the activity of the activity placement figure. Choose from the PNG
format, BMP format, and JPEG format.

Maximum width
Specify the maximum width of the output image. You can specify a value within the range from 250 to 2500.
When you exceed the maximum width specified for the width size of the output image, reduce the output
image while maintaining the ratio between the width and height so as to fit within the maximum width.

Maximum height
Specify the maximum height of the output image. You can specify a value within the range from 200 to 2000.
When you exceed the maximum height specified for the height size of the output image, reduce the output
image while maintaining the ratio between the width and height so as to fit within the maximum height.

4. Click the Next button.
The Design Information Output Wizard (Select Service page) appears.

5. In the Design Information Output Wizard (Select Service page), select the check box of the service that will be
output as the design information.

3. Managing Project and Managing Repository

83

6. Click Finish.
The output processing status of the design information is displayed in a dialog box.
When the output processing finishes, the processing results are displayed in the dialog box, and the design
information is output in the output destination directory.

3.3.4 Notes on outputting design information
The following are notes on outputting design information.

• If the following methods are used to specify an XPath expression, the reference destination link to variables in the
XPath expression is not output. Use the search function of your browser (or other method) to refer to information
about the variables.

• Method for obtaining information by specifying variable names directly

• Method for obtaining information within variables by using the following extension functions:
- csc:getMessageInitialize
- csc:getHexVariableData
- csc:getHexString

• If the self-defined file is an XML file where one of the following character encodings is specified, an attempt to
output design information might fail to output the contents of the file.

• ISO-10646-UCS-2

• UTF-32

• UTF-32BE

• UTF-32LE

• ISO-10646-UCS-4

3. Managing Project and Managing Repository

84

3.4 Notes regarding Eclipse
If Eclipse is started even if HCSCTE project and HCSCTE repository are properly set, Tree view is not displayed in
HCSCTE view and error dialog is also not displayed in some cases. Troubleshooting is as follows:

1. Close HCSCTE view once and then re-open the HCSCTE view by the following method:

• Open a dialog with [Windows]-[View]-[Others].

• From the opened dialog, select [HCSCTE-Definer]-[HCSCTE view] and click [OK] button.

2. If the problem is not resolved with process in step 1, end Eclipse and perform the following procedure.

• Add following item in <Eclipse installation directory>\eclipse.ini:
-Dequinox.statechange.timeout=<timeout>
Set timeout value of 20000 or above (unit: milliseconds) in <timeout> part.

• Restart Eclipse.

! Important note
When using Eclipse on Windows Vista or Windows 7, set the desktop theme as Windows Classic.

3. Managing Project and Managing Repository

85

4 Creating Message Formats
This chapter explains the process of creating message formats.

87

4.1 Message Formats and Data Transformations
This section provides an overview of the messages to be exchanged among service requesters, service adapters, and
service components, as well as their message formats and data transformations.

(1) Message types
A message that requests the execution of a service component from a service requester via a service adapter is called a
request message.

Conversely, a message that returns the service component execution result to the service requester via a service
adapter is called a response message.

(2) Message format
The format of a message that is exchanged among service requesters, service adapters, and service components is
called a message format.

A service adapter has a standard message format for receiving requests. This is called a standard message. A message
format unique to a service component is called a service component message.

A file that defines a message format is called a message format definition file.

Depending on the type of data handled, a message format definition file can be in either XML format or binary format.
For details about the types of message format definition files, see 4.2 Message Format Types.

(3) Data transformation
Normally, when a service component invocation request is received from a service requester, a standard message can
be used to invoke the service component. However, if the service component cannot be invoked with the request
message (in standard message format) received from the service requester, the message format of the request message
must be converted to the message format of the service component (service component message). This conversion is
called a data transformation. Likewise, when a response message from the service component cannot be returned to
the service requester, the message format must be converted to the standard message format.

For details about how to define data transformation, see Chapter 6. Defining Data Transformations.

The following figure shows the flow of messages between a service requester and a service component when a service
adapter is used.

4. Creating Message Formats

88

Figure 4‒1: Flow of messages between a service requester and a service component

4. Creating Message Formats

89

4.2 Message Format Types
The message format to be created differs depending on whether the message used for executing a service component
handles XML data or binary (non-XML) data.

(1) For handling XML data
To handle XML data, create an XML format definition file.

An XML format definition file is created as an XML schema file (extension: .xsd). The contents of the XML format
definition file to be created and how to create it differ depending on the type of service component to be executed. For
details about how to create an XML format definition file for each service component, see 4.3 Creating Message
Formats (XML Format Definition File).

(2) For handling binary data
To handle binary (non-XML) data, create a binary format definition file.

In a binary format definition file, you can define the text, binary, and CSV format data structures (such as fixed length
and separators) and data character codes (such as shift JIS, JIS Kanji, Unicode, KEIS, IBM Kanji and JEF).

For details about how to create a binary format definition file, see 4.4 Creating Message Formats (Binary Format
Definition File).

4. Creating Message Formats

90

4.3 Creating Message Formats (XML Format Definition
File)

This section explains how to create a message format when the message to be used for executing a service component
handles XML data.

4.3.1 Creating a Message
To create an XML format definition file for a message, you can use WST (Web Standard Tool, which is provided by
Eclipse) regardless of the type of service component to be executed.

The XML format definition file to be created must satisfy the conditions described in 2.6.5 Scoping of XML schema.
For details about the conditions, see 2.6.5 Scoping of XML schema.

While selecting the message format file to be used, if an error (error messages beginning with message ID KECX)
occurs in the service adapter and business process definition, there is an error in the XML schema file. In such a case,
reference the messages in the manual uCosminexus Application Server Messages and take appropriate measures.

4.3.2 Creating a Service Component Message (for Web Services)
If the service component you want to use is a Web Service, you need not create an XML format definition file for the
service component message. An XML format definition file is automatically created when the service adapter is
created.

However, before creating the service adapter, you must prepare a WSDL file that fulfills the conditions described in
2.6.1 Applicability of the service components that use Web service.

Notes: When Web Service throws a user-defined exception with the SOAP Communication Infrastructure
When the communication style of the WSDL generated by the WSDL generating function of the SOAP
application development support function is rpc, you must modify the WSDL and create a corresponding adapter.
When the communication style of the generated WSDL is document, there is no need to modify the WSDL. When
a Cosminexus Service Platform uses fault, Hitachi recommends that you use WSDL in the document format.
To modify the WSDL:

1. Define xsd:element.
Define the xsd:element element in the xsd:schema element inside the wsdl:types element that has
the same targetNamespace attribute as the name space indicated by the targetNamespace attribute of
the wsdl:definitions element.

2. Obtain the corresponding wsdl:message element from the value of the message attribute of the
wsdl:fault element in the wsdl:operation element inside the wsdl:portType element. Check the
wsdl:part element contained inside.

3. Add the name attribute to the xsd:element element defined in step 1.
Use the same value as the local name of the type attribute of the wsdl:part element obtained in step 2.

4. Following the same procedure as in step 3, add the type attribute.
Use the same value as the type attribute of the wsdl:part element obtained in step 2.

5. From the wsdl:part element checked in step 2, delete the type attribute and add a new element
attribute.
For the name space prefix, use the prefix that indicates the xsd:schema element inside the wsdl:types
element referenced in step 1. Additionally, set the local name to the same value as the name attribute added in
step 3.

After you have modified the WSDL, you need to re-create Web Services itself.
Execute the command shown below and re-create a skeleton for Web Services from the modified WSDL.

WSDL2Java -s WSDL-file

4. Creating Message Formats

91

For details about the WSDL2Java command, see the section related to skeletons in the manual Cosminexus
Application Server SOAP Application Development Guide

4.3.3 Creating a Service Component Message (for SessionBean)
If the service component to be used is SessionBean, you need not create an XML format definition file for the service
component message. The XML format definition file is automatically created when you create a service adapter.

4.3.4 Creating a Service Component Message (for MDB (WS-R or
Database Queue))

To create an XML format definition file for a service component message, you can use WST (Web Standard Tool,
which is provided by Eclipse).

The XML format definition file to be created must satisfy the conditions described in 2.6.5 Scoping of XML schema.
For details about the conditions, see 2.6.5 Scoping of XML schema.

4. Creating Message Formats

92

4.4 Creating Message Formats (Binary Format Definition
File)

To use binary (non-XML) format data in a message to be used for service component execution, create a binary format
definition file.

For details about the data types and character code types used in the binary format definition file, see 4.4.1 Data types
and character code types in the binary format definition file.

The following figure shows the workflow for creating a binary format definition file.

Figure 4‒2: Workflow for creating a binary format definition file

(1) Creating a new binary format definition file
Use a wizard to create a new binary format definition file.
For details about how to create a new binary format definition file, see 4.4.2 Creating a New Binary Format
Definition File.

(2) Defining elements
Define elements in the newly created binary format definition file. The method of defining elements differs when
the binary data to be used is in the non-CSV format and in the CSV format.
For the details about how to define elements, see 4.4.3 Defining Elements (for Non-CSV Format) or 4.4.4 Defining
Elements (for CSV Format).

(3) Validating the binary format definition file
Validate the conformity of the created binary format definition file. You can perform validation at any time, such
as when the elements of the binary format definition file are being defined, or after they have been defined.
For details about how to validate a binary format definition file, see 4.4.6 Validating a Binary Format Definition
File.

(4) Saving the binary format definition file
Save the binary format definition file in which elements have been defined. Unlike adapters and business
processes, binary format definition files are not saved in a repository. To save the defined binary format definition
file, use the Package Explorer of Eclipse.
When the binary format definition file is being saved, it is automatically validated (in this case, the validation
result is not displayed in the console view).

4. Creating Message Formats

93

(5) Editing the binary format definition file
You can modify the contents of a binary format definition file that has already been created. For details about how
to edit a binary format definition file, see 4.4.5 Editing a Binary Format Definition File.

(6) Deleting a binary format definition file
As necessary, you can delete a binary format definition file that is no longer needed. To delete a binary format
definition file, use the Package Explorer of Eclipse.

4.4.1 Data types and character code types in the binary format definition
file

In the binary format definition editor, you can use the following data types to define the formats:

• Numeric value

• Character string

• Byte string

• Bit string

• Date and time

For details on types of character codes to be handled in each data, see "1.3.2 Simple content element dialog" in
"Service Platform Reference Guide".

The following points describe the details for each data type:

(1) Numeric value
Numeric value type is divided in character string type numeric value and byte string type numeric value depending on
the numeric value attribute. Numeric value attributes depending on the respective numeric value types are as follows:

Character string type numeric value

• Integer

• Real number

• Numeric value with fixed decimal part

Description about procedure to transform from binary type to XML type is as follows.

• Read the numeric value string of specified size and starting embedded character (in case of right justification), end
embedded character (in case of left justification), valid digits and code except heading 0 and transform those to
XML schema decimal type.

Description about transformation specifications from XML type to binary type is as follows.

• Always delete 0 and single byte space at the beginning of numeric value.

• Handle embedded character and non-required character as different characters.

• Non-required character is 0 at the beginning of numeric value.

• Specification of all digits count becomes valid only in case of settings of not deleting the non-required character.

• When size is fixed length and all digits count is less than size, fill the trailing or leading part with embedded
character, by specifying right justification or left justification.

4. Creating Message Formats

94

Figure 4‒3: Relation between all digits, size and embedded character (example of right justification)

Figure 4‒4: Relation between all digits, size and embedded character (example of left justification)

Byte column type numeric value

• Zone format numeric value

• Pack format numeric value

• Coded binary integer

• Unsigned binary integer

You can omit the coding of character string type numeric value. Coding expression position is before the numeric
character string. If not even one number is expressed in input data, 0 is considered. Also, you can use 0 or space in
embedded character.

All numeric value attributes are treated as decimal, in the data transformation. Maximum number of digits (total of
digits in integer part and fraction part) is 34.

When you perform the XML transformation for character string numeric value type, transformation to decimal type
of the XML schema is performed. When you perform XML transformation for the bytes string type numeric value,
transformation to decimal type of XML schema is performed in the case of zone format numeric value and pack
format numeric value and transformation to integer type is performed in the case of singed binary integer and
unsigned binary integer.

Respective numeric value attributes are explained as follows:

(a) Integer

This numeric value attribute is configured by "Numeric value" and "Symbol". This numeric value attribute is
internally processed in BigIntegerr class.

Integer has maximum 34 digits and does not include the fraction part.

Examples of integer are as follows:

(Example 1)
1234567890

4. Creating Message Formats

95

(Example 2)
-1234567890

(b) Real number

This is general format numeric value attribute configured by "Number", "Symbol" and "Decimal point". This numeric
value attribute is internally processed in BigDecimal class.

Real number has maximum 34 digits and includes fraction part. However, when input data does not have a number
and has only fraction part, error occurs.

Examples of real number are as follows:

(Example 1)
1234567890

(Example 2)
-123.456

(c) Fixed fraction numeric value

Fixed fraction numeric value is a numeric value attribute, which is configured from "Symbols" and "Numbers". For
this attribute, if you specify digits in fraction part, decimal point is implicitly set. This numeric value attribute is
internally processed in BigDecimal class.

Fixed fraction part numeric value has maximum 34 digits and fraction part is of maximum 33 digits.

Examples of fixed fraction part numeric value when you specify 4 digits for fraction part are as follows:

(Example 1) For "1234567890"
123456.789
(1234567890 --> 123456.7890 --> 123456.789)

(Example 2) For "+123"
0.0123
(+123 --> +0.0123 --> 0.0123)

(Example 3) For "-1230000"
-123
(-1230000 --> -123.0000 --> -123)

(d) Zone format numeric value

Zone format numeric value is numeric value attribute of zone format. When you specify digits of fraction part,
decimal point is implicitly set. This numeric value attribute is internally processed in BigDecimal class.

Zone format numeric value has maximum 34 digits and symbol is expressed in zone part of last byte in the item.

When character code is JIS8, plus symbol is expressed by 0x3 and minus symbols is expressed by 0x7.

When character code is EBCDIK, plus symbols is expressed by 0xC and 0xF, minus symbols is expressed by 0xD.

You can change type plus or minus of the sign.

Zone part other than final byte is expressed with plus sign of each code and numeric value is expressed by last 4 bits
of each byte (0x0~0x9).

Examples of zone format numeric value when character code is JIS8, are as follows:.

(Example 1) For "0x31323334" (no specification of fraction part)
1234

(Example 2) For "0x31323334" (when you specify fraction part to 2 digits)
12.34

(Example 3) For "0x31323374" (no specification of fraction part)
-1234

4. Creating Message Formats

96

(e) Pack format numeric value

This is pack format numeric value attribute. If you specify digits in fraction part, the decimal point is implicitly set.
This numeric value attribute is internally processed in BigDecimal class.

Pack format numeric value has maximum 34 digits and when digits count is odd number, the first 4 bits of the topmost
byte have to be set to 0.

Symbols are expressed with last 4 bits of the final byte of item data. Plus symbol is expressed with 0xC or 0xF, minus
symbol is expressed with 0xD and numeric value is expressed in 4 bits (0x0~0x9). You can change plus or minus of
the symbol. For data transformation, 0xC is output as plus symbol.

Examples of pack format numeric value when character code is JIS8 are as follows:

(Example 1) For "0x01234F" (no specification of fraction part)
1234

(Example 2) For "0x01234F" (you specified the fraction part to 2 digits)
12.34

(Example 3) For "0x01234D" (no specification of fraction part)
-1234

(f) Signed binary integer

This is numeric value attribute configured with signed binary integer having bytes in the range of 1~8 bytes. This
numeric value attribute is internally processed in BigInteger class.

Endian depends on the format information.

Examples of singed binary integer in case of Big Endian are as follows:

(Example 1) For "256"
0x0100

(Example 2) For "-257"
0xFEFF

(g) Unsigned binary integer

This is numeric value attribute configured with unsigned binary integer having bytes in the range of 1~8 bytes.

Endian depends on the format information.

Examples of unsinged binary integer in case of Big Endian are as follows:

(Example 1) For "-256"
0x0100

(Example 2) For "65279"
0xFEFF

(2) Character string
This section describes specifications for transforming from binary type to XML type.

• Transforms the character string of specified size to character string as XML schema string type.

• When space is specified in the embedded character and settings are done not to delete the unnecessary characters,
input character string with space is extracted.

• When space is specified in the embedded characters and settings are done to delete the unnecessary characters,
deletes the opposite side spaces on left and right justification.

• When blank character (0x00) is specified is embedded character, transforms it according to the following
specifications.

• In case of settings to consider characters till blank character (0x00) as considers the characters from the first
character of a string till character just before the blank character as user data and transforms to the XML
character string.

4. Creating Message Formats

97

• In case of settings not to consider characters till blank character (0x00) as data and to delete the unnecessary
character, deletes the blank characters on opposite side of left and right justification.

• In case of settings not to consider characters till blank character (0x00) as data and not to delete the
unnecessary character, character string with blank character is extracted.

• In case of settings to replace the characters, which cannot be used in XML (non-available characters), with a
substitute character, handles the non-available characters on XML as normal characters.

Specifications to transform from XML type to binary type are explained as follows:

• Transform the XML data with the specified character code.

• In case of fixed length, embed the embedded characters when the size after transformation is less than the
specified size.

• When XML data comprises of all single byte spaces, data is considered to have only 1 single byte space.

• In case blank character (0x00) is specified in embedded character and settings are to consider characters till blank
character (0x00) as data, embeds a blank character at the end of character string.

• In case of settings to delete the unnecessary character, delete the single byte space at the end of input character
string.

• In case of settings not to delete the unnecessary character, does not delete single byte space or blank character
from the input string.

(3) Bytes string
Byte string is the byte string saved between platforms in bit pattern. When transforming byte string to XML, it is
transformed to the hexBinary type or base64Binary type of XML schema.

In hexBinary type, the 8 bit (1 byte) binary data is transformed to the hexadecimal binary characters. For example,
when expressing the source data having 300 bytes, in hexBinary type, 300 bytes x 2 characters (600 characters) are
required.

In base64Binary type, 6 bit (6/8 byte) binary data is transformed to 1 digit character encoded as Base64. For example,
to express the source data of 300 bytes, in base64Binary type, 300 x 8/6 characters (400 characters) are required.

(4) Bit string
Bit string is a string in which bits expressed in binary are aligned. Bit string type is the data type that allows user to
handle the binary data in 1 digit unit. Bit string type is processed in Big Endian.

4. Creating Message Formats

98

Figure 4‒5: Images of bit string and bit string type

Transformation from binary type to XML type is performed as follows:

• Reads elements from the beginning of input binary, equal to the specified bit size and transforms to hexBinary
format of XML schema, in 8 bit unit.

• When data of size less than 1 byte remains after completing the reading of all elements, considers the remaining
data as digits alignment bit and rounds down the same. If data having size of 1 byte or more is remaining, error
occurs.

Transformation from XML type to binary type is performed as follows:

• Transforms the data in hexBinary format to binary format, for the size equal to the specified bit size from child bit.

• If the XML data is bigger than the transformation destination bits count, rounds down the upper bits from
transformation destination bit and error does not occur.

• If the XML data is smaller than transformation destination bits count, supplements the bits till transformation
destination bits count, with 0.

• If the XML data equal to the specified bits size is not the hexadecimal string, error occurs.

(5) Date and time
Date and time is the type configured by combination of parts like Year, Month, Date, Hours, Minutes and Seconds.
You can specify numeric value for individual part and part that expresses seconds can include a fraction part.

When transforming the date and time type from XML type to fixed length element of binary type, if the size of input
XML after transformation is smaller than the size of fixed length element, you can specify whether to express by
aligning the element data to either left or right side (left or right justification).

4. Creating Message Formats

99

Limitations for specifying the date and time type are as follows:

• You cannot use the 2 byte character code.

• "." (period) is the only character identified as decimal point.

Following table describes parts of date and time type.

Table 4‒1: Parts of the date and time type

Parts Meaning Number of specification digits

CCYY Christian year (0~9999) 1~4 digits

YY Year (last 2 digits of Christian year) Maximum 2 digits

MM Month (1~12) Maximum 2 digits

DD Date (1~31) Maximum 2 digits

hh Hour (0~23) Maximum 2 digits

mm Minutes (0~59) Maximum 2 digits

ss Seconds (0~59, fraction part can be
included)

Maximum 2 digits in integer part and maximum 3 digits in
fraction part

You can specify 3 data types (date type, time type and date and time type), depending on the combination of parts.

Following table shows the combination of data type and part.

Table 4‒2: Combination of data type and part

Data type Combination Meaning

Date type CCYYMMDD Christian year/month/date

YYMMDD# Last 2 digits in Christian year/month/date

Time type Hhmmss Hour/minutes/second

Date and time type CCYYMMDDhhmmss Christian year/month/date/hour/minutes/second

YYMMDDhhmmss Last 2 digits of Christian year/month/date/hour/minutes/second

Note#
In case of "YYMMDD" format of date type, the range you can specify is Year 1951~Year 2050, as per the Christian year
calculation.

When transforming date type, time type and date and time type to XML, the respective types are transformed as
follows:

• Date type is transformed to the date type of XML schema.

• Time type is transformed to time type of XML schema.

• Date and time type is transformed to dateTime type of XML schema.

Examples of date and time type are as follows:

(Example 1) For January 24, 2001
20010124

(Example 2) For December 31, 1999, 1:30:59
991231013059

4. Creating Message Formats

100

4.4.2 Creating a New Binary Format Definition File
This subsection explains how to create a new binary format definition file.

Before you create a binary format definition file, you must first create a project.

1. On the Eclipse File menu, choose New, and then Other.
A dialog box for selecting a wizard opens.

2. In HCSCTE format definition, select Binary format definition file and click Next.
The New binary format definition file wizard opens.

3. In Enter or choose parent folder, either enter or choose the folder in which to save the binary format definition file.

4. In Format name, specify the format name of the binary format definition file to be saved.
When you specify a format name, the .fdx extension is automatically added to the name set in File name.

5. If the binary data to be used is in the CSV format, select the CSV format checkbox.
Note that the data using the following separation characters can be handled in the CSV format data:

• Intervening separation character: Comma (,)

• End character: Linefeed

If the element value contains characters same as the intervening separation character, enclose the element in
double quotations ("). Note that if you use double quotation as a value in the element, use two continuous double
quotations for escape.
Also, note that if a start character is being used, it cannot be handled as a CSV format data.

6. Click Finish.
A new binary format definition file has been created and the Binary Format Definition screen opens. In this
window, you can proceed to define elements.

! Important note
Unlike adapters and business processes, binary format definition files are not saved in a repository. For file management
operations, such as saving and deleting the binary format definition file that has been defined, use the Package Explorer
of Eclipse.

4.4.3 Defining Elements (for Non-CSV Format)
You define the contents of a binary format definition file in the Binary Format Definition screen. The Binary Format
Definition screen opens when you double-click a binary format definition file displayed in the Package Explorer of
Eclipse.

For details about the Binary Format Definition screen, see the manual Cosminexus Service Platform Reference.

Reference note
In the Binary Format Definition screen, you can open multiple binary format definition files and edit them. However, you
cannot copy and paste definition information between multiple binary format definition files.

In the Binary Format Definition screen, perform the following tasks to define elements:

• Specifying the format information

• Specifying globally defined simple content elements

• Specifying complex content elements

• Specifying components

• Specifying a component selection condition

• Specifying the root element

• Specifying a separator

The method for defining elements is described below.

4. Creating Message Formats

101

(1) Specifying the format information
For the format information of the binary format definition file, specify the character code used by the binary data and
the endian included in the binary data.

To specify the format information:

1. In the Binary Format Definition Editor, select and right-click a displayed format name, and choose Setting.
The Format dialog box opens.

2. Enter the necessary information in the Format dialog box.
For details about the display and input contents of the Format dialog box, see the manual Cosminexus Service
Platform Reference.

3. Click OK.
The information entered in the Format dialog box is set.

(2) Specifying globally defined simple content elements
A simple content element is a simple-type element (xsd:simpleType element) when the format of binary data it
uses is expressed as an XML schema, and it can also be expressed as a globally defined element. When a binary
format definition file is displayed in the Data Transformation Definition screen, a simple content element is displayed
as a node having simple content.

When specifying a simple content element, specify an element data type and size.

To specify a simple content element:

1. In the Binary Format Definition Editor, select and right-click a displayed format name, and choose Add Simple
Content Element.
The Simple Content Element dialog box opens.

2. Enter the necessary information in the Simple Content Element dialog box.
For details about the display and input contents of the Simple Content Element dialog box, see the manual
Cosminexus Service Platform Reference.

3. Click OK.
A simple content element is set up using the information entered in the Simple Content Element dialog box. The
specified simple content element is also displayed in the Binary Format Definition Editor.

(3) Specifying complex content elements
A complex content element is a complex-type element (xsd:complexType element) when the format of binary
data it uses is expressed as an XML schema, and it can also be expressed as a globally defined element. When a binary
format definition file is displayed in the Data Transformation Definition screen, a complex content element is
displayed as a node having complex content.

When specifying a complex content element, specify a component type for the constituent elements of the complex
content element. For the component type, specify whether the constituent element is a sequential element
(xsd:sequence element) or selection element (xsd:choice element).

To specify a complex content element:

1. In the Binary Format Definition Editor, select and right-click a displayed format name, and choose Add Complex
Content Element.
The Complex Content Element dialog box opens.

2. Enter the necessary information in the Complex Content Element dialog box.
For details about the display and input contents of the Complex Content Element dialog box, see the manual
Cosminexus Service Platform Reference.

When choosing Selection as the component type
When you choose Selection as the component type, you must set up the selection conditions in components
with either of the following methods:
- Specify Selection condition node, and select the node containing the judgment value of the selection
conditions

4. Creating Message Formats

102

- Specify Starting separator of components
For details about how to specify a selection condition, see 4.4.3(5) Specifying a component selection
condition.
Before specifying a selection condition for a component, you must specify the constituent elements of the
complex content element. Carry out step 3 below, and then specify a component by following the procedure
described in 4.4.3(4) Specifying components. After that, you can specify a selection condition.

When a simple content element that is a part of a complex content element is a separator data
If a simple content element that is a part of a complex content element is the data (separator data) in which
each element is separated with separation characters (separator), specify the separators in the complex content
element.
For details about how to specify a separator, see 4.4.3(7) Specifying a separator.

3. Click OK.
A complex content element is set up using the information entered in the Complex Content Element dialog box.
The specified complex content element is also displayed in the Binary Format Definition Editor.
Reference note

The first complex content element that is specified when elements are being defined for a binary format definition file
becomes the root element. To change the root element, see 4.4.3(6) Specifying the root element.

(4) Specifying components
A component is an element that constitutes a complex content element. The following two methods are available for
specifying a component.

• Specifying a globally defined element as a component

• Specifying a locally defined simple content element as a component

These component specification methods are described below.

(a) Specifying a globally defined element as a component

You can specify, as a component of a complex content element, a globally defined element (simple content element or
complex content element) that has already been set up:

To specify a component:

1. In the Binary Format Definition Editor, select and right-click a displayed complex content element, and choose
Add Component.
The Element Selection dialog box opens. The Element Selection dialog box displays all globally defined elements
that can be selected as components of a complex content element.
For details about the display and input contents of the Element Selection dialog box, see the manual Cosminexus
Service Platform Reference.

2. In the Select Element dialog box, select the element to be specified as a component from the element list.

3. Click OK.
Component is added in the complex content element and closes the Select Element dialog box.

4. Right-click the added component, and choose Setting.
The Component dialog box opens.

5. Enter the necessary information in the Component dialog box.
For details about the display and input contents of the Component dialog box, see the manual Cosminexus Service
Platform Reference.

6. Click OK.
The globally defined element is set up as a component of the complex content element, using the information
entered in the Component dialog box. The specified component is displayed as a lower-order element of a
complex content element in the Binary Format Definition Editor.

4. Creating Message Formats

103

(b) Specifying a locally defined simple content element as a component

You can specify a locally defined simple content element as a component of a complex content element:

To specify a component:

1. In the Binary Format Definition Editor, select and right-click a displayed complex content element, and choose
Add Local Simple Content Element.
The Simple Content Element dialog box opens.

2. Click the Simple Content Element tab and enter the necessary information.
For details about the display and input contents of the Simple Content Element tab in the Simple Content
Element dialog box, see the manual Cosminexus Service Platform Reference.

3. Click the Component tab and enter the necessary information.
In the Component tab, specify an occurrence count and size for the component.
For details about the display and input contents of the Simple Content Element tab in the Simple Content
Element dialog box, see the manual Cosminexus Service Platform Reference.
You can also make the occurrence count and size dependent on another element. In this case, you can select the
base node from the Node Selection dialog box, which opens when you click Select Node on the Component tab.
For details about the display and input contents of the Node Selection dialog box, see the manual Cosminexus
Service Platform Reference.
Clicking OK in the Node Selection dialog box commits the specified value to the Component tab of the Simple
Content Element dialog box.

4. Click OK.
A locally defined simple content element is set up as a component of the complex content element, using the
information entered in the Simple Content Element dialog box. The specified component is displayed as a lower-
order element of a complex content element in the Binary Format Definition Editor.

(5) Specifying a component selection condition
If you choose Selection as the component type when specifying a complex content element, you need to specify a
selection condition for the component. When a selection condition is set up, the determination of which multiple
elements (components) contained in the complex content element are to be used can be made based on the value of
another element.

The following two methods are available for specifying a selection condition:

• Select Selection condition node, and then set up the selection condition
From the condition value set up in the node that is selected in the selection condition node, determine the
component to be used.

• Select Starting separator of components, and then set up the selection condition
From the starting separator set up in the components, determine the component to be used.

These methods for specifying a selection condition are described below.

(a) Selecting a selection condition node and setting up the selection condition

To select a selection condition node, and then set up the selection condition:

1. In the Binary Format Definition Editor, select and right-click the complex content element containing the
component for which a selection condition is to be set up, and click Setting.
The Complex Content Element dialog box opens.

2. In Component Type, choose Selection.

3. In Selection type, click Selection condition node, and then Select Node.
The Node Selection dialog box opens. In this dialog box, select a selection condition node.
For details about the display and input contents of the Node Selection dialog box, see the manual Cosminexus
Service Platform Reference.
Clicking OK in the Node Selection dialog box commits the specified value to Selection condition node in the
Complex Content Element dialog box.

4. Creating Message Formats

104

4. In Components, select the element for which a condition is to be specified, and click Set Condition Value.
The Set Condition Value dialog box opens. In this dialog box, enter a condition value.
For details about the display and input contents of the Set Condition Value dialog box, see the manual Cosminexus
Service Platform Reference.
Clicking OK in the Set Condition Value dialog box commits the specified value to Selection condition value of
the Complex Content Element dialog box. To set up selection conditions for other components, repeat Step 3.
Any component for which no selection condition is specified becomes a component that occurs when none of the
selection conditions specified for other components is satisfied. Only a single such component can be set up.

5. Click OK.
The selection condition is set up using the information entered in the Complex Content Element dialog box.

(b) Selecting the starting separator of components and setting up the selection condition

To select the starting separator of components and set up the selection condition:

1. In the Binary Format Definition Editor, select and right-click the complex content element containing the
component for which a selection condition is to be set up, and click Setting.
The Complex Content Element dialog box opens.

2. In Component Type, choose Selection.

3. In Selection Type, select Starting separator of components.
The component and the starting separator set up in the component will be displayed in Components List.

4. Click OK.
The selection condition is set up using the information entered in the Complex Content Element dialog box. Note
that when the starting separator is not set up in the component (complex content element), an error will occur
during the validation of the binary format definition file.

(6) Specifying the root element
Specify the complex content element that is to be treated as the root element when the binary data used is expressed as
an XML schema.

The first complex content element that is specified when elements are being defined for a binary format definition file
becomes the root element. To make another complex content element the root element, in the Binary Format
Definition Editor, select and right-click a displayed complex content element, and click Set as Root Element.

When Set as Root Element is chosen, the complex content element selected in the Binary Format Definition Editor
becomes the root element. In the Binary Format Definition Editor, a root element icon is displayed next to the
complex content element that is treated as the root element.

If a complex content element is already specified as the root element, specifying another complex content element as
the root element changes the root element. The display in outline view also switches to start with the new root
element.

(7) Specifying a separator
If a simple content element, specified as part of a complex content element, is the data (separator data) in which each
element is separated using a separation character (separator), specify the separators in the complex content element.

The details about how to specify a separator is explained below:

1. Select the complex content element, right click, and then click Setting.
The Complex Content Element dialog box opens.

2. Choose the Separator tab.
The contents of the Separator tab in the complex content element dialog box are displayed.

3. Select the separator format to be used from the drop down list.
Note that when you select CSV as a separator format, the starting separator and the intermediate separator will be
set up automatically.

4. Select the Separator to be used check box and click Select.

4. Creating Message Formats

105

The Select Separator dialog box opens. For details about the display and input contents of the Select Separator
dialog box, see the manual Cosminexus Service Platform Reference.

5. Choose a separator that you want to use from the list and click OK.
The information about the separator selected in the Separator tab of the complex content element dialog box is
displayed.
Note that if the separator you want to use is not present in the Select Separator dialog box; click Add in the Select
Separator dialog box. The Add/Change Separator dialog box opens. You can add or change separators in this
dialog box.
For details about the display and input contents of the Add/Change Separator dialog box, see the manual
Cosminexus Service Platform Reference.

6. Repeat step 3. and 4. as needed.

7. Click OK.
The separator is specified in the information entered in the Separator tab of the Complex Content Element dialog
box.

4.4.4 Defining Elements (for CSV Format)
In case of the CSV format, define the contents of the binary format definition file in the Binary Format Definition
screen. The Binary Format Definition screen opens when you double-click a binary format definition file displayed in
the Package Explorer of Eclipse.

For details on the Binary Format Definition screen, see the manual Cosminexus Service Platform Reference.

Reference note
In the Binary Format Definition screen, you can open multiple binary format definition files and edit them. However, you
cannot copy and paste definition information between multiple binary format definition files.

In the case of CSV format, if you create a new binary format definition file and view the Binary Format Definition
screen, the root, header, and record elements are displayed as deployed.

Figure 4‒6: Initial display of the Binary Format Definition Screen when using CSV format data

The root, header, and record elements are all complex content elements. The header and record elements are specified
as components of the root element. Specify the simple content element of the local definition as a component in the
header and record elements.

You perform the following operations in the Binary Format Definition screen:

• Specifying the format information

• Specifying occurrence count of header and record elements

• Specifying components of header and record elements

• Specifying the root element
Tip

When using a CSV format data, you cannot change the configuration of the root element, header element, and record
element displayed initially in the Binary Format Definition screen.

The method for defining elements is described below.

4. Creating Message Formats

106

(1) Specifying format information
Specify the character code and linefeed used in binary data as the format information of the binary format definition
file.

The specification method is same as when non-CSV format binary data is used. For details about how to specify the
format information, see 4.4.3(1) Specifying the format information.

(2) Specifying occurrence count of header and record elements
How to specify the occurrence count of header and record elements is explained below:

1. Select the header element or record element displayed as a root element component, right click, and then choose
Setting.
The Component dialog box opens.

2. Enter the occurrence count in the Component dialog box.
Specify 0 as the occurrence count of header element if there is no header in the CSV data and 1 if a header exists.
For details about the display and input contents of the Component dialog box, see the manual Cosminexus Service
Platform Reference.

3. Click OK.
The occurrence count entered in the Component dialog box is set.

(3) Specifying components of header and record elements
The details about how to specify the components of the header and record elements that are displayed as the root
element components in the binary format definition editor is explained below:

1. Select the header element or record element displayed as a root element component, right click, and choose Add
local simple content element.
The Simple Content Element dialog box opens.

2. Enter the necessary information in the Simple Content Element dialog box.
For details about the display and input contents of the Simple Content Element dialog box, see the manual
Cosminexus Service Platform Reference.

3. Click OK.
The information entered in the Simple Content Element dialog box is specified.

(4) Specifying the root element
If you use CSV data, you cannot specify elements other than the root elements initially displayed in the Binary Format
Definition screen, in a root element. However, you can change only the root element name.

How to change a root element name is explained below:

1. Select a root element, right click, and choose Setting.
The Complex Content Element dialog box opens.

2. Enter Name.

3. Click OK.
The entered name is specified.

4.4.5 Editing a Binary Format Definition File
You can modify the contents of a binary format definition file that has already been created and saved.

To modify the contents of a binary format definition file, in the Package Explorer of Eclipse, double-click the binary
format definition file to be edited. In the Binary Format Definition screen that opens, you can modify the contents.

For contents that can be specified in the Binary Format Definition screen, see 4.4.3 Defining Elements (for Non-CSV
Format) or 4.4.4 Defining Elements (for CSV Format).

4. Creating Message Formats

107

You can also copy a binary format definition file that has already been created and modify its contents to create
another binary format definition file. However, you cannot copy and use for other purposes part of the definition
content of a binary format definition file that has already been created.

4.4.6 Validating a Binary Format Definition File
If the required information has not been specified or settings contents or relation are not proper, you cannot
successfully perform data transformation definition creation or data transformation, using the binary format definition
file.

Therefore, validate whether the created binary format definition file has correct setting contents. You can validate the
file at any time. Also, in case of input through dialog for setting each element, the entered value is automatically
validated.

(1) Validation contents
You can validate the settings contents of each element in binary format definition file.

Following table describes validation contents, the actions in case of error occurrence and the details on which
validation contents are to be implemented in case of using which validation method.

Table 4‒3: Validation contents of binary format definition file and actions in case of error or warning
occurrence

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Overall Whether name is NCName type? Specify format name and element name in
NCName type.

Y --

Format Whether the complex contents elements of
sequential configuration are set?

Set the complex contents element of
sequential configuration.

-- Y

Whether the root element is set? Set the complex contents element within
binary format definition as the root
element.

-- Y

Whether code conversion library is available?
(whether you can load the class?)

Set the jar file for code conversion
properly and the restart Eclipse.

-- Y

Whether complex contents element that defines
a separator is used, when selecting KEIS,
IBM_CODE, JEF as character code?

Change character code of format to other
than KEIS, IBM_CODE. Or JEF, or cancel
the specifications of separator of complex
contents.

Y --

Whether simple contents element in which
other than character type has been set in data
type, when KEIS, IBM_CODE and JEF is
selected as character code?

Set character code of format to other than
KEIS, IBM_CODE and JEF or specify
character string in the data type of simple
contents element.

Y --

Whether bit value (hexadecimal) of pack
format numeric value and zone format numeric
value has been set with hexadecimal or the
value has not been set?

Set the corresponding signed bit or
character with hexadecimal.

Y --

Whether value of singed character
(hexadecimal) of zone format numeric value
has been set with hexadecimal or value has not
been set?

Set the corresponding signed bit or
character with hexadecimal.

Y --

Whether escape character is Latin character or
1 single byte space?

Set escape character in the range
(0x21~0x7E) of Latin character.

Y --

Whether same character has been specified in
escape character and separator value?#

Specify a character that is not duplicated in
the escape character and separator value.

Y --

4. Creating Message Formats

108

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Simple contents
element

Whether the elements having same name exist
in the same hierarchy?

Specify unique name in the same
hierarchy.

Y --

Whether simple contents element of global
definition have been set in the components of
complex contents element?

Set the corresponding simple contents
element in the component of the complex
contents element.

Y --

Whether the value of specified size fulfills the
following expression, when the size is fixed?

0<Size=2,147,483,647

Specify the size in the range of
1~2,147,483,647.

Y --

Whether the value of specified size is odd
number, when all the following conditions are
fulfilled?

• Data type is character string, integer, real
number, fixed fraction part numeric value
or date and time

• Size is fixed

• Character code is UTF-16 (BE/LE)

Specify other than UTF-16 (BE/LE) in the
character code or specify odd number in
the size of corresponding simple contents
element.

Y Y

Whether the byte size is 2 or more when all the
following conditions are fulfilled?

• Data type is character string

• Size is fixed

• Character code is KEIS, IBM_CODE and
JEF

Set the character code of format or
individual character code to other than
KEIS, IBM_CODE and JEF or specify
value of 2 or greater in the size of
corresponding simple contents

Y Y

Whether the separator has not been set in
ancestor when all the following conditions are
fulfilled?

• Size is fixed

• Individual character code has been set

Cancel the specifications of separator for
the simple contents or cancel the
specifications of individual character code.

Y Y

Whether the value of 0020~D7DE,
E000~FFDC (case insensitive) has been set
when all the following conditions are fulfilled?

• Data type is character string

• "Replace to substitute character" has been
specified

Specify hexadecimal of 0020~D7DE,
E000~FFDC.

Y --

Whether embedded character is other than "0"
when all the following conditions are fulfilled

• Data type is integer, real number or fixed
fraction part numeric value

• "Left" has been specified in left and right
justification

Set left or right justification to other than
"Left" or specify other than "0" in
embedded character.

Y --

Whether the specified integer fulfills following
expression when the size is fixed?

All digits count>Signed digits
count

In all digits count, specify value greater
than signed digits count.

Y --

Whether specified integer fulfills the following
expression when the size is fixed and all digits
count is not specified?

Size>Signed size

In size, specify a value greater than sign
byte size.

Y Y

4. Creating Message Formats

109

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Simple contents
element

Whether the specified integer fulfills following
expression, when the size is fixed and all digits
count is specified?

Size=Signed size + Integer part
size

In size, specify value greater than bytes
size of all digits count.

Y Y

Whether character code is other than KEIS,
IBM_CODE and JEF, when all the following
conditions are fulfilled?

• Data type is integer, real number, fixed
fraction part numeric value, zone format
numeric value, pack format numeric value,
signed binary integer, unsigned binary
integer, bytes string, bit string or date and
time

Set character code of format to other than
KEIS, IBM_CODE and JEF or specify
character string of data type.

Y --

Whether the specified integer, real number or
fixed fraction part numeric value fulfills the
following expression?

1=All digits count=34

Set the corresponding digits count in the
numeric value within configurable range.

Y --

Whether the specified real number fulfills the
following expression, when the size if fixed?

Overall digits count=Signed
digits count _ digits count of
decimal point + digits count of
fraction part
And
Overall digits count>Signed
digits count

In overall digits count, specify value
greater than the number of digits acquired
by combining signed digits count and
decimal point as well as fraction part digits
count.

Y --

Whether the specified real number or fixed
fraction part numeric value fulfills the
following conditions when the size is variable?

Overall digits count=Fraction part digits count

In overall digits count, specify value
greater than the fraction part digits count.

Y --

Whether the specified real number fulfills the
following expression, when size is fixed part
and overall digits count and fraction part digits
count are not specified?

Size>Signed size

In size, specify value greater than the
signed byte size.

Y Y

Whether the specified real number fulfills the
following expression, when size is fixed,
overall digits count is not specified and fraction
part digits count is specified?

Size=Signed size + decimal point size +
fraction part size

And

Size>Signed size

In size, specify a value greater than byte
size acquired by combining the signs and
decimal point and fraction part.

Y Y

Whether the specified real number fulfills the
following expression when size is fixed and
overall digits count is specified?

Size=Signed size+integer size=decimal point
size+fraction part size

In size, specify value greater than the bytes
size of overall digits count.

Y Y

Whether the specified fraction part numeric
value fulfills the following expression, when
the size is fixed?

In overall digits count, specify value
greater than the digits count having
combination of sign and fraction part.

Y --

4. Creating Message Formats

110

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Simple contents
element

Overall digits count=Signed digits count
+fraction part digits count

and

Overall digits count>Signed digits count

In overall digits count, specify value
greater than the digits count having
combination of sign and fraction part.

Y --

Whether the specified fixed fraction part
numeric value fulfills the following expression,
when size is fixed and overall digits count is
not specified?

Size=Signed size+fraction part size

and

size>signed size

In size, specify a value greater than bytes
size acquired by combining the sign and
fraction part digits count.

Y Y

Whether the specified fixed fraction part
numeric value fulfills the following expression,
when the size is fixed and overall digits count
is specified?

Size=Signed size+integer part size+fraction
part size

In size, specify a value greater than bytes
size of overall digits count.

Y Y

Whether the specified fraction part digits count
fulfill the following expression, when the data
type is real number, fixed decimal point
numeric value, zone format numeric value, or
lack format numeric value?

0=fraction part digits count=33

Specify fraction part digits count in the
range of 0~33.

Y --

Whether "Separator format" is "user specified",
when separator is set in the ancestor on the
following simple contents element?

• Data type is zone format numeric value,
pack format numeric value, signed binary
integer, unsigned binary integer or bytes
string

Specify data type other than zone format
numeric value, pack format numeric value,
signed binary integer, unsigned binary
integer or bytes string. Or, change the
format of separator for the simple contents,
to user specified format.

Y Y

Whether the "fraction part digits
count=maximum fraction part digits count
acquired from the specified size" is set when
the all the following conditions are fulfilled?

• Data type is pack format numeric value

• Size is fixed

In size, specify value greater than the bytes
count of fraction part digits count.

Y Y

Whether the specified size fulfills the following
expression, when the data type is signed binary
integer or unsigned binary integer?

1=size=8

Set the corresponding digits count with the
numeric value in the configurable range.

Y --

Whether the specified size fulfills the following
expression, when the data type is bits string?

1=size=64

Specify size in the range of 1~64. Y --

Whether the complex contents element for
which separator is defined exist in the binary
format definition, when data type is bits string?

Specify other than bits string in the data
type or cancel the specification of
separator.

Y --

Whether the specified fraction part digits count
fulfill the following expression, when the data
type is date and time type and second fraction
part digits count is specified?

Set the seconds fraction part digits count in
the range of 0~3.

Y --

4. Creating Message Formats

111

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Simple contents
element

0=Seconds fraction part digits
count=3 Set the seconds fraction part digits count in

the range of 0~3.
Y --

Whether the specified size fulfills the following
expression when the data type is date and time
type and size is fixed?

Size=format size+decimal point
size+seconds fraction part
digits count

In size, specify value greater than the bytes
count of date and time format.

Y Y

Whether "fraction part digits count=maximum
fraction part digits count acquired from
specified size" is set when all the following
conditions are fulfilled?

• Data type is zone format numeric value

• Size is fixed

• Settings of sign is custom

• Type of sign is sign bits

Or, whether "Fraction part digits
count=maximum fraction part digits count
acquired from the specified size" is set when all
the following conditions are fulfilled?

• Data type is zone format numeric value

• Size is fixed

• Settings of sign is auto

In size, specify value greater than bytes
count of fraction part digits count.

Y Y

Whether "maximum fraction part digits count
of specified size=Fraction part digits
count_sign character" is set when all the
following conditions are fulfilled? And whether
the size is 2 bytes or more?

• Data type is zone format numeric value

• Size is fixed

• Settings of sign is "Custom"

• Type of sign is "Sign character"

In size, specify value greater than bytes
count of fraction part digits count+bytes
count of sign character and value having 2
bytes or more.

Y Y

Complex
contents element

Whether the elements having same name exist
in the same hierarchy?

Specify unique name in the same
hierarchy.

Y --

Whether complex contents element set in the
root element has been set as the component of
other complex contents element?

Delete the complex contents element set in
the root element, from the component of
the complex contents element.

-- Y

Whether the complex contents element has
been set in the components of other complex
contents element (excluding the cases of root
element)?

Set the corresponding complex contents
element to the component of other
complex contents element.

-- Y

Whether the component has been set? Set the component in corresponding
complex contents element.

-- Y

Whether following simple contents elements
exist, when "CSV" is specified in the separator
format?

• Data type is zone format numeric value,
pack format numeric value, signed binary

Change the separator format to user-
specified format or specify the data type
other than zone format numeric value,
pack format numeric value, singed binary
integer, unsigned binary integer and bytes
string in the simple contents element

Y Y

4. Creating Message Formats

112

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Complex
contents element

integer, unsigned binary integer or bytes
string

Change the separator format to user-
specified format or specify the data type
other than zone format numeric value,
pack format numeric value, singed binary
integer, unsigned binary integer and bytes
string in the simple contents element

Y Y

Whether the specification of start separator is
correct

Specify the correct separator in the start
separator

-- Y

Whether the specification of intermediate
delimitation separator is correct

Specify correct separator in the
intermediate delimitation separator

-- Y

Whether the specification of end separator is
correct

Specify the correct separator in end
separator.

-- Y

Whether the character code of format is KEIS,
IBM_CODE and JEF, when the separator is
specified

Cancel the specification of complex
contents separator or specify character
code of format to other than KEIS,
IBM_CODE and, JEF

Y --

Whether the simple contents element in which
individual character code is specified exists
when the separator is specified

Cancel the specification of individual
character code of simple contents or cancel
the specification of the separator of
complex contents

Y Y

Whether the separator name is duplicated Specify separator that is not specified in
other separators, within single complex
contents

Y --

Whether separator value is duplicated Specify separator value that does not
duplicate with other separator values, in
single complex contents

Y --

Whether the code conversion library is valid
when the separator is specified

Set the correct jar file of code conversion
and re-start Eclipse.

-- Y

Whether code conversion table for code
conversion and validation target character code
exists, when the separator is specified

Specify path of code conversion table, in
the code conversion table.

-- Y

Whether error occurs during the character code
conversion, when the separator is specified

See the exception information that is cause
of error and take actions accordingly.

-- Y

Whether character code conversion fails when
the separator is specified

See the error code and take actions
accordingly

-- Y

Whether the character code is supported by
code conversion library, when the separator is
specified

Select character code that is supported by
the code conversion library.

Or, use the supported code conversion
library.

-- Y

Whether the simple contents element of bit
string type exists in binary format definition,
when the separator is specified

Cancel the specification of separator or
specify other than bit string in the data
type of simple contents element

Y --

Whether the complex contents element in
which size node is specified exists in the binary
format definition, when separator is specified

Cancel the specification of separator or
delete the size node

Y --

In sequential configuration, when last child
element is simple contents element of bit string
type, does it correspond to the following
conditions (excluding the case of root element)

Check the size of child element of bits
string type.

Calculate the size of element of bits string
type as follows:

-- Y

4. Creating Message Formats

113

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Complex
contents element

• Total the size of consecutive bits string type
and size is not byte unit

When occurrence count is fixed, "size x
maximum occurrence count".

When occurrence count is not fixed,
calculate as follows:

• When actual occurrence count is
unknown and size is not in byte unit,
consider it as warning.

• When size is of bytes unit, even if the
occurrence count is unknown, value of
"size x occurrence count" is always in
the byte unit and hence calculate
occurrence count as 1 and consider as
"size x 1".

-- Y

In selected configuration, when child element is
the simple contents element of bits string type,
does it correspond to following condition
(excluding the case of root element)

• Size is not in byte unit

Check the size of child element of bits
string type.

Calculate the size of element of bits string
type as follows:

When occurrence count is fixed, "size x
maximum occurrence count".

When occurrence count is not fixed,
calculate as follows:

• When actual occurrence count is
unknown and size is not in byte unit,
consider it as warning.

• When size is of bytes unit, even if the
occurrence count is unknown, value of
"size x occurrence count" is always in
the byte unit and hence calculate
occurrence count as 1 and consider as
"size x 1".

-- Y

Whether the selected condition node has been
set in case of selected configuration

Set the selected condition node in
corresponding complex contents element

-- Y

Whether the element set in the selection
condition node is simple contents element, in
case of selected configuration

Set node of the simple contents element of
selected condition node

Y Y

Whether selection condition value is set in case
of selected configuration (however, selection
condition value might not be set in case of only
1 selected configuration)

Set the selection condition value in each
component and set the count of
components for which selection condition
value is not set, to 1 or less

-- Y

Whether value specified in the data type of the
simple contents element set in the selection
condition node matches with value specified in
selection condition value of each component, in
case of selected configuration

Validation contents and actions differ
depending on the data type of simple
contents element set in the selection
condition node. For details, see "Table4-4
Validation contents and actions related to
the value specified in selection condition
value".

Y Y

Whether selection condition value of each
component is duplicated in case of selected
configuration

In component for which selection
condition value is duplicated, specify a
selection condition value that is not
specified in other components

-- Y

Whether occurrence count of selection
condition node and all ancestor nodes is fixed
as 1 time, in case of selected configuration

Set the occurrence count of selection
condition node and its ancestor node to the
fixed count that is 1 time

-- Y

4. Creating Message Formats

114

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Complex
contents element

Whether the size of selection condition node is
fixed, in case of selected configuration

Set the size of selection condition node as
fixed

-- Y

Whether the path of selection condition node is
correct, in case of selected configuration

Path that shows selection condition node,
might be invalid. For details on action, see
"Table4-5 Cause and actions when the
path is invalid"

Y Y

Whether the complex contents element of
selected configuration are included in the path
of selection condition node, in case of selected
configuration (however, when the path is
absolute path, exclude the ancestor node of the
setting source node)

Selection condition node may not occur in
the actual binary data. Check whether the
corresponding data occur in the selection
condition node, in actual binary data.

-- Y

Whether the node specified in selection
condition node includes the complex contents
element specified in size node, in case of
selected configuration (when the path is
absolute path, exclude the node that is ancestor
of the setting source node. When the path is
standard path, exclude the standard node)

Sometimes, selection condition node might
not occur in the actual binary data. Check
whether the corresponding data occurs in
the selection condition node, in actual
binary data.

-- Y

Whether code conversion library is used in case
of selected component (whether the class can
be loaded)

Set the correct jar file of code conversion
and restart Eclipse.

Y --

Whether the correct path of the code
conversion table is set, in case of selected
configuration

Set the occurrence count of corresponding
selected configuration and its ancestor as
1, which is a fixed value

Y Y

Whether error occurs during character code
conversion, in case of selected configuration

See the exception information that is cause
of error occurrence and take actions
accordingly.

Y Y

Whether character code conversion fails, in
case of selected configuration

See the error code and take actions
accordingly.

Y Y

Whether character code is reported in the code
conversion library, in case of selected
configuration

Select the character code supported in the
code conversion library.

Or, use the supported code conversion
library.

Y Y

Whether simple contents element count set in
the component is 1 or less, when the start
separator of component is set in case of
selected configuration

Set the simple contents element to be set in
component to l or less

-- Y

Whether the start separator is set in each
component (complex contents element) in case
of selected configuration (however, when
simple contents element has not been set in the
component, you may not set start separator if
the component is only 1)

When simple contents element is set in the
component, set start separator in each
component. If the simple contents element
has not been set in the component, set the
count of components for which start
separator has not been set, to 1 or less.

-- Y

Whether the value of start separator set in each
component is duplicated, in case of selected
configuration

Set the value of start separator that has not
been set in other components, in the
component for which start separator is
duplicated.

-- Y

Component Whether the specified occurrence count fulfills
following expression, when the occurrence
count is fixed

0<Occurrence count=2,147,483,647

Specify the occurrence count in the range
of 1~2,147,483,647.

Y --

4. Creating Message Formats

115

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Component Whether the occurrence count node is set, when
the occurrence count is "Occurrence count
node"

Set the occurrence count node in the
corresponding component

-- Y

Whether data type of occurrence count node is
numeric value type, when the occurrence count
is "Occurrence count node"(Numeric value type
implies integer, real number, fixed fraction part
numeric value, zone format numeric value,
pack format numeric value, signed integer, or
unsigned integer)

In occurrence count node, specify simple
contents element having data type as
numeric value type.

Y Y

Whether occurrence count of occurrence count
node and its all ancestors is fixed and that is 1,
when the occurrence count is "Occurrence
count node"

Set the occurrence count of occurrence
count node and its ancestor nodes to a
fixed value, that is 1

-- Y

Whether path of the occurrence count node is
correct, when the occurrence count is
"Occurrence count node"

Path that shows occurrence count node
might not be correct. For details on
actions, see "Table4-5 Cause and actions
when the path is invalid"

Y Y

Whether complex contents element of selected
configuration is included in the path of
occurrence count node, when the occurrence
count is "occurrence count node" (however,
exclude the ancestor node of setting source
node, when the path is absolute path)

Occurrence count data might not occur in
actual binary data. Check whether the data
corresponding to occurrence count node
occurs in the actual binary data

-- Y

Whether the node specified in occurrence count
node includes the complex contents element
specified in size node, when the component is
simple contents element (exclude the node that
is ancestor node of the setting source node,
when the path is absolute path. Exclude
standard node when the path is standard path)

Selection condition node may not occur in
the actual binary data. Check whether
corresponding data occurs in the selection
condition node, in the actual binary data.

-- Y

Whether the recursive structure is set Delete the recursively set components. Y --

Whether all the following conditions are
fulfilled when parent element is sequential
configuration

• Simple contents element or complex
contents element having other than bit
string type

• Sibling element existing at 1 previous
position is the simple contents element of
the bit string type

• Size of consecutive bit string type is totaled
and size is not in byte unit

Check the size of sibling element of bit
string type.

Calculate the size of element of bits string
type as follows:

When occurrence count is fixed, "size x
maximum occurrence count".

When occurrence count is not fixed,
calculate as follows:

• When actual occurrence count is
unknown and size is not in byte unit,
consider it as warning.

• When size is of bytes unit, even if the
occurrence count is unknown, value of
"size x occurrence count" is always in
the byte unit and hence calculate
occurrence count as 1 and consider as
"size x 1".

-- ?

Whether all the following conditions are
fulfilled when the component is simple contents
element and data type is "bit string"

• Specified size is less than 8 bit

Change the occurrence count of simple
contents element to "fixed" or "occurrence
count node" or specify value of 8 bit or
more in the size.

-- Y

4. Creating Message Formats

116

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Component • Occurrence count is "Till end of data" or
"Range specified"

• Element at the end of binary format
definition

• Size node is not specified in ancestor node

Change the occurrence count of simple
contents element to "fixed" or "occurrence
count node" or specify value of 8 bit or
more in the size.

-- Y

Whether size node is set when the component is
simple contents element and size is "size node"

Set the size node in the corresponding
component

-- Y

Whether the data type of size node is numeric
value type, when the component is simple
contents element and size is "size node"
(numeric value type implies integer, real
number, fixed fraction part numeric value, zone
format numeric value, pack format numeric
value, singed binary integer or unsigned binary
integer)

In size node, set the simple contents
component having data type as numeric
value type.

Y Y

Whether occurrence count of size node and all
the ancestor nodes is fixed, that is 1, when the
component is simple contents element and size
is "size node"

Set the occurrence count of size node and
its ancestor node to fixed value, which is 1.

Y Y

Whether the path of size node is correct when
the component is simple contents element and
size is "size node"

Path that shows the size node might be
invalid. For details on actions, see
"Table4-5 Cause and actions when the
path is invalid".

Y Y

Whether path of size node includes complex
contents element of selected configuration,
when the component is simple contents element
and size is "size node" (however, when the path
is absolute path, exclude the ancestor node of
setting source node)

Size node may not occur in the actual
binary data. Check whether the data
corresponding to size node exists in the
actual binary data.

-- Y

Whether the node specified in size node
includes the complex contents element
specified in size node when component is
simple contents element (exclude the node that
is ancestor node of the setting source node,
when the path is absolute path. Exclude
standard node when the path is standard path)

Size node may not occur in the actual
binary data. Check whether the data
corresponding to size node exists in the
actual binary data.

-- Y

Whether the separator or size node that shows
the end of occurrence is set, when the
component is simple contents element and
occurrence count is "till end of the data"

Specify separator that shows end of
occurrence or size node of the complex
contents element, in the element having
occurrence count as variable.

Y Y

Whether the separator or size node that shows
the end of data is set, when the component is
simple contents element and size is "till end of
the data"

Specify separator that shows end of data or
size node of the complex contents element,
in the element having size as variable.

Y Y

Whether the separator or size node that shows
the end of occurrence is set, when the
component is complex contents element and
occurrence count is "till end of the data"

Specify separator that shows end of
occurrence or size node of the complex
contents element, in the element having
occurrence count as variable.

Y Y

Whether all the following conditions are
fulfilled when the component is complex
contents element and occurrence count is "Till
end of data" or "range-specified".

Change the occurrence count of complex
contents element to "fixed" or "occurrence
count node" or define such that size of
complex contents element becomes 8 bits
or more.

-- Y

4. Creating Message Formats

117

Validation
target Validation contents Action in case of error or warning

occurrence

Validation
method

Auto Optional

Component 1. Data type of last element in the binary
format definition is "bit string"

2. Occurrence count of element in 1. Is
"fixed" or "occurrence count node"

3. Size node is not specified from element in
1. To ancestor node

4. Total size till element in 1. Is less than 8
bits

Calculate the size of each element as
follows:

• When the data type is bits string and
occurrence count is fixed, the size is
"value specified in size x maximum
occurrence count".

• When data type is bits string and
occurrence count is not fixed, size is
the value specified in size. However,
when not the last element, but the
smallest occurrence count is 0,
consider size as 0.

• When data type is other than bits
string, consider size as 8 (as validation
ends when total size exceeds 8 bits).
However, when smallest occurrence
count is element of 0 or the complex
contents element for which size node
is specified, consider size as 0.

-- Y

Whether total size of bit string is in byte unit
when the component is complex contents
element, size node is set and bit string exists in
grandchild node

Check the size of simple contents element
of bit string

-- Y

Whether complex contents element in which
separator is defined exists in the binary format
definition, when component is complex
contents element and size node is set

Delete the specification of size node or
cancel the specification of separator.

Y --

Whether data type of the size node is numeric
value type when component is complex
contents element (numeric value type implies
integer, real number, fixed fraction part
numeric value, zone format numeric value,
pack format numeric value, singed binary
integer and unsigned binary integer)

In size node, specify simple contents of
numeric value type

Y Y

Whether size node and all its occurrence count
is fixed, that is 1 time, when component is
complex contents element

Define such that the node has occurrence
count fixed as 1 time, for size node and its
ancestor node.

Y Y

Whether the path of size node is correct when
the component is complex contents element

Path specified in size node may get
discarded.

Specify the side node again, with reference
to detail information.

Y Y

Whether the path of size node has complex
contents element of selected configuration,
when component is complex contents element

Size node may not occur in the actual
binary data. Check that the corresponding
data occur in the size node, in actual binary
data.

-- Y

Whether the node specified in size node include
the complex contents element included in size
node, when component is complex contents
element (when the path is absolute path,
exclude the node that is ancestor of the setting
source node. When path is standard path,
exclude the standard node).

Size node may not occur in the actual
binary data. Check that the corresponding
data occur in the size node, in actual binary
data.

-- Y

Legend:
Y: Validated.

4. Creating Message Formats

118

--: Not validated

Note#
Separator having the type of separator value as byte string, is not validated.

Table 4‒4: Validation contents and actions related to the value specified in selection condition value

Data type Validation contents Action

Character string Whether following expression is fulfilled when "Replace
with substitute character" is not specified#1

Size after character code
conversion=Specified size

Specify such that byte size of selection condition
value becomes less than the size of selection
condition node.

Integer Whether the format of specified character string is n#2#3 In selection condition value, specify character
string matching to the data type of selection
condition node.

Whether the following expression is fulfilled

Size after character code
conversion=Specified size

Specify such that byte size of selection condition
value is less than the size of selection condition
node.

Whether it is 0=value, when the existence of sign is
"No"

Specify a positive value in selection condition
value.

Whether digits count of condition value is less than the
specified digits count of "Overall digits count", when the
"overall digits count" is specified

Specify the digits count of selection condition
value as less than overall digits count.

Whether the digits count of condition value is 34 digits
or less, when "Overall digits count" is not specified

In selection condition value, specify numeric
value having 34 or less digits, in the valid digits
count.

Real number Whether the format of specified character string is n or
n.m#2#3

In selection condition value, specify the character
string matching with data type of selection
condition node.

Whether the following expression is fulfilled#1#4

Size after character code
conversion=Specified size

Specify the bytes size of selection condition
value such that it is smaller than the size of
selection condition node.

Whether it is 0=value, when the existence of sign is
"No"

Specify positive value in the selection condition
value.

Whether the fraction part digits count of condition value
is less than specified digits count of "Fraction part digit
count", when the "Fraction part digits count" has been
specified

Specify the digits count in fraction part of
selection condition value to the count less than
fraction part digits count.

Whether digits count of condition value is less than
specified digits count of "overall digits count", when
"overall digits count" has been specified#4

Specify the digits count of input value of the
selection condition value to count less than
overall digits count.

Whether the digits count of condition value is 34 digits
or less, when "overall digits count" has not been
specified

Specify numeric value having less than 34 digits
as valid digits count, in selection condition value

Fixed fraction part
numeric value

Whether the format of specified character string is n or
n.m#2#3

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the following expression is fulfilled#1

Size after converting to encrypted
numeric value with decimal
point=Specified size

Specify such that byte size of selection condition
value is less than the size of selection condition
node

Whether it is 0=value, when the existence of sign is
"No"

Specify positive value in the selection condition
value.

4. Creating Message Formats

119

Data type Validation contents Action

Fixed fraction part
numeric value

Whether the fraction part digits are less than
specification of "Fraction part digits count

Specify the fraction part digits count of selection
condition value to less than fraction part digits
count

Whether the digits count of condition value after
converting to encrypted numeric value with decimal
point is less than specified digits count of "overall digits
count", when the "overall digits count" has been
specified

Specify digits count of input value of selection
condition value to count less than overall digits
count.

Whether digits count of condition value is 34 digits or
less, when "overall digits count" has not been specified

In selection condition value, specify a numeric
value having 34 digits or less as valid digit count

Zone format numeric
value

Whether the format of specified character string is n or
n.m #2

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the following expression is fulfilled

Size after converting to zone
format=Specified size

Specify such that byte size of selection condition
value is less than the size of selection condition
node

Whether digits in integer part+digits in fraction part are
real number having 34 digits or less

Specify numeric value having less than 34 digits
as valid digits count, in selection condition value

Whether the fraction part digits are within the range
specified in "fraction part digits count"

Specify digits count of fraction part of selection
condition value, as the digits less than fraction
digits count

Whether negative value is set in the condition value,
when the settings of sign of simple contents element is
"custom" and existence of sign is "does not exist"

Specify positive value in the selection condition
value

Pack format numeric
value

Whether the format of specified character string is n or
n.m #2

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the following expression is fulfilled

Size after converting to pack format=Specified size

Specify such that byte size of selection condition
value is less than the size of selection condition
node

Whether digits in integer part+digits in fraction part are
real number having 34 digits or less

Specify numeric value having less than 34 digits
as valid digits count, in selection condition value

Whether the fraction part digits are in the range
specified in "fraction part digits count"

Specify digits count of fraction part of selection
condition value to count less than fraction part
digits count.

Whether negative value is set in the condition value,
when the settings of sign of simple contents element is
"custom" and existence of sign is "does not exist"

Specify positive value in selection condition
value

Signed binary integer Whether the format of specified character string is n or -
n#2

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the integer fulfills
following expression when the size
is n bytes (n=1~8)

-1x2(8 x n)-1=Value=2(8 x n)-1-1

Specify valid value in the selection condition
value.

Unsigned binary integer Whether the format of specified character string is n#2 In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the integer fulfills
following expression when the size
is n bytes (n=1~8)

Specify valid value in the selection condition
value.

4. Creating Message Formats

120

Data type Validation contents Action

Unsigned binary integer
0<=Value<=28 x n-1

Specify valid value in the selection condition
value.

Bytes string Whether the format of specified character string is 0~9,
a~f and A~F, when the code format is hexBinary

Whether the format of specified character string is 0~9,
a~z, A~Z, -, , =, or blank character, when encode format
is base64Binary

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether following expression is fulfilled

Size after converting to
bytes=specified size

Specify such that byte size of condition value is
same as the byte size of selection condition node.

Bit string Whether the format of specified character string is 0~9,
a~f and A~F

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the following expression is fulfilled

A=(<specified size>+7)/8(round up of digits after
decimal point)

A x 2=input character count

Specify required digits count.

Date and time Whether the specified character string format is
CCYYMMDD, when the format is CCYYMMDD

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the specified character string format is
YYMMDD, when the format is YYMMDD

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the specified character string format is
hhmmss, when the format is hhmmss

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the specified character string format is
CCYYMMDDhhmmss, when the format is
CCYYMMDDhhmmss

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the specified character string format is
YYMMDDhhmmss, when the format is
YYMMDDhhmmss

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the specification of seconds decimal point
match with the digits count of second decimal point

In selection condition value, specify character
string matching with data type of selection
condition node.

Whether the specified date and time is correct date and
time

Specify correct date and time in the selection
condition value

Note#1
When other than CUSTOM has been set in character code

Note#2
n, m indicate numeric value in the range of 0~9. However, start of n and end of m has numeric value in the range of 1~9.

Note#3
Sign to be added to condition value differs depending on the settings of "existence of sign" on the selection condition node. Sign
is necessarily added in case of "Always exist". Sign is not added in case of "does not exist". In case of "only minus exists", you
can specify only "-".

Note#4
When condition value has fraction part and integer part is only 0, count after deleting 0.

4. Creating Message Formats

121

Table 4‒5: Cause and actions when the path is invalid

Cause for invalid path Action

Node of the path specified in selection condition, occurrence count
or size node has been deleted from the definition

Specify the selection condition, occurrence count or size node
again.

Hierarchy structure was changed after specifying the selection
condition, occurrence count or size node

Specify the selection condition, occurrence count or size node
again.

Path specified in selection condition, occurrence count or size node
occurs after element of setting condition.

Specify element that occurs before setting destination, in the
selection condition, occurrence count or size node.

Multiple components that reference the node of node path settings
destination are defined

Set the component that references the node path setting
destination to 1.

Topmost element of absolute path is not the root element Set the root element to topmost element of absolute path, or reset
the path.

Standard node does not exist in ancestor on the setting source node Reset the node path.

Standard node of standard path is not the element of sequential
configuration

Set the path such that standard node is sequential configuration.

Common parent of path and setting source node is complex contents
of selection configuration

Set the common parent of path and setting source node to
complex contents of sequential configuration.

(2) Validation methods
Following 2 validation methods exist. Contents to be validated differ depending on the validation method. For details,
see "(1) Validation contents".

Validation in case of dialog input
In the dialog used when setting each element of the binary format definition file, entered value is automatically
validated in sequential manner.

Validation in optional timing
You can validate at any timing such as after creating or during creation of the binary format definition file.
To implement validation, select and right click element in the binary format definition editor and select [Validate].
The binary format definition file displayed in the binary format definition editor is validated.
Elements to be selected in binary format definition editor, when validating are optional. Even if you select any
element, entire binary format definition file is validated.

For details on display of validation result, see " (3) Displaying the validation results".

(3) Displaying the validation results
The validation results are displayed in a window and in a dialog box.

(a) Displaying result of auto validation at the time of dialog input

Auto validation result at the time of dialog input is displayed in the [Information] of the dialog related to the binary
format definition. If there is no problem, nothing is displayed.

For details on the dialog related to a binary format definition, see "1.2.1 Binary Format Definition Window" in
"Service Platform Reference Guide".

(b) Displaying result of validating at optional timing

Validation result is displayed on the screen.

For screen display contents, see the following locations.

• "1.1.1 Configuration of the screen for creating the binary format definition file" in "Service Platform Reference
Guide"

• "1.2.1 Binary format definition screen" in "Service Platform Reference Guide"

4. Creating Message Formats

122

When validation is successful
Message indicating the success of validation is displayed in the Console view.

When validation fails
Message indicating error, warning and information notification contents is displayed in the Console view. Also,
contents of error, warning and information notification are displayed in each part on the screen.

Binary format definition editor and outline view
Icon indicating error or warning is displayed in the erroneous node. When error and warning both exist, icon
of error is given priority for display.

Package explorer
Icon indicating error or warning is displayed in erroneous file and its ancestor folder. When error and warning
both exist, icon of error is given priority for display.

Problem view
Message, resource name (file name) and folder name showing problems are displayed in list format.

4.4.7 Notes regarding binary format definition
You cannot specify simple contents element of variable length in size node and occurrence count node, in case of
transformation from XML type to binary type.

4. Creating Message Formats

123

4.5 Generating the binary format definition file from
COBOL Library Text File

Generating the binary format definition file from COBOL Library Text file is a function that converts the specified
COBOL Library Text File to the binary format definition file.

When you use this function, you can automate the generation of the binary format definition file from COBOL
Library Text File. Therefore, effectivity of data transformation work can be plotted.

Following figure shows the image of data transformation by using the function for generating the binary format
definition file from COBOL Library Text File:

Figure 4‒7: Data transformation by using function for generating binary format definition file from COBOL
Library Text File (example of using TP1/RPC reception)

This function uses the COBOL2FDX converter. The COBOL2FDX converter parses the record definition of the
specified COBOL Library Text File and outputs as the binary format definition file.

4.5.1 Description format of COBOL Library Text File that can be
transformed

This section describes description format of COBOL Library Text File that can be used in function for generating
binary format definition file from COBOL Library Text File.

This function considers the usage of COBOL85 language as prerequisite. However, you can use COLBOL Library
Text File described according to rules and format explained here. For details on functions and methods of COBOL85
language, see "COBOL85 language".

(1) File format that can be specified
You can specify only fixed format (extension: other than cbf) as the COBOL Library Text File that you can use in this
function. File having free format (extension: .cbf) is not supported.

4. Creating Message Formats

124

(2) Description rules for COBOL Library Text File
COBOL Library Text File that you can use in this function conforms to the following description rules.

• Character code of COBOL Library Text File must be MS932.

• You must use the correct syntax. Pre-requisite is the condition like messages output by compiler do not include the
"Fatal error" or "Warning error".

• First~sixth column are not used as row number and are handled as 6 digits single byte spaces (0x20). It is not used
even as the line number output in the error information.

• Comment line (seventh column is "*", "/") is ignored.

• Comments from 73rd column onwards are ignored.

• Debug line (line having seventh column as "D" and "d") is ignored.

• Similar to normal COBOL, line having seventh column as "-" is handled as consecutive lines.

• Type character is handled as 1 blank character.

• Double byte blank character is handled as seperative sign, but ";" and "," is not handled as seperative sign.

• Extended code character and standard code character is handled as non-equivalent.

• Following words are handled as reserved words. Other words are handled as user-words.

• COMP

• COMP-3

• COMPUTATIONAL

• COMPUTATIONAL-3

• DISPLAY

• FILLER

• IS

• NATIONAL

• OCCURS

• PIC

• PICTURE

• TIMES

• USAGE

(3) Description format of data item
Description of data items such as alphabets or numbers must conform to the rules described in this point. If rules are
not followed, syntax error occurs.

(a) Writing style of data item

Writing style of data item of COBOL is as follows:

Record number {Data name|FILLER}
[{PICTURE|PIC}[IS] character string]
[[USAGE [IS]]{COMPUTATIONAL-3|COMP-3|COMPUTATIONAL|COMP|DISPLAY|NATIONAL}]
[OCCURS integer [TIMES]].

(b) Syntax rules

1. Level number must be unsigned integer of 1~2 digits and must be in the range of 1~49.

2. Character count of data name must be in the range of 1~30.

3. Count of data item and FILLER item must not exceed 32,760.

4. Creating Message Formats

125

4. Integer value that you specify in OCCURS clause must be in the range of 1~2,147,483,647.

5. In PICTURE clause, you can specify only the contents given in "Table4-6 Characters that you can specify in
PICTURE clause".

6. Regarding the syntax rules of level number, data name, PICTURE clause, USAGE clause and OCCURS clause,
rules other than the rules described in syntax rules in 1.~5. Conform to the syntax rules of COBOL85 language.

7. Syntax rules of USAGE clause are as follows:

8. You cannot specify USAGE in aggregation item.

• If you specify DISPLAY, NATIONAL in the numeric value item, it is ignored.

• If you specify USAGE in other than numeric value item, it is ignored.

• Data item must comprise of only 1 record (group item of level number 01) and dependent items.

9. You cannot specify COPY statement.

Table 4‒6: Characters that you can specify in PICTURE clause

N
o Data type

Character that you can specify in PICTURE
clause

Fraction part
Range of available

digits (including
fraction part)Character Digits

count

1 Alphabet "A" 1 -- 1~2,147,483,647

2 Alphanumeric "A", "X", "9" 1

3 Number External decimal
format

"9" 1 Alphabets
from "V"
onwards

1~18

"S", "V" 0

4 Internal decimal
format

Similar to external decimal format

5 Binary format "9" 1 N

"S" 0

6 Alphanumeric edition items "A", "X", "9", "B", "0", "/" 1 -- 1~2,147,483,647

7 Number edition items "B", "/", "Z", "0", "9", ",", ".", "*",
"+", "-" currency edition character

1 N 1~249

"CR", "DB" 2

"V" 0

8 Japanese item "N" 2 -- 2~32,766

9 Japanese edition item "N", "B" 2

Legend:
--: Corresponding item does not exist.
N: Not supported in this function.

Note
Similar to normal COBOL, when "nn" (nn is number in the range of 1~2,147,483,647) is specified immediately
after each character, character repetition count is set.

(c) Notes

The currency edition character or edition character such as "Z", or "0" that you specify in PICTURE clause is used
only with the purpose of calculating the digits count. Edition function for embedding currency edition character in
data item is not supported.

4. Creating Message Formats

126

4.5.2 Support to data type of COBOL Library Text File and binary format
definition file

This section describes the support to data type of COBOL Library Text File before transformation and binary format
definition file after transformation.

(1) Support to element name
When optional name is set in data item of COBOL, the already set optional name serves as the element name of the
binary format definition file. When optional name has not been set, data name of COBOL before transformation as it
becomes the element name of the binary format definition file.

For details on setting the optional name in element name, see " 4.5.3(3) Setting up data items".

(2) Support to data type
Following table describes the mapping of data type of COBOL and data type o binary format definition file after
transformation.

Table 4‒7: Mapping of data type of COBOL and data type of binary format definition file

No. Data type of COBOL

Data type of binary format definition file

Data type in TP1/
COBOL adapterData type Embedded

character

XML
schema

type

1 Alphabet Character string Space string Character string data
(string)

2 Alphanumeric Character string Space string Character string data
(string)

3 Number External decimal format Zone format numeric
value

-- decimal Decimal data
(BigDecimal)

4 Internal decimal format Pack format numeric
value

-- decimal N

5 Binary format Without
decimal
point

Signed (unsigned)
binary number

-- integer Short data (Short)
~Long data (Long)

6 With
decimal
point

N Decimal data
(BigDecimal)

7 External floating decimal
point

N N

8 Internal
floating
decimal point

4 bytes Single precision data
(Float)

9 8 bytes Double precision data
(Double)

10 Alphanumeric edition item Character string Space string Character string data
(string)

11 Number edition item Character string Space string Character string data
(string)

12 Index data item N N

13 Japanese item Character string Space string Character string data
(string)

4. Creating Message Formats

127

No. Data type of COBOL

Data type of binary format definition file

Data type in TP1/
COBOL adapterData type Embedded

character

XML
schema

type

14 Japanese edition item Character string Space string Character string data
(string)

15 External bool item N N

16 Internal bool item N N

Legend:
--: Corresponding item does not exist
X: Not supported in this function

(3) Support to sign of zone format/pack format numeric value
When generating zone format numeric value and pack format numeric value when transforming to data type of binary
format definition file, generate when the settings of sign is in "Custom" status and perform settings in the item of
simple contents element dialog. Following table describes the contents set in the item of simple contents element
dialog.

Table 4‒8: Setting contents of attribute

No. Attribute Setting contents

1 Settings of sign Custom

2 Existence of sign • When "S" is specified in PICTURE character string: exists

• In other cases: Do not exist

3 Type of sign Sign bit

4 Position of sign Later

(4) Method of calculating the size of data type of COBOL
Following table describes the method for calculating size (byte) of data type.

Table 4‒9: Method for calculating size of data type

Data type of COBOL Size (byte)

Alphabet Digits count is same.

Alphanumeric

External decimal format

Internal decimal format ((Digits count) / 2) + 1

Binary format Calculate from digits count.

• In case of 1 digit~4 digits: 2

• In case of 5 digits~9 digits: 4

• In case of 10 digits~18 digits: 8

Alphanumeric edition item Digits count is same.

Number edition item

Japanese item

Japanese edition item

4. Creating Message Formats

128

4.5.3 Method of generating the binary format definition file
Following figure shows the flow of data transformation operation using the binary format definition file from COBOL
Library Text File:

Figure 4‒8: Flow of data transformation operation

This section describes about the data transformation related operation.

(1) Starting a new file wizard
Method to start the new file wizard is as follows:

1. Open New file wizard, by either of the following methods:

• From menu of Eclipse, select [File]-[New]-[Others].

• Right click any location in the Package explorer and select [New]-[Others].

2. In New file wizard, select [HCSCTE format definition]-[Binary format definition file(transformation from
COBOL Library Text File)].

3. Click [Next] button.
Proceed to [COBOL Library Settings page].

(2) Specifying the file to be transformed
Following section describes the method of specifying the COBOL Library Text File to be transformed.

1. Click [Browse] button on [COBOL Library Settings page] and specify the COBOL Library Text File to be
transformed.

2. In [Currency edition character of PICTURE clause], specify the currency edition character of PICTURE clause, to
be used.
For details on the characters that you can specify in currency edition character of PICTURE clause, see "1.3.10
Conversion dialog from COBOL Library Text" in "Service Platform Reference Guide".

3. In [Character code of basic items], select character code used in alphanumeric items of COBOL Library Text File.

4. In [Binary format Endian], select either of Big Endian or Little Endian.

5. Click [Next] button.
COBOL Library Text File is transformed and process proceeds to [Data item Settings page]. If an error occurs
during transformation, an error message is displayed.

(3) Setting up data items
This section describes a method to set up data items.

4. Creating Message Formats

129

1. To change the element name of the binary format definition file after transformation, select the cell of [Optional
name] in the [Data item settings page] and enter optional name.
If the name you have specified is incorrect, a message is displayed in the upper part of page. For details on the
character that you can specify in [Optional name], see "1.3.10 Conversion dialog from COBOL Library Text" in
"Service Platform Reference Guide".

2. Click [Next] button.
Process proceeds to [Output file settings page].
When you click [Back] button, a message for confirming whether to discard the already set contents is displayed.
If you want to return to [COBOL Library text settings page] and specify COBOL Library Text File once again,
click [OK] button.

(4) Output file settings
This section describes a method to set up the output file.

1. Specify output destination folder, from Tree view of [Output file settings page].
For details on [Output file settings page], see "1.3.10 Conversion dialog from COBOL Library Text" in "Service
Platform Reference Guide".

2. In [Format name], enter format name of the binary format definition file.

3. Click [Finish] button.
Binary format definition file after conversion is output and the Binary format definition editor is started. During
the file output, a progress bar is displayed on the lower part of the screen.

Reference
You can edit the binary format definition file after transformation, by using the Binary format definition editor, in
the same way as the file directly created using the Binary format definition editor. For details on the Binary format
definition editor, see "4.4.1 Types of data type and character code of binary format definition file".

4. Creating Message Formats

130

4.6 Generating an XML schema file from the binary
format definition file

Use the cscfdx2xsd command to generate an XML schema file from the binary format definition file. If you use
this command to define transformation of the binary data into an XML data with the same structure, you can easily
create an XML schema file for the transformation destination.

For details about the cscfdx2xsd command, see the manual Cosminexus Service Platform Reference.

The following is the procedure for defining the file adapter for reading the binary data described as an example of the
proper use of the cscfdx2xsd command:

1. Creating the binary format definition file
Use the Wizard to create the binary format definition file.
For details about how to create the binary format definition file, see 4.4 Creating Message Formats (Binary
Format Definition File).

2. Creating the XML format definition file
Based on the created binary format definition file, execute the cscfdx2xsd command and generate the XML
schema file. If you use the command to transform the binary data into an XML data with the same structure, you
need not create the XML schema definition using an editor.

3. Defining the business process and service adapter
Use the Wizard to set up the created binary format definition, to set up the XML schema definition generated by
the command, and to create the data transformation definition.
For details about defining the adapters, see 5. Defining Business Processes and for details about the data
transformation definition, see 6. Defining Data Transformation.

4. Creating Message Formats

131

4.7 Changing the message formats
If you change the message format, you must re-define the data transformation. After changing the message format, if
you do not define the data transformation again, an error occurs in validation (adapter or business process) or
packaging.

When you re-define the data transformation, you can use the previously created data transformation definition. You
need not create a new definition. For details about the definition procedure and the precautions when the message
format is changed, see 6.3.2 Procedure for defining changed message formats.

4. Creating Message Formats

132

5 Defining Business Processes
This chapter explains the workflow of defining business processes.

133

5.1 Definition Work Flow
The following figure shows the workflow for defining business processes.

Figure 5‒1: Workflow for defining business processes

The tasks involved in defining business processes are explained below.

(1) Adding business processes
To add business processes, use either one of the methods described below.

To add a new business process
Use a wizard to add new business processes.
There are two methods for adding a new business process with a wizard, one method is to add an undefined
business process, and the other method is to first import the BPEL file created by the high level design tool in
which BPMN is used, convert the BPEL file into a business process definition, and then add a business process.
For details about how to add new business processes, see 5.2.1 Adding New Business Processes.

Using already defined business processes
You can add a business process by copying an already defined business process. When you copy an already
defined business process, a business process with the same definition contents is added. You can also edit the
definition contents of the copied business process.
For details about how to add a business process by copying an already defined business process, see 5.2.2 Using
an Already Defined Business Process to Add Business Processes.

(2) Defining business process contents
Define business process contents in the Business Process Definition screen.

For details about definition methods and definition contents, see 5.3 Defining Business Process Contents. For details
about the Business Process Definition screen, see the manual Cosminexus Service Platform Overview.

5. Defining Business Processes

134

(3) Saving business processes
You need to save the definition information of edited business processes in a repository as needed.

For details about how to save business process definition information and the timing for saving it, see 5.8 Saving
Business Processes.

(4) Validating business processes
Validate the conformity of the business processes you have defined. You can perform validation at any time, such as
when the business processes are being defined, or after they have been defined.

For details about the validation method, see 5.10 Validating Business Processes.

(5) Debugging business processes
Debug the defined business process in the development environment. After defining the business process you can
debug them at any time.

For the method to debug a business process, see 9. Debugging Business Processes.

(6) Editing business processes
You can edit and change the definition contents of already defined business processes as needed.

For details about the business process editing method, see 5.9 Editing Business Processes.

(7) Deleting business processes
You can delete business processes that are no longer needed as necessary.

For details about the business process deletion method, see 5.11 Deleting Business Processes.

5. Defining Business Processes

135

5.2 Adding Business Processes
Adds business processes.

To add new business processes, use the Business Process Addition Wizard. You can also add new business processes
by copying already created business processes.

5.2.1 Adding New Business Processes
The two methods to add a new business process with the Business Process Addition Wizard are as follows:

• Adding a new undefined business process
This method is used to add a new undefined business process. The new business process added with this method
has no defined information.

• Importing and adding a new BPEL file
In this method, you first create a BPEL file using the high level design tool in which BPMN is used. After that,
you import the BPEL file, convert it into a business process definition, and add a new business process. The new
business process added with this method inherits the definition information of the original BPEL file.

The methods are explained below:

(1) Adding a new undefined business process
The method to add a new business process in which nothing is defined is as follows:

1. In the service definition list in the tree view, choose and right-click Add Business Process.
The dialog box for adding a business process opens.

2. Enter a business process name and choose whether to make its status persistent (whether to save the execution
status of the business process in a database).
Make sure that the business process name (service name of the business process) does not exceed 64 bytes.

3. Click Finish.
The required files are created and saved in a repository.
When the business process is saved normally, the Business Process Definition screen opens.

(2) Adding a new business process by importing a BPEL file
The following points explain how to create a BPEL file in advance with the high level design tool, import a BPEL file,
and then add a new business process:

(a) Creating a BPEL file

Create a BPEL file conforming to BPEL1.1 with the high level design tool. For details about how to create a BPEL
file, see the documents for the high level design tool to be used.

For the relationship between the contents of elements and attributes defined in the BPEL file, and the contents of
business process definition, see Appendix E. Support Range of BPEL Used by Linking with an High Level Design
Tool.

(b) Adding a new business process

To import a BPEL file and add a new business process:

1. In the service definition list in the tree view, choose and right-click Add Business Process.
The dialog box for adding a business process opens.

2. Enter a business process name and choose whether to make its status persistent (whether to save the execution
status of the business process in a database).
Make sure that the business process name (service name of the business process) does not exceed 64 bytes.

3. Choose the Import checkbox of the BPEL file.

5. Defining Business Processes

136

4. Specify the BPEL file to be imported in File name.
You can click ... to choose the BPEL file to be imported.

5. Choose the activity deployment method.

6. Click Finish.
The definition of the BPEL file is converted into a business process definition. After the end of the conversion, if
the required file is created, the file is stored in the repository.
When the business process is saved normally, the Business Process Definition screen opens. In the canvas of the
displayed Business Process Definition screen, the activity is deployed with the method chosen in step 5.

! Important note
Note the following points when importing the BPEL file:

Unconverted BPEL definition
The BPEL definition that is not supported in the development environment of the Cosminexus Service Platform is
either ignored or converted into an empty activity.
For the relationship between the contents of elements and attributes defined in the BPEL file, and the contents of
business process definition, see Appendix E. Support Range of BPEL Used by Linking with an High Level Design
Tool.

When a message type variable is defined in the BPEL file
If the message name is defined with the high level design tool and a message type variable is defined in the BPEL
file, the variable type is converted into string type (string) in the business process that is created by importing the
BPEL file.
In this case, import the file, and then change the variable type to message type (messageType). For details on
defining the variables, see 5.5.1(6) Variable definition methods.

When the invoke service activity is defined
When importing a BPEL file to create a business process, the invoke element in the BPEL file is converted into
an invoke service activity. The local name of the portType attribute in the invoke element is converted into an
invoke service name and the operation attribute is converted into an operation name.
However, if the service or operation is not relevant to the repository, the service name and operation name are not
converted.
If the service name and operation name are not converted, after importing the BPEL file, you need to create the
service adapter and business process to be invoked, and then allocate the service name and operation name.

When more than one activity with a long name is defined in the BPEL file
When a horizontal-direction arrangement is specified and more than one activity with a long name is defined,
activities might overlap at the tip of the canvas after import. In such cases, you re-arrange activities.

(3) Setting up status persistence
Business processes have two types such as a business process for which execution status and execution history has
persistence to the database and a business process for which execution status and execution history does not have
persistence to the database. Persistence implies recording the execution status and execution history of a business
process to the database.

As a business process that has persistence has record of execution status and execution history of a process and hence
you can understand the progress of process execution and re-execute the process in case of failure Whereas in case of
business process that does not have persistence , you cannot acquire record of execution status and execution history
of a process and hence set this business process when there is a necessity of realizing a high performance.

There are limitations such as some operations that you can perform in business process having persistence, cannot be
performed in the business process that does not have persistence. You can define a business process that does not have
persistence, when the following conditions are fulfilled:

1. Invoke service activity for invoking a service is not included for an asynchronous service adapter.

2. Standby activity is not included.

3. Multiple Receive activities are not included.

4. Re-execution of a process instance is not used (in case of failure, re-execute Invoke service request (invoking a
business process) from the service requester.

5. Defining Business Processes

137

! Important note

You cannot use list specification method of while activity, in case of a business process that has persistence.

5.2.2 Using an Already Defined Business Process to Add Business
Processes

You can copy already defined business processes to add business processes.

1. In the service definition list in the tree view, choose and right-click the business process to be copied.
The Service List pop-up menu opens.

2. On the pop-up menu, click Copy.
A copy of the chooseed business process is created. A different name and ID# are automatically assigned to the
copied business process (service name of the business process) and service ID to prevent any conflict within the
system.

#
A number that is unique within the system and that is automatically assigned when an adapter or business process
is added. The service ID can be changed, but a service ID that is already in use cannot be assigned.

! Important note

If a business process is duplicated, the user-defined reception included in the duplicated business process is also
duplicated. However, you cannot duplicate user-defined reception only.

5. Defining Business Processes

138

5.3 Defining Business Process Contents
You define the business process contents in the Business Process Definition screen.

The Business Process Definition screen opens when you double-click a business process inside a service displayed in
the service definition list in the tree view.

For details about the Business Process Definition screen, see the manual Cosminexus Service Platform Overview.

In the Business Process Definition screen, you define activities, variables, and correlation sets.

(1) Activities
A business process is defined by linking multiple activities.

An activity is a component that becomes the configuration element of a business process and also expresses a
processing structure. You link multiple activities to define a business process processing flow, and define a business
process by deploying and linking activities on-screen.

For details about how to deploy and link activities, see 5.4 Deploying and Linking Activities.

! Important note

The maximum number of activity instances that can be created in the business process when executing a business process is
2,147,483,648. In the following cases, the maximum number that can be created is 32,768.

• When the activitynumber-maximum-compatible property is set as ON
• When overwrite installation is executed for environment using database during migration from old version

The HCSC server must be re-setup to change the maximum number. Note that the execution log of business processes is
deleted during re-setup.

If an attempt is made to create activity instances exceeding the maximum number, an error occurs in the business process.

Note that the activity instance includes start activities, end activities and sequence activities.

If a process is repeated in a while activity, activity instances are created only for the number of activities to be executed.

(2) Variables and correlation sets
You can define variables and correlation sets in a business process.

(a) Variables

When a variable is used as a value of a term in a conditional expression inside a business process, you need to declare
that variable in activity definition.

For details about the types of variables that can be used inside business processes, their relationship to activities, and
how to define these variables, see 5.5.1 Defining Variables.

(b) Correlation sets

A correlation set is a character string that is used to uniquely identify the request message to be sent from a service
requester to a service component via an HCSC server.

For details about correlation sets, their relationship to activities, and how to define correlation sets, see 5.5.2 Defining
Correlation Sets.

! Important note

During business process definition, values being entered are not checked for validity. The correctness of the entered values
is checked during business process validation. If an entered value is incorrect, the validation returns an error.

5. Defining Business Processes

139

5.4 Deploying and Linking Activities
In the Business Process Definition screen, you deploy activities on a canvas and link them to define a business process
processing flow. To specify fault handling, define fault handling for the link between the activities.

This section explains how to deploy activities, link them, and define fault handling.

5.4.1 Deploying Activities
This subsection explains how to deploy activities in the Business Process Definition screen.

1. In the basic activities or structure activities on the palette, click the activity to be deployed on the canvas.
The clicked activity becomes chooseed.

2. Click an approp

3. riate location on the canvas.
The chooseed activity is deployed on the canvas. You can move the deployed activity by dragging it to another
location.

For details about the content that can be defined for each activity, see 5.6 Defining Activities.

Tip
If you import a BPEL file created by the high level design tool and add a business process, the deployment of the activity
initially displayed on the canvas differs depending on the deployment method chooseed while adding a business process.

If you choose Vertical
The activity is initially displayed with the process flowing from the top to bottom.

If you choose Horizontal
The activity is initially displayed with the process flowing from the left to the right.

Drag & drop or align the activity as needed. For details about operations in the Business Process Definition screen (canvas),
see the manual Cosminexus Service Platform Reference.

5.4.2 Linking Activities
Linking two activities deployed on the canvas defines a business process execution sequence.

(1) Link types
The following types of links can be used for activities:

• Link based on connection
This type is used to link normal activities.

• Link based on fault connection
This type is used to define fault handling to be executed when a fault occurs in activities. For details about
defining fault handling, see 5.4.3 Defining Fault Handling.

• Link based on link connection
This type is used to define a link in parallel processing that uses flow activities. For details about parallel
processing and links, see 5.6.15 Flow Activities.

How the linking line is displayed on the canvas differs depending on the linking method. The following table
describes the relationship between linking methods and linking lines.

5. Defining Business Processes

140

Table 5‒1: Linking lines displayed on the screen

Linking method Linking line displayed Line color Line type Termination

Link based on connection Black Solid line Triangular
arrow

Link based on fault connection Red Broken line Triangular
arrow

Link based on link connection Blue Dotted line Line arrow

(2) Link setting method
To link activities:

1. On the palette, click Connection, Link, or Fault.
Connection, fault connection, or link connection is selected.
In this state, move the cursor to an activity. If that activity can be specified as a link source, its background color
changes.

2. From the activities deployed on the canvas, click the activity that is to become the link source.
The activity that is to become the link source is set.
In this state, move the cursor to another activity. If that activity can be specified as a link destination, its
background color changes.

3. From the activities deployed on the canvas, click the activity that is to become the link destination.
The link-source and link-destination activities become linked.

(3) Changing links
To change an already specified link, drag and drop the starting point or termination point of a linking line into another
activity.

(4) Bending linking lines
You can bend and display linking lines. You can use this operation to rearrange the linking lines on the canvas when
the links among activities become complex. The method for bending linking lines is described as follows:

1. On the canvas, select a linking line.
Points at which the linking line can be bent (bend points) are displayed between the starting and termination points
of the linking line.

2. Align the pointer of the selection tool to a bend point.

A cross-shaped arrow () appears.

3. Drag and drop the arrow into any position.
The linking line bends at the bend point.
On a linking line that has been bent at a bend point, the following positions can also be used as bend points:

• Between the starting point of the linking line and the bend point

• Between the bend point and the termination point of the linking line

• Between the bend point and another bend point

(5) Conditions for linking activities
Whether an activity can be used as a link source or link destination differs depending on the type of activity and the
link used. The following table describes activities that can or cannot be used as link sources or link destinations.

5. Defining Business Processes

141

Table 5‒2: Activities that can or cannot be used as link sources or link destinations

Activity

Connection Fault connection Link connection

Link source Link
destination Link source Link

destination Link source Link
destination

Start Y -- -- -- -- --

Receive Y Y -- Y Y Y

Reply Y Y -- Y Y Y

Invoke service Y Y Y Y Y Y

Invoke Java Y Y Y Y Y Y

Data transformation Y Y -- Y Y Y

Assign Y Y -- Y Y Y

Empty Y Y -- Y Y Y

Throw -- Y -- Y Y Y

Standby Y Y -- Y Y Y

Validate Y Y -- Y Y Y

Scope Y Y Y Y Y Y

While Y Y -- Y Y Y

Switch (Start) Y Y -- Y Y Y

Switch (End) Y Y -- -- -- --

Flow (Start) Y Y -- Y Y Y

Flow (End) Y Y -- -- -- --

End -- Y -- -- -- --

Legend:
Y: Activity can be used as a link source or link destination.
--: Activity cannot be used as a link source or link destination.

When activities are linked through a connection, an activity that becomes the transition source to another activity is
called a transition-source activity, and an activity that becomes the transition destination from another activity is
called a transition-destination activity.

The number of transition-source activities and transition-destination activities that can be linked using a connection
(excluding fault connections and link connections) varies according to each activity.

The following table describes the number of transition-source and transition-destination activities that can be linked
for each activity.

Table 5‒3: Number of transition-source and transition-destination activities that can be linked

Activity Number of transition-source
activities that can be linked

Number of transition-destination
activities that can be linked

Start 0 1

Receive 1 1

Reply 1 1

Invoke service 1 1

Invoke Java 1 1

5. Defining Business Processes

142

Activity Number of transition-source
activities that can be linked

Number of transition-destination
activities that can be linked

Data transformation 1 1

Assign 1 1

Empty 1 1

Throw 1 0

Standby 1 1

Validate 1 1

Scope 1 1

While 1 1

Switch (Start) 1 1 or more

Switch (End) 1 or more 1

Flow (Start) 1 1 or more

Flow (End) 1 or more 1

End 1 0

! Important note

A receive activity that generates instances is the only basic activity that can be executed first in a business process.

(6) Notes on using connections

• If yes is selected for Transition condition for the link destination in the Link dialog box, specify transition
conditions.

• Do not specify a link connection as a loop.

• Link names must be unique within each business process.

• Do not extend a link connection from the outside of fault handling into the inside of the fault handling.

• If two activities linked with a connection are brought close to each other, the directions of the arrows on the
linking line might appear reversed from their intended directions. To avoid this problem, deploy linked activities
at a distance from each other.

5.4.3 Defining Fault Handling
To enable process execution when a fault occurs in activities, deploy an activity for fault handling and execute fault
handling.

You define fault handling by linking the activity in which a fault occurs with the activity that executes fault handling.
Use fault connection for the link.

(1) Procedure for defining fault handling
To define fault handling:

1. Deploy the activity in which a fault occurs and the activity that executes fault handling on the canvas, and define
their details.
You can define multiple activities that execute fault handling.
For details about how to deploy activities, see 5.4.1 Deploying Activities. For details about how to define
individual activities, see 5.6 Defining Activities.

2. Use fault connection to link the activity in which a fault occurs with the activity that executes fault handling.

5. Defining Business Processes

143

For details about how to link activities, see 5.4.2(2) Link setting method. For details about activities that can use
fault connection, see 5.4.2(5) Conditions for linking activities.

3. Double-click a link line.
The Fault Handler dialog box opens.
For details about the input and display contents of the Fault Handler dialog box, see the manual Cosminexus
Service Platform Reference. Note that only the message type variables are allocated for fault handling.

4. Define fault handling conditions.
In the Allocated variable drop-down list, specify the variable that is subject to a fault. In the Transition destination
drop-down list, specify the link-destination activity that executes processing when a fault occurs.
To specify fault handling to be executed when an undefined fault occurs, click catch-all in the Allocated variable
drop-down list. If the activity in which a fault occurs is a Java-invoking activity, only catch-all fault handling can
be specified.
For converting an exception for error occurred when invoking service component (Web Services) from service
adapter to a fault message in service adapter, choose the definition file to be set in the variable definition from the
Allocated variable dropdown list. For details about how to set the definition file, see 5.5.1(6)(a) Defining new
variables.

5. Click OK.

As shown in the following figure, when a fault occurs, the process moves to the next activity from the one in which
the fault occurred after the fault handling is executed:

Figure 5‒2: Processing after fault handling is executed

(2) Defining fault handling when executed in a batch
When a process contains multiple activities that might return a fault, you can execute fault handling for processes, in a
batch instead of defining fault handling for each activity. In such a case, compile processes within the processing into
one, and then define fault handling.

5. Defining Business Processes

144

Figure 5‒3: Fault handling defined by using the scope activity

(3) Message format used for defining fault handling in a business process
This point describes the message format used for defining the fault processing in a business process.

(a) Message format corresponding to multiple fault names

From a Java program that throws multiple user-defined exceptions, use the SOAP application development support
functionality (Java2WSDL command) and create a WSDL of the Document style. If you define an adapter using
this WSDL as the input, the message format corresponding to the multiple fault names displayed in Fault messages of
the Adapter Definition screen will become the same. In such a case, the message format includes multiple root
elements as shown in the following example:

Example of a message format (root schema) corresponding to multiple fault names
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://service"

5. Defining Business Processes

145

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://service"
 xmlns:tns2="http://data.service"
 xmlns:tns3="http://fault.service">
 <xsd:import namespace="http://data.service"
 schemaLocation="cscformat2.xsd"/>
 <xsd:import namespace="http://fault.service"
 schemaLocation="cscformat3.xsd"/>
 <xsd:element name="order">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="in0" type="tns2:OrderData"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="orderResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="orderReturn" type="tns2:OrderResult"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="StockShortageFault"
 type="tns3:StockShortageFault"/>
 <xsd:element name="InvalidCustomerFault"
 type="tns:InvalidCustomerFault"/>
 <xsd:complexType name="InvalidCustomerFault">
 <xsd:sequence>
 <xsd:element name="CustomerName" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

In the above example, fault messages corresponding to the two faults StockShortageFault and
InvalidCustomerFault are handled by a single message format cscformat1.xsd.

The same format is applicable even when an adapter is defined based on the WSDL corrected according to the
procedure described in Notes of 4.3.2 Creating a Service Component Message (for Web Services), so as to handle the
faults after creating an rpc style WSDL using the SOAP application development support functionality
(Java2WSDL command).

When this message format is defined as a separate variable for each fault, and catch is defined twice as the allocated
variable in the Fault Handler dialog box to separate the processing according to the generated faults, the format of
the two variables allocated as catch will become the same. Therefore, no matter which fault occurs, the catch
allocated variable defined first will be applicable, and the corresponding fault handling will not be invoked for the
cause.

When the fault message has such a format, make sure to take action by defining the business process according to the
following method:

(b) Definition method

Instead of defining variables for each fault, define a single variable that will be common for faults having the same
message format. Also specify a single transition destination for fault handling, and allocate a common variable in the
Fault Handler dialog box. However, for unexpected fault handling, you can additionally set up the transition
destination for catchAll.

Arrange a switch activity in the transition destination of fault processing, and describe the switch conditions for
separating the faults that occur based on the element names of the root.

The following figure shows the schematic diagram when a common variable is allocated:

5. Defining Business Processes

146

Figure 5‒4: Schematic diagram when a common variable is allocated

An example of describing the switch condition for acquiring the root element name and then judging the match (Root
element judgment in the figure) is as follows:

csc:getVariableData('Fault variable 1','local-name(/*)')="StockShortageFault"

In Fault variable 1, specify the variable name of the fault common variable, and in
StockShortageFault, specify the root element name.

5. Defining Business Processes

147

5.5 Defining Variables and Correlation Sets

5.5.1 Defining Variables
When defining a business process, you can include characters, numeric values to be included in messages, numeric
values that become terms in conditional expressions, or messages as variables. Because variable values can be
recorded in a database, they can be managed as execution history.

(1) Variable types
There are two types of variables: global variables and local variables.

• Global variables
A global variable can be referenced from anywhere within a single process instance. Additionally, because the
values of variables that have been processed are recorded in a database, they can be used for analyzing the
progress of the entire business process. Variable names must be unique within each process.

• Local variables
A local variable can be referenced with the declared scope. When the declared scope is terminated, the values of
the variables are also deleted from a database. Therefore, local variables can be used for temporarily referencing
values such as condition determination during process execution. Variable names must be unique within each
scope, but an identical variable name can be declared in a different scope. However, when a variable is to be
referenced, the variable that is declared in the innermost scope at the referencing location is referenced.

(2) Variable formats
In variables, you can define the values of following types. You can save the variable only for the value of defined type.

• boolean type: positive or negative (true or false)

• numeric type: Numeric value (floating decimal of 64 bit)

• string type: Character string

• message type: Values that substitute variable conform to the format definition related to variables. Define the
following formats, depending on the types of variable:
XML: Define the format in XML schema
non-XML: Define the format in binary format definition file
any: Do not define the format

(3) Activities to which variables can be assigned
You can assign variables to the activities and items shown in the following table.

Table 5‒4: Activities and items to which variables can be assigned

Activity Item Allocated contents Remarks

Receive activity Request message Variable of message type for referencing the
request message received from the service
requester

It is used in also in
specification of
correlation set.

Reply activity Response message Variable of message type for referencing response
message or fault message to the service requester

Invoke service activity
(synchronous)

Request message Variable of message type for referencing the
request message when invoking the synchronous
service

Response message Variable of message type for referencing the
response message received from the invoked
synchronous service

5. Defining Business Processes

148

Activity Item Allocated contents Remarks

Invoke service activity
(synchronous)

Fault message Variable of message type for referencing response
message to be received when fault occurs in the
invoked synchronous service

--

Invoke service activity
(asynchronous)

Request message Variable for message type for referencing the
request message when invoking the asynchronous
service

It is used also in the
specification of
correlation set

Invoke java activity Argument Variable for referencing the value, which serves as
argument when invoking the user-created Java
class

--

Return value Variable for referencing the return value from the
invoked Java class

--

Data transformation
activity

Transformation
source data

This is variable of message type for referencing
the transformation source data when transforming
the data in data transformation activity and you
can specify multiple variables

--

Transformation
destination data

Variable of the message type for referencing the
transformation destination data when transforming
the data in the data transformation activity

--

Assign activity Copy source Variable for referencing the data that serves as
copy source when copying the data in assign
activity

--

Copy destination Variable for referencing the data that serves as
copy destination when copying the data in assign
activity

--

Throw activity Fault message Variable of message type for referencing the fault
message, when throwing fault in the throw activity

--

Standby activity Standby time Variable for referencing the value of standby time --

Validate activity Variables to be
validated

Variable to be validated --

While activity Repetition condition Variable for referencing the value of while loop
variable or end condition expression

--

Repetition list Variable for referencing in the expression for
acquiring the repetition list

--

Repetition element
variable

Variable for storing the repetition element --

Switch activity Distribution
condition

Variable for referencing the value that serves as
item of distribution condition expression

--

(Legend)
--: Not applicable

(4) Showing variables and acquiring paths
Clicking the Show Tree button in the Variable-Correlation Set dialog box opens XML schema viewer Parameters. You
can show XML schemas that match variables in a tree view. When you choose a variable displayed in the tree view,
the path to the chooseed variable is displayed in Chooseed path as an absolute path from the root element.

When you choose and right-click a variable and choose Get Path, you can obtain the absolute path from the root
element. You can paste the acquired path in the desired location.

! Important note

Take note of the following points when operating the Show Variables dialog box:

5. Defining Business Processes

149

• You cannot edit the XML schema displayed in the Show Variables dialog box.

• You can choose only one variable in the Tree view.

• If elements re-enter the XML schema of the variables that you want to display in the Show Variables dialog box,
elements from the second hierarchy onwards will not be displayed.

• The substitutionGroup attribute of the XML schema will be ignored.

(5) Notes on using variables

(a) Use of variables when scope activities are used

You can add or edit variables that are used by activities inside business processes or scopes. In this case, variables
declared outside a scope can be referenced from inside the scope, but variables declared inside a scope cannot be
referenced from outside the scope. Note that the same variable names can be declared within different scopes. In the
following figure, while Scope A and Scope B can reference variables outside their scope in other parts of the process,
the variables of Scope A and Scope B cannot be referenced from the process (from outside their scope).

Figure 5‒5: Relationship between a scope and variables

(b) Use of variables when defining fault handling

When defining fault handling for a scope activity, choose the variable to be used as an assign variable in the Fault
Handler dialog box. The chooseable variables are those that are defined in the fault-target scope (including a scope
activity) or a scope on the outside. However, if a variable having the same name as the variable chooseed in the Fault
Handler dialog box is also defined in the fault-target scope, the variable defined in the fault-target scope, and not the
variable chooseed in the Fault Handler dialog box, is used during execution, and may result in unintended operations.
Therefore, when defining fault handling for a scope activity, ensure that no variable having the same name as the
variable chooseed in the Fault Handler dialog box is defined in the fault-target scope.

(c) Message formats used when defining variables

File name of a message format
When defining variables, you can specify definition files in the message format having the same file name but
different XML schemas for multiple variables. However, because only one of these XML schemas is used during

5. Defining Business Processes

150

execution, an unintended operation may occur. Therefore, ensure that the file names in the message format
specified when defining variables correspond to XML schemas on a one-to-one basis.

Setting a message format that contains external XML schema references
For specifying a message format that references an external XML schema, you must specify a file for the root
schema. The external XML schema file referenced from the root schema is automatically imported.

Format of a message format
The message format used in the variable must satisfy the conditions described in 2.6.5 Scoping of XML schema.
For details about the conditions, see 2.6.5 Scoping of XML schema.

(d) Modifying the definition information of variables

You can change or delete the definition information (variable name, type, message format and part) of variable and
correlation set as and when required.

! Important note

Take note of the following points, when changing the definition information of variables,

• When you change the message format of variables used in data transformation activity, re-define the data
transformation. For details on definition when changing the message format, see "6.3.2 Procedure for defining changed
message formats".

• When you change the name of a variable used in data transformation activity for which data transformation definition
file has been defined, warning message is displayed. In that case, mapping related to the changed variable is discarded.

• When you change the variable definition information, you must re-assign to the location where that variable is assigned.
For example, when you assign variable X to some activity and then change the name of that variable X to variable Y,
perform either of the following:
Re-assign a variable again to the activity
Re-define variable X.

• You must take care when changing variable name after upgrading the version of a business process. For details, see
"5.9.4(3) Points to be noted when upgrading the version of business process".

(e) Initializing definition information of variables

When executing a business process, you must set a numeric value or message, which can serve as item of numeric
value or condition expression, included in the character or message, in the variable.

When receiving a request from the service requester or receiving a response from the service by Invoke service
activity, a value has been entered in the variable. However, in other cases, you must set a value to variable ,(initialize)
by using data transformation activity or Switch activity.

Following section describes the cases when variable initialization is not required:

For the variables specified in the following locations, value has been set before referencing the variable (message) and
hence you need not initialize these variables:

• Variable that received a request from the service requester

• Body assigning variable/header assigning variable of the reply message of Invoke service activity

• Assigned variable for return value of Invoke java activity

• Transformation destination variable of data transformation activity

• Copy destination variable of Assign activity

• Assigned variable specified in a fault connection

Following figure shows the example when initializing a variable is not required:

5. Defining Business Processes

151

Figure 5‒6: Examples when initialing a variable is not required

Variable A:
Request message from the service requester is set as the value of variable. Also, as variable A for which service
invoking value has already been set, initializing is not required.

Variable B:
As variable has been set in the reply message from a service, initializing is not required.

Description about the cases when initializing a variable is required, is as follows:

As value is not set for the variable not specified in the location shown when initializing the variable is not required, if
you reference such variables in a business process, an error occurs. You must set the value beforehand and initialize
the variable.

Following are the locations where variables for which value has not been set, can be specified:

• Body assigning variable/header assigning variable of the request message of Invoke service activity

• Assigned variable for arguments of Invoke java activity

• Transformation source variable o the data transformation activity

• Copy source variable of the Assign activity

• Location where variable name is described in Standby activity, Validate activity, While activity, Switch activity,
XPath expression of link connection

• Body assigning variable/header assigning variable of the reply activity

Following figure shows the examples of cases when initializing a variable is required:

5. Defining Business Processes

152

Figure 5‒7: Example when initializing a variable is required

Variable A:
As a request message from the service requester has been set in the variable, initializing is not required.

Variable B:
Initializing a variable is required. In data transformation A, you can set a value in variable B, based on the
information of variable A.

Variable C:
Initializing is not required as the reply message from the service is set in the variable.

Variable D:
Initializing a variable is required. In data transformation B, you can set value to variableD, based on the
information of variableC.

(6) Variable definition methods

(a) Defining new variables

The procedure for defining new variables is described below. Note that variables cannot be defined on a canvas inside
a while activity.

1. Use one of the following methods to open the Variable-Correlation Set dialog box:

• Double-click the Variable-Correlation Set icon on the canvas in the Business Process Definition screen.

• Click Edit in the dialog boxes for the following activities:
 Receive activity
 Reply activity
 Service invocation activity
 Java invocation activity

5. Defining Business Processes

153

 Data transformation activity
 Assign activity
 Throw activity

2. In the list that is displayed, choose Variable List.

3. Enter a variable name.

4. Choose a variable type from the drop-down list.

5. Perform one of the following operations as needed:

If the variable type is message type and you want to set the message format specified in the request message,
response message, or fault message of a service component to be invoked or user-defined reception to variable:

Click Get Format to view the Get Message Format dialog box. Specify the message format you want to use
in the Get Message Format dialog box.
For details about the input and display items of the Get Message Format dialog box, see the manual
Cosminexus Service Platform Reference.
Proceed to step 6. after the operations in the Get Message Format dialog box are complete.

If the variable type is message type, and for the cases other than mentioned above
Click ... and set the definition file of the message format that uses the variable.
For converting an exception for error occurred when invoking service component (Web Services) from service
adapter to a fault message in service adapter, click the ... button and choose Cosminexus installation
directory\CSC\system\msg\cscfault.xsd.

6. When the variable type is Message, choose the Part Specifications check box.

7. Click Add Line and specify a part name, an expression, and a type.

8. Click Add.
The added variable is displayed in the variable list.

9. Click OK.

(b) When a message format definition file is modified

If the message format definition file specified during the definition of the variable is modified, the contents of the
modified definition file can be committed using the following procedure:

1. Open the Variable-Correlation Set dialog box.
For details about how to open the Variable-Correlation Set dialog box, see step 1 in 5.5.1(6)(a) Defining new
variables.

2. Perform one of the following operations:

If the variable type is message type and you want to set the message format specified in the request message,
response message, or fault message of a service component to be invoked or user-defined reception to variable:

Click Get Format to view the Get Message Format dialog box. Specify the message format you want to use
in the Get Message Format dialog box.
For details about the input and display items of the Get Message Format dialog box, see the manual
Cosminexus Service Platform Reference.
Proceed to step 3. after the operations in the Get Message Format dialog box are complete.

If the variable type is message type, and for the cases other than mentioned above
Click ... and set the definition file of the message format that uses the variable.

3. Click Update button.

(7) Output of message format definition file
Description about a method to output a message format definition file is as follows:

When you want to set the message format of variable set in the activity at copy source, to the variable of activity at
copy destination, you can output a message format definition file in the Variable/correlation set list dialog.

Format of the message format definition file that you can output, is either of the following formats:

• Extension of the message format definition file: xsd (variable type: XML)

5. Defining Business Processes

154

• Extension of the message format definition file: fdx (variable type: non-XML)

Procedure to output the message format definition file is as follows:

1. Click [Output] button of the Variable/correlation set list dialog.
Dialog for specifying the output destination is displayed.

2. Specify an output destination and click [OK] button.
The message format definition file is output to the specified folder. In case of message type (XML) variable
formed from definition file having multiple output targets, output file name is automatically assigned.

5.5.2 Defining Correlation Sets
A correlation set is a character string that is used to uniquely identify a request message sent from a service requester.

(1) Identifying process instancesbased oncorrelation sets
The business process generates a process instance for each request to a receive activity for which yes is specified for
Instance generation in the Receive Activity dialog box.

If the HCSC server contains multiple process instances that can receive request messages from service requesters, the
HCSC server identifies each process instance by using the correlation set value contained in each request message.

For example, assume that two receive activities that receive requests from service requesters are defined in a business
process. A request is sent to the first receive activity, and the second receive activity places the business process in a
wait request status. In this case, the value of the correlation set included in a request message to the first receive
activity must be included in a request message to the second receive activity. Specifying the same value for these
correlation sets enables the system to identify that these two requests go to the same process instance. This enables
subsequent processing to continue after the second receive activity.

The following figure shows an example of identifying process instances based on correlation sets.

5. Defining Business Processes

155

Figure 5‒8: Example of identifying process instances based on correlation sets

To implement a business process that has multiple receive activities, which of the values included in a request message
is to be used for the correlation set must be defined in the business process. When designing a business process and
service requester, a unique key value identifying each process instance must be set in a request message from the
service requester.

A correlation set can be configured from a single part contained in a request message or by linking multiple parts
contained in a request message.

When using correlation sets in a business process, you can search the execution history of process instances by using
the value of the correlation set as a key. You can search the execution history to confirm the execution status of a
particular request. For details about the execution history of process instances, see 6.1 Management of execution log of
process instances in the uCosminexus Service Platform Setup and Operation Guide.

5. Defining Business Processes

156

(2) Activities to which correlation sets can be assigned
In a business process, you can specify correlation sets for receive activities, reply activities, and invoke service
activities. You can also specify multiple correlation sets for a single message.

Whether a correlation set must be specified and what role it plays differ depending on the activity type.

(a) Receive activities and reply activities

For receive activities and reply activities, the specification requirement and contents of correlation sets differ
depending on the instance generation settings, and on whether the assigned correlation set is to be initialized.

You can specify instance generation in the Receive Activity dialog box. You can use the Allocating Correlation Set
Group dialog box to specify whether to initialize correlation sets.

For details about the Receive Activity dialog box, see 1.4.7 Receive Activity Dialog in the manual uCosminexus
Service Platform Reference Guide. For details about the Allocating Correlation Set Group dialog box, see 1.4.3
Allocating Correlation Set Group Dialog in the manual uCosminexus Service Platform Reference Guide.

Table 5‒5: Specification requirement and contents of correlation sets (receive and reply)

Activity Instance
generation

Initialization
specification

Specification
requirement

Maximum
number of

specifications
Contents of specified correlation set

Receive yes yes Optional 1 When a process instance is generated, a
correlation set for identifying process
instances is generated from a receive message
defined as a variable.

no Cannot be
specified

-- --

no yes Optional 1 After a generated process instance is retrieved,
a new correlation set corresponding to the
retrieved process instance is generated from a
receive message defined as a variable.

no Required 1 The specified correlation set is used as a
correlation set within the receive message
defined as a variable, to retrieve generated
process instances.

Reply -- yes Optional 1 When returning a reply to a service requester,
a new correlation set is generated from a reply
message defined as a variable.

-- no Optional 1 When returning a reply to a service requester,
the system checks whether the correlation set
value within the reply message defined as a
variable matches the correlation set value of
the process instance.

Legend:
--: Not applicable

(b) Invoke service activities

For invoke service activities, the specification requirement and contents of a correlation set differ depending on the
pattern settings for the assigned correlation set and whether the correlation set is to be initialized.

You can use the Allocating Correlation Set Group dialog box to specify pattern settings for the assigned correlation set
and whether to initialize the correlation set.

For details about the Allocating Correlation Set Group dialog box, see 1.4.3 Allocating Correlation Set Group Dialog
in the manual uCosminexus Service Platform Reference Guide.

5. Defining Business Processes

157

Table 5‒6: Invoke service activities to which correlation sets can be assigned

Activity Pattern
specification

Initialization
specification

Specification
requirement

Maximum
number of

specifications
Contents of specified correlation set

Invoke
service

out yes Optional 1 When sending a message to a service
component, a new correlation set is
generated from a send message defined as a
variable.

no Optional 1 When sending a message to a service
component, the system checks whether the
correlation set value within the send
message defined as a variable matches the
correlation set value of the process instance.

in yes Optional 1 When a reply is received from a service
component, a new correlation set is
generated from a reply message defined as a
variable.

no Optional 1 When a reply is received from a service
component, the system checks whether the
correlation set value within the reply
message defined as a variable matches the
correlation set value of the process instance.

out-in yes Optional 1 During transmission:
When sending a message to a service
component, a new correlation set is
generated from a send message defined
as a variable.

During reception:
When a reply is received from a service
component, the system checks whether
the correlation set value within the reply
message defined as a variable matches
the correlation set value of the process
instance.

no Optional 1 During transmission:
When sending a message to a service
component, the system checks whether
the correlation set value within the send
message defined as a variable matches
the correlation set value of the process
instance.

During reception:
When a reply is received from a service
component, the system checks whether
the correlation set value within the reply
message defined as a variable matches
the correlation set value of the process
instance.

(3) Notes on using correlation sets

(a) Use of correlation sets when scope activities are used

You can add or edit the correlation sets to be used by activities within a business process or scope, in the same way
you can add or edit variables. For details, see 5.5.1(5)(a) Use of variables when scope activities are used.

(b) Changing the definition information for correlation sets

If necessary, you can change or delete the definition information for correlation sets.

5. Defining Business Processes

158

For notes on changing the variable definition information used in correlation set definitions, see 5.5.1(5)(d) Modifying
the definition information of variables.

Care is required when changing the correlation set after upgrading the version of a business process. For details, see
5.9.4(3) Points to be noted when upgrading the version of business process.

! Important note

If you change the correlation set definition information, you might need to reallocate the correlation set to the sections
where it was allocated.

For example, if correlation set A is allocated to a certain activity, and then the name of correlation set A is changed to
correlation set B, perform one of the following operations:

• Reallocate the correlation set to the activity.

• Redefine correlation set A.

(c) Scope of correlation set

If a correlation set is declared by a global variable of a business process, the correlation set is valid until the
processing of the applicable process instance finishes.

If a correlation set used by an activity in a scope is also declared, the correlation set is valid until the processing within
the scope finishes.

The correlation set becomes invalid when the processing finishes.

(4) Correlation set definition methods

(a) Defining new correlation sets

Before defining a correlation set, you must define variables and specify some of these variables to be used as part of
the correlation set. The procedure for defining new correlation sets is described below. Note that correlation sets
cannot be defined on the canvas within a while activity.

1. Use one of the following methods to open the List Of Variables And Correlation Sets dialog box:

• In the Define Business Process window, double-click the Variable-Correlation icon on the canvas.

• Click Edit in the dialog boxes for the following activities:
- Receive activity
- Reply activity
- Invoke service activity

2. In the list, select CorrelationSet List.

3. Enter a correlation set name.

4. Click Add Line and add a variable name and a part name in Acquisition Part to specify the part to be used as the
correlation set.
For correlation sets, you can specify a variable of the message type (XML) and a part name specifying a type other
than the message type.
If multiple message type variables are used, select the variables and part names to be used from the drop-down
list.
To link multiple parts and set the linked character string as the correlation set value, click Add Line again and add
the variables and part names to be used.

5. Click Add.
The added correlation set is displayed in the Correlation Set List.

6. Click OK.

(b) Specifying correlation sets from activities

The procedure for specifying correlation sets from the activities shown in Table 5-6 Invoke service activities to which
correlation sets can be assigned is described as follows:

1. Click Setting in the dialog box for each activity.

5. Defining Business Processes

159

The Allocating Correlation Set Group dialog box appears.

2. Select the correlation set to be assigned to the activity from the Correlation set drop-down list.

3. If you cannot find the desired correlation set in the Correlation set drop-down list, click Edit.

4. The List Of Variables And Correlation Sets dialog box appears. Add a correlation set.

5. In the Allocating Correlation Set Group dialog box, specify whether to initialize the correlation set.

(5) Definition example that uses correlation sets
The process of defining a business process that uses correlation sets is explained by using an example.

The example in the following figure uses a business process that asynchronously receives application requests and
application result confirmation requests.

Figure 5‒9: Example of the business process to be defined

The contents of the variables, correlation sets, and receive activities for defining the business processes shown in the
above figure are described below.

Defining the variables and correlation sets
Define the variables and correlation sets to be used, as shown in the tables below. You can define variables and
correlation sets in the List Of Variables And Correlation Sets dialog box. For details about the List Of Variables
And Correlation Sets dialog box, see 1.4.1 List Of Variables And Correlation Sets Dialog in the manual
uCosminexus Service Platform Reference Guide.

Table 5‒7: Definition contents of variables for application request messages (example)

Setting items in the List Of Variables And Correlation Sets
dialog box (for displaying variable information) Values specified

Variable name ApplicationMessage

Type XML

Message format application-message.xsd

5. Defining Business Processes

160

Setting items in the List Of Variables And Correlation Sets
dialog box (for displaying variable information) Values specified

Part specifications Part name ApplicationID

Expression /req1/id

Type string

Table 5‒8: Definition contents of variables for application result confirmation request messages
(example)

Setting items in the List Of Variables And Correlation Sets
dialog box (for displaying variable information) Values specified

Variable name ApplicationConfirmationMessage

Type XML

Message format application-confirmation-message.xsd

Part specifications Part name ApplicationID

Expression /req2/id

Type string

Table 5‒9: Definition contents of correlation sets (example)

Setting items in the List Of Variables And Correlation Sets
dialog box (for displaying correlation set information) Values specified

Correlation set name ApplicationCorrelationID

Acquisition Part Variable name ApplicationMessage#

Part name ApplicationID

#
For Variable name, you can specify either the application message or application confirmation message.

Defining the receive activities
Define the receive activities as shown in the tables below. You can define receive activities in the Receive Activity
dialog box. For details about the Receive Activity dialog box, see 1.4.7 Receive Activity Dialog in the manual
uCosminexus Service Platform Reference Guide.

Table 5‒10: Definition contents of the receive activities for receiving application requests (example)

Setting items in the Receive Activity dialog box Values specified

Activity name ApplicationReception

Operation name request

Allocated variable ApplicationMessage

Correlation set group Correlation set name ApplicationCorrelation ID

Initialization yes

Communication model Async

Instance generation yes

Table 5‒11: Definition contents of the receive activities for receiving application result confirmation
requests (example)

Setting items in the Receive Activity dialog box Values specified

Activity name ConfirmationReception

5. Defining Business Processes

161

Setting items in the Receive Activity dialog box Values specified

Operation name confirm

Allocated variable ApplicationConfirmationMessage

Correlation set group Correlation set name ApplicationCorrelation ID

Initialization no

Communication model Synch

Instance generation no

5. Defining Business Processes

162

5.6 Defining Activities
You need to deploy and link activities on the canvas and define their details.

The following table describes the activities that can be defined and their definition contents.

Table 5‒12: Activities that can be defined

Activity Definition

Start Indicates the start of a business process.

Receive# Defines an interface for receiving a request message from a service requester.

Reply# Defines an interface for returning a response or fault to request messages received synchronously
from a service requester.

Invoke service# Defines the transmission of a request message to a defined HCSC component.

Invoke Java Defines the invocation of a Java class that implements a dedicated interface.

Data transformation Defines data transformation processing.

Assign Creates definitions for executing the following processes:

• Assigning a variable (basic type or message type) to another variable

• Assigning part of a variable to another variable

• Creating a value (numeric value, character string, or true/false value) and assigning it to a
variable

Empty Defines that the activity does nothing even if executed.

Throw Defines a fault notification to a higher-order scope activity.

Standby# Defines the process for putting a process flow in standby mode at regular intervals or until a certain
time limit.

Validate Validates messages transferred within a business process.

Scope Defines a process flow consisting of one or more activities as a single unit (scope).

While Defines repetitive processing of one or more activities under specified conditions.

Switch (Start) Defines switching of the processing of a business process according to the result of a conditional
expression. The switching start and end points must be defined.

Switch (End)

Flow (Start) Defines the division of a processing flow into multiple sequences and the concurrent execution of
these sequences (parallel processing of a flow).

The flow start and end points must be defined.Flow (End)

End Indicates the end of a business process.

#
If status persistence is specified for a business process, the processing of receive, reply, invoke service, and standby activities
determines the timing of finalizing the statuses of these activities (transaction start and commitment timing).
For details about transaction start and commitment timing, see 3.4 Transaction of a business process in the manual Service
Platform Overview.

The following subsections provide details of the definition of each activity.

Reference note
Any activities other than start and end activities can be copied to any locations on the business process screen while their
definition contents are retained.

However, variable inconsistencies might occur between activities during activity copying (for example, the variables to be
referenced might not exist at the copy destination). In such cases, output the message format of the variables from the copy

5. Defining Business Processes

163

source and set the format to the variables at the copy destination. For details about how to output the message format set for
variables, see 5.5.1(7) Output of message format definition file.

5.6.1 Start Activity
This activity indicates the start of a business process. Only a single start activity is deployed on the canvas. This
activity cannot be deleted.

There is no content to be defined for the start activity.

5.6.2 Receive Activity
This activity defines an interface required for a business process to receive a request message from a service requester.
If a single business process contains multiple operations to be open to service requesters, a receive activity must be
defined for each operation.

You can define the details of receive activities in the Receive Activity dialog box.

(1) Definition procedure
To define a receive activity:

1. Deploy a receive activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Use one of the following methods to open the Receive Activity dialog box:

• Double-click a receive activity on the canvas.

• Select and right-click a receive activity on the canvas, and then select Setting.

The Receive Activity dialog box appears.

3. Enter the necessary information in the Receive Activity dialog box.
For details about the display and input contents of the Receive Activity dialog box, see 1.4.7 Receive Activity
Dialog in the manual uCosminexus Service Platform Reference Guide.

• When editing the contents of the variable to be specified in Body allocated variable
Click Edit. The List Of Variables And Correlation Sets dialog box appears. In this dialog box, you can edit the
contents of the variable. In this item, you can specify a variable of the message type (XML, non-XML, or
any). For details about the List Of Variables And Correlation Sets dialog box, see 1.4.1 List Of Variables And
Correlation Sets Dialog in the manual uCosminexus Service Platform Reference Guide.
Note that if you have already defined a user-defined reception that has relevant operations, you can set the
message format for the user-defined reception to a variable. Specify this setting in the Take In Message
Format dialog box. The Take In Message Format dialog box appears when you click Take In in the List Of
Variables And Correlation Sets dialog box.
If you specify an operation name in the Receive Activity dialog box beforehand, the message format for the
relevant operation within the user-defined reception is already selected when the Take In Message Format
dialog box appears.
For details about the Take In Message Format dialog box, see 1.4.5 Take In Message Format Dialog in the
manual uCosminexus Service Platform Reference Guide.

• When specifying settings in Header allocated variable
Click Setting. The Header allocated variable dialog box appears. In this dialog box, you can specify a variable
to be allocated to the header. In this item, you can specify a variable of the message type (XML). Note that you
cannot specify a variable of the message type (non-XML or any). For details about the Header allocated
variable dialog box, see 1.4.2 Header allocated variable dialog in the manual uCosminexus Service Platform
Reference Guide.

• When specifying settings in Allocating Correlation Set Group
Click Setting. The Allocating Correlation Set Group dialog box appears. In this dialog box, you can specify
the correlation sets to be allocated. For details about the Allocating Correlation Set Group dialog box, see
1.4.3 Allocating Correlation Set Group Dialog in the manual uCosminexus Service Platform Reference Guide.

5. Defining Business Processes

164

4. Click OK.

(2) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must be no more than 64 bytes.

• Do not specify any control characters in the input fields of the dialog box.

• Specify operation names that are unique within a business process (and also within a scope).

• When a synchronous receive activity is specified, specify a reply activity that corresponds to the operation of the
receive activity.

• When a synchronous receive activity is specified, do not specify another receive activity between the receive
activity and the reply activity corresponding to the operation of that receive activity.

• Specify all receive activities generating instances so that they use the same correlation set.

• Create at least one receive activity that generates instances.

• Care is required when changing the definition information for a receive activity after upgrading the version of a
business process. For details, see 5.9.4(3) Points to be noted when upgrading the version of business process.

5.6.3 Reply Activity
This activity defines an interface for returning a response or fault to request messages received synchronously from
service requesters by the business process. A reply activity must be defined if synchronous reception is defined for the
communication model of the corresponding receive activity.

You can define the details of reply activities in the Reply Activity dialog box.

(1) Definition procedure
To define a reply activity:

1. Deploy a reply activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Use one of the following methods to open the Reply Activity dialog box:

• Double-click a reply activity on the canvas.

• Select and right-click a reply activity on the canvas, and then select Setting.

The Reply Activity dialog box appears.

3. Enter the necessary information in the Reply Activity dialog box.
For details about the display and input contents of the Reply Activity dialog box, see 1.4.8 Reply Activity Dialog
in the manual uCosminexus Service Platform Reference Guide.

• When editing the contents of the variable to be specified in Body allocated variable
Click Edit. The List Of Variables And Correlation Sets dialog box appears. In this dialog box, you can edit the
contents of the variable. In this item, you can specify a variable of the message type (XML, non-XML, or
any). For details about the List Of Variables And Correlation Sets dialog box, see 1.4.1 List Of Variables And
Correlation Sets Dialog in the manual uCosminexus Service Platform Reference Guide.
Note that if you have already defined a user-defined reception that has relevant operations, you can set the
message format for the user-defined reception to a variable. Specify this setting in the Take In Message
Format dialog box. The Take In Message Format dialog box appears when you click Take In in the List Of
Variables And Correlation Sets dialog box.
If you specify an operation name in the Reply Activity dialog box beforehand, the message format for the
relevant operation within the user-defined reception is already selected when the Take In Message Format
dialog box appears.
For details about the Take In Message Format dialog box, see 1.4.5 Take In Message Format Dialog in the
manual uCosminexus Service Platform Reference Guide.

• When specifying settings in Header allocated variable

5. Defining Business Processes

165

Click Setting. The Header allocated variable dialog box appears. In this dialog box, you can specify a variable
to be allocated to the header. In this item, you can specify a variable of the message type (XML). Note that you
cannot specify a variable of the message type (non-XML or any). For details about the Header allocated
variable dialog box, see 1.4.2 Header allocated variable dialog in the manual uCosminexus Service Platform
Reference Guide.

• When specifying settings in Allocating Correlation Set Group
Click Setting. The Allocating Correlation Set Group dialog box appears. In this dialog box, you can specify
the correlation sets to be allocated. For details about the Allocating Correlation Set Group dialog box, see
1.4.3 Allocating Correlation Set Group Dialog in the manual uCosminexus Service Platform Reference Guide.

4. Click OK.

(2) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must be no more than 64 bytes.

• Do not specify any control characters in the input fields of the dialog box.

• An operation name must be specified.

• If a fault name is specified, the fault returns.

• Allocated variables must be specified.

• For reply activities having the same operation name, specify the same allocated variable name.

• Specify a single allocated variable that corresponds to the fault names of the reply activities of the same operation.

• When a synchronous receive activity is specified, specify a reply activity that corresponds to the operation of the
receive activity.

• Do not specify another reply activity between a receive activity and the reply activity that corresponds to the
operation of the receive activity.

• Specify a variable of the message type (XML) for the allocated variable that is set to allocate fault handling. Note
that you cannot specify a variable of the message type (non-XML or any).

• Care is required when changing the definition information for a reply activity after upgrading the version of a
business process. For details, see 5.9.4(3) Points to be noted when upgrading the version of business process.

5.6.4 Service Invocation Activity
This activity defines transmission of a request message to an already defined HCSC component.

You define the details of service invocation activities in the Invoke Service Activity dialog box.

(1) Definition procedure
To define a receive activity:

1. Deploy a invoke service activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Use one of the following methods to open the Invoke Service Activity dialog box:

• Double-click a invoke service activity on the canvas.

• Choose and right-click a invoke service activity on the canvas, and choose Setting.

The Invoke Service Activity dialog box opens.

3. Enter the necessary information in the Invoke Service Activity dialog box.
For details on display/input contents of [Invoke service activity] dialog, see "1.4.9 Invoke service activity dialog"
in the "Service Platform Reference Guide".

• When editing the contents of variable to be set in [Body assigned variable for request message] and [Body
assigned variable for reply message]

5. Defining Business Processes

166

Click [Edit] button. You can edit the contents of variable, in the displayed [Variable/correlation set list] dialog.
In this item, you can set the variable of the message type (XML, non-XML or any). For details on [Variable/
correlation set list] dialog, see "1.4.1 Variable/correlation set list dialog" in the "Service Platform Reference
Guide".
When setting a message format defined in invoked service components, you can set by using [Incorporate a
message format] dialog. For the procedure to set the message format defined in service components invoked
by using [Incorporate a message format] dialog, see "Points" described after this procedure.
For details on [Incorporate a message format], see "1.4.5 Incorporate a message format dialog" in the "Service
Platform Reference Guide".

• When setting a variable in [Header assigned variable for request message] and [Header assigned variable in
reply message]
Click [Settings] button. Set the assigned variable in the displayed [Header assigned variable] dialog. In this
item, you can set the variable of message type (XML). You cannot set the variable of message type (non-XML
or any). For details on [Header assigned variable] dialog, see "1.4.2 Header assigned variable dialog" in the
"Service Platform Reference Guide".

• When setting the [Assigned correlation sets]

• When setting a [Assigned correlation sets]
Click [Settings] button. Set up the assigned correlation set in the displayed [Assigned correlation sets] dialog.
For details on the [Assigned correlation sets], see "1.4.3 Assigned correlation sets dialog" in the "Service
Platform Reference Guide".

4. Click OK.
Tip

How to set the message format defined in the service component to be invoked to variable is explained below. Note that
the following steps are explained for the request messages, but the steps for the response messages are also same:

1. Specify the service name and operation name to be invoked in the Invoke Service Activity dialog box.

2. Click Edit in Variable allocated for Request Message.
The Variable-Correlation Set dialog box opens.

3. Specify the variable name.

4. Click Get Format.
The Get Message Format dialog box opens.
The values specified in step 2. are set in the service name and operation name. Also, Request Message is set in
Message Type.

5. Specify the message format name in the Message Format.

6. Click OK.
The Get Message Format dialog box closes and the user returns to Variable-Correlation Set dialog box.

7. Click Add.
The defined variable is added to the Variable List.

8. Choose the added variable from the variable list.

9. Click OK.
The Variable-Correlation Set dialog box closes and the user returns to Invoke Service Activity dialog box.

(2) Notes on definition

• Specify activity name such that it is unique in the business process (and also within scope).

• Set defined HCSC components and their operation in the service name and operation name. Also, match the
communication model of the set operation with the communication model of the defined operation.

• Specify activity name within 64 bytes.

• Do not specify a control character in the input field of dialog.

• Set the invoked service name.

• In case of synchronous invoking, set the assigned variables for reply message without fail.

• In case of non-persistence business process, do not set the asynchronous invoke service activity.

5. Defining Business Processes

167

• Match the message type variables)XML, non-XML, any) specified in body assigned variable with the message
type of invoked HCSC component. In case of mismatch, error occurs in invoked HCSC components, except for
the case of invoking a business process from the business process definition.

5.6.5 Invoke Java Activity
This activity defines the invocation of a Java class that implements a dedicated interface
(jp.co.Hitachi.soft.csc.bp.receiver.ejb.CustomClassInterface).

You can define the details of invoke Java activities in the Invoke Java Activity dialog box.

(1) Preparations before defining invoke Java activities
Before defining invoke Java activities, you must make the following preparations:

Creating an HCSCTE project
The Java class to be specified in the Invoke Java Activity dialog box is saved in the src directory of the HCSCTE
project. Therefore, you must create an HCSCTE project beforehand.
For details about how to create an HCSCTE project, see 3.1 Managing a Project.

Creating a Java class
Create a Java class to be used by invoke Java activities. For details about the interface of the Java class to be used,
see 5.6.5(2) Interface of the Java class to be used.

! Important note

• Java classes are shared by all HCSC components within a repository. Therefore, if you modify an existing Java class,
HCSC components of the pre-modification class might be mixed with HCSC components of the post-modification class.
If a Java class is changed, repackage the business process that defines the invoke Java activity for invoking the changed
Java class.
Note that even if an invoke Java activity is deleted, the Java classes used by the invoke Java activity are not deleted.
Therefore, separately delete any Java classes that are no longer required.

• Resources that are allocated when a Java class is called remain allocated even after processing finishes. For this reason,
if a high load is applied to the entire system, OutOfMemoryError might occur due to insufficient Java heap or Perm
heap memory. To prevent this problem, you need to implement the processing for releasing resources when
OutOfMemoryError occurs, and error processing such as rollback.

• A Java class that implements a dedicated interface
(jp.co.Hitachi.soft.csc.bp.receiver.ejb.CustomClassInterface) must not be included in the
container extension library. Java classes are automatically added to the EAR file when business processes are packaged.

Adding a library
To add a library to an EAR file created by packaging business processes, copy the library to the lib directory of
the HCSCTE project beforehand.
The library copied to the lib directory is automatically added to the EAR file when business processes are
packaged.
Do not register a directory or a library with any of the following names in the lib directory:

• csbdef.jar
• cscbp_ejb.jar
• csbjava.jar

! Important note

Do not delete links to the src directory or lib directory in the HCSCTE project.

(2) Interface of the Java class to be used
The Java class to be invoked by an invoke Java activity must implement the following interface:

5. Defining Business Processes

168

 package jp.co.Hitachi.soft.csc.bp.receiver.ejb;

 public interface CustomClassInterface {
 public Object invoke(
 String processName,
 int version,
 String activityName,
 Object inputData
) throws CSBUserException,CSBSystemException;
 }

The content of the Java class is explained below.

Arguments

Dummy argument
name Explanation

processName Business process name

version Business process version

activityName Activity name

inputData Variable specified in Variable for argument in the Invoke Java Activity dialog box

Return value
The return value is assigned to the variable specified in Variable for return value in the Invoke Java Activity
dialog box.

Exception
Processing differs depending on whether the exception to be thrown is CSBUserException or
CSBSystemException.

When CSBUserException is thrown
If fault handling is specified for the invoke Java activity, the activity defined for fault handling in the fault
connection is executed when CSBUserException is thrown.
If fault handling is not specified for the invoke Java activity, processing continues assuming that
invokeJavaFault occurred.
The interface for CSBUserException is shown below.

 package jp.co.Hitachi.soft.csc.bp;

 public class CSBUserException extends Exception {
 public CSBUserException() { super(); }
 public CSBUserException(String message) { super(message); }
 }

When CSBSystemException is thrown
When CSBSystemException is thrown, the processing is halted assuming that a system exception
occurred. In this case, if the process execution status has been set to persistence, rollback is executed.
The interface for CSBSystemException is shown as follows:

package jp.co.Hitachi.soft.csc.bp;

 public class CSBSystemException extends Exception {
 public CSBSystemException() { super(); }
 public CSBSystemException(String message) { super(message); }
 public CSBSystemException(String message, Throwable cause) {
 super(message, cause);
 }
 public CSBSystemException(Throwable cause) { super(cause); }
 }

If an exception other than CSBUserException or CSBSystemException occurs, the processing is halted.
In this case, if the process execution status has been set to persistence, rollback is executed.

5. Defining Business Processes

169

Note:

• The following table lists the variable types to be specified in Variable for argument and Variable for return
value in the Invoke Java Activity dialog box, as well as their correspondence to the argument and return value
types for this interface:

Variable types specified in "Variable for argument" and
"Variable for return value" Argument and return value types

boolean java.lang.Boolean

numeric java.lang.Double

string java.lang.String

XML byte[]

non-XML byte[]

any byte[]

If a type other than those listed above is specified, an error (KDEC20030-E) occurs.

• The interface of the Java class used is included in cscbp_ejb.jar. Therefore, for compilation, you must
add cscbp_ejb.jar to the Classpath.

• A Java program uses the default constructor to generate an instance every time it is invoked. Therefore, you
cannot hold data in instances.

(3) Definition procedure
To define an invoke Java activity:

1. Deploy an invoke Java activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Use one of the following methods to open the Invoke Java Activity dialog box:

• Double-click an invoke Java activity on the canvas (only if the Java Edit menu is inactive).

• Select and right-click an invoke Java activity on the canvas, and then select Setting.

The Invoke Java Activity dialog box appears.

3. Enter the necessary information in the Invoke Java Activity dialog box.
For details about the display and input contents of the Invoke Java Activity dialog box, see 1.4.10 Invoke Java
Activity Dialog in the manual uCosminexus Service Platform Reference Guide.
To edit the contents of the variables to be specified in Variable for argument and Variable for return value,
click Edit. The List Of Variables And Correlation Sets dialog box appears. In this dialog box, you can edit the
contents of the variable. In Variable for argument and Variable for return value, you can specify a variable of
the message type (XML, non-XML, or any). For details about the List Of Variables And Correlation Sets dialog
box, see 1.4.1 List Of Variables And Correlation Sets Dialog in the manual uCosminexus Service Platform
Reference Guide.

4. Click OK in the Invoke Java Activity dialog box.
The Invoke Java Activity dialog box closes.

5. Double-click an invoke Java activity on the canvas, or right-click it and then select Java Edit.
The Java editor of Eclipse starts.
The Java editor displays the source code of the class specified in the Invoke Java Activity dialog box. If you are
editing the class specified in the Invoke Java Activity dialog box for the first time, a source code template is
displayed when the Java editor starts.

6. Use the Java editor to edit the source code of the Java class invoked by the invoke Java activity.

7. Compile the edited source code of the Java class.

8. Save the edited source code and compiled class file, and then exit the Java editor.

5. Defining Business Processes

170

(4) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must be no more than 64 bytes.

• Do not specify any control characters in the input fields of the dialog box.

• A Java class name must be specified.

5.6.6 Data Transformation Activity
This activity defines data transformation processing.

You can define the details of data transformation activities in the Data Transformation Activity dialog box.

You can also use the Data Transformation Definition screen to create definition information for data transformation
methods (as a data transformation definition file).

(1) Definition procedure
To define a data transformation activity:

1. Deploy a data transformation activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Use one of the following methods to open the Data Transformation Activity dialog box:

• Double-click a data transformation activity on the canvas (only if the Launch Mapping Definition Editor
menu is inactive).

• Select and right-click a data transformation activity on the canvas, and then select Setting.

The Data Transformation Activity dialog box appears.

3. Enter the necessary information in the Data Transformation Activity dialog box.
For details about the display and input contents of the Data Transformation Activity dialog box, see 1.4.11 Data
Transformation Activity Dialog in the manual uCosminexus Service Platform Reference Guide.
To edit the contents of the variables specified in Source Variables and Destination Variable, click Edit. The List
Of Variables And Correlation Sets dialog box appears. In this dialog box, you can edit the contents of the variable.
In Source Variables and Destination Variable, you cannot specify a variable of the message type (any). Instead,
specify a variable of the message type (XML or non-XML). For details about the List Of Variables And
Correlation Sets dialog box, see 1.4.1 List Of Variables And Correlation Sets Dialog in the manual uCosminexus
Service Platform Reference Guide.

4. Click OK in the Data Transformation Activity dialog box.
The Data Transformation Activity dialog box closes.

5. Double-click a data transformation activity on the canvas, or right-click it and then select Launch Mapping
Definition Editor.
The data transformation definition screen opens.
If the message format was changed, a dialog box appears to confirm whether to apply the change in the message
format. For details, see 6.3.2 Procedure for defining changed message formats.

6. In the Data Transformation Definition screen, create a data transformation definition file.
For details about how to create a data transformation definition file, see 6.3 Defining Data Transformation.
For details about the Data Transformation Definition screen, see 1.2.5 Data Transformation Definition Window in
the manual uCosminexus Service Platform Reference Guide.
Note that the created data transformation definition file is saved in a temporary directory until the business process
is saved. When the business process is saved, the data transformation definition file is stored in the repository.

! Important note

The data transformation definition file specified in DataTransDefnFile in the Data Transformation Activity dialog box is
saved in the repository. Then, you can change only the part specifications for variables and message formats in the
information for the variables specified in Source Variables and Destination Variable. If you want to change any
information other than part specifications for variables and message formats, click Delete File.

5. Defining Business Processes

171

In this case, even if you click Delete File, the data transformation definition file is not deleted from the repository. The data
transformation definition file is deleted from the repository when the business process is saved.

(2) Processing when a system exception occurs in an activity
A system exception that occurs in an activity can be transformed into a general fault before being output. For details,
see 4.7 General fault for converting system exceptions to faults in the manual Service Platform Overview.

(3) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must be no more than 64 bytes.

• Do not specify any control characters in the input fields of the dialog box.

• A destination variable must be specified.

• A source variable must be specified.

• Data transformation definitions must be specified.

5.6.7 Assign Activity
This activity creates definitions for executing the following processes:

• Assigning a variable (basic type or message type) to another variable

• Assigning part of a variable to another variable

• Creating a general expression and assigning it to a variable
The evaluation result of a general expression is acquired (mapped to java.lang.String) as a character string
type.

You define the details of assign activities in the Assign Activity dialog box.

When assigning a value to a variable, the format can be automatically converted and the value can be assigned even if
the variable has a different format. The following table shows data convertibility and the conversion rules.

Table 5‒13: Conversion rules for an assigned value

Data format of the value to be
assigned

Data format after conversion

Boolean Numeric string
Message

XML non-XML any

Boolean -- Y#1 Y#2 N N N

Numeric Y#3 -- Y#4 N N N

string Y#5 P#6 -- N N N

Message XML N N N -- N Y

non-XML N N N N -- Y

any N N N Y Y --

Legend:
--: No conversion is needed.
N: Cannot be converted and assigned.
Y: Can be converted and assigned.
P: Can be converted and assigned in some cases.

#1
If true, 1 is assigned; if false, 0 is assigned.

5. Defining Business Processes

172

#2
true or false is assigned.

#3
If 0, false is assigned. In all other cases, true is assigned.

#4
The value obtained by the toString(double) method of the java.lang.Double class is assigned.

#5
The value obtained by the parseBoolean(String) method of the java.lang.Boolean class is assigned.

#6
The value obtained by the parseDouble(String) method of the java.lang.Double class is assigned.

In assign activities, there are some combinations that cannot be specified for the copy source and copy destination.
The following figure shows copy source and copy destination combinations.

Table 5‒14: Copy source and copy destination combinations

Copy source

Copy destination

Variable (message type) Variable
(basic
type)

Part of a
variable

(message
type)#

Part of a
variable (basic

type)#

XML non-
XML any XML non-

XML XML non-
XML

Variable (message type) XML Y N Y N Y N N N

non-
XML

N Y Y N N N N N

any Y Y Y N N N N N

Variable (basic type) N N N Y N N Y N

Part of a variable
(message type)

XML Y N N N Y N N N

non-
XML

N N N N N N N N

Part of a variable (basic
type)

XML N N N Y N N Y N

non-
XML

N N N Y N N Y N

Expression N N N Y N N Y N

Legend:
Y: Can be specified.
N: Cannot be specified.

#
Cannot be copied if the copy-destination variable has not been initialized.

(1) Definition procedure
To define a receive activity:

1. Deploy an assign activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Use one of the following methods to open the Assign Activity dialog box:

• Double-click an assign activity on the canvas.

• Choose and right-click an assign activity on the canvas, and choose Setting.

The Assign Activity dialog box opens.

5. Defining Business Processes

173

3. Enter the necessary information in the Assign Activity dialog box.
For details about the display and input contents of the Assign Activity dialog box, see the manual Cosminexus
Service Platform Reference.
To add or edit data in Copy source or Copy destination, click Add or Edit. In the Assign Activity sub dialog box
that opens, you can add or edit data in Copy source or Copy destination. If the value to be specified is a variable
and you wish to edit its contents, click Edit in the Assign Activity sub dialog box. The Variable-Correlation Set
dialog box opens. In this dialog box, you can edit the contents of the variable.
For details about the Assign Activity sub dialog box and Variable and Correlation Set List dialog box, see the
manual Cosminexus Service Platform Reference.

4. Click OK.

(2) Process when system exception occurs in the activity
You can send the system exception occurring in the activity, by transforming to general fault. For details, see "4.7
General fault for transforming the system exception to fault" in the manual "Service Platform Function Guide".

(3) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must not exceed 64 bytes.

• Do not specify the control character in the input field of the dialog box.

• Specify at least one assignment operation.

• A copy source must be specified.

• A copy destination must be specified.

• Specify either variable or expression as the copy source type.

• If a copy source variable is chooseed, a variable name must be specified.

• If a copy source expression is chooseed, an expression must be specified.

• If the copy destination variable and the copy source variable have different formats, the format might be implicitly
converted, or an error may occur during execution.

• When defining assignment from a variable (message type) to a variable (message type), specify definition files
having the same XML schema and same file name for the message formats to be specified in the definition of the
individual variables.

5.6.8 Empty Activity
This activity does nothing even if executed. An empty activity is used to indicate that no processing is to take place
during switching that uses a switch activity or fault handling that uses fault connection.

You define the details of empty activities in the Empty Activity dialog box.

(1) Definition procedure
To define a receive activity:

1. Deploy an empty activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Use one of the following methods to open the Empty Activity dialog box:

• Double-click an empty activity on the canvas.

• Choose and right-click an empty activity on the canvas, and choose Setting.

The Empty Activity dialog box opens.

3. Enter the necessary information in the Empty Activity dialog box.
For details about the display and input contents of the Empty Activity dialog box, see the manual Cosminexus
Service Platform Reference.

5. Defining Business Processes

174

4. Click OK.

(2) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must not exceed 64 bytes.

• Do not specify the control character in the input field of the dialog box.

5.6.9 Throw Activity
This activity is used for defining a fault inside a business process and sending this fault to communicate it to a higher-
order scope activity.

You define the details of throw activities in the Throw Activity dialog box.

(1) Definition procedure
To define a receive activity:

1. Deploy a throw activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Use one of the following methods to open the Throw Activity dialog box:

• Double-click a throw activity on the canvas.

• Choose and right-click a throw activity on the canvas, and choose Setting.

The Throw Activity dialog box opens.

3. Enter the necessary information in the Throw Activity dialog box.
For details about the display and input contents of the Throw Activity dialog box, see the manual Cosminexus
Service Platform Reference.
For Allocated variable, specify the variable to be assigned when throwing a fault. To edit the contents of the
variable specified for Allocated variable, click Edit. The Variable-Correlation Set dialog box opens. In this
dialog box, you can edit the contents of the variable. For details about the Variable and Correlation Set List
dialog box, see the manual Cosminexus Service Platform Reference.

4. Click OK.

(2) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must not exceed 64 bytes.

• Do not specify the control character in the input field of the dialog box.

• For the higher-order scope that includes the throw activity, define fault handling that utilizes a corresponding
allocated variable or catch-all.

• Set variable of message type (XML) in the assigned variable to be set in fault process assigning. You cannot set a
variable of message type (non-XML or any).

• When the value of assigned variable of throw activity does not match to the assigned variable specified in fault
process, process does not move to the activity specified in assigned variable of fault process. In such a case,
process moves to the activity specified in catchAll.

5.6.10 Standby Activity
A standby activity defines a process that puts the processing flow of a business process in standby mode at regular
intervals or until a certain time limit. You can use this activity to put a business process in standby mode for a
specified period or until a specified time.

5. Defining Business Processes

175

Define the details of the standby activity in the Wait Activity dialog box. Specify the standby time interval or time
limit in an XPath expression.

(1) Definition procedure

1. Deploy a standby activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Use one of the following methods to open the Wait Activity dialog box:

• Double-click a standby activity on the canvas.

• Select and right-click a standby activity on the canvas, and then select Setting.

The Wait Activity dialog box appears.

3. Enter the necessary information in the Wait Activity dialog box.
Select For or Until in Standby time and then specify the standby time interval or time limit in an XPath
expression.
For details about the Wait Activity dialog box, see 1.4.16 Standby Activity dialog in the manual uCosminexus
Service Platform Reference Guide.

4. Click OK.

(2) Character strings that can be specified as standby time
An XPath expression is used to specify standby time. An XPath expression is evaluated in the processing of a business
process, and the character string obtained as a result of the evaluation is used as standby time. The BPEL standard
imposes some limitations on the character strings that can be obtained by evaluating XPath expressions.

The following subsections describe the character strings that can be obtained by evaluating XPath expressions. For
details about specifying XPath, see 5.6.18 Specifying an XPath.

(a) If "For" is specified in "Standby time"

If For is specified in Standby time, the character strings that can be obtained by evaluating XPath expressions must
conform to the XML Schema type duration (xsd:duration). The XML Schema type duration is the variable type
indicating character strings that express elapsed time in PnYnMnDTnHnMnS format.

The following example shows the character strings that can be obtained by evaluating XPath expressions when For is
specified for Standby time:

(Example 1) If an interval of 1 year, 2 months, 3 days, 4 hours, 5 minutes, and 6 seconds is specified as the standby
time:

The character string that can be obtained by evaluating the XPath expression is P1Y2M3DT4H5M6S.

(Example 2) If an interval of 10 seconds is specified as the standby time:
The character string that can be obtained by evaluating the XPath expression is PT10S.

Instead of specifying an XPath expression in Expression in the Wait Activity dialog box, you can also specify a
standby time interval directly by enclosing it in single quotation marks (') or double quotation marks ("). The
following examples show direct specifications of standby time intervals by using single quotation marks (').

(Example 3) If an interval of 1 year, 2 months, 3 days, 4 hours, 5 minutes, and 6 seconds is specified as the standby
time:

Specify 'P1Y2M3DT4H5M6S' directly in Expression in the Wait Activity dialog box.

(Example 4) If an interval of 10 seconds is specified as the standby time:
Specify 'PT10S' directly in Expression in the Wait Activity dialog box.

(b) If "Until" is specified for "Standby time"

If Until is specified for Standby time, the character strings that can be obtained by evaluating XPath expressions
must conform to the XML Schema type dateTime (xsd:dateTime). The XML Schema type dateTime is the variable
type indicating character strings that express a date and time in CCYY-MM-DDThh:mm:ss.sssTZ format
(where .sss and TZ can be omitted).

5. Defining Business Processes

176

The following example shows the character strings that can be obtained by evaluating XPath expressions when Until
is specified for Standby time.

(Example 1) If January 1, 2010 at 00:00:00 is specified as the standby time:
The character string that can be obtained by evaluating the XPath expression is 2010-01-01T00:00:00 or
2010-01-01T00:00:00.000TZ.

Instead of specifying an XPath expression in Expression in the Wait Activity dialog box, you can also specify a
standby time limit directly by enclosing it in single quotation marks (') or double quotation marks ("). The following
examples show direct specifications of standby time limits by using single quotation marks (').

(Example 2) If January 1, 2010 at 00:00:00 Japan Standard Time (JST) is specified as the standby time:
Specify '2010-01-01T00:00:00+09:00' directly in Expression in the Wait Activity dialog box.

(Example 3) If January 1, 2010 at 00:00:00 Greenwich Mean Time (GMT) is specified as the standby time:
Specify '2010-01-01T00:00:00+00:00' or '2010-01-01T00:00:00Z' directly in Expression in the
Wait Activity dialog box.

(3) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must be no more than 64 bytes.

• Do not specify any control characters in the input fields of the dialog box.

• A standby time must be specified.

• Do not set a standby activity for non-persistent business processes.

• Set a standby activity after a reply activity because operations must be performed after a reply is returned from a
reply activity to a service requester. If a standby activity is set before a reply activity, an error does not occur
during packaging, but does occur when the business process is executed. Note that if a standby activity is set
between a reply activity and a receive activity following it, an error does not occur.#1, #2

• After a standby activity, do not set a reply activity that is not paired with a receive activity. If a reply activity not
paired with a receive activity is set after a standby activity, an error does not occur during packaging, but does
occur when the business process is executed. Even if an activity other than reply activities is set after a standby
activity, an error does not occur.#1, #3

#1
The following examples show cases where no error occurs:

(Example 1)
A standby activity is set after a reply activity. No error occurs because processes following the standby
process are executed as asynchronous business processes.
The standby activity waits for processing, and the invoke service activity is executed when the standby time
limit is reached.

(Example 2)
A standby activity is set after a reply activity. No error occurs because processes following the standby
process are executed as asynchronous business processes.
The empty activity executes processing as part of parallel processing in response to a request from the service
requester. When another request is received from the service requester, a response is returned to the service
requester once, and then the standby process is executed.

5. Defining Business Processes

177

#2
The following example shows a case where an error occurs:

(Example 1)
A standby activity is set before a reply activity. Because a standby activity is executed within a synchronous
business process, an error occurs when the business process is executed.

#3
The following example shows a case where an error occurs:

(Example 1)
A reply activity that is not paired with a receive activity is set after a standby activity. As a result, an error
occurs when the business process is executed.

(4) Notes on multiple executions in an environment set up by the HCSC easy setup
functionality

In an environment set up using the HCSC easy setup functionality, processes following a standby activity for multiple
process instances are not executed concurrently because the multiplicity of processes following a standby activity is
set as 1 by default. If processes following a standby activity start simultaneously from multiple process instances, the
processing of a process instance that starts later is not executed until the previous processing finishes.

To simultaneously execute processes following a standby activity for multiple process instances, adjust the process
multiplicity by changing the ejbserver.ejb.timerservice.maxCallbackThreads property in
usrconf.properties.

The figure below shows an example of processing where multiple process instances are executed when the
multiplicity of processes following a standby activity is 1 and the multiplicity is increased. This example assumes that

5. Defining Business Processes

178

the standby activity (Standby 1) causes multiple process instances to wait for processing until 13:00 and then it takes
two minutes for post-standby processes (Empty 2 and Empty 3) to finish.

Figure 5‒10: Examples of processing where the multiplicity of processes following a standby activity is 1
and where the multiplicity is increased

For details about how to set the ejbserver.ejb.timerservice.maxCallbackThreads property in
usrconf.properties, see 2.4 usrconf.properties(User property file for J2EE servers) in the Application Server
Definition Reference Guide.

5.6.11 Validate activity
This is the activity for validating the correctness of message sent and received in business processes. It is used to
validate whether the message sent and received with external by receive activity or invoke service activity match with
the schema of corresponding allocation variable.

Describe the details on validate activity, in the validation activity dialog.

5. Defining Business Processes

179

(1) Definition procedure
Definition procedure is as follows:

1. Schedule the validate activity to a canvas.
For details on how to schedule the activity, see "5.4.1 Deploying Activities".

2. Display Validate activity dialog by either of the following methods:

• Double click the validate activity of canvas.

• Select and right click the validate activity of canvas and select Settings.

Validate activity dialog is displayed.

3. Enter the required information in Validate activity dialog.
For details on the Validate activity dialog, see "1.4.17 Validate activity dialog" in the manual "service Platform
Reference Guide".
Click Edit button to edit the contents of variables to be set in Variables. You can edit the contents of variable, in
the displayed Variable/correlation set list dialog. In Variables, you can set the variable of message type (XML),
but you cannot set the variable of message type (non-XML or any). For details on Variable/correlation set list
dialog, see "1.4.1 Variable/correlation set list dialog" in the manual "Service Platform Reference Guide".

4. Click [OK] button.

(2) Process in case of error occurrence in validation
If validation result is invalid, you can send following types of faults.

• Validate activity specific fault

• General fault

For details on how to select the fault to be sent, see "4.7.1 Overview of general fault to transform the system exception
to fault" in the manual "Service Platform Function Guide".

Reference note
If multiple variables have been set in the validate activity, a fault message is created with information of first variable for
which error occurred during validation.

Settings required for fault process are as follows:

(a) Definition in case of executing fault process

When fault occurs in the validate activity, process is switched depending on the allocation of fault process, which has
been set in the scope activity to which the validate activity belongs. If fault process allocation has not been set, fault
exception occurs.

Fault process allocation
You cannot allocate fault process directly from the validate activity. Allocate the process by using the scope
activity to which validate activity belongs.

Fault process switching
Use the switch activity to switch the process corresponding to the validation result.
Define such that the fault information is acquired by the variable part specification, from the variable allocated to
fault message and the process is switched depending on the acquired information.

Optional fault occurrence
Use throw activity to generate the optional fault.
Define such that when fault occurs, a fault of optional variable value is generated by the throw activity.

(b) Schema file for defining the fault message to be used in fault process definition

Storage destination of the schema file for defining the validate activity specific fault message is as follows:

<Service Platform installation directory>\CSC\system\msg\cscvalidatefault.xsd

5. Defining Business Processes

180

Schema file for defining the validate activity specific fault message to be used in allocation of fault process of the
scope activity to which validate activity belongs, is shown in the following snippet. For details on schema file of
general fault, see "7.12.1 Schema file that defines the general fault message" in the manual "Service Platform System
Setup and Operation Guide".

<?xml version="1.0" encoding="UTF-8"?>
<!--
 DO NOT EDIT THIS FILE.
 -->
<xs:schema
 elementFormDefault="qualified"
 targetNamespace="http://www.msg.csc.soft.Hitachi.co.jp/cscBpValidate"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="fault">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="exception-name" type="xs:string"/>
 <xs:element name="exception-message" type="xs:string"/>
 <xs:element name="scope-name" type="xs:string"/>
 <xs:element name="activity-name" type="xs:string"/>
 <xs:element name="variable-name" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Configurable elements are as follows:

exception-name
Set the exception name. In exception name, set the value of Class.getName().

exception-message
Set the exception information. In exception information, set the value of Exception.toString().

scope-name
Set the scope name to which the validate activity belongs.

activity-name
Set the name of validate activity.

variable-name
Set the name of variable to be validated.

(3) Notes at the time of definition

• Specify activity name such that it is unique in the business process (and also within scope).

• Specify activity name within 64 bytes.

• Do not specify a control character in input field of a dialog.

5.6.12 Scope Activity
This activity defines a process flow consisting of one or more activities as a single coherent processing unit.

The following figure shows processing units that use scope activities.

5. Defining Business Processes

181

Figure 5‒11: Setting up processing units using scope activities

When you define a scope activity, you can handle the processing flow inside the scope as a single coherent unit. You
can also define a scope inside the processing flow of another scope, as exemplified by Scope 3 in the figure above.

Note that variables defined inside a scope are valid only within that scope. For details about the scopes and the valid
range for variables, see 5.5.1(5)(a) Use of variables when scope activities are used.

(1) Definition procedure
To define a receive activity:

1. Deploy a scope activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Use one of the following methods to open the Scope Activity dialog box:

• Double-click a scope activity on the canvas.

• Choose and right-click a scope activity on the canvas, and choose Setting.

The Scope Activity dialog box opens.

3. Enter an activity name.

4. Click OK.

5. Choose and right-click a scope activity on the canvas, and choose Open.
A tab with the scope activity name is displayed in the bottom portion of the canvas.

6. Click the tab with the scope activity name.
The canvas for specifying the processing inside the scope is displayed.

7. Deploy, link, and define the desired activities to specify the processing inside the scope.

(2) High level settings
You can set the scope activity such that transaction is not committed in the internally defined activity.

When you select Commit at the time of start and end of this scope radio button in High level settings of Scope
activity dialog, transaction is committed at the time of start and end of the scope activity. The activity defined in the
scope activity is not committed.

5. Defining Business Processes

182

When you select Commit in the activity unit radio button, activity is not committed at the time of start and end of the
end activity. Activity to execute commit defined in the scope activity is committed.

By default, Commit in activity unit radio button is in selected status.

For details on Scope activity dialog, see "1.4.18 Scope activity dialog" in the "Service Platform Reference Guide".

For details on the transaction when you select Commit only at the time of start and end of this scope radio button,
see "3.4.5 Transaction when selecting the settings of committing at the time of start and end of scope" in the "Service
Platform Function Guide".

(3) Notes on definition

• An activity name must not exceed 64 bytes.

• Do not specify the control character in the input field of the dialog box.

You must note the following points to be noted when defining the scope activity for which Commit only at the time
of start and end of this cope radio button:

• You cannot define following activity in the scope activity:

• Scope activity for which Commit only at the time of start and end of this scope radio button is selected

• If you define following activities in the scope activity, validation error occurs.

• Receive activity

• Reply activity

• Standby activity

• You can specify only the DB adapter in the invoke service activity defined in the scope activity for which Commit
only at the time of start and end of this scope radio button is selected. If you specify the service adapter other
than DB adapter, and the business process, operation is not guaranteed.

• If transactions of the business process and service invoke destination are different, transaction control target is the
transaction of the business process. Transaction of the service invoking destination operates without getting
impacted by the transaction control (such as in case of defining invoke service activity that invokes a business
process and invoke service activity that invokes the function of RequiresNew)

• When you define invoke service activity that invokes the DB adapter, in the scope activity, operating with value of
" dba-separate-transaction" property of HCSC server runtime definition file as "false" or value of "
dba_separate_transaction" attribute of SQL operation definition file as "N" is pre-requisite.

• When system exception occurs and rolled back business process is re-executed, you must assume that activity
defined in the scope activity and service of service invoking destination are re-executed.

5.6.13 While Activity
This activity defines repeated processing of one or more activities according to a given condition.

The following figure shows repeated processing that uses while activities.

5. Defining Business Processes

183

Figure 5‒12: Repeated processing using while activities

When a while activity is defined, one or more processes can be repeated according to a given condition. You can also
define a repeating process inside another repeating process, as exemplified by Repetition 3 in the above figure.

(1) Repetition method
In the while activity, you can select either of the following repeat method.

• Condition specification format of repeating according to the fixed conditions

• Method of list specification to be repeated for the number of times equal to the count of elements included in
repetition list

Repeat process using the condition specification method and list specification method is described as follows:

(a) Condition specification method

Following figure shows the repeat process using the condition specification method.

Figure 5‒13: Repeat method using the condition specification format

5. Defining Business Processes

184

In condition specification method, specify the repetition condition expression in XPath format. Activity within the
while activity is repeated till the evaluation result of condition expression is true.

(b) List specification method

Following figure shows the repetition process using the list specification method.

Figure 5‒14: Repetition process using the list specification method

In list specification method, repetition process is executed in the following flow:

1. Repetition list is generated based on variables specified in XPath.

2. Activity within the while activity is repeated only for the number of times equal to the number of nodes included
in the generated repetition list.

3. Every time when the repeat is executed, elements of repetition list are stored one by one in the repetition element
variable.

Create variables and repeat element variable for generating repetition list, in the development environment and specify
those in Repetition list settings dialog.

(2) Definition procedure
To define a receive activity:

(a) Condition specification method

1. Schedule the while activity to the canvas.

5. Defining Business Processes

185

For details on how to schedule the activity, see "5.4.1 Deploying Activities".

2. Select and right click the while activity on the canvas and select Settings.
While activity dialog is displayed.

3. Enter any activity name in While activity dialog.
For details on the While activity dialog, see "1.4.19 While activity dialog" in the "Service Platform Reference
Guide".

4. Select Condition specification method radio button and click the Repetition condition settings button.
Repetition condition settings dialog for setting up the repetition condition is displayed. For display/input contents
of Repetition condition setting dialog, see "1.4.21 Repetition condition settings dialog" in the "Service Platform
Reference Guide".

5. Specify the required information and click OK button.

6. Display the canvas for setting up the repetition process, by either of the following methods:

• Double click the while activity of the canvas.

• Select and right click the while activity of the canvas and select Open.

Tab of the while activity name is displayed in the lower part of the canvas and the canvas for setting up the while
process is displayed.

7. Deploy, link and define any activity and set the repetition process.

(b) List specification method

1. Define the message type (XML) variable for generating the repetition list.
Create variables by schema having repetition element as child element. All the child elements must have the same
format.
For details on defining variables, see "5.5.1(6)(a) Defining new variables".

Creation example (unify the name attribute of child attribute and specify elements count in maxOccurs
attribute)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 elementFormDefault="qualified"
 targetNamespace="http://example.com/sample"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="loop-element">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="5" minOccurs="0" name="child-element"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

2. Define the message type (XML) variable of repetition element.
Create variables for storing the element of repetition list generated by variables created in step 1.

Creation example

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 elementFormDefault="qualified"
 targetNamespace="http://example.com/sample"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="child-element"/>
</xs:schema>

3. Schedule the while activity to the canvas.
For details on scheduling the activity, see "5.4.1 Deploying Activities".

4. Select and right click the while activity of the canvas and select Settings.
While activity dialog is displayed.

5. Enter any activity name in the while activity dialog.
For details on while activity dialog, see "1.4.19 While activity dialog" in the "Service Platform Reference Guide".

6. Select List specification method radio button and click repetition list settings button.

5. Defining Business Processes

186

7. Repetition list settings dialog for setting the repetition list is displayed.
For details on display/input contents of Repetition list settings dialog, see "1.4.20 Repetition list settings dialog" in
the "Service Platform Reference Guide".

8. Specify the path of element of the variable defined in step.1, in the Expression of Repetition list of Repetition list
settings dialog, in XPath format.
For details on specifying XPath format, see "5.6.18(2)(d) Specifying in the repetition list settings dialog".

9. In Variable name of Repetition variable, specify the variable defined in step.2.

10. Set Maximum repetition count as and when required.

11. Click OK button.

12. Display canvas for setting the repetition process, by either of the following methods:

• Double click while activity of the canvas.

• Select and right click the while activity of the canvas and select Open.

Tab of the while activity name is displayed in the lower part of canvas and the canvas for setting the repetition
process is displayed.

13. Deploy, link and define any activity and set the repetition process.

(3) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must not exceed 64 bytes.

• Do not specify the control character in the input field of the dialog box.

• A repetition condition must be specified.

(4) Notes when defining (only in case of list specification method)
You must consider following points at the time of definition, when specifying the list specification method.

• You can use repetition process of using the list specification method, only for non-persistence business process. If
you define the repetition activity of list specification method in the persistence business process, error message is
displayed when validating the business process.

• Variable and repetition element variable for generating the repetition list must be of message type (XML). You
cannot specify variable having type other than message type (XML).

• You cannot change the variable for generating the repetition list, within the repetition process. If you change the
variable, the operation is not guaranteed. You can reference and change the repetition element variable in the
repetition process.

• If you specify a path of non-existing element in the XPath expression specified in Expression of the Repetition
list settings dialog, repetition process is not executed.

• In the following cases, format of handled information might not match with XML schema of repetition element
variable.

• If you set information of format not matching to XML schema of repetition element, in the repetition element

• If you specify node of the type other than element node in the XPath expression specified in Expression of
Repetition list settings dialog

In repetition process, if you try to reference the repetition element variable not matching to the format of above
information, and referencing is not possible, system exception occurs and process stops.

• When evaluation result of the XPath expression specified in Expression of the Repetition list settings dialog is
other than NodeList, system exception occurs and process stops.

5. Defining Business Processes

187

5.6.14 Switch Activities
These activities define switching of the processing of a business process according to the condition determination
result. Switch activities include switch start and switch end activities. You deploy a switch start activity at the switch
start location and a switch end activity at the switch end location.

The following figure shows process switching using switch activities.

Figure 5‒15: Process switching using switch activities

Several processes are provided under the switch start activity, and switching occurs according to the condition set in
the switch start activity and the condition determination result. A switch end activity is deployed at the termination of
the switch.

A process that branches from the switch start activity and ends in a throw activity need not be connected to the switch
end activity. If all processes that branch from the switch start activity end in throw activities, there is no need to
deploy a switch end activity.

(1) Defining the switch start activity
To define the switch start activity:

1. Deploy a switch activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Deploy an activity that becomes the link destination of the switch activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

3. Link the switch activity to the activity at the link destination.
For details about how to link activities, see 5.4.2(2) Link setting method.

4. Use one of the following methods to open the Switch Activity dialog box:

• Double-click a switch activity on the canvas.

• Choose and right-click a switch activity on the canvas, and choose Setting.

The Switch Activity dialog box opens.

5. Defining Business Processes

188

5. Enter the necessary information in the Switch Activity dialog box.
For details about the display and input contents of the Switch Activity dialog box, see the manual Cosminexus
Service Platform Reference.
To set a switch condition, click Condition Setting. The Condition Setting dialog box opens. In this dialog box,
you can set a switch condition. Specify a condition for each link destination. Enter the switch conditions as XPath
expressions. For details about the Condition Settings dialog box, see the manual Cosminexus Service Platform
Overview.

6. Click OK.

(2) Defining the switch end activity
To define the switch end activity:

1. Deploy a switch activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Link the switch activity to the link source activity.
For details about how to link activities, see 5.4.2(2) Link setting method.

(3) Process when system exception occurs in the activity
You can send the system exception occurring in the activity, by transforming to general fault. For details, see "4.7
General fault for transforming the system exception to fault" in the "Service Platform Function Guide".

(4) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must not exceed 64 bytes.

• Do not specify the control character in the input field of the dialog box.

• Specify at least one switch condition.

• Assign the transition destination to a conditional switch or the default.

• A switch condition name must be specified.

• A switch condition must be specified.

• Do not connect a switch activity to a flow end activity.

• Do not make the following connections:

• Connection that uses the start activity as the source#1

• Connection that uses the start point of fault handling of an activity as the source#1

• Connect the switch start activity to a single corresponding end activity.#2

• Connect the corresponding switch processes to the switch end activity.#2

• A switch process must be connected to the switch end activity.#2

• Specify at least one activity between a switch activity and its corresponding switch end activity.

#1
For details about connection that uses the start activity as the source and connection that uses the start point of
fault handling of an activity as the source, see Figure 5-26 Connection example.

#2
Excludes a case in which the termination points of all switch processes are throw activities.

5. Defining Business Processes

189

5.6.15 Flow Activities
Flow activities define the division of flow of a business process into multiple sequences and the concurrent execution
of these sequences. Flow activities include flow start and flow end activities. Deploy a flow start activity at the
starting point of a flow process and a flow end activity at the merging point of multiple sequences.

Of the multiple sequences that branch from the flow start activity and that are executed concurrently, a sequence that
ends in a throw activity need not be linked to the flow end activity. In addition, if all sequences that branch from the
flow start activity and that are executed concurrently end in throw activities, no need exists to deploy a flow end
activity.

The following figure shows the concurrent execution of processes using flow activities.

Figure 5‒16: Concurrent execution of processes using flow activities

You can provide multiple sequences under a flow start activity, and execute processes concurrently. You can also
specify the processing order among the multiple sequences.

For example, to execute A-3 after processing of A-1 and A-2 finishes, use link connections (link1 and link2) to link
the link sources A-1 and A-2 to the link destination A-3. In addition to specifying processing completion of A-1 and
A-2, you can also specify linking conditions to control the linking of A-1 and A-2 to A-3.

In this example, processing of the link destination A-3 starts in the following sequence:

1. Processing of A-1 and A-2 finishes.

2. The linking conditions specified for A-1 and A-2 are evaluated.
When the linking conditions for A-1 and A-2 are evaluated, their respective link connections link1 and link2 are
activated. The link connections are activated as true or false depending on the condition evaluation result. If
no condition is specified, the link connections are activated as true when processing of the link source activities
finishes.

3. When all link connections linked to A-3 are activated, processing of A-3 starts.
However, if all link connections are activated as false, processing of A-3 is omitted. Processing of A-3 starts
only when at least one of the link connections is activated as true.

5. Defining Business Processes

190

Processing of activities following the flow end activity is executed after all multiple sequences being concurrently
processed finish.

(1) Defining flow activities
To define flow activities:

1. Deploy a flow start activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

2. Deploy and define the individual activities that branch from the flow start activity.
For details about how to deploy activities, see 5.4.1 Deploying Activities, and for details about how to define
activities, see the descriptions of each activity in 5.6 Defining Activities.

3. Deploy a flow end activity on the canvas.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

4. Link the individual activities from the flow start activity to the flow end activity.
For details about how to link activities, see 5.4.2(2) Link setting method.

5. Use one of the following methods to open the Flow Activity dialog box:

• Double-click a flow start activity on the canvas.

• Select and right-click a flow start activity on the canvas, and then select Setting.

The Flow Activity dialog box appears.

6. Enter the necessary information in the Flow Activity dialog box.
For details about the display and input contents of the Flow Activity dialog box, see 1.4.24 Flow Activity Dialog
in the manual uCosminexus Service Platform Reference Guide. For details about how to set up links among
multiple sequences, see 5.6.15(2) Defining links among sequences.

7. Click OK.

(2) Defining links among sequences
To define links among multiple sequences that are concurrently processed:

1. Use one of the following methods to open the Flow Activity dialog box:

• Double-click a flow start activity on the canvas.

• Select and right-click a flow start activity on the canvas, and then select Setting.

The Flow Activity dialog box appears.

2. Enter a link name for each link to be set up within the flow process.

3. Click OK to close the Flow Activity dialog box.

4. Connect the activities to be linked.
For details about how to deploy activities, see 5.4.1 Deploying Activities.

5. Use one of the following methods to open the Link dialog box:

• Double-click the linking line that was connected in step 4.

• Select and right-click the linking line that was connected in step 4, and then select Setting.

The Link dialog box appears.

6. Enter the necessary information in the Link dialog box.
For details about the display and input contents of the Link dialog box, see 1.4.25 Link Dialog in the manual
uCosminexus Service Platform Reference Guide.
To set up link conditions, click Set Transition Condition. The Condition Setting dialog box appears. In this
dialog box, you can specify link conditions. Enter the link conditions in an XPath expression. For details about the
Condition Setting dialog box, see 1.4.26 Condition Setting Dialog (Flow Activity) in the manual uCosminexus
Service Platform Reference Guide.

7. Click OK.

5. Defining Business Processes

191

! Important note

The following figure shows the flow of processing performed when a link is defined from a flow start activity or switch start
activity.

Figure 5‒17: Processing flow when a link is defined from a flow start activity or switch start activity

(3) Notes on definition

• Specify activity names that are unique within a business process (and also within a scope).

• An activity name must be no more than 64 bytes.

• Do not specify any control characters in the input fields of the dialog box.

• A link name must be no more than 64 bytes.

• Do not connect a flow activity to a switch end activity.

• Do not make the following connections:

• Connection that uses a start activity as the source#1

5. Defining Business Processes

192

• Connection that uses the start point of fault handling of an activity as the source#1

• Connect a flow start activity to a single corresponding flow end activity.#2

• Connect corresponding flow processes to a flow end activity.#2

• A flow process must be connected to a flow end activity.#2

• Specify at least one activity between a flow start activity and its corresponding flow end activity.

• Specify a valid link name for each link connection.

#1
For details about connections that use an activity as the source and connections that use the start point of fault
handling of an activity as the source, see Figure 5-26 Connection example.

#2
This does not apply to cases where the termination points of sequences that are concurrently processed are throw
activities.

5.6.16 End Activity
Indicates the end of a business process. Only a single start activity is deployed on the canvas. This activity cannot be
deleted.

There is no content to be defined for an end activity.

5.6.17 Sequence Activity
This activity holds the information about a series of activities that are sequentially processed. A sequentially processed
activity is generated automatically as needed. A sequentially processed activity stores the following activity
information:

• A series of activities defined between a start activity and an end activity (additionally, activities defined on the
canvas of a scope activity or while activity)

• A series of activities on each branch defined between a switch start activity and a switch end activity

• A series of activities on each branch defined between a flow start activity and a flow end activity

• A series of activities that are connected to a fault connection and that perform fault handling

5.6.18 Specifying an XPath
In the input column of the dialog boxes used for defining activities, you must specify an XPath. The following table
describes the input column of dialog boxes used for defining activities and specifying the Xpath:

Table 5‒15: Input column of dialog boxes used for defining activities and specifying the XPath

Item
No. Activity name Input column of dialog boxes

1 Assign activity Value of Copy source in the Assign Activity sub dialog box

2 Switch activity Condition Expression of the Condition Setting dialog box (Switch activity)

3 Flow Activity Condition Expression of the Condition Setting dialog box (Flow activity)

4 While activity Condition Expression of the Condition Setting dialog box (While activity)

5 Standby activity Expression of Standby time of Standby activity dialog box

In the XPath, the information within a variable can be acquired either by using the extension function or by directly
specifying the variable name. For details about the extension function, see 5.6.18(3) Extension function.

5. Defining Business Processes

193

(1) Acquiring the information within a variable using the extension function
The methods of acquiring the information within a variable using the extension function are as follows:

(a) Specifications in the Assign Activity sub dialog box

To acquire a value of the copy-source XML, specify the XPath in Value with the extension function.

Acquiring the value of the propertyName attribute
Acquire the value of the propertyName attribute using the extension function
bpws:getVariableProperty. You can use this method when the variable type is message.

Specification method

bpws:getVariableProperty('variableName','propertyName')

• variableName: Specify a variable name.

• propertyName: Specify the part name other than the messageType defined within the variable specified
in variableName.

Specification example

bpws:getVariableProperty('VariableX','PropertyY')

Directly specifying the value of the variable
Acquire the value of the propertyName attribute using the extension function csc:getVariableData.
You can use this method when the variable type is message, string, numeric, or boolean.

Specification method (When the variable type is message)

csc:getVariableData('variableName','locationPath')

• variableName: Specify a variable name.

• locationPath: Specify a path (acquired in Chooseed path of the Show Variables dialog box) that indicates
the node of an XML schema.

Specification example

csc:getVariableData('VariableX','input/forInvoke/depositData/id')

Specification method (When the variable type is string, numeric, or boolean)

csc:getVariableData('variableName')

• variableName: Specify a variable name.

Specification example

csc:getVariableData('VariableX')

When acquiring the initialization status of header assigned variables
Use the extension function csc:getMessageInitialize to acquire the initialization status of header assigned variable.
You can use this function, when the variable type is message type (XML, non-XML or any).

Specification method

csc:getMessageInitialize('variableName')

• variableName: Specify the header assigned variables.

Specification example

csc:getMessageInitialize('VariableX')

When acquiring the hexadecimal format character string of message type variable (non-XML)
Use the extension function csc:getHexVariableData to acquire the hexadecimal format character string (single byte
upper chase characters) of message type variable (non-XML or any).
You can use the function when the variable type is message type (non-XML or any).

5. Defining Business Processes

194

Specification method

csc:getHexVariableData('variableName','beginIndex','compNumber')

• variableName: Specify the acquisition source variable name of message type (non-XML or any).

• beginIndex: Specify bytes count of acquisition start position.

• compNumber: Specify bytes count to be obtained.

Specification example

csc:getHexVariableData('VariableX','2','1')

When acquiring the character string in hexadecimal format
Use the extension function csc:getHexString to acquire the character string (single byte upper case characters) in
hexadecimal format.

Specification method

csc:getHexString('convertString','characterCode')

• convertString: Specify a character string to be transformed to hexadecimal format.

• characterCode: Specify the character code to be used for encoding from character string to byte data.
Character code that you can specify depends on the JavaVM of the environment in which this function is
used.

Specification example

csc:getHexString('PNG','UTF-8')

(b) Specifications in the Condition Setting dialog box

To set up the condition expression for judging a value of the variable, specify the expression that acts as a condition in
Condition Expression with XPath.

Setting the value of the propertyName attribute as the condition expression
Use the extension function bpws:getVariableProperty and specify the condition statement from the value
of the propertyName attribute. You can use this method when the variable type is message.

Specification method
Use one of the following specification methods:
Method 1

bpws:getVariableProperty('variableName','propertyName') = "value-to-be-compared"

Method 2

bpws:getVariableProperty('variableName','propertyName') =
bpws:getVariableProperty('variableName','propertyName')

• variableName: Specify a variable name.

• propertyName: Specify the part name other than messageType defined within the variable specified in
variableName.

Specification example

bpws:getVariableProperty('VariableX','PropertyY') = "HITACHI"

Setting the value of the variable as the condition expression
Use the extension function csc:getVariableData and specify the condition statement from the value of the
propertyName attribute. You can use this method when the variable type is message, string, numeric, or
boolean.

Specification method (When the variable type is message)

csc:getVariableData('variableName','locationPath') = "Value-to-be-compared"

• variableName: Specify a variable name.

5. Defining Business Processes

195

• locationPath: Specify a path (acquired in Chooseed path of the Show Variables dialog box) that indicates
the node of an XML schema.

Specification example

csc:getVariableData('VariableX','input/forInvoke/depositData/userName/
firstName') = "Taro"

Specification method (When the variable type is string, numeric, or boolean)

csc:getVariableData('variableName')= "Value-to-be-compared"

• variableName: Specify a variable name.

Specification example

csc:getVariableData('VariableX') = false()

When VariableX is a boolean type variable.

When specifying the initialization status of header assigned variable in the condition expression
Use the extension function csc:getMessageInitialize to specify the initialization status of header assigned variable,
to the condition expression. You can use this function when the variable type is message type (XML, non-XML or
any).

Specification method

csc:getMessageInitialize('variableName') = "Comparison target value"

• variableName: Specify the header assigned variable name.

Specification example

csc:getMessageInitialize('VariableX') = false()

When specifying hexadecimal format character string of message type variable (non-XML), in the condition
expression

Use the extension function csc:getHexVariableData to acquire the hexadecimal format character string (single byte
upper case characters) of message variable type (non-XML or any).
You can use this function when variable type is message type (non-XML or any).

Specification method

csc:getHexVariableData('variableName','beginIndex','compNumber') =
"hexadecimal expression of the comparison target value"

• variableName: Specify acquisition source variable name of message type (non-XML or any).

• beginIndex: Specify the bytes count of acquisition start position.

• compNumber: Specify bytes count to be acquired.

Specification example 1 (when determining by acquiring value of third byte from the beginning)

csc: getHexVariableData ('VariableX','2','1') = "4e"

Specification example 2 (when acquiring the value of third byte from the beginning and determining that
character string by using the extension function csc:getHexString)

csc: getHexVariableData ('VariableX','0','3') =
csc:getHexString('PNG','UTF-8')

When specifying the character acquired in hexadecimal format, in the condition expression
Use the extension function csc:getHexString to specify the hexadecimal format character string (single byte upper
case characters), in the condition expression.

Specification method

csc:getHexString('convertString','characterCode') = "Hexadecimal expression of the
comparison target value"

• convertString: Specify character string to be transformed to hexadecimal format.

5. Defining Business Processes

196

• characterCode: Specify the character code to be used when encoding from character string to byte data.
Character code that you can specify depends on JavaVM of the environment in which this function is
used.

Specification example

csc:getHexString('PNG','UTF-8') = "504E47"

(c) Specifying in the standby activity dialog box

In Expression of Standby time, specify XPath in the extension function.

To acquire value of the propertyName attribute
Acquire the propertyName attribute using the function namebpws:getVariableProperty. You can use this
when the variable type is the message type.

Specification method

bpws:getVariableProperty('variableName','propertyName')

• variableName: Specify the variable name.

• propertyName: Specify the part name other than the messageType type defined in variable specified by
variableName.

Example of specification

bpws:getVariableProperty('VariableX','PropertyY')

To directly specify the value of the variable
Acquire the value of the propertyName attribute using the extension function csc:getVariableData. You
can use this when the variable type is message type or string type.

Specification method (for message type)

csc:getVariableData('variableName','locationPath')

• variableName: Specify the variable name.

• locationPath: Specify the path showing the XML schema node (path acquired by Choose path of the
Variable display dialog box).

Example of specification

csc:getVariableData('VariableX','input/forInvoke/depositData/id')

Specification method (for string type)

csc:getVariableData('variableName')

• variableName:Specify the variable name.

Example of specification

csc:getVariableData('VariableX')

When acquiring the initialization status of header assigned variable
Use the extension function csc:getMessageInitialize to acquire the initialization status of the header assigned
variable. You can use this function when the variable type is message type (XML, non-XML or any),

Specification method

csc:getMessageInitialize('variableName')

• variableName: Specify the header assigned variable name.

Specification example

csc:getMessageInitialize('VariableX')

5. Defining Business Processes

197

When acquiring the hexadecimal format character string of message type variable (non-XML)
Use the extension function csc:getHexVariableData to acquire the hexadecimal format character string (single byte
upper case characters) of message type variable (non-XML or any).
You can use this function when the variable type is message type (non-XML or any).

Specification method

csc:getHexVariableData('variableName','beginIndex','compNumber')

• variableName: Specify the acquisition source variable name of message type (non-XML or any).

• beginIndex: Specify bytes count of acquisition start position.

• compNumber: Specify the bytes count to be acquired.

Specification example:

csc:getHexVariableData('VariableX','2','1')

When acquiring the character string in hexadecimal format
Use the extension function csc:getHexString to acquire the character string (single byte upper case character) of
hexadecimal format.

Specification method

csc:getHexString('convertString','characterCode')

• convertString: Specify the character string to be converted to hexadecimal format.

• characterCode: Specify the character code to be used when encoding from the character string to byte
data. The character code that you can specify depends on JavaVM of the environment in which this
function is used.

Specification example

csc:getHexString('PNG','UTF-8')

! Important note

Note the following when specifying standby time:

• To specify Intervals in standby time
The character strings that can evaluate and acquire the XPath expression must conform to XML Schema type duration
(xsd:duration).

• To specify Term in standby time
The character strings that can evaluate and acquire the XPath expression must conform to XML Schema type dateTime
(xsd:dateTime).

These specifications are fixed according to BPEL standard rules. Therefore, variables of numeric type and boolean type of
the business process cannot be specified.

Note that you can also specify intervals and terms directly by enclosing them in " or ' instead of specifying the XPath
expression.

For details, see 5.6.10(2) Character strings that can be specified as standby time.

(2) Acquiring the information by directly specifying variable names
The methods of acquiring information by directly specifying variable names are as follows:

(a) Specifications in the Assign Activity sub dialog box

Directly specify the XPath for acquiring Value of the copy source.

Acquiring the value of the propertyName attribute
Execute the method for acquiring the information within the variable using the extension function.

Directly specifying the value of the variable
Directly specify the variable name in $variableName. This method can be used when the variable type is
message, string, numeric, or boolean.

5. Defining Business Processes

198

Specification method (When the variable type is message)

$variableName/locationPath

• variableName: Specify a variable name.

• locationPath: Specify a path (acquired in Chooseed path of the Show Variables dialog box) that indicates
the node of an XML schema.

Specification example

$VariableX/input/forInvoke/depositData/id

Specification method (When the variable type is string, numeric, or boolean)

$variableName

• variableName: Specify a variable name.

Specification example

$VariableX

(b) Specifications in the Condition Setting dialog box

Directly specify the XPath of the Condition Expression.

Setting the value of the propertyName attribute as the condition expression
Execute the method for specifying the condition expression using the extension function.

Setting the value of the variable as the condition expression
Directly specify the variable name in $variableName. This method can be used when the variable type is
message, string, numeric, or boolean.

Specification method (When the variable type is message)

$variableName/locationPath

• variableName: Specify a variable name.

• locationPath: Specify a path (acquired in Chooseed path of the Show Variables dialog box) that indicates
the node of an XML schema.

Specification example

$VariableX/input/forInvoke/depositData/userName/firstName = "Taro"

Specification method (When the variable type is string, numeric, or boolean)

$variableName

• variableName: Specify a variable name.

Specification example

$VariableX = false()

When VariableX is a boolean type variable.

(c) Specifying in the standby activity dialog box

In Expression of Standby time, specify XPath in the extension function.

To acquire value of the propertyName attribute
Execute the method to acquire the information in the variable using the extension function.

To directly specify the value of the variable
To directly specify the variable name as $variableName. You can use this when the variable type is message type
or string type.

5. Defining Business Processes

199

Specification method (for message type)

$variableName/locationPath

• variableName: Specify the variable name.

• locationPath: Specify the path showing the XML schema node (path acquired by Choose path of the
Variable display dialog box).

Example of specification

$VariableX/input/forInvoke/depositData/id

Specification method (for string type)

$variableName

• variableName: Specify the variable name.

Example of specification

$VariableX

! Important note

Note the following when specifying standby time:

• To specify Intervals in standby time
The character strings that can evaluate and acquire the XPath expression must conform to XML Schema type
duration (xsd:duration).

• To specify Term in standby time
The character strings that can evaluate and acquire the XPath expression must conform to XML Schema type
dateTime (xsd:dateTime).

These specifications are fixed according to BPEL standard rules. Variables of numeric type and boolean type of the
business process cannot be specified.

Note that you can also specify intervals and terms directly by enclosing them in " or ' instead of specifying the
XPath expression.

For details, see 5.6.10(2) Character strings that can be specified as standby time.

(d) Specifying in the repetition list settings dialog

Directly specify in Expression of repetition list, in XPath. You cannot use the extension function, when you use the
list specification method.

When specifying the node of repetition element

Specification method

$variableName/locationPath

• variableName: Specify the variable name.

• locationPath: Specify path of repetition element (path acquired in selection path of display variable
dialog) that shows the node of XML schema.

Specification example

$VariableX/*[local-name()='loop-element' and namespace-uri()='http://example.com/sample']/
*[local-name()='child-element' and namespace-uri()='http://example.com/sample']

When specifying multiple nodes of repetition element

Specification method

($variableName/locationPath | $variableName/locationPath)

• variableName: Specify the variable name.

• locationPath: Specify path of repetition element (path acquired in selection path of display variable
dialog) that shows the node of XML schema.

5. Defining Business Processes

200

Specification example

($VariableX/*[local-name()='loop-element' and namespace-uri()='http://example.com/sample']/
*[local-name()='child-element' and namespace-uri()='http://example.com/sample'][1] |
$VariableX/*[local-name()='loop-element' and namespace-uri()='http://example.com/sample']/
*[local-name()='child-element' and namespace-uri()='http://example.com/sample'][3])

When specifying the node of repetition element in the specific range

Specification method (range specification)

$variableName/locationPath[position()<10]

• variableName: Specify the variable name.

• locationPath: Specify path of repetition element (path acquired in selection path of display variable
dialog) that shows the node of XML schema.

Specification example

$VariableX/*[local-name()='loop-element' and namespace-uri()='http://example.com/sample']/
*[local-name()='child-element' and namespace-uri()='http://example.com/sample']
[position()<10]

(3) Extension function
There are two types of extension functions as shown in (i) and (ii). The format and arguments of the extension
function and the notes when using an extension function are as follows:

(i) bpws:getVariableProperty

Format
bpws:getVariableProperty('variableName','propertyName')

Argument

variableName
Specifies a variable name.

propertyName
propertyName: Specifies the part name other than the messageType defined within the variable specified in
variableName.

(ii) csc:getVariableData

Format
csc:getVariableData('variableName','locationPath')

Argument

variableName
Specifies a variable name.

locationPath
Specifies a path that indicates the node of an XML schema.

Note:

• If the variable type is other than message, specify only variableName as the argument.

• If the variable type is other than message, the function returns a data type corresponding to the variable type.

• The result of evaluating the path specified in locationPath for the variable data specified in variableName is
returned as a string type (mapped to java.lang.String).

• If locationPath contains ', enclose locationPath inside double quotation marks (").

(iii) getMessageInitialize

Format
csc:getMessageInitialize('variableName')

5. Defining Business Processes

201

Argument

variableName
Specify the variable name.

Notes

• Define the variable element of the variable to be specified in variableName, with xml type.

• Initialization status of the variable specified in variableName is returned in boolean type.
In case of initialized status: true
In case of non-initialized: false

(iv) getHexVariableData

Format
csc:getHexVariableData('variableName','beginIndex','compNumber')

Argument

variableName
Specify the variable name.

beginIndex
Specify the bytes count of acquisition start position.

compNumber
Specify the bytes count to be obtained.

Notes

• In beginIndex you can specify value 0 or greater than 0 and in compNumber you can specify value 1 or
greater than 1. However, specify such that total count of the value of beginIndex and value of compNumber is
less than the bytes count of variable specified in variableName. If the total count of value of beginIndex and
value of compNumber is greater than the bytes count of variables specified in variableName,
XpathFunctionException occurs.

• When you specify a non-numeric value in beginIndex and compNumber, XpathFunctionException occurs.

• If you specify a value that cannot exist as variable, in variableName, XpathFunctionException occurs.

(v) getHexString

Format
csc:getHexString('convertString','characterCode')

Argument

convertString
Specify the character string to be converted to hexadecimal format.

characterCode
Specify the character code to be used for acquiring the byte data from the character string.

Notes

• When you specify blank character () in convertString, blank character is returned as the process result.

• If you specify data other than character code corresponding to JavaVM of the environment, in which variable
is used, in characterCode, XpathFunctionException occurs.

5. Defining Business Processes

202

5.7 Scheduling comments
You can add description of the business process of activities on the business process editor, by using comments.

Schedule a comment by selecting Comment from the pallet of the business process editor.

Method to start the edition

• Double click the Comments.

• When comment is in selected status, single click the comment.

• When comment is in selected status, click F2 key.

• In context menu of comments, select Settings.

Method to end the edition

• Click the outer side of the comment being edited.

• Press Ctrl key + Enter key.

5. Defining Business Processes

203

5.8 Saving Business Processes
When you are editing the contents of a business process in the Define Business Process window, you can save the
contents as new contents or by overwriting the existing content during or after editing. The contents are saved in the
repository.

The message format definition file specified during variable definition and the data transformation definition file
generated during data transformation definition are saved simultaneously with the Define Business Process window.

The methods for saving business processes are described below.

Method 1
On the Eclipse menu bar, select File and then Save.

Method 2
On the Eclipse menu bar, select File and then Save All.

Method 3
In the Define Business Process window, press Ctrl + S.

If a business process has not been saved when you attempt to finish defining the business process by closing the
Define Business Process window, the Save Resource dialog box appears. In this dialog box, you can save the business
process that has not been saved.

! Important note

If invalid data has been entered, you might be unable to save the business process. In such a case, take action according to
the displayed message.

5. Defining Business Processes

204

5.9 Editing Business Processes
You can edit the contents of a saved business process. Open the Business Process Definition screen and edit the
contents. The Business Process Definition screen opens when you choose and double-click the applicable business
process from the service definition list in the tree view.

For details about how to define business process contents, see 5.3 Defining Business Process Contents.

5.9.1 Modifying the definition information for business processes and
activities

You can modify the definition information for business processes and activities.

! Important note

If definition information has been changed in the Properties view, apply the changes before performing other operations.

(1) Modifying the definition information for business processes
The following two methods are available to modify the definition information for business processes:

Method 1

1. From the services displayed in the service definition list in the tree view, select and double-click the applicable
business process.
The Define Business Process window for the selected business process opens.

2. Modify the contents.

Method 2
In the Properties view, you can modify the following definition information for business processes. To modify any
other types of definition information, use Method 1.

• Business process name

• Service ID#

• Status persistence

#
To change a service ID, specify alphanumeric characters and underscores (_) of no more than eight bytes.

1. From the services displayed in the service definition list in the tree view, select the applicable business
process.
The properties related to the selected business process are displayed in the Properties view.

2. Select and change the desired items.
Do not enter a single-byte or double-byte space before or after each entry item.

(2) Modifying the definition information for activities
The following two methods are available to modify the definition information for activities:

Method 1

1. From the services displayed in the service definition list in the tree view, select and double-click the applicable
business process.
The Define Business Process window opens.

2. Select the applicable activity on the canvas.

3. Double-click the activity, or right-click it and then select Setting.
A dialog box for the activity opens.

4. Modify the contents.

5. Defining Business Processes

205

Method 2
For activities other than the start and end activities, you can change the service name from the Properties view. To
change any information other than service names, use Method 1.
To change the definition information for activities from the Properties view:

1. Select one of the activities on the canvas of the Define Business Process window.
The properties related to the selected activity are displayed in the Properties view.

2. Double-click and change the desired items.
Do not enter a single-byte or double-byte space before or after each entry item.

5.9.2 Modifying Activity Names
You can modify the names of all activities except start and end activities.

Activity names must be unique within each business process. Do not enter a single-byte or double-byte space before
or after each entry item.

! Important note

If items such as activity names have been changed in the Properties view, apply the changes before performing other
operations.

The following two methods are available to modify activity names:

Method 1

1. Select the applicable activity on the canvas.

2. With the activity selected, left-click or press the F2 key.

3. Edit the activity name.

4. Press the Enter key or move the cursor off the activity name box.
The activity name is modified.

If the modified activity name already exists within the business process or is left blank, an error occurs, and the
activity name reverts to its original name.

Method 2

1. Select the applicable activity on the canvas.
The properties related to the selected activity are displayed in the Properties view.

2. Select an activity name displayed in the Properties view and edit it.

3. Press the Enter key or move the cursor off the activity name box.

5.9.3 Changing a Running Business Process Definition
For changing the business process definition being operated according to the changes or enhancement in business,
select the change method from the following, depending on the operation after change:

(i) When invoking the business process before change as a new process
Create and operate a new business process, as a business process after change. You must distinguish the service
name and business process name in the business process before and after change.

(ii) When it is not possible to maintain uniqueness of the business process before change and correlation set
Create and operate a new business process, as a business process after change. You must distinguish the service
name and business process name in the business process before and after change.

(iii) When all the processes belonging to the business process definition before change are complete
Delete all the process belonging to the business process before change and replace with the business process
definition after change.

5. Defining Business Processes

206

(iv) When you can change the service requester in cases other than (i)~(iii)
Create and operate a new business process, as a business process after change. You must distinguish the service
name and business process name in the business process before and after change.

(v) When you cannot change the service requester in cases other than (i)~(iii)
Create the business processes for which version is upgraded and operate in parallel. You must change the service
adapter according to the change contents after version upgradation.

Respective methods are as follows:

(1) Method to create and operate a new business process
In case of (i), (ii) and (iv)m create a new business process and operate the business process with service name and
business process definition name after change. Procedure is as follows:

1. Export the repository information from the operating environment and import to the development environment.

2. Create a new business process based on the existing business process.
Note You must distinguish the service name and business process name in the new and existing business process.

3. Perform packaging of the business process.
For details on packaging, see "7.2 Packaging".

4. Perform deployment definition of the business process.
For details on the deployment definition, see "7.3 Defining Deployment of HCSC Components".

5. Export the repository information that includes the business process created in step 2. And import the operating
environment.

6. Deploy the business process from operating environment to execution environment.
For details on the operations in the operating environment, see "3.1.13 Deploying the business process" in the
"Service Platform System Setup and Operation Guide".

(2) Method of deleting the existing business process and replacing with latest business
process

In case of (iii), delete the existing business process from the execution environment and replace it with the latest
business process. Procedure is as follows:

1. Export the repository information from the operating environment and import to the development environment.

2. Delete the deployment information of the existing business process.
For details on deleting the deployment information of business process, see "7.3 Defining Deployment of HCSC
Components".

3. Change the existing business process definition, in the Business process definition screen.

4. Perform packaging of the business process.
For packaging, see "7.2 Packaging".

5. Perform deployment definition of the business process.
For details on deployment definition, see "7.3 Defining Deployment of HCSC Components".

6. In operating environment, check whether all the processes belonging to the existing business process definition are
complete and delete the HCSC component deployed to the execution environment.

7. Export the repository information that includes the business process changed in step 2. And step 3. And import to
the operating environment.

8. Deploy the business process from operating environment to execution environment.
For operations of operating environment, see "3.1.13 Deploying the business process" in the "Service Platform
System Setup and Operation Guide".

(3) Method of operating in parallel
In case of (v), operate the existing business process and business process, version of which is upgraded, in parallel.
Before upgrading the version of the business process, check "5.9.4 Upgrading version of business processes".

5. Defining Business Processes

207

1. Export the repository information from the operating environment, and import into the development environment.

2. Delete the deployment definition of the business process.
For details on deleting the deployment definition of the business process, see 7.3 Defining Deployment of HCSC
Components.

3. Right click the business process in the tree view service definition list and choose Upgrade.

4. Edit the business process chooseed in step 3. in the Business Process Definition screen.

5. Package the business process.
For details about packaging, see 7.2 Packaging.

6. Create a deployment definition for the business process.
For details about deployment definition, see 7.3 Defining Deployment of HCSC Components.

7. Stop and delete the business process existing in the operating environment.

8. Export the repository information containing the business process changed in step 2. up to step 4. and import into
the operating environment.

9. Deploy the business process from the operating environment to the execution environment.
For operations in the operating environment, see "3.1.13 Deploying the business process" in the "Service Platform
System Setup and Operation Guide".

5.9.4 Upgrading version of business processes
This section describes the operations that you can implement, operations that you cannot implement after upgrading
the version of business process and precautions to be taken when upgrading the version.

(1) Operations that you can implement after the version upgradation
This table describes the operations that you can implement after upgrading the version of business process.

Table 5‒16: TableOperations that you can implement after upgrading the version

Target activity Operations Remarks

1 Receive activity#1 Changing the activity
name

-

2 Changing the
operation name

In some cases, you require to change the operation name, depending on the
changes after upgrading the version.

For operation names that must be changed, see #4, #7, #15 and #18.

3 When you use the user-defined reception, you must add a new user
reception.#3#6

4 Changing the body
assigned variable

When you change the body assigned variable specified in the reference
destination of the correlation set, you must change the operation name.

5 When you use the user-defined reception, you must add a new user-defined
reception.#6

6 Adding, changing or
deleting the header
assigned variable

When you use the SOAP reception, you must add a new user-defined
reception.#4#6

7 Adding, changing and
deleting the assigned
correlation set

When you add, change or delete a assigned correlation sets, you must change
the operation name. Accordingly, when you use the user-defined reception, you
must add a new user-defined reception.#6

8 Correlation set (pair of name and value) must be unique in all the versions.

9 Changing the
communication model

When you use the user-defined reception, you must add a new user-defined
reception.#6

5. Defining Business Processes

208

Target activity Operations Remarks

10 Receive activity#1 Changing the instance
generation

-

11 Adding and deleting
an activity

-

12 Reply activity#1 Changing the activity
name

-

13 Changing the
operation name

You might have to change the operation name depending on the change contents
after upgrading the version.

For the operations that require change of operation name, see #4, #7, #15 and
#18.

14 When you use the user-defined reception, you must add a new user-defined
reception.#3#6

15 Changing the body
assigned variable

When you change the body assigned variable specified at the correlation set
reference destination, you must change the operation name.

16 When you use the user-defined reception, you must add a new user-defined
reception.#6

17 Adding, changing and
deleting the header
assigned variable

When you use the SOAP reception, you must add a new user-defined
reception.#4#6

18 Adding, changing and
deleting the allocation
correlation set

When you add, change or delete an allocation correlation set, you must change
the operation name. accordingly, when you use the user-defined reception, you
must add a new user-defined reception.#6

19 Correlation set (pair of name and value) must be unique in all the versions.

20 Changing and deleting
the fault name

When you use SOAP reception, you must add a new user-defined reception.#5#6

21 Adding and deleting
an activity

-

22 Other activities Adding, changing and
deleting an activity

When you add, change or delete the allocation correlation set in the invoke
service activity, correlation set (pair of name and value) must be unique in all
the versions.

23 User-defined
reception#2

Adding the user-
defined reception#7

You can add the user-defined reception to be used in latest version.

You can also add the user-defined reception to be shared in latest and other
versions.

24 Changing the user-
defined reception#7

You can change the user-defined reception regardless of version.

25 Deleting the user-
defined reception

You can delete the user-defined reception used only in the latest version.

Legend:
-: Corresponding description does not exist.

#1
Target version for performing operation, is the latest version. You cannot perform operations like reference or change in versions
other than the latest version.

#2
You can reference the user-defined reception regardless of the version.

#3
This is not required when you change other operation names defined in the user-defined reception or add operation name to user-
defined reception, by using the user-defined reception.

5. Defining Business Processes

209

#4
This is not required when data validation function is inactive (when "IGNORE" is specified in the telegram-notfound-soapheader
property of the HCSC server random definition file) and change does not have impact on operation.

#5
This is not required when changing the other operation name defined in the user-defined reception.

#6
To add a new user-defined reception, see "(3)(b) Notes when using the user-defined reception".

#7
You must define the user-defined reception by considering the definition contents of corresponding business process. Comtability
with version other than latest version is checked in the validation of user-defined reception. For details on validation of the user-
defined reception, see "2.10 Validating the user-defined reception" in the "Service Platform Reception and Adapter Development
Guide".

(2) Operations that you cannot implement after upgrading a version
Following table describes the operation that you cannot implement after upgrading the version of business process.

Table 5‒17: TableOperations that you cannot implement after upgrading a version

Target activity Operation Remarks

1 Business
process#1

Changing the
service ID

-

2 Changing the
persistence of
status

-

3 Changing the
business process

-

4 User-defined
reception#2

Adding the user-
defined reception

You cannot add the user-defined reception used in versions other than the latest
version.

5 Deleting the user-
defined reception

You cannot delete the user-defined reception defined when upgrading the version.

Legend:
-: Corresponding description does not exist.

#1
Target version for performing operation, is the latest version. You cannot perform operations like reference or change in versions
other than the latest version.

#2
You can reference the user-defined reception regardless of version.

When you upgrade a version of business process, you cannot use following functions in the business process having
version other than latest version.

• Debugging the business process

• Invoking the latest process instance

(3) Points to be noted when upgrading the version of business process
When you upgrade a version of business process, you might not be able to execute the business process of version
other than latest version, depending on the change contents after version upgradation.

Change the definition information after checking the following contents and verifying the impact of changes. It is
recommended to acquire the version upgradation of the definition information, before performing the version
upgradation.

(a) Notes when changing the business process definition in the latest version

You can execute the business process of version other than latest version, with the following flow.

5. Defining Business Processes

210

1. From the latest version, reference the business process of a version other than latest version, based on the
operation specified at the time of invoking and acquire the reception activity for which the corresponding
operation name has been defined.

2. Acquire the value of correlation set from the message, based on the correlation set acquisition position of
reception activity.

3. Acquire the process being executed, based on the value of correlation set.

4. Compare the versions of acquired process sequentially from the latest version and if matching version is found,
continue process with business process definition of the concerned version.

If you change the business process definition of the latest version after upgrading version of the business process in
the environment, having a process instance for which versions other than latest version are not complete, change the
business process definition, by considering the impact of above-mentioned process and also the changes done.

Following figure shows the flow of process when executing the business process in version other than latest version,
after upgrading the version.

Figure 5‒18: FigureFlow of the process when executing the business process of the version other than
latest version, after upgrading the version

(b) Notes when using the user-defined reception

When you implement the following operations after upgrading version of the business process in which user-defined
reception is used, you must retain the user-defined reception used in the versions other than latest version as it is and
add a new user-defined reception to be used in the latest version.

• Changing the operation name

5. Defining Business Processes

211

• Changing the body assigned variable

• Adding, changing and deleting the header assigned variable

• Adding, changing and deleting the assigned correlation set

• Changing and deleting the fault name

However, you might not be required to add a new user-defined reception, even in the cases mentioned above. For
details, see remarks and notes in "Table5-16 Operations that you can implement after upgrading the version".

Following figure shows the example of changing business process when it is required to add a new user-defined
reception after upgrading the version.

Figure 5‒19: FigureExample of change when it is required to add a new user-defined reception

(c) Notes related to uniqueness of correlation set

If uniqueness of correlation set (pair of name and value) is not maintained after upgrading the version, unexpected
process might be invoked in the latest version and the version other than latest version.

Following figure shows the operations in case of specifying correlation set of value same as value before version
upgdaration, after upgrading the version.

5. Defining Business Processes

212

Figure 5‒20: FigureWhen uniqueness of correlation set is not maintained (set up the correlation set in the
reception)

(d) Notes in case of making changes related to correlation set

When you implement following operations after upgrading the version, value of correlation set might not match in
latest version and version other than latest version.

• Changing the body assigned variable (part specification) specified in correlation set reference destination

• Adding, changing and deleting the assigned correlation set

In such cases, you might not be able to execute the process of version other than latest version. Therefore, you must
change the operation name, when you make changes related to the correlation set.

Following figure shows the operations when changing the correlation set after upgrading the version.

5. Defining Business Processes

213

Figure 5‒21: FigureWhen making changes related to correlation set (change the correlation set name)

Following figure shows the operations when you change the correlation set reference destination, after upgrading the
version.

5. Defining Business Processes

214

Figure 5‒22: FigureWhen making changes related to correlation set (change the correlation set reference
destination)

(e) Notes when making changes related to body assigned variables

After upgrading the version, when you make changes in the body assigned variable (part specification) specified in the
correlation set reference destination, value of correlation set might not match in the latest version and version other
than latest version. In such cases, you might not be able to execute the process of version other than latest version.

Accordingly, when you change the body assigned variable (part specification) specified in the correlation set reference
destination, you must change the operation name.

Following figure shows the operations in case of changing the body assigned variable (part specification) after
upgrading the version.

5. Defining Business Processes

215

Figure 5‒23: FigureWhen making changes related to body assigned variable (change the part
specification)

As shown in the following figure, when you change the XML schema of body assigned variable after upgrading the
version, you can acquire the correlation set value and execute the business process other than that of latest version, if
you are able to acquire same value in the latest version and the version other than latest.

5. Defining Business Processes

216

Figure 5‒24: FigureWhen making changes in the body assigned variables (change the XML schema of the
variable)

(f) Notes when deleting operations of the user-defined reception

In the business process that uses the user-defined reception, if you delete the operation of the version other than latest
version, after upgrading the version, you might not be able to execute the process of version other than latest version.

Following figure shows the operations in case of deleting the operation of user-defined reception, after upgrading the
version.

5. Defining Business Processes

217

Figure 5‒25: FigureWhen deleting the operation of user-defined reception

5. Defining Business Processes

218

5.10 Validating Business Processes
You can check the contents of a created business process for validity.

If the required business process definitions are missing, or if the definition relationship is invalid, the business process
cannot operate normally. Therefore, before executing business processes in the execution environment, you must
validate all business process definitions.

You validate whether all of the required items are present in the business processes you have created and whether their
relationship is valid. You can perform validation at any time, as needed.

Validate the business processes as follows:

• Validation of the business process definition
Validate the defined contents of the business process. Validate the mandatory items, whether the business process
is structured, and perform other validations.

• Validation of the invoked service component
Validate the compliance with service components invoked by the invoke service activity.

• Java validation
Validate Java classes used in the invoke Java activity and the library used from Java classes.

• Validation of data transformation definition
Validate the contents of the data transformation definition of data transformation activities.

• Validation of user-defined reception
Validate the defined contents of the user-defined reception included in the business processes to be validated.

For details on the contents of business process definition, service component invocation, and Java validation, see
5.10.1 Validation Contents.

For the contents of user-defined reception validation, see 8.7 Validating a User-Defined Reception.

5.10.1 Validation Contents
In business process validation, the following items are validated:

• Required items

• Whether the defined business processes are structured

• Other items

If the number of errors during validation exceeds 100, the validation process is prematurely terminated. If this occurs,
you must re-evaluate the created business processes.

Even if no error occurs during business process validation, errors may occur during business process execution in
some cases. In such a case, collect a log and take the necessary action according to the message that is output to the
log.

Note that business process validation essentially validates only the definition information, and does not guarantee that
no error occurs during business process execution. Make sure to perform adequate testing of the business processes
before placing them into actual operations.

(1) Validating required items
The activities of the business processes described in the Business Process Definition screen are validated as to whether
the required items are defined. Optional items are also validated if they are specified. The following table shows the
required items that are validated and the corrective actions to be taken.

5. Defining Business Processes

219

Table 5‒18: Required items validated, and corrective actions

Item
No. Validated content Corrective action to be taken

1 Is the length of the business process names 64 bytes or
less?

Take one of the following actions:

• Shorten the business process names to 64 bytes or
less.

• Change the character format used.

2 Is the length of the names of the variables defined in
the Variable-Correlation Set dialog box 64 bytes or
less?

Take one of the following actions:

• Shorten the variable names to 64 bytes or less.

• Change the character format used.

3 If the variable type defined in the Variable-Correlation
Set dialog box is message type, is a message format
corresponding to the variable specified?

In the Variable-Correlation Set dialog box, specify a
message format that corresponds to the message-type
variables.

4 Is a part name specified for the variable defined in the
Variable-Correlation Set dialog box?

Specify a part name for the variable in the Variable-
Correlation Set dialog box.

5 Is an expression specified for the part name of the
variable defined in the Variable-Correlation Set dialog
box?

Specify an expression for the part name of the variable in
the Variable-Correlation Set dialog box.

6 Is a type specified for the part name of the variable
defined in the Variable-Correlation Set dialog box?

Specify a type for the part name of the variable in the
Variable-Correlation Set dialog box.

7 Is the length of the name of the correlation set defined
in the Variable-Correlation Set dialog box 64 bytes or
less?

Take one of the following actions:

• Shorten the correlation set name to 64 bytes or less.

• Change the character format used.

8 Is at least one part name specified for the correlation
set defined in the Variable-Correlation Set dialog box?

Specify at least one part name for the correlation set in
the Variable-Correlation Set dialog box.

9 Is a variable name specified for the correlation set
defined in the Variable-Correlation Set dialog box?

Specify a variable name for the correlation set in the
Variable-Correlation Set dialog box.

10 Is a valid variable name specified for the correlation set
defined in the Variable-Correlation Set dialog box?

Specify a valid variable name in the Variable-Correlation
Set dialog box.

11 Is there a basic type part in the variable specified in the
correlation set defined in the Variable-Correlation Set
dialog box?

Specify a variable having a basic type part in the
Variable-Correlation Set dialog box.

12 Is a part name specified for the correlation set defined
in the Variable-Correlation Set dialog box?

Specify a part name for the correlation set in the Variable-
Correlation Set dialog box.

13 Is a valid part name specified for the correlation set
defined in the Variable-Correlation Set dialog box?

Specify a valid part name in the Variable-Correlation Set
dialog box.

14 Is a valid variable specified for fault handling of
activities?

Specify a valid variable in the Fault Handler dialog box.

15 Is a transition destination specified for fault handling of
activities?

Specify a transition destination in the Fault Handler
dialog box.

16 Is an allocated variable specified for fault handling of
activities?

Specify an allocated variable in the Fault Handler dialog
box.

17 Is a transition destination specified for fault handling of
activities?

Specify a transition destination in the Fault Handler
dialog box.

18 Is an operation name specified for a receive activity? Specify an operation name for the receive activity.

19 Is the length of the activity names 64 bytes or less? Take one of the following actions:

• Shorten the activity names to 64 bytes or less.

5. Defining Business Processes

220

Item
No. Validated content Corrective action to be taken

19 Is the length of the activity names 64 bytes or less? • Change the character format used.

20 Whether a valid header assigned variable has been
specified in the receive activity

Specify a valid header assigned variable in the receive
activity.

21 Whether a valid root element and namespace has been
specified in the receive activity

Specify a valid root element and namespace in the receive
activity.

22 Whether a valid body assigned variable has been
specified in the receive activity

Specify a valid body assigned variable in the receive
activity.

23 Whether a valid allocation correlation set has been
specified in the receive activity

Specify a valid allocation correlation set in the receive
activity.

24 Is a link name specified for a link connection? Specify a link name for the link connection.

25 When yes is specified for the transition condition at the
link destination of a link connection, is XPath
specified?

Take one of the following actions for the link connection:

• Specify a transition condition.

• Choose no for the transition condition.

26 Is an operation name specified for a reply activity? Specify an operation name for the reply activity.

27 Whether a valid header assigned variable has been
specified in the reply activity.

Specify valid header assigned variable in the reply
activity.

28 Whether valid root element and namespace has been
specified in the reply activity.

Specify valid root element and namespace in the reply
activity.

29 Whether valid body assigned variable has been
specified in the reply activity.

Specify valid body assigned variable in the reply activity.

30 Whether a valid allocation correlation set has been
specified in the reply activity.

Specify valid allocation correlation set variable in the
reply activity.

31 Whether body assigned variable has been specified in
the reply activity.

Specify body assigned variable in the reply activity.

32 Is a service name to be invoked specified for a invoke
service activity?

Specify a service name to be invoked for the invoke
service activity.

33 Whether header assigned variable for a valid request
message has been specified in the invoke service
activity.

Specify header assigned variable for a valid request
message in the invoke service activity.

34 Whether root element and namespace for a valid
request message has been specified in the invoke
service activity.

Specify root element and namespace for a valid request
message in the invoke service activity.

35 Whether header assigned variable for a valid response
message has been specified in the invoke service
activity.

Specify header assigned variable for a valid response
message in the invoke service activity.

36 Whether root element and namespace for a valid
response message has been specified in the invoke
service activity.

Specify root element and namespace for a valid response
message in the invoke service activity.

37 Whether header assigned variable for a valid request
message has been specified in the invoke service
activity.

Specify body assigned variable for a valid request
message in the invoke service activity.

38 Whether header assigned variable for a valid reply
message has been specified in the invoke service
activity.

Specify body assigned variable for a valid response
message in the invoke service activity.

39 Whether header assigned variable for a valid reply
message in case of synchronous invoking has been
specified in the invoke service activity.

Specify header assigned variable for a valid reply
message in case of synchronous invoking, in the invoke
service activity.

5. Defining Business Processes

221

Item
No. Validated content Corrective action to be taken

40 Is a valid correlation set specified for a invoke service
activity?

Specify a valid correlation set for the invoke service
activity.

41 Is at least one assign operation specified for an assign
activity?

Specify at least one assign operation for the assign
activity.

42 Is a copy source specified for an assign activity? Specify a copy source for the assign activity.

43 Is a copy destination specified for an assign activity? Specify a copy destination for the assign activity.

44 Is a valid copy source variable specified for an assign
activity?

Specify a valid copy source variable for the assign
activity.

45 Is a valid part name specified in the copy source for an
assign activity?

Specify a valid part name in the copy source for the
assign activity.

46 Is a source variable specified for a data transformation
activity?

Specify a source variable for the data transformation
activity.

47 Is a valid source variable specified for a data
transformation activity?

Specify a valid source variable for the data transformation
activity.

48 Is data transformation definition specified for a data
transformation activity?

Specify data transformation definition for the data
transformation activity.

49 Is a valid data transformation definition specified for
the data transformation activity?

Specify a valid definition with reference to the message
output during the validation.

50 Is Variable or Expression chooseed as the copy source
type for an assign activity?

Specify Variable or Expression as the copy source type
for the assign activity.

51 When a copy source variable is chooseed for an assign
activity, is a variable name specified?

Specify a variable name for the copy source variable
chooseed for the assign activity.

52 When a copy source expression is chooseed for an
assign activity, is an expression specified?

Specify a copy source expression for the assign activity.

53 When a copy destination variable name is specified for
an assign activity, is a valid variable specified?

Specify a valid copy destination variable for the assign
activity.

54 Is a valid destination variable specified for a data
transformation activity?

Specify a valid destination variable for the data
transformation activity.

55 Is a valid part name specified in the copy destination
for an assign activity?

Specify a valid part name in the copy destination for the
assign activity.

56 Is a variable specified for the copy destination of an
assign activity or the transformation destination of a
data transformation activity?

Take one of the following actions:

• Specify a copy destination variable for the assign
activity.

• Specify a transformation destination variable for the
data transformation activity.

57 Is the length of the link name specified for a flow start
activity 64 bytes or less?

Take one of the following actions for the link name
defined for the flow start activity:

• Shorten the link name to 64 bytes or less.

• Change the character format used.

58 Is at least one switch condition specified for a switch
activity?

Specify at least one switch condition for the switch
activity.

59 Is there any transition destination that is not assigned to
a conditional switch or default in a switch activity?

Assign the transition destination to a conditional switch
or default in the switch activity.

60 Is a condition name specified for a switch activity? Specify a condition name for the switch activity.

61 Is a switch condition specified for a switch activity? Specify a switch condition for the switch activity.

5. Defining Business Processes

222

Item
No. Validated content Corrective action to be taken

62 Whether repetition conditions have been set in the
while activity (only in case of condition specification
method)

Set repetition conditions in the while activity.

63 Whether repetition list has been set in the while
activity(only in case of list specification method)

Set repetition list in the while activity.

64 Whether repetition element variables have been set in
the while activity(only in case of list specification
method)

Set repetition element variables in the while activity.

65 Whether valid variable names have been specified in
repetition element variables, in the while activity(only
in case of list specification method)

Set valid repetition list in the while activity.

66 Is a Java class name specified for a Java invocation
activity?

Specify a Java class name for the Java invocation activity.

67 Is a valid variable for argument specified for a Java
invocation activity?

Specify a valid variable for argument for the Java
invocation activity.

68 Is a valid variable for return value specified for a Java
invocation activity?

Specify a valid variable for return value for the Java
invocation activity.

69 Is a valid allocated variable specified for a throw
activity?

Specify a valid allocated variable for the throw activity.

70 Is standby time set in the standby activity? Set standby time in the standby activity.

71 Is a directory specified in the lib directory of the
HCSCTE project?

Remove the directory from the lib directory of the
HCSCTE project.

72 Is a file with any of the following names specified in
the lib directory of the HCSCTE project:

• csbdef.jar
• cscbp_ejb.jar
• csbjava.jar

Either delete the file or change the file name, and make
sure that the files specified on the left are not specified in
the lib directory of the HCSCTE project.

73 Whether variables to be validated have been specified
in the validate activity

Specify the variables to be validated in the valid activity.

74 Whether valid variable names have been specified in
the variables to be validated, in the valid activity

Specify valid variable names in the variables to be
validated, in the validate activity.

(2) Validating whether the defined business processes are structured
The structuring of business processes using connections is validated.

If an error occurs during the validation, the connection at the source of the connection that caused the error is also
treated as an error.

In the example shown in the figure below, if Connection E is not present, even if normal connections are included for
the switch activity and flow activities, connections that use the switch activity as their source, connections that use
flow activities as their sources, and connections that use the start activity as their source are all treated as errors.
However, if Process D is a throw activity, Connection E cannot be specified, and thus no error occurs.

5. Defining Business Processes

223

Figure 5‒26: Connection example

The following table shows the structuring contents of defined business processes that are validated and the corrective
actions to be taken.

Table 5‒19: Structuring contents of defined business processes that are validated, and corrective actions

Item
No. Classification Validated content Corrective action to be taken

1 Next
connection
destination

When the transition source is a start activity, is
there a next connection destination?

Specify activities that are to be connected to
the start activity.

2 When the transition source is a flow start
activity, is there a next connection destination?

Specify activities that are to be connected to
the flow start activity and link connections.

3 When the transition source is a switch start
activity, is there a next connection destination?

Specify activities that are to be connected to
the switch start activity.

5. Defining Business Processes

224

Item
No. Classification Validated content Corrective action to be taken

4 Next
connection
destination

When the transition source is not any of the
above activities, is there a next connection
destination?

Specify activities that are to be connected to
the transition source activity.

5 Flow process Is a flow process connected to a switch end
activity?

Connect the flow process to the corresponding
flow end activity.

6 Are the connections shown below connected to
a flow end activity?

• Connection that uses a start activity as its
source #

• Connection that uses the start point of fault
handling of an activity as its source #

Take one of the following actions:

• Delete the flow end activity.

• Change the flow end activity to a different
activity.

7 Are there multiple flow end activities that are
connected to the flow start activity?

Connect the flow start activity to one
corresponding flow end activity.

8 Does a flow end activity receive connections
from flow processes other than the
corresponding ones?

Connect the corresponding flow processes to
the flow end activity.

9 Is a flow process connected to an end activity? Connect the flow process to a flow end activity.

10 Is the flow start activity connected directly to
the flow end activity?

Specify at least one activity between the flow
start activity and the corresponding flow end
activity.

11 Switch
process

Is a switch process connected to a flow end
activity?

Connect the switch process to its corresponding
switch end activity.

12 Are the connections shown below connected to
a switch end process?

• Connection that uses a start activity as its
source #

• Connection that uses the start point of fault
handling of an activity as its source #

Take one of the following actions:

• Delete the switch end activity.

• Change the switch end activity to a
different activity.

13 Are there multiple switch end activities that are
connected to the switch start activity?

Connect the switch start activity to a single
corresponding switch end activity.

14 Does a switch end activity receive connections
from switch processes other than the
corresponding ones?

Connect the corresponding switch process to
the switch end activity.

15 Is a switch process connected to an end
activity?

Connect the switch process to a switch end
activity.

16 Is the switch start activity connected directly to
the switch end activity?

Specify at least one activity between the switch
activity and the corresponding switch end
activity.

17 Fault handling Is there an end activity in the middle of the
processing of a connection that uses the start
point of fault handling of an activity as the
source?

Delete the end activity from the connection
destination of the fault handling.

#

For details about connection that uses the start activity as the source and connection that uses the start point of fault handling of an
activity as the source, see Figure 5-26 Connection example.

(3) Other items
The following table lists other items that are validated.

5. Defining Business Processes

225

Table 5‒20: Other items that are validated, and corrective actions

Item
No.

Classificatio
n Validated content Corrective action to be taken

1 Common to
business
processes

Is the basic activity that is executed at the start
of a business process a receive activity that
generates an instance?

Connect a receive activity that generates an
instance next to the start activity.

2 Is a valid link name specified for a link
connection?

Specify a link name at the link-source flow
start activity.

3 Does the copy source of an assign activity have
the same variable type as the copy destination?

In the assign activity, set the same variable
type for the copy destination and the copy
source.

4 Whether the same operation name has been
used in multiple receive activities

Specify a unique operation name in each
receive activity.

5 Do reply activities having the same operation
name have the same variable type?

Specify the same allocated variable name for
the reply activities having the same operation
name.

6 Is there a single variable that corresponds to the
fault names of the reply activities of the same
operation?

Example of incorrect specification:

• Variables variableX and
variableY correspond to fault name
faultA.

Example of correct specification:

• Variables variableX and
variableY correspond to fault names
faultA and faultB, respectively.

• Variable variableX corresponds to
fault names faultA and faultB.

In the Fault Handler dialog box, specify a
single allocated variable that corresponds to the
fault names of the reply activities of the same
operation.

7 Is a looping link connection specified? Specify a link connection that does not loop.

8 Is a link connection that starts outside fault
handling and ends inside it specified?

Delete the link connection that starts outside
fault handling and ends inside it.

9 Is a link name used more than once? Change the link names so that each link name
is unique within a business process.

10 Is there a reply activity that corresponds to the
operation of a synchronous receive activity?

Create a reply activity that corresponds to the
operation of the synchronous receive activity.

11 Is there a receive activity that corresponds to
the operation of a synchronous reply activity?

Take one of the following actions:

• Create a receive activity that corresponds
to the operation of the synchronous reply
activity.

• Change the operation name of the reply
activity.

12 Do all receive activities that generate instances
use the same correlation set?

Specify that all receive activities that generate
instances use the same correlation set.

13 Is there a receive activity that generates an
instance?

Take one of the following actions:

• For receive activities, change Instance
generation to yes.

• Create a receive activity that generates an
instance.

5. Defining Business Processes

226

Item
No.

Classificatio
n Validated content Corrective action to be taken

14 Common to
business
processes

Is there an activity that cannot be reached even
when connections are traced from a business
process starting point?

Take one of the following actions:

• Delete the activity that cannot be reached.

• Specify connections so that the activity can
be reached.

15 Is a fault variable sent out by a throw activity
caught by the fault handling of a higher-order
scope?

Take one of the following actions:

• Specify an appropriate allocated variable
for the fault handling.

• Specify catch-all as an allocated
variable for the fault handling.

16 Whether same link name has not been defined
in multiple start flow activities

Specify link name such that it is unique in the
business process

17 Whether the variable part fulfills the following
conditions:

• When type of part is XML type, part name
should be unique in the business process

• When type of part is other than XML type
(numeric, string or boolean), part name
should be unique between the variables
having same message format

• When the part name is same, type of part
should also be the same

Set the part of variable such that all the
conditions shown in the variable contents are
fulfilled.

18 Whether the invalid activity has been defined in
the scope activity for which [Commit only at
the time of start and end of this scope] radio
button is selected

Delete following activities defined in the scope
activity for which [Commit only at the time of
start and end of this scope] radio button is
selected.

• Receive activity

• Reply activity

• Standby activity

19 In case of
persistence
business
process

Whether while activity of list specified format
exist in the persistence business process

You cannot set while activity of list specified
format, in the persistence process.

20 Non-
persistent
business
processes

In a non-persistent business process, is there an
activity that is executed after a reply activity?

Delete the activity that is executed after a reply
activity.

21 Are there asynchronous receive activities and
asynchronous service invocation activities in a
non-persistent business process?

Take one of the following actions:

• Change the asynchronous receive activities
and asynchronous service invocation
activities to synchronous.

• Delete the asynchronous receive activities
and asynchronous service invocation
activities.

22 Does a standby activity exist in the non-
persistent business process?

Delete the standby activity.

The following figure shows the statuses of the links that are the targets of the validation shown in Table 5-27 Other
items that are validated, and corrective actions.

5. Defining Business Processes

227

Figure 5‒27: Status of the links for validation

(4) Validation of the invoked service component
The service name and operation name of a service component allocated to the invoke service activity is validated.

The following table describes the validation contents and actions for the invoked service component:

Table 5‒21: Validation contents and actions for the invoked service component

Item
No. Validated content Corrective action to be taken

1 Does the service name assigned to the invoke service activity
actually exist in the repository?

Assign a service name that actually exists in the
repository to the invoke service activity.

2 If the service name assigned to the invoke service activity
actually exists in the repository, does the operation name
assigned to the activity exist in the invocation destination
service component?

Assign an operation name that actually exists in
the repository to the invoke service activity.

3 If the service name and operation name assigned to the invoke
service activity actually exist in the repository, does the
communication model specified in the activity match with the
communication model of the invocation destination service
component and operation?

Choose an appropriate service component and
operation in the invoke service activity again.

5. Defining Business Processes

228

(5) Java validation
The Java classes specified in the invoke Java activity are validated.

The following table describes the Java validation contents and actions:

Table 5‒22: Java validation contents and actions

Item
No. Validated content Corrective action to be taken

1 Does the class specified in Java class name of the invoke Java
activity exist in the classes directory of the HCSCTE project?

Take one of the following actions:

• Create the Java class from Java Edit.

• Specify a class that exists in the classes
directory of the HCSCTE project for the
invoke Java activity.

2 Is a compilation error detected in the class# specified for the
invoke Java activity?

Either eliminate the compilation error from the
class specified for the invoke Java activity or
specify a class in which a compilation error does
not occur.

#
Only the classes specified for the Invoke Java activity are validated. The other classes referenced from these classes are not
validated.

(6) Contents that cannot be validated
Even if no error occurs during business process validation, errors may occur during business process execution in
some cases. In such a case, collect a log and take the necessary action according to the message that is output to the
log. For details about the log output destination, see the contents about the Application Server log (system for
executing J2EE applications) in the manual Cosminexus Application Server Function Guide - Maintenance,
Migration, and Compatibility.

The following are examples in which errors do not occur during business process validation but do occur during
business process execution:

• The number of instances generated by activities exceeds 32,762.

• A receive activity having the operation name specified by a service requester cannot be reached.

• A receive activity having the operation name specified by a service requester is in a standby state.

• The reply activity that corresponds to the receive activity having the operation name specified by a service
requester cannot be reached.

• A basic activity other than a receive activity was executed before a receive activity that generates a process
instance.

• A reply activity was executed when the service requester side was not waiting for a reply.

• The operation name of the receive activity specified by a service requester does not match the operation name of
the reply activity returned as a reply to the service requester.

• The number of looping executions exceeds the limit.

5.10.2 Validation Method
To perform validation:

1. Right-click the service definition list in the tree view.
The Service List pop-up menu opens.

2. On the pop-up menu, click Validation.
The validation result is displayed in the console view.

Additionally, when packaging is executed, validation is automatically performed.

5. Defining Business Processes

229

Note that if a business process and user-defined reception are not saved before validation, the Save resource dialog
box appears and the definition can be saved. If multiple business processes and user-defined receptions are being
edited, multiple dialog boxes appear. To save, click Yes. To save all in the future without displaying the confirmation
dialog box, click Yes to all button.

5.10.3 Displaying the Validation Contents
A message indicating the result of validation is displayed in the console view. Make corrections according to the
message if necessary.

The following table shows the types of messages that are displayed.

Table 5‒23: Types of messages

Type Explanation

Error Displayed in either of the following cases:

• The definition content is invalid.

• Although the syntax for the definition is correct, the definition cannot be executed.

Warning Displayed when a definition might cause an error during execution.

Information Displays additional information.

5. Defining Business Processes

230

5.11 Deleting Business Processes
You can delete business processes when you are upgrading their version.

You can delete business processes that have been defined.

(1) Deletion methods
The following two methods are available for deletion:

Method 1

1. Choose a business process from the service definition list in the tree view.

2. Click Delete.
A deletion confirmation dialog box opens.

3. Click Yes.
The specified business process is deleted.

Method 2

1. Choose and right-click a business process from the service definition list in the tree view.
The Service List pop-up menu opens.

2. On the pop-up menu, click Delete.
A deletion confirmation dialog box opens.

3. Click Yes.
The specified business process is deleted.

! Important note
During version upgrading, you cannot delete just the latest version of a business process. All versions of a business
process are deleted.

(2) Business processes that cannot be deleted
You cannot delete a business process for which deployment definition has already been performed.

5. Defining Business Processes

231

6 Defining Data Transformation
This chapter explains the message format definition files and data transformation
definition necessary for data transformation.

233

6.1 Files and Definitions Necessary for Data
Transformation

To create files and definitions necessary for data transformation:

1. Create message format definition files.
For details, see 6.2 Creating Message Format Definition Files.

2. Define data transformation.
For details, see 6.3 Defining Data Transformation.

6. Defining Data Transformation

234

6.2 Creating Message Format Definition Files
This section describes the methods to create and set the message format definition files that form the basis of data
transformation definitions. It also explains notes related to message format definition files and binary message
formats.

(1) Creating message format definition files
Create a message format definition file that becomes the basis for defining data transformation. A message format
definition file is required for the transformation-source and for the transformation-destination. For details about the
types of message format definition files and creation methods, see 4. Creating Message Formats.

For details about the message format definition file used for defining data transformation, see 2.6.5 Scoping of XML
schema.

(2) Setting message format definition files
Set up the created message format definition files in the Service Adapter Definition screen or the Business Process
Definition screen. For details about the Service Adapter Definition screen and the Business Process Definition screen,
see 5.3 Defining Adapter Contents and 5.3 Defining Business Process Contents, respectively.

(3) Notes on creating message format definition files

Format of a message format definition file
The message format definition file used for defining data transformation must satisfy the conditions described in
2.6.5 Scoping of XML schema. For details on schema conditions, see 2.6.5 Scoping of XML schema.

Elements not displayed on the window
For the elements annotation, appinfo, documentation, and notation, there is no tree display in the transformation-
source schema tree viewer and the conversion destination schema tree viewer.

Window display of sequence element and choice element
The transformation-source and destination schema tree viewers display the sequence element or choice element as
follows according to the contents of the XML schema to be defined.

• #(sequence)
Displays the sequence element (compositor) wherein the occurrence count is fixed as once under the sequence
element or choice element.

• #(choice)
Displays the choice element (compositor) wherein the occurrence count is fixed as once under the sequence
element or choice element.

• #anonymous
Displays the sequence element, choice element or all element (compositor) wherein the occurrence count is
not fixed as once.

(4) Points to be considered for binary message format for which a separator is set
When using binary message format for which separator is set, you must take note of following points.

• When "Till end of data" is defined in expression frequency and following 2 conditions are fulfilled, only 1 blank
element is generated as a result of repetition.

• Sibling element does not exist

• Repetition end character is expressed immediately after intermediate delimitation character.

• When the binary data to be input includes byte data of value same as the separator character (including the cases
when it is a part of configuration bytes of multi byte characters), analysis of binary data fails.

• Take note that even if escape character is not added, it is identified as data.
Example: When character string same as start character is set immediately after start character

6. Defining Data Transformation

235

• You cannot use complex contents element in which bit column type simple contents element and size node is
specified, in the binary message format definition, for which separator is set.

• Do not specify the following character code:

• KEIS+EBCDIK

• KEIS+EBCDIC

• IBM_CODE+EBCDIC(LATIN)

• IBM_CODE+EBCDIC(KANA)

• JEF+EBCDIK

• JEF+EBCDIC

(5) Points to be considered for message format of optional format (any format)
When you set optional format (any format) in the message format definition file, part of settings is ignored.

Following table describes the settings that are ignored.

Table 6‒1: TableSettings ignored in case of optional format (any format)

Target component Ignored settings

TP1/RPC reception Independent definition file (cscurecptp1rpc.properties)

• urecp-tp1rpc.dt-skip

Independent definition file (csc_owncodeconvert.properties)

• All settings

TP1 adapter HCSC server runtime definition file (cscsvconfig.properties)

• xmltelegram-maxcache-num

• telegram-validation

• xmltelegram-namespace-complement

• telegram-undefined-character-code

Independent definition file (csccustomadapter.properties)

• custom-adapter.dt-skip

Independent definition file (csc_owncodeconvert.properties)

• All settings

HTTP adapter

General custom adapter

6. Defining Data Transformation

236

6.3 Defining Data Transformation
In the Data Transformation Definition screen, define data transformation by setting up and defining the
transformation-source message format definition file and the transformation-destination message format definition
file. The following definitions can be created in the Data Transformation Definition screen:

Data transformation definition
Data transformation definition refers to definition of the data transformation patterns between all types of formats
in the service adapter and business process definitions.
A data transformation definition is configured from an XML schema file or a binary format definition file and the
data transformation definition file.

Mapping definition
Mapping definition refers to information of the data transformation pattern of the data transformation definition.
The file exporting this information is referred to as the mapping definition file (extension:.mdo). The
mapping definition file saves the edited results of the Data Transformation Definition screen.

The following subsection describes the procedure for defining data transformation:

6.3.1 Procedure for Defining Data Transformation
This subsection explains how to define data transformation in the Data Transformation Definition screen.

(1) Defining new data transformation
To define new data transformation:

Note that the procedure for defining data transformation varies according to the method displaying the Data
Transformation Definition screen.

(a) Method for displaying from data transformation activity of the Adapter Definition screen or Business Process
Definition screen

1. Open the Data Transformation Definition screen from the Service Adapter Definition screen or from a data
transformation activity in the Business Process Definition screen.
The Data Transformation Definition screen opens, and then the Root Element Chooseion dialog box opens.
For details about the Data Transformation Definition screen and the Root Element Chooseion dialog box, see the
manual Cosminexus Service Platform Reference.

2. Choose the root elements of all schema logical names.
The OK button becomes enabled.

3. Click OK.
The schemas of the selected root elements are displayed in a tree in the transformation-source schema tree viewer
and the transformation-destination schema tree viewer.

4. Execute mapping.
For details about mapping, see 6.4 Mapping.

5. In the Data Transformation Definition screen, right-click an appropriate location in the transformation-source
schema tree viewer, mapping viewer, or transformation-destination schema tree viewer, and choose Validation.
Validation is executed.

! Important note
If you click Cancel in step 3, an error message appears. Click OK in the dialog box displaying the error message to
reopen the Choose root element dialog box.

(b) To display from the Eclipse menu

1. In the Eclipse menu, choose File, New and Others.

6. Defining Data Transformation

237

The dialog box for choosing the wizard appears.

2. Choose HCSCTE mapping definitions and Mapping definition file and then click Next.
The New mapping definition file dialog box appears.

3. Enter the directory for saving the Mapping Definition file and the file name and then click Next.

4. Choose the transformation-source and destination schemas and then click End.
The Data Transformation Definition screen appears and then the Choose root element dialog box appears. For
details about the Data Transformation Definition screen and the Choose root element dialog box, see Cosminexus
Service Platform Reference.

5. Choose root elements of all schema logical names.
You can now click OK.

6. Click OK.
The tree of the schema of the selected root element appears in the transformation-source and destination schema
tree viewers.

7. Map.
For details about mapping, see 6.4 Mapping.

8. Right click the applicable location in the Data Transformation Definition screen and then choose Create data
transformation definition.
The dialog box for specifying the directory for saving the data transformation definition and the file name appears.

9. Specify the directory for saving the data transformation definition and the file name and then click Save.
Validation is executed and the data transformation definition is saved.

! Important note
If Cancel is clicked in Step 6., an error message appears. Click OK in the dialog box displaying the error message to
reopen the Choose root element dialog box.

(2) Editing already defined data transformation
To edit already defined data transformation:

1. Open the Data Transformation Definition screen from the Service Adapter Definition screen or from a data
transformation activity in the Business Process Definition screen.
The Data Transformation Definition screen for already defined data transformation opens.
For details about the Data Transformation Definition screen, see the manual Cosminexus Service Platform
Reference.

2. Change the root element as needed.
For details about how to change the root element, see 6.3.1(3) Changing the Root Element.

3. Edit the mapping.
For details about mapping, see 6.4 Mapping.

4. In the Data Transformation Definition screen, right-click an appropriate location in the transformation-source
schema tree viewer, mapping viewer, or transformation-destination schema tree viewer, and choose Validation.
Validation is executed.

(3) Changing the Root Element
After you have displayed schemas in a tree view by selecting a root element, you can change the root element. The
procedure for changing the root element is described below. Note that the method to change the root element varies
according to the display method of the Data Transformation Definition screen.

(a) If the Data Transformation Definition screen is displayed from the data transformation activity of the Adapter
Definition screen or Business Process Definition screen

1. Right-click a schema logical name in the transformation-source schema tree viewer or the transformation-
destination schema tree viewer, and choose Choose Root Element.
The Root Element Chooseion dialog box opens.

6. Defining Data Transformation

238

2. Change the root element of the schema logical name.

3. Click OK.
The schemas of the changed root element are displayed as a tree in the transformation-source schema tree viewer
and the transformation-destination schema tree viewer.
If you executed mapping with the root element prior to the change, a message box opens, informing you that the
content edited prior to the change will be discarded. To discard the content edited prior to the change and display
the schemas of the newly selected root element, click OK.

(b) If the Data Transformation Definition screen is displayed from the Eclipse menu

1. Right click the schema logical name of the transformation-source and destination schema tree viewers and choose
Choose root element.
Setting transformation-source and destination schema files dialog box appears.

2. Choose the transformation-source and destination schemas.
In the Setting transformation-source and destination schema files dialog box, the file specified previously is
set. To retain the file specified previously, do not reset the file.

3. Click OK.
The Choose root element dialog box appears.

4. Change the root element of the schema logical name.

5. Click OK.
The transformation-source and destination schema tree viewers display trees of the changed root element schemas.
If the status before change was mapped, a dialog box appears stating that contents edited before change are
destroyed. To destroy contents edited before change and to open the tree of the new selected root element schema,
click OK.

6.3.2 Procedure for defining changed message formats
If the message format changes, data transformation must be redefined. You can use a data transformation definition
created earlier to redefine data transformation. A new definition is not required.

! Important note

If the message format changes when data transformation is being edited, once the Data Transformation Definition screen
closes, reopen the Data Transformation Definition screen. If a new Data Transformation Definition screen appears when the
Data Transformation Definition screen being edited is open, some of the changes in the message format might not be
reflected.

The procedure for changing the message format and redefining data transformation is as follows:

1. Open the Data Transformation Definition screen from the data transformation activity of the Adapter Definition
screen or the Business Process Definition screen.
Before the Data Transformation Definition screen appears, a dialog box appears to confirm whether to reflect the
changed message format. Click OK to open the next window.

• If the root element is changed or deleted
Before the Data Transformation Definition screen appears, the Choose root element dialog box appears.
Choose a root element in the Choose root element dialog box and click OK to open the Data Transformation
Definition screen. For the Choose root element dialog box, see Cosminexus Service Platform Reference.

• If the root element is not to be changed or deleted
The Data Transformation Definition screen appears.

The displayed Data Transformation Definition screen reflects the changed message format#.

2. Map as and when required.
For details about mapping, see 6.4 Mapping.

3. Right click the applicable location of the data transformation-source schema tree viewer, mapping viewer or data
transformation-destination schema tree viewer of the Data Transformation Definition screen and choose Validate.
Validation is executed.

6. Defining Data Transformation

239

#
The Data Transformation Definition screen that copied mapped contents before changing the message format
appears. Message formats before and after changes are compared and only the item with top priority similarity is
copied. For copying mapping definitions and determining similarities, see 6.8 Copying Mapping Definitions.

6.3.3 Points to be considered for data transformation definition
If you execute verification and packaging of data transformation definition when defining data transformation using
schema file of huge message format, such as format in which element count is 2,000 or more, error occurs due to
insufficient memory.

When error occurs, change the following options in <Eclipse installation directory>\eclipse\eclipse.ini file, restart
Eclipse and execute again.

• -XmxNm(N is 1 or more integers (MB unit))

• -XX:MaxPermSize=Nm(N is 1 or more integers (MB unit))

Also, add the following options.

• -XssNm(N is 1 or more integers (MB unit))

Do not specify following option:

• -Xverify:none

6. Defining Data Transformation

240

6.4 Mapping
Mapping means mapping a value at the transformation-source (mapping source) to a value at the transformation-
destination (mapping destination). The following figure shows the Mapping screen.

Figure 6‒1: Mapping screen

Mapping is largely divided into the following 4 types:

(1) Assigning transformation-source node values directly to transformation-destination nodes
Palette tools and dialog boxes might be used for the operation. For details about mapping methods, see 6.4.1
Assigning Transformation-source Node Values Directly to Transformation-destination Nodes.

(2) Processing the transformation-source node values and mapping them to the transformation-destination
node

Use the function for processing values of the transformation-source node.
Palette tools and dialog boxes might be used for the operation. For details about mapping methods, see 6.4.2
Processing the Transformation-source Node Values and Mapping Them to the Transformation-destination Node.

(3) Specifying the scope of transformation-source and destination nodes and mapping automatically
Use dialog boxes for the operation. For details about mapping methods, see 6.4.3 Specifying the Scope of
Transformation-source and Destination Nodes and Mapping Automatically.

(4) Specifying a target from the element of the transformation-destination node and mapping automatically
Use dialog boxes for the operation. For details about mapping methods, see 6.4.4 Specifying a Target from the
Element of the Transformation-destination Node and Mapping Automatically.

For the method to cancel mapping, see 6.4.5 Canceling Mapping.

For notes on mapping, see 6.4.10 Notes on Mapping.

6.4.1 Assigning Transformation-source Node Values Directly to
Transformation-destination Nodes

(1) Using the palette tool
To use the palette tool for mapping:

1. From the palette, choose Mapping.

2. Click the node adapter of the transformation-source node that becomes the mapping source.

6. Defining Data Transformation

241

For the mapping source, specify a mapping target# transformation-source node. If you try to specify a node that
cannot be used as a mapping source, is added to the cursor, preventing you from specifying the node.

3. Click the node adapter of the transformation-destination node that becomes the mapping destination.

A mapping line (assignment line) is set up. You can change the mapping line color. For details about
how to change the mapping line color, see the manual Cosminexus Service Platform Reference.
For the mapping destination, specify a mapping target# transformation-destination node that satisfies the
conditions specified in 6.10.2 Correspondences Between Nodes and Functions That Can Be Mapped. If you try to
specify a node that cannot be used as a mapping destination, is added to the cursor, preventing you from
specifying the node.

#
For mapping targets, see 6.10.1 Mapping Targets and Non--Mapping Targets.

(2) Using a dialog box
You use the Settings for Mapping Source dialog box for mapping. The mapping procedure that uses the Settings for
Mapping Source dialog box is described below.

1. Right--click the transformation-destination node that becomes the mapping destination in the transformation-
destination schema tree viewer, and choose Mapping source.
The Settings for Mapping Source dialog box opens.

2. Click Add Node.
The Node Chooseion dialog box opens.

3. Specify a transformation-source node that becomes the mapping source, and click OK.
The path name of the node specified in Path/Function name is displayed. For details about the path name display
format, see 6.4.6 Mapping Source Display Format.
For the mapping source, specify a mapping target# transformation-source node.

4. Click OK.

A mapping line (assignment line) is set up. You can change the mapping line color. For details about
how to change the mapping line color, see the manual Cosminexus Service Platform Reference.

#
For mapping targets, see 6.10.1 Mapping Targets and Non--Mapping Targets.

6.4.2 Processing the Transformation-source Node Values and Mapping
Them to the Transformation-destination Node

To process the transformation-source node values and map them to the transformation-destination node, use the
functions. For details about the functions, see 6.5 Using Functions to Process Values.

(1) Using tools on the palette
To perform mapping by using tools on the palette:

1. From the palette, select the function to be used.

2. Click on an appropriate position in the mapping viewer.
The function is deployed in the mapping viewer. You can move a deployed function by dragging and dropping it.

3. From the palette, select Mapping.

4. Click either the node adapter of the transformation-source node or a function that is to become the mapping
source.
For the mapping source, specify the following transformation-source node or function:

• Transformation-source node

6. Defining Data Transformation

242

Transformation-source node used as the mapping target#1

• Function
Function that does not have a mapping line set up on the output side

If you try to specify a node or function that cannot be used as a mapping source, appears on the cursor,
preventing you from specifying the node or function.

5. Click either the node adapter of the transformation-destination node or a function that is to become the mapping
destination.

A mapping line (assignment line) is set up. If you are using a loop node function, a mapping line
 (looping-compatible line) is set up. You can change the mapping line color. For details about how to

change the mapping line color, see 1.12.5 Changing the Mapping Line Color in the manual uCosminexus Service
Platform Reference Guide.
For the mapping destination, specify the following transformation-destination node or function:

• Transformation-destination node
A transformation-destination node that is the mapping target#1 and satisfies the conditions specified in 6.10.2
Correspondences Between Nodes and Functions That Can Be Mapped

• Function
A function that satisfies the conditions specified in 6.10.2 Correspondences Between Nodes and Functions
That Can Be Mapped and 6.10.3 Number of Mapping Lines That Can Be Connected, and that does not form a
closed route#2 when functions are connected with each other

If you try to specify a node or function that cannot be used as a mapping destination, appears on the cursor,
preventing you from specifying the node or function.

#1
For details about mapping targets, see 6.10.1 Mapping Targets and Non--Mapping Targets.

#2
Mapping in which connections among functions form a closed route, such as mapping from Function A to
Function B, from Function B to Function C, and then from Function C back to Function A

! Important note

If you have set up a mapping line before deploying functions, delete the mapping line, and then start again.

Reference note
When a function is deployed in the mapping viewer, a function type (such as concat) followed by a serial number is
assigned as the function name. These serial numbers are assigned as integers to prevent function names from being
duplicated. The first number is 1 and subsequent numbers are assigned in the order in which each function is mapped.

The name of each deployed function can be changed by either editing the function name directly or using a dialog box
displayed by double-clicking the function name. For details about how to change function names, see 6.11 Editing function
name directly.

If a function is deleted, its name can be assigned to another function.

(2) Using a dialog box
As described below, the dialog box to be used for mapping differs depending on the types of mapping source and
mapping destination used.

• If the mapping source is a transformation-source node and the mapping destination is a function:
Use the dialog box for specifying a mapping destination function.
If the mapping destination is a choose node function, see 6.5.17 Outputting Different Values According to
Conditions.

• If the mapping source and mapping destination are functions:
Use the dialog box for specifying a mapping destination function.

6. Defining Data Transformation

243

If the mapping destination is a choose node function, see 6.5.17 Outputting Different Values According to
Conditions.

• If the mapping source is a function and the mapping destination is a transformation-destination node:
Use the Settings for Mapping Source dialog box.
If the mapping source is a loop node function or choose node function#, you can also use the Loop Settings dialog
box. For details about mapping using the Loop Settings dialog box, see 6.6.1 Mapping Using the Loop Settings
Dialog Box.

#
A choose node function that is connected to a loop node function or to nothing. If a choose node function is
connected to a function other than a loop node function, you cannot use the Loop Settings dialog box.

(a) If the mapping source is a transformation-source node and the mapping destination is a function

To perform mapping when the mapping source is a transformation-source node and the mapping destination is a
function:

1. From the palette, select the function to be used.

2. Click on an appropriate position in the mapping viewer.
The function is deployed in the mapping viewer. You can move a deployed function by dragging and dropping it.

3. Use one of the following methods to open the dialog box for specifying a mapping destination function:

• Right-click a mapping destination function, and then select Setting.

• Double-click a mapping destination function.

The dialog box for specifying a mapping destination function opens.

4. Click Add Node or Select Node.
The Select Node dialog box opens.

5. Specify a transformation-source node that becomes the mapping source, and then click OK.
The transformation-source node that is the mapping-source is set in Input (Base path in the case of a loop node
function) in the dialog box for specifying a mapping destination function. The transformation-source node is
displayed as a path name. For details about the path name display format, see 6.4.6 Mapping Source Display
Format.
For the mapping source, specify the transformation-source node that is the mapping target# and satisfies the
conditions specified in 6.10.2 Correspondences Between Nodes and Functions That Can Be Mapped.

6. Click OK.

A mapping line (assignment line) is set up. If you are using a loop node function, a mapping line
 (looping-compatible line) is set up. You can change the mapping line color. For details about how to

change the mapping line color, see 1.12.5 Changing the Mapping Line Color in the manual uCosminexus Service
Platform Reference Guide.

#
For details about mapping targets, see 6.10.1 Mapping Targets and Non--Mapping Targets.

(b) If the mapping source and mapping destination are functions

To perform mapping when the mapping source and mapping destination are functions:

1. From the palette, select the function to be used.

2. Click on an appropriate position in the mapping viewer.
The function is deployed in the mapping viewer. You can move a deployed function by dragging and dropping it.

3. Use one of the following methods to open the dialog box for specifying a mapping destination function:

• Right-click a mapping destination function, and then select Setting.

• Double-click a mapping destination function.

The dialog box for specifying a mapping destination function opens.

4. Click Add Function or Select Function.

6. Defining Data Transformation

244

The Select Function dialog box opens.

5. Specify the function that is to become the mapping source, and then click OK.
The mapping-source function is set in Input in the dialog box for specifying a mapping destination function. For a
set constant function, a set constant value enclosed in single quotation marks (') is displayed. For a function that is
not a set constant function, the name of the function is displayed.
For the mapping source, specify a function that satisfies the conditions specified in 6.10.2 Correspondences
Between Nodes and Functions That Can Be Mapped and for which no mapping line is set up on the output side.

6. Click OK.

A mapping line (assignment line) is set up. If you are using a loop node function, a mapping line
 (looping-compatible line) is set up. You can change the mapping line color. For details about how to

change the mapping line color, see 1.12.5 Changing the Mapping Line Color in the manual uCosminexus Service
Platform Reference Guide.

(c) If the mapping source is a function and the mapping destination is a transformation-destination node

1. From the palette, select the function to be used.

2. Click on an appropriate position in the mapping viewer.
The function is deployed in the mapping viewer. You can move a deployed function by dragging and dropping it.

3. Right-click the transformation-destination node that becomes the mapping destination in the transformation-
destination schema tree viewer, and then select Mapping source.
The Settings for Mapping Source dialog box opens.

4. Click Add Function.
The Select Function dialog box opens.

5. Specify the function that is to become the mapping source, and then click OK.
The specified function name is set in Path/Function name.
For the mapping source, specify a function that satisfies the conditions specified in 6.10.2 Correspondences
Between Nodes and Functions That Can Be Mapped and for which no mapping line is set up on the output side.
Note that because conditions are specified with a choose node function, you can specify a function for which a
mapping line (condition line) is set up on the output side.

6. Click OK.

A mapping line (assignment line) is set up. You can change the mapping line color. For details about
how to change the mapping line color, see 1.12.5 Changing the Mapping Line Color in the manual uCosminexus
Service Platform Reference Guide.

! Important note

If you have set up a mapping line before deploying functions, delete the mapping line, and then start again.

Reference note
When a function is deployed in the mapping viewer, a function type (such as concat) followed by a serial number is
assigned as the function name. These serial numbers are assigned as integers to prevent function names from being
duplicated. The first number is 1 and subsequent numbers are assigned in the order in which each function is mapped.

The name of each deployed function can be changed by either editing the function name directly or using a dialog box
displayed by double-clicking the function name. For details about how to change function names, see 6.11 Editing function
name directly.

If a function is deleted, its name can be assigned to another function.

6.4.3 Specifying the Scope of Transformation-source and Destination
Nodes and Mapping Automatically

Use the Setting automatic mapping source dialog box for specifying the scope of transformation-source and
destination nodes and mapping automatically. The Setting automatic mapping source dialog box automatically maps
elements with a high degree of similarity in the transformation-source and destination nodes if the scope of such nodes
is specified. If a mapping target does not exist in the scope and if a mapping line is already connected in the

6. Defining Data Transformation

245

transformation-destination node adapter, mapping is not executed. For determining similarities during mapping, see
6.4.9 Determining Similarities during Automatic Mapping.

The mapping procedure using the Setting automatic mapping source dialog box is as follows:

1. Right click the element of the transformation-destination node that is the mapping destination of the
transformation-destination schema tree viewer and choose Automatic mapping.
Choose the top element in the scope for mapping in the elements of the transformation-destination node.
The Setting automatic mapping source dialog box appears.

2. Click Add node.
The Choose node dialog box appears.

3. Specify the transformation-source node element that is the mapping source and click OK button.
Choose the top element in the scope for mapping in the elements of the transformation-source node.
The path name of the selected element appears in Path. For details about the path name display format, see 6.4.6
Mapping Source Display Format.
To choose multiple elements, repeat step 3.
Note that an error message is output in the following cases:

• If the selected element is already selected

• If the ascendant or descendant of the selected node is already selected

After output of the error message, click OK, close the dialog box and then select the element again.

4. Click OK.

If the mapping target exists in the specified scope, the mapping line (assigned line) is set automatically.
If a mapping target does not exist in the scope and if a mapping line is already connected in the transformation-
destination node adapter, mapping is not executed.
Reference note

You can change the color of the mapping line set. For details about how to change the color of the mapping line, see
Cosminexus Service Platform Reference.

! Important note
If multiple mapping targets exist, multiple mapping lines might be created in 1 transformation-source node because the
most similar target is selected. If the mapped transformation-source node is not the target or if the mapping target is to
be filtered, use the Choose the automatic mapping candidate dialog box or reduce the scope for automatic mapping.
For details about how to map automatically using the Choose the automatic mapping candidate dialog box, see 6.4.4
Specifying a Target from the Element of the Transformation-destination Node and Mapping Automatically.

6.4.4 Specifying a Target from the Element of the Transformation-
destination Node and Mapping Automatically

Use the Choose the automatic mapping candidate dialog box for specifying a candidate from the element of the
transformation-destination node and mapping automatically. If the target of the transformation-source node element is
specified in the Choose the automatic mapping candidate dialog box, the selected candidate element is mapped and
the mapping line (assigned line) is set automatically. Even if the mapping line is connected to the node adapter of the
selected element, when a mapping line with a different dependent relationship in the same element can be connected,
the specified candidate is mapped. For determining similarities during mapping, see 6.4.9 Determining Similarities
during Automatic Mapping.

The mapping procedure using the Choose the automatic mapping candidate dialog box is as follows:

1. Right click the element for mapping from the transformation-destination node that is the mapping destination of
the transformation-destination schema tree viewer and choose Choose the automatic mapping candidate.
If Choose the automatic mapping candidate cannot be selected, choose another candidate element because it
means that the element cannot be mapped.
The Choose the automatic mapping candidate dialog box appears.

2. Choose a mapping candidate from List of automatic mapping candidates.
List of automatic mapping candidates displays the priority order of candidates from the top.

6. Defining Data Transformation

246

If a mapping candidate does not exist, the List of automatic mapping candidates does not display anything.

3. Click OK.

The selected target element is mapped and the mapping line (assigned line) is set automatically.

Even if the mapping line is connected to the node adapter of the selected element, when a mapping line with a
different dependent relationship in the same element can be connected, the specified candidate is mapped.
Reference note

You can change the color of the mapping line set. For details about how to change the color of the mapping line, see
Cosminexus Service Platform Reference.

6.4.5 Canceling Mapping
You can cancel mapping by deleting a mapping line or function.

(1) Deleting a mapping line
You can use one of the following methods to delete a mapping line:

Method 1
Right--click the mapping line to be deleted, and selectedelete.

Method 2
Choose the mapping line to be deleted, and press the Delete key.

! Important note

A user cannot delete condition lines. They are automatically deleted when the condition settings are cancelled.

(2) Deleting a function
You can use either of the following methods to delete a function:

Method 1
Right--click the function to be deleted, and selectedelete.

Method 2
Choose the function to be deleted and press the Delete key.

! Important note

If a function was specified as a condition (a function was specified for Condition in the Condition Settings dialog box),
that function cannot be deleted.

6.4.6 Mapping Source Display Format
If a transformation-source node or function that is to become the mapping source is specified in the Settings for
Mapping Source dialog box or the dialog box for specifying each function, the node or function is displayed as
described below.

(1) If a transformation-source node is specified
The node path of a schema tree is displayed as described below.

(a) If a condition is specified for the transformation-source node

A condition enclosed in square brackets ([]) is displayed following the node name for which the condition is
specified.

Example: /aa/bb[position()='1']/cc

6. Defining Data Transformation

247

If a function is specified as a condition (by specifying it in Condition in the Condition Settings dialog box), the
function name enclosed in curly brackets ({}) is displayed.

Example: /aa/bb[{length1}='5']
If the values on the right side of the conditional expression contain ampersands (&) and apostrophes ('), these
ampersands and apostrophes are displayed as entity references.

• Apostrophe ('): '
• Ampersand (&): &

Example:

When the left side of the conditional expression is /root/input, and the right side of the conditional expression is
a&'b'
root/input = 'a&'b''

(b) If there are multiple schema logical names

$schema-logical-name is displayed at the beginning of the node path.

Example: $source1/aa/bb/cc

(c) If the transformation-source node is an attribute

@ is displayed before the node name.

Example: /aa/bb/@cc

(2) If a function is specified
The function name enclosed in curly brackets ({}) is displayed.

Example: {function-name}

6.4.7 Making Mapping Lines and Functions Easier to View
You can highlight only the mapping lines and functions associated with the selected node.

To highlight only the mapping lines and functions associated with the selected node:

1. Right-click on an appropriate position in the transformation-source schema tree viewer, mapping viewer, or
transformation-destination schema tree viewer on the Data Transformation Definition screen.
A pop-up menu is displayed.

2. Select Highlight from the pop-up menu.
A highlight display menu is displayed.

3. Select either of the following menu options according to the usage.
Only the related mapping lines and functions are highlighted according to the selected menu option.

• Highlight Relation to Transformation &Source Node

• Highlight Relation to Transformation &Target Node

If you prefer not to highlight these mapping lines and functions, select Disable Highlighting.

The color brightness of highlighted mapping lines and functions differs according to the strength of the relation with
the selected node. Highlighted mapping lines and functions are displayed in dark colors, whereas unhighlighted
mapping lines and functions are displayed in light colors.

If you add mapping lines or functions while in highlight display mode, the display is refreshed when you reselect the
node.

Reference note
If you cannot find a node that you want to select

To search for a transformation-source node or transformation-destination node:

6. Defining Data Transformation

248

1. Right-click the tree viewer, and then select Search for Element Name.
The Search for Element Name dialog box opens.

2. Enter the character string to be searched in Search.

3. Select Source node or Target node in Search for, and then click Search.
A list of node names containing the specified character string is displayed in the Results list.

4. Select the desired node name from the Results list.
The selected node is also selected in the tree viewer.

6.4.8 Restricting mapping range
When creating data transformation definition file with the mapping definition editor, if XML schema (extension: xsd)
has been specified in transformation destination schema, you can restrict the note to be mapped. You can use this
function only when output file of transformation operation of file operation adapter is XML format.

Operation procedure is as follows:

1. Start the mapping definition editor.
For details on how to start the mapping definition editor, see "6.3.1(1)(b) To display from the Eclipse menu".

2. Right click on elements (simple contents element or complex contents element) of transformation destination node
handled by the Transformation destination schema viewer as records.
Popup menu is displayed.

3. From pop up menu, select Include grandchild node in mapping target.
Transformation destination nodes other than the set element and its grandchild elements are disabled.
When mapping line is connected to the transformation destination node other than the set node and its grandchild
node, confirmation dialog is displayed. If you click Yes button, mapping line connected to the transformation
destination node is deleted and the transformation destination node other than the set element and is grandchild
element are disabled.
For disabled transformation destination node, error does not occur during verification, even if mapping line is not
connection.

! Important note

• Specify the path of element to be handled as record, in the file operation adapter definition file. For details on the file
operation adapter definition file, see "File operation adapter definition file" in "Service Platform Reference Guide".

• When you re-select the root element, settings of Include grandchild node in mapping target are reset.

• When you copy the mapping definition, status of setting Include grandchild node in mapping target is inherited to the
mapping definition of copy destination.

6.4.9 Determining Similarities during Automatic Mapping
In automatic mapping, similarities between the schema elements of the transformation-source and destination nodes
are determined and mapped. If many similar elements exist, they are mapped in priority order.

The following table shows the priority order for determining the similarities of schema elements of transformation-
source nodes. Note that level 1 of the priority order is the highest and reduces in proportion to the value of the level.

Table 6‒2: Priority order of similarities determined by automatic mapping

Priority order
Whole path Terminal element

Name space Element name Name space Element name

1 Y Y -- --

2 N Y -- --

3 -- C# Y Y

6. Defining Data Transformation

249

Priority order
Whole path Terminal element

Name space Element name Name space Element name

4 -- C# N Y

5 -- C# N C

(Legend)
Y: Matches.
C: Matches partially.
N: Does not match.
--: Not applicable.

#

Might not match depending on determination.

6.4.10 Notes on Mapping
After mapping is executed, you must confirm that the data transformation definition content is valid. When mapping,
to avoid errors during validation, take the following points into consideration:

• Execute mapping according to the conditions specified in 6.10 Mapping Conditions.

• Match the occurrence count of the transformation-source nodes at the mapping source to the occurrence count of
the transformation-destination nodes at the mapping destination.

• Any complex content element whose minimum occurrence count is set to 2 or greater must be mapped, except
when a node, whose minimum occurrence count is 0 occurs as the ancestor.

• Any simple content element (including the any element) whose minimum occurrence count is set to 1 or greater
must be mapped.

• Avoid the existence of multiple any elements in the child element of an element with complex contents.

• When mapping a value to a child node of a choice element or to a descendant node, do not define mapping in
which multiple child elements occur concurrently or in which no child element occurs.

• When mapping values to multiple child elements of a choice element or to a descendant node, make sure
multiple child elements do not occur concurrently.

• When the minimum occurrence count of all child elements of a choice element is set to 1 or greater and the
descendant element of one of the child elements is mapped, if you are using a choose node function for that child
element, make sure multiple child elements do not occur concurrently.

• Do not define name spaces with URI of xsl and xsi specified in targetNamespace in the mapping--destination
transformation-destination node.

• Even when an instance attribute (xsi:type, xsi:schemaLocation, or
xsi:noNamespaceSchemaLocation) is defined for the mapping--source transformation-source node, it
does not occur in the mapping--destination transformation-destination node.

• When the transformation-source node, in which the instance attribute xsi:nil is defined, is mapped in the
transformation-destination node in which the nillable attribute is defined as true, the contents defined in the
attribute xsi:nil of the transformation-source node will be applied to the transformation-destination node. In
the same way, even when the transformation-source node, in which the instance attribute xsi:nil is defined, is
mapped via the choose node function (choose), the contents defined in the attribute xsi:nil of the
transformation-source node are applied to the transformation-destination node.

• Do not map from the transformation-source node with the nillable attribute defined to the transformation-
destination node where the nillable attribute is not defined.

• When you change following message format while editing the mapping definition, message format before change
is displayed. To reflect message format after change, close the target service and start mapping definition again.

• Adding and removing global element

• Changing global element other than root element

6. Defining Data Transformation

250

• When multiple namespace prefixes are defined for one namespace URL between schema of import destination or
include destination, error occurs during verification (including packaging) of mapping definition. Use one type of
namespace prefix for one namespace URI.

• When same namespace is defined in different namespace prefixes in message format schema file, root element
selection dialog is displayed every time when starting the mapping definition. Do not specify two or more
namespace prefixes for one namespace.

• Do not map the following #any element in data transformation definition.

• #any element having #anonymous, #(sequence), or #(choice) in sibling elements

• #any element existing under #(sequence) or #(choice) and having other #(sequence) or #(choice) in sibling
element of #(sequence) or #(choice)

• When you specify output destination of node list type custom function to complex contents element, you cannot
execute mapping to grandchild node having same dependency relation.

• Points to be considered for node list type custom function is specified in output value of selection function are as
follows:

• When mapping destination of Select function is complex contents element and other output value of Select
function is "Output a value", you cannot set anything except node list type custom function.

• When mapping destination of Select function is an attribute, you cannot set node list type custom function in
the output value of Select function.

6. Defining Data Transformation

251

6.5 Using Functions to Process Values
To process the transformation-source node values and map them to the transformation-destination node, you use
functions. This section explains the various functions to be used for various cases. For details about how to use a
function for mapping, see 6.4.2 Processing the Transformation-source Node Values and Mapping Them to the
Transformation-destination Node.

The following table lists the functions.

Table 6‒3: List of functions

Classificat
ion Function name Explanation

String--
based

Concatenate Concatenates multiple strings.

Acquire substring Extracts a substring from a string.

Acquire string length Assigns a string character count to a mapping destination.

Check string Verifies that the specified string is contained in a string or that the string begins with
the specified string, and assigns the logical value to a mapping destination.

Trim node Removes the leading and trailing spaces from a string. Also replaces consecutive
spaces between strings with a single space.

Number--
based

Convert number format Converts the number format.

Perform node operation Computes (+, --, *, div, or mod) numbers.

Round node Rounds decimal digits (round off, round down, or round up).

Sum up nodes Sums up the node numbers of multiple node sets.

Bit
operations

NOT operation Execute NOT operation.

Logical operation Executes logical operation (AND, OR, XOR).

Shift operation Executes shift operation.

Node--
based

Acquire node count Assigns a node count to a mapping destination.

Acquire node name Assigns a node name to a mapping destination.

Check node Verifies that the specified transformation-source node exists and assigns the logical
value to a mapping destination.

Control--
based

Loop node Maps looping.

Choose node Outputs different values according to conditions.

Other Set constant Assigns a specified value to a mapping destination.

Replace value Converts the mapping source value based on the specification of the conversion
table and assigns value to the mapping destination.

Radix Conversion Executes basic transformation.

Custom Invoke a Java program created by the user.

6.5.1 Concatenating Multiple Strings
Concatenates strings from multiple mapping sources into a single string.

6. Defining Data Transformation

252

(1) Function used
To concatenate strings from multiple mapping sources, you use the concatenate function. The following figure shows
an example that uses the concatenate function.

Figure 6‒2: Usage example of the concatenate function

(2) Setup procedure
To concatenate strings from multiple mapping sources into a single string:

1. From the palette, choose the concatenate function (concat), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Concatenate dialog box.

• Right--click the concatenate function, and choose Setting.

• Double--click the concatenate function.

The Concatenate dialog box opens.
For details about the Concatenate dialog box, see the manual Cosminexus Service Platform Overview.

4. To add the mapping source of the string to be concatenated to Input, set up the following:

• When the mapping source is a transformation-source node
Clicking Add Node opens the Choose Node dialog box. In the Choose Node dialog box, choose the
transformation-source node that becomes the mapping source.

• When the mapping source is a function
Clicking Add Function opens the Choose Function dialog box. In the Choose Function dialog box, choose the
function that becomes the mapping source.

If multiple mapping sources are specified in Input, the concatenation targets displayed in Input are concatenated
sequentially starting at the top. The concatenation target displayed at the top is set up to the left of the
concatenated string.

5. When a transformation-source node is specified in Input, to specify a condition for the transformation-source node
and map it only when this condition is satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

6. Click OK.

6.5.2 Extracting a Substring from a String
Extracts a substring from a string of a single mapping source.

(1) Function used
To extract a substring from a string of a single mapping source, you use the acquire substring function. The following
figure shows an example that uses the acquire substring function.

6. Defining Data Transformation

253

Figure 6‒3: Usage example of the acquire substring function

(2) Setup procedure
To extract a substring from a string of a single mapping source:

1. From the palette, choose the acquire substring function (substr), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Acquire Substring dialog box.

• Right--click the acquire substring function, and choose Setting.

• Double--click the acquire substring function.

The Acquire Substring dialog box opens.
For details about the Acquire Substring dialog box, see the manual Cosminexus Service Platform Overview.

4. When a transformation-source node is specified in Input, to specify a condition for the transformation-source node
and map it only when this condition is satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

5. Specify the string to be extracted.

• To specify the extraction range from the beginning of the string
Choose the Specify range from left side radio button and specify in Start position the position of the start
character of the string to be extracted. To specify the character count of the string to be extracted, specify a
character count in Count. To extract a string from the start character specified in Start position to the end of
the string, choose the Acquire from start position to end of string check box.

• To specify the extraction range from the end of the string
Choose the Specify range from end radio button and specify in Start position the position of the start
character of the string to be extracted. To specify the character count of the string to be extracted, specify a
character count in Count. To extract a string from the start character specified in Start position to the
beginning of the string, choose the Acquire from start position to beginning of string check box.

• To divide a string into two parts and specify either the beginning or ending part
Choose the Specify a substring radio button and specify in Substring the character (string) to use for dividing
the string in the mapping source. To extract the string that extends between the beginning character and the
character (string) specified in Substring, specify Pre in Acquired Part. To extract the string that extends
between the character (string) specified in Substring and the end, specify Post in Acquired Part.

6. Click OK.

6.5.3 Assigning a String Character Count
Assigns the character count of a string of the mapping source to the mapping destination.

6. Defining Data Transformation

254

(1) Function used
To assign the character count of a string of the mapping source to the mapping destination, you use the acquire string
length function. The following figure shows an example that uses the acquire string length function.

Figure 6‒4: Usage example of the acquire string length function

(2) Setup procedure
To assign the character count of a string of the mapping source to the mapping destination:

1. From the palette, choose the acquire string length function (length), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Acquire String dialog box:

• Right--click the acquire string length function, and choose Setting.

• Double--click the acquire string length function.

The Acquire String dialog box opens.
For details about the Acquire String dialog box, see the manual Cosminexus Service Platform Overview.

4. When a transformation-source node is specified in Input, to specify a condition for the transformation-source node
and map it only when this condition is satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

5. Click OK.

6.5.4 Verifying That the Specified String Is Present or That the String
Begins with the Specified String

Verifies that the specified string is contained in the mapping source string or that the string begins with the specified
string, and assigns the logical value to the mapping destination.

(1) Function used
To verify that the specified string is contained in the mapping source string or that the string begins with the specified
string, and assign the logical value to the mapping destination, you use the check string function. The following figure
shows an example that uses the check string function.

6. Defining Data Transformation

255

Figure 6‒5: Usage example of the check string function

(2) Setup procedure
To check the string of the mapping source and assign the logical value to the mapping destination:

1. From the palette, choose the check string function (contain), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Check String dialog box:

• Right--click the check string function, and choose Setting.

• Double--click the check string function.

The Check String dialog box opens.
For details about the Check String dialog box, see the manual Cosminexus Service Platform Overview.

4. When a transformation-source node is specified in Input, to specify a condition for the transformation-source node
and map it only when this condition is satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

5. In Check type, choose one of the following:

• To verify that the string specified in String is included
Choose Include specified string.

• To verify that the string begins with the string specified in String
Choose Start with specified string.

6. In String, specify the string to be checked.

7. Click OK.

6.5.5 Removing Spaces from a String
Removes the leading and trailing spaces (single--byte space, tab, carriage return, and line feed) from a string of the
mapping source. Also replaces consecutive spaces between strings with a single space.

6. Defining Data Transformation

256

(1) Function used
To remove spaces from a string, you use the trim node function. The following figure shows an example that uses the
trim node function.

Figure 6‒6: Usage example of the trim node function

(2) Setup procedure
To remove spaces:

1. From the palette, choose the trim node function (trim), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open Trim Node dialog box:

• Right--click the trim node function, and choose Setting.

• Double--click the trim node function.

The Trim Node dialog box opens.
For details about the Trim Node dialog box , see the manual Cosminexus Service Platform Overview.

4. When a transformation-source node is specified in Input, to specify a condition for the transformation-source node
and map it only when this condition is satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

5. Click OK.

6.5.6 Converting the Number Format
Converts the format of the number at the mapping source using the format pattern of the
java.text.DecimalFormat class. You can also change the decimal separator or grouping separator to be
specified in the pattern. For details about the format pattern of the java.text.DecimalFormat class, see the
documentation related to Java API.

6. Defining Data Transformation

257

(1) Function used
To convert the format of the number at the mapping source using the format pattern of the
java.text.DecimalFormat class, you use the convert number format function. The following figure shows an
example that uses the convert number format function.

Figure 6‒7: Usage example of the convert number format function

(2) Setup procedure
To convert the format of the number at the mapping source, using the format pattern of the
java.text.DecimalFormat class:

1. From the palette, choose the convert number format function (format), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Convert Number Format dialog box:

• Right--click the convert number format function, and choose Setting.

• Double--click the convert number format function.

The Convert Number Format dialog box opens.
For details about the Convert Number Format dialog box, see the manual Cosminexus Service Platform
Reference.

4. When a transformation-source node is specified in Input, to specify a condition for the transformation-source node
and map it only when this condition is satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

5. In Pattern, specify the pattern string of the java.text.DecimalFormat class format after conversion.

6. To change the decimal separator or grouping separator to be specified in the pattern, choose the Change Symbols
check box and specify the following:

• To change the decimal separator
In Decimal Separator, specify the symbol for the decimal separator after the change. If the specification is
omitted, the default symbol is used.

• To change the grouping separator
In Grouping Separator, specify the symbol for the grouping separator after the change. If the specification is
omitted, the default symbol is used.

7. Click OK.

6.5.7 Computing Numbers
Performs the specified operation on two mapping source numbers. The following types of operations can be specified:

• + (addition)

• -- (subtraction)

6. Defining Data Transformation

258

• * (multiplication)

• / (division)

• % (remainder)

(1) Function used
To perform the specified operation on two mapping source numbers, you use the perform node operation function. The
following figure shows an example that uses the perform node operation function.

Figure 6‒8: Usage example of the perform node operation function

(2) Setup procedure
To perform the specified operation on two mapping source numbers:

1. From the palette, choose the perform node operation function (calc), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Perform Node Operation dialog box.

• Right--click the perform node operation function, and choose Setting.

• Double--click the perform node operation function.

The Perform Node Operation dialog box opens.
For details about the Perform Node Operation dialog box, see the manual Cosminexus Service Platform Overview.

4. In Operation, specify the operation to be executed.

5. When a transformation-source node is specified in Input 1 or Input 2, to specify a condition for the transformation-
source node and map it only when this condition is satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

6. Click OK.

6.5.8 Rounding Decimal Digits
Rounds the decimal digits when the mapping source number is a decimal number. The following types of operations
can be specified:

• Round off

• Round down

• Round up

(1) Function used
To round the decimal digits, you use the round node function. The following figure shows an example that uses the
round node function.

6. Defining Data Transformation

259

Figure 6‒9: Usage example of the round node function

(2) Setup procedure
To round the decimal digits:

1. From the palette, choose the round node function (round), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Round Node dialog box.

• Right--click the round node function, and choose Setting.

• Double--click the round node function.

The Round Node dialog box opens.
For details about the Round Node dialog box, see the manual Cosminexus Service Platform Overview.

4. To specify a condition for the transformation-source node specified in Input and map it only when this condition is
satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

5. In Rounding type, specify the rounding operation to be executed.

6. Click OK.

6.5.9 Summing Up the Node Numbers of Multiple Node Sets
Specifies the node sets of multiple mapping sources and sums up the node numbers included in these node sets.

(1) Function used
To sum up the node numbers of multiple node sets, you use the sum up nodes function. The following figure shows an
example that uses the sum up nodes function.

6. Defining Data Transformation

260

Figure 6‒10: Usage example of the sum up nodes function

(2) Setup procedure
To sum up the node numbers of multiple node sets:

1. From the palette, choose the sum up nodes function (sum), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Sum Up Nodes dialog box.

• Right--click the sum up nodes function, and choose Setting.

• Double--click the sum up nodes function.

The Sum Up Nodes dialog box opens.
For details about the Sum Up Nodes dialog box, see the manual Cosminexus Service Platform Overview.

4. To add the numbers of the mapping sources to be summed up to Input, click Add Node.
The Node Chooseion dialog box opens.

5. Specify the node sets that become the mapping sources.
The numbers of the mapping sources to be summed up are set in Input.

6. To specify a condition for the transformation-source node specified in Input and map it only when this condition is
satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

7. Click OK.

6.5.10 Using NOT operation
Execute NOT operation by considering the input value as hexadecimal character string. If input value is other than
hexadecimal character string, error value (NaN) is returned. If input value exceeds 64 bit, round the bits more than 64
bits.

At the time of transformation source node, function is converted to character string at the time of executing
transformation.

(1) Function used
Use NOT operation functionto execute NOT operation. Following figure shows the usage example:

6. Defining Data Transformation

261

Figure 6‒11: FigureNOT operation function usage example

(2) Setting procedure
Procedure for setting up the NOT operation is as follows:

1. Select NOT operation function (not) from the pallet and deploy to the Mapping viewer.

2. Set the mapping line.

3. Display NOT operation dialog with any of the following methods:

• Right click the NOT operation function and select Settings.

• Double click the NOT operation function.

NOT operation dialog is displayed.

For details on [NOT operation] dialog, see "1.6.25 NOT Operation dialog " in "Service Platform Reference Guide".

1. To specify input value of NOT operation in Input, click Select node button.
Select node dialog is displayed.

2. Specify node set, which is input value.
Input value of NOT operation is set in Input.

3. If you want to execute mapping only when you set conditions in input value specified in Input and those
conditions are fulfilled, click Specify conditions button.
Node conditions setting dialog is displayed.
For details on how to specify node conditions, see "6.7 Specifying Node Conditions". For details on Specify node
conditions dialog, see '1.6.9 Set Node Condition Dialog" in "Service Platform Reference Guide".

4. When you want to specify a function of negation target in Input, click Select function button.
Function selection dialog is displayed.

For details on Function selection dialog, see "1.6.7 Select function dialog" in "Service Platform Reference Guide".

1. Click [OK] button.

6. Defining Data Transformation

262

6.5.11 Using logical operation
Execute logical operation by considering the input value as hexadecimal character string. You can specify "AND"
(logical total), "OR" (logical sum), "XOR" (exclusive logical sum) as operation type. When input value is other than
hexadecimal character string, error value (NaN) is returned. When input value exceeds 64 bit, round the bits more than
64 bits.

Process the logical operation function, with big Endian. If digit count of 2 input values differs, perform operation
according to the greater digit count. Transformation source node and function are converted to character string at the
time of executing transformation.

(1) Function used
To execute the logical operation, use Logical operation function. Following figure shows the usage example.

Figure 6‒12: FigureLogical operation function usage example

(2) Setting procedure
Procedure for setting up the logical operation is as follows:

1. Select logical operation logical function (bitop) from the pallet and deploy to the Mapping viewer.

2. Set up the mapping line.

3. Display Logical operation dialog with either of the following methods:

• Right click the logical operation function and select Settings.

• Double click the logical operation function.

Logical operation dialog is displayed.
For details on Logical operations dialog, see "1.6.26 Logical operation dialog" in "Service Platform Reference
Guide".

4. To specify input value of logical operation in Input 1, click Select node button of Input 1.
Node selection dialog is displayed.

6. Defining Data Transformation

263

5. Specify node set, which is an input value.
Input value of logical operation is set in Input 1.

6. To specify input value of logical function in Input 2, click Select node button of Input 2.
Node selection dialog is displayed.

7. Specify node set, which is input value.
Input value of logical operation is set in Input 2.

8. If you want to execute mapping only when you set conditions in input value specified in Input 1 or Input 2 and
that conditions are fulfilled, click Specify node conditions button.
Specify node conditions dialog is displayed.
For details on how to specify node conditions, see "6.7 Specifying Node Conditions". Also, for details on Specify
node condition dialog, see "1.6.9 Set Node Condition Dialog " in "Service Platform Reference Guide".

9. When you want to specify logical operation target function in Input 1 or Input 2, click Select function button.
Function selection dialog is displayed.
For details on Function selection dialog, see "1.6.7 Select function dialog" in "Service Platform Reference Guide".

10. Specify operation method from Operations.

11. Click OK button.

6.5.12 Using shift operation
Execute shift function by considering input value as hexadecimal character string. Shift operation, obtains and returns
the result of shift operation specified in shift volume, shift direction and shift type, from child bits, equal to the size
specified in output size. If the input value is other than hexadecimal character string, the error value (NaN) is returned.
If input value exceeds 64 bit, round the bits more than 64 bits.

Process the shift operation function, with Big Endian.

(1) Function used
To execute Shift operation, use Shift operation function. Following figure shows the usage example.

6. Defining Data Transformation

264

Figure 6‒13: FigureUsage example of Shift operation function

(2) Setting procedure
Procedure for setting Shift operation is as follows:

1. Select Shift operation function (shift) from pallet and deploy to the mapping viewer.

2. Set the mapping line.

3. Display Shift operation dialog with either of the following methods.

• Right click Shift operation function and select Settings.

• Double click the Shift operation function.

Shift operation dialog is displayed.
For details on Shift operation dialog see "1.6.27 Shift operation dialog" in "Service Platform Reference Guide".

4. To specify input value of shift operation in Input click Select node button.
Node selection dialog is displayed.

5. Specify node set, which is input value.

6. Defining Data Transformation

265

Input value of shift operation is set in Input.

6. When you want to execute mapping only when you set conditions in input value specified in Input and that
condition is fulfilled, click Specify node conditions button.
Specify node conditions dialog is displayed.
For details on how to specify node conditions, see "6.7 Specifying Node Conditions". For details on Specify node
conditions dialog, see "1.6.9 Set Node Condition Dialog" in "Service Platform Reference Guide".

7. When you want to specify Shift operation target function in Input, click Select function button.
Function selection dialog is displayed.
For details on Function selection dialog, see "1.6.7 Select function dialog" in "Service Platform Reference Guide".

8. Specify shift volume.

9. Specify output size.

10. Specify shift direction.

11. Specify shift types.

12. Click OK button.

(3) Execution example
Following table describes execution example:

Input#1 Shift
volume

Output
size

Shift
direction Shift type Output result#1#2#3

76(0111 0110) 3 8 Left Calculation b0(1011 0000)

Right Calculation 0e(0000 1110)

Right Logic 0e(0000 1110)

89(1000 1001) Left Calculation 48(0100 1000)

Right Calculation f1(1111 0001)

Right Logic 11(0001 0001)

76(0111 0110) 2 6 Left Calculation 18(0001 1000) [d8(1101 1000)]

Right Calculation 1d(0001 1101) [1d(0001 1101)]

Right Logic 1d(0001 1101) [1d(0001 1101)]

89(1000 1001) Left Calculation 24(0010 0100) [24(0010 0100)]

Right Calculation 22(0010 0010) [e2(1110 0010)]

Right Logic 22(0010 0010) [22(0010 0010)]

Note#1
Contents of () are decimal integer character string expression.

Note#2
Contents of [] is value before rounding up with output bits count.

Note#3
Bold letters are supplementary bits.

6.5.13 Assigning a Node Count
Assigns the node count of a mapping source node set to a mapping destination.

6. Defining Data Transformation

266

(1) Function used
To assign the node count of a mapping source node set to a mapping destination, you use the acquire node count
function. The following figure shows an example that uses the acquire node count function.

Figure 6‒14: Usage example of the acquire node count function

(2) Setup procedure
To assign the node count of a mapping source node set to a mapping destination:

1. From the palette, choose the acquire node count function (count), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Acquire Node Count dialog box.

• Right--click the acquire node count function, and choose Setting.

• Double--click the acquire node count function.

The Acquire Node Count dialog box opens.
For details about the Acquire Node Count dialog box, see the manual Cosminexus Service Platform Overview.

4. To specify a condition for the transformation-source node specified in Input and map it only when this condition is
satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

5. Click OK.

6.5.14 Assigning a Node Name
Assigns the node name of a mapping source to a mapping destination. If the instance of the mapping source
(transformation-source node) does not exist, an empty string is assigned.

(1) Function used
To assign the node name of a mapping source to a mapping destination, you use the acquire node name function. The
following figure shows an example that uses the acquire node name function.

6. Defining Data Transformation

267

Figure 6‒15: Usage example of the acquire node name function

(2) Setup procedure
To assign the node name of a mapping source to a mapping destination:

1. From the palette, choose the acquire node name function (name), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Acquire Node Name dialog box.

• Right--click the acquire node name function, and choose Setting.

• Double--click the acquire node name function.

The Acquire Node Name dialog box opens.
For details about the Acquire Node Name dialog box, see the manual Cosminexus Service Platform Overview.

4. To specify a condition for the transformation-source node specified in Input and map it only when this condition is
satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

5. Click OK.

6.5.15 Verifying That a Node Exists
Verifies that the transformation-source node of the specified mapping source exists and assigns the logical value to a
mapping destination.

(1) Function used
To verify that the transformation-source node of the specified mapping source exists and assign the logical value to a
mapping destination, you use the check node function. The following figure shows an example that uses the check
node function.

6. Defining Data Transformation

268

Figure 6‒16: Usage example of the check node function

(2) Setup procedure
To verify that the transformation-source node of the specified mapping source exists:

1. From the palette, choose the check node function (exist), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Check Node dialog box.

• Right--click the check node function, and choose Setting.

• Double--click the check node function.

The Check Node dialog box opens.
For details about the Check Node dialog box, see the manual Cosminexus Service Platform Overview.

4. To specify a condition for the transformation-source node specified in Input and map it only when this condition is
satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

5. Click OK.

6.5.16 Mapping Looping
Repeatedly maps a transformation-source node that occurs more than once to a transformation-destination node that
occurs more than once as the mapping source. Can also sort the instances of a transformation-source node that occurs
more than once.

This subsection explains the basic method for mapping looping. For details about synthesizing loops and looping
dependent targets, see 6.6 Specifying Looping.

(1) Function used
To repeatedly map a transformation-source node that occurs more than once to a transformation-destination node that
occurs more than once as the mapping source, you use the loop node function. The following figure shows an example
that uses the loop node function.

6. Defining Data Transformation

269

Figure 6‒17: Usage example of the loop node function

(2) Setup procedure
To repeatedly map a transformation-source node that occurs more than once to a transformation-destination node that
occurs more than once as the mapping source:

1. From the palette, choose the loop node function (loop), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Loop Node dialog box.

• Right--click the loop node function, and choose Setting.

• Double--click the loop node function.

The Loop Node dialog box opens.
For details about the Loop Node dialog box, see the manual Cosminexus Service Platform Reference.

4. To sort the instances of a transformation-source node, click Add.
The Add/Edit Sort Condition dialog box opens.
For details about the Add and Edit Sort Condition dialog box, see the manual Cosminexus Service Platform
Reference.

5. Click Choose Node.
The Node Chooseion dialog box opens. In the Choose Node dialog box, specify the transformation-source node of
the instances to be sorted.

6. Specify the following items:

• Order
Choose ascending or descending.

• Language
Choose ja, en, or auto.

• Data type
Choose text or numeric.

• Case order
Choose Upper case or Lower case.

7. Click OK.
The content specified in the Add/Edit Sort Condition dialog box is set up in Sort conditions in the Loop Node
dialog box.

8. To add keys to Sort conditions, repeat steps 4 through 7.
You can set up a maximum of eight keys.

9. To change the order in Sort conditions, click Up or Down.
Sorting occurs sequentially, in the order of the conditions specified in Sort conditions.

6. Defining Data Transformation

270

For example, if date is specified at the top, followed by name, instances are first sorted according to date. If the
same dates are found within the sorted result, they are further sorted by name.

10. Click OK.

! Important note

• Do not define a nested loop for the same transformation-destination node. That is, do not serially connect the loop
node function to the same transformation-destination node.

• Do not specify multiple assignment lines of the same looping dependent target to the same transformation-
destination node. For details about looping dependent targets, see 6.6.3 Mapping Looping Dependent Targets.

• Do not specify the looping--compatible line and assignment line of the same looping dependent target concurrently
to the same transformation-destination node. For details about looping dependent targets, see 6.6.3 Mapping
Looping Dependent Targets.

• When you specify a loop for a transformation-destination node, specify a looping dependent target for the
descendant node of the transformation-destination node. For details about looping dependent targets, see 6.6.3
Mapping Looping Dependent Targets.

6.5.17 Outputting Different Values According to Conditions
Specifies a condition and outputs different values depending on whether the condition is satisfied.

(1) Function used
To specify a condition and output different values depending on whether the condition is satisfied, you use the choose
node function. The following figure shows an example that uses the choose node function.

Figure 6‒18: Usage example of the choose node function

(2) Setup procedure
To specify a condition and output different values depending on whether the condition is satisfied:

1. From the palette, choose the choose node function (choose), and deploy it in the mapping viewer.

2. Set up a mapping line.
To set up a mapping line by specifying a mapping source in the Choose Node dialog box, instead of using the
palette tool, execute Steps 7 through 11.

3. Use one of the following methods to open the Choose Node dialog box.

• Right--click the choose node function, and choose Setting.

• Double--click the choose node function.

6. Defining Data Transformation

271

The Choose Node dialog box opens.
If you specified a mapping line in step 2, a mapping source is specified in Output of Condition & output value.
For details about the Choose Node dialog box, see the manual Cosminexus Service Platform Overview.

4. Use one of the following methods to open the Add/Edit Condition dialog box.

• When a mapping source is specified in Output of Condition & output value
Choose the mapping source specified in Output of Condition & output value, and click Edit.

• When a mapping source is not specified in Output of Condition & output value
Click Add.

For details about the Add/Edit Condition dialog box, see the manual Cosminexus Service Platform Overview.

5. Click Set Condition.
The Condition Settings dialog box opens.

6. Specify a condition.
For details about how to set up the condition in the Condition Settings dialog box, see the manual Cosminexus
Service Platform Reference.

7. Specify the following in the When condition is true column:

• To output the transformation-destination node
Choose the Output the node check box.

• To not output the transformation-destination node
Choose the Do not output the node check box.

If the mapping source has already been specified in Output of Condition & output value, the mapping source is
displayed in Value. If you do not wish to change the mapping source, proceed to step 10.

8. If the Output the node check box was selected in step 7, specify the following in the Output value column:

• To output a value to the transformation-destination node
Choose the Output the node check box.

• To not output a value to the transformation-destination node
Choose the Empty check box.

9. If the Output the node check box was selected in step 8, specify the following for Value:

• To output the value of the transformation-source node
Clicking Choose Node opens the Choose Node dialog box. In the Choose Node dialog box, choose the
transformation-source node whose value is to be output.

• To output the value of the function
Clicking Choose Function opens the Choose Function dialog box. In the Choose Function dialog box, choose
the function whose value is to be output.

10. When a transformation-source node is specified in Value, to specify a condition for the transformation-source
node and map it only when this condition is satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

11. Click OK.
The Add/Edit Condition dialog box closes.

12. To add or edit a condition, repeat steps 4 through 11.
If you specify multiple conditions and mapping sources in Condition & output value, condition evaluation is
sequentially performed, starting with the condition displayed at the top.

13. In the When no condition matches column of the Choose Node dialog box, specify the mapping source that is to
be used when none of the conditions are satisfied.
The setting method is the same as that used for the When condition is true column of the Add/Edit Condition
dialog box.

14. Click OK.

6. Defining Data Transformation

272

If you specify a function or a transformation-source node that is not for the mapping source inside the condition
specified in the Choose Node dialog box, a mapping line (condition line) is set up between the
transformation-source node or function inside that condition and the choose node function.

! Important note

• When mapping a value to a transformation-destination node of complex content, do not choose Output the value
and specify Value. When mapping a value to a transformation-destination node that is not of complex content, you
must specify Value if you choose Output the value.

• When mapping a value to a choice element all of whose child elements' minimum occurrence count is set to 1 or
greater, do not specify Empty.

• When mapping a value to an element (other than a choice element) that has a child element whose minimum
occurrence count is set to 1 or greater, do not specify Empty.

• When mapping a value to a node whose occurrence count is set to 1 or greater, do not specify Do not output the
node.

• If you specify even a single loop node function for an output value, specify the loop node function for all other
output values. If you specify an item other than a loop node function for an output value, specify an item other than
a loop node function for all other output values.

6.5.18 Assigning a Specified Value
Assigns a specified value to a mapping destination. The following value types can be specified:

• Character string

• Number

• Boolean (true or false)

• Special node (empty node or no node output)

(1) Function used
To assign a specified value to a mapping destination, you use the set constant function. The value specified in the set
constant function can be assigned to multiple mapping destinations. The set constant function does not have a
mapping source. Therefore, the value of the set constant function is assigned as is to the mapping destination. The
following figure shows an example that uses the set constant function.

Figure 6‒19: Usage example of the set constant function

(2) Setup procedure
To assign a specified value to a mapping destination:

6. Defining Data Transformation

273

1. From the palette, choose the set constant function (const), and deploy it in the mapping viewer.

2. Set up a mapping line.

3. Use one of the following methods to open the Set Constant dialog box:

• Right--click the set constant function, and choose Setting.

• Double--click the set constant function.

The Set Constant dialog box opens.
For details about the Set Constant dialog box, see the manual Cosminexus Service Platform Overview.

4. Specify the value to be assigned to the mapping destination.

• To specify a string
Choose the String radio button and specify the value to be assigned in Value.

• To specify a number
Choose the Number radio button and specify the value to be assigned in Value.

• To specify a logical value
Choose the Logical Value radio button, and then choose Positive or Negative in the Logical Value column.

• To specify a special node
Choose the Special Node radio button, and click Do not output the node or Empty node in the Value
column.

5. Click OK.

! Important note

• When specifying a special node, specify a transformation-destination node for the mapping destination.

• When specifying a value other than a special node, specify a node other than a complex-content node for the
mapping destination.

• If you select do not output the node for a special node, specify a transformation-destination node whose
minimum occurrence count is 0 for the mapping destination.

• When mapping a value to a choice element all of whose child elements' minimum occurrence counts are set to 1
or greater, specify a node that is not an empty node (special node).

• When mapping a value to an element (other than a choice element) that has a child element whose minimum
occurrence count is set to 1 or greater, specify a node that is not an empty node (special node).

6.5.19 Converting a Value with the Conversion Table
Use the conversion table to convert the mapping source value and assign this value to the mapping destination.

(1) Function used
To convert the mapping source value and assign it to the mapping destination with the conversion table, use the
Replace Value Function.

The following figure shows an example wherein the replace value function is used:

6. Defining Data Transformation

274

Figure 6‒20: Usage example of the replace value function

(2) Setup procedure
To convert the mapping source value and assign this value to the mapping destination using a conversion table, first
create and save the conversion table. If you specify the information of the created conversion table in a system
property file (usrconf.properties), you can use the conversion table. After the conversion table is available for
use, define the replace value function.

(a) Creating and saving a conversion table

This sub--section explains how to create and save a conversion table.

Tip
The conversion table that is created is not to be packaged. Therefore, the conversion table can be edited anytime even after
the actual operations start in the execution environment. The edited contents are reflected when the system is next started.

Creating a conversion table
Create the conversion table in a csv file. The format of the csv file is as follows:

"A01","B01"
"A02","B02"
"A03","B03"
 :

Substitute value considering Ann and Bnn coded in a same line as a combination pair. Enclose the string to be
substituted in double quotations ("), and code. If the string to be substituted contains double quotation, you can
use the double quotation as an escape character. If characters outside the scope of escape are escaped, the escaped
characters are ignored and subsequent characters are processed.
Note that you can use the following character codes in the conversion table:

• MS932

• UTF8

• UTF16 (big endian or little endian)

The following table describes the characters to be used to code the conversion table:

Table 6‒4: Characters to be used in the conversion table

Target Characters to be used

Start character Start character is not required.

End character One of the following linefeed code:

• LF (0x0A)

• CR+LF (0x0D0A)

If the executing OS is UNIX, use LF and for Windows, use CR+LF.

6. Defining Data Transformation

275

Target Characters to be used

End character Note:
LF: Linefeed
CR: Carriage return

Intervening separation character Use commas (,).

! Important note

• The data coded in the conversion table is handled as a string. Therefore, if a numeric value is entered in the replace
value function, it is converted into a string and processed.

• You cannot specify an empty element for the value to be converted entered.

• If you want to enter an attribute value, the input value is handled with a normalized value (substituting a tab with a
space, continuous spaces with a single space, and so on). Therefore, the search key value coded in the conversion
table needs to be considered as a normalized value.

Tip
You can specify whether to convert from Ann to Bnn or from Bnn to Ann, when you define the Replace Value Function.

Saving the conversion table
Save the created conversion table in any location.

(b) Registering in the system property file (usrconf.properties)

After you create a conversion table, register the created conversion table in usrconf.properties. For details about how
to register a conversion table, see the contents related to the registration of a conversion table in the manual
Cosminexus Service Platform System Setup and Operation Guide.

(c) Defining Replace Value Function

The following is the procedure for using the replace value function to convert the mapping source value and assigning
the value to the mapping destination:

1. From the palette, choose Replace Value function (replace) and deploy in the mapping viewer.

2. Set up a mapping line.

3. Open the Replace Value dialog box with one of the following methods:

• Right click on Replace Value function and choose Setting.

• Double click on Replace Value function.

The Replace Value dialog box opens.
For details about the Replace Value dialog box, see the manual Cosminexus Service Platform Overview.

4. When a transformation-source node is specified in Input, to specify a condition for the transformation-source node
and map it only when this condition is satisfied, click Set Node Condition.
The Set Node Condition dialog box opens.
For details about how to set a node condition, see 6.7 Specifying Node Conditions. For details about the Set Node
Condition dialog box, see the manual Cosminexus Service Platform Reference.

5. In Conversion table ID, specify the conversion table name coded in the system property file (usrconf.properties).

6. In Specify Reference Key, choose either the left or right row of the conversion table as the source for changing the
value.

7. In Operation when search fails, choose the system operation for the case where the input value from the mapping
source does not exist in the conversion table.

To output the default value and assign value to the mapping destination
Choose the Substitute default value radio button and enter the string to be used as the default value in Value.

To treat as a conversion error
Choose the conversion error with a radio button.

8. Click OK.

6. Defining Data Transformation

276

6.5.20 Performing basic number transformation
Consider the input value as basic number specified in input basic number and transform the input value to basic
number specified in output basic number. If input value is other than basic number specified in input basic number,
error value (NaN) is returned. If input value exceeds 64 bits, round the bits more than 64 bits.

Process the radix conversion function with Big Endian.

Specifications of basic number transformation are as follows:

• When input basic number is decimal number, perform basic number transformation as 64 bit.

• When output basic number is decimal number, consider the maximum bit of input data extended to 4 bit unit, as
encoded bit.

• When input basic count and output basic count is not decimal number, set the basic number to bit length of
transformation source. If input basic count is binary number, expand the data that does not fulfill 4 bit, such that it
becomes 4 bit unit.

• Format of input value of input basic number is as follows:

Input basic number Format

Binary number [01]+

Decimal [+-]?[0-9]+

Hexadecimal [0-9a-fA-F]+

(1) Function used
To transform input value to basic number specified in output basic number, use Radix conversion function. Following
figure shows the usage example.

6. Defining Data Transformation

277

Figure 6‒21: FigureUsage example of radix conversion function

(2) Setting procedure
Procedure for transforming the input value to basic number specified in output basic number is as follows:

1. Select radix conversion function (radix) from pallet and deploy to the mapping viewer.

2. Set the mapping line.

3. Display Radix Conversion dialog with either of the following method:

• Right click the Radix conversion function and select Settings.

• Double click the radix conversion function.

Radix Conversion dialog is displayed.
For details on Radix Conversion dialog, see "1.6.36 Base conversion dialog" in "Service Platform Reference
Guide".

4. To specify input value of basic number transformation in Input, click Select node button.
Node selection dialog is displayed.

6. Defining Data Transformation

278

5. Specify node set, which is input value.
Input value of basic number transformation is set in Input.

6. When you want to execute mapping only when you set conditions in input value specified in Input and that
condition is fulfilled, click Specify node conditions button.
Specify node conditions dialog is displayed.
For details on how to specify node conditions, see "6.7 Specifying Node Conditions". For details on the Specify
node conditions dialog, see " Set Node Condition Dialog " in "Service Platform Reference Guide"

7. When you want to specify basic number transformation target function in Input, click Select function button.
Function selection dialog is displayed.
For details on Function selection dialog, see "1.6.7 Select function dialog" in "Service Platform Reference Guide".

8. Specify input basic number.

9. Specify output basic number.

10. Click OK button.

(3) Execution example
Following table describes the execution example:

Input Basic number transformation Result

1101 Binary numberdecimal -3

0100 Binary numberdecimal 4

1101 Binary numberHexadecimal d

11 DecimalBinary number 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 1011#1

11 DecimalHexadecimal 00 00 00 00 00 00 00 0b#1

11 HexadecimalBinary number 0001 0001

11 HexadecimalDecimal 17

8b HexadecimalDecimal -117

1102 Binary numberDecimal NaN#2

110f DecimalHexadecimal NaN#2

Note#1
Bold letters are supplementary bits.

Note#2
As you cannot convert the input value to basic number specified in input basic number, result becomes "NaN".

6.5.21 Assigning a Value to a Transformation-source Node Value
Adds a value to a transformation-source node value and assigns it to the mapping destination.

(1) Function used
To add a value to a transformation-source node value and assign it to the mapping destination, you use the concatenate
function and the set constant function in combination. The following figure shows an example that uses the
concatenate function and the set constant function in combination.

6. Defining Data Transformation

279

Figure 6‒22: Usage example of a combination of concatenate function and set constant function

(2) Setup procedure
To add a value to a transformation-source node value and assign it to the mapping destination:

1. From the palette, choose the set constant function (const), and deploy it in the mapping viewer.

2. Use the set constant function to specify a value.
For details about how to specify a value, see 6.5.18 Assigning a Specified Value.

3. From the palette, choose the concatenate function (concat), and deploy it in the mapping viewer.

4. Use the concatenate function to concatenate the value specified by the set constant function with the
transformation-source node value.
For details about the concatenation method, see 6.5.1 Concatenating Multiple Strings.

6.5.22 Doubling a Transformation-source Node Value
Doubles a transformation-source node value and assigns it to the mapping destination.

(1) Function used
To double a transformation-source node value and assign it to the mapping destination, you use the perform node
operation function and the set constant function in combination. The following figure shows an example that uses the
perform node operation function and the set constant function in combination.

6. Defining Data Transformation

280

Figure 6‒23: Usage example of a combination of perform node operation function and set constant
function

(2) Setup procedure
To double a transformation-source node value and assign it to the mapping destination:

1. From the palette, choose the set constant function (const), and deploy it in the mapping viewer.

2. Use the set constant function to specify a value.
For details about how to specify a value, see 6.5.18 Assigning a Specified Value.

3. From the palette, choose the perform node operation function (calc), and deploy it in the mapping viewer.

4. Use the perform node operation function to calculate the value specified by the set constant function and the
transformation-source node value.
For details about the computation method, see 6.5.7 Computing Numbers.

6.5.23 Invoke a Java program created by the user
Invoke a Java program created by the user and use as a function. You can use this for processes other than those in
other functions provided by uCosminexus Service Architect.

For details about how to create Java programs for invocation, see 6.9 Creating Java programs to be used in the custom
function.

(1) Function used
Use the custom function to invoke a Java program created by the user.

The following figure shows how to invoke a Java program from the custom function. Note that in the custom
function, invoking a Java program is called as transformation function.

6. Defining Data Transformation

281

Figure 6‒24: Invoking a Java program from the custom function (transformation function)

(2) Setting procedure
The following procedure describes how to invoke a Java program created by the user:

1. In the Eclipse menu, choose Window and Settings.
The Settings dialog box appears.

2. In the left of the dialog box, choose HCSC--Definer and Data transformation.
The settings of the Data Transformation Definition screen appear on the right side of the dialog box.

3. Click the Custom function tab.
The Custom function tab of the Settings dialog box appears.

4. Specify the transformation function definition file and click OK button.

5. Choose the custom function from the palette (custom) and deploy it in the mapping viewer.

6. Set the mapping line.
The number of mapping lines to be set is the same as for the argument of the invoked Java program.

7. Open the Custom dialog box by either of the following methods:

• Right click the custom function and choose Settings.

• Double--click the custom function.

8. Click Choose transformation function.
The Choose transformation function dialog box appears.

9. Choose the method to be invoked from the custom function and click OK button.
The Choose transformation function dialog box closes and the Custom dialog box appears.

10. Specify the input value corresponding to Argument name in Input value.
The specified input value is entered in the argument of the Java program.

11. Click OK button.

Notes

• The input value of the argument is not set automatically if the mapping line is set in the mapping viewer after
setting the transformation function in the Custom dialog box. Specify again in Input value the input value
corresponding to Argument name in the Custom dialog box.

• Invoke the custom function from the information of the method selected in the Choose transformation function
dialog box. Even if the contents of the transformation function definition file change after selecting the method in
the Choose transformation function dialog box, the change is not reflected in information of the method for

6. Defining Data Transformation

282

invoking from the custom function. To reflect the changes of the transformation function definition file to the
custom function, select the transformation function again.

• If the following setting contents do not match, an error occurs while executing the custom function but not while
validating the business process. Setting contents must always match.

• Setting contents of the transformation function definition file

• Setting contents of the custom function

• Contents of the packaged jar file

• To use multiple transformation function definition files, switch the transformation function definition files in the
Settings dialog box and set the custom function. Switching the transformation function definition files does not
affect a set custom function.

6. Defining Data Transformation

283

6.6 Specifying Looping
In mapping that uses the loop node function, you can synthesize loops and change the looping dependent target.

6.6.1 Mapping Using the Loop Settings Dialog Box
For mapping from the loop node function or the choose node function# to a transformation-destination node, you can
also use the Loop Settings dialog box.

The procedure for mapping using the Loop Settings dialog box is described below.

1. From the palette, choose the loop node function or the choose node function.

2. Click an appropriate location in the mapping viewer.
The function is deployed in the mapping viewer. You can move the deployed function by dragging it.

3. In the transformation-destination schema tree viewer, right--click the transformation-destination node that
becomes the mapping destination, and choose Loop Node.
The Loop Settings dialog box opens.

4. Click Add Function.
The Choose Function dialog box opens.

5. Specify the loop node function that becomes the mapping source or the choose node function, and click OK.
The specified function name is set up in Function name.

6. Click OK.
A mapping line (looping--compatible line) is set up. You can change the mapping line color. For details
about how to change the mapping line color, see the manual Cosminexus Service Platform Reference.

#
A choose node function that is connected to a loop node function or to nothing. If a function is connected to a
function other than a loop node function, you cannot use the Loop Settings dialog box.

! Important note

When a loop is specified for a transformation-source node, a descendant node of that transformation-source node also
becomes the looping target and occurs at the transformation-destination node.

However, if an absolute path is specified for the mapping source in the Settings for Mapping Source dialog box, the
value of the node specified by the absolute path is always assigned. If a relative path is displayed for the mapping
source in the Settings for Mapping Source dialog box, a descendant node of the transformation-source node for which
looping is specified becomes the looping target, and the value of the node corresponding to looping is assigned.

For details about how to display transformation-source node paths, see 6.6.6 Displaying the Path of a Transformation-
source Node for Which a Looping Dependent Target Is Specified.

6.6.2 Synthesizing Loops
You can synthesize a loop of multiple transformation-source nodes and map them to a single transformation-
destination node. The following figure shows a window in which loops have been synthesized.

6. Defining Data Transformation

284

Figure 6‒25: Window with synthesized loops

When you synthesize loops, you can use the Loop Settings dialog box to specify the order in which transformation-
source nodes occur at the transformation-destination node. In the case shown in Figure 6-25, you can decide whether
the transformation-source node (home) corresponding to loop1 or the transformation-source node (WorkLocation)
corresponding to loop2 will occur first at the transformation-destination node. Note that a descendant node of a
transformation-source node corresponding to a loop also becomes a looping target and occurs at the transformation-
destination node.

To specify the order in which transformation-source nodes are to be assigned to the transformation-destination node:

1. In the transformation-destination schema tree viewer, right-click the transformation-destination node that becomes
the mapping destination, and choose Loop Node.
The Loop Settings dialog box opens.

2. Rearrange the function names displayed under Loop to the order in which they are to occur at the transformation-
destination node.
Transformation-source nodes sequentially occur at the transformation-destination node, beginning with the one
corresponding to the function name displayed at the top.

• To move up in order
Choose the function name to be moved up, and click Up.

• To move down in order
Choose the function name to be moved down, and click Down.

3. Click OK.

6.6.3 Mapping Looping Dependent Targets
When you use the loop node function to map a transformation-source node to a transformation-destination node, that
loop node function is automatically mapped as a looping target of a descendant node's mapping source. Also, deleting
the loop node function and mapping lines cancel the looping of a node. In such a case, the loop node function set up in
the ancestor node of the node, for which looping is cancelled, will be automatically mapped as a looping target of the
mapping source in the descendant node. This is called a looping dependent target.

A looping dependent target is set up in the following cases:

• When the loop node function is used to specify a loop for a node, and its descendant node is mapped later
The loop node function used by a node automatically becomes the looping dependent target of the descendant
node's mapping source.

• When a node is mapped, and the loop node function is used to specify a loop for its ancestor node later
The loop node function used by the ancestor node becomes the looping dependent target of its descendant node's
mapping source.

• When the looping of a node, for which looping is set up in the ancestor node, will be cancelled

6. Defining Data Transformation

285

The loop node function set up in the ancestor node becomes the looping dependent target of the mapping source in
the descendant node of the node for which looping is cancelled.

The timing at which a looping dependent target is mapped in each case is explained below.

(1) When a loop is specified for a node and its descendant node is mapped later
This subsection explains the timing at which the looping dependent target is mapped when a loop is specified for a
node and its descendant node is mapped later.

Figure 6‒26: Mapping when the loop node function is used

First, the loop node function is used to map a transformation-source node A to a transformation-destination node B.

Next, node C, which is a descendant node of transformation-source node A, is mapped to node D, which is a
descendant node of transformation-source node B. The following figure shows the timing at which the looping
dependent target is mapped when no function is used for the descendant node.

Figure 6‒27: Timing at which the looping dependent target is mapped (When no function is used for the
descendant node)

When node D is connected, a looping dependent target is automatically set up for the descendant node. In Figure 6-27,
loop1 is set up for the looping dependent target of descendant node D's mapping source.

If multiple functions are used for mapping a descendant transformation-source node to the transformation-destination
node, a looping dependent target is automatically set up when the transformation-destination node is connected. The
following figure shows the timing at which the looping dependent target is mapped when multiple functions are used
for the descendant node.

6. Defining Data Transformation

286

Figure 6‒28: Timing at which the looping dependent target is mapped (When multiple functions are used
for the descendant node)

(2) When a node is mapped and a loop is then specified for its ancestor node
This subsection explains the timing at which the looping dependent target is mapped when a node is mapped, and a
loop is then specified for its ancestor node.

Figure 6‒29: Mapping when the loop node function is not used

First, a transformation-source node A is mapped to a transformation-destination node B.

Next, node C, which is a descendant node of transformation-source node A, is mapped to node D, which is a
descendant node of transformation-source node B. The following figure shows the timing at which the looping
dependent target is mapped when the ancestor node is mapped later.

6. Defining Data Transformation

287

Figure 6‒30: Timing at which the looping dependent target is mapped (When the ancestor node is mapped
later)

When node C is mapped to node D, the looping dependent target is automatically set up for the descendant node. In
Figure 6-29, the looping dependent target loop1 is set up for the descendant node B.

(3) When the looping of a node for which looping is set up in the ancestor node is cancelled
The timing at which the looping dependent target is mapped when the looping of a node for which looping is set up in
the ancestor node is cancelled is as follows:

Figure 6‒31: Mapping when the loop node function is used and when the loop node function is not used

First, a transformation-source node A is mapped to a transformation-destination node B.

Next, the loop node function is used, and node C, which is a descendant node of transformation-source node A, is
mapped to node D, which is a descendant node of transformation-source node B

After this, the loop node function is used, and the transformation-source node E that is the ancestor node of the
transformation-source node A and transformation-source node C is mapped to the transformation-destination node F
that is the ancestor node of the transformation-destination node B and transformation-destination node D.

6. Defining Data Transformation

288

Figure 6‒32: Timing at which the looping dependent is mapped (When mapping is cancelled)

When the mapping of node C to node D is cancelled, the looping dependent target is set up automatically for the
descendant node of the node in which the mapping is cancelled. In Figure 6-31, the looping dependent target loop1 is
set up for the descendant node B.

6.6.4 Checking Looping Dependent Targets
To check the looping dependent targets that were automatically set up:

1. In the schema tree viewer, right--click the descendant node of the transformation-destination node for which a
loop was set up, and click Mapping source.
The Settings for Mapping Source dialog box opens.

The relative path from the transformation-source node for which the loop node function was mapped is displayed
in Path/Function name. For details about how to display path names, see 6.6.6 Displaying the Path of a
Transformation-source Node for Which a Looping Dependent Target Is Specified. The function name that becomes
the looping dependent target is displayed in Dependent target.

6.6.5 Changing Looping Dependent Targets
When multiple transformation-source nodes are mapped to a single transformation-destination node, you can change
the looping dependent targets that were automatically set up for the transformation-source nodes.

To change looping dependent targets:

1. In the schema tree viewer, right--click the descendant node of the transformation-destination node for which a
loop was set up, and click Mapping source.

6. Defining Data Transformation

289

The Settings for Mapping Source dialog box opens.

2. Change Dependent target in Mapping source.
The path of the changed dependent target becomes an absolute path. For details about how to display path names,
see 6.6.6 Displaying the Path of a Transformation-source Node for Which a Looping Dependent Target Is
Specified.

3. Click OK.

6.6.6 Displaying the Path of a Transformation-source Node for Which a
Looping Dependent Target Is Specified

In the Settings for Mapping Source dialog box, a relative path or absolute path is displayed in Path/Function name.
The following subsections explain the circumstances under which a relative path or absolute path is displayed:

(1) Relative path
When a looping dependent target is specified for the descendant transformation-source node to which the loop node
function is mapped, a relative path from the transformation-source node for which the loop node function is mapped is
displayed.

The following figure shows an example.

Figure 6‒33: Example of a relative path

When the loop node function loop1 is mapped to the home node, the looping dependent target loop1 is set up for the
PhoneNumber node, which is a descendant node of the home node.

6. Defining Data Transformation

290

In this case, if you display the Settings for Mapping Source dialog box from the PhoneNumber node after mapping, a
relative path from the home node is displayed in Path/Function name.

(2) Absolute path
In the following cases, an absolute path is displayed:

• When a node condition is set up for the transformation-source node to which the loop node function of the looping
dependent target is mapped, or to the ancestor transformation-source node of that transformation-source node
The following figure shows an example.

Figure 6‒34: Example 1 of an absolute path

When the loop node function loop1 is mapped to the home node, the looping dependent target loop1 is set up for
the PhoneNumber node, which is a descendant node of the home node. Note that a node condition is specified for
the home node.
In this case, if you display the Settings for Mapping Source dialog box from the PhoneNumber node after
mapping, the absolute path is displayed in Path/Function name.

• When a transformation-source node to which a looping dependent target is specified is not a descendant node of
the transformation-source node to which the looping node function of the looping dependent target is mapped
The following figure shows an example.

6. Defining Data Transformation

291

Figure 6‒35: Example 2 of an absolute path (Before changing the dependent target)

First, the loop node function loop1 is mapped to the home node, and then the loop node function loop2 is mapped
to the WorkLocation node. As a result, for both the home node's descendant PhoneNumber node and the
WorkLocation node's descendant PhoneNumber node, the loop node function loop1, which was mapped first, is
set up as the looping dependent target.
In this case, if you display the Settings for Mapping Source dialog box from the PhoneNumber node after
mapping, the following is displayed in Path/Function name:

• The descendant PhoneNumber node of the home node (to which loop1 is mapped)
A relative path from the home node is displayed.

• The descendant PhoneNumber node of the WorkLocation node (to which loop2 is mapped)
The absolute path is displayed.

6. Defining Data Transformation

292

Figure 6‒36: Example 2 of absolute path (After changing the dependent target)

The dependent target for the home node's descendant phone number node is specified as loop2, which is the loop
node function of the WorkLocation node.
In this case, if you display the Settings for Mapping Source dialog box from the PhoneNumber node after
mapping, the display in Path/Function name changes as follows.

• The descendant PhoneNumber node of the home node (to which loop1 is mapped)
The relative path from the home node changes to the absolute path.

6.6.7 Relating repeat process of each element by setting up the linkage
path

For relating each element not depending on repetition, with the element depending on repetition and transform the
same, you must set linkage path in Repeat function.

This section describes the method for setting up linkage path in Repeat function, displaying linkage path and
transformation example using linkage path.

(1) Setting up the linkage path
You can link the repeat process of each element at transformation source by setting up the linkage path in Repeat
function.

A path that is target of repeat linkage must fulfill the following conditions:

• Transformation destination node of mapping line depends on the corresponding Repeat function.

6. Defining Data Transformation

293

• Path of the transformation source node of mapping line includes the linkage path specified in Repeat function.

! Important note
You cannot add paths corresponding to following cases, in linkage path. If you specify, error message is displayed.

• If you specify a path that is ancestor node or grandchild node of the standard path of same Repeat function

• If you specify multiple ancestor nodes or grandchild nodes of linkage path of same Repeat function

Set up the linkage path by the following procedure.

1. Display Repeat dialog, with either of the following methods.

• Right click Repeat function and select Settings.

• Double click the Repeat function.

For details on Repeat dialog, see "1.6.5 Loop Settings Dialog " in "Service Platform Reference Guide".

2. Click Add node button of Linkage path.
Node selection dialog is displayed.

3. Select elements to be linked and click OK button.
Path of the selected elements is displayed in Linkage path. For specifying multiple linkage paths, repeat steps.
2~3.

4. Click OK button of Repeat dialog.
Linkage path is set up.

(2) Displaying linkage path
The set linkage path is displayed in the Mapping viewer and Property viewer.

In the Mapping viewer, Mapping line (Repeat linkage line) is displayed from linkage path to Repeat function.
Color of Mapping line is same as Repeat support line. For details on how to change the color of mapping line, see
"1.12.5 Changing the Mapping Line Color " in "Service Platform Reference Guide".

You can cancel the mapping (linkage) by deleting Repeat linkage line from Mapping viewer. For details on how to
cancel mapping, see "6.4.5 Canceling Mapping".

Following figure shows the display example of repeat linkage line.

Figure 6‒37: FigureDisplay example of repeat linkage line

(3) Transformation example using the linkage path
Following figure shows the transformation example of Repeat function using linkage path.

• When mapping the value linked with Repeat function

6. Defining Data Transformation

294

Figure 6‒38: FigureTranformation example 1 using the linkage path

• When mapping a value that is not linked with Repeat function

6. Defining Data Transformation

295

Figure 6‒39: FigureTransformation example 2 using linkage path

• When referencing value linked with multiple Repeat functions

6. Defining Data Transformation

296

Figure 6‒40: FigureTransformation example 3 using linkage path

6. Defining Data Transformation

297

6.7 Specifying Node Conditions
You can specify a condition for the transformation-source node and map it only when this condition is satisfied.
Specifying a condition for the transformation-source node is called node condition setting. As described below, the
method for starting node condition setting differs depending on the mapping destination.

• When the mapping destination is a transformation-destination node
Start node condition setting from the Settings for Mapping Source dialog box. The Settings for Mapping Source
dialog box opens when you right--click the transformation-destination node and choose Mapping source.

• When the mapping destination is a function
Start node condition setting from the dialog box for setting up each function. You can use one of the following
methods to open the dialog box for setting up each function:

• Right--click each function, and choose Setting.

• Double--click each function.

To set up node conditions:

1. In the Settings for Mapping Source dialog box or the dialog box for setting up each function, choose the
transformation-source node for which to specify a node condition.

2. Click Set Node Condition.
The Set Node Condition dialog box opens.
The Set Node Condition dialog box displays the transformation-source node selected in the Settings for Mapping
Source dialog box and its ancestor node. You can specify node conditions for all nodes displayed in the Set Node
Condition dialog box.

3. Choose the node for which to specify a node condition, and click Set Condition.
The Condition Settings dialog box opens.

4. Specify a condition.
From the following radio buttons, choose the condition to be specified in Condition and specify details for that
condition.

• Node or function to return the boolean value radio button

• Condition format radio button

• Logical operation of two conditions radio button

The specified condition is displayed in Condition to be generated.
To specify a transformation-source node or function in Condition, specify the following transformation-source
node or function:

• Transformation-source node
Node that is a mapping target# and that has a simple content or attribute

• Function
Function that is not a control function and for which no mapping line is specified on the output side

5. To specify a condition that is opposite in content from the condition displayed in Condition to be generated,
choose the Negate the condition check box.

6. Click OK.
The condition specified in the Condition Settings dialog box is displayed in Condition in the Set Node Condition
dialog box.

7. To specify node conditions for other nodes, repeat steps 3. to 6.

8. In the Set Node Condition dialog box, click OK.
The node conditions are set up.
If you specify a transformation-source node or function that is not a mapping source inside a condition specified in
the Condition Settings dialog box, a mapping line (condition line) is set up between the transformation-
source node or function inside that condition and the mapping destination.

6. Defining Data Transformation

298

#
For mapping targets, see 6.10.1 Mapping Targets and Non--Mapping Targets.
Tip

When you choose a transformation-destination node for which a condition was specified, the specified node condition is
displayed in Mapping source in the property area. A node condition enclosed inside square brackets "[]" is displayed
following the node name for which the condition was specified. When the node (specified in Condition of the Condition
Settings dialog box) is a descendant node of the node (specified in the Set Node Condition dialog box) for which the
condition was specified, a relative path from the node for which the condition was specified is displayed. In all other
cases, the absolute path is displayed.

6. Defining Data Transformation

299

6.8 Copying Mapping Definitions
You can save the contents mapped in the Data Transformation Definition screen as mapping definitions. You can copy
and use the saved mapping definitions when creating other data transformation definitions.

The following figure shows copying of mapping definitions.

Figure 6‒41: Copying of mapping definitions

Mapping definitions are copied for each piece of mapping information. Mapping information refers to a
transformation-destination node, a transformation-source node that can be obtained by tracing the mapping lines from
the transformation-destination node, and functions and mapping lines.

You can copy mapping definitions even if the schema type used when creating a mapping definition file for the copy
source (XSD file or FDX file) differs from the schema type of the copy destination.

There are two types of mapping definition copying method: structure matching copy mapping, and element name
matching copy mapping. Structure matching copy mapping can be used when the element names and schema
structures of the copy source and destination match. Therefore, if the node to which mapping definitions are to be
copied already has mapping lines connected, mapping definitions cannot be copied. Element name matching copy
mapping can be used when the element names of the copy source and destination are similar. Therefore, unlike
structure matching copy mapping, mapping definitions can be copied even if the schema structures of the copy source
and destination are different. For these copying methods, see 6.8.4 Copying mapping definitions.

6.8.1 Flow of copying mapping definitions
The flow of copying mapping definitions is as follows:

1. Save the contents mapped in the Data Transformation Definition screen as mapping definitions.
For details about how to save mapping definitions, see 6.8.2 Saving mapping definitions.

2. Register the saved mapping definition as the copy source.
For details about how to register mapping definitions, see 6.8.3 Registering mapping definitions.

3. Specifying the transformation-source and destination schemas and open the Data Transformation Definition screen
that is the copy destination.

6. Defining Data Transformation

300

For details about how to open the Data Transformation Definition screen, see 6.3.1 Procedure for Defining Data
Transformation . Note that mapping must not be carried out if the Data Transformation Definition screen is open.

4. Copy the mapping definition.
Schema information of the mapping definitions of the copy source and destination are compared and if the
elements are similar, mapping definitions are copied automatically. For conditions for copying mapping
definitions, see 6.8.5 Determining similarities.
For details about how to copy mapping definitions, see 6.8.4 Copying mapping definitions.

6.8.2 Saving mapping definitions
The following points describes how to save the mapping definition:

1. Right click the applicable location of the transformation-source schema tree viewer, mapping viewer or
transformation-destination schema tree viewer in the Data Transformation Definition screen and choose Save
mapping definition.
The Save mapping definition dialog box appears.
Note that the directory appearing first in the Save mapping definition dialog box can be set in any location in the
Settings dialog box. For details see the contents related to the Settings dialog box in Cosminexus Service Platform
Reference.

2. Specify the file for saving the mapping definition (extension:.mdo)

3. Click OK button.
The mapping definition is saved.

6.8.3 Registering mapping definitions
This section describes how to register the mapping definition. Only one mapping definition can be saved for 1 Eclipse.
A registered mapping definition can be shared by all Data Transformation Definition screens. Note that if Eclipse
closes, the registered mapping definition is destroyed.

1. Right click the applicable location of the transformation-source schema tree viewer, mapping viewer or
transformation-destination schema tree viewer in the Data Transformation Definition screen and choose Register
mapping definition.
The Register mapping definition dialog box appears.

2. Click Choose and specify the mapping definition file to be registered as the copy source (extension:.mdo).
Note that the directory appearing when Choose is clicked box can be set in any location in the Settings dialog
box. For details see the contents related to the Settings dialog box in Cosminexus Service Platform Reference.

3. Click OK button.
The mapping definition is registered.

6.8.4 Copying mapping definitions
This section describes a method to copy the mapping definition.

Reference note
When you copy the mapping definition, name same as copy source function is set in the copy destination function. If the
function with same name already exists in mapping definition editor of copy destination, name to which serial number is
added at the end, is set.

(1) Structure matching copy mapping
Structure matching copy mapping is the copy method that can be used when not only the element name of copy
destination and copy source, but the schema structure matches. Method to copy mapping definition with structure
matching copy mapping is as follows:

6. Defining Data Transformation

301

1. In the Transformation destination schema tree viewer of the Data transformation definition screen, right click
Copy contents element and select [Copy mapping]-[structure matching].
The Set copy mapping source dialog box appears.

2. Click Add node.
Node chooseion dialog appears.

3. Choose the element to be copied and click OK button.
The path of the selected node is added in Path. If multiple schemas exist in the transformation-source, choose
multiple elements to be copied.

4. Click OK button.
The mapping definition is copied.

(2) Element name matching copy mapping
Element name matching copy mapping is the copy method that can be used when element names of copy source and
copy destination match. Method to copy the mapping definition with element name matching copy mapping is as
follows:

1. In the Transformation destination schema tree viewer of the Data transformation definition screen, right click copy
contents element and select [Copy mapping]-[Element name matching].
Copy mapping range setting dialog is displayed.

2. Set copy source and copy destination information.
Set copy source information in Copy mapping source and copy destination information in Copy mapping
destination.
Select node to be set in each item by clicking Select node button next to the item. The selected node is displayed
in each item.

3. Click OK button.
Mapping definition is copied.

! Important note

In the following cases, error is displayed and mapping file is not copied.

• When mapping definition file of copy source (extension:.mdo) has not been registered

• When mapping definition file of copy source (extension:.mdo) cannot be read

• When registered mapping definition file of copy source (extension:.mdo) is blank

6.8.5 Determining similarities
If mapping definitions are copied, the schema element of the mapping definition of the copy source and destination
are compared and if the elements are similar, they are copied. If multiple elements are similar, they are copied in the
priority order from the top. Priority according to which mapping is copied, is explained here.

! Important note

Functions that fulfill the following condition are not copied regardless of priority.

• Functions that do not have transformation source node corresponding to sort conditions, among the Repeat functions for
which sort condition is set

• Functions that do not have transformation source node corresponding to linkage path, among the Repeat function for
which linkage path is set

• Functions that do not have transformation source node corresponding to conditions, among the Select function for which
condition is set

6. Defining Data Transformation

302

(1) Structure matching copy mapping
Following table describes the priority according to which mapping is copied when you copy mapping definition with
the structure matching copy mapping.

Table 6‒5: Priority order of copying mapping definitions

Priority order Schema logical name New path Element name

1 Y Y Y

2 -- Y Y

Legend:
Y: Matches.
--: Does not match.

(2) Element name matching copy mapping
Following table describes the priority according to which mapping is copied when you copy mapping definition with
the element name matching copy mapping.

Table 6‒6: TablePriority according to which mapping definition is copied (element name matching copy
mapping)

Priority
Element Path

Namespace Element name Namespace Element name

1 N N Y Y

2 N N N Y

3 Y Y N A

4 N Y N A

5 N A N A

(Legend)
Y: Matches
A: Partially matches
N: Does not match

In element name matching copy mapping, you must set such that conflict does not occur in the dependency relation of
copied elements. Copy the transformation destination node for which dependency relation is set, by conforming to the
following conditions.

• When transformation destination node which is dependency target has been copied, copy such that it is included in
grandchild of transformation destination node of dependency target.

• If you cannot copy the transformation destination node that is dependency target, search the transformation
destination node having higher similarity level than transformation target node that is dependency target and copy
such that it is included in grandchild of that node. If you cannot find a transformation destination node having
higher similarity level, copy as no dependency relation.

Also, if node condition has been set in the following value, copy such that ancestor node for which conditions are set
become the ancestor node of the transformation sauce node that is connection source between transformation
destination node and function.

• Input value of conversion destination node

• Input value of function

• Linkage path of repeat function

6. Defining Data Transformation

303

6.8.6 Notes on copying mapping definitions
Planned copying might not be executed depending on the schema contents of the copy source and destination. This
section describes the notes on copying mapping definitions.

(1) If multiple targets are to be copied
If all the conditions from 1. to 4. are applicable, copy targets are considered to be multiple targets.

Figure 6‒42: Example of copy source and copy destination if multiple targets are to be copied

Conditions

1. Multiple schemas are registered in the transformation-source schema of the copy source mapping definition

2. A node with the same path exists in the transformation-source schema of the copy source mapping definition

3. Mapping information includes the node of 2. in the copy source mapping definition

4. A node with the same path as 2. exists in 1 transformation-source schema of the copy destination

The following figure shows the copy result for Figure 6-42.

Figure 6‒43: Copy result if multiple targets are to be copied

(2) If the mapping definition of the copy source is incomplete
If the transformation-source and destination nodes are not connected and the copy source mapping definition is
incomplete, only mapping of the transformation-destination node is copied and mapping of the transformation-source
node is not copied.

6. Defining Data Transformation

304

The following figure shows an example of copying the mapping definition if the mapping definition of the copy
source is incomplete.

Figure 6‒44: Copying a mapping definition if the copy source mapping definition is incomplete

(3) If multiple loop node functions are connected to 1 element
If the mapping definition copy source is connected to multiple loop node functions in 1 simple content element or
complex content element and if the mapping definition is copied, the loop node function is copied first. At this stage,
if the Set mapping source dialog box appears, the display order of Path or function name in the copy destination
might be different from the copy source. This does not affect the copy result of the mapping definition.

The following figure shows an example of copying mapping definitions if multiple loop node functions are connected
to 1 element.

6. Defining Data Transformation

305

Figure 6‒45: Copying mapping definitions if multiple loop node functions are connected to 1 element

(4) When mapping target is restricted
When element mapped in mapping definition file of copy source cannot be mapped in mapping definition file of copy
destination, mapping of that element is not copied.

For details on the mapping target restrictions, see "6.4.8 Restricting mapping range".

6. Defining Data Transformation

306

Figure 6‒46: FigureCopy of mapping when mapping target is restricted

6. Defining Data Transformation

307

6.9 Creating Java programs to be used in the custom
function

You can use a Java program as the function using the custom function. You can use this for processes other than those
in other functions provided by uCosminexus Service Architect.

Custom function has following types:

• Character string type Custom function
This is Custom function having argument and return value as character string type.

Type of argument java.lang.String

Type of return value java.lang.String

• Node list type custom function
This is Custom function having argument and return value as node list type. In argument, you can pass nodes of
simple contents element, complex contents element, any element or any Attribute. Also, you can return node
directly, as return value.

Type of argument java.lang.Object

Type of return value org.w3c.dom.NodeList

Data type that is actually passed to argument differs depending on the contents of following arguments:

Table 6‒7: TableArgument definition contents

Contents of argument Actual type of argument

Simple contents element/complex contents element org.w3c.dom.NodeList

Attribute org.w3c.dom.NodeList

any attribute org.w3c.dom.NodeList

anyAttribute attribute org.w3c.dom.NodeList

Character string type Custom function java.lang.String

Node list type custom function org.w3c.dom.NodeList

Other functions (excluding Repeat function and Select function) java.lang.String

This section describes the method of creating Java program invoked from Custom function. In Custom function,
invoked Java program is referred as transformation function. For details on how to invoke a Java program, see "6.5.23
Invoke a Java program created by the user".

Create the transformation function by the following procedure:

1. Creating the transformation function definition file
Create the transformation function definition file defining the configuration of the transformation function. For
details about how to create the transformation function definition file, see 6.9.1 Creating the Transformation
Function Definition File.

2. Creating the Java form file
Create the Java form file to be used when coding the Java program on the basis of the created transformation
function definition file. For details about how to create the Java form file, see 6.9.2 Creating the Java form file.

3. Coding, building and debugging Java programs
Code, build and debug Java programs using Java development tools. For details about how to code, build and
debug Java programs, see 6.9.4 Coding, building and debugging Java programs.

4. Packaging Java programs
Package the Java program created using building tools in a jar file. For details about how to package Java
programs, see 6.9.5 Packaging Java programs.

6. Defining Data Transformation

308

! Important note

• Memory requirement (stack memory) increases according the number of arguments in the invoked Java program. If
there are many arguments, stack overflow error might occur. Aim for a maximum of 10 arguments.

• Resource secured at the time of invoking Java program and maintained even when the process ends. Therefore,
when high load is applied on entire system, OutOfMemoryError might occur due to causes like insufficient Java
heap or insufficient Perm heap. Due to this, you must implement process to release resources properly or error
processing like roll back, if OutOfMemoryError occurs.

6.9.1 Creating the Transformation Function Definition File
The transformation function definition file defines the configuration of the transformation function invoked from
the custom function. Use the file to

• Create the Java form file

• Define the custom function

The following is a descriptive example of the transformation function definition file. The slanting part is data specified
by the user.

<?xml version="1.0" encoding="UTF-8"?>
<func:customFunc xmlns:func="http://www.hitachi.co.jp/soft/xml/cosminexus/cscdt/functions">
 <func:jar name="sample.jar">
 <func:package name="jp.co.Hitachi.soft.sample">
 <func:class name="SampleClass">
 <func:method name="sampleFunction">
 <func:comment>Description of sampleFunction</func:comment>
 <func:arguments>
 <func:argument name="arg1">
 <func:comment>Description of arg1</func:comment>
 </func:argument>
 <func:argument name="arg2">
 <func:comment>Description of arg2</func:comment>
 </func:argument>
 <func:argument name="arg3">
 <func:comment>Description of arg3</func:comment>
 </func:argument>
 </func:arguments>
 </func:method>
 <func:method name="sampleStringFunction">
 <func:comment>Description of sampleStringFunction</func:comment>
 <func:arguments>
 <func:argument name="arg1" type="String">
 <func:comment>Description of arg1</func:comment>
 </func:argument>
 </func:arguments>
 <func:return type="String"/>
 </func:method>
 <func:method name="sampleNodeListFunction">
 <func:comment>Description of sampleNodeListFunction</func:comment>
 <func:arguments>
 <func:argument name="arg1" type="Object">
 <func:comment>Description of arg1</func:comment>
 </func:argument>
 </func:arguments>
 <func:return type="NodeList"/>
 </func:method>
 </func:class>
 </func:package>
 </func:jar>
</func:customFunc>

The user creates the transformation function definition file using the XML editor. The following points describes how
to create the transformation function definition file using the XML editor of Eclipse.

1. In the Eclipse menu, choose File, New and Others.
The New dialog box appears.

2. Choose XML and XML (basic template) and then click Next.
The XML file page appears.

6. Defining Data Transformation

309

3. Specify the directory for saving the transformation function definition file and the file name and then click Next.
The Create the XML file from the following page appears.

4. Choose the Create the SML file from XML schema or file radio button and then click Next.
The Choose XML schema or file page appears.

5. Click Import file.
The Import dialog box appears.

6. Specify the following directory in From the following directories.
uCosminexus Service Architect installation directory\CSCTE\resources
\customfunc

7. Check the customfunc check box and the customfunction_XMLSchema.xsd check box.

8. Specify the folder for importing the schema file in Import--destination folder.

9. Click End.
The Choose XML schema or file page reappears.

10. Click Next.
The Choose root element page appears.

11. Specify customFunc in Root element and then click End.
The form of the transformation function definition file is created.

12. Add the required elements in the form of the transformation function definition file and create the file.
The following tabs are used in the transformation function definition file.

Table 6‒8: List of tabs used in the transformation function definition file

Item
no.

Element or attribute
name Contents Type

Number of items Number of characters

Minimum Maximum Minimum Maximum

1 customFunc Transformation
function definition

Element 1 1 -- --

2 jar jar file information Element 1 255 -- --

3 name jar file name Attribute 1 1 1 100

4 package Package information Element 1 255 -- --

6. Defining Data Transformation

310

Item
no.

Element or attribute
name Contents Type

Number of items Number of characters

Minimum Maximum Minimum Maximum

5 name Package name Attribute 1 1 1 255

6 class Class information Element 1 255 -- --

7 name Class name Attribute 1 1 1 100

8 method Method information Element 1 255 -- --

9 name Method name Attribute 1 1 1 100

10 comment Method comment Element 0 1 0 1,024

11 arguments Argument
information

Element 0 1 -- --

12 argument Argument Element 1 255 -- --

13 name Argument name Attribute 1 1 1 100

14 Type Argument type
(String or Object)

Attribute 0 1 - -

15 comment Argument comment Element 0 1 0 1,024

16 return Return value Element 0 1 - -

17 type Return value type
(String or NodeList)

Attribute 1 1 - -

(Legend)
--:There is no limit on the number of characters.

Note the following when creating the transformation function definition file:

• Do not use the same class name and method name.

• Do not specify String in the class name.

• An unintended result such as Java syntax error etc might occur depending on the contents because the
comment is embedded as it is in 1 line of the specified character string. If an unintended result occurs, modify
the Java file directly.

6.9.2 Creating the Java form file
The Java form file is the form of the Java program describing the configuration of the package, class and method
(including argument) for developing the transformation function. The Java form file is created automatically by
uCosminexus Service Architect on the basis of the transformation function definition file.

The following is an example of the Java form file. The slanting part is data entered from the transformation function
definition file.

Example of not having NodeList type in Method definition is as follows:

/**
 * Java Template
 */

package jp.co.Hitachi.soft.sample;

public class SampleClass {

 /**
 * Description related to the custom function...
 *
 * @param arg1
 * Description related to the selected argument...
 * @param arg2

6. Defining Data Transformation

311

 * Description related to the selected argument...
 * @param arg3
 * Description related to the selected argument...
 *
 * @return
 */
 public static String SampleFunction(String arg1, String arg2, String arg3) {

 // TODO Add Java Code Here
 return "";
 }
}

Example of having NodeList type in Method definition is as follows:

/**
 * Java Template
 */

package jp.co.Hitachi.soft.cscdt.sample;

import org.w3c.dom.NodeList;

public class SampleFunctionClass {

 /**
 * Custom function related description...
 *
 * @param arg1
 * Selected argument related description...
 *
 * @return
 */
 public static String SampleStringFunction(String arg1) {

 // TODO Add Java Code Here
 return "";
 }

 /**
 * Custom function related description...
 *
 * @param arg1
 * Selected argument related description...
 *
 * @return
 */
 public static NodeList SampleNodeListFunction(Object arg1) {

 // TODO Add Java Code Here
 return null;
 }
}

Add "import org.w3c.dom.NodeList;" when 1 or more Method definitions having return value of NodeLit type in
Class definition exist. However, do not add when all types of return value within Method definition is of String type.

Implement the process in // TODO Add Java Code Here and create the Java program.

The following procedure shows how to create the Java form file.

1. In the Eclipse menu, choose File, New and Java project.
The New Java project dialog box appears.

2. Specify the project name and then click End.
The Java project is created in the Eclipse workspace.

3. Move the transformation function definition file created in 6.9.1 Creating the Transformation Function Definition
File to the following location:
Directory of created Java projects\src

4. In the Eclipse menu, choose File and New.
The Eclipse screen is updated.

5. Right click the transformation function definition file in the package and explorer view and choose HCSC--
Definer and Create the Java form file.

6. Defining Data Transformation

312

The Java form file output wizard appears.

6. Specify the output location and the character code set of the output file of the Java form file and then click Next.
You can choose the output character code from MS932, UTF--8 and UTF--16. Note that in UTF--16, the BOM
control code (0xFEFF) is added.

7. Check the check box of the output class in the Java form file and then click End.
The Java form file output wizard closes and the Java form file is created in the specified location.

6.9.3 Referring to external jar from transformation function
In Custom function, you can handle multiple user-defined jar file (external jar), in addition to transformation function
jar file.

When you want to refer external jar from transformation function jar file, add external jar to usrconf.cfg (option
definition file for java application). Description of setting contents is as follows:

Storage destination of usrconf.cfg
<Service platform installation directory>\CC\server\usrconf\ejb\server name
\usrconf.cfg

Description format of usrconf.cfg

add.class.path=<external jar name>#
Set the name of external jar in full path.

Specification example
add.class.path=C:\usrFunc\usrFunc.jar
In above-mentioned specification example, storage destination of external jar is specified in "C:\usrFunc
\usrFunc.jar". It is referred at the time of executing transformation function jar file.

For details on usrconf.cfg, see "14.2 usrconf.cfg (Option definition file for Java application)" in "Application Server
Definition Reference Guide".

6.9.4 Coding, building and debugging Java programs
Code, build and debug the Java program on the basis of the created Java form file. Use Java development tools such as
Eclipse etc for coding, building and debugging Java programs.

The following table describes specifications of the Java program interface.

Table 6‒9: Java program interface specifications

Item no. Interface Contents

1 Method Access modifier is public and static method (static statement).

Cannot overload.

2 Argument Can have more than 0 arguments.

It is input parameter of String type or Object type.

3 Function value Set function value of String type or NodeList type. Null cannot be returned.

4 Exception If an exception is thrown, data transformation process fails.

Note the following when creating a Java program:

• If a jar file requiring external reference exists, add the class path in usrconf.cfg (operation definition file for
java applications).

• The custom function operates by multiple threads. Implement the Java program by making it thread--safe.

• Do not implement a Java program that accesses external resources.

6. Defining Data Transformation

313

6.9.5 Packaging Java programs
Package the coded, built and debugged Java program in a jar file. Use build tools such as Ant etc for packaging Java
programs.

Save the packaged jar file in the following location. If the HCSC server is used by the cluster configuration, save in
the respective environments.

Cosminexus installation directory\CSC\userlib\customfunc

jar file stored in above-mentioned directory is shared in all the HCSC servers on the same machine.

If you specify file path in usrconf.properties (user property file for J2EE server), you can change the storage
destination of jar file in HCSC server unit. In this case, file path specified in usrconf.properties is given priority over
the above-mentioned directory.

If the jar file is saved in the HCSC server, restart the J2EE server.

For details about how to save the jar file in the HCSC server, see the contents related to saving the jar file used for
data transformation in Cosminexus Service Platform System Setup and Operation Guide.

6. Defining Data Transformation

314

6.10 Mapping Conditions
Depending on the combination of the mapping source (transformation-source node or function), mapping destination
(transformation-destination node or function), and mapping line types, mapping may not be possible in some cases.
This section explains the conditions that enable mapping.

6.10.1 Mapping Targets and Non--Mapping Targets
Some elements (nodes) can be specified as mapping targets, and others cannot. You cannot specify elements that
cannot be made mapping targets for the transformation-source node or transformation-destination node. The following
table shows elements that cannot be made mapping targets.

Table 6‒10: Elements that cannot be made mapping targets

Item Content

Element (compositor) whose occurrence
count is not fixed to 1 and whose name is
not specified

The following child elements (compositors) that are descendent elements under a
complexType element whose occurrence count is not fixed to 1 and whose
name is not specified are excluded from mapping:

• Sequence#1

• choice
• all
• These elements (compositors) appear as #anonymous#2.

Recursive structure If a recursive structure is defined, only the recursive--start element is displayed,
and the start element is excluded from mapping.

Mixed content When true is specified for the mixed attribute, which has a mixed content, the
inter--element text is excluded from mapping. Note that the inter--element is not
displayed.

Alternate group An element in which true is specified for the abstract attribute is excluded
from mapping. Furthermore, because the specification of the
SubstitutionGroup attribute is ignored, an element for which the
SubstitutionGroup attribute is specified is not displayed in the schema tree
viewer.

any element and anyAttribute
element

any element and anyAttribute element are excluded from mapping.

union element or list element that is
nested in two or more stages

union element or list element (the attribute of the union element or list
element is further defined) is excluded from mapping.

Simple--content or attribute transformation-
destination node for which fixed is
specified

Simple--content or attribute transformation-destination node for which fixed is
specified is excluded from mapping.

#1
Exclude if only one simple content element exists under the element (compositor).

#2
For details about #anonymous, see 6.2(3) Notes on creating message format definition files.

6.10.2 Correspondences Between Nodes and Functions That Can Be
Mapped

When mapping, you must take into consideration the correspondences among the transformation-source nodes,
transformation-destination nodes, and functions that can be mapped. This section describes the mapping of mapping
possible transformation source nodes, transformation destination nodes and functions.

6. Defining Data Transformation

315

Table 6‒11: Mapping from a transformation-source node to a transformation-destination node

Mapping source Mapping destination

Transformation-source
node

Transformation-destination node

Simple content#1#2 Complex content#1 Attribute#1#3

Simple content#1#2 Y -- Y

Complex content#1 -- -- --

Attribute#1#3 Y -- Y

Legend:
Y: Can be mapped.
--: Cannot be mapped.

#1
For details about the simple contents, complex contents, and attributes, see the transformation-source schema tree viewer,
mapping viewer, andtransformation-destination schema tree viewer in the manual Cosminexus Service Platform Reference.

#2
The any element can only be mapped with another any element.

#3
The anyAttribute attribute can only be mapped with another anyAttribute attribute.

Table 6‒12: Mapping from a transformation-source node to a function

Mapping
source Mapping destination

Transform
ation-
source
node

Function

String--based Number--based Bits group Node--based

Cont
rol--
base

d

Other

Co
nc
ate
nat
e

A
c
q
u
ir
e
s
u
b
s
tr
i
n
g

Ac
qui
re
stri
ng
len
gth

C
h
e
c
k
s
tr
i
n
g

Tri
m
no
de

Co
nv
ert
nu
mb
er
for
ma
t

Pe
rfor
m
no
de
op
era
tio
n

R
o
u
n
d
n
o
d
e

S
u
m
u
p
n
o
d
e
s

N
e
g
a
ti
o
n
o
p
e
r
a
ti
o
n

Lo
gic
al
op
era
tio
n

Shi
ft

op
era
tio
n

Ac
qui
re
no
de
co
unt

A
c
q
u
ir
e
n
o
d
e
n
a
m
e

C
h
e
c
k
n
o
d
e

L
o
o
p
n
o
d
e

C
h
o
o
s
e
n
o
d
e

S
e
t
c
o
n
s
t
a
n
t

C
u
s
t
o
m

R
e
p
l
a
c
e
v
a
l
u
e

R
a
d
ix
c
o
n
v
e
r
si
o
n
#

1

Simple
content#2#3

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y -- Y Y Y

Complex
content#2

-- -- -- -- -- -- -- -- -- -- -- -- Y Y Y Y -
-

-- -- -
-

--

Attribute#2

#4
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y -- Y -- Y Y Y

Legend:
Y: Can be mapped.
--: Cannot be mapped.

6. Defining Data Transformation

316

#1
Input basic numbers are hexadecimal, decimal or binary numbers.

#2
For details about the simple contents, complex contents, and attributes, see the transformation-source schema tree viewer,
mapping viewer, and transformation-destination schema tree viewer in the manual Cosminexus Service Platform Reference.

#3
You can map any element with any element or Node list type custom function. You can perform mapping by adding Node list
type custom function between any element and any element. You cannot perform mapping by adding function between any
element and Node list type custom function.

#4
You can perform mapping of anyAttribute attribute with anyAttribute attribute or Node list type custom function. You cannot
perform mapping by adding function between anyAttribute attribute and anyAttribute attribute. Also, you cannot perform
mapping by adding function between anyAttribute attribute and Node list type custom function.

Table 6‒13: Mapping from a function to a transformation-destination node

Mapping source Mapping destination

Function
Transformation-destination node

Simple content#1#2 Complex content#1 Attribute#1#3

String--based Concatenate Y -- Y

Acquire substring Y -- Y

Acquire string length Y -- Y

Check string Y -- Y

Trim node Y -- Y

Number--based Convert number format Y -- Y

Perform node operation Y -- Y

Round node Y -- Y

Sum up nodes Y -- Y

Bit group NOT operation Y -- Y

Logical operation Y -- Y

Shift operation Y -- Y

Node--based Acquire node count Y -- Y

Acquire node name Y -- Y

Check node Y -- Y

Control--based Loop node Y Y --

Choose node Y Y Y

Other Set constant Y Y Y

Custom Y -- Y

Replace value Y -- Y

Radix conversion#4 Y -- Y

Legend:
Y: Can be mapped.
--: Cannot be mapped.

6. Defining Data Transformation

317

#1
For details about the simple contents, complex contents, and attributes, see the transformation-source schema tree viewer,
mapping viewer, and transformation-destination schema tree viewer in the manual Cosminexus Service Platform Reference.

#2
You can map any element with any element or Node list type custom function. You can perform mapping by adding Node list
type custom function between any element and any element. You cannot perform mapping by adding function between any
element and Node list type custom function.

#3
The anyAttribute attribute can only be mapped with another anyAttribute attribute. 2 anyAttribute attributes with a function
entered cannot be mapped.

#4
Output basic number is hexadecimal, decimal or binary number.

Table 6‒14: Mapping a function to another function (mapping destination is character string group, numeric
value group and bit group)

Mapping source#1 Mapping destination

Function

Function

String--based Number--based Bit group

Co
nc
ate
nat
e

Acq
uire
sub
strin

g

Acquir
e

string
length

Che
ck

strin
g

Tr
im
n
o
d
e

Convert
number
format

Perfor
m

node
opera
tion

Rou
nd
nod
e

Su
m
up
nod
es

Negat
ion

opera
tion

Logi
cal
ope
ratio

n

Shif
t

ope
ratio

n

Strin
g--
base
d

Concatenate Y Y Y Y Y Y Y Y -- Y Y Y

Acquire substring Y Y Y Y Y Y Y Y -- Y Y Y

Acquire string
length

Y Y Y Y Y Y Y Y -- -- -- --

Check string Y Y Y Y Y Y Y Y -- -- -- --

Trim node Y Y Y Y Y Y Y Y -- Y Y Y

Nu
mbe
r--
base
d

Convert number
format

Y Y Y Y Y Y Y Y -- -- -- --

Perform node
operation

Y Y Y Y Y Y Y Y -- -- -- --

Round node Y Y Y Y Y Y Y Y -- -- -- --

Sum up nodes Y Y Y Y Y Y Y Y -- -- -- --

Bit
grou
p

NOT operation Y Y Y Y Y -- -- -- -- Y Y Y

Logical operation Y Y Y Y Y -- -- -- -- Y Y Y

Shift operation Y Y Y Y Y -- -- -- -- Y Y Y

Nod
e--
base
d

Acquire node count Y Y Y Y Y Y Y Y -- -- -- --

Acquire node name Y Y Y Y Y Y Y Y -- -- -- --

Check node Y Y Y Y Y Y Y Y -- -- -- --

Cont
rol--
base
d

Loop node -- -- -- -- -- -- -- -- -- -- -- --

Choose node -- -- -- -- -- -- -- -- -- -- -- --

Othe
r

Replace value Y Y Y Y Y Y Y Y -- Y Y Y

6. Defining Data Transformation

318

Mapping source#1 Mapping destination

Function

Function

String--based Number--based Bit group

Co
nc
ate
nat
e

Acq
uire
sub
strin

g

Acquir
e

string
length

Che
ck

strin
g

Tr
im
n
o
d
e

Convert
number
format

Perfor
m

node
opera
tion

Rou
nd
nod
e

Su
m
up
nod
es

Negat
ion

opera
tion

Logi
cal
ope
ratio

n

Shif
t

ope
ratio

n

Othe
r

Radix conversion
(output basic
number: binary
number)

Y Y Y Y Y -- -- -- -- -- -- --

Radix conversion
(output basic
number: decimal)

Y Y Y Y Y Y Y Y -- -- -- --

Radix conversion
(output basic
number:
hexadecimal)

Y Y Y Y Y -- -- -- -- Y Y Y

Custom (character
string type)

Y Y Y Y Y Y Y Y -- Y Y Y

Custom (node list
type)

-- -- -- -- -- -- -- -- -- -- -- --

Set constant Y Y Y Y Y Y Y Y -- Y#2 Y#2 Y#2

Legend:
Y: Can be mapped.
--: Cannot be mapped.

#1
If you specify even a single loop node function as the mapping source function, specify the loop node function for all other
mapping sources.
If you specify an item other than a loop node function for the mapping source function, specify an item other than a loop node
function for all other mapping sources.

#2
In case of type other than character string type, error occurs in verification.

Table 6‒15: Mapping a function to another function (mapping destination is node group, control group and
others)

Mapping source Mapping destination

Function

Function

Node--based Control--
based Other

Acq
uire
nod

e
cou
nt

Ac
qui
re
no
de
na
m
e

Che
ck

nod
e

Lo
op
no
de
#2

Cho
ose
nod
e#3

Rep
lace
valu

e

Radix
conversi

on
(Input
basic

number
:binary

number)

Radix
conve
rsion
(input
basic
numb
er :de
cimal)

Radix
conve
rsion
(input
basic
numb
er :he
xadeci
mal)

Custo
m

(chara
cter

string
type)

Cus
tom
(nod

e
list

type
)

Set
con
stan
t#4

Strin
g--

Concatenate -- -- -- -- Y Y Y Y Y Y Y --

6. Defining Data Transformation

319

Mapping source Mapping destination

Function

Function

Node--based Control--
based Other

Acq
uire
nod

e
cou
nt

Ac
qui
re
no
de
na
m
e

Che
ck

nod
e

Lo
op
no
de
#2

Cho
ose
nod
e#3

Rep
lace
valu

e

Radix
conversi

on
(Input
basic

number
:binary

number)

Radix
conve
rsion
(input
basic
numb
er :de
cimal)

Radix
conve
rsion
(input
basic
numb
er :he
xadeci
mal)

Custo
m

(chara
cter

string
type)

Cus
tom
(nod

e
list

type
)

Set
con
stan
t#4

base
d

Acquire substring -- -- -- -- Y Y Y Y Y Y Y --

Acquire string
length

-- -- -- -- Y Y -- Y -- Y Y --

Check string -- -- -- -- Y Y -- -- -- Y Y --

Trim node -- -- -- -- Y Y Y Y Y Y Y --

Num
ber--
base
d

Convert number
format

-- -- -- -- Y Y -- -- -- Y Y --

Perform node
operation

-- -- -- -- Y Y -- Y -- Y Y --

Round node -- -- -- -- Y Y -- Y -- Y Y --

Sum up nodes -- -- -- -- Y Y -- Y -- Y Y --

Bit
grou
p

NOT operation -- -- -- -- Y Y -- -- Y Y Y --

Logical operation -- -- -- -- Y Y -- -- Y Y Y --

Shift operation -- -- -- -- Y Y -- -- Y Y Y --

Nod
e--
base
d

Acquire node
count

-- -- -- -- Y Y -- Y -- Y Y --

Acquire node
name

-- -- -- -- Y Y -- -- -- Y Y --

Check node -- -- -- -- Y Y -- -- -- Y Y --

Cont
rol--
base
d

Loop node -- -- -- -- Y -- -- -- -- -- -- --

Choose node -- -- -- -- -- -- -- -- -- -- -- --

Othe
r

Replace value -- -- -- -- Y Y Y Y Y Y Y --

Radix conversion
(output basic
number: binary
number)

-- -- -- -- Y Y Y -- -- Y Y --

Radix conversion
(output basic
number: decimal)

-- -- -- -- Y Y -- Y -- Y Y --

Radix conversion
(output basic
number:
hexadecimal)

-- -- -- -- Y Y -- -- Y Y Y --

6. Defining Data Transformation

320

Mapping source Mapping destination

Function

Function

Node--based Control--
based Other

Acq
uire
nod

e
cou
nt

Ac
qui
re
no
de
na
m
e

Che
ck

nod
e

Lo
op
no
de
#2

Cho
ose
nod
e#3

Rep
lace
valu

e

Radix
conversi

on
(Input
basic

number
:binary

number)

Radix
conve
rsion
(input
basic
numb
er :de
cimal)

Radix
conve
rsion
(input
basic
numb
er :he
xadeci
mal)

Custo
m

(chara
cter

string
type)

Cus
tom
(nod

e
list

type
)

Set
con
stan
t#4

Othe
r

Custom (character
string type)

-- -- -- -- Y Y Y Y Y Y Y --

Custom (node list
type)

-- -- -- -- Y#5 -- -- -- -- -- Y --

Set constant -- -- -- -- Y Y Y Y#6 Y#7 Y#6 Y --

(Legend)
Y: Mapping is possible.
--: Mapping is not possible.

#1
If you specify even 1 Repeat function in mapping source function, Specify Repeat function even for all other mapping sources.
If you specify function other than Repeat function in mapping source function, specify function other than Repeat function for
other mapping sources as well.

#2
There are following restrictions in the Repeat function of output side.
Connection is not possible when input of Repeat function is linkage path itself or ancestor node and grandchild node in that
Repeat function.

#3
There are following restrictions in Select function of output side.
When Repeat is already connected in input of Select function, you cannot connect function other than Repeat function in input.
When function other than Repeat function is already connected in input of Select function, you cannot connect Repeat in input.

#4
There are following restrictions to the Set constant function.
When the Set constant function has already been connected in input of transformation destination node, Concatenate function,
Perform node operation function, Logical operation function, Select function, Custom function, you cannot connect the
equivalent Set constant function in input.

#5
When output destination of Select function is attribute, validation error occurs.

#6
When type is other than character string type, validation error occurs.

#7
When type is other than numeric value type and character string type, validation error occurs.

6.10.3 Number of Mapping Lines That Can Be Connected
The number of mapping lines that can be used to connect transformation-source nodes, transformation-destination
nodes, and functions is predetermined.

The following table lists the number of mapping lines that can be connected as outputs.

6. Defining Data Transformation

321

Table 6‒16: Number of mapping lines that can be connected as outputs

Node or function Number of mapping lines that can be connected

Transformation-source node Multiple#1

All functions 1#2

#1
There is no upper limit.

#2
For the set constant function, you can connect as many mapping lines as required.

The following table lists the number of mapping lines that can be connected as inputs.

Table 6‒17: Number of mapping lines that can be connected as inputs

Node or function Number of mapping lines that can be connected

Transformation-destination node Multiple#1

String-based Concatenate Multiple#1

Acquire substring 1

Acquire string length 1

Check string 1

Trim node 1

Number-based Convert number format 1

Perform node operation 2

Round node 1

Sum up nodes Multiple#1

Bit-based NOT operation 1

Logical operation 2

Shift operation 1

Node-based Acquire node count 1

Acquire node name 1

Check node 1

Control-based Loop node 1

Choose node Multiple#1

Other Set constant 0

Custom Multiple#2

Replace value 1

Radix Conversion 1

#1
There is no upper limit.

#2
You can enter the same number as the argument of the corresponding transformation function. You can also enter 0.

6. Defining Data Transformation

322

6.11 Editing function name directly
You can change the function name defined in mapping definition, to any name by editing directly.

Function name is automatically attached with "function type + serial number" and only number is separated when
there are many functions of same time. By changing this function name to any name, you can discriminate only by
name, even if there are large numbers of functions having same type.

6.11.1 Method of editing function name
You can change function name with two methods such as method of directly editing the function scheduled to the
Mapping viewer and a method of using dialog. Procedure in case of using each method is as follows:

(1) When directly editing function scheduled to the Mapping viewer
Procedure for directly selecting function and editing function name in the Mapping viewer is as follows:

1. Select function for editing function name in the Mapping viewer.

2. Left click the selected function or press F2 key.
Function name changes to configurable status.

3. Enter a function name.
Specify a function name in NCName. You can specify characters in the range of 1~64.

(2) When using a dialog
Procedure for editing the function name by using the Setting dialog of each function is as follows:

1. Display a dialog for setting the dialog by either of the following method:

• Right click the function and select Settings.

• Double click the function.

Dialog for setting the function is displayed.
For details on dialog of each function, see "1.6 Dialogs Related to Data Transformation" in "Service Platform
Reference Guide".

2. Enter any function name.
Specify function name with NCName. You can specify characters in the range of 1~64 characters.

3. Click OK button.

6.11.2 Displaying function name after edition

(1) Function name displayed in the Mapping viewer of the Data transformation definition
screen

When you edit the function name, it is displayed as follows:

• When function name has 1~10 characters
Entire function name is displayed.

• When function name has 11~20 characters
Entire function is displayed by entering linefeed after 10 characters.

• When function name has 21~64 characters
Function name is displayed till first 19 characters by entering linefeed after 10 characters and 20 characters
onwards are abbreviated as "...".

Following figure shows the display example of function name after edition.

6. Defining Data Transformation

323

Figure 6‒47: FigureDisplay example of function name after edition (in case of the Data transformation
definition screen)

(2) Function name displayed in the dialog
When you edit function name, it is displayed in node conditions of Condition settings dialog, by enclosing in curly
brackets ({ }).

Following figure shows the display example of function name after edition:

Figure 6‒48: FigureDisplay example of function name after edition (in case of Conditions setting dialog)

Figure 6‒49: FigureDisplay example of function name after edition (in case of Repeat settings dialog)

6. Defining Data Transformation

324

6.12 Importing mapping definition using Excel
In Service Platform, you can import the file in which combination (mapping) of transformation source and
transformation destination is defined in Excel, to the development environment.

When you want to perform similar mapping in multiple data transformation definitions, you can effectively use one
mapping definition by using mapping definition created in Excel. Also, as you can check the mapping definition
contents in Excel, you can reduce the mistakes at the time of definition in case of multiple transformation sources and
transformation destinations and thus improve the development effectiveness.

To import mapping definition, export the contents mapped by defining in Excel, based on table format XML schema
definition file. After that, import the data transformation definition file of development environment. In Data
transformation definition screen, function or mapping line is generated according to the imported table format XML
file.

Following figure shows the flow of importing the mapping definition.

Figure 6‒50: FigureFlow of importing the mapping definition

You can directly create XML file according to table format XML schema definition file and import to the Data ran
formation definition file.

In Service Platform, Excel of the following version is recommended.

• Microsoft Office Excel 2007

Even when you create file by using any other tool, you can import if table format XML file is appropriate for table
format XML schema definition file.

This section further describes procedure for creating table format XML file and for importing the mapping definition.

6. Defining Data Transformation

325

6.12.1 Creating table format XML file
Method for creating table format XML file has two types such as type of using a template file in which each element
of table format XML schema definition file has already been mapped to Excel and a type of mapping element
individually based on the table format XML schema definition file.

Reference note
Following has already been set up in the template file.

• Element has been mapped by diving sheets for each object.

• In mandatory items, asterisk (*) are added to beginning of item name. For mandatory items, you must set up value in all
the lines to be defined. In case of blank row, error occurs.

• If value of item is restricted to fixed value (items for which value can be entered only as "y" or "n"), data input rules are
set and you can select value from the list.

Creation procedure in respective cases is as follows:

(1) When using a template file

1. Copy a template file (dt_import_template.xlsx) and save with any name.
The location of storing the template file (dt_import_template.xlsx) is "<Service Platform installation directory>
\CSCTE\resources\dt_import".

2. Start Microsoft Office Excel 2007 and open the copied file.

3. Define the function or mapping line in the cell in which mapping of XML element has been performed.

For details on the definition method, see "6.12.2 Setting up the mapping definition".

4. Click Export button of Development tab and save the file in XML format.
The definition contents are exported as the table format XML file.

(2) When mapping the element based on table format XML schema definition file

1. Start Microsoft Office Excel 2007.

2. Select Source button of Development tab.
XML source work window is displayed.

3. Click XML mapping... button of XML source work window.
XML mapping dialog is displayed.

6. Defining Data Transformation

326

4. Click Add button, to add table format XML schema definition file (dt_import_mapping.xsd).
Storage destination of table format XML schema definition file (dt_import_mapping.xsd) is "<Service Platform
installation directory>\CSCTE\resources\dt_import".
Schema is displayed in tree format in XML source work window.

5. Drag and drop the element part of "***Objects" or "Namespaces" to the cell. #

Data of the element part that is Dragged and dropped becomes configurable.

#
To map element, divide sheet for each object (such as Copy or Concatenate). If you set up multiple elements
in each sheet, you cannot import the mapping definition properly.

6. Define function or mapping line in the cell in which mapping of XML element is performed.
For details on the definition method, see "6.12.2 Setting up the mapping definition".

7. Click Export button of Development tab and save the file in XML format.
Definition contents are exported as table format XML file.

6.12.2 Setting up the mapping definition
To define the mapping in Excel, set up values of the transformation source node or transformation destination node to
each object, based on table format XML schema definition file.

This section describes items that you can define in input and output values of a mapping definition and method to set
up each item.

(1) Items that you can define in input and output value
Set up path or function name of transformation source node in the Data transformation definition screen, in Input of
objects such as CopyObjects(mapping to transformation destination node) or ConcatenateObjects (Concatenate
function). Set the path of transformation destination node of Data transformation definition screen in Output of
CopyObjects (mapping to transformation destination node). You can specify node conditions, when specifying
transformation source node in the input value.

Following table describes nodes and functions that you can define in each item of mapping definition and possibility
of setting up conditions to transformation source node.

Table 6‒18: TableDefinition items of input and output value (node)

Definition items of input and output value Node that can be set

Possi
bility

of
settin

g
condi
tions

to
trans
form
ation
sourc

e
node

Object Item

Transformation source
node

Transformation
destination node

S
i

m
p
l
e
c
o
n
t
e
n
t
s

C
o
m
p
l
e
x
c
o
n
t
e
x
t
s

A
t
t
r
i
b
u
t
e
s

an
y
el
e
m
en
t

anyA
ttribu

te
attrib
ute

S
i

m
p
l
e
c
o
n
t
e
n
t
s

C
o
m
p
l
e
x
c
o
n
t
e
n
t
s

A
t
t
r
i
b
u
t
e

an
y
el
e
m
en
t

anyA
ttribu

te
attrib
ute

CopyObjects (mapping to transformation destination
node)

Input Y Y Y Y Y - - - - - Y

Outp
ut

- - - - - Y Y Y Y Y -

6. Defining Data Transformation

327

Definition items of input and output value Node that can be set

Possi
bility

of
settin

g
condi
tions

to
trans
form
ation
sourc

e
node

Object Item

Transformation source
node

Transformation
destination node

S
i

m
p
l
e
c
o
n
t
e
n
t
s

C
o
m
p
l
e
x
c
o
n
t
e
x
t
s

A
t
t
r
i
b
u
t
e
s

an
y
el
e
m
en
t

anyA
ttribu

te
attrib
ute

S
i

m
p
l
e
c
o
n
t
e
n
t
s

C
o
m
p
l
e
x
c
o
n
t
e
n
t
s

A
t
t
r
i
b
u
t
e

an
y
el
e
m
en
t

anyA
ttribu

te
attrib
ute

CopyObjects (mapping to transformation destination
node)

Depe
ndenc
y

N N N N N - - - - - -

ConcatenateObjects (Concatenate function) Input Y N Y N N - - - - - Y

SubstringObjects (Acquire substring function) Input Y N Y N N - - - - - Y

LengthObjects (Acquire string length function) Input Y N Y N N - - - - - Y

ContainObjects (Check string function) Input Y N Y N N - - - - - Y

TrimObjects (Trim node function) Input Y N Y N N - - - - - Y

FormatObjects (Convert number format function) Input Y N Y N N - - - - - Y

CalculateObjects (Perform node operation function) Input
1

Y N Y N N - - - - - Y

Input
2

Y N Y N N - - - - - Y

RoundObjects (Round node function) Input Y N Y N N - - - - - Y

SumObjects (Sum up nodes function) Input Y N Y N N - - - - - Y

NotObjects (NOT operation function) Input Y N Y N N - - - - - Y

BitOpObjects (Logical operation function) Input
1

Y N Y N N - - - - - Y

Input
2

Y N Y N N - - - - - Y

ShiftObjects (Shift operation function) Input Y N Y N N - - - - - Y

NameObjects (Acquire node name function) Input Y Y Y N N - - - - - Y

CountObjects (Acquire node count function) Input Y Y Y N N - - - - - Y

ExistObjects (Check node function) Input Y Y Y N N - - - - - Y

LoopObjects (Repeat function) Input Y Y N N N - - - - - Y

Relati
onalP
ath

Y Y N N N - - - - - Y

SortK
ey

Y Y Y N N - - - - - N

6. Defining Data Transformation

328

Definition items of input and output value Node that can be set

Possi
bility

of
settin

g
condi
tions

to
trans
form
ation
sourc

e
node

Object Item

Transformation source
node

Transformation
destination node

S
i

m
p
l
e
c
o
n
t
e
n
t
s

C
o
m
p
l
e
x
c
o
n
t
e
x
t
s

A
t
t
r
i
b
u
t
e
s

an
y
el
e
m
en
t

anyA
ttribu

te
attrib
ute

S
i

m
p
l
e
c
o
n
t
e
n
t
s

C
o
m
p
l
e
x
c
o
n
t
e
n
t
s

A
t
t
r
i
b
u
t
e

an
y
el
e
m
en
t

anyA
ttribu

te
attrib
ute

ChooseObjects (Select function) Condi
tion

Y N Y N N - - - - - -

Outp
utVal
ue

Y N Y N N - - - - - Y

ReplaceObjects (Replace value function) Input Y N Y N N - - - - - Y

RadixObjects (Radix conversion function) Input Y N Y N N - - - - - Y

CustomObjects (Set custom function) Input Y Y Y Y Y - - - - - Y

Setting up conditions to transformation source node Y N Y N N - - - - - -

(Legend)
Y: Definition is possible.
N: Definition is not possible.
-: Not applicable

6. Defining Data Transformation

329

Table 6‒19: TableDefinition items of input and output value (function)

Definition items of input

and output value
Configurable functions

Object Item

C

o

n

c

a

t

e

a

t

e

A

c

q

u

i

r

e

s

u

b

s

t

r

i

n

g

A

c

q

u

i

r

e

s

t

r

i

n

g

l

e

n

g

t

h

C

h

e

c

k

s

t

r

i

n

g

T

r

i

m

n

o

d

e

C

o

n

v

e

r

t

n

u

m

b

e

r

f

o

r

m

a

t

P

e

r

f

o

r

m

n

o

d

e

o

p

e

r

a

t

i

o

n

R

o

u

n

d

n

o

d

e

S

u

m

u

p

n

o

d

e

s

N

e

g

a

t

i

o

n

o

p

e

r

a

t

i

o

n

L

o

g

i

c

a

l

o

p

e

r

a

t

i

o

n

S

h

i

f

t

o

p

e

r

a

t

i

o

n

A

c

q

u

i

r

e

n

o

d

e

n

a

m

e

A

c

q

u

i

r

e

n

o

d

e

c

o

u

n

t

C

h

e

c

k

n

o

d

e

R

e

p

e

a

t

S

e

l

e

c

t

R

e

p

l

a

c

e

v

a

l

u

e

T

r

a

n

s

f

o

r

m

b

a

s

i

c

n

u

m

b

e

r

C

u

s

t

o

m

C

o

n

s

t

a

n

t

CopyObjects (mapping to transformation
destination

node)

Input Y

Output -

Dependen
cy

N N N N N N N N N N N N N N N Y N N N N N

Concatenate

Objects (Concatenate function)

Input Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y

Substring

Objects

(Acquire substring function)

Input Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y

Length

Objects

(Acquire

string length function)

Input Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y

Contain

Objects

(Check string function)

Input Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y

TrimObjects (Trim node function) Input Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y

Format

Objects

(Convert

number format function)

Input Y Y Y Y Y Y Y Y Y N N N Y Y Y N N Y Y Y Y

Calculate Input1 Y Y Y Y Y Y Y Y Y N N N Y Y Y N N Y Y Y Y

6. Defining Data Transformation

330

Definition items of input

and output value
Configurable functions

Object Item

C

o

n

c

a

t

e

a

t

e

A

c

q

u

i

r

e

s

u

b

s

t

r

i

n

g

A

c

q

u

i

r

e

s

t

r

i

n

g

l

e

n

g

t

h

C

h

e

c

k

s

t

r

i

n

g

T

r

i

m

n

o

d

e

C

o

n

v

e

r

t

n

u

m

b

e

r

f

o

r

m

a

t

P

e

r

f

o

r

m

n

o

d

e

o

p

e

r

a

t

i

o

n

R

o

u

n

d

n

o

d

e

S

u

m

u

p

n

o

d

e

s

N

e

g

a

t

i

o

n

o

p

e

r

a

t

i

o

n

L

o

g

i

c

a

l

o

p

e

r

a

t

i

o

n

S

h

i

f

t

o

p

e

r

a

t

i

o

n

A

c

q

u

i

r

e

n

o

d

e

n

a

m

e

A

c

q

u

i

r

e

n

o

d

e

c

o

u

n

t

C

h

e

c

k

n

o

d

e

R

e

p

e

a

t

S

e

l

e

c

t

R

e

p

l

a

c

e

v

a

l

u

e

T

r

a

n

s

f

o

r

m

b

a

s

i

c

n

u

m

b

e

r

C

u

s

t

o

m

C

o

n

s

t

a

n

t

Objects

(Perform

node

operation function)

Input2 Y Y Y Y Y Y Y Y Y N N N Y Y Y N N Y Y Y Y

Round

Objects

(Round

Node

function)

Input Y Y Y Y Y Y Y Y Y N N N Y Y Y N N Y Y Y Y

SumObjects (Sum up

Nodes

Function)

Input N

NotObjects

(NOT operation function)

Input Y Y N N Y N N N N Y Y Y N N N N N Y Y Y Y

BitOp

Objects

(Logical operation function)

Input1 Y Y N N Y N N N N Y Y Y N N N N N Y Y Y Y

Input2 Y Y N N Y N N N N Y Y Y N N N N N Y Y Y Y

ShiftObjects

(Shift

operation function)

Input Y Y N N Y N N N N Y Y Y N N N N N Y Y Y Y

Name

Objects

(Acquire

Node

Input N

6. Defining Data Transformation

331

Definition items of input

and output value
Configurable functions

Object Item

C

o

n

c

a

t

e

a

t

e

A

c

q

u

i

r

e

s

u

b

s

t

r

i

n

g

A

c

q

u

i

r

e

s

t

r

i

n

g

l

e

n

g

t

h

C

h

e

c

k

s

t

r

i

n

g

T

r

i

m

n

o

d

e

C

o

n

v

e

r

t

n

u

m

b

e

r

f

o

r

m

a

t

P

e

r

f

o

r

m

n

o

d

e

o

p

e

r

a

t

i

o

n

R

o

u

n

d

n

o

d

e

S

u

m

u

p

n

o

d

e

s

N

e

g

a

t

i

o

n

o

p

e

r

a

t

i

o

n

L

o

g

i

c

a

l

o

p

e

r

a

t

i

o

n

S

h

i

f

t

o

p

e

r

a

t

i

o

n

A

c

q

u

i

r

e

n

o

d

e

n

a

m

e

A

c

q

u

i

r

e

n

o

d

e

c

o

u

n

t

C

h

e

c

k

n

o

d

e

R

e

p

e

a

t

S

e

l

e

c

t

R

e

p

l

a

c

e

v

a

l

u

e

T

r

a

n

s

f

o

r

m

b

a

s

i

c

n

u

m

b

e

r

C

u

s

t

o

m

C

o

n

s

t

a

n

t

Name

function)

Input N

Count

Objects

(Acquire

node

count

function)

Input N

ExistObjects (Check

node

function)

Input N

LoopObjects

(Repeat

function)

Input N

Relational

Path

N N

SortKey N

Choose

Objects

(Select

Function)

Condition Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y

Output

Value

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y

Replace

Objects

(Replace Value function)

Input Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y

RadixObjects Input Y Y Y N Y N Y Y Y Y Y Y N Y N N N Y Y Y Y

6. Defining Data Transformation

332

Definition items of input

and output value
Configurable functions

Object Item

C

o

n

c

a

t

e

a

t

e

A

c

q

u

i

r

e

s

u

b

s

t

r

i

n

g

A

c

q

u

i

r

e

s

t

r

i

n

g

l

e

n

g

t

h

C

h

e

c

k

s

t

r

i

n

g

T

r

i

m

n

o

d

e

C

o

n

v

e

r

t

n

u

m

b

e

r

f

o

r

m

a

t

P

e

r

f

o

r

m

n

o

d

e

o

p

e

r

a

t

i

o

n

R

o

u

n

d

n

o

d

e

S

u

m

u

p

n

o

d

e

s

N

e

g

a

t

i

o

n

o

p

e

r

a

t

i

o

n

L

o

g

i

c

a

l

o

p

e

r

a

t

i

o

n

S

h

i

f

t

o

p

e

r

a

t

i

o

n

A

c

q

u

i

r

e

n

o

d

e

n

a

m

e

A

c

q

u

i

r

e

n

o

d

e

c

o

u

n

t

C

h

e

c

k

n

o

d

e

R

e

p

e

a

t

S

e

l

e

c

t

R

e

p

l

a

c

e

v

a

l

u

e

T

r

a

n

s

f

o

r

m

b

a

s

i

c

n

u

m

b

e

r

C

u

s

t

o

m

C

o

n

s

t

a

n

t

(Transform

basic

number function)

Input Y Y Y N Y N Y Y Y Y Y Y N Y N N N Y Y Y Y

Custom

Objects

(Custom function)

Input Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y

Setting up conditions to transformation source node Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y Y Y

(Legend)
Y: Definition is possible.
N: Definition is not possible.
-: Not applicable

For details on definition items and definition example of each object, see "6.13 Definition details of table format XML
schema definition file".

(2) Syntax rules
Following table describes BNF mapped to input and output value of each object.

Table 6‒20: TableBNF mapped to input and output value of each object

Object/item Mapped BNF

Copy/Input Input path or function with conditions

Concatenate/Input

Substring/Input

Length/Input

6. Defining Data Transformation

333

Object/item Mapped BNF

Contain/Input Input path or function with conditions

Trim/Input

Format/Input

Calculate/Input1

Calculate/Input2

Round/Input

Not/Input

BitOp/Input1

BitOp/Input2

Shift/Input

Choose/OutputValue

Radix/Input

Custom/Input

Sum/Input Input path with conditions

Name/Input

Count/Input

Exist/Input

Loop/Input

Loop/RelationalPath

Copy/Output Output path

Copy/Dependency Function

Loop/SortKey Input path

Choose/Condition Conditions#

#
You cannot use the item relative path.

Following table describes the syntax rules of these BNF.

Table 6‒21: TableSyntax rules of BNF

BNF Syntax rules of BNF

Input path ::= [Variable] ('/' Node)+

Path with conditions ::= [Variable] ('/' Step)+

Function ::= '{' NCName '}'

Output path ::= [Variable] ('/' Node)+

Conditions ::= Basic method | ('not(' Condition ')') | '(' Condition ')'

Variable ::= '$' NCName

Steps ::= Node ['[' Condition ']']

6. Defining Data Transformation

334

BNF Syntax rules of BNF

Node ::= (['@'] [Namespace prefix ':'] NCName) | '#any' | '#anyAttribute'

Namespace prefix ::= NCName

Basic format ::= Input path | Input relative path | Function | Condition expression | Complex condition expression

Condition expression ::= ('position()' | Input path | Input relative path | Function) Operator (Value | Function | Input path |
Input relative path)

Input relative path ::= '.' | Node ('/' node)*

Complex conditions expression ::= or expression

or expression ::= and expression ['or' and expression]

and expression ::= Condition ['and' condition]

Operator ::= '=' | '!=' | '>' | '<' | '>=' | '<='

Value# ::= "'" [^']+ "'"

#
You can specify a value with minimum 1 and maximum 1,024 characters. However, actual reference expression is handled as one
character.

(3) Setting up the transformation source node
When setting up the transformation source node in an object, specify the path of transformation source node in Input,
with absolute path. Specification in relative path is not supported. For details on how to set up the node path, see "(7)
Setting up the node path".

Also, you can specify the node conditions in transformation source node depending on the definition items. For details
on how to specify node conditions, see "(6) Setting up node conditions".

(4) Setting up the transformation destination node
To set up the transformation destination node, specify path of transformation destination node in Output of
CopyObjects (mapping to transformation destination node). For details on setting up the node path, see "(7) Setting up
the node path".

(5) Setting up a function
In function, specify a function name defined in other objects. Specify function name in the part enclosed in curly
brackets ({ }).

Following figure shows the definition example.

6. Defining Data Transformation

335

Figure 6‒51: FigureDefinition example (setting up a function)

(6) Setting up node conditions
When you set up transformation source node in the items in which node conditions can be specified, you can specify
node conditions in each element of transformation source node.

For the types of transformation source node or function for which you can specify node conditions, see Table6-18 and
Table 6-19.

Specify node conditions in the part enclosed in square bracket ([]) at the end of each item.

Specify node conditions by either of the following methods:

Table 6‒22: Table Methods for specifying node conditions

Method of setting node
conditions Outline

1 Node o function that returns
boolean value

When you specify the conversion source node or function, returns boolean value depending on
their existence.

2 Condition expression Returns boolean value for the conditions specified in the format of "<left
edge><operation><right edge>" condition. Specify transformation source node or function in
the left edge and right edge.

3 Logical total or logical sum
of 2 conditions

"<Condition 1><Operation><Condition 2>" Returns boolean value for the conditions specified
by combining the conditions in above-mentioned #1 and #2 with and or or.

Specify path of transformation source node of node conditions setting, by either of absolute path, or relative path from
condition setting target node. For details on node path specification, see "(7) Setting up the node path".

However, when you use the grandchild node of condition settings target node, in conditions, it is referred as relative
path after importing to data transformation definition screen, regardless of relative path specification.

For details on how to specify function, see "(5) Setting up a function".

(a) Node or function that returns boolean value

When you specify transformation source node or function, boolean value is returned depending on their existence.

Following figure shows the definition example of setting existence of node or function in the condition.

6. Defining Data Transformation

336

Figure 6‒52: FigureDefinition example (node condition settings 1)

(b) Condition expression

Boolean value is returned for the condition expression specified in "<Left edge><Operation><right edge>" format.
Following table describes the values that you can specify in left edge, operation and right edge:

Table 6‒23: TableValues that you can specify in each item of condition expression

Item of condition
expression Value that you can specify

Left edge You can specify either of the following.

• Position function to be specified in "position()"

• Transformation source node that you can specify in condition settings
You can specify transformation source node in relative path as well.#

• Other functions that you can specify in condition settings

Operation You can specify either of "=", "!=", ">", "<", ">=", "<=".

Right edge You can specify either of the following:

• Value enclosed in apostrophe (') (you cannot specify space).
When value includes apostrophe (') or ampersand (&), use with entity reference expressions such as apostrophe
as "'" and ampersand as "&", as shown in the following example:.
(Example) In case of "a & 'b'", define as "a & 'b'".

• Transformation source node that you can specify in condition settings
You can specify transformation source node even in relative path#

• Other functions that can be specified in conditions settings

Note#
For details on how to specify a relative path, see "(7)(c) Specifying a relative path".

6. Defining Data Transformation

337

Following figure shows the definition example when setting the condition expression:

Figure 6‒53: FigureDefinition example (Node condition settings 2)

(c) Logical total and logical sum of two conditions

Boolean value is returned in logical total or logical sum, in which two conditions are combined with and or or
operation, in the "<Condition1><Operation><Condition2>" format. Specify either of the following in <Condition>:

• Node or function that returns boolean value

• Condition expression

• Logical total or logical sum of two conditions

If condition has multiple "logical total or logical sum of two conditions", logical total is given priority. However, if
you enclose leading and trailing part of "logical product and logical sum of two conditions" in bracket, that logical
expression is given priority.

Also, you can deny these conditions. For details, see "(d) Denying conditions".

Following figure shows the definition example when logical product or logical sum of two conditions is set in the
condition:

6. Defining Data Transformation

338

Figure 6‒54: FigureDefinition example (node condition settings 3)

(d) Denying conditions

You can deny conditions in the format of "not (<condition>)".

Following figure shows the definition example when denying the condition:

Figure 6‒55: FigureDefinition example (node condition settings 4)

(7) Setting up the node path
This section describes method of specifying logical name and namespace in case of specifying the path of the
transformation source node or transformation destination node.

Description of the method to specify the relative path of transformation source node in node conditions specification is
as follows:

6. Defining Data Transformation

339

(a) Specifying a logical name

Specify a logical name of transformation source node and transformation destination node, before root element in
""$"+logical name" format.

When there are multiple transformation source nodes of the Data transformation definition screen, you must specify
the logical name of transformation source node. If there is not even 1 transformation source node, specifying the
logical name is optional.

Specification of the logical name is optional in the transformation destination node.

Following figure shows the definition example:

Figure 6‒56: FigureDefinition example (node path settings 1)

(b) Specifying a namespace

In each element name in the path of transformation source node and transformation destination node, you can use
namespace prefix defined in namespace. For details on how to define the namespace prefix, see "6.13.1 Namespaces
(namespace information)".

Specify namespace prefix in the "Namespace prefix+":"+element name" format.

6. Defining Data Transformation

340

Following figure shows the definition example:

Figure 6‒57: FigureDefinition example (node path settings 2)

6. Defining Data Transformation

341

(c) Specifying a relative path

When specifying the node conditions, you can specify path of transformation source node in relative path from
conditions setting target node. You can specify relative path for the nodes described in the following table. You cannot
use any other description method (".." or "//").

Table 6‒24: TableMethod of specifying a relative path

Node to be specified
in relative path Specification method

Condition settings target
node

Specify period (.).

Specification example
When path of transformation source node is "/root/comp-elem1/simple-elem1" and condition setting
target is "simple-elem1", specify "/root/comp-elem1/simple-elem1[.]" to set existence of "simple-elem1"
as condition.

6. Defining Data Transformation

342

Node to be specified
in relative path Specification method

Grandchild node of
condition settings target
node

Specify path from child node, of the condition settings target node.

Specification example
When path of transformation source node is "/root/comp-elem1/simple-elem1" and condition setting
target is "comp-elem1", specify "/root/comp-elem1[simple-elem1]/simple-elem1", to set existence of
"simple-elem1" as conditions.
When condition setting target is "root", specify "/root[comp-elem1/simple-elem1]/comp-elem1/simple-
elem1" to set existence of "simple-elem1" as conditions.

6.12.3 Importing mapping definition
Procedure for importing the table format XML file to the Data transformation definition screen is as follows:

1. Select transformation source schema as well as transformation destination schema and start the Data
transformation definition screen.

2. Right click on the Mapping viewer of the Data transformation definition screen and select Import mapping
definition.
Import mapping definition screen is displayed.

3. Click Browse button.
Specify the table format XM file dialog is displayed.

4. Select the XML file to be imported and click Open button.
The selected XML file is set and Specify the table format XML file dialog closes.

5. Click Finish button.
If function or mapping line has already been defined in the Data transformation definition screen, confirmation
message is displayed. If no problem is found, click Yes button.
Function and mapping line defined in Excel are reflected in the Data transformation definition screen.

6.12.4 Points to be considered when using mapping definition using
Excel

Points to be considered when defining the mapping in Excel are as follows:

• Input value might be replaced with another value, due to the Auto format function of Excel. Therefore, it is
recommended to set the display format of Cell format settings to Character string.

• Value that you enter in Excel is case sensitive.

• If you do a definition that cannot be set on the Data transformation definition screen, such as referring to the same
function from multiple input values, error occurs during import.

• Default value at the time of scheduling the function on the Data transformation definition screen is set in inactive
items on the Data transformation definition screen.

• Cell in which XML element mapping is done, serves as the table of Excel. For table, see the Help of Excel.

• When you delete unnecessary lines in the table in which XML element mapping is done, delete row instead of
making the cell blank. If row is not deleted, even if those are empty cells, those are exported as blank cell.
Accordingly, if it mandatory item, error occurs at the time of importing.

• When you use template file of old version and new definition, you must implement either of the following work.

• Acquire the template file again.
For details on procedure, see "6.12.1(1) When using a template file".

• Use template file of the old version as it is and perform re-mapping of table format XML schema definition
file.
For details on procedure, see "6.12.1(2) When mapping the element based on table format XML schema
definition file".

6. Defining Data Transformation

343

6.13 Definition details of table format XML schema
definition file

This section describes the contents of the table format XML schema definition file used in mapping definition of
Excel.

Following table describes the definitions list of the table format XML schema definition file.

Table 6‒25: TableDefinitions list of table format XML schema definition file

Major classification Intermediate
classification Description

Defines - Defines the pre-requisite information for defining an object.

Namespaces Defines the namespace information used in definition of path that shows the
transformation source node or transformation destination node on the Data
transformation definition screen.

Objects# - Defines function or mapping line.

CopyObjects Defines a mapping line to the transformation destination node.

ConcatenateObjects Defines the Concatenate function.

SubstringObjects Defines the Acquire substring function.

LengthObjects Defines the Acquire string length function.

ContainObjects Defines the Check string function.

TrimObjects Defines the Trim node function.

FormatObjects Defines the Convert number format function.

CalculateObjects Defines the Perform node operation function.

RoundObjects Defines the Round node function.

SumObjects Defines he Sum up nodes function.

NotObjects Defines the NOT operation function.

BitOpObjects Defines the Logical operation function.

ShiftObjects Defines the Shift operation function.

NameObjects Defines the Acquire node name function.

CountObjects Defines the Acquire node count function.

ExistObjects Defines the Check node function.

LoopObjects Defines the Repeat function.

ChooseObjects Defines the Select function.

ReplaceObjects Defines the Replace value function.

RadixObjects Defines the Radix conversion function.

CustomObjects Defines the Custom function.

ConstantObjects Defines the Set constant function.

(Legend)
-: Not applicable

6. Defining Data Transformation

344

#
Definition range of CopyObjects and other than CopyObjects differs as follows:

CopyObjects:
Definition range is the mapping line from the transformation source node or function to the transformation
destination node.

Other than CopyObjects:
Definition range is the mapping line connected to function unit or transformation source node/input side
function.

Following figure shows the definition range of CopyObjects and other than CopyObjects:

Figure 6‒58: FigureDefinition range of CopyObjects and other than CopyObjects

Further sections describe the details of each definition.

6.13.1 Namespaces (namespace information)
Define the namespace information to be used in the definition of the path that shows the transformation source node or
transformation destination node on the mapping definition editor, such as Input items of the object. If the Prefix item
defined in Namespaces has been used as namespace prefix described in Input item of the object, determine the
namespace to which that namespace prefix belongs, with the information defined in Namespaces.

Definition having Prefix item as "#default" shows the default namespace (namespace to belong to when namespace
prefix does not exist). When not having definition where Prefix item is "#default", default namespace is considered as
blank.

When URI item is blank, namespace of element to which corresponding namespace prefix is attached is considered as
blank.

(1) Definition item
Following table shows the definition item:

Table 6‒26: TableNamespaces definition

Item name Definition contents Value that you can define Additional description

Prefix Namespace prefix Value of NCName type or
"#default"

This is mandatory item. You cannot define same
prefix in duplication.

In case of "#default"
Set the default namespace.

URI Namespace Value of anyURI type -

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

6. Defining Data Transformation

345

Figure 6‒59: FigureNamespaces definition example1

Figure 6‒60: FigureNamespaces definition example2

Figure 6‒61: FigureNamespaces definition example3

6.13.2 CopyObjects (mapping to transformation destination node)
Defines the mapping line from function or transformation source node defined in other object to the transformation
destination node.

(1) Definition item
Following table describes definition items:

Table 6‒27: TableCopyObjects definition

Item name Definition
contents Value that you can define Additional description

Name Mapping name Value of NCName type This is mandatory item. In Objects, you cannot define
same name in duplication.

6. Defining Data Transformation

346

Item name Definition
contents Value that you can define Additional description

Name Mapping name Value of NCName type This item is not used in the mapping definition.

Input Input See "6.12.2 Setting up the mapping
definition"

This is mandatory item.

Output Output See "6.12.2 Setting up the mapping
definition"

This is mandatory item.

Dependenc
y

Dependency
target

See "6.12.2 Setting up the mapping
definition"

This item is mandatory when multiple LoopObjects that
can be set as dependency target have been defined. When
there is 1 LoopObjects that can be set as dependency
target, set that LoopObjects as dependency target. For the
definition of LoopObjects, see "6.13.18 LoopObjects
(Repeat function)".

(2) Definition example
Following figure shows the definition example:

Figure 6‒62: FigureCopyObjects definition example1

6. Defining Data Transformation

347

Figure 6‒63: FigureCopyObjects definition example2

Figure 6‒64: FigureCopyObjects definition example3

6. Defining Data Transformation

348

6.13.3 ConcatenateObjects (Concatenate function)
Defines Concatenate function (concat).

(1) Definition items
Following table shows the definition items:

Table 6‒28: TableConcatenateObjects definition items

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName type For details on the values that you can define, see
"6.13.24 Objects for which you can define the same
Name element in multiple rows".

Input Input See "6.12.2 Setting up the mapping
definition".

You can define this item for multiple items in the same
Name.

Set value in the list in the defined order.

(2) Definition example
Following figure shows the definition example:

Figure 6‒65: FigureConcatenateObjects definition example

6.13.4 SubstringObjects (Acquire substring function)
Acquire substring function (substr).

6. Defining Data Transformation

349

(1) Definition items
Following table describes the definition items.

Table 6‒29: TableSubstringObjects definition items

Item name Definition contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot define same
Name in Objects, in duplication.

Input Input See "6.12.2 Setting up the
mapping definition"

-

Acquisition Specification item Either of "left", "right",
"division"

This is mandatory item.

In case of "left"
As specification method, set "Specify range from
the beginning"

In case of "right"
As specification method, set "Specify range from
end"

In case of "division"
As specification method, set "Specify division
character string"

Start Start position Integer of 1~2,147,483,647 This is mandatory item when acquisition is "left" or
"right".

In other cases, setting value is not incorporated.

Surrogate pair is handled as 2 characters.

Count Characters count Integer of 0~2,147,483,647
or space

When Acquisition is "left" or "right" and Count is
blank, set "all after start position".

When Acquisition is other than "left" and "right",
setting value is not incorporated.

Surrogate pair is handled as 2 characters.

String Division character string Character string less than
1,024 characters (you cannot
define linefeed)

This is mandatory item when Acquisition is
"division".

In other cases, setting value is not incorporated.

Part Acquisition position "pre" or "post" This is mandatory item when Acquisition is
"division".

In other cases, setting value is not incorporated.

In case of "pre"
Set "Previous" as acquisition part.

In case of "post"
Set "Post" as acquisition part.

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

6. Defining Data Transformation

350

Figure 6‒66: FigureSubstringObjects definition example1

6. Defining Data Transformation

351

Figure 6‒67: FigureSubstringObjects definition example2

6. Defining Data Transformation

352

Figure 6‒68: FigureSubstringObjects definition example3

6.13.5 LengthObjects (Acquire string length function)
This section defines the Acquire string length function (length).

(1) Definition item
Following table describes definition items.

Table 6‒30: TableLengthObjects definition item

Item name Definition contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot define same
Name in Objects, in duplication.

Input Input See "6.12.2 Setting up the
mapping definition"

Surrogate pair is handled as 2 characters.

(2) Definition example
Following figure shows the definition example:

6. Defining Data Transformation

353

Figure 6‒69: FigureLengthObjects definition example

6.13.6 ContainObjects(Check string function)
This section defines the Check string function (contain).

(1) Definition item
Following table describes the definition items.

Table 6‒31: TableContainObjects definition items

Item name Definition contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot define the
Name in Objects, in duplication.

Input Input See "6.12.2 Setting up the
mapping definition"

-

Check Check type "include" or "start" This is mandatory item.

In case of "include"
As check type, set up the "Include the
specified character string".

In case of "start"
As check type, set up "Start from the
specified character string".

String Check target character
string

Character string having less than
1,024 characters (you cannot
define the linefeed code)

-

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example.

6. Defining Data Transformation

354

Figure 6‒70: FigureContainObjects definition example

6.13.7 TrimObjects (Trim node function)
This section defines the Trim node function (trim).

(1) Definition items
Following table describes definition items:

Table 6‒32: TableTrimObjects definition items

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName This is mandatory item. You cannot
define the Name in Objects, in
duplication.

Input Input See "6.12.2 Setting up the mapping definition" -

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

6. Defining Data Transformation

355

Figure 6‒71: FigureTrimObjectsDefinition example

6.13.8 FormatObjects(Convert number format function)
This section defines Convert number format function (format).

(1) Definition items
Following table describes definition items:

Table 6‒33: TableFormatObjects definition items

Item name Definition contents Value that you can define Additional description

Name Function name Value of NCName This is mandatory item. You cannot define
the Name in Objects, in duplication.

Input Input See "6.12.2 Setting up the mapping
definition"

-

Pattern Pattern • Pattern character string of the format
of java.text.DecimalFormat class after
transformation

• Less than 1,024 characters (You
cannot define linefeed code)

-

ChangeSymbol Change in symbol "y" or "n" This is mandatory item.

In case of "y"
Set up "Exists" for change in symbol.

In case of "n"
Set up "Does not exist" for Change in
symbol

DecimalSeparato
r

Characters below
decimal point

1 character This is mandatory item when ChangeSymbol
is "y".

In other cases, setting value is not
incorporated.

GroupingSeparat
or

Digit separation
character

1 character This is mandatory item when ChangeSymbol
is "y".

In other cases, setting value is not
incorporated.

6. Defining Data Transformation

356

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

Figure 6‒72: FigureFormatObjectsDefinition example

6.13.9 CalculateObjects(Perform node operation function)
This section defines the Perform node operation function (calc).

(1) Definition item
Following table describes definition items:

Table 6‒34: TableCalculateObjectsDefinition item

Item name Definition contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You
cannot define the Name in Objects,
in duplication.

Input1 Input 1 See "6.12.2 Setting up the mapping definition" -

Operation Operation Either of "+", "-", "*", "/", or "%" This is mandatory item.

6. Defining Data Transformation

357

Item name Definition contents Value that you can define Additional description

Input2 Input 2 See "6.12.2 Setting up the mapping definition" -

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

Figure 6‒73: FigureCalculateObjectsDefinition example

6.13.10 RoundObjects(Round node function)
This section defines the Round node function (round).

(1) Definition item
Following table describes definition items:

Table 6‒35: TableRoundObjectsDefinition item

Item name Definition contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot define the
Name in Objects, in duplication.

Input Input See "6.12.2 Setting up the
mapping definition"

-

Type Round node types Either of "off", "down", or "up" This is mandatory item.

In case of "off"
Set up "Round" as Round node type.

6. Defining Data Transformation

358

Item name Definition contents Value that you can define Additional description

Type Round node types Either of "off", "down", or "up" In case of "down"
Set up "Round down" as Round node type.

In case of "up"
Set up "Round up" as Round node type.

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

Figure 6‒74: FigureRoundObjectsDefinition example

6.13.11 SumObjects(Sum up nodes function)
This section defines the Sum up nodes function (sum).

(1) Definition item
Following table describes definition items:

6. Defining Data Transformation

359

Table 6‒36: TableSumObjectsDefinition item

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName For details on the values that you can define, see "6.13.24
Objects for which you can define the same Name element
in multiple rows".

Input Input See "6.12.2 Setting up the
mapping definition"

You can perform multiple definitions in same Name.

However, you cannot specify same Input for multiple
times in the same Name.

Sets values in the list, in the defined order.

(2) Definition example
Following figure shows the definition example:

Figure 6‒75: FigureSumObjectsDefinition example

6.13.12 NotObjects(NOT operation function)
This section defines the NOT operation function (not).

(1) Definition item
Following table describes definition items:

6. Defining Data Transformation

360

Table 6‒37: TableNotObjectsDefinition item

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot
define the Name in Objects, in
duplication.

Input Input See "6.12.2 Setting up the mapping definition" -

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

Figure 6‒76: FigureNotObjectsDefinition example

6.13.13 BitOpObjects(Logical operation function)
This section defines the Logical operation function (bitop).

(1) Definition item
Following table describes definition items:

Table 6‒38: TableBitOpObjectsDefinition item

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You
cannot define the Name in
Objects, in duplication.

Input1 Input 1 See "6.12.2 Setting up the mapping definition".

Input2 Input 2 See "6.12.2 Setting up the mapping definition" -

6. Defining Data Transformation

361

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

Figure 6‒77: FigureBitOpObjectsDefinition example

6.13.14 ShiftObjects(Shift operation function)
This section defines the Shift operation function (shift).

(1) Definition item
Following table describes definition items:

Table 6‒39: TableShiftObjectsDefinition item

Item name Definition contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot define the
Name in Objects, in duplication.

Input Input See "6.12.2 Setting up the
mapping definition"

-

ShiftAmount Shift volume (bit) Numeric value in the range of
0~64

This is mandatory item.

OutputSize Output size (bit) Numeric value in the range of
1~64

This is mandatory item.

ShiftDirection Shift direction "left" or "right" This is mandatory item.

6. Defining Data Transformation

362

Item name Definition contents Value that you can define Additional description

ShiftType Shift type "arithmetic" or "logical" This is mandatory item when ShiftDirection is
"right".

In other cases, setting value is not incorporated.

"arithmetic" is the arithmetic shift.

"logical" is the logical shift.

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

Figure 6‒78: FigureShiftObjectsDefinition example

6.13.15 NameObjects(Acquire node name function)
This section defines the Acquire node name function (name).

(1) Definition item
Following table describes definition items:

6. Defining Data Transformation

363

Table 6‒40: TableNameObjectsDefinition item

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot
define the Name in Objects, in
duplication.

Input Input See "6.12.2 Setting up the mapping definition" -

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

Figure 6‒79: FigureNameObjectsDefinition example

6.13.16 CountObjects(Acquire node count function)
This section defines the Acquire node count function (count).

(1) Definition item
Following table describes definition items:

Table 6‒41: TableCountObjectsDefinition item

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot
define the Name in Objects, in
duplication.

Input Input See "6.12.2 Setting up the mapping definition" -

(Legend)
-: Corresponding item does not exist.

6. Defining Data Transformation

364

(2) Definition example
Following figure shows the definition example:

Figure 6‒80: FigureCountObjectsDefinition example

6.13.17 ExistObjects(Check node function)
This section defines the Check node function (exist).

(1) Definition item
Following table describes definition items:

Table 6‒42: TableExistObjectsDefinition item

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot
define the Name in Objects, in
duplication.

Input Input See "6.12.2 Setting up the mapping definition" -

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

6. Defining Data Transformation

365

Figure 6‒81: FigureExistObjectsDefinition example

6.13.18 LoopObjects(Repeat function)
This section describes Repeat function (loop).

(1) Definition item
Following table describes definition items:

Table 6‒43: TableLoopObjectsDefinition item

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName type For details on the value that you can define, see
"6.13.24 Objects for which you can define the same
Name element in multiple rows".

Input Input See "6.12.2 Setting up the mapping
definition"

You can define only one Input in the same Name.#1

RelationalPat
h

Linkage path See "6.12.2 Setting up the mapping
definition"

You can define multiple paths in the same Name. #1

Sets values in the list, in the defined order.

SortKey Sort condition /key See "6.12.2 Setting up the mapping
definition"

You can specify multiple keys in the same Name.#2#3

SortOrder Sort condition/
order

"ascending" or "descending" You can specify multiple orders in the same
Name.#2#3

In case of "ascending"
For sort condition/order, set up "Ascending
order".

In case of "descending"
For sort condition/order, set up "Descending
order".

SortLanguage Sort condition/
language

Either of "auto", "ja" or "en" You can define multiple languages in the same
Name.#2#3

In case of "auto"
For sort condition/language, set "Auto".

6. Defining Data Transformation

366

Item name Definition
contents Value that you can define Additional description

SortLanguage Sort condition/
language

Either of "auto", "ja" or "en" In case of "ja"
For sort condition/language, set "Japanese".

In case of "en"
For sort conditions/language, set "English".

SortDataType Sort conditions/
data type

"text" or "numeric" You can define multiple types in the same Name.#2#3

In case of "text"
For sort condition/data type, set "Text".

In case of "numeric"
For sort condition/data type, set "Numeric".

SortCase Sort condition/
priority order

"upper" or "lower" This is mandatory item when SortDataType is "text".

In other cases, setting value is not incorporated.

You can specify multiple priority orders in the same
Name.#2#3

In case of "upper"
For sort condition/priority order, set "Upper case
characters".

In case of "lower"
For sort condition/priority order, set "Lower case
characters".

#1
For the Input and RelationPath defined in the same Name, you cannot set up nodes which are both same nodes or having relation
as ancestor/grandchild.

#2
This is mandatory item when you have set either of the sort condition items (SortKey, SortOrder, SortLanguage, SortDataType,
SortCase) in the same line.

#3
Set up the sort conditions in the list, in defined order.

(2) Definition example
Following figure shows the definition example:

6. Defining Data Transformation

367

Figure 6‒82: FigureLoopObjectsDefinition example1

Figure 6‒83: FigureLoopObjectsDefinition example2

6. Defining Data Transformation

368

Figure 6‒84: FigureLoopObjectsDefinition example3

6.13.19 ChooseObjects(Select function)
This section defines the Select function (choose).

(1) Definition item
Following table describes definition items:

Table 6‒44: TableChooseObjectsDefinition item

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName type For details on the value that you can define, see
"6.13.24 Objects for which you can define the
same Name element in multiple rows".

Condition Conditions See "6.12.2 Setting up the mapping
definition"

You can define multiple conditions in the same
Name.#

When you want to do definition that does not
match with any condition, specify "#other". In
the same Name, you can specify "#other" only in
one line. Also, when you do not specify even

6. Defining Data Transformation

369

Item name Definition
contents Value that you can define Additional description

Condition Conditions See "6.12.2 Setting up the mapping
definition"

one "#other" in the same Name, output value of
"When definition does not match with any
condition" is assumed.

OutputValue Output value See "6.12.2 Setting up the mapping
definition"

You can define multiple values in the same
Name.#

In case of "blank node" specify "#empty" and in
case of "No output", specify "#notoutput".

Note#
Set up the condition and output value in the list, in the defined order.

(2) Definition example
Following figure shows the definition example:

Figure 6‒85: FigureChooseObjectsDefinition example

6.13.20 ReplaceObjects(Replace value function)
This section defines the Replace value function (replace).

6. Defining Data Transformation

370

(1) Definition item
Following table describes definition items:

Table 6‒45: TableReplaceObjectsDefinition item

Item name Definition contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot define the
Name in Objects, in duplication.

Input Input See "6.12.2 Setting up the
mapping definition".

-

TableID Transformation table ID Character string having less than
1,024 characters (you cannot
define linefeed code)

-

KeyColumn Search key column
specification

"left" or "right" This is mandatory item.

In case of "left"
For search key column specification, set
"Left column".

In case of "right"
For search key column specification, set
"Right column".

FaultError Operation in case of
failure in search

"y" or "n" This is mandatory item.

In case of "y"
For the operation in case of failure in search,
set "Conversion error".

In case of "n"
For the operation in case of failure in search,
set "Substitute default value".

DefaultValue Value Character string having less than
1,024 characters (You cannot
define linefeed code)

When SortDataType is "y", the setting value is
not incorporated.

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

6. Defining Data Transformation

371

Figure 6‒86: FigureReplaceObjectsDefinition example

6.13.21 RadixObjects(radix conversion function)
This section defines the Radix conversion function (radix).

(1) Definition item
Following table describes definition items:

Table 6‒46: TableRadixObjectsDefinition item

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot define the Name in
Objects, in duplication.

Input Input See "6.12.2 Setting up the
mapping definition"

-

InputRadix Input basic number Either of "hexadecimal",
"decimal" or "binary"

This is mandatory item.

"hexadecimal" is hexadecimal.

"decimal" is decimal.

"binary" is binary number.

You cannot define the same basic number in the input
basic number and output basic number.

OutputRadix output basic
number

Either of "hexadecimal",
"decimal" or "binary"

This is mandatory item.

"hexadecimal" is hexadecimal.

6. Defining Data Transformation

372

Item name Definition
contents Value that you can define Additional description

OutputRadix output basic
number

Either of "hexadecimal",
"decimal" or "binary"

"decimal" is decimal.

"binary" is binary number.

You cannot define the same basic number in input basic
number and output basic number.

(Legend)
-: Corresponding item does not exist.

(2) Definition example
Following figure shows the definition example:

Figure 6‒87: FigureRadixObjectsDefinition example

6.13.22 CustomObjects(Custom function)
This section defines the Custom function (custom).

Comments exist in the class and arguments to be specified in Custom function. However, import of these items is not
supported in the mapping by using Excel.

Define the package and class separately and set the value of "Package + class" defined in Excel, in the "Class" item on
the screen of mapping definition editor.

(1) Definition item
Following table describes definition items:

6. Defining Data Transformation

373

Table 6‒47: TableCustomObjectsDefinition item

Item name Definition
contents Value that you can define Additional description

Name Function name Value of NCName type For details on the value that you can define, see
"6.13.24 Objects for which you can define the
same Name element in multiple rows".

Jar JAR file Value of NCName having less than 100
characters

You can define only one file in the same Name.#1

Package Package Value of NCName type having less than
255 characters

You can define only one package in the same
Name.#1

Class Class Value of NCName type having less than
100 characters

You can define only one class in the same Name.#1

Method Method Value of NCName type having less than
100 characters

You can define only one method in the same
Name.#1

Set only method name and do not add "()" at the
end.

ReturnType Return value
type

Only "String" or "NodeList" You can define only one return value type in the
same Name.#1#2

Argument Argument Value of NCName type having less than
100 characters

You can define multiple arguments in the same
Name.#3#4

ArgumentType Argument type Only "String" or "Object" You can define multiple argument types in the
same Name.#2#3#4

Input Input value See "6.12.2 Setting up the mapping
definition"

You can specify multiple input values in the same
Name.

Set value in the list, in the defined order.

#1
When you specify transformation function definition item (Jar, Package, Class, Method, Return Type), always specify in first line
in the same Name. Specify value same as first line, or blank in the lines other than first line in the same Name.

#2
When ReturnType is "String", you can define ArgumentType only as "String" and when the ReturnType is "NodeList", you can
define ArgumentType only as "Object".

#3
This is mandatory item when you set even 1 argument item (Argument or ArgumentType) in the same line.

#4
Set argument in the list, in the defined order.

(2) Definition example
Following figure shows the definition example:

6. Defining Data Transformation

374

Figure 6‒88: FigureCustomObjectsDefinition example

6.13.23 ConstantObjects(Set constant function)
Define the Set constant function (const).

(1) Definition item
Following table describes definition items:

Table 6‒48: TableConstantObjectsDefinition item

Item name Definition contents Value that you can define Additional description

Name Function name Value of NCName type This is mandatory item. You cannot define the
Name in Objects, in duplication.

6. Defining Data Transformation

375

Item name Definition contents Value that you can define Additional description

Type Type Either of "string", "number",
"boolean", "notoutput" or
"empty"

This is mandatory item.

In case of "string"
For type, set "Character string".

In case of "number"
For type, set "Numeric value".

In case of "boolean"
For type, set "Logical value".

In case of "notoutput" or "empty"
For type, set "Characteristic node".

Value Value • When Type is "string",
character string having less
than 1,024 characters (you
cannot define linefeed code)

• When Type is "number",
numeric value having less
than 1,024 digits

• When Type is "boolean",
"true" or "false"#

This is mandatory item when Type is "boolean"
or "number".

When Type is "notoutput" or "empty", setting
value is not incorporated.

When Type is "notoutput",
For value, set "Node is not output".

When Type is "empty"
For value, set "Empty node".

Note#
String is not case sensitive.

(2) Definition example
Following figure shows the definition example:

6. Defining Data Transformation

376

Figure 6‒89: FigureConstantObjectsDefinition example

6.13.24 Objects for which you can define the same Name element in
multiple rows

For some Objects, you can define same Name element in multiple rows. Row of the same Name element is considered
as definition for same one object and you can use the same in definitions of multiple values. In this case, values are set
in list, in the defined order.

Following table describes objects for which you can define the same Name element in multiple rows and the items for
which you can specify multiple values in the concerned object.

Table 6‒49: TableObjects for which you can define the same Name element in multiple rows

Objects Items for which you can define multiple values

1 ConcatenateObjects Input

6. Defining Data Transformation

377

Objects Items for which you can define multiple values

2 SumObjects Input

3 LoopObjects RelationalPath, SortKey, SortOrder, SortLanguage, SortDataType, SortCase

4 ChooseObjects Condition, OutputValue

5 CustomObjects Argument, ArgumentType, Input

You can define the same Name element only in consecutive rows. If you define same Name element in non-
consecutive rows, validation error occurs. Also, if the Name element has been omitted from second row onwards,
value in the upper row is set.

Following figure shows the example of defining the same Name element in multiple rows.

Figure 6‒90: FigureExample when setting the same Name element

6. Defining Data Transformation

378

6.14 Namespace prefix option
You can set whether to add namespace prefix, depending on the namespace prefix option. Set from the Transformation
source viewer, Transformation destination Viewer and Mapping viewer of the Mapping definition editor. Display
Context menu and activate or inactivate the "Output the namespace prefix to XML" option.

When following points are applicable, namespace prefix is added according to XSLT specifications, even in case of
settings of not to output the namespace prefix in XML:

• When input XML has any prefix in the mapping of element or anyAttribute attribute

• When prefix is explicitly or implicitly added with Custom function

• When attribute has namespace

When you open the mapping definition file of old version, "Output namespace prefix to XML" has been set to active
status.

6.14.1 Setting up default value of namespace prefix option
You can set up the default value of namespace prefix option, by setting up a property in eclipse.ini. Active/inactive
status of "Output namespace prefix to XML" option at the time of defining a new mapping definition is determined by
this default value. clipse.ini is stored in the following directory:

<Eclipse installation directory>\eclipse

Following table describes the setting contents of properties:

Table 6‒50: TableDefault value settings of namespace prefix option

Property name
Property
value# Description

cscte.dt.default.output.namespace.prefix true Default value is the active status of "Output namespace
prefix to XML" settings

false Default value is the inactive status of "Output
namespace prefix to XML" settings

#
Do not specify property values by applying case sensitivity.
When you do not specify property values and invalid value is set, process is performed by considering the value as true.

Example of setting the property value of eclipse.ini is as follows:

-Dcscte.dt.default.output.namespace.prefix=false

6. Defining Data Transformation

379

7 Packaging HCSC Components and
Defining Deployment
This chapter explains packaging of HCSC components and deployment definition.

381

7.1 Packaging and Defining Deployment
After you have defined a HCSC component, you package it or determine the cluster (or single HCSC server) in which
to deploy it (deployment definition).

Before defining deployment, you must first import a repository. After deployment is defined, you export the repository
to provide the system configuration definition containing deployment definition to the operating environment. The
HCSC component is deployed from the operating environment to the cluster (or single HCSC server) in the execution
environment according to the contents of the system configuration definition.

In the development environment, after the deployment is defined, you can reference the information about the HCSC
component whose deployment was defined.

The following figure shows the flow from packaging to deployment definition.

Figure 7‒1: Procedure from packaging to deployment definition

The contents defined in the development environment are deployed as HCSC components in the operating
environment. The following figure shows the relationship between the definitions in the development environment
and the HCSC components deployed in the operating environment:

7. Packaging HCSC Components and Defining Deployment

382

Figure 7‒2: Relationship between the definitions in the development environment and the HCSC
components deployed in the operating environment

Note that the packaging and deployment definition of the HCSC components is performed in the development
environment, and the HCSC components are deployed and started in the operating environment. In the development
environment, you can also execute this series of processes in a batch. In the development environment, the tasks
executed individually in the development environment or the operating environment are executed in a batch, and
therefore the operation load can be reduced. However, you can perform the batch execution when developing a system
or during the unit testing and the integration testing. For details, see 7.5 Batch execution of processes for deploying
HCSC components on the HCSC Server and then starting and 7.6 Batch execution of processes for stopping HCSC
components and deleting them from the HCSC server.

! Important note

• When you import only partial information from a repository, you always need to package the HCSC components
included in the imported repository information. For details about importing only partial information from a repository,
see 3.2.3 Importing a Repository.

• Do not implement operations such as packaging on HCSCTE, while the workspace is being built or cleaned.

• When you change the operation name of the service, perform re-packaging of the business process that calls the
concerned service.

7. Packaging HCSC Components and Defining Deployment

383

7.2 Packaging
An EAR file is created by assembling the files related to HCSC components that need to be deployed in the execution
environment. This process is called packaging. Here, service adapters and business processes are collectively referred
to as HCSC components.

Packaging HCSC components also packages the data transformation definitions and user-defined reception interfaces
related to these HCSC components.

When packaging is performed, the HCSC components are validated. HCSC components can be packaged if they have
been defined correctly, but if they have not been defined correctly, the validation process generates an error during
packaging. Therefore, you can ensure smooth packaging if you validate the HCSC components before performing the
packaging.

To package HCSC components:

1. In the service definition list in the tree view, right-click the HCSC component to be packaged, and then select
Packaging or Package multiple services.

• If Packaging is selected:
A message dialog box appears.

• If Package multiple services is selected:
The Package multiple services dialog box appears. Select the check boxes for the services to be packaged, and
then click OK.

2. Perform one of the following operations:

• If packaging is successful
Click OK.
If an EAR file already exists, an overwrite confirmation dialog box appears. To overwrite the file, click Yes.

• If packaging fails
Take action according to the message displayed in the dialog box, and perform the packaging again.

If the service adapter, business process, and user-defined reception interface have not been saved before packaging,
the Save Resource dialog box appears so that you can save these definitions. If multiple service adapters, business
processes, and user-defined reception interfaces are being edited, this dialog box appears more than once. To save a
definition, click OK. To save all the definitions without displaying the subsequent confirmation dialog boxes, click
Yes to all.

7. Packaging HCSC Components and Defining Deployment

384

7.3 Defining Deployment of HCSC Components
Deployment definition means determining the cluster (or single HCSC server) in which to deploy the defined HCSC
component.

In the system configuration definition list displayed in the tree view, a HCSC component displayed at a lower order
than a cluster (or single HCSC server) is defined to be deployed in that cluster (or single HCSC server). You define
deployment by adding (or deleting) the HCSC components to be deployed to (or from) a lower order than the cluster
(or single HCSC server) in the system configuration definition list in the tree view. The following figure shows an
example of adding and deleting HCSC components. The following figure shows an example of adding and deleting
HCSC components:

Figure 7‒3: Adding and deleting HCSC components

With their deployment defined in the development environment, HCSC components are deployed to the cluster (or
single HCSC server) in the operating environment according to the contents of the updated system configuration
definition. For details about how to deploy HCSC components to a cluster (or single HCSC server), see the sections
related to the deployment of service adapters and business processes in the manual Cosminexus Service Platform
System Setup and Operation Guide.

The following subsections explain how to define deployment by adding (or deleting) HCSC components to (or from) a
cluster (or single HCSC server).

Note that in some cases, you might not be able to define deployment depending on the combination of the server
configuration that is defined in the system configuration definition and services. The following table describes
whether the deployment can be defined based on the combination of the server configuration that is defined in the
system configuration definition and services:

7. Packaging HCSC Components and Defining Deployment

385

Table 7‒1: Deployment can be defined or not

Item
No.

Server configuration defined in the system
configuration definition

Service type

Deployment
can be

defined or
notDatabase usage Cosminexus RM

usage

1 Used Used All Y

2 Not used Not used Business processes (to be made persistent) --

3 Business processes (not to be made
persistent)

Y

4 SOAP adapter Y

5 SessionBean adapter Y

6 MDB (WS-R) adapter --

7 MDB (database queue) adapter --

8 DB adapter Y

9 TP1 adapter Y

10 File adapter Y

11 Object Access adapter Y

12 Message Queue adapter Y

13 FTP adapter Y

14 File operations adapter Y

15 Mail adapter Y

16 HTTP adapter Y

17 Custom adapter Y

18 Used Not used Business processes (to be made persistent) --

19 Business processes (not to be made
persistent)

Y

20 SOAP adapter Y

21 SessionBean adapter Y

22 MDB (WS-R) adapter --

23 MDB (database queue) adapter --

24 DB adapter Y

25 TP1 adapter Y

26 File adapter Y

27 Object Access adapter Y

28 Message Queue adapter Y

29 FTP adapter Y

30 File operations adapter Y

31 Mail adapter Y

32 HTTP adapter Y

7. Packaging HCSC Components and Defining Deployment

386

Item
No.

Server configuration defined in the system
configuration definition

Service type

Deployment
can be

defined or
notDatabase usage Cosminexus RM

usage

33 Used Not used Custom adapter Y

Legend:
Y: Deployment can be defined.
--: Deployment cannot be defined..

7.3.1 Clusters (or Single HCSC Servers) to Which HCSC Components
Can Be Deployed

The clusters (or single HCSC servers) to which HCSC components can be deployed are displayed in the system
configuration definition list in the tree view. The displayed information is the configuration information of the clusters
(or single HCSC servers) that were set up in the operating environment. You acquire this information by importing
into the development environment the repository information that was exported from the operating environment.

For details on importing the repository, see 3.2.3 Importing a Repository.

7.3.2 Adding HCSC Components to a Cluster
This subsection explains how to add HCSC components to a cluster or single HCSC server. Note that if you add an
HCSC component to a cluster or single HCSC server, the data transformation definition and user-defined reception
interface related to the added HCSC component are also added.

1. From the Eclipse menu bar, select HCSC-Definer and then System Configuration List.
A list of clusters or single HCSC servers appears in the system configuration definition list in the tree view.

2. From the list of clusters or single HCSC servers, select and double-click the cluster or single HCSC server to
which an HCSC component is to be added.
Cluster information is displayed.

3. Right-click the cluster or single HCSC server selected in step 2, and then select Add Service or Add multiple
services.

• If Add Service is selected
The Add Service dialog box appears.
If you edit a predefined HCSC component after it has been packaged, a dialog box is displayed to confirm
whether to add the HCSC component to the cluster. To add the HCSC component, click Yes.

• If Add multiple services is selected
The Add multiple services dialog box appears.

4. Select the services to be added.

• If Add Service is selected
In the Service to add drop-down list box, select the HCSC component to be added.

• If Add multiple services is selected
Select the check boxes for the services to be added.

5. Click OK.
Information about the added HCSC components is displayed.

7. Packaging HCSC Components and Defining Deployment

387

7.3.3 Deleting HCSC Components from a Cluster
This subsection explains how to delete HCSC components from a cluster or single HCSC server. Note that if you
delete an HCSC component from a cluster or single HCSC server, the data transformation definition and user-defined
reception interface related to the deleted HCSC component are also deleted.

1. From the system configuration definition list in the tree view, select the HCSC component to be deleted.

2. Use one of the following deletion methods:

• Right-click the HCSC component to be deleted, and then select Delete Service or Delete multiple services.

• Press the Delete key.

If Delete multiple services is selected, the Delete multiple services dialog box appears. Select the check boxes for
the services to be deleted, and then click OK.
A dialog box is displayed to confirm whether to delete the selected services. To delete the services, click Yes.

7. Packaging HCSC Components and Defining Deployment

388

7.4 Referencing HCSC Component Information
After you have defined deployment, you can reference the information about the HCSC component whose deployment
has been defined. The information about the HCSC component is displayed in the HCSC Component Information
Display screen. For details about this screen, see the manual Cosminexus Service Platform Overview.

Furthermore, you can also reference the user-defined reception information included in the HCSC components. The
user-defined reception information is displayed in the User-defined Reception Information Display screen. For details
about this screen, see the manual Cosminexus Service Platform Overview.

7.4.1 HCSC Component Information That Can Be Referenced
The following types of HCSC component information can be referenced:

(1) Service component information
The following information can be referenced as the service component information:

• Interface information
Operation information, request message, response message, and fault message that correspond to the combination
of a service name (HCSC component name) and an operation can be referenced.

• Server information
Destination addresses by service component type of a cluster (or single HCSC server) that can invoke services can
be referenced.

• Operation information
The operation name and communication model specified in the interface information can be referenced.

• Request message
Message format and message format ID can be referenced.

• Response message
Message format and message format ID can be referenced.

• Fault message
Fault name and message format can be referenced.

(2) Information of a user-defined reception
The following information can be referenced as the information of a user-defined reception:

• Information of a user-defined reception
The reception name, port name, and URL information of a user-defined reception can be referenced.

7.4.2 Displaying HCSC Component Information
To display HCSC component information:

1. From the Eclipse menu, choose HCSC-Definer, and then Published Services List.
HCSC components are listed in Published Services List in the tree view.

2. From the HCSC component list, select and double-click the HCSC component whose information is to be
displayed.
The information about the HCSC component is displayed in the HCSC Component Information Display screen.

3. Perform the following operations:

To reference the information in Operation information, Request message, Response message, or Fault
message

In the Operation drop-down list in Interface information, select the operation whose information is to be
referenced.

7. Packaging HCSC Components and Defining Deployment

389

To reference the content of a message, click the Display button for the message (request message, response
message, or fault message) to be referenced.

To reference the destination addresses by service type of a cluster (or single HCSC server)
The cluster name whose address is to be referenced is displayed in Server name in Server information.
To acquire a WSDL file to be used by Web Services, click WSDL acquisition.
To acquire a stub file to be used by SessionBean, click Stub acquisition.

To reference the information of a user-defined reception
Click the User-defined Reception Information tab at the bottom of the HCSC component Information
Display screen, for displaying the User-defined Reception Information Display screen.

7.4.3 Updating the HCSC Component List
When a HCSC component is modified, the information inside the repository may not match the information displayed
in the system configuration definition list in the tree view. In such a case, you can update the content displayed in the
system configuration definition list in the tree view.

To update the HCSC component list:

1. Right-click the system configuration definition list in the tree view without selecting the HCSC component
displayed, and choose Update.
The HCSC component list displayed in the system configuration definition list in the tree view is updated.

! Important note
The configuration information of the clusters (or single HCSC servers) displayed in the system configuration definition
list in the tree view is the configuration information of the cluster (or single HCSC server) that was set up in the
operating environment.

To display the latest server configuration list in the system configuration definition list in the tree view, import the
repository information exported in the operating environment into the development environment as needed. When the
repository is imported, the display is automatically updated.

For details on importing the repository, see 3.2.3 Importing a Repository.

7. Packaging HCSC Components and Defining Deployment

390

7.5 Batch execution of processes for deploying HCSC
components on the HCSC Server and then starting

In the development environment, you can execute the series of processes for deploying the HCSC components on the
HCSC server and then starting them, in a batch. In the development environment, the tasks executed individually in
the development environment or the operating environment are executed in a batch, and therefore the operation load
can be reduced. Note that you can perform the batch execution when developing a system or during the unit testing
and the integration testing.

The batch execution of the processes for deploying HCSC components on the HCSC server and then starting HCSC
components is performed with the following two methods:

• Deploying the selected HCSC components on the HCSC server and then starting them.

• Deploying all the HCSC components (defined in the development environment) on the HCSC server and then
starting them.

This section describes the flow of processes from deploying to starting the HCSC components, and also describes how
to perform each operation.

7.5.1 Flow of processes from deploying to starting HCSC components
The following are the flow of the series of processes from deploying HCSC components on the HCSC server until
starting them, the range of the HCSC components to be operated and the differences in processing according to the
type of HCSC components:

(1) Flow of processes
The following figure shows the flow of the processes from deploying HCSC components on the HCSC server until
starting them. Note that if you perform operations in the development environment, steps 2 to 6 of the figure will
execute automatically.

Figure 7‒4: Flow of processes from deploying to starting HCSC components

1. Perform batch execution of operations in the development environment.

2. In the development environment, the HCSC components are packaged and saved in a repository.

3. Deployment is defined, and the system configuration definition within the repository is updated.

4. The repository of the development environment is transferred to the operating environment.

5. Based on the system configuration definition updated in the development environment, HCSC components are
deployed from the operating environment onto the HCSC server of the execution environment.

6. The HCSC components deployed on the HCSC server of the execution environment are started.

7. Packaging HCSC Components and Defining Deployment

391

(2) HCSC components to be operated
The HCSC components to be operated when only the selected HCSC components are deployed on the HCSC server
and started are different from the HCSC components to be operated when all the HCSC components are deployed on
the HCSC server and started. HCSC components to be operated imply the HCSC components for which the series of
processes from deployment to startup is to be executed.

Deploying the selected HCSC components on the HCSC server and starting them
The HCSC components selected in the development environment are to be operated. If the selected HCSC
component is a business process, the HCSC components (business processes, service adapters, and user-defined
receptions) defined in that business process will also be operated.
The following figure shows the range of HCSC components to be operated when a business process is selected:

Figure 7‒5: Range of HCSC components to be operated (When a business process is selected)

Here, Referencing HCSC Components indicates the use of other HCSC components depending on the addition of a
user-defined reception and specification in the invoke service activity.

! Important note

Because a user-defined reception is processed simultaneously with the business process in the development environment, a
user-defined reception cannot be operated alone.

Deploying all the HCSC components in the HCSC server and starting them
All the HCSC components defined in the development environment are to be operated.

(3) Differences in processing according to the type of HCSC components
The processing, when the HCSC component to be operated is a service adapter, is different from the processing when
the HCSC component to be operated is a business process.

For a service adapter
Packaging and deployment definition are not performed again for a service adapter if the service adapter is already
packaged and the deployment is defined (public).

7. Packaging HCSC Components and Defining Deployment

392

For a business process
Because the Java classes might have been changed, packaging and deployment definition are performed again.

7.5.2 How to deploy HCSC components in the HCSC server and start
them

This subsection describes how to deploy HCSC components in the HCSC server, and then start them.

(1) Prerequisites
To deploy the HCSC components in the HCSC server and then start them, you must fulfill the following conditions:

• Perform the operation only during the system development or from the time of performing unit testing to the
integration testing.

• Build the development environment, operating environment, and execution environment on the same machine. If
these environments are set up on multiple machines, the operation cannot be guaranteed.

• The setup of the HCSC server must be complete. Set up only a single HCSC server. Even when you use the HCSC
Easy Setup functionality, set up only a single HCSC server.

• The HCSC server and database must be running.

(2) Operation procedure

(a) Deploying the selected HCSC components on the HCSC server and starting them

1. From the service definition list in the tree view, select the HCSC components to be deployed on the HCSC server.

2. Right-click the selected HCSC components, and choose Deploy on the server and start.

The displayed dialog box and the procedure thereafter will differ depending on whether the HCSC components to
be operated are being edited.

When the HCSC components to be operated are being edited
A dialog box confirming whether to save the HCSC components being edited (private) will be displayed. If
multiple services and user-defined receptions are being edited, multiple dialog boxes will be displayed. Click
the Yes button to save. Click the Yes to all button to save thereafter without displaying the confirmation dialog
box. If you do not want to save HCSC components, click the Cancel button and end the process.
Proceed to step 3.

When HCSC components to be operated are not being edited
When batch execution is first performed after starting Eclipse, the Account Authentication dialog box is
displayed. When the user ID and password are entered, and then the OK button is clicked, the processing will
start. When batch execution is performed for the second time and thereafter after starting Eclipse, the
processing will start immediately.

7. Packaging HCSC Components and Defining Deployment

393

Proceed to step 4.

3. Click the Yes button or click the Yes to all button.
When batch execution is first performed after starting Eclipse, the Account Authentication dialog box is
displayed. When the user ID and password are entered and then the OK button is clicked, the processing will start.
When batch execution is performed for the second time and thereafter after starting Eclipse, the processing will
start immediately.
The processing will differ as follows depending on whether deployment is defined (public) for the HCSC
components being edited or deployment is not defined (private):

When deployment is defined for the HCSC components
Set HCSC components for which deployment is defined to a state in which deployment is not defined. After
that, save the edited HCSC components and start the processing.

When deployment is not defined for HCSC components
Save the HCSC components being edited and start the processing.

4. When a dialog box notifying the completion of processing appears, click the OK button.

5. Check the following as needed:

Check if deployment is defined
In the system configuration definition list of the tree view, make sure that the selected HCSC components are
added.

In the above example, you can confirm if the selected business process (BP1) and the service adapter
(WebService1) defined in the selected business process are added.

Check if the HCSC components are deployed on the HCSC server and started
Log into the HCSC-Manager, and select the HCSC-Manager view. Make sure that the selected HCSC
components are deployed on the HCSC server and started. For details about how to log in to the HCSC-
Manager, see the manual Cosminexus Service Platform System Setup and Operation Guide.

In the above example, you can confirm if the selected business process (BP1) and the service adapter
(WebService1) and user-defined reception (Reception1) defined in the selected business process are added.

(b) Deploying all HCSC components on the HCSC server and starting them

1. Right-click the service definition list in the tree view, and choose Deploy all the services on the server and start.

7. Packaging HCSC Components and Defining Deployment

394

When the HCSC components to be operated are being edited
A dialog box, confirming whether to save the HCSC components being edited (private), will be displayed. If
multiple services and user-defined receptions are being edited, multiple dialog boxes will be displayed. Click
the Yes button to save. Click the Yes to all button to save thereafter without displaying the confirmation dialog
box. If you do not want to save HCSC components, click the Cancel button and end the process.
Proceed to step 3.

When the HCSC components to be operated are not being edited
When batch execution is first performed after starting Eclipse, the Account Authentication dialog box is
displayed. When the user ID and password are entered and then the OK button is clicked, the processing will
start. After starting Eclipse, when batch execution is performed for the second time and thereafter, the
processing will start immediately.
Proceed to step 4.

2. Click the Yes button or click the Yes to all button.
When batch execution is first performed after starting Eclipse, the Account Authentication dialog box is
displayed. When the user ID and password are entered and then the OK button is clicked, the processing will start.
After starting Eclipse, when batch execution is performed for the second time and thereafter, the processing will
start immediately.
The processing will differ as follows depending on whether deployment is defined (public) for the HCSC
components being edited or deployment is not defined (private):

When deployment is defined for the HCSC components
Set the HCSC components for which deployment is defined to a state in which deployment is not defined.
After that, save the edited HCSC components and start the processing.

When deployment is not defined for the HCSC components
Save the HCSC components being edited and start the processing.

3. When a dialog box notifying the completion of processing appears, click the OK button.

4. Check the following as needed:

Check if deployment is defined
In the system configuration definition list of the tree view, make sure that all the HCSC components defined in
the development environment are added.

In the above example, you can confirm that all the HCSC components (BP1, WebService1, and WebService2)
defined in the development environment are added.

7. Packaging HCSC Components and Defining Deployment

395

Check if the HCSC components are deployed on the HCSC server and started
Log into the HCSC-Manager, and select the HCSC-Manager view. Make sure that all the HCSC components
defined in the development environment are deployed on the HCSC server and started. For details about how
to log in to the HCSC-Manager, see the manual Cosminexus Service Platform System Setup and Operation
Guide.

In the above example, you can confirm if all the HCSC components (BP1, WebService1, WebService2, and
Reception1) defined in the development environment are added.

(3) Precautions
The following are the precautions to be taken when deploying the HCSC components on the HCSC server and then
starting them:

• When deploying the selected HCSC components on the HCSC server and then starting them, if the configuration
information of the HCSC server specified in the repository information of the operating environment and the
development environment is wrong, this will result in an error in the following cases. In such case, deploy all the
defined HCSC components on the HCSC server and then start them.
A configuration format of the repository (combination of database and Cosminexus RM) do not match in the
development and operating environment.
The service deployed in the repository of the operating environment is updated or deleted in the development
environment.
A SOAP mode in the repository of the development and operating environment do not match.
If an error occurs, deploy all the defined HCSC components on the HCSC server and start them.

• If an error occurs during the processing, interrupt the processing and terminate the batch execution. However, the
processes, for which the batch execution had finished before the occurrence of the error, will not return to the
status prior to the execution. In such a case, remove the cause of the error, and re-execute the processing.

• When batch execution is to be performed for multiple HCSC components after revising them, deploy all the
HCSC components on the HCSC server and start them. However, if the revised HCSC components are included in
the reference range of 7.5.1(2) HCSC components to be operated, the selected HCSC components can be deployed
on the HCSC server and started.

• If a batch execution of the process for deploying and starting the HCSC components on the HCSC server fails,
you might not be able to start the service and re-execute until the HCSC component stops. If the process fails, stop
the HCSC components by executing in the order of the csccompostop -all and csccompoundeploy -
all command and undeploy them. After this, redeploy and restart the HCSC components on the HCSC server.
Note that you cannot stop HCSC components by the method described in 7.6 Batch execution of processes for
stopping HCSC components and deleting them from the HCSC server.
For details about the csccompostop and csccompoundeploy command, see the manual Cosminexus
Service Platform Reference.

7. Packaging HCSC Components and Defining Deployment

396

7.6 Batch execution of processes for stopping HCSC
components and deleting them from the HCSC
server

In the development environment, you can execute the series of processes for stopping HCSC components, and then
delete them from the HCSC server, in a batch. In the development environment, the tasks executed individually in the
development environment or the operating environment are executed in a batch, and therefore the operation load can
be reduced. Note you can perform the batch execution when developing a system or during the unit testing and the
integration testing.

The batch execution of the processes, for stopping HCSC components and deleting them from the HCSC server, is
performed with the following two methods:

• Stopping the selected HCSC components and deleting them from the HCSC server. The deployment definition of
the HCSC components is deleted in the development environment.

• Stopping all the HCSC components deployed on the HCSC server, and then deleting them from the HCSC server.
The deployment definition of all HCSC components is deleted in the development environment.

This section describes the flow of processes from stopping to deleting the HCSC components, and also describes how
to perform each operation.

7.6.1 Flow of processes from stopping to deleting HCSC Components
The flow of the series of processes from stopping HCSC components to deleting them from the HCSC server and the
range of the HCSC components to be operated are as follows:

(1) Flow of processes
The following figure shows the flow of the series of processes from stopping HCSC components to deleting them
from the HCSC server. Note that if you perform operations in the development environment, steps 2 to 4 of the figure
will execute automatically.

Figure 7‒6: Flow of processes from stopping to deleting the HCSC components

1. Perform batch execution of operations in the development environment.

2. The HCSC components running on the HCSC server of the execution environment are stopped.

3. The HCSC components are deleted from the HCSC server of the execution environment.

4. The deployment definition of the HCSC components is deleted in the development environment, and the system
configuration definition in the repository is updated.

7. Packaging HCSC Components and Defining Deployment

397

(2) HCSC components to be operated
The HCSC components to be operated when only the selected HCSC components are stopped and deleted from the
HCSC server are different from those to be operated when all HCSC components are stopped and deleted from the
HCSC server. Here, the HCSC components to be operated imply those HCSC components for which the series of
processes from stopping to deleting is to be executed.

Stopping the selected HCSC components and deleting them from the HCSC server
The HCSC components selected in the development environment are to be operated. If the selected HCSC
component is a business process, the user-defined receptions defined in that business process will also be
operated. The business processes and service adapters defined in the selected HCSC component will not be
operated.
The following figure shows the range of HCSC components to be operated when a business process is selected:

Figure 7‒7: Range of HCSC components to be operated (When a business process is selected)

Here, Referencing HCSC Components indicates the use of other HCSC components depending on the addition of a
user-defined reception and specification in the invoke service activity.

! Important note

Because a user-defined reception is processed simultaneously with the business process in the development environment, a
user-defined reception cannot be operated alone.

Stopping all the HCSC components and deleting them from the HCSC server
All the HCSC components deployed on the HCSC server and all the HCSC components for which deployment is
defined on the development environment are to be operated.

7.6.2 How to stop HCSC components and delete them from the HCSC
server

This subsection describes how to stop HCSC components and delete them from the HCSC server.

(1) Prerequisites
To stop HCSC components and delete them from the HCSC server, the following conditions must be fulfilled:

• Perform the operation only during the system development or from the time of performing unit testing to
integration testing.

7. Packaging HCSC Components and Defining Deployment

398

• Build the development environment, operating environment, and execution environment on the same machine. If
these environments are set up in multiple machines, the operation cannot be guaranteed.

• The setup of the HCSC server must be complete. Set up only a single HCSC server. Even when you use the HCSC
Easy Setup functionality, set up only a single HCSC server.

• The HCSC server and database must be running.

(2) Operation procedure

(a) Stopping the selected HCSC components and deleting them from the HCSC server

1. From the service definition list in the tree view, stop HCSC components and select the HCSC components to be
deleted from the HCSC server.

2. Right-click the selected HCSC components, and choose Stop and Delete from the Server.

When the batch execution is first performed after starting Eclipse, the Account Authentication dialog box is
displayed. When the user ID and password are entered and then the OK button is clicked, the processing will start.
After starting Eclipse, when the batch execution is performed for the second time and thereafter, the processing
will start immediately.

3. When a dialog box reporting the completion of processing appears, click the OK button.

4. Check the following as needed:

Check if the deployment definition has been deleted
In the system configuration definition list of the tree view, make sure that the selected HCSC components
have been deleted.

In the above example, you can confirm that the selected business process (BP1) has been deleted.

Check that the HCSC components are stopped and deleted from the HCSC server
Log into the HCSC-Manager, and select the HCSC-Manager view. Make sure that the selected HCSC
components are stopped, and then deleted from the HCSC server. For details about how to log in to the HCSC-
Manager, see the manual Cosminexus Service Platform System Setup and Operation Guide.

7. Packaging HCSC Components and Defining Deployment

399

In the above example, you can confirm that the selected business process (BP1) and the user-defined reception
(Reception1) defined in the selected business process have been stopped, and then deleted.

(b) Stopping all the HCSC components and deleting them from the HCSC server

1. Right-click the service definition list in the tree view, and choose Stop All Services and Delete from the Server.

When the batch execution is first performed after starting Eclipse, the Account Authentication dialog box is
displayed. When the user ID and password are entered and then the OK button is clicked, the processing will start.
After starting Eclipse, when the batch execution is performed for the second time and thereafter, the processing
will start immediately.

2. When a dialog box reporting the completion of processing appears, click the OK button.

3. Check the following as needed:

Check that the deployment definition has been deleted
In the system configuration definition list of the tree view, make sure that all the HCSC components have been
deleted.

In the above example, you can confirm that all the HCSC components (BP1, WebService1, and WebService2)
have been deleted.

Check that the HCSC components are stopped and deleted from the HCSC server
Log into the HCSC-Manager, and select the HCSC-Manager view. Make sure that all the HCSC components
are stopped, and then deleted from the HCSC server. For details about how to log in to the HCSC-Manager,
see the manual Cosminexus Service Platform System Setup and Operation Guide.

7. Packaging HCSC Components and Defining Deployment

400

In the above example, you can confirm that all the HCSC components (BP1, WebService1, WebService2, and
Reception1) have been stopped and deleted.

(3) Precautions
The precautions to be taken when stopping HCSC components and deleting from the HCSC server are as follows:

• When stopping the selected HCSC components and deleting from the HCSC server, if the configuration
information of the HCSC server specified in the repository information of the operating environment and the
development environment is wrong, this will result in an error in the following cases. In such case, stop all the
HCSC components, and delete them from the HCSC server.
- A configuration format of the repository (combination of database and Cosminexus RM) do not match in the
development and operating environment.
- The service deployed in the repository of the operating environment is updated or deleted in the development
environment.
- A SOAP mode in the repository of the development and operating environment do not match.
If an error occurs, stop all the HCSC components and delete them from the HCSC server.

• If an error occurs during the processing, interrupt the processing and terminate the batch execution. However, the
processes, for which the batch execution had finished before the occurrence of the error, will not return to the
status prior to the execution. In such a case, remove the cause of the error, and then re-execute the processing.

• If a batch execution of the process for stopping and deleting the HCSC components from the HCSC server fails,
you might not be able to start the service and re-execute until the HCSC component stops. If the process fails, stop
the HCSC components by executing in the order of the csccompostop -all and csccompoundeploy -
all command and undeploy them. After this, delete the HCSC components from the HCSC server.
For details about the csccompostop and csccompoundeploy command, see the manual Cosminexus
Service Platform Reference.

7. Packaging HCSC Components and Defining Deployment

401

8 Creating Service Requesters
This chapter explains how to create service requesters that send requests for service
components to a standard reception and user-defined reception of an HCSC server.

For details about how to emulate the service requester for testing and debugging, see
Appendix G. Emulating the Service Requester.

403

8.1 Overview of Creating Service Requesters
A service requester is an application that receives a request from work in-charge and sends the request for service
component execution to each HCSC component of adapters and business processes. You create a service requester in
the development environment based on the interface information provided by the execution environment and deploy it
in the execution environment. Development of service requesters must be carried out in an environment that enables
Java program development.

The following figure provides an overview of service requesters.

Figure 8‒1: Overview of service requesters

A service requester sends a service component execution request to standard reception and user-defined reception of
the HCSC server. Note that the request destination differs depending on protocols used by the service requester. The
following table describes the types of protocols that the service requester uses and types of standard and user-defined
reception:

Table 8‒1: Types of protocols used by a service requester and the types of standard and user-defined
reception

Receive Protocol

standard reception synchronous reception (Web Services) SOAP (HTTP)

synchronous reception (SessionBean) RMI-IIOP

asynchronous reception (MDB (WS-
R))

WS-R

asynchronous reception (MDB
(database queue))

• Protocol unique to Cosminexus RM

• JMS

user-defined reception synchronous reception (Web Services) SOAP (HTTP)

! Important note

You must develop a service requester considering the procedure for processing during operations. Also, you must create the
error handling with such a proper understanding so that a prompt action can be taken when an error occurs. For details, see
the contents about invoking service components of an HCSC server in the manual Cosminexus Service Platform Function
Guide, and the contents about troubleshooting in the manual Cosminexus Service Platform System Setup and Operation
Guide.

8. Creating Service Requesters

404

8.2 Service Requester That Sends Requests to a
Standard Synchronous Reception (Web Services)
(SOAP communication infrastructure)

A service requester that sends a request message to a standard synchronous reception (Web services) communicates
with the standard reception using SOAP. The service requester sends a service component execution request message
to a standard reception, and an HCSC server performs service component execution.

When SOAP is used, the interface information of the synchronous reception (Web Services) is acquired from the
WSDL. A stub is generated from the acquired WSDL, and this stub is used for sending a request to the synchronous
reception (Web Services). Therefore, the service requester must be installed such that it can utilize the generated stub.

The following figure shows the relationship between a service requester that sends requests to a standard synchronous
reception (Web Services) and an HCSC server.

Figure 8‒2: Relationship between a service requester that sends requests to a standard synchronous
reception (Web Services) and an HCSC server (SOAP communication infrastructure)

To use the JAX-WS engine, a service class will be created instead of a stub. For details, see, 8.3 Creating a service
requester using standard synchronous reception (Web Services) (JAX-WS engine).

8.2.1 Procedure for Creating a Service Requester (Standard
Synchronous Reception (Web Services)) (SOAP communication
infrastructure)

This subsection explains how to create a service requester that sends a service component execution request to a
standard synchronous reception (Web Services) and invokes a service component. The creation workflow is shown in
the following figure.

8. Creating Service Requesters

405

Figure 8‒3: Workflow for creating a service requester (standard synchronous reception (Web Services))
(SOAP communication infrastructure)

The tasks in the individual steps are described below.

(1) WSDL acquisition
Acquire the interface information of the synchronous reception (Web Services) of the HCSC server that invokes the
service component from the WSDL. For details about WSDL acquisition, see 8.2.2 Acquiring the WSDL.

(2) Stub creation
Create a stub from the WSDL acquired by 8.2.1(1) WSDL acquisition (1). For details about stub creation, see 8.2.3
Creating Stubs.

(3) Object generation
In order to invoke the method of the synchronous reception (Web Services), use the stubs created in 8.2.1(2) Stub
creation to generate objects. For details about object generation, see 8.2.4 Generating Objects.

(4) Parameter specification
Specify the parameters that become the arguments of the method of the synchronous reception (Web Services). For
details about parameter specification, see 8.2.5 Specifying Parameters.

8. Creating Service Requesters

406

(5) Request message creation
Create a request message for requesting service component execution. For details about request message creation, see
8.2.6 Creating Request Messages.

(6) Response message acquisition
Acquire a response message corresponding to the service component execution request from the synchronous
reception (Web Services). For details about response message acquisition, see 8.2.7 Acquiring Response Messages.

(7) Error information acquisition
If an error occurs at the request-destination service component, the HCSC server, or the SOAP engine, acquire the
error information and take corrective action according to the information. For details about error information
acquisition, see 8.2.8 Acquiring Error Information.

8.2.2 Acquiring the WSDL
Acquire the interface information of the synchronous reception (Web Services) of the HCSC server that invokes the
service component from the WSDL. You can use one of the following two WSDL acquisition methods:

Method 1

1. From the Eclipse menu, choose HCSC-Definer, and then Published Services List.
HCSC components are listed in Published Services List in the tree view.

2. From the HCSC component list, select and double-click the service component (HCSC component) to be invoked.
The information about the HCSC component is displayed in the HCSC Component Information Display screen.
For details about this screen, see the manual Cosminexus Service Platform Overview.
The information about the HCSC server that becomes the service component request destination is displayed in
Server information.

3. Choose the WSDL type to be acquired by the Binding Style radio button and SOAP Version radio button as and
when required.
Choose the WSDL definition style to be acquired by the Binding Style radio button. Choose the corresponding
SOAP specifications version by the SOAP Version radio button.

4. Click WSDL acquisition.
A dialog box for saving the WSDL file opens.
Specify the file saving destination and acquire the WSDL.

Method 2

1. From the directory in which HCSC-Messaging is installed, acquire the WSDL provided as a sample.
Acquire the WSDL appropriate to your application from the following:

• rpc-literal type
cscmsg_ws.wsdl file

• document-literal type
cscmsg_ws_doc.wsdl file

For details about the directory in which HCSC-Messaging is installed, see the section related to uCosminexus
Service Platform installation in the manual Cosminexus Service Platform System Setup and Operation Guide.

2. Modify the contents of location of WSDL's <soap:address> as shown below.

http://host-name:port-number/#1context-root#2
 /services/CSCMsgSyncServiceDeliveryWSImpl
#1

This is the HCSC server's URL.

8. Creating Service Requesters

407

#2
HCSC server cluster name that is determined when the HCSC server configuration is deployed in the
development environment and the operating environment.

8.2.3 Creating Stubs
Create a stub from the acquired WSDL. To create a stub, you use the WSDL2Java command provided by
Cosminexus as a development support command.

A command input example (when the WSDL style is rpc-literal) follows.

WSDL2Java cscmsg_ws.wsdl

If the WSDL style is document-literal, replace cscmsg_ws.wsdl in the above example with
cscmsg_ws_doc.wsdl.

For details about the options in the WSDL2Java command, see the manual Cosminexus Application Server SOAP
Application Development Guide.

Executing this command creates the following directory and files:

/current-directory
 jp
 co
 Hitachi
 soft
 csc
 msg
 message
 reception
 ejb
 CSCMsgSyncServiceDeliveryWSImpl.java#1
 CSCMsgSyncServiceDeliveryWSImplService.java#2
 CSCMsgSyncServiceDeliveryWSImplServiceLocator.java#3
 CSCMsgSyncServiceDeliveryWSImplSoapBindingStub.java#4
 CSCMsgServerFaultException.java#4

#1
This is a user-defined data class (a service requester's interface class).

#2
This is a service component's interface class.

#3
This is a service class (a service component's interface class). Holds the connection information to the service component.

#4
This is a stub class.

8.2.4 Generating Objects
In order to invoke the method of the synchronous reception (Web Services), use the stubs created in (1) to generate
objects.

(1) Stubs to be used
Use the following two classes of stubs to generate objects:

CSCMsgSyncServiceDeliveryWSImplServiceLocator.java class
This class is used to reference and set up the connection destination (endpoint) information to a service
component. This class provides the methods listed in the following table.

8. Creating Service Requesters

408

Table 8‒2: CSCMsgSyncServiceDeliveryWSImplServiceLocator.java class methods

Method name Function explanation

getCSCMsgSyncServiceDeliveryWSImplAddress() Returns the connection destination information to the
service component.

Return value:
java.lang.String

getCSCMsgSyncServiceDeliveryWSImpl() Returns the object pointer of the interface class to the
service class.

Return value:
Interface class object
(CSCMsgSyncServiceDeliveryWSImpl
object)

getCSCMsgSyncServiceDeliveryWSImpl(java.net
.URL portAddress)

Uses the specified connection destination information to
the service component to return the object pointer to the
service class.

Return value:
Interface class object
(CSCMsgSyncServiceDeliveryWSImpl
object)

CSCMsgSyncServiceDeliveryWSImpl.java class
Describes a list of methods that can be used as a service class. Use this class to utilize the SOAP service.

(2) Object generation procedure
To generate an object for invoking a synchronous reception (Web Services) method:

1. Create a CSCMsgSyncServiceDeliveryWSImplServiceLocator class object, which is the service component's
interface class.

Example:

CSCMsgSyncServiceDeliveryWSImplServiceLocator locator
 = new CSCMsgSyncServiceDeliveryWSImplServiceLocator();

2. Using the service component's interface class object, create a CSCMsgSyncServiceDeliveryWSImpl.java class
object, which is the service requester's interface class.
The instance of the service requester's interface class created or acquired cannot be shared by multiple threads.

Example:

CSCMsgSyncServiceDeliveryWSImpl ws = null;
try {
 ws = locator.getCSCMsgSyncServiceDeliveryWSImpl();
}catch (ServiceException e) {
 e.printStackTrace();
 return;
}

The connection destination to the service component is the location attribute, which is an address child element of
the Service element inside the WSDL definition. To acquire the connection destination to the service component
within the service requester's program, use the following coding:

Example:

String url = locator.getCSCMsgSyncServiceDeliveryWSImplAddress();

To change the connection destination to the service component within the service requester's program, use the
following coding:

8. Creating Service Requesters

409

Example:

java.net.URL endpoint
 = new java.net.URL("http://hostname:80/context-root
 /services/CSCMsgSyncServiceDeliveryWSImpl");
CSCMsgSyncServiceDeliveryWSImpl locator
 = locator.getCSCMsgSyncServiceDeliveryWSImpl(endpoint);

3. Using the created CSCMsgSyncServiceDeliveryWSImpl.java class object, invoke a method of the synchronous
reception (Web Services).

Example: When the request message is in XML

String result = ws.invokeXML(// method invocation
 serviceName, // service name
 clientID, // client correlation ID
 requestFormatID, // request format ID
 responseFormatID, // response format ID
 operationName, // operation name
 userData); // user message

Example: When the request message is binary

byte[] resultBinary = ws.invokeBinary(// method invocation
 serviceName, // service name
 clientID, // client correlation ID
 requestFormatID, // request format ID
 responseFormatID, // response format ID
 operationName, // operation name
 userDataBinary.length, // user message length
 userDataBinary); // user message

! Important note
A binary request message can be sent only when the message format used on the service component side is binary.

8.2.5 Specifying Parameters
To invoke a method of the synchronous reception (Web Services), specify parameters that become the arguments of
the method. The following figure shows parameter details.

Table 8‒3: Parameter details (standard synchronous reception (Web Services))

Parameter name Data type
Parameter

Explanation
invokeXML invokeBinary

Service name

(serviceName)

java.lang
.String

in0(type="xsd:string") This is the service name of the request destination.

This parameter is required.

For the service name of the request destination,
specify the adapter or business process defined in
the development environment.

Client correlation ID

(clientID)

java.lang
.String

in1(type="xsd:string") This is a correlation identifier for uniquely
identifying the request message from the service
requester.

Specify alphanumeric characters, underscore (_),
period (.), and hyphen (-) up to 255 characters.

This parameter is used to map the request message
from the service requester to the execution history,
logs, and traces managed by the HCSC server.
Therefore, specify a different ID for each request
message sent to the HCSC server.

To omit the client correlation ID, specify NULL.

Request format ID

(requestFormatID)

java.lang
.String

in2(type="xsd:string") This is an ID for uniquely identifying the request
message format from the service requester.

Specify NULL for this parameter.

8. Creating Service Requesters

410

Parameter name Data type
Parameter

Explanation
invokeXML invokeBinary

Response format ID

(responseFormatID)

java.lang
.String

in3(type="xsd:string") This is an ID for uniquely identifying the response
message from the HCSC server.

Specify NULL for this parameter.

Operation name

(operationName)

java.lang
.String

in4(type="xsd:string") This is an operation name corresponding to the
service name at the request destination.#

This operation name specifies a service
component defined in the development
environment. Specify the operation name with
NCName definition characters of XMLSchema
within 255 bytes.

This parameter is required when the service
component at the request destination is a
synchronous service (Web Services or
SessionBean) or business process.

When the service at the request destination is an
asynchronous service, the operation name can be
omitted. To omit it, specify NULL.

User message

(userData)

java.lang
.String

in5
(type=
"xsd:strin
g")

-- This is the request message from the service
requester.#

Specify this parameter when the request message
is in XML. If there is no request message, specify
NULL or an empty character (""). For details
about request messages, see 8.2.6 Creating
Request Messages.

User message length

(userDataBinary.le
ngth)

int -- in5(type=
"xsd:int")

This is the request message length.

Specify this parameter when the request message
is binary. This parameter is required when the
request message is binary.

If there is no request message, specify 0.

User message

(userDataBinary)

byte[] -- in6(type=
"base64Bina
ry")

This is the request message from the service
requester.#

Specify this parameter when the request message
is binary. For details about request messages, see
8.2.6 Creating Request Messages.

If there is no request message, specify NULL or a
0-byte byte array.

Legend:
inX (X=1 to 6): Parameter for each method indicated by a stub
--: Cannot be specified.

#
When the service component protocol of request destination is SOAP, decide an operation to be invoked from the name of a root
element of user message (in the case of data transformation, it is the name of root element of the message after data
transformation). Therefore, take note that if you specify an invalid name in the root element of user message, an unintended
operation may be invoked.

8.2.6 Creating Request Messages
Create a request message for requesting a service component from the service requester to the synchronous reception
(Web Services) of the HCSC server. The contents of the request message to be sent from the service requester must be
created in the same message format as that used on the service component side. The following figure shows how a
request message is sent.

8. Creating Service Requesters

411

Figure 8‒4: Sending a request message (standard synchronous reception (Web Services))

For details about how to send a normal request message, see the contents related to standard reception in service
invocation using a Web Service (SOAP communication), in the manual Cosminexus Service Platform System Setup
and Operation Guide.

The request message to be sent from the service requester to the synchronous reception (Web Services) can be either
an XML message or a binary message. Which message type is to be used depends on the protocol being used by the
service component side. XML request messages and binary request messages are explained below.

(1) XML request message
When any one of the following is a service-module-side protocol and requests are to be sent to a business process, the
XML request messages can be sent:

• SOAP (for service adapter (Web services))#1#2

• RMI-IIOP (for service adapter (SessionBean))#1#2

• WS-R (for service adapter (MDB (WS-R)))#2

• Database queue (for service adapter (MDB (DBQ)))#2

#1
Always specify the request message.

#2
If you do not specify the request message, data transformation process will not be performed in the service
adapter.

The following figure shows an XML request message.

Figure 8‒5: XML request message

! Important note

An XML declaration must be described at the start of the XML document (request message) to be specified. If an XML
declaration is not made or if an XML declaration is in a user message inside the XML document, correct operation cannot
be guaranteed.

Furthermore, always specify UTF-8 in the character code specification (encoding) of an XML declaration.

8. Creating Service Requesters

412

(2) Binary request message
Binary request messages can be sent only when the service component side is using the database queue protocol.

Note that if you do not specify a request message, data transformation process will not be performed in the service
adapter.

The following figure shows a binary request message.

Figure 8‒6: Binary request message

8.2.7 Acquiring Response Messages
Acquire a response message corresponding to the service component execution request from the synchronous
reception (Web Services) of the HCSC server. The service requester acquires a response message that has the same
message format as the service component side. The following figure shows how a response message is acquired.

Figure 8‒7: Response message acquisition (standard synchronous reception (Web Services))

The service requester acquires a response message whose message type is XML. When there is no response message
from the service component, either NULL or a byte array of 0 bytes is received. A case in which there is a response
message and a case in which there is no response message are explained separately below.

(1) When there is a response message
The following figure shows an XML response message acquired by the service requester

Figure 8‒8: XML response message

8. Creating Service Requesters

413

(2) When there is no response message
When there is no response message, the format received by the service requester will differ for a String-type response
and byte[]-type response.

• For a String-type response
The following figure shows the format in which the service requester receives NULL.

Figure 8‒9: Format of NULL received

• For a byte[]-type response
The service requester receives a byte array of 0 bytes having a format as shown in the following figure. The SOAP
Envelope will become an empty tag as shown in the following figure:

Figure 8‒10: Format for a byte[]-type response

8.2.8 Acquiring Error Information
If an error occurs at the request-destination service component, the HCSC server, or the SOAP engine, acquire the
error information and take corrective action according to the information. For details about how to send an error, see
the contents about troubleshooting during the execution of a Web Service (SOAP communication), in the manual
Cosminexus Service Platform System Setup and Operation Guide.

(1) Service requester-side installation example
The error acquisition method differs depending on the type of SOAP Communication Infrastructure.

8. Creating Service Requesters

414

(a) When the SOAP Communication Infrastructure provided by Cosminexus is used

When the SOAP Communication Infrastructure provided by Cosminexus is used, catch the
CSCMsgServerFaultException object and acquire the SOAP Fault error information.

To acquire the error information, the following must be installed on the service requester side:

 ...
} catch (CSCMsgServerFaultException e) {
 System.err.println("Exception ErrorMessage = "
 + e.getErrorMessage());
 System.err.println("Exception ErrorCode = "
 + e.getErrorCode());
 System.err.println("Exception ProcessInstanceID = "
 + e.getProcessInstanceID());
 System.err.println("Exception FaultCode = "
 + e.getCscmsgFaultCode());
 System.err.println("Exception FaultString = "
 + e.getCscmsgFaultString());
 System.err.println("Exception FaultActor = "
 + e.getCscmsgFaultActor());
 System.err.println("Exception FaultDetails = "
 + new String(e.getCscmsgFaultDetail(), "UTF-8"));
 System.err.println("Exception FaultName = "
 + e.getFaultName());
}
 ...

Each method is explained below.

getErrorMessage

Explanation
Acquires error messages.
Use this method for acquiring the contents of the following exceptions:

• Exceptions detected inside HCSC-Messaging

• Faults from a service component or business process

Format
public java.lang.String getErrorMessage()

getErrorCode

Explanation
Acquires error codes.
Use this method for acquiring the error codes corresponding to the following exceptions:

• Exceptions detected inside HCSC-Messaging

• Faults from a service component or business process

Format
public java.lang.String getErrorCode()

getProcessInstanceID

Explanation
Acquires business process instance IDs.

Format
public String getProcessInstanceID()

getCscmsgFaultCode

Explanation
Acquires FaultCode information from a service component (Web services), business process, or custom
adapter.

Format
public java.lang.String getCscmsgFaultCode()

8. Creating Service Requesters

415

getCscmsgFaultString

Explanation
Acquires FaultString information from a service component (Web Services), business process, or custom
adapter.

Format
public java.lang.String getCscmsgFaultString()

getCscmsgFaultActor

Explanation
Acquires FaultActor information from a service component (Web Services), business process, or custom
adapter.

Format
public java.lang.String getCscmsgFaultActor()

getCscmsgFaultDetail

Explanation
Acquires Detail information from a service component (Web Services), business process, or custom adapter.
Transfers the Detail information set up by the service component to the service requester in a byte array.
Therefore, the acquired byte array must be converted to a character string.
When there is no Detail information from the service component (Web Services), business process, or custom
adapter, the response is sent through a byte array of 0 bytes (empty tag of a SOAP Message).

Format
public byte[] getCscmsgFaultDetail()

getFaultName

Explanation
Acquires exception names from a service component (Web Services) or business process.

Format
public String getFaultName()

(b) When the SOAP Communication Infrastructure provided by Cosminexus is not used

The error information to be acquired depends on the SOAP engine installed on the service requester side.

(2) Error information (SOAPFault) format
The following table shows the error information (SOAPFault) format.

Table 8‒4: Error information (SOAPFault) format

Element Name Content

faultcode Fault code Value that depends on the SOAP engine.

QCName that is referenced by the message type attribute of the message
part.

faultstring Fault string Value that depends on the SOAP engine.

Outputs KDCCP0015-E.

faultactor Fault generator Value that depends on the SOAP engine. There is no value.

detail# Fault detail Detail that corresponds to wsdl:fault.

#
The element detail is for the error information detail. It is stored in the structure described in the following table.

8. Creating Service Requesters

416

Table 8‒5: Error information (SOAPFault) detail

Field name

Explanation

Error (fault) from a service component, a business process,
a custom adapter or for integration with HCSC server

Error (exception) detected by the
HCSC server

errorMessage Contents of the following errors:

• Error detected inside the HCSC server.

• Error from a service component, business process, or custom adapter.

errorCode Error code corresponding to the following exceptions:

• Error detected inside the HCSC server.

• Error from a service component, business process, or custom adapter.

processInstanceID Instance ID information of a business process

A value is set when an error occurs in the business process.

cscmsgFaultCode FaultCode information from a service component (Web Services),
business process, or custom adapter

--

cscmsgFaultString FaultString information from a service component (Web Services),
business process, or custom adapter

--

cscmsgFaultActor FaultActor information from a service component (Web Services),
business process, or custom adapter

--

cscmsgFaultDetail Detail information from a service component (Web Services),
business process, or custom adapter

--

faultName Fault name (exception name) information from a service
component (Web Services or SessionBean) or business process

A value is set in the following cases:

• In the case of SOAP Fault of a user-defined exception from a
service component (Web services or SessionBean)

• In the case of a fault from business process

No value is set in the case of the SOAP Fault error from Web
services that define URI of targetNamespace in the SOAP Fault
operation definition file. For details about the SOAP Fault
operation definition file, see the manual Cosminexus Service
Platform Reference.

--

Legend:
--: Not applicable

8.2.9 Creating a service requester that sends a request for business
process re-execution (Web Services and SOAP communication
infrastructure)

You can create a service requester that sends a request for business process re-execution to the standard synchronous
reception (Web Services).

The flow for creating a service requester that sends a request to the standard synchronous reception (Web Services) for
business process re-execution is the same as that for creating an ordinary service requester that sends requests to the
standard synchronous reception (Web Services). For details about the creation flow, see 8.2.1 Procedure for Creating
a Service Requester (Standard Synchronous Reception (Web Services)) (SOAP communication infrastructure).

The tasks in the individual process are as follows:

8. Creating Service Requesters

417

(1) WSDL acquisition
The WSDL acquisition method is the same as that used for creating an ordinary service requester that sends requests
to the standard synchronous reception (Web Services).

For details about the WSDL acquisition method, 8.2.2 Acquiring the WSDL.

(2) Stub creation
The stub creation method is the same as the one used for creating an ordinary service requester that sends requests to
the standard synchronous reception (Web Services). That is, to create a stub, you use the WSDL2Java command
provided by Cosminexus as a development support command.

For details about stub creation, see 8.2.3 Creating Stubs.

(3) Object generation
The object generation method is the same as that used for creating an ordinary service requester that sends requests to
the standard synchronous reception (Web Services).

For details about object generation, see 8.2.4 Generating Objects.

To invoke a method that sends a request for business process re-execution, use invokeBPXML().

An example of a method that sends a request for business process re-execution is shown below.

Example: Requesting business process re-execution

String result = ws.invokeBPXML(// method invocation
 serviceName, // service name
 bpRequestType, // request type for business process
 bpProcessId, // process ID for business process
 clientID, // client correlation ID
 requestFormatID, // request format ID
 responseFormatID, // response format ID
 operationName, // operation name
 userData); // user message

(4) Parameter specification
The parameters that become the arguments of the method are different from those used in creating an ordinary service
requester that sends requests to the standard synchronous reception (Web Services). The following table shows the
details of the parameters that are specified for a service requester that sends a request to a synchronous reception (Web
Services) for business process re-execution.

Table 8‒6: Parameter details (standard synchronous reception (Web Services)/business process re-
execution request)

Parameter name Data type Parameter (invokeBPXML) Explanation

Service name

(serviceName)

java.lang
.String

in0(type="xsd:string") This is the service name of the request destination.

This parameter is required.

For the service name of the request destination,
specify the business process defined in the
development environment.

Request type for business
process

(bpRequestType)

java.lang
.String

in1(type="xsd:string") Indicates a request message type.

To request business process re-execution, specify a
RECOVER string.#1

Process ID for business
process

(bpProcessId)

java.lang
.String

in2(type="xsd:string") This is a business process instance ID.

Specify either a value acquired from error
information or the value that is output to the
message log.

8. Creating Service Requesters

418

Parameter name Data type Parameter (invokeBPXML) Explanation

Client correlation ID

(clientID)

java.lang
.String

in3(type="xsd:string") This is a correlation identifier for uniquely
identifying the request message from the service
requester.

Specify NULL for this parameter.#1

Request format ID

(requestFormatID)

java.lang
.String

in4(type="xsd:string") This is an ID for uniquely identifying the request
message format from the service requester.

Specify NULL or an empty character ("") for this
parameter.#1

Response format ID

(responseFormatID)

java.lang
.String

in5(type="xsd:string") This is an ID for uniquely identifying the response
message from the HCSC server.

Specify NULL or an empty character ("") for this
parameter.#1

Operation name

(operationName)

java.lang
.String

in6(type="xsd:string") This is an operation name corresponding to the
service name at the request destination. #2

Specify NULL or an empty character ("") for this
parameter.#1

User message

(userData)

java.lang
.String

in7(type="xsd:string") This is the request message from the service
requester.#2

Specify NULL or an empty character ("") for this
parameter.#1

Legend:
inX (X=1 to 7): Parameter for each method indicated by a stub

#1
A fixed value (RECOVER, NULL, or an empty character ("")) is set as the specification value for these parameters. If you specify
a value other than these fixed values, correct operation cannot be guaranteed.

#2
When the service component protocol of request destination is SOAP, decide an operation to be invoked from the name of a root
element of user message (in the case of data transformation, it is the name of root element of the message after data
transformation). Therefore, take note that if you specify an invalid name in the root element of user message, an unintended
operation may be invoked.

(5) Response message acquisition
The response message acquisition method is the same as that used for creating an ordinary service requester that sends
requests to the standard synchronous reception (Web Services).

For details about response message acquisition, see 8.2.7 Acquiring Response Messages.

(6) Error information acquisition
The method of installing a service requester for acquiring error information is the same as that used for creating an
ordinary service requester that sends requests to the standard synchronous reception (Web Services).

For details about error information acquisition, see 8.2.8 Acquiring Error Information.

8.2.10 Creating a service requester that sends a request for the
operating status of service adapter from an application (Web
Services and SOAP communication infrastructure)

You can create a service requester that sends a request for the service adapter's operating status from an application to
the standard synchronous reception (Web Services).

8. Creating Service Requesters

419

To check the operating status of a service adapter, apart from invoking the service component that sends a request to
the standard synchronous reception (Web Services), you must add a process for invoking the method for checking the
operating status.

The following figure shows a procedure for creating a service requester that sends a request for checking the operating
status of the service adapter from an application to the standard synchronous reception (Web Services):

Figure 8‒11: Procedure for creating a service requester that sends a request for checking the operating
status of the service adapter (Standard synchronous reception (Web Services and SOAP
communication infrastructure))

The tasks in the individual steps are described below.

(1) WSDL acquisition
The WSDL acquisition method is the same as that used for creating an ordinary service requester that sends requests
to the standard synchronous reception (Web Services).

Note that you need not use different WSDLs in the process for invoking the service component and in the process for
checking the operating status.

For details about the WSDL acquisition method, 8.2.2 Acquiring the WSDL.

(2) Stub creation
The stub creation method is the same as the one used for creating an ordinary service requester that sends requests to
the standard synchronous reception (Web Services). That is, to create a stub, you use the WSDL2Java command
provided by Cosminexus as a development support command.

For details about stub creation, see 8.2.3 Creating Stubs.

(3) Object generation
To generate an object for invoking a method of requesting for the service adapter's operating status (Web Services):

8. Creating Service Requesters

420

1. Create a CSCMsgSyncServiceDeliveryWSImplServiceLocator class object, which is the service component's
interface class.

Example:

CSCMsgSyncServiceDeliveryWSImplServiceLocator locator
 = new CSCMsgSyncServiceDeliveryWSImplServiceLocator();

2. Using the service component's interface class object, create a CSCMsgSyncServiceDeliveryWSImpl.java class
object, which is the service requester's interface class.
The instance of the service requester's interface class created or acquired cannot be shared by multiple threads.

Example:

CSCMsgSyncServiceDeliveryWSImpl ws = null;
try {
 ws = locator.getCSCMsgSyncServiceDeliveryWSImpl();
}catch (ServiceException e) {
 e.printStackTrace();
 return;
}

The connection destination to the service component is the location attribute, which is an address child element of
the Service element inside the WSDL definition. To acquire the connection destination to the service component
within the service requester's program, use the following coding:

Example:

String url = locator.getCSCMsgSyncServiceDeliveryWSImplAddress();

3. Using the created CSCMsgSyncServiceDeliveryWSImpl.java class object, invoke a method of requesting for the
operating status of the service adapter of the standard synchronous reception (Web Services).

Example: When "type=status" is specified in the option

String result = ws.getServiceInfo(// Method invocation
 serviceName, // Service name
 clientID, // Client correlation ID
 "type=status"); // Option

Example: When "type=status,returnType=XML" is specified in the option

String result = ws.getServiceInfo(// Method invocation
 serviceName, // Service name
 clientID, // Client correlation ID
 "type=status,returnType=XML");
 // Option

(4) Parameter specification
Use the getServiceInfo method to request checking of the operating status of service adapters. The parameters
that become the arguments of the method are different from those used in creating an ordinary service requester that
sends requests to the standard synchronous reception (Web Services).

The following table shows the details of the parameters that are specified for a service requester that sends a request to
a synchronous reception (Web Services) for the service adapter's operating status.

Table 8‒7: Parameter details (Standard synchronous reception (Web Services) or service adapter
operating status checking request)

Parameter name Data type Parameter
(invokeBPXML) Explanation

Service name

(serviceName)

java.lang.St
ring

in0(type="xsd:st
ring")

This is the service name of the request destination when
the operating status of service adapter is checked.

This parameter is required.

For the service name of the request destination, specify
the service adapter deployed on the HCSC server.

Client correlation ID java.lang.St
ring

in1(type="xsd:st
ring")

This is a correlation identifier for uniquely identifying the
request message from the service requester.

8. Creating Service Requesters

421

Parameter name Data type Parameter
(invokeBPXML) Explanation

(clientID) java.lang.St
ring

in1(type="xsd:st
ring")

Specify alphanumeric characters, underscore (_), period
(.), and hyphen (-) up to 255 characters.

This parameter is used to map the request message from
the service requester to the execution history, logs, and
traces managed by the HCSC server. Therefore, specify a
different ID for each request message sent to the HCSC
server.

To omit the client correlation ID, specify NULL.

Option

(option)

java.lang.St
ring

in2(type="xsd:st
ring")

This is an option that is selected when acquiring the
checked results of the operating status.

The input format of an option is Key name=Value.
Enclose the option within double quotation marks (").
When specifying multiple options, demarcate with a
comma (,).#1

Example
"key-name=value, key-name=value"

The following options can be specified:

type={all/status}
This is an option that specifies the pattern of the
information to be acquired.

• all
The entire information, corresponding to the service
name specified in serviceName, is sent as a
response.

• status
The status, HCSC server name, and the cluster name
corresponding to the service name specified in
serviceName is sent as a response.

returnType={Properties/String/XML}
This is an option that specifies the response format.

• Properties
All properties included in the
java.util.Properties class are sent as a
response in the XML document format#2. If there is
no value, the property key does not exist.#3

• String
The java.util.Properties class is sent as a
response in the toString() converted format. If
there is no value, the property key does not exist.

• XML
The XML schema defined in the HCSC server is sent
as a response in the XML document format. If there is
no value, an empty tag is sent as a response.

Legend:
inX (X=1 to 2): Parameter for each method indicated by a stub

#1
If a space exists before or after a comma (,), or before or after an equal sign (=), this will result in an error. Also, make sure that
a character string does not end with a comma (,).

#2
This is a UTF-8 encoded XML format that uses the storeToXML() method of the Properties class. This format can be
restored to the Properties class using the loadFromXML() method of the Properties class.

8. Creating Service Requesters

422

#3
When the value is acquired with the Properties class, null will be sent as a response.

(5) Response message acquisition
The response message of the operating status check of service adapters is returned in the format specified in the
parameter option.

The format and examples of response messages are described in the following points:

(a) Format of a response message

The information that can be acquired with a response message depends on the contents specified in the type option.
The following information can be acquired with a response message:

Table 8‒8: Information that can be acquired with a response message

Key or tag Information contents

Response information based
on the type option specification

all status

HCSCServerName HCSC server name Y Y

ClusterName Cluster name Y Y

ServiceName Service name Y --

ServiceStatus Service adapter status Y Y

ServiceKind Service type Y --

ServiceProtocolKind Adapter protocol type Y --

AdapterName Adapter name Y --

AdapterLocalCall Local key usage status Y# --

EntryTime Adapter definition addition time Y --

ModifiedTime Adapter definition update time Y --

Legend:
Y: Can be acquired.
--: Cannot be acquired.

#
A response is sent only when ServiceProtocolKind is MDB_WSR.

The details of the acquired information are as follows:

HCSCServerName

Explanation
Acquires the HCSC server name in which the information is acquired.

ClusterName

Explanation
Acquires the cluster name to which the adapter (service adapter) belongs.

ServiceName

Explanation
Acquires the deployed service name when "type=all" is specified in the option. If "type=status" is
specified in the option, this information will not be acquired.

8. Creating Service Requesters

423

ServiceStatus

Explanation
Acquires the status of the service adapter.

• active: Running

• inactive: Stopped

• starting: Starting

• startfailed: Failed to start

• stopping: Stopping

• stopfailed: Failed to stop

• deleting: Deleting

ServiceKind

Explanation
Acquires the type of the deployed service when "type=all" is specified in the option. If
"type=status" is specified in the option, this information will not be acquired.

• ServiceAdapter: Service adapter

ServiceProtocolKind

Explanation
Acquires the type of the adapter protocol when "type=all" is specified in the option. If "type=status"
is specified in the option, this information will not be acquired.

• WebService: SOAP (HTTP) (Synchronous reception (Web Services))

• SessionBean: RMI-IIOP (Synchronous reception (SessionBean))

• MDB_WSR: WS-R (Asynchronous reception (MDB (WS-R)))

• MDB_DBQ: Protocol or JMS unique to Cosminexus RM (Asynchronous reception (MDB (database
queue)))

• Custom: Custom adapter

AdapterName

Explanation
Acquires the deployed adapter name when "type=all" is specified in the option. If "type=status" is
specified in the option, this information will not be acquired.

AdapterLocalCall

Explanation
Acquires the usage status of a local key of the adapter when "type=all" is specified in the option. If
"type=status" is specified in the option, this information will not be acquired.
This item is sent as a response only when ServiceProtocolKind is MDB_WSR.

• true: A local key is used

• false: A local key is not used

EntryTime

Explanation
Sends (as a response) the time (time registered in the definition) at which the service adapter was deployed,
when "type=all" is specified in the option. If "type=status" is specified in the option, this
information will not be acquired.

Format
YYYY/MM/DD hh:mm:ss.SSS

• YYYY: Year

• MM: Month

• DD: Date

8. Creating Service Requesters

424

• hh: Hour

• mm: Minutes

• ss: Seconds

• SSS: Milli seconds

ModifiedTime

Explanation
Sends (as a response) the time (time registered in the definition) at which the service adapter was defined in
the development environment, when "type=all" is specified in the option. If "type=status" is
specified in the option, this information will not be acquired.

Format
YYYY/MM/DD hh:mm:ss

• YYYY: Year

• MM: Month

• DD: Date

• hh: Hour

• mm: Minutes

• ss: Seconds

(b) Examples of response messages

Examples of response messages are described below.

Example 1: When "type=all,returnType=Properties" is specified in the option:

<?xml version="1.0" encoding="UTF-8"?>
<getServiceInfoResponse>
<HCSCServerName>HCSC</HCSCServerName>
<ClusterName>Cluster</ClusterName>
<ServiceName>Service1</ServiceName>
<ServiceStatus>Active</ServiceStatus>
<ServiceKind>ServiceAdapter</ServiceKind>
<ServiceProtocolKind>WebService</ServiceProtocolKind>
<AdapterName>ad1</AdapterName><AdapterLocalCall/>
<EntryTime>YYYY/MM/DD hh:mm:ss.SSS</EntryTime>
<ModifiedTime>YYYY/MM/DD hh:mm:ss</ModifiedTime>
</getServiceInfoResponse>

#1
The order of the values might vary (can be in any order).

#2
When "type=status,returnType=Properties" is specified in the option, the information that is not to be sent as
a response does not exist in the response message.

Example 2: When "type=all,returnType=String" is specified in the option:

{HCSCServerName=HCSC,ClusterName=Cluster,ServiceName=Service1,ServiceStatus=Active,
ServiceKind=ServiceAdapter,ServiceProtocolKind=WebService,AdapterName=ad1,EntryTime
=YYYY/MM/DD hh:mm:ss.SSS,ModifiedTime=YYYY/MM/DD hh:mm:ss}

#1
The order of the values may vary (can be in any order).

#2
When "type=status,returnType=String" is specified in the option, the information that is not to be sent as a
response does not exist in the response message.

Example 3 When "type=all,returnType=XML" is specified in the option:

<?xml version="1.0" encoding="UTF-8"?>
<getServiceInfoResponse>
<HCSCServerName>HCSC</HCSCServerName>
<ClusterName>Cluster</ClusterName>

8. Creating Service Requesters

425

<ServiceName>Service1</ServiceName>
<ServiceStatus>Active</ServiceStatus>
<ServiceKind>ServiceAdapter</ServiceKind>
<ServiceProtocolKind>WebService</ServiceProtocolKind>
<AdapterName>ad1</AdapterName>
<AdapterLocalCall/>
<EntryTime>YYYY/MM/DD hh:mm:ss.SSS</EntryTime>
<ModifiedTime>YYYY/MM/DD hh:mm:ss</ModifiedTime>
</getServiceInfoResponse>

#1
When no value exists, an empty tag is sent as a response.
Example
<AdapterLocalCall/>

#2
When "type=status,returnType=XML" is specified in the option, <tag> of the information that is not to be sent as a
response does not exist in the response message.

(6) Error information acquisition
When an error occurs while checking the operating status of the service adapter, catch the
CSCMsgServerFaultException object and acquire the error information of SOAPFault.

For details about error information acquisition, see 8.2.8 Acquiring Error Information.

The main causes of occurrence of an error are as follows:

• Required arguments are not specified.

• The input value of arguments is invalid (invalid format).

• A service adapter with the corresponding service name is not deployed on the HCSC server.

• Request reception is not running (stopped, starting, failed to start, stopping, failed to stop, and deleting).

8. Creating Service Requesters

426

8.3 Creating a service requester using standard
synchronous reception (Web Services) (JAX-WS
engine)

You can create a service requester that sends a request to the standard synchronous reception (Web Services) and uses
the JAX-WS engine for communication. A service adapter that uses the JAX-WS engine for communication sends a
request message to standard synchronous reception (Web Services) using SOAP (document-literal type).

The following figure shows the relationship between a service requester for the JAX-WS engine and an HCSC server:

Figure 8‒12: Relationship between a service requester that generates a request to Standard synchronous
reception (Web Services) and an HCSC server (JAX-WS engine)

8.3.1 Procedure for creating a service requester (Standard synchronous
reception (Web Service)) (JAX-WS engine)

This subsection describes the procedure for sending a request for executing the service component in standard
synchronous reception (Web Service) to create a service requester for invoking the service component.

8. Creating Service Requesters

427

Figure 8‒13: Procedure for creating a service requester (standard synchronous reception (Web service)
(JAX-WS engine)

The operations of each process are as follows:

(1) Acquiring WSDL
Acquire interface information of synchronous reception (Web Service) of the HCSC server invoking the service
component. For details about acquiring WSDL, see 8.3.2 Acquiring WSDL.

(2) Creating service classes
Create the service class from WSDL acquired by 8.3.2 Acquiring WSDL. For details about creating service classes, see
8.3.3 Creating service classes.

(3) Creating objects
To invoke the synchronous reception (Web Service) method, create a proxy class object from the service class
generated in 8.3.3 Creating service classes. For details about creating the proxy class objects, see 8.3.4 Generating
objects.

(4) Specifying parameters
Specify parameters for the method argument of the synchronous reception (Web Service). For details about specifying
parameters, see 8.3.5 Specifying parameters.

8. Creating Service Requesters

428

(5) Creating request messages
Create the request message to request execution of the service component. For details about creating request
messages, see 8.3.6 Creating request messages.

(6) Acquiring response messages
From synchronous reception (Web Service), acquire the response message for the execution request of the service
component. For details about acquiring response messages, see 8.3.7 Acquiring response messages.

(7) Acquiring error information
If errors occur in the service component of the request destination, HCSC server, and the JAX-WS engine, acquire an
error information and take action accordingly. For details about acquiring an error information, see 8.3.8 Acquiring
error information.

8.3.2 Acquiring WSDL
Acquire interface information of synchronous reception (Web Service) of the HCSC server invoking the service
component. The following 2 methods can be used for acquiring WSDL:

Method 1

1. In the Eclipse menu, choose HCSC-Definer and List of public services.
The list of HCSC components appears in the list of public services in tree view.

2. In the list of HCSC components, choose the service component to be invoked (HCSC component) and double-
click.
Information of the HCSC component appears in the HCSC Component Information Display screen. For details
about the HCSC Component Information Display screen, see Cosminexus Service Platform Reference.
Information of the HCSC server of the service component request destination appears in Server information.

3. Choose the WSDL type to be acquired by the Binding Style radio button and SOAP Version radio button, if
required.
Choose the WSDL definition style to be acquired by the Binding Style radio button. Choose the corresponding
SOAP specifications version by the SOAP Version radio button.

4. Click Acquire WSDL.
The Save WSDL file dialog box appears.
Specify the save destination and acquire WSDL.

Method 2

1. Acquire a WSDL sample from the directory in which HCSC-Messaging is installed.
Acquire either of the following WSDL according to use:

• For SOAP1.1/document-literal type
cscmsg_ws_doc.wsdl file

• For SOAP1.2/document-literal type
cscmsg_ws_doc_1_2.wsdl file

For details about the directory in which HCSC-Messaging is installed, see the contents related to installation of
uCosminexus Service Platform in Cosminexus Service Platform System Setup and Operation Guide.

2. Change the contents of location of WSDL soap:address or soap12:address to the following:
http://Host name:Port number#1/Context root#2
 /services/CSCMsgSyncServiceDeliveryWSImpl
#1

URL of the HCSC server.

8. Creating Service Requesters

429

#2
Cluster name of the HCSC server decided while deploying the HCSC server configuration in the development
environment and operation environment. In SOAP1.2, the cluster name is given the suffix "12".

8.3.3 Creating service classes
Create a service class from the acquired WSDL. Create a service class with the cjwsimport command provided by
the JAX-WS functionality.

A command input example is shown below:

cjwsimport -s source-file-output-destination-directory -d compiled-class-file-output-
destination-directory cscmsg_ws_doc.wsdl

For the JAX-WS engine, set up cscmsg_ws_doc.wsdl in such a way so that the WSDL style becomes document-
literal.

In the input example of this command, the WSDL (cscmsg_ws_doc.wsdl) acquired in 8.3.2 Acquiring WSDL is
saved in the current directory in which the cjwsimport command is executed.

For details about options of the cjwsimport command, see the manual Cosminexus Application Server Web Service
Development Guide.

When you execute this command, the following directories and files will be created in the output destination directory
of the specified source file:

/Output destination directory of the source file
 jp/co/hitachi/soft/csc/msg/message/reception/ejb/
 CSCMsgServerFaultException.java
 //Class in which fault information unique to HCSC server is saved
 CSCMsgServerFaultException_Exception.java
 //Exception class that throws CSCMsgServerFaultException
 CSCMsgSyncServiceDeliveryWSImpl.java
 //Service end point interface corresponding to the portType element of the WSDL
 CSCMsgSyncServiceDeliveryWSImplService.java
 //Service class
 GetServiceInfo.java
 //JavaBean class for the request message of the getServiceInfo operation#1
 GetServiceInfoResponse.java
 //JavaBean class for the response message of the getServiceInfo operation#1
 InvokeBinary.java
 //JavaBean class for the request message of the invokeBinary operation#1
 InvokeBinaryResponse.java
 //JavaBean class for the response message of the invokeBinary operation#1
 InvokeBPXML.java
 //JavaBean class for the request message of the invokeBPXML operation#1
 InvokeBPXMLResponse.java
 //JavaBean class for the response message of the invokeBPXML operation#1
 InvokeXML.java
 //JavaBean class for the request message of the invokeXML operation#1
 InvokeXMLResponse.java
 //JavaBean class for the response message of the invokeXML operation#1
 ObjectFactory.java
 //ObjectFactory class of the JAXB2.1 specifications
 package-info.java
 //Files used with JAXB2.1
 cscmsg_ws_doc.wsdl#2

#1
Used in JAXB2.1.

#2
In this output example, the cjwsimport command is executed in the following conditions:

• The WSDL (cscmsg_ws_doc.wsdl) acquired in 8.3.2 Acquiring WSDL is saved in the directory specified
in the -s option of the cjwsimport command. The WSDL specified in the cjwsimport command is also
a WSDL that exists in the directory specified in the -s option.

• The cjwsimport command is executed by omitting the -s option, and the WSDL
(cscmsg_ws_doc.wsdl) acquired in 8.3.2 Acquiring WSDL is saved in the current directory in which the

8. Creating Service Requesters

430

cjwsimport command is executed. The WSDL specified in the cjwsimport command is also a WSDL
for which no directory is specified and that exists in the current directory.

The WSDL (cscmsg_ws_doc.wsdl) specified in the cjwsimport command is not output in the output
destination directory of the source file specified in the -s option after the command is executed.

! Important note

For a service requester supporting the JAX-WS engine for communication, the WSDL is read during the execution of
the program. When the default constructor of the service class is used, the WSDL in the WSDL path (directory that
stores the WSDL file acquired in 8.3.2 Acquiring WSDL for generating the service class) is read. Therefore, after
executing the cjwsimport command, do not move the WSDL file so that the configuration position of the WSDL file
based on the service class does not obstruct the relative relationship. For changing the configuration position of the
WSDL referenced during the execution of the service requester from the WSDL path specified with the cjwsimport
command, use a constructor for which the URL can be specified.

8.3.4 Generating objects
In order to invoke the method of the synchronous reception (Web Services), use the created service class to generate
proxy class objects. The procedures of generating proxy class objects are described below:

1. Create objects of the CSCMsgSyncServiceDeliveryWSImplService class.

Example:

CSCMsgSyncServiceDeliveryWSImplService service
 = new CSCMsgSyncServiceDeliveryWSImplService();

2. Create the CSCMsgSyncServiceDeliveryWSImpl.java class that is the proxy class corresponding to
wsdl:portType.

Example:

CSCMsgSyncServiceDeliveryWSImpl ws
 = service.getCSCMsgSyncServiceDeliveryWSImpl();

3. Using the created CSCMsgSyncServiceDeliveryWSImpl.java class object, invoke a method of the synchronous
reception (Web Services).

Example: When the request message is in XML

String result = ws.invokeXML(// Method invocation
 serviceName, // Service name
 clientID, // Client correlation ID
 requestFormatID, // Request format ID
 responseFormatID, // Response format ID
 operationName, // Operation name
 userData); // User message

Example: When the request message is binary

byte[] resultBinary = ws.invokeBinary(// Method invocation
 serviceName, // Service name
 clientID, // Client correlation ID
 requestFormatID, // Request format ID
 responseFormatID, // Response format ID
 operationName, // Operation name
 userDataBinary.length, // User message length
 userDataBinary); // User message

! Important note
A binary request message can be sent only when the message format used on the service component side is binary.

8.3.5 Specifying parameters
The parameters that become the arguments of the method are the same as those used in creating a service requester in
SOAP communication infrastructure.

For details about parameter specification in SOAP communication infrastructure, see 8.2.5 Specifying Parameters.

8. Creating Service Requesters

431

8.3.6 Creating request messages
The request message creation method is the same as that used for creating a service requester in SOAP communication
infrastructure.

For details about request message creation in SOAP communication infrastructure, see 8.2.6 Creating Request
Messages.

8.3.7 Acquiring response messages
The response message acquisition method is the same as that used for creating a service requester in SOAP
communication infrastructure.

For details about response message acquisition in SOAP communication infrastructure, see 8.2.7 Acquiring Response
Messages.

8.3.8 Acquiring error information
If an error occurs at the request-destination service component, the HCSC server, or the JAX-WS engine, acquire the
error information and take corrective action according to the information.

For a service adapter that uses the JAX-WS engine for communication, the exception
(CSCMsgServerFaultException_Exception in SOAP1.1 and
CSCMsgServerFault1.2Exception_Exception in SOAP1.2) in which the information is wrapped will be
caught. Therefore, the save fault information class must be acquired using the getFaultInfo() method.

#
While executing the cjwsimport command, the exception name is given the suffix "_Exception" to avoid
removing the underscore "_" (underscore) and the existence of duplicate names with the save class of fault
information (FaultBean).

(1) Example of implementing service requester side
An example of implementation at the service requester side to acquire the save fault information class when using the
getFaultInfo() method to acquire an exception class, is described below.

• In SOAP1.1

/**
 * Sample Program
 */
{
 try {
 :
 // Web service invocation
 :
 } catch (CSCMsgServerFaultException_Exception e) {
 // An exception or user-defined exception occurs in CSC

 // Get the exception object defined in CSC
 CSCMsgServerFaultException faultInfo = e.getFaultInfo();

 // Output the exception information
 System.err.println("errorCode="
 + faultInfo.getErrorCode());
 System.err.println("errorMessage="
 + faultInfo.getErrorMessage());
 System.err.println("processInstanceID="
 + faultInfo.getProcessInstanceID());
 System.err.println("faultCode="
 + faultInfo.getCscmsgFaultCode());
 System.err.println("faultActor="
 + faultInfo.getCscmsgFaultActor());
 System.err.println("faultString="
 + faultInfo.getCscmsgFaultString());
 System.err.println("faultName="
 + faultInfo.getFaultName());
 byte[] faultDetail = faultInfo.getCscmsgFaultDetail();

8. Creating Service Requesters

432

 try {
 if(faultDetail != null) {
 System.err.println("faultDetail="
 + new String(faultDetail, "UTF-8"));
 }
 } catch (UnsupportedEncodingException e1) {
 e1.printStackTrace();
 }
 } catch (SOAPFaultException e) {
 :
 }
}

• In SOAP1.2

/**
 * Sample Program
 */
{
 try {
 :
 // Web Service invocation
 :
 } catch (CSCMsgServerFault12Exception_Exception e) {
 // An internal exception or a user-defined exception occurred in CSC

 // Acquire fault information object defined in CSC
 CSCMsgServerFault12Exception faultInfo = e.getFaultInfo();

 // Output exception information
 System.err.println("errorCode="
 + faultInfo.getErrorCode());
 System.err.println("errorMessage="
 + faultInfo.getErrorMessage());
 System.err.println("processInstanceID="
 + faultInfo.getProcessInstanceID());
 CscmsgFaultCode code = faultInfo.getCscmsgFaultCode();
 if (code == null) {
 System.err.println("Code=" + code);
 } else {
 List<String> values = code.getValues();
 for(String value : values) {
 System.err.println("Code Value=" + value);
 }
 }
 CscmsgFaultReason reason = faultInfo.getCscmsgFaultReason();
 if (reason == null) {
 System.err.println("Reason=" + reason);
 } else {
 List<CscmsgFaultReasonText> texts =
 reason.getCscmsgFaultReasonText();
 Locale locale = Locale.getDefault();
 for(CscmsgFaultReasonText text : texts) {
 if(locale.equals(text.getLocale())) {
 System.err.println("Reason=" + text.getText());
 }
 }
 }
 System.err.println("Role="
 + faultInfo.getCscmsgFaultRole());
 System.err.println("Node="
 + faultInfo.getCscmsgFaultNode());
 System.err.println("faultName="
 + faultInfo.getFaultName());
 byte[] faultDetail = faultInfo.getCscmsgFaultDetail();
 try {
 if(faultDetail != null) {
 System.err.println("faultDetail="
 + new String(faultDetail, "UTF-8"));
 }
 } catch (UnsupportedEncodingException e1) {
 e1.printStackTrace();
 }
 } catch (SOAPFaultException e) {
 :
 }
}

If an exception (SOAP Fault) occurs from the Web Service in the detail information of the SOAP envelope, SOAP
Fault information and HCSC-Messaging returned by the service (in which SOAP Fault occurred) includes the set error
message and error code.

8. Creating Service Requesters

433

If an exception is detected in HCSC-Messaging and in a service other than the Web Service, the error code and error
information detected in HCSC-Messaging is included.

Each method is described as follows:

(a) Method of exception information maintenance class

getErrorMessage (common for SOAP1.1 and SOAP1.2)

Description
Acquires the error message.
Used for acquiring contents of the following exceptions:

• Exception detected in HCSC-Messaging

• Faults from the service component and business process

Format
public java.lang.String getErrorMessage()

getErrorCode (common for SOAP1.1 and SOAP1.2)

Description
Acquires the error code.
Used for acquiring error codes for contents of the following exceptions:

• Exception detected in HCSC-Messaging

• Faults from the service component and business process

Format
public java.lang.String getErrorCode()

getProcessInstanceID (common for SOAP1.1 and SOAP1.2)

Description
Acquires the business process instance ID.

Format
public String getProcessInstanceID()

getCscmsgFaultCode (for SOAP1.1)

Description
If communication is received from SOAP1.1, acquires FaultCode information from the service component
(Web Service), business process or custom adapter.

Format
public java.lang.String getCscmsgFaultCode()

getCscmsgFaultString (for SOAP1.1)

Description
If communication is received from SOAP1.1, acquires FaultString information from the service component
(Web Service), business process or custom adapter.

Format
public java.lang.String getCscmsgFaultString()

getCscmsgFaultActor (for SOAP1.1)

Description
If communication is received from SOAP1.1, acquires FaultActor information from the service component
(Web Service), business process or custom adapter.

Format
public java.lang.String getCscmsgFaultActor()

getCscmsgFaultCode (for SOAP1.2)

Description
If communication is received from SOAP1.2, acquires the CscmsgFaultCode class that maintains FaultCode
or Code information from the service component (Web Service), business process or custom adapter.

8. Creating Service Requesters

434

Format
public jp.co.hitachi.soft.csc.msg.message.reception.ejb.CscmsgFaultCode
getCscmsgFaultCode()

getCscmsgFaultReason (for SOAP1.2)

Description
If communication is received from SOAP1.2, acquires the CscmsgFaultReason class that maintains Reason
information from the service component (Web Service), business process or custom adapter.

Format
public jp.co.hitachi.soft.csc.msg.message.reception.ejb.CscmsgFaultReason
getCscmsgFaultReason()

getCscmsgFaultRole (for SOAP1.2)

Description
If communication is received from SOAP1.2, acquires Role information from the service component (Web
Service), business process or custom adapter.

Format
public java.lang.String getCscmsgFaultRole()

getCscmsgFaultNode (for SOAP1.2)

Description
If communication is received from SOAP1.2, acquires Node information from the service component (Web
Service), business process or custom adapter.

Format
public java.lang.String getCscmsgFaultNode()

getCscmsgFaultDetail (common for SOAP1.1 and SOAP1.2)

Description
Acquires Detail information from the service component (Web service), business process or custom adapter.
Transfers the Detail information ser by the service component to the service requester in byte arrays. The
acquired byte arrays must be converted to character strings.
If Detail information does not exist in the service component (Web Service), business process or custom
adapter, respond with a byte array of 0 bytes (blank tab of SOAP message).

Format
public byte[] getCscmsgFaultDetail()

getFaultName (common for SOAP1.1 and SOAP1.2)

Description
Acquires exception name from the service component (Web Service) or business process.

Format
public String getFaultName()

(b) Method of the CscmsgFaultCode class

getValues (for SOAP1.2)

Description
If communication is received from SOAP1.2, acquires Value information containing FaultCode or Code
information from the service component (Web Service), business process or custom adapter.

Format
public java.util.List<java.lang.String> getValues()

8. Creating Service Requesters

435

(c) Method of the CscmsgFaultReason class

getTexts (for SOAP1.2)

Description
If communication is received from SOAP1.2, acquires Text information containing Reason information from
the service component (Web Service), business process or custom adapter.

Format
public java.util.List<java.lang.String> getTexts()

(2) Format of error information (SOAPFault)
The following table shows the format of error information (SOAPFault).

Table 8‒9: Format of error information (SOAPFault)

Element
Name Contents

SOAP1.1 SOAP1.2

faultcode Code Fault code Value depends on the JAX-WS engine.

Output a violation code.

faultstring -- Fault character string Value depends on the JAX-WS engine.

Output an error message.

-- Reason Fault reason Value depends on the JAX-WS engine.

Output an error message.

faultactor Role Fault creator Value depends on the JAX-WS engine. The value does not exist.

-- Node Fault node Value depends on the JAX-WS engine. The value does not exist.

detail#1 Detail#2 Fault details Contents correspond to wsdl:fault.

Legend: Not applicable

#1
The detail element shows details of error information. Table10-10 shows the structural system in which it is saved.

#2
The detail element shows details of error information. Table10-11 shows the structural system in which it is saved.

Table 8‒10: Details (SOAP1.1) of error information (SOAPFault)

Field name

Description

Error (fault) from service component, business process,
custom adapter or integrated HCSC server

Error (exception) detected in
HCSC server

errorMessage Error contents are as follows:

• Error detected in HCSC server

• Error from service component, business process and custom adapter

errorCode Error codes correspond to the following exception contents.

• Error detected in HCSC server

• Error from service component, business process and custom adapter

processInstanceID Information of business process instance ID.

Value is set if an error occurs in the business process.

cscmsgFaultCode FaultCode information from service component (Web Service),
business process or custom adapter.

--

8. Creating Service Requesters

436

Field name

Description

Error (fault) from service component, business process,
custom adapter or integrated HCSC server

Error (exception) detected in
HCSC server

cscmsgFaultString FaultString information from service component (Web Service),
business process or custom adapter.

--

cscmsgFaultActor FaultActor information from service component (Web Service),
business process or custom adapter.

--

cscmsgFaultDetail Detail information from service component (Web Service),
business process or custom adapter.

--

faultName Fault name (exception name) information from service component
(Web service or SessionBean) or business process.

Value is set in the following cases:

• SOAP Fault of user-defined exception from service
component (Web Service or SessionBean)

• Fault from business process

In the SOAP Fault operation definition file, value is not set in case
of SOAP Fault from Web Service defining targetNamespace URI.
For details about the SOAP Fault operation definition file, see
Cosminexus Service Platform Reference.

--

Legend: Not applicable.

Table 8‒11: Details (SOAP1.2) of error information (SOAPFault)

Field name

Description

Error (fault) from service component, business process,
custom adapter or integrated HCSC server

Error (exception) detected in
HCSC server

errorMessage Error contents are as follows.

• Error detected in HCSC server

• Error from service component, business process and custom adapter

errorCode Error codes correspond to the following exception contents.

• Error detected in HCSC server

• Error from service component, business process and custom adapter

processInstanceID Information of business process instance ID.

Value is set if an error occurs in the business process.

cscmsgFaultCode FaultCode information from service component (Web Service),
business process or custom adapter.

--

cscmsgFaultReason FaultReason information from service component (Web Service),
business process or custom adapter.

--

cscmsgFaultRole Role information from service component (Web Service),
business process or custom adapter.

--

cscmsgFaultDetail Detail information from service component (Web Service),
business process or custom adapter.

--

faultName Fault name (exception name) information from service component
(Web service or SessionBean) or business process.

Value is set in the following cases:

• SOAP Fault of user-defined exception from service
component (Web Service or SessionBean)

• Fault from business process

--

8. Creating Service Requesters

437

Field name

Description

Error (fault) from service component, business process,
custom adapter or integrated HCSC server

Error (exception) detected in
HCSC server

faultName In the SOAP Fault operation definition file, value is not set in case
of SOAP Fault from Web Service defining targetNamespace URI.
For details about the SOAP Fault operation definition file, see
Cosminexus Service Platform Reference.

--

Legend: Not applicable.

8.3.9 Creating a service requester requesting re-execution of a business
process (Web service and JAX-WS engine)

You can create a service requester requesting re-execution of the business process for the service requester that outputs
a request to standard synchronous reception (Web Service).

Transmission occurs between the service requester and standard synchronous reception (Web Service) by SOAP
messages in the document/literal style.

The creation flow of the service requester requesting the standard synchronous reception (Web Service) to re-execute
the business process is the same as for creating an ordinary service requester by generating a request in standard
synchronous reception (Web Service). For creation flow, see 8.3.1 Procedure for creating a service requester
(Standard synchronous reception (Web Service)) (JAX-WS engine).

The following describes the contents implemented in each process.

(1) Acquiring WSDL
The method to acquire WSDL is the same as for creating an ordinary service requester by generating a request in
standard synchronous reception (Web Service).

For details about how to acquire WSDL, see 8.3.2 Acquiring WSDL.

(2) Creating service classes
The method for creating service classes is the same as for creating an ordinary service requester by generating a
request in standard synchronous reception (Web Service).

For details about creating service classes, see 8.3.3 Creating service classes.

(3) Creating objects
The method for creating objects is the same as for creating an ordinary service requester by generating a request in
standard synchronous reception (Web Service).

For details about creating objects, see 8.3.4 Generating objects.

Note that the method for requesting re-execution of the business process uses invokeBPXML() and invokes.

(4) Specifying parameters
The parameter of the method argument is the same as for creating a service requester in SOAP communication
infrastructure.

For details about specifying parameters in SOAP communication infrastructure, see 8.2.5 Specifying Parameters.

(5) Creating request messages
The method for creating request messages is the same as for creating service requester in SOAP communication
infrastructure.

For details about creating request messages in SOAP communication infrastructure, see 8.2.6 Creating Request
Messages.

8. Creating Service Requesters

438

(6) Acquiring response messages
The method for acquiring response messages is the same as for creating a service requester in SOAP communication
infrastructure.

For details about acquiring response messages in SOAP communication infrastructure, see 8.2.7 Acquiring Response
Messages.

(7) Acquiring error information
Implementation of the service requester for acquiring error information is the same as for creating an ordinary service
requester by generating a request in standard synchronous reception (Web Service).

For details about acquiring error information, see 8.3.8 Acquiring error information.

8.3.10 Creating service requester for requesting confirmation of
operation status of service adapter (Web Service and JAX-WS
engine)

For the service requester requesting standard synchronous reception (Web Service), you can create a service requester
requesting confirmation of operation status of the service adapter from the application.

To confirm the operation status of the service adapter, the service component generating a request to standard
synchronous reception (Web Service) must be invoked and the process invoking the method of operation status
confirmation must be added.

The following shows the procedure for creating service requester for requesting confirmation of operation status of
service adapter from the application in standard synchronous reception (Web Service).

Figure 8‒14: Procedure for creating service requester for requesting confirmation of operation status of
service adapter (standard synchronous reception (Web Service and JAX-WS engine))

8. Creating Service Requesters

439

The following describes the operation of each process.

(1) Acquiring WSDL
The method for acquiring WSDL is the same as for creating an ordinary service requester by generating a request in
standard synchronous reception (Web Service).

For details about how to acquire WSDL, see 8.3.2 Acquiring WSDL.

(2) Creating service classes
The method for creating service classes is the same as for creating an ordinary service requester by generating a
request in standard synchronous reception (Web Service).

For details about creating service classes, see 8.3.3 Creating service classes.

(3) Creating objects
The method for creating objects is the same as for creating a service requester in SOAP communication infrastructure.

For details about creating objects, see 8.3.9(3) Creating objects.

To invoke the service method, use the class object and implement as follows:

String result = ws.getServiceInfo(// Invoking method
 serviceName, // Service name
 clientID, // Client correlation ID
 "type=all,returnType=Properties"); // Options

(4) Specifying parameters
The parameter of the method argument is the same as for creating a service requester in SOAP communication
infrastructure.

For details about specifying SOAP communication infrastructure parameters, see 8.3.9(4) Specifying parameters.

(5) Acquiring response messages
The method for acquiring response messages is the same as for creating a service requester in SOAP communication
infrastructure.

SOAP communication infrastructure. For details about acquiring response messages, see 8.3.9(5) Creating request
messages.

(6) Acquiring error information
Implementation of the service requester for acquiring error information is the same as for creating an ordinary service
requester by generating a request in standard synchronous reception (Web Service).

For details about acquiring error information, see 8.3.8 Acquiring error information.

8. Creating Service Requesters

440

8.4 Service Requester That Sends Requests to a
Standard Synchronous Reception (SessionBean)
(JAX-WS engine)

A service requester that sends request messages to a standard synchronous reception (SessionBean) uses RMI-IIOP to
communicate with the standard reception. The service requester sends a service component execution request message
to a standard reception, and an HCSC server performs service component execution.

The user acquires a stub from the development environment and uses this stub to send a request to the synchronous
reception (SessionBean). Therefore, the service requester must be installed such that it can utilize the acquired stub.

The following figure shows the relationship between a service requester for a JAX-WS engine that sends requests to a
standard synchronous reception (SessionBean) and an HCSC server.

Figure 8‒15: Relationship between a service requester that sends requests to a standard synchronous
reception (Web Service) and an HCSC server(JAX-WS engine)

8.4.1 Procedure for Creating a Service Requester (Standard
Synchronous Reception (SessionBean))

This subsection explains how to create a service requester that sends a service component execution request to a
standard synchronous reception (SessionBean) and invokes a service component. The creation workflow is shown in
the following figure.

8. Creating Service Requesters

441

Figure 8‒16: Service requester creation work flow (standard synchronous reception (SessionBean))

The tasks in the individual steps are described below.

(1) Stub acquisition
From the HCSC Component Information Display screen in the development environment, acquire the stub that
corresponds to the J2EE server (JNDI name) to which the HCSC server is deployed. For details about stub acquisition,
see 8.4.2 Acquiring Stubs.

(2) Instance generation
To invoke the method of the synchronous reception (SessionBean), create an Enterprise Bean instance from the stub
acquired in (1). For details about instance creation, 8.4.3 Creating Instances.

(3) Parameter specification
Specify the parameters that become the arguments of the method of the synchronous reception (SessionBean). For
details about parameter specification, see 8.4.4 Specifying Parameters.

(4) Request message creation
Create a request message for requesting service component execution. For details about request message creation, see
8.4.5 Creating Request Messages.

(5) Response message acquisition
Acquire a response message corresponding to the service component execution request from the synchronous
reception (SessionBean). For details about response message acquisition, see 8.4.6 Acquiring Response Messages.

8. Creating Service Requesters

442

(6) Error information acquisition
If an error occurs at the request-destination service component, the HCSC server, or the EJB container, acquire the
error information and take corrective action according to the information. For details about error information
acquisition, see 8.4.7 Acquiring Error Information.

8.4.2 Acquiring Stubs
Acquire the stub that corresponds to the J2EE server (JNDI name) to which the HCSC server is deployed. The stub
acquisition method is described blow.

1. From the Eclipse menu, choose HCSC-Definer, and then Published Services List.
HCSC components are listed in Published Services List in the tree view.

2. From the HCSC component list, select and double-click the service component (HCSC component) to be invoked.
The information about the HCSC component is displayed in the HCSC Component Information Display screen.
For details about this screen, see the manual Cosminexus Service Platform Overview.
The information about the HCSC server that becomes the service component request destination is displayed in
Server information.

3. Click Stub acquisition.
A dialog box for saving a stub file opens.
Specify the file saving destination and acquire the stub.

The configuration of the acquired stub is shown below.

/current-directory
 -cscmsg_ejb_client.jar

8.4.3 Creating Instances
To invoke the method of the synchronous reception (SessionBean), use the acquired stub to create an Enterprise Bean
instance. The procedure for creating an Enterprise Bean instance is described below.

1. Create a JNDI naming context to be used for retrieving an EJB home object reference.

Example:

javax.naming.Context ctx = new javax.naming.InitialContext();

2. Using the created JNDI naming context, acquire an EJB home object reference.
To acquire an EJB home object reference, use a user-specified name space or an EJB container name space for
retrieval. For details about retrieving and acquiring an EJB home object reference, see the manual Cosminexus
Application Server Function Guide - Basic Development for EJB Container.

Example:

Object objref
 = initial.lookup("HITACHI_EJB/SERVERS/" + "J2EE server-name"
 + "/EJB/CSCMsgSyncServiceDelivery/CSCMsgSyncServiceDeliveryEJB");

CSCMsgSyncServiceDeliveryHome home
 = (CSCMsgSyncServiceDeliveryHome)PortableRemoteObject
 .narrow(objref, CSCMsgSyncServiceDeliveryHome.class);

3. Use the create method of the EJB home object to create an Enterprise Bean instance. Using the created Enterprise
Bean instance, invoke the method (Enterprise bean method) of the synchronous reception (SessionBean).

Example: When the request message is in XML

CSCMsgSyncServiceDelivery reception = home.create();
 // Enterprise Bean instance creation
String result = reception .invokeXML(// method invocation
 serviceName, // service name
 clientID, // client correlation ID
 requestFormatID, // request format ID

8. Creating Service Requesters

443

 responseFormatID, // response format ID
 operationName, // operation name
 userData); // user message

Example: When the request message is binary

CSCMsgSyncServiceDelivery reception = home.create();
 // Enterprise Bean instance creation
byte[] resultBinary = reception .invokeBinary(// method invocation
 serviceName, // service name
 clientID, // client correlation ID
 requestFormatID, // request format ID
 responseFormatID, // response format ID
 operationName, // operation name
 userDataBinary.length, // message length
 userDataBinary); // user message

! Important note
A binary request message can be sent only when the message format used on the service component side is binary.

8.4.4 Specifying Parameters
To invoke a method of the synchronous reception (SessionBean), specify the parameters that become the arguments of
the method. The following figure shows parameter details.

Table 8‒12: Parameter details (standard synchronous reception (SessionBean))

Parameter name Data type
Parameter

Explanation
invokeXML invokeBinary

Service name java.lang.
String

serviceName This is the service name of the request
destination.

This parameter is required.

For the service name of the request destination,
specify the adapter or business process defined
in the development environment.

Client correlation ID java.lang.
String

clientID This is a correlation identifier for uniquely
identifying the request message from the service
requester.

Specify alphanumeric characters, underscore (_),
period (.), and hyphen (-) up to 255 characters.

This parameter is used to map the request
message from the service requester to the
execution history, logs, and traces managed by
the HCSC server. Therefore, specify a different
ID for each request message sent to the HCSC
server.

To omit the client correlation ID, specify NULL.

Request format ID java.lang.
String

cscRequestFormatID This is an ID for uniquely identifying the request
message format from the service requester.

Specify NULL for this parameter.

Response format ID java.lang.
String

cscResponseFormatID This is an ID for uniquely identifying the
response message from the HCSC server.

Specify NULL for this parameter.

Operation name java.lang.
String

serviceOperationName This is an operation name corresponding to the
service name at the request destination.#

This operation name specifies a service
component defined in the development
environment. Specify the operation name with

8. Creating Service Requesters

444

Parameter name Data type
Parameter

Explanation
invokeXML invokeBinary

Operation name java.lang.
String

serviceOperationName NCName definition characters of XMLSchema
within 255 bytes.

This parameter is required when the service
component at the request destination is a
synchronous service (Web Services or
SessionBean) or business process.

When the service at the request destination is an
asynchronous service, the operation name can be
omitted. To omit it, specify NULL.

User message java.lang.
String

msg -- This is the request message from the service
requester.#

Specify this parameter when the request message
is in XML. If there is no request message,
specify NULL or an empty character (""). For
details about request messages, see 8.4.5
Creating Request Messages.

User message length int -- requestMessa
geLength

This is the request message length.

Specify this parameter when the request message
is binary. This parameter is required when the
request message is binary.

If there is no request message, specify 0.

User message byte[] -- msg This is the request message from the service
requester.#

Specify this parameter when the request message
is binary. For details about request messages, see
8.4.5 Creating Request Messages.

If there is no request message, specify NULL or a
0-byte byte array.

Legend:
--: Cannot be specified.

#
When the service component protocol of request destination is SOAP, decide an operation to be invoked from the name of a root
element of user message (in the case of data transformation, it is the name of root element of the message after data
transformation). Therefore, take note that if you specify an invalid name in the root element of user message, an unintended
operation may be invoked.

8.4.5 Creating Request Messages
Create a request message for requesting a service component from the service requester to the synchronous reception
(SessionBean) of the HCSC server. The contents of the request message to be sent from the service requester must be
created in the same message format as that used on the service component side. The following figure shows how a
request message is sent.

8. Creating Service Requesters

445

Figure 8‒17: Sending a request message (standard synchronous reception (SessionBean))

The request message to be sent from the service requester to the synchronous reception (SessionBean) can be either an
XML message or a binary message. Which message type is to be used depends on the protocol being used by the
service component side.

For details about XML and binary request messages, see 8.2.6 Creating Request Messages.

For details about how to send a normal request message, see the contents about service invocation using a
SessionBean, in the manual Cosminexus Service Platform System Setup and Operation Guide.

8.4.6 Acquiring Response Messages
Acquire a response message corresponding to the service component execution request from the synchronous
reception (SessionBean) of the HCSC server. The service requester acquires a response message that has the same
message format as the service component side. The following figure shows how a response message is acquired.

Figure 8‒18: Response message acquisition (standard synchronous reception (SessionBean))

The service requester acquires a response message whose message type is XML. If there is no response message from
the service component, NULL is received.

For details about receiving XML response messages and NULL, see 8.2.7 Acquiring Response Messages.

8.4.7 Acquiring Error Information
If an error occurs at the request-destination service component, the HCSC server, or the EJB container, acquire the
error information and take corrective action according to the information.

You can acquire error information by acquiring the CSCMsgServerException class on the service requester side. For
details about the CSCMsgServerException class, see 8.4.7(2) CSCMsgServerException class. For details on how
errors are informed, see the contents related to the troubleshooting when SessionBean is executed in the manual
Cosminexus Service Platform System Setup and Operation Guide.

To acquire error details, you use the getErrorMessage and getErrorCode methods. To acquire error information
(SOAPFault) from Web Services, you use the checkSoapFault method.

(1) Service requester-side installation example
A service requester-side installation example for acquiring the CSCMsgServerException class is shown below.

8. Creating Service Requesters

446

 ...
} catch (CSCMsgServerException e) {
 System.err.println("Exception ErrorMessage = "
 + e.getErrorMessage());
 System.err.println("Exception ErrorCode = "
 + e.getErrorCode());
 if (e.checkFaultMessage() == true) {
 System.err.println("Exception ProcessInstanceID = "
 + e.getProcessInstanceID());
 System.err.println("Exception FaultCode = "
 + e.getFaultCode());
 System.err.println("Exception FaultString = "
 + e.getFaultString());
 System.err.println("Exception FaultActor = "
 + e.getFaultActor());
 System.err.println("Exception FaultDetails = "
 + new String(e.getFaultDetail(), "UTF-8"));
 System.err.println("Exception FaultName = "
 + e.getFaultName());
 }
}
 ...

(2) CSCMsgServerException class
This is an exception class acquired by the service requester.

(a) Class definition

Package
jp.co.Hitachi.soft.csc.msg.message.reception

Class
public class CSCMsgServerException
extends java.lang.Exception

(b) Field list

Field name Data type Explanation

errorMessage java.lang.Stri
ng

Contents of the following exceptions:

• Exceptions detected inside HCSC-Messaging

• Fault from a service component or business process

errorCode java.lang.Stri
ng

Error code corresponding to the following exceptions:

• Exceptions detected inside HCSC-Messaging

• Fault from a service component or business process

processInstance
ID

java.lang.Stri
ng

Instance ID information of a business process

A value is set when an error occurs in the business process.

cscmsgFaultCode java.lang.Stri
ng

FaultCode information from a service component (Web Services), business
process, or custom adapter

cscmsgFaultStri
ng

java.lang.Stri
ng

FaultString information from a service component (Web Services), business
process, or custom adapter

cscmsgFaultActo
r

java.lang.Stri
ng

FaultActor information from a service component (Web Services), business
process, or custom adapter

cscmsgFaultDeta
il

byte[] Detail information from a service component (Web Services), business
process, or custom adapter

faultName java.lang.Stri
ng

Fault name (exception name) information from a service (Web Services or
SessionBean) or business process

A value is set in the following cases:

8. Creating Service Requesters

447

Field name Data type Explanation

faultName java.lang.Stri
ng

• In the case of SOAP Fault of a user-defined exception from a service
component (Web services or SessionBean)

• In the case of a fault from business process

No value is set in the case of the SOAP Fault error from Web services that
define URI of targetNamespace in the SOAP Fault operation definition file.
For details about the SOAP Fault operation definition file, see the manual
Cosminexus Service Platform Reference.

(c) Method list

Method name Data type Explanation

getErrorMessage java.lang.Stri
ng

Acquires error messages.

getErrorCode java.lang.Stri
ng

Acquires error codes.

checkFaultMessa
ge

Boolean Determines whether there is fault information from a service component,
business process, or custom adapter.

getFaultCode java.lang.Stri
ng

Acquires FaultCode information.

getFaultString java.lang.Stri
ng

Acquires FaultString information.

getFaultActor java.lang.Stri
ng

Acquires FaultActor information.

getFaultDetail byte[] Acquires Detail information.

getProcessInsta
nceID

java.lang.Stri
ng

Acquires the instance ID of a business process.

getFaultName java.lang.Stri
ng

Acquires a fault name (exception name).

(d) Method detail

getErrorMessage

Explanation
Acquires error messages.
Use this method for acquiring the contents of the following exceptions:

• Exceptions detected inside HCSC-Messaging

• Fault from a service component or business process

Format
public java.lang.String getErrorMessage()

Parameter
None

Return value
Error message

Exception
None

getErrorCode

Explanation
Acquires error codes.

8. Creating Service Requesters

448

Use this method for acquiring the error codes corresponding to the following exceptions:

• Exceptions detected inside HCSC-Messaging

• Fault from a service component or business process

Format
public java.lang.String getErrorCode()

Parameter
None

Return value
Error code

Exception
None

checkFaultMessage

Explanation
Determines whether there is fault information from a service component, business process, or custom adapter.
If the service component or business process is Web Services, determines whether the contents of the error
returned as SOAPFault is included.
Also determines whether an individual error from a custom adapter is included.

Format
public boolean checkFaultMessage()

Parameter
None

Return value
true: Fault message information exists.
false: Fault message information does not exist.

Exception
None

getFaultCode

Explanation
Acquires FaultCode information from a service component (Web services), business process, or custom
adapter.

Format
public java.lang.String getFaultCode()

Parameter
None

Return value
faultcode

Exception
None

getFaultString

Explanation
Acquires FaultString information from a service component (Web Services), business process, or custom
adapter.

Format
public java.lang.String getFaultString()

Parameter
None

Return value
faultstring

8. Creating Service Requesters

449

Exception
None

getFaultActor

Explanation
Acquires FaultActor information from a service component (Web Services), business process, or custom
adapter.

Format
public java.lang.String getFaultActor()

Parameter
None

Return value
faultactor

Exception
None

getFaultDetail

Explanation
Acquires Detail information from a service component (Web Services), business process, or custom adapter.
Transfers the Detail information set up by the service component to the service requester in a byte array.
Therefore, the acquired byte array must be converted to a character string.

Format
public byte[] getFaultDetail()

Parameter
None

Return value
detail

Exception
None

getProcessInstanceID

Explanation
Acquires the instance ID of a business process.

Format
public String getProcessInstanceID()

Parameter
None

Return value
String

Exception
None

getFaultName

Explanation
Acquires a fault name (exception name).

Format
public String getFaultName()

Parameter
None

Return value
String

8. Creating Service Requesters

450

Exception
None

(e) Subclass list

Class name Subclass name and explanation

CSCMsgServerException CSCMsgServiceException
Service component exception

CSCMsgServiceUserException
Fault information or Exception from a service
component

CSCMsgBusinessProcessUserException
Fault information or Exception from a business
process

CSCMsgServiceExecuteException
Exception when an exception that is not a user-defined
exception is returned from a service component (Web
Services)

CSCMsgServiceDeliveryExce
ption

Service component request
delivery error

CSCMsgLocationSearchException
Location search failure

CSCMsgRoutingExecException
Routing failure

CSCMsgDelivererExecException
Message delivery failure

CSCMsgDBQServiceDeliveryException
Exception when a standard reception of an
asynchronous database queue invokes a database
queue service component

CSCMsgServerParameterExce
ption

Input parameter error

--

CSCMsgServerInternalExcep
tion

Error other than those described
above

--

Legend:
--: No subclass is available.

8.4.8 Creating a Service Requester That Sends a Request for Business
Process Re-execution (SessionBean)

You can create a service requester that sends requests to a standard synchronous reception (SessionBean) for business
process re-execution.

The procedure for creating a service requester that sends a request to the standard synchronous reception
(SessionBean) for business process re-execution is the same as that for creating an ordinary service requester that
sends requests to the standard synchronous reception (SessionBean). For details about the creation procedure, see
8.4.1 Procedure for Creating a Service Requester (Standard Synchronous Reception (SessionBean)).

The tasks in the individual procedures are described below.

(1) Stub acquisition
The stub acquisition method is the same as that used for creating an ordinary service requester that sends requests to
the standard synchronous reception (SessionBean).

8. Creating Service Requesters

451

For details about stub acquisition, see 8.4.2 Acquiring Stubs.

(2) Instance generation
The instance creation method is the same as that used for creating an ordinary service requester that sends requests to
the standard synchronous reception (SessionBean).

For details about instance creation, 8.4.3 Creating Instances.

To invoke a method that sends a request for business process re-execution, use invokeBPXML().

An example of a method that sends a request for business process re-execution is shown below.

The following example shows the method for requesting re-execution of the business process.

Example: Requesting business process re-execution

String result = ws.invokeBPXML(// method invocation
 serviceName, // service name
 bpRequestType, // request type for business process
 bpProcessId, // process ID for business process
 clientID, // client correlation ID
 requestFormatID, // request format ID
 responseFormatID, // response format ID
 operationName, // operation name
 userData); // user message

(3) Parameter specification
The parameters that become the arguments of the method are different from those used in creating an ordinary service
requester that sends requests to the standard synchronous reception (SessionBean). The following table shows the
details of the parameters that are specified for a service requester that sends a request to a synchronous reception
(SessionBean) for business process re-execution.

Table 8‒13: Parameter details (standard synchronous reception (SessionBean)/business process re-
execution request)

Parameter name Data type Parameter (invokeBPXML) Explanation

Service name java.lang.
String

serviceName This is the service name of the request destination.

This parameter is required.

For the service name of the request destination,
specify the business process defined in the
development environment.

Request type for
business process

java.lang.
String

cscBpRequestType Indicates a request message type.

To request business process re-execution, specify a
RECOVER string.#

Process ID for business
process

java.lang.
String

cscBpProcessID This is a business process instance ID.

Specify either a value acquired from error
information or the value that is output to the
message log.

Client correlation ID java.lang.
String

clientID This is a correlation identifier for uniquely
identifying the request message from the service
requester.

Specify NULL for this parameter.

Request format ID java.lang.
String

cscRequestFormatID This is an ID for uniquely identifying the request
message format from the service requester.

Specify NULL or an empty character ("") for this
parameter.#

Response format ID java.lang.
String

cscResponseFormatID This is an ID for uniquely identifying the response
message from the HCSC server.

8. Creating Service Requesters

452

Parameter name Data type Parameter (invokeBPXML) Explanation

Response format ID java.lang.
String

cscResponseFormatID Specify NULL or an empty character ("") for this
parameter.#

Operation name java.lang.
String

serviceOperationName This is an operation name corresponding to the
service name at the request destination.

Specify NULL or an empty character ("") for this
parameter.#

User message java.lang.
String

msg This is the request message from the service
requester.

Specify NULL or an empty character ("") for this
parameter.#

#
A fixed value (RECOVER, NULL, or an empty character ("")) is set as the specification value for these parameters. If you specify
a value other than these fixed values, correct operation cannot be guaranteed.

(4) Request message creation
The request message creation method is the same as that used for creating an ordinary service requester that sends
requests to the standard synchronous reception (SessionBean).

For details about request message creation, see 8.4.5 Creating Request Messages.

(5) Response message acquisition
The response message acquisition method is the same as that used for creating an ordinary service requester that sends
requests to the standard synchronous reception (SessionBean).

For details about response message acquisition, see 8.4.6 Acquiring Response Messages.

(6) Error information acquisition
The method of installing a service requester for acquiring error information is the same as that used for creating an
ordinary service requester that sends requests to the standard synchronous reception (SessionBean).

For details about error information acquisition, see 8.4.7 Acquiring Error Information.

8. Creating Service Requesters

453

8.5 Service Requester That Sends Requests to a
Standard Asynchronous Reception (MDB (WS-R))

A service requester that sends request messages to a standard asynchronous reception (MDB (WS-R)) communicates
with the standard reception via a transmission queue and a receive queue.

A request message sent from the service requester to the transmission queue is sent to the asynchronous reception
(MDB (WS-R)) via the receive queue.

The following figure shows the relationship between a service requester that sends requests to a standard
asynchronous reception (MDB (WS-R)) and an HCSC server.

Figure 8‒19: Relationship between a service requester that sends requests to a standard asynchronous
reception (MDB (WS-R)) and an HCSC server

8.5.1 Procedure for Creating a Service Requester (Standard
Asynchronous Reception (MDB (WS-R))

This subsection explains how to create a service requester that sends a service component execution request to a
standard asynchronous reception (MDB (WS-R)) and invokes a service component. The creation workflow is shown
in the following figure.

8. Creating Service Requesters

454

Figure 8‒20: Service requester creation work flow (standard asynchronous reception (MDB (WS-R))

The tasks in the individual steps are described below.

(1) Creating a transmission queue
Create a transmission queue needed for sending a request message from the service requester. For details about
transmission queue creation, see 8.5.2 Creating a Transmission Queue.

(2) Creating a JMS message
Create a QueueSender object and a JMS message in order to send a request to the asynchronous reception (MDB
(WS-R)) for service component execution. For details about QueueSender object and JMS message creation, see 8.5.3
Creating JMS Messages.

(3) Parameter specification
Specify parameters for the JMS message created in 8.5.1(2) Creating a JMS message. For details about parameter
specification, see 8.5.4 Specifying Parameters.

8. Creating Service Requesters

455

(4) Request message creation
Create a request message for requesting service component execution. For details about request message creation, see
8.5.5 Creating Request Messages.

(5) JMS message transmission
Send the JMS message to the transmission queue. For details about JMS message transmission, see 8.5.6 Sending JMS
Messages.

(6) Response queue setup
To receive a response from a synchronous service component, set up a response queue (transmission queue). For
details about response queue setup, see 8.5.7 Setting Up a Response Queue.

(7) Response extraction
Extract the response that was sent from the response queue (transmission queue) to the receive queue. For details
about response extraction, see 8.5.8 Extracting Responses.

(8) Response message acquisition
Acquire the response message from the extracted response. For details about response message acquisition, see 8.5.9
Acquiring Response Messages.

8.5.2 Creating a Transmission Queue
Create a transmission queue needed for sending a request message from the service requester. The transmission queue
sends the request message from the service requester to the receive queue provided by the HCSC server.

To create a transmission queue, use the hrmmkaddr and hrmmkque commands of Cosminexus RM.

This subsection explains the specification values for the options of the hrmmkaddr and hrmmkque commands. For
details about the options not explained here, see the manual Cosminexus Application Server Cosminexus Reliable
Messaging.

(1) hrmmkaddr command option specification value
The option specification value of the hrmmkaddr command is described below.

-u destination-address
Specify the destination address of the HCSC server (URL of the Web application used for transmit between
queues of the after moved system).
http://host-name:port-name#1/context-root#2/services/HRMReceiver/
https://host-name:port-number#1/context-root#2/services/HRMReceiver/
#1

This is the HCSC server's URL.

#2
This is the context root of the Web application used for transmit between queues of receiving Cosminexus
RM. The default value is uCosminexusRM.

(2) hrmmkque command option specification values

-t queue-type
Specify transmit (transmission queue).

-m queue-persistence
Specify persistent (persistent queue attribute).

8. Creating Service Requesters

456

-v transfer-destination-queue-name
Specify either of the following:

CSCHCSC-server-nameACPT_RCVQ
Specify this option when the HCSC server has a load-balancing cluster configuration.

CSCHCSC-cluster-nameACPT_RCVQ
Specify this option when the HCSC server has the HAcluster configuration.
HCSC-cluster-name is the cluster name of the HCSC server determined during HCSC server configuration
deployment in the development environment and the operating environment.

-i queue-transfer-mode
Specify Compatible (compatible mode).

8.5.3 Creating JMS Messages
To send a service component execution request to the standard asynchronous reception (MDB (WS-R)), create a
QueueSender object and a JMS message, and send the created JMS message to the transmission queue. For details
about developing an application for sending JMS messages, see the manual Cosminexus Application Server
Cosminexus Reliable Messaging.

To create a JMS message:

1. Define a startup process (lookup) for QueueConnectionFactory and Queue.

Example:

Context ic = new InitialContext();
 ...
QueueConnectionFactory qcFactory
 = (QueueConnectionFactory) ic.lookup("java:comp/env/jms/qcf");
 ...
Queue queue = (Queue) ic.lookup("java:comp/env/jms/queue");
 ...

2. Create QueueSession.

Example:

QueueSession qSession
 = qConnection.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);

3. From QueueSession, create QueueSender.

Example:

qSender = qSession.createSender(queue);

4. From QueueSession, create a JMS message.

Example: When the request message is in XML

TextMessage textMessage = qSession.createTextMessage();

Example: When the request message is binary

BytesMessage bytesMessage = qSession.createBytesMessage();

8.5.4 Specifying Parameters
To invoke a method of the asynchronous reception (MDB (WS-R)), specify parameters for the JMS message.

(1) Property specification
Specify properties for the JMS message. For details about the properties to be specified, see 8.5.4(4) Parameter
details.

8. Creating Service Requesters

457

Example: When the request message is in XML

textMessage = qSession.createTextMessage();
textMessage.setStringProperty("CSCServiceName", serviceName);
 // Service component name
textMessage.setStringProperty("CSCCorrelationID", clientID);
 // Client correlation ID
textMessage.setStringProperty("CSCRequestFormatID", requestFormatID);
 // Request format ID
textMessage.setStringProperty("CSCResponseFormatID", responseFormatID);
 // Response format ID
textMessage.setStringProperty("CSCServiceOperationName", operationName);
 // Operation name
textMessage.setStringProperty("CSCReplyToQueueName", replyToQueueName);
 // Queue name for response
textMessage.setStringProperty("CSCMessageType", "XML");
 // Message type

! Important note

A binary request message can be sent only when the message format used on the service component side is binary. A
request message to be sent to a database queue service component must be converted to binary format. For binary
conversion, use the same encoding method for the service requester side and the service component side.

(2) Headers and properties that are inherited
The headers and properties listed below are inherited from the request side to the queue on the service component
side. Therefore, set up these headers and properties as needed.

• JMSReplyTo

• JMSCorrelationID#1

• JMSType

• JMSXGroupID

• JMSXGroupSeq

• User-specific property#2

#1
The maximum specifiable range is 255 bytes.

#2
Note that the following properties are not inherited by the queue on the service component side:

• JMS-defined property name that begins with JMSX

• Provider-specified property name that begins with JMS_

• Property name that begins with CSC

• Property name that begins with HCSC

(3) Payload specification
Specify a request message (user message) in the JMS message payload. For details about the payload, see 8.5.4(4)
Parameter details.

Example: When the request message is in XML

textMessage.setText(userData);

(4) Parameter details
The following figure shows parameter details.

8. Creating Service Requesters

458

Table 8‒14: Parameter details (standard asynchronous reception (MDB (WS-R)))

Parameter
name Data type

Parameter Property/
payload Explanation

TextMessage BytesMessage

Service name String StringProperty
("CSCServiceName")

Property This is the service name of the request
destination.

This parameter is required.

For the service name of the request
destination, specify the adapter or business
process defined in the development
environment.

Client
correlation ID

String StringProperty
("CSCCorrelationID")

Property This is a correlation identifier for uniquely
identifying the request message from the
service requester.

Specify alphanumeric characters,
underscore (_), period (.), and hyphen (-)
up to 255 characters.

This parameter is used to map the request
message from the service requester to the
execution history, logs, and traces managed
by the HCSC server. Therefore, specify a
different ID for each request message sent
to the HCSC server.

By not specifying this parameter, you can
omit the client correlation ID.

Request
format ID

String StringProperty
("CSCRequestFormatID")

Property This is an ID for uniquely identifying the
request message format from the service
requester.

Specify alphanumeric characters,
underscore (_), period (.), and hyphen (-)
up to 1,024 characters.

Specify NULL for this parameter. If you do
not specify this parameter, NULL is
specified.

Response
format ID

String StringProperty
("CSCResponseFormatID")

Property This is an ID for uniquely identifying the
response message from the HCSC server.

Specify alphanumeric characters,
underscore (_), period (.), and hyphen (-)
up to 1,024 characters.

Specify NULL for this parameter. If you do
not specify this parameter, NULL is
specified.

Operation
name

String StringProperty
("CSCServiceOperationName
")

Property This is an operation name corresponding to
the service name at the request
destination.#

This operation name specifies a service
component defined in the development
environment. Specify the operation name
with NCName definition characters of
XMLSchema within 255 bytes.

This parameter is required when the service
component at the request destination is a
synchronous service (Web Services or
SessionBean) or business process.

When the service at the request destination
is an asynchronous service, the operation
name can be omitted. By not specifying

8. Creating Service Requesters

459

Parameter
name Data type

Parameter Property/
payload Explanation

TextMessage BytesMessage

Operation
name

String StringProperty
("CSCServiceOperationName
")

Property this parameter, you can omit the operation
name.

Response
queue name

String StringProperty
("CSCReplyToQueueName")

Property This is the queue name that receives a
response from a service component or
business process when the service
component at the request destination is a
synchronous service (Web Services or
SessionBean) or business process.

By specifying this parameter when you
cannot determine whether the service
component at the request destination is
synchronous or asynchronous, you can
receive responses.

For details about the response queue, see
8.5.7 Setting Up a Response Queue.

By not specifying this parameter, you can
omit the response queue name. If you omit
this parameter, NULL is specified, and you
cannot receive responses.

Message type String StringProperty
("CSCMessageType")

Property Specify one of the following request
message types:

• For XML message (whose payload is
TextMessage): XML

• For binary message (whose payload is
BytesMessage): Binary

This parameter must be specified when
there is a request message.

When there is no request message, you can
omit the message type by not specifying
this parameter.

User message -- TextMessage N Payload This is the request message from the
service requester.#

Specify this parameter when the request
message is in XML. If there is no request
message, you do not need to specify this
parameter. For details about request
messages, see 8.5.5 Creating Request
Messages.

User message
length

Long N LongPropert
y
("CSCMessag
eLength")

Property This is the request message length.

Specify this parameter when the request
message is binary.

User message -- N BytesMessag
e

Payload This is the request message from the
service requester.#

Specify this parameter when the request
message is binary. If there is no request
message, you do not need to specify this
parameter. For details about request
messages, see 8.5.5 Creating Request
Messages.

Legend:
--: Not applicable

8. Creating Service Requesters

460

N: Cannot be specified.

#
When the service component protocol of request destination is SOAP, decide an operation to be invoked from the name of a root
element of user message (in the case of data transformation, it is the name of root element of the message after data
transformation). Therefore, take note that if you specify an invalid name in the root element of user message, an unintended
operation may be invoked.

8.5.5 Creating Request Messages
Create a request message for requesting a service component from the service requester to the asynchronous reception
(MDB (WS-R)). The contents of the request message to be sent from the service requester must be created in the same
message format as that used on the service component side. The following figure shows how a request message is
sent.

Figure 8‒21: Sending a request message (standard asynchronous reception (MDB (WS-R)))

The request message to be sent from the service requester to the asynchronous reception (MDB (WS-R)) can be either
an XML message or a binary message. Which message type is to be used depends on the protocol being used by the
service component side.

For details about XML and binary request messages, see 8.2.6 Creating Request Messages.

For details about how to send a normal request message, see the contents about service invocation using an MDB
(WS-R), in the manual Cosminexus Service Platform System Setup and Operation Guide.

8.5.6 Sending JMS Messages
Send the JMS message with parameters specified to the transmission queue.

To send a JMS message:

1. Start a local transaction and register the JMS message.

Example:

qSender.send(message);

2. Define the termination process.

Example:

qSession.commit(); // local transaction commit
qSender.close(); // QueueSender release
qSession.close(); // QueueSession release
qConnection.close(); // QueueConnection release

8. Creating Service Requesters

461

8.5.7 Setting Up a Response Queue
The standard asynchronous reception (MDB (WS-R)) is a standard reception for asynchronous request messages, and
thus is used, as a rule, when there is no response from a service component. However, when the asynchronous
reception (MDB (WS-R)) sends a request to a synchronous service component (Web Services or SessionBean), a
response may be returned from the synchronous service component in some cases. In such a case, by specifying a
response queue (transmission queue) when making a request, the service requester can receive responses from a
synchronous service component. For details about specifying a response queue when making a request, see 8.5.4
Specifying Parameters.

The standard asynchronous reception (MDB (WS-R)) sends an XML message (whose payload is TextMessage), which
is a response from a synchronous service component, to the transmission queue. The response received by the
transmission queue is sent to the receive queue. By extracting the response sent to the receive queue, you can acquire
the response message from the service component. For details about response extraction, see 8.5.8 Extracting
Responses.

The following shows the relationship among the standard asynchronous reception (MDB (WS-R)), the transmission
queue, and the receive queue.

Figure 8‒22: Relationship among the standard asynchronous reception (MDB (WS-R)), the transmission
queue, and the receive queue

Transmission queue (response queue)
Create a transmission queue, which functions as a response queue, inside the J2EE server (Cosminexus RM) on
which the HCSC server is running.
For the transfer destination (destination address) of the transmission queue, specify the receive queue. As needed,
specify transmission queues at non-transfer destinations according to the user application.
For details about how to create transmission queues, see 8.5.2 Creating a Transmission Queue and the section
related to transmission queues in the manual Cosminexus Application Server Cosminexus Reliable Messaging.

Receive queue (local queue)
Create a receive queue (local queue) inside the J2EE server (Cosminexus RM) on which the service requester is
running.
Specify a receive queue according to the user application as needed.
For details about how to create receive queues, see the section related to local queues in the manual Cosminexus
Application Server Cosminexus Reliable Messaging.

8.5.8 Extracting Responses
A response can be extracted from the receive queue based on either MDB or SessionBean installation. For details
about how to send a normal request message, see the contents about the response queue in service invocation using an
MDB (WS-R), in the manual Cosminexus Service Platform System Setup and Operation Guide.

8. Creating Service Requesters

462

(1) Response contents
A service component sends the following contents in a response:

• Message type (StringProperty property ("CSCMessageType"))
Because the message type of the response message is XML, XML is set in the StringProperty property.

• Response message (payload (TextMessage)) from the service component
An XML (TextMessage) response message is set.
When a synchronous service component is executed and there is no response message, TextMessage without
payload is sent.

(2) Headers and properties that are inherited
For the headers and properties listed below, the contents specified when the service requester sends a request for the
service component are inherited by the receive queue via the response queue.

(a) Properties related to the HCSC server

• StringProperty("CSCServiceName")
This is the service name of the request destination specified by the service requester.

• StringProperty("CSCCorrelationID")
This is a correlation identifier specified by the service requester for uniquely identifying the request message from
the service requester.

• StringProperty("CSCResponseFormatID")
NULL is set.

• StringProperty("CSCServiceOperationName")
This is an operation name corresponding to the service name of the request destination specified by the service
requester.

(b) Headers and properties related to Cosminexus RM

• JMSReplyTo
• JMSCorrelationID
• JMSType
• JMSXGroupID
• JMSXGroupSeq
• User-specific property name

8.5.9 Acquiring Response Messages
Acquire the response message from the extracted response. The response message to be acquired is one of the
following:

• Response message from a service component

• Error information (fault information) from a service component, business process, or custom adapter

(1) Response message from a service component
The response message to be acquired is an XML message that has the same message format as the service component
side. For details about XML response messages, see 8.2.7 Acquiring Response Messages.

When there is no response message from a synchronous service component (Web Services or SessionBean),
TextMessage without payload is received.

For an asynchronous service component, there is no response.

8. Creating Service Requesters

463

(2) Error information (fault information) from a service component, business process, or
custom adapter

The message (error information) to be acquired is the XML message that was sent by the asynchronous reception
(MDB (WS-R)) to the response queue.

Output format of error information is different for SOAP1.2 and for other than SOAP1.2.

(a) Other than SOAP1.2

The following table shows the format of the XML message (error information) to be acquired while using other than
SOAP1.2.

Table 8‒15: Format of the XML message (error information) to be acquired (other than SOAP1.2)

Tag Explanation

errorcode Error code indicating an error from a service component, business process, or custom adapter

errorstring Error message indicating an error from a service component, business process, or custom adapter

Processinstancei
d

Instance ID information of a business process

cscmsgcode FaultCode information from a service component (Web Services), business process, or custom
adapter

cscmsgstring FaultString information from a service component (Web Services), business process, or custom
adapter

cscmsgactor FaultActor information from a service component (Web Services), business process, or custom
adapter

cscmsgdetail Detail information from a service component (Web Services), business process, or custom adapter

The schema of the XML message (error information) to be acquired while using other than SOAP1.2 is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="cscmsgerror">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorcode" type="xsd:string"/>
 <xsd:element name="errorstring" type="xsd:string"/>
 <xsd:element name="processinstanceid" type="xsd:string"/>
 <xsd:element ref="errordetail"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="errordetail">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cscmsgcode" type="xsd:string"/>
 <xsd:element name="cscmsgstring" type="xsd:string"/>
 <xsd:element name="cscmsgactor" type="xsd:string"/>
 <xsd:element name="cscmsgdetail" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

(b) In SOAP1.2

The following shows the format of the XML message (error information) to be acquired while using SOAP1.2:

Table 8‒16: Format of XML message (error information) to be acquired (in SOAP1.2)

Tag Description

errorcode Error code indicating existence of error from service component, business process and custom adapter.

8. Creating Service Requesters

464

Tag Description

errorstring Error message indicating existence of error from service component, business process and custom adapter.

processinstanceid Information of business process instance ID.

cscmsgcode Code information from service component (Web Service), business process or custom adapter.

cscmsgvalue Value information containing Code from service component (Web Service), business process or custom
adapter.

cscmsgreason Reason information from service component (Web service), business process or custom adapter.

cscmsgtext Text information containing Reason from service component (Web Service), business process or custom
adapter.

cscmsgrole Role information from service component (Web Service), business process or custom adapter.

cscmsgnode Node information from service component (Web Service), business process or custom adapter.

cscmsgdetail Detail information from service component (Web Service), business process or custom adapter.

The following shows the schema of the XML message (error information) to be acquired while using SOAP1.2:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="cscmsgerror">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="errorcode" type="xsd:string"/>
 <xsd:element name="errorstring" type="xsd:string"/>
 <xsd:element name="processinstanceid" type="xsd:string"/>
 <xsd:element ref="errordetail"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="errordetail">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="cscmsgcode"/>
 <xsd:element ref="cscmsgreason"/>
 <xsd:element name="cscmsgrole" type="xsd:string"/>
 <xsd:element name="cscmsgnode" type="xsd:string"/>
 <xsd:element name="cscmsgdetail" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="cscmsgcode" nillable="true">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cscmsgvalue" type="xsd:string" maxOccurs="unbounded"
nillable="true"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="cscmsgreason" nillable="true">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cscmsgtext" type="tns:cscmsgFaultReasonText" maxOccurs="unbounded"
nillable="true" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xs:complexType name="cscmsgFaultReasonText">
 <xs:sequence>
 <xs:element name="locale" type="xs:string" nillable="true" />
 <xs:element name="text" type="xs:string" nillable="true" />
 </xs:sequence>
 </xs:complexType>
</xsd:schema>

8. Creating Service Requesters

465

8.6 Service Requester That Sends Requests to a
Standard Asynchronous Reception (MDB (database
queue))

A service requester that sends a request to a standard asynchronous reception (MDB (database queue)) of an HCSC
server that invokes a service component can be either TP1/Server Base Enterprise Option (TP1/EE) or JMS.

TP1/Server Base Enterprise Option (TP1/EE) service requester
The service requester (TP1/EE) communicates with the standard asynchronous reception (MDB (database queue))
of the HCSC server that invokes the service component via a shared receive queue. The following figure shows
the relationship between the service requester (TP1/EE) that sends a request to the standard asynchronous
reception (MDB (database queue)) and the HCSC server.

Figure 8‒23: Relationship between the service requester (TP1/EE) that sends a request to standard
asynchronous reception (database queue) and the HCSC server

JMS service requester
The service requester (JMS) communicates with the standard asynchronous reception (MDB (database queue)) of
the HCSC server that invokes the service component via a shared transmission queue and a shared receive queue.
The following figure shows the relationship between the service requester (JMS) that sends a request to the
standard asynchronous reception (MDB (database queue)) and the HCSC server.

8. Creating Service Requesters

466

Figure 8‒24: Relationship between the service requester (JMS) that sends a request to the
asynchronous reception (database queue) and the HCSC server

8.6.1 Service Requester (Standard Asynchronous Reception (MDB
(Database Queue))) Creation Procedure

This subsection explains the workflow for creating a service requester that sends a request to the standard
asynchronous reception (MDB (database queue)) to execute a service and invokes the service.

The creation workflow differs depending on whether the service requester is TP1/EE or JMS.

(1) In TP1/EE
The following figure shows the workflow for creating a service requester that sends a request to the standard
asynchronous reception (MDB (database queue)) to execute a service component and invokes the service component
when the service requester is TP1/EE.

8. Creating Service Requesters

467

Figure 8‒25: Service requester (TP1/EE) creation work flow (standard asynchronous reception (MDB
(database queue)))

(a) Binary data creation

To send a request message to the standard asynchronous reception (MDB (database queue)), you create binary data.
For details about binary data creation, see 8.6.4 Creating Binary Data (TP1/EE or JMS).

(b) Parameter specification

Assemble binary data by specifying the parameters that correspond to the individual tags in the binary data created in
8.6.1(1)(a) Binary data creation. For details about parameter specification, see 8.6.5 Specifying Parameters (TP1/EE
or JMS).

(c) Request message creation

Create a request message for requesting service component execution. For details about request message creation, see
8.6.6 Creating Request Messages (TP1/EE or JMS).

(d) Specifying binary data in the shared receive queue

Use the API (database queue control) of TP1/EE to set, in the database where the shared receive queue is located, the
binary data whose parameters were specified. For details about how to specify binary data in the shared receive queue,
see 8.6.7 Specifying Binary Data in the Shared Receive Queue (TP1/EE).

8. Creating Service Requesters

468

(e) Response queue setup

To receive responses from a synchronous service component (Web Services or SessionBean), set up a response queue
(shared receive queue). For details about how to set up a response queue, see 8.6.9 Setting Up a Response Queue
(TP1/EE or JMS).

(f) Response extraction

Using the API (database queue control) of TP1/EE, extract the response binary data by referencing the database in
which the response queue (shared receive queue) is located. For details about response extraction, see 8.6.10
Extracting Responses (TP1/EE or JMS).

(g) Response message acquisition

Acquire the response message from the extracted response. For details about response message acquisition, see 8.6.11
Acquiring Response Messages (TP1/EE or JMS).

(2) In JMS
The following figure shows the workflow for creating a service requester that sends a request to the standard
asynchronous reception (MDB (database queue)) to execute a service component and invokes the service component
when the service requester is JMS.

8. Creating Service Requesters

469

Figure 8‒26: Service requester (JMS) creation work flow (standard asynchronous reception (MDB
(database queue)))

(a) Creating a shared transmission queue

Create a shared transmission queue necessary for sending a request message from the service requester (JMS). For
details about creating a shared transmission queue, see 8.6.2 Creating a Shared Transmission Queue (JMS).

(b) Creating a JMS message

Create a QueueSender object and a JMS message in order to send a request to the asynchronous reception (MDB
(database queue)) for service component execution. For details about QueueSender object and JMS message creation,
see 8.6.3 Creating JMS Messages (JMS).

(c) Binary data creation

To send a request message to the asynchronous reception (MDB (database queue)), you create binary data. For details
about binary data creation, see 8.6.4 Creating Binary Data (TP1/EE or JMS).

8. Creating Service Requesters

470

(d) Parameter specification

Assemble binary data by specifying the parameters that correspond to the individual tags in the binary data created in
8.6.1(2)(c) Binary data creation. For details about parameter specification, see 8.6.5 Specifying Parameters (TP1/EE
or JMS).

(e) Request message creation

Create a request message for requesting service component execution. For details about request message creation, see
8.6.6 Creating Request Messages (TP1/EE or JMS).

(f) JMS message transmission

Send a JMS message with binary data set as its payload to the shared transmission queue. For details about JMS
message transmission, see 8.6.8 Sending JMS Messages (JMS).

(g) Response queue setup

To receive responses from a synchronous service component (Web Services or SessionBean), set up a response queue
(shared transmission queue). For details about how to set up a response queue, see 8.6.9 Setting Up a Response Queue
(TP1/EE or JMS).

(h) Response extraction

From the response queue (shared transmission queue), extract the response sent to the shared receive queue. For
details about response extraction, see 8.6.10 Extracting Responses (TP1/EE or JMS).

(i) Response message acquisition

Acquire the response message from the extracted response. For details about response message acquisition, see 8.6.11
Acquiring Response Messages (TP1/EE or JMS).

8.6.2 Creating a Shared Transmission Queue (JMS)
Create a shared transmission queue necessary for sending a request message from the service requester. The shared
transmission queue sends the request messages from the service requester to the shared receive queue provided by the
HCSC server.

To create a shared transmission queue, use the hrmmkque command of Cosminexus RM. This subsection explains the
specification values for the options of the hrmmkque command. For details about the options not explained here, see
the manual Cosminexus Application Server Cosminexus Reliable Messaging.

(1) hrmmkque command option specification values

-t queue-type
Specify shr_send (shared transmission queue).

-b registration-destination-queue-name-for-using-shared-queue
Specify either of the following:

Cosminexus-RM-system-name_SHR_CSCHCSC-server-nameACPT_DBQ
Specify this option when the HCSC server has a load-balancing cluster configuration.

Cosminexus-RM-system-name_SHR_CSCHCSC-cluster-nameACPT_DBQ
Specify this option when the HCSC server has the HAcluster configuration.
HCSC-cluster-name is the cluster name of the HCSC server determined during HCSC server configuration
deployment in the development environment and the operating environment.

8.6.3 Creating JMS Messages (JMS)
Create a QueueSender object and a JMS message in order to send a request to the standard asynchronous reception
(MDB (database queue)) for service component execution, and send them to the shared transmission queue. For

8. Creating Service Requesters

471

details about developing an application for sending JMS messages, see the manual Cosminexus Application Server
Cosminexus Reliable Messaging.

For the payload of the created JMS message, specify binary data whose parameters have been specified. Create the
JMS message in BytesMessage, and specify the binary data whose parameters have been specified as the payload of
BytesMessage. Even if there is no request message, specify binary data as the payload of BytesMessage.

The properties of the JMS message are ignored even if specified.

For details about the JMS message creation procedure, see 8.5.3 Creating JMS Messages.

8.6.4 Creating Binary Data (TP1/EE or JMS)
To send a request message to the standard asynchronous reception (MDB (database queue)), you create binary data in
the format shown in the following table.

Table 8‒17: Binary data format (request message)

Item
No. Item Size

(bytes)
Data

type#1 Explanation Requi
red

1 Header tag 4 char Header tag for delivering service component request message (eye
catcher).

Specify DBQH.

Use ASCII codes.

Y

2 Byte order flag 1 byte Byte order (endian) identification flag of the numeric data inside the
header.

Specify either of the following methods for encoding the numeric
data inside the header into the binary format:

• 0b00000001: big endian

• 0b00000010: little endian

Y

3 Reserved 3 byte Reserved area Y

4 Size 4 int Header size (size from Item 5 through Item 28) of the messaging of
the service component request.

Specify a size in bytes.

Y

5 Tag 8 char Parameter identification tag (eye catcher).

Specify ServiceN.

Use ASCII codes.

P

6 Size 4 int Size of the next area (Item 7).

Specify a size in bytes.

7 Service name Optional String This is the service name of the request destination.

For the service name of the request destination, specify the adapter
or business process defined in the development environment.

Use UTF-8 codes.

8 Tag 8 byte Parameter identification tag (eye catcher).

Specify ClientID.

Use ASCII codes.

P

9 Size 4 int Size of the next area (Item 10).

Specify a size in bytes.

10 Client
correlation ID

Optional String This is a correlation identifier for uniquely identifying the request
message from the service requester.

Specify alphanumeric characters, underscore (_), period (.), and
hyphen (-) up to 255 characters.

8. Creating Service Requesters

472

Item
No. Item Size

(bytes)
Data

type#1 Explanation Requi
red

10 Client
correlation ID

Optional String This parameter is used to map the request message from the service
requester to the execution history, logs, and traces managed by the
HCSC server. Therefore, specify a different ID for each request
message sent to the HCSC server.

Use UTF-8 codes.

If this item is omitted, there is no need to assemble binary data
having this parameter, size, and tag.

P

11 Tag 8 byte Parameter identification tag (eye catcher).

Specify ReqFmtID.

Use ASCII codes.

--

12 Size 4 int Size of the next area (Item 13).

Specify a size in bytes.

13 HCSC request
format ID

Optional String ID for uniquely identifying the request message format.

Do not assemble binary data having this parameter, size, and tag.

14 Tag 8 byte Parameter identification tag (eye catcher).

Specify ResFmtID.

Use ASCII codes.

--

15 Size 4 int Size of the next area (Item 16).

Specify a size in bytes.

16 HCSC response
format ID

Optional String ID for uniquely identifying the response message format.

Do not assemble binary data having this parameter, size, and tag.

17 Tag 8 byte Parameter identification tag (eye catcher).

Specify ReplyToQ.

Use ASCII codes.

P

18 Size 4 int Size of the next area (Item 19).

Specify a size in bytes.

19 Response
queue name

Optional String This is the queue name that receives a response from a service
component or business process when the service component at the
request destination is a synchronous service (Web Services or
SessionBean) or business process.

By specifying this parameter when you cannot determine whether
the service component at the request destination is synchronous or
asynchronous, you can receive responses.

For details, see 8.6.9 Setting Up a Response Queue (TP1/EE or
JMS).

Use UTF-8 codes.

If you omit this parameter, NULL is specified, and you cannot
receive responses. If this item is omitted, there is no need to
assemble binary data having this parameter, size, and tag.

20 Tag 8 byte Parameter identification tag (eye catcher).

Specify OperatiN.

Use ASCII codes.

P

21 Size 4 int Size of the next area (Item 22).

Specify a size in bytes.

22 Service
operation name

Optional String This is an operation name corresponding to the service name at the
request destination.#2

8. Creating Service Requesters

473

Item
No. Item Size

(bytes)
Data

type#1 Explanation Requi
red

22 Service
operation name

Optional String This operation name specifies a service component defined in the
development environment. Specify the operation name with
NCName definition characters of XMLSchema within 255 bytes.

This parameter is required when the service component at the
request destination is a synchronous service (Web Services or
SessionBean) or business process.

Use UTF-8 codes.

When the service component at the request destination is an
asynchronous service component, you can omit the response queue
name. If this item is omitted, there is no need to assemble binary
data having this parameter, size, and tag.

P

23 Tag 8 byte Parameter identification tag (eye catcher).

Specify MessageT.

Use ASCII codes.

P

24 Size 4 int Size of the next area (Item 25).

Specify a size in bytes.

25 Message type Optional String User message (request message) type.

For XML message (whose payload is TextMessage) specify
XML. For binary message (whose payload is BytesMessage),
specify Binary.

This parameter must be specified when there is a message (request
message).

Use UTF-8 codes.

When there is no request message, you can omit this item. If this
item is omitted, there is no need to assemble binary data having this
parameter, size, and tag.

26 Tag 8 byte Parameter identification tag (eye catcher).

Specify MgLength.

Use ASCII codes.

Y

27 Size 4 int Size of the next area (Item 28).

Specify 4.

28 Message size 4 int Specify the message size for the user message (request message)
following binary conversion.

If there is no user message (request message), specify 0.

29 Message Optional byte[] User message (request message).#2

Specify a binary-converted user message (request message) after
the database queue headers (Items 1 through 28).

If an XML message has been converted to binary format, encode it
using UTF-8 codes.

This item can be omitted if there is no user message (request
message).

P

Legend:
Y: Required.
P: Required in some cases. Check the explanation.
--: Must not be specified.

#1
Java data type

8. Creating Service Requesters

474

#2
When the service component protocol of request destination is SOAP, decide an operation to be invoked from the name of a root
element of user message (in the case of data transformation, it is the name of root element of the message after data
transformation). Therefore, take note that if you specify an invalid name in the root element of user message, an unintended
operation may be invoked.

8.6.5 Specifying Parameters (TP1/EE or JMS)
Assemble binary data by specifying the parameters that correspond to the individual tags (Items 5, 8, 11, 17, 20, 23,
and 26 in Table 8-17) in the binary data created.

The following figure shows the binary data tag format.

Figure 8‒27: Binary data tag format

The tags may occur inside the binary data in any order. However, the order in which the tag, size, and value occur is
fixed as shown in Figure 8-27.

Additionally, specify a binary-converted message (request message) after the database queue headers (Items 1 through
28). If there is no request message, you can also specify MgLength for the tag of Item 26 and set its size to 0.

8.6.6 Creating Request Messages (TP1/EE or JMS)
Create a request message for requesting a service component from the service requester to the asynchronous reception
(MDB (database queue)). The contents of the request message to be sent from the service requester must be created in
the same message format as that used on the service component side.

The following figure shows how a request message is sent when the service requester is TP1/EE or JMS.

8. Creating Service Requesters

475

Figure 8‒28: Request message transmission (standard asynchronous reception (MDB (database queue)))

For details about how to send a normal request message, see the contents about service invocation using an MDB
(database queue), in the manual Cosminexus Service Platform System Setup and Operation Guide.

The service requester creates a request message whose message type is XML. Convert the created request message to
binary format. For binary conversion, use the same encoding method for the service requester side and the service
component side. For details about XML request messages, see 8.2.6 Creating Request Messages.

Note that when the protocol type is a database queue service component, the asynchronous reception (MDB (database
queue)) cannot send request messages. The asynchronous reception (MDB (database queue)) can send request
messages only when the service component side is using one of the following protocols:

• SOAP

• RMI-IIOP

• WS-R

8. Creating Service Requesters

476

8.6.7 Specifying Binary Data in the Shared Receive Queue (TP1/EE)
Use the API (database queue control) of TP1/EE to set, in the database where the shared receive queue is located, the
binary data whose parameters were specified.

For details, see the manual TP1/Server Base Enterprise Option Program Creation Guide.

8.6.8 Sending JMS Messages (JMS)
Send a JMS message with binary data set as its payload to the shared transmission queue.

For details about the JMS message transmission procedure, see 8.5.6 Sending JMS Messages.

8.6.9 Setting Up a Response Queue (TP1/EE or JMS)
The standard asynchronous reception (MDB (database queue)) is a standard reception for asynchronous request
messages, and thus is used, as a rule, when there is no response from a service. However, when the asynchronous
reception (MDB (database queue)) sends a request to a synchronous service component (Web Services or
SessionBean), a response may be returned from the synchronous service component in some cases. In such a case, by
specifying a response queue when making a request, the service requester can receive responses from a synchronous
service component. For details about specifying a response queue when making a request, see 8.5.6 Sending JMS
Messages.

(1) In TP1/EE
The asynchronous reception (MDB (database queue)) sends the JMS message, in which binary data including a
response message is set in the payload, to the response queue (shared transmission queue).

The shared transmission queue extracts the binary data from the received response and sends it to the shared receive
queue. You can extract the response sent to the shared receive queue and acquire the response message from the
service component. For details about response extraction, see 8.6.10 Extracting Responses (TP1/EE or JMS).

The following figure shows the relationship among the standard asynchronous reception (MDB (database queue)), the
shared transmission queue, and the shared receive queue.

Figure 8‒29: Relationship among the standard asynchronous reception (MDB (database queue)), the
shared transmission queue, and the shared receive queue (TP1/EE)

Shared transmission queue (response queue)
Create a shared transmission queue, which functions as a response queue, inside the J2EE server (Cosminexus
RM) on which the HCSC server is running. For the registration destination queue of the shared transmission
queue, specify the shared receive queue.

8. Creating Service Requesters

477

For details about how to create a shared transmission queue, see the section related to shared transmission queues
in the manual Cosminexus Application Server Cosminexus Reliable Messaging.

Shared receive queue
Create a TP1/EE database queue inside the same schema definition of the database in which the shared
transmission queue is located (which is being used by Cosminexus RM). For details, see the section related to
shared receive queues in the manual Cosminexus Application Server Cosminexus Reliable Messaging.
Also, for details about how to create a database queue, see the contents about the database queue in the manual
TP1/Server Base Enterprise Option Usage Guide.

(2) In JMS
As a response, the standard asynchronous reception (MDB (database queue)) sends the JMS message, in which binary
data including a response message is set in the payload, to the response queue (shared transmission queue). The
response received by the shared transmission queue is sent to the shared receive queue. By extracting the response
sent to the shared receive queue, you can acquire the response from the service component. For details about response
extraction, see 8.6.10 Extracting Responses (TP1/EE or JMS).

The following figure shows the relationship among the standard asynchronous reception (MDB (database queue)), the
shared transmission queue, and the shared receive queue.

Figure 8‒30: Relationship among the standard asynchronous reception (MDB (database queue)), the
shared transmission queue, and the shared receive queue (JMS)

Shared transmission queue (response queue)
Create a shared transmission queue, which functions as a response queue, inside the J2EE server (Cosminexus
RM) on which the HCSC server is running. For the registration destination queue of the shared transmission
queue, specify the shared receive queue.
For details about how to create a shared transmission queue, see the section related to shared transmission queues
in the manual Cosminexus Application Server Cosminexus Reliable Messaging.

Shared receive queue
Create a shared receive queue inside the J2EE server (Cosminexus RM) on which the service requester is running.
Specify a receive queue according to the user application as needed.
For details about how to create receive queues, see the section related to shared receive queues in the manual
Cosminexus Application Server Cosminexus Reliable Messaging.

8.6.10 Extracting Responses (TP1/EE or JMS)

(1) In TP1/EE
Using the API (database queue control) of TP1/EE, extract the response binary data by referencing the database in
which the response queue (shared receive queue) is located. For details about how to send a normal request message,

8. Creating Service Requesters

478

see the contents about the response queue in service invocation using an MDB (database queue), in the manual
Cosminexus Service Platform System Setup and Operation Guide.

For details, see the manual TP1/Server Base Enterprise Option Program Creation Guide.

The following table shows the binary data format for the response message.

Table 8‒18: Binary data format (response message)

Item
No. Item Size

(bytes) Data type# Explanation

1 Header tag 4 char Header tag for delivering HCSC messages (eye catcher).

DBQH is set.

ASCII-encoded binary data is set.

2 Byte order flag 1 byte The byte order flag that was specified during a request is set.

3 Reserved 3 byte Reserved area

4 Size 4 int Header size (size from Item 5 through Item 19) for HCSC messaging is
set.

5 Tag 8 char Parameter identification tag (eye catcher).

ServiceN is set.

ASCII-encoded binary data is set.

6 Size 4 int Size of the next area (Item 7).

Size in bytes is set.

7 Service name Optional String The adapter or business process specified during the request is set.

UTF-8-encoded binary data is set.

8 Tag 8 byte Parameter identification tag (eye catcher).

ClientID is set.

ASCII-encoded binary data is set.

9 Size 4 int Size of the next area (Item 10).

Size in bytes is set.

10 Client
correlation ID

Optional String This is a correlation identifier for uniquely identifying the request message
from the service requester.

Specified with alphanumeric characters, underscore (_), period (.), and
hyphen (-) up to 255 characters.

UTF-8-encoded binary data is set.

11 Tag 8 byte Parameter identification tag (eye catcher).

Specify ResFmtID.

Use ASCII codes.

12 Size 4 int Size of the next area (Item 13).

Specify a size in bytes.

13 HCSC response
format ID

Optional String ID for uniquely identifying the response message format.

This parameter, size, and tag are not specified.

14 Tag 8 byte Parameter identification tag (eye catcher).

OperatiN is set.

ASCII-encoded binary data is set.

15 Size 4 int Size of the next area (Item 16).

Size in bytes is set.

8. Creating Service Requesters

479

Item
No. Item Size

(bytes) Data type# Explanation

16 Service
operation name

Optional String This is an operation name corresponding to the service name at the request
destination.

The operation name is set with the 255-byte NCName definition
characters of XMLSchema.

UTF-8-encoded binary data is set.

17 Tag 8 byte Parameter identification tag (eye catcher).

MessageT is set.

ASCII-encoded binary data is set.

18 Size 4 int Size of the next area (Item 19).

Size in bytes is set.

19 Response
message type

Optional String Message (response message) type.

If the message type is XML, XML is set. If there is no message (response
message), this parameter is omitted.

UTF-8-encoded binary data is set.

20 Tag 8 byte Parameter identification tag (eye catcher).

MgLength is set.

ASCII-encoded binary data is set.

21 Size 4 int Size of the next area (Item 22).

4 is set.

22 Message size 4 int Message (response message) size is set.

If there is no message (response message), 0 bytes is set.

23 Message Optional byte[] Either of the following types of information is set:

• Response message from a service component

• Error information (fault information) from a service component,
business process, or custom adapter

UTF-8-encoded binary data is set.

#
Java data type

(2) In JMS
A response (JMS message) can be extracted from the shared receive queue based on MDB or SessionBean
installation. For details about MDB and SessionBean installation, see the manual Cosminexus Application Server
Cosminexus Reliable Messaging.

For details about the format of the binary data that is set in the payload of the extracted response (JMS message), see
Table 8-18.

8.6.11 Acquiring Response Messages (TP1/EE or JMS)
Acquire the response message from the extracted response. The response message to be acquired is one of the
following:

• Response message from a service component

• Error information (fault information) from a service component, business process, or custom adapter

8. Creating Service Requesters

480

(1) Response message from a service component
The response message to be acquired is an XML message that has the same message format as the service component
side. For details about XML response messages, see 8.2.7 Acquiring Response Messages.

(2) Error information (fault information) from a service component, business process, or
custom adapter

The message (error information) to be acquired is the XML message that was sent by the asynchronous reception
(MDB (database queue)) to the response queue. For details about the format of the XML message (error information)
to be acquired, see 8.5.9 Acquiring Response Messages.

8. Creating Service Requesters

481

8.7 Service Requester That Sends Requests to a User-
defined Reception (Web Services)

A service requester that sends request messages to a user-defined reception (Web services) communicates with the
user-defined reception using SOAP. The service requester sends a service component execution request message to a
user-defined reception, and an HCSC server performs service component execution.

The interface information of the user-defined reception (Web services) becomes the WSDL specified when you define
the user-defined reception in the development environment. You generate a stub from the WSDL and use the stub to
send a request to the user-defined reception (Web services).

Tip
When creating a service requester that sends requests to a user-defined reception (Web services), unlike a standard
reception, you need not create a request message. A request message (SOAP message) of a format that matches WSDL is
automatically generated in the service requester stub and a service component execution request is sent.

The following figure shows the relationship between a service requester that sends requests to a user-defined reception
(Web Services) and an HCSC server:

Figure 8‒31: Relationship between a service requester that sends requests to a user-defined reception
(Web services) and an HCSC server

For a service requester that uses JAX-WS engine for communication, a service class is created instead of a stub. For
details about how to create a service requester for a JAX-WS engine, see 8.7.7 Procedure for creating a service
requester (User-defined Reception (Web Service)) (JAX-WS engine).

8.7.1 Procedure (SOAP communication infrastructure)for creating a
service requester (User-defined reception (Web Service))

This subsection explains how to create a service requester that sends a service component execution request to a user-
defined reception (Web services) and invokes a service component.

8. Creating Service Requesters

482

Figure 8‒32: Workflow for creating a service requester (user-defined reception (Web services)) (SOAP
communication infrastructure)

The tasks in the individual steps are described below.

(1) WSDL editing
Check the definition contents of the user-defined reception and edit the WSDL contents required for stub creation. For
details about WSDL editing, see 8.7.2 Editing a WSDL.

(2) Stub creation
Create stubs from the WSDL edited in 8.7.1(1) WSDL editing. For details about stub creation, see 8.7.3 Creating
Stubs.

(3) Object generation
To invoke a method of user-defined reception (Web services), use stubs created in 8.7.1(2) Stub creation to generate
objects. For details about object generation, see 8.7.4 Generating Objects.

(4) Response message acquisition
Acquire a response message corresponding to the service component execution request from the user-defined
reception (Web services). For details about response message acquisition, see 8.7.5 Acquiring Response Messages.

(5) Error information acquisition
If an error occurs at the request-destination service component, the HCSC server, or the SOAP engine, acquire the
error information and take corrective action according to the information. For details about error information
acquisition, see 8.7.6 Acquiring Error Information.

8. Creating Service Requesters

483

8.7.2 Editing a WSDL
To create a service requester that sends execution requests to user-defined reception (Web Services), use a WSDL that
is specified when the user-defined reception is defined in the development environment. For details about creating a
WSDL, see 8.3 Creating WSDL.

In a WSDL that is specified when the user-defined reception is defined in the development environment, a temporary
value is set in the value for the service location (value set in the location attribute of the soap-address element within
the wsdl:port element). As a result, you need to edit the service location value of the WSDL to the URL information
of the user-defined reception that you want to use.

When setting up an HCSC server, if there is a specification (request-userdef-soap=ON is specified) for using a user-
defined reception (Web Services) in the HCSC server setup definition file, a URL will be displayed for Web Services
in the User-defined Reception Information Display screen of the development environment. The displayed URL is the
URL information of the user-defined reception. Set this URL in the service location value of the WSDL.

If an HCSC server is not set up or an HCSC server is set up but there are specifications for not using the user-defined
reception (Web services) in the HCSC server setup definition file, set a service location value based on the following
rule:

http://host-name:port-number#1/context-root #2
 /services/CSCMsgUserDefinedReception

#1
This is the URL (host name and port number) of the HCSC server.

#2
For the context root name, the same value is set by default as the reception ID that is allocated when a user-
defined reception is defined in the development environment. It is displayed in Context root in the User-defined
Reception Definition screen.

For details about how to display the User-defined Reception Information Display screen, see 7.4.2 Displaying HCSC
Component Information.

8.7.3 Creating Stubs
Create stubs from the edited WSDL. You can create a stub with the WSDL2Java command provided by Cosminexus
as a development support command.

A command input example is shown below:

WSDL2Java xxxxx.wsdl

If you execute this command, directories and files will be created based on the contents coded in the specified WSDL.

For details about options of the WSDL2Java command and contents of the generated stubs, see the manual
Cosminexus Application Server SOAP Application Development Guide.

8.7.4 Generating Objects
To invoke a method of user-defined reception (Web Services), use the created stubs and generate objects.

To generate an object for invoking a method of user-defined reception (Web Services):

1. Generate an object of the Locator class that is an interface class.

2. Use the Locator class, and generate an object of the interface class of the user-defined reception.
The instance of the service requester's interface class created or acquired cannot be shared by multiple threads.

By invoking a method of the generated object, a request for service component execution is sent to the user-defined
reception. Within the objects of a stub, request messages (SOAP messages) are automatically generated in the format
defined in the WSDL.

8. Creating Service Requesters

484

8.7.5 Acquiring Response Messages
Acquire a response message corresponding to the service component execution request from the user-defined
reception (Web services). The objects of a stub receive a response message (SOAP message) from the user-defined
reception in a format defined in WSDL, and return the response to a service requester. The following figure shows
how a response message is acquired.

Figure 8‒33: Response message acquisition (User-defined reception (Web services))

If there is no response message from the service component, NULL is received. A case in which there is a response
message and a case in which there is no response message are explained separately below.

(1) When there is a response message
The service requester acquires a response message from a business process as a return value for invoking a method of
the generated object.

(2) When there is no response message
The service requester acquires NULL as a return value for invoking a method of the generated object.

8.7.6 Acquiring Error Information
If an error occurs at the request-destination service component, the HCSC server, or the SOAP engine, acquire the
error information and take corrective action according to the information.

For details about how to send an error, see the contents of a user-defined reception in the troubleshooting during the
execution of a Web Service (SOAP Communication), in the manual Cosminexus Service Platform System Setup and
Operation Guide.

(1) Service requester-side installation example
The error acquisition method differs depending on the type of SOAP Communication Infrastructure.

(a) When the SOAP Communication Infrastructure provided by Cosminexus is used

How to acquire SOAPFault from a service component
Catch an exception object used for the error information defined in the WSDL and acquire the SOAPFault error
information. The format of SOAPFault is the Fault format (Fault format on the service component machine)
defined in WSDL.

8. Creating Service Requesters

485

To acquire SOAPFault from a service component, you need to implement the following at the service requester-
side:

{
 try {
 ...
 // Invoke Web Services
 ...
 } catch (xxxxxxxxxxException e) {
 ...
 } catch (C4Fault e) {
 ...
 }
}

How to acquire an exception that occurred in the HCSC server
Catch the C4Fault object provided in the SOAP Communication Infrastructure of Cosminexus, and acquire the
error information.
The process flow at the service requester machine is as follows:

1. Catch with either C4Fault or RuntimeException.

2. Extract Element[]with the getFaultDetails() method from C4Fault, and acquire NodeList for
each array with the getChildNodes() method.

3. Extract Node from NodeList, and then use the getTextContent() method to extract the error
information for each Node.

An example of implementation at the service requester side when acquiring an exception that occurred in the
HCSC server, is described below:

{
 try {
 ...
 } catch (xxxxxxxxxxException e) {
 ...
 } catch (C4Fault e) {
 // Acquire Fault information from C4Fault
 System.out.println("C4Fault Message = " + e.getMessage());
 System.out.println("C4Fault FaultCode = " + e.getFaultCode());
 System.out.println("C4Fault FaultActor = " + e.getFaultActor());
 System.out.println("C4Fault FaultString = " + e.getFaultString());
 // Acquire Detail from C4Fault
 Element ele[] = e.getFaultDetails();
 printElement(ele);
 }
}

/**
 * Print Element
 */
 private static void printElement(Element[] ele) {
 int eleNumber = ele.length;
 System.out.println("Element count = " + eleNumber);
 for (int i=0; i<eleNumber; i++) {
 // Acquire NodeList from Element array
 if (ele[i] != null) {
 printNodeList(ele[i].getChildNodes());
 } else {
 System.out.println("Element[" + i + "] = null");
 }
 }
 }

/**
 * Print NodeList
 */
 private static void printNodeList(NodeList nodelist) {
 int nodelistcount = nodelist.getLength();
 for (int j=0; j<nodelistcount; j++) {
 Node node1 = nodelist.item(j);
 NodeList nodelist1 = node1.getChildNodes();
 int nodelist1len = nodelist1.getLength();

 if (nodelist1len == 0) {
 System.out.println("empty ChildNode");
 } else if(nodelist1len == 1) {
 Node node2 = node1.getFirstChild();
 if(node2 != null) {

8. Creating Service Requesters

486

 System.out.println("ChildNode[" + j + "] getTextContent = "
 + node2.getTextContent());
 } else {
 System.out.println("ChildNode[" + j + "] = null");
 }
 } else {
 printNodeList(nodelist1);
 }
 }
 }

The structure of Element[] that is acquired with the getFaultDetails() method is described below:

Table 8‒19: Structure of Element[] acquired with the getFaultDetails() method

Name Explanation

errorMessage This is an error message set in the exception that occurred in the HCSC server.

errorCode This is an error code corresponding to the exception that occurred in the HCSC server.

processInstanceID Instance ID information of a business process

Since this information is not set in an exception that occurred in the HCSC server, it
becomes null (nil attribute).

(b) When the SOAP Communication Infrastructure provided by Cosminexus is not used

How to acquire SOAPFault from the service component
Catch an exception object used for the error information defined in the WSDL and acquire the SOAPFault error
information. The format of SOAPFault is the Fault format (Fault format on the service component machine)
defined in WSDL.

How to acquire an exception that occurred in the HCSC server
The acquisition method depends on the SOAP engine that is implemented at the service requester side.

8.7.7 Procedure for creating a service requester (User-defined Reception
(Web Service)) (JAX-WS engine)

A service requester that uses JAX-WS engine for communication can be created as the service requester for sending
requests to a user-defined reception (Web Services). The service requester that uses the JAX-WS engine for
communication sends request messages to the user-defined reception (Web Services) using SOAP (document-literal
type).

The following figure shows the relationship between a service requester that uses the JAX-WS engine for
communication and an HCSC server:

8. Creating Service Requesters

487

Figure 8‒34: Relationship between a service requester that uses the JAX-WS engine for communication
and an HCSC server (User-defined reception (Web Services))

The procedure for creating a service requester that uses the JAX-WS engine for communication is as follows:

Figure 8‒35: Procedure for creating a service requester that uses the JAX-WS engine for communication
(User-defined reception (Web Services))

The tasks in the individual steps are described below.

(1) WSDL editing
The WSDL editing method is the same as that used for creating an ordinary service requester in SOAP communication
infrastructure.

For details about how to edit WSDL, see 8.7.2 Editing a WSDL.

8. Creating Service Requesters

488

(2) Service class creation
Create a service class from the edited WSDL. To create a service class, you use the cjwsimport command provided by
Cosminexus as a development support command.

A command input example is shown below:

cjwsimport -s source-file-output-destination-directory -d compiled-class-file-output-
destination-directory WSDL-file

For details about options of the cjwsimport command, see the manual Cosminexus Application Server Web Service
Development Guide.

If the WSDL file edited in 10.6.7(1) WSDL editing is saved at a location different from the current directory in which
the cjwsimport command is executed, also specify the directory.

If you execute this command, the directories and files will be created in the output destination directory of the
specified source file based on the contents described in the WSDL.

! Important note

For a service requester that uses JAX-WS engine for communication, the WSDL will be read during the execution of the
program. When the default constructor of the service class is used, the WSDL in the WSDL path (directory that stores the
WSDL file acquired in 10.6.7(1) WSDL acquisition for creating the service class) specified with the cjwsimport
command will be read. Therefore, after executing the cjwsimport command, do not move the WSDL file so that the
configuration position of the WSDL file based on the service class does not destroy the relative relationship. For changing
the configuration position of the WSDL referenced during the execution of the service requester from the WSDL path
specified with the cjwsimport command, use a constructor for which the URL can be specified.

(3) Object generation
To invoke a method of user-defined reception (Web Services), use the created service class and generate proxy class
objects.

The following describes the procedure for creating an object of the proxy class for invoking user-defined reception
(Web Services) on the basis of the created service class:

1. Create the service class.

2. Create the proxy class corresponding to wsdl:portType.

3. Use objects of the created proxy class and invoke service methods.

By invoking a method of the generated object, a request for service component execution is sent to the user-defined
reception. Within the objects of a service class, request messages (SOAP messages) are automatically generated in the
format defined in the WSDL.

(4) Response message acquisition
The response message acquisition method is the same as that used for creating an ordinary service requester in SOAP
communication infrastructure.

For details about response message acquisition, see 8.7.5 Acquiring Response Messages.

(5) Error information acquisition
If an error occurs at the request-destination service component, the HCSC server, or the SOAP engine, acquire the
error information and take corrective action according to the information.

How to acquire SOAPFault from a service component
For a service requester that uses the JAX-WS engine for communication, the exception in which the information is
wrapped will be caught. Therefore, to acquire a user-defined reception, the fault information save class must be
acquired using the getFaultInfo() method.

How to acquire an exception that occurred in the HCSC server
Acquire the error information by catching the javax.xml.ws.soap.SOAPFaultException object.

8. Creating Service Requesters

489

The process flow at the service requester machine is as follows:

1. Catch with SOAPFaultException.

2. Extract SOAPFault from SOAPFaultException using the getFault() method.

3. From SOAPFault, extract the information about the SOAP Fault.

An example of implementation at the service requester side when acquiring an exception that occurred in the
HCSC server, is described below:

/**
 * Sample Program
 */
{
 try {
 ...
 } catch (xxxxxxxxxxException_Exception e) {
 // When the SOAP fault defined in WSDL is returned back
 xxxxxxxxxxException faultInfo = e.getFaultInfo();
 ...
 } catch (SOAPFaultException e) {
 // When an error occurs in the HCSC server
 SOAPFault soapFault = e.getFault();
 if(soapFault != null) {
 // Output the information about SOAP fault
 System.err.println("faultCode=" + soapFault.getFaultCode());
 System.err.println("faultActor=" + soapFault.getFaultActor());
 System.err.println("faultString=" + soapFault.getFaultString());
 Detail detail = soapFault.getDetail();
 if(detail != null) {
 for(Iterator ite = detail.getDetailEntries(); ite.hasNext();) {
 printDetail((Element)ite.next());
 }
 }
 }
 }
}

The structure of Element[] acquired with the getDetail() method is as shown in the following table:

Table 8‒20: Structure of Element[] acquired with the getDetail() method

Name Content

errorMessage This is the error message set up in the exception.

errorCode This is the error code corresponding to the error message set up in an exception.

processInstanceID This is the process instance ID of the business process. Because the process instance ID is
not set up for an error detected in the messaging infrastructure, this will become null
(nil attribute). This is applicable for an error occurring in the business process.

8. Creating Service Requesters

490

9 Debugging Business Processes
This section describes the flow of debugging and the operation procedure of the
business process.

491

9.1 Flow of Debugging
The following figure shows the flow of debugging of the business process.

Figure 9‒1: Flow of debugging of the business process

The following describes operations related to debugging of the business process.

(1) Preparing for debugging of business processes
Implement the following to prepare for debugging of the business process.

• Set breakpoints
To interrupt processing of the process instance in any activity, set a breakpoint in the activity.
For setting breakpoints, see 9.2.1 Setting Breakpoints.

• Set service emulation
To use a created message instead of the response message for actually invoking the service, set service emulation.

9. Debugging Business Processes

492

For setting service emulation, see 9.2.2 Setting Service Emulation.

(2) Starting debugging of business processes
Start debugging the business process.

For the method for starting debugging of the business process, see 9.3 Starting debugging of business processes.

(3) Sending requests
Use the service requester and service requester emulation for sending requests to the receive activity. Once the request
is sent, processing of the process instance continues till the activity for which a breakpoint is set and then processing
of the process instance is automatically interrupted.

For sending requests, see 9.4 Sending requests.

(4) Debugging business processes
Implement the following for debugging the business process.

• Executing steps and restarting
You can continue sequential processes while processing of the process instance in activity units is interrupted. You
can execute them while processing of the process instance is interrupted.
For the method for executing steps and restarting, see 9.5.1 Step-by-Step Execution and Restarting.

• Checking variables and correlation sets
Check the variable and correlation set used in the business process. You can execute while processing of the
process instance is interrupted.
For the method for checking variables and correlation sets, see 9.5.2 Checking Variables and Correlation Sets.

• Updating variables
Change the value of the variable used in the business process and reflect it in the business process. You can
execute while processing of the process instance is interrupted.
For the method for updating variables, see 9.5.3 Updating Variables.

• Evaluating XPath
You can evaluate the validity of the conditional expression specified in the switch and assign activities and see a
part of the variable values. You can execute while processing of the process instance is interrupted.
For the method for evaluating XPath, see 9.5.4 Evaluating XPath.

• Service emulation (automatic/manual)
Use the set response message instead of the service response message.
For the method for executing automatic service emulation, see 9.5.5 Automatic Service Emulation. For the method
for executing manual service emulation, see 9.5.6 Manual Service Emulation.

(5) Ending debugging of business processes
Debugging of the business process ends when the business process is redefined and its operations are checked.

For the method for ending debugging of the business process, see 9.6 Ending Debugging of Business Processes.

9. Debugging Business Processes

493

9.2 Preparing for Debugging of Business Processes
Set breakpoints and service emulation to prepare for debugging of business processes.

You can also set the breakpoint and service emulation after debugging of the business process starts. In such cases,
implement when the processing of the process instance is interrupted. You can check the processing status of the
process instance in debug view. For details about debug view, see Cosminexus Service Platform Reference.

9.2.1 Setting Breakpoints
To interrupt processing of the process instance in an activity, add the breakpoint in the activity to be interrupted. The
added breakpoint changes, exports and imports criteria setting if required.

For the types of activities for which breakpoints can be set, see 9.5.1(1) Activities that can interrupt the processing of
process instance.

(1) Adding breakpoints
Two types of breakpoints exist-ordinary breakpoints and conditional breakpoints. If an ordinary breakpoint is added,
the processing of the process instance is always interrupted when the process continues in the activity. If a conditional
breakpoint is added, when the process continues in the activity and the conditional expression entered is fulfilled,
(evaluation result is true), processing of the process instance is interrupted.

The following describes the procedure for adding ordinary breakpoints and conditional breakpoints in an activity.

(a) Adding ordinary breakpoints

1. In the Business Process Definition screen, right click the activity in which the breakpoint is to be added and
choose Add breakpoint.
The breakpoint is added in the activity and a check expressing the breakpoint is added next to the activity. For
details about the Business Process Definition screen, see Cosminexus Service Platform Reference.

(b) Adding conditional breakpoints

1. In the Business Process Definition screen, right click the activity in which the breakpoint is to be added and
choose Add conditional breakpoint.
The Set criteria dialog box appears.

2. Enter the conditional expression in XPath.#

3. Click OK.
The breakpoint is added in the activity and a check expressing the breakpoint is added next to the activity.
When the process continues in the activity in which a breakpoint is added, if the conditional expression of the
entered XPath is fulfilled (evaluation result is true), processing of the process instance is interrupted.

If the conditional expression is not entered, the breakpoint is treated as an ordinary breakpoint.

(2) Changing criteria setting of breakpoints
You can change the interruption criteria if required for the ordinary and conditional breakpoints added.

The following describes the procedure for changing criteria setting of breakpoints.

1. In the Business Process Definition screen, right click the activity in which the breakpoint is to be added and
choose Change criteria.
The Set criteria dialog box appears.

2. Enter the conditional expression in XPath.#

3. Click OK.
Criteria setting of the breakpoint changes.

9. Debugging Business Processes

494

When the process continues in the activity in which criteria setting of the breakpoint has changed, if the
conditional expression of the entered XPath is fulfilled (evaluation result is true), processing of the process
instance is interrupted.

If the conditional expression is not entered, the breakpoint is treated as an ordinary breakpoint.

(3) Deleting breakpoints
In the Business Process Definition screen, right click the activity in which the breakpoint is to be deleted and choose
Delete breakpoint. The target activity breakpoint is deleted.

(4) Disabling breakpoints
You can use standard functionalities of Eclipse for temporarily disabling from breakpoint view the breakpoint added in
the activity.

For details about breakpoint view, see Cosminexus Service Platform Reference.

(5) Exporting and importing breakpoints
You can use standard functionalities of Eclipse for exporting the breakpoint added in the activity. You can also import
the exported breakpoint.

For details about how to export and import see Eclipse documents.

! Important note

Before importing a breakpoint, breakpoints set in all activities must be deleted. If a breakpoint setting remains in an activity,
breakpoints might not be imported normally.

9.2.2 Setting Service Emulation
To use a created response message instead of invoking the actual service, set service emulation.

You can use service emulation to continue processing process instances even if the service is not invoked from the
business process.

Two types of service emulation functionalities exist: automatic emulation and manual emulation.

Automatic service emulation is the functionality that executes service emulation automatically when processing of the
process instance continues to the service invocation activity. Before invoking the service from the service invocation
activity, the operation of the service for emulation and the operation response messages must be set..

Manual service emulation is the functionality that sets response messages of services for emulation when processing
of the process instance is interrupted by the service invocation activity. Service emulation is executed manually in this
functionality.

(1) Setting automatic service emulation
In automatic service emulation, service operations, response types and response messages for emulation are set.

For the procedure for setting automatic service emulation, see 9.5.5 Automatic Service Emulation.

(2) Setting manual service emulation
In manual service emulation, response types and response messages are set to be used when processing of process
instances is interrupted by service invocation activities.

For the procedure for setting manual service emulation, see 9.5.6 Manual Service Emulation.

9. Debugging Business Processes

495

9.3 Starting debugging of business processes
The following describes the procedure for starting the business process.

1. Start the test environment.
For details about how to start the test environment, see 2.4.3(1) Starting and stopping the test environment.

2. Start standard reception.
This step is not required if standard reception is not used in the business process.
For details about how to start standard reception, see Cosminexus Service Platform System Setup and Operation
Guide.

3. Any of the following methods displays the Debug configuration dialog box.

• In the Eclipse toolbar, choose Debug (), Configure debug.

• In the List of service definitions of tree view, right click the business process for debugging and choose
Configure debug.

• Right click the target project in the package explorer and choose Debug and Configure debug.

• In the Eclipse menu, choose Execute and Configure debug.

4. In the menu of the Debug configuration dialog box, right click HCSC-BP and choose New.

5. Enter the debug name in Name.

6. In the Debug target drop down list of the Business process setting tab, choose the business process for
debugging.

7. Choose the Debug setting tab and specify the required information.
For contents displayed or specified in the Debug setting tab, see Cosminexus Service Platform Reference.

8. Click Debug.
Console view displays the expiry of the debug start process. If the business process, user-defined reception and
service adapter are being edited, a dialog box appears for confirming whether to save the definitions being edited.
The business process editor appears. For details about the business process editor, see Cosminexus Service
Platform Reference.
Once Eclipse starts, the Authenticate account dialog box appears when debugging of the business process first
starts. Enter the user ID and password to start the start process of debugging the business process.

9. Click OK.
Debugging of the business process starts.
Once debugging of the business process starts, a shortcut is created for the debug configuration in the Debug
menu of Eclipse. Thereafter, you can choose the shortcut to skip operations of the steps from 3-8 and start
debugging.

! Important note

• Configure the development environment, operation environment and execution environment in the same machine.
Operations cannot be guaranteed for multiple machine configurations.

• The HCSC server must be set up. Note that setup must be executed by a single HCSC server configuration. Even if
HCSC easy setup is used, single HCSC server configuration must be set up.

• Start the HCSC server and database in advance.

• The following errors might occur when debugging of the business process starts.
The repository configuration forms in the development environment and operation environment (combination of
database and Cosminexus RM) do not match.
The service deployed in the repository of the operation environment has changed or is deleted from the
development environment.
SOAP modes in the repository of the development environment and operation environment do not match.
If an error occurs, stop all defined HCSC components, delete them from the HCSC server and restart debugging of
the business process.

• If an error occurs while debugging of the business process is starting, interrupt the process and exit. Processes that
exited before the error occurred do not return to status before starting. In such cases, remove the cause of the error
and restart.

9. Debugging Business Processes

496

• If the business process and service adapter change after debugging of the business process starts, the functions of
debug might not operate normally. If the business process and service adapter change while debugging, end the
debugging of the business process once and then restart debugging.

• Start debugging the business process in a single machine. Operations cannot be guaranteed for debugging started
between multiple machines.

• Debugging of the business process can be started or ended only once. If multiple debug configurations are selected
in Debug view, do not start or end debug.

• Debug starts only for the business process selected in Debug target of the Debug configuration dialog box. To
debug simultaneously multiple business processes such as other business processes invoked from the business
process, start debugging each business process.

• If debugging fails to start, the service cannot be started. Debugging of the business process might not start till the
HCSC component stops. If debugging fails to start, execute in the order of the csccompostop -all command
and the csccompoundeploy -all command, stop the HCSC component and undeploy. Then restart debugging
the business process. You cannot stop the HCSC component by the methods in 7.6 Batch execution of processes for
stopping HCSC components and deleting them from the HCSC server.
For details about the csccompostop command and csccompoundeploy command, see Cosminexus Service
Platform Reference.

• The same business process cannot be duplicated and started.

• You can start debugging of only the business process having latest version. You cannot execute debugging of a
business process having any other version.

• If you execute debugging of the business process, the following message is output in the message log multiple
times.
Message output when you try to read a value of variable, which is not initialized (KDEC20052-E)
Message output when you try to read a value of correlation set, which is not initialized (KDEC20065-E)

• Do not execute following functions after starting the debugging of business process.
Closing HCSCTE project
Deleting HCSCTE project
Changing repository directory
Initializing repository
Importing repository
Importing services
Exporting services

Reference note
While starting debugging of the business process, the process to deploy and start HCSC components in the HCSC
server is executed in a batch. At this stage, the business process, service adapter and user defined reception are deployed
and defined as follows:

• Business process
The business process selected in the Debug configuration dialog box is repackaged and then deployed and defined.
If the business process seen from the business process selected in the Debug configuration dialog box is already
deployed and defined (public), it is not redeployed and defined when the debugging of the business process starts.
In other cases, it is repackaged and then deployed and defined.

• Service adapter
If it is already packaged and if it is already deployed and defined (public), it is not repackaged and then deployed
and defined when the debugging of the business process starts.

• User-defined reception
The user-defined reception of the business process selected in the Debug configuration dialog box is redeployed
and defined.
If the user-defined reception of the business process seen from the business process selected in the Debug
configuration dialog box is already deployed and defined (public), it is not redeployed and defined when the
debugging of the business process starts. In other cases, it is redeployed and defined.

9. Debugging Business Processes

497

9.4 Sending requests
Use the service requester and service requester emulation for sending requests to the receive activity. For details about
service requester emulation, see Appendix G. Emulating the Service Requester.

If a request is sent, a dialog box appears for confirming whether to switch perspectives. Click Yes to switch from the
HCSCTE perspective to the Debug perspective. Debug view, variable view, etc appear.

Once the request is sent, processing of the process instance starts and processing of the process instance is interrupted
in the activity in which a breakpoint is set.

9. Debugging Business Processes

498

9.5 Debugging Business Processes
This section describes the operations that can be executed by debugging business processes.

Execute each operation for debugging the business process while processing of the process instance is interrupted.
You can check the processing status of the process instance in debug view.

9.5.1 Step-by-Step Execution and Restarting
This subsection describes the types of activities that can interrupt the processing of process instances, and step-by-step
execution and restart operations.

(1) Activities that can interrupt the processing of process instances
The following table lists the types of activities that can interrupt the processing of process instances.

Table 9‒1: Types of activities that can interrupt the processing of process instances

Activity type Activity Whether the activity can be Interrupted

Basic activity Start activity No

Receive activity Yes

Reply activity Yes

Invoke service activity Yes

Invoke java activity Yes

Data transformation activity Yes

Assign activity Yes

Empty activity Yes

Throw activity Yes

Standby activity Yes

Validate activity Yes

End activity No

Structure activity Scope activity Yes

While activity Yes

Switch start activity Yes

Switch end activity No

Flow start activity Yes

Flow end activity No

Legend:
Yes: Can be interrupted
No: Cannot be interrupted

(2) Step-by-step execution and restart operations
To execute a process instance step-by-step or to restart an operation, select the interrupted activity in the debug view,
and then click the icon of the operation to be executed.

The following table describes step-by-step execution and restart operations, and debugging operations.

9. Debugging Business Processes

499

Table 9‒2: Step-by-step execution and restart operations, and debugging operations

Step-by-step
execution Icon Debugging operations

Step in Step in is executed. For details about the activities interrupted when a step in is executed
for each activity, see (3) Activities interrupted when a step in is executed.

Step over Step over is executed. For details about the activities interrupted when a step over is
executed for each activity, see (4) Activities interrupted when a step over is executed.

Step return Step return is executed. For details about the activities interrupted when a step return is
executed for each activity, see (5) Activities interrupted when a step return is executed.

Restart Restart processing of the process instance continues until the next activity for which a
breakpoint is set.

To make fault handling interrupt the processing of a process instance when an invoke service activity switches to the
fault handling, you need to set a breakpoint in the activity performing the fault handling or execute a step in.

(3) Activities interrupted when a step in is executed
The following table and figure show activities that are interrupted when a step in is executed for each activity.

Table 9‒3: Activities interrupted when a step in is executed for each activity

Activity type Activity Explanation

Basic activity Proceeds to the next activity.

Structure
activities

Scope activity Proceeds to the first activity to be processed within the scope activity.

While activity Proceeds to the first activity to be processed within the while activity.

Switch start activity Proceeds to the first activity to be processed between the switch start activity and the
switch end activity.

Flow start activity Proceeds to the first activity to be processed between the flow start activity and the flow
end activity.

9. Debugging Business Processes

500

Figure 9‒2: Activities interrupted when a step in is executed in a basic activity

Figure 9‒3: Activities interrupted when a step in is executed in a structure activity such as a scope or while
activity

9. Debugging Business Processes

501

Figure 9‒4: Activities interrupted when a step in is executed in a structure activity such as a switch or flow
activity

(4) Activities interrupted when a step over is executed
The following table and figure show activities that are interrupted when a step over is executed for each activity.

Table 9‒4: Activities interrupted when a step over is executed for each activity

Activity type Activity Explanation

Basic activity Proceeds to the next activity.

Structure activities Scope activity Processes the activities within the scope activity, and then proceeds to the next activity. If a
breakpoint is set in an activity, processing is interrupted at that breakpoint.

While activity Processes the activities within the while activity, and then proceeds to the next activity. If a
breakpoint is set in an activity, processing is interrupted at that breakpoint.

Switch start activity Processes until the activity following the switch end activity. If a breakpoint is set in an
activity, processing is interrupted at that breakpoint.

Flow start activity Processes until the activity following the flow end activity. If a breakpoint is set in an
activity, processing is interrupted at that breakpoint.

9. Debugging Business Processes

502

Figure 9‒5: Activities interrupted when a step over is executed in a basic activity

Figure 9‒6: Activities interrupted when a step over is executed in a structure activity such as a scope or
while activity

9. Debugging Business Processes

503

Figure 9‒7: Activities interrupted when a step over is executed in a structure activity such as a switch or
flow activity

(5) Activities interrupted when a step return is executed
This subsection describes activities that are interrupted when a step return is executed for each activity.

If a step return is executed in a basic activity within a structure activity, processing continues until the activity
following the structure activity to which the basic activity belongs. If the structure activity containing the activity
where the step return is executed is a scope activity or while activity, it processes all its internal activities, and then
proceeds to the next activity. If the structure activity containing the activity where the step return is executed is a
switch start activity or flow start activity, processing continues until the activity following the corresponding switch
end activity or flow end activity.

If the interrupted activity does not exist in the structure activity, the same operation as for a restart operation is
performed.

If a breakpoint is set in an activity, processing is interrupted at that breakpoint.

The following figure shows the activities that are interrupted when a step return is executed in each activity within a
structure activity.

9. Debugging Business Processes

504

Figure 9‒8: Activities interrupted when a step return is executed in a basic activity within a structure activity

Figure 9‒9: Activities interrupted when a step return is executed in a structure activity such as a scope or
while activity within a structure activity

9. Debugging Business Processes

505

Figure 9‒10: Activities interrupted when a step return is executed in a structure activity such as a switch or
flow activity within a structure activity

9.5.2 Checking Variables and Correlation Sets
When processing of a process instance is interrupted, if you choose the interrupted activity in debug view, the variable
name, variable value, correlation set name and correlation ID currently used in the business process appear in variable
view.

For details about variable view, see Cosminexus Service Platform Reference.

9.5.3 Updating Variables
Change the value of the variable appearing in variable view and reflect the change in the business process. If the value
is not set for the variable, it cannot be updated.

The following table shows the scope of values that can be entered for each variable type.

Table 9‒5: Scope of values that can be entered for each variable type

Variable type Scope of values

numeric type Value that can be interpreted by the valueOf(java.lang.String) method of java.lang.Double (Example:+1, 3.14,
1e-2d)

boolean type True or false

string type Any character string (Example:15-inch LCD display)

message type#1 • In case of XML type
Any XML(example: <?xml version="1.0" encoding="UTF-8"?><message>Hello</message>)

• In case of non-XML type#2

9. Debugging Business Processes

506

Variable type Scope of values

message type#1 Any binary data (example: Hello)

• In case of any type#2

Any format

#1
If the message type variable changes, the XML character always changes to UTF-8 (even if a character code other than UTF-8 is
specified, it converts to UTF-8).

#2
When the variable type is non-XML type and any type, enter the value in hexadecimal expression.

Variables can be updated by the method for changing in the Set value dialog box, the method for changing from the
input field of Variable view or the method for changing from the Value cell of Variable view.

The following describes the procedure for updating variables.

(1) Updating in the Set value dialog box

1. Right click the variable to be updated in Variable view and choose Change value.
The Set value dialog box appears. The contents displayed in the Set value dialog box differ for message type and
other than message type. For details about the Set value dialog box in each case, see Cosminexus Service Platform
Reference.

2. Enter a value in the input field of the Set value dialog box.
If the variable type is message type, click Save XML to save the entered variable value in the XML file. Click
Read XML to read in the input field the variable value saved in the XML file.

3. Click OK button.
The entered variable value is reflected in the business process. The cell of the updated variable appears in yellow.

(2) Updating from the input field of Variable view

1. In Variable view, choose the variable to be updated.
The selected variable value appears in the input field in the lower part of Variable view.

2. Enter the value in the input field.

3. Update the variable by either of the following methods:

• Click the Ctrl key + S key

• Right click and choose Assigned value

The entered variable value is reflected in the business process. The cell of the updated variable appears in yellow.

(3) Updating from the Value cell of Variable view

1. In Variable view, choose the Value cell of the variable to be updated.

2. Enter the value in the Value cell.

3. Click the Enter key.
The entered variable value is reflected in the business process. The cell of the updated variable appears in yellow.

9.5.4 Evaluating XPath
You can evaluate the validity of the conditional expression specified in the switch and assign activities and see a part
of the variable values. You can execute while processing of the process instance is interrupted.

9. Debugging Business Processes

507

! Important note

When debugging a business process, do not evaluate an XPath expression that contains linefeed code in the data. If you need
to evaluate an XPath expression that contains linefeed code in the data, use the normalize-space() function in XPath
to replace linefeed characters with single spaces before evaluating the XPath expression.

The following describes the procedure for evaluating XPath.

1. In the Eclipse menu, choose Window, View display and Others.
The View display dialog box appears.

2. Choose Debug and Evaluate HCSC XPath and then click the OK button.
HCSC XPath evaluation view appears. For details about HCSC XPath evaluation view, see Cosminexus Service
Platform Reference.

3. In Debug view, choose the business process activity for evaluating the conditional expression.

4. Enter the XPath expression in the input field of HCSC XPath evaluation view and click Evaluate.
The evaluation result for the XPath expression appears below the input field.

9.5.5 Automatic Service Emulation
This subsection explains how to set up and execute automatic service emulations.

(1) Setting up an automatic service emulation

1. From the Eclipse menu, select Window, Show View, and then Others.
The Show View dialog box appears.

2. Select Debug and then HCSC Auto Emulate, and then click OK.
The HCSC Auto Emulate view appears.
For details about the HCSC Auto Emulate view, see 1.2.4 Debug Business Process screen in the manual
uCosminexus Service Platform Reference Guide.

3. Click Add in the HCSC Auto Emulate view.
A row is added to the table in the HCSC Auto Emulate view.

4. Click the Service name cell, and then select the service to be emulated from the drop-down list.

5. Click the Operation name cell, and then select the operation of the service to be emulated from the drop-down
list.

6. Click the Response Type cell, and then select Normal Response or Fault Response from the drop-down list.

7. Click the Response Message cell, and then click the ... button.
The Select file dialog box appears.

8. Select an applicable response message file, and then click OK.#

If you specify a file with the .xsl extension, the result of applying the specified file appears as a response
message in the request message for the invoke service activity.
If you specify a file with an extension other than .xsl, the contents of the file are used directly as response
messages.

#
You can specify only response messages where UTF-8 is specified for the XML character encoding.

9. If necessary, select the Condition cell, and then enter conditions in the XPath expression.
If the result of evaluating the conditional expression against the service request message is true, automatic service
emulation is executed. If no condition is entered, the result is always evaluated as true.

10. Select the check box for the Valid cell.
Automatic service emulation is set.

To save the settings of the HCSC Auto Emulate view to an external file, click Save in the HCSC Auto Emulate view.

9. Debugging Business Processes

508

By clicking Load, you can obtain the settings saved in the external file. If settings already exist in the HCSC Auto
Emulate view, a dialog box is displayed to confirm whether to overwrite the existing settings of the HCSC Auto
Emulate view.

If multiple combinations of the same service and operation are set in the HCSC Auto Emulate view, emulation for the
service with the highest priority is executed. To change the priority order of the service, select the row to be changed,
and then click Up or Down.

If you right-click the file name of a response message and then select Show file, you can open the target file.

If multiple business processes are debugged, automatic emulation settings (service names and operation names) are
enabled for all business processes.

Note that if manual emulation is executed on an invoke service activity that is the target for automatic emulation,
manual emulation takes precedence over automatic emulation.

(2) Executing automatic service emulation
As the processing of a process instance proceeds in the invoke service activity specified in the HCSC Auto Emulate
view, the specified response message is used automatically instead of the response message for the service.

If you specify an XML format file for a response message, the contents of the file are emulated directly as the
response message for the service. If an XSL format file is specified for a response message, the result of applying the
contents of the file to the request message for the service is emulated as the response message for the service.

Note that if automatic service emulation is not set, normal service invocation is executed.

! Important note

If the HCSC Auto Emulate view is closed, automatic service emulation is not executed.

9.5.6 Manual Service Emulation
This subsection explains how to set up and execute manual service emulation.

(1) Setting up manual service emulation

1. From the Eclipse menu, select Window, Show View, and then Others.
The Show View dialog box appears.

2. Select Debug and then HCSC Emulate, and then click OK.
The HCSC Emulate view appears.
For details about the HCSC Emulate view, see 1.2.4 Debug Business Process screen in the manual uCosminexus
Service Platform Reference Guide.

3. In the Debug view, select the activity to be manually emulated.

4. Click Add in the HCSC Emulate view.
A row is added to the table in the HCSC Emulate view.

5. Click the Response Type cell, and then select Normal Response or Fault Response from the drop-down list.

6. Click the Response Message cell, and then click the ... button.
The Select file dialog box appears.

7. Select an XML file (for XML format)# or a file in any format (for non-XML or any format) for a response
message, and then click OK.
Service emulation is set.

#
You can specify only XML files where UTF-8 is specified for the XML character encoding.

To save the settings of the HCSC Emulate view to an external file, click Save in the HCSC Emulate view.

By clicking Load, you can obtain the settings saved in the external file. If settings already exist in the HCSC Emulate
view, a dialog box is displayed to confirm whether to overwrite the existing settings of the HCSC Emulate view.

9. Debugging Business Processes

509

If you right-click the file name of a response message and then select Show file, you can open the target file.

(2) Executing manual service emulation
If you click Resume or Step Over in the HCSC Emulate view when the processing of a process instance is interrupted
in an invoke service activity, the specified response message is used instead of the response message for the service.

To make fault handling interrupt the processing of a process instance when a fault response is emulated to switch from
an invoke service activity to the fault handling, you need to set a breakpoint in the activity performing fault handling.

9. Debugging Business Processes

510

9.6 Ending Debugging of Business Processes
This section describes the procedure to end debugging and the status of business processes and activities when
debugging ends.

End debugging of the business process when the process instance is interrupted. You can check the processing status
of the process instance in debug view.

The following describes the procedure for ending debugging.

1. Choose the debugging business process in Debug view.

2. Click the End icon ().

Debugging of the business process ends.

When debugging ends in the processing of the process instance, the status of the business process and activity is the
same as the status when transaction commit is executed just before debugging ends.

For the transaction commit time, see 5.6 Defining Activities.

! Important note

Even after debugging ends for the business process and service adapter used for business process debugging, it remains in
the deployed and started state in the HCSC server. If required, stop the HCSC component by the method described in 7.6
Batch execution of processes for stopping HCSC components and deleting them from the HCSC serverand delete it from the
HCSC server.

9. Debugging Business Processes

511

Appendixes

513

A. Migrating from an Earlier Version
This appendix describes how to upgrade a version when the repository information that is used in the development
environment of the earlier version is also to be used in the upgraded version.

For details about how to upgrade versions when the repository information used in the earlier version is to be used as
it is for executing operations in the upgraded version, see the manual Cosminexus Service Platform System Setup and
Operation Guide.

Note
You can migrate the repository information used in the development environment in the versions prior to 08-10,
only in case of SOAP 1.1 mode. From version 08-50 onwards, you can migrate the information in case of SOAP
1.1 mode and SOAP 1.1/1.2 combined mode.

A.1 Versions Wherein Migration Is to Be Performed
The old versions wherein the repository information is to be migrated are described below. You can migrate the
repository information of these versions, and upgrade development environment to version 09-60.

• uCosminexus Service Architect 07-10

• uCosminexus Service Architect 07-20

• uCosminexus Service Architect 07-50

• uCosminexus Service Architect 07-60

• uCosminexus Service Architect 08-00

• uCosminexus Service Architect 08-10

• uCosminexus Service Architect 08-50

• uCosminexus Service Architect 08-51

• uCosminexus Service Architect 08-53

• uCosminexus Service Architect 08-70

• uCosminexus Service Architect 09-00

• uCosminexus Service Architect 09-50

• uCosminexus Service Architect 09-51

A.2 Migrating from an Earlier Version
Migrate Service Platform (development environment) from an old version to 09-60 according to steps (1) to (6) in the
following figure:

A. Migrating from an Earlier Version

514

Figure A‒1: Procedure for migrating from an earlier version

Steps (1) to (6) in Figure A-1 are explained in detail, as below.

(1) Exporting the repository
Before upgrading the version, export and save the repository of the development environment. If multiple repositories
are being used, export and save all the necessary repositories.

For details about how to export a repository, see 3.2.2 Exporting a Repository.

(2) Deleting the HCSCTE projects
Delete the HCSCTE projects.

For details about the procedure, see 3.1.4 Deleting a Project.

(3) Uninstalling the development environment
Uninstall the old version of Service Platform from the development environment. Hitachi recommends that you back
up the directories and files in the installation directory for Service Platform before uninstalling the old version.

Note

• Stop the components of the execution environment (such as the J2EE server, Management Server, and PRF)
before uninstalling Service Platform.

• If you are using an embedded database, stop the database before uninstalling Service Platform.

(4) Installing the development environment
In the development environment, install version 09-60 of Service Platform to upgrade the existing version.

A. Migrating from an Earlier Version

515

(5) Creating an HCSCTE project
Create a new HCSCTE project in the upgraded development environment. Specify the directory to be used as a
repository. For the directory to be used as a repository, do not specify the repository of the production environment.

For details about the procedure, see 3.1.1 Creating a Project.

If an external binding file has been used in the old version, you need to specify the file again in Eclipse. For details
about the procedure, see Appendix L. Customizing WSDL using the external binding file.

(6) Importing the repository
Import the repository information (exported in (1) Exporting the repository) into the development environment.
Before importing the repository, select the Project menu of Eclipse, and then clear the Build Automatically option.
After importing the repository, select the Build Automatically option again.

When you import the repository of the old version, packaging and deployment definition are executed automatically,
and the repository information is inherited into the current version. Note that packaging and deployment definition are
automatically executed only for service adapters, business processes, and user-defined reception interfaces for which
packaging and deployment definition have been executed in the old version. Add a new database adapter rather than
using the old version of the database adapter. For details about how to add new database adapters, see 3.2.5 Adding
New Database Adapters in the Service Platform Reception and Adapter Definition Guide.

For details about how to import a repository, see 3.2.3 Importing a Repository.

Note

Notes on migrating from a version earlier than 07-50

• If the following file names are specified in the user-defined class of the SessionBean adapter, a warning
message appears:
- csmsvcadpdef.jar
- cscmsg_adpejb.jar
If the warning message appears, delete the above user-defined class in the Service Adapter Settings
window, change the file name, and then specify the file name again.

• If a message format schema file where the default namespace is not specified is set as the variable for a
business process defined in a version earlier than 07-50, register the message format file again after the
version is upgraded.

Notes on migrating from version 07-60 or later
When migrating from version 07-60 or later, import the service adapter and user-defined reception interface to
be deployed in the execution environment into the development environment, and then repackage them. If you
do not repackage the service adapter, the KDEC03007-E message might not be output. Similarly, if you do
not repackage the user-defined reception interface, invalid padding characters might be output in the
KDEC00001-E message. For details about packaging methods, see 7.2 Packaging.

Notes on migrating from a version earlier than 08-10
If the following elements (compositors) with the occurrence count fixed at "once" are defined below the
sequence or choice element in the data transformation definition, the node display is changed. Therefore,
an error message is displayed indicating that the XML Schema used in the mapping definition file has
changed.

• sequence
• choice

If an error message is displayed, start the mapping definition again to apply the changes.

Notes on migrating from a version earlier than 09-50
If a schema that meets the conditions below is defined in the data transformation definition, the namespace is
changed. Therefore, an error message is displayed indicating that the XML Schema used in the mapping
definition file has changed.

1. A schema that has its target namespace (targetNamespace) defined at the import destination is
specified for the transformation source node.

2. The namespace in 1 above is not defined in any namespace declarations (xmlns[:prefix]) including
import and include destinations.

A. Migrating from an Earlier Version

516

If an error message is displayed, start the mapping definition again to apply the changes.

Notes on memory size
When importing an earlier-version repository, you need a large amount of memory. Therefore, use the
following procedure to check whether the memory size is sufficient. If the memory is insufficient, increase the
memory size before importing the repository.

1. From the Eclipse menu, select Window and then Preferences.

2. Select General in the tree view on the left side of the dialog box.

3. Select the Show heap status check box on the right side of the dialog box.

4. Select the recycle bin icon on the bottom right of the Eclipse window, and then run the garbage collector.

5. Check the heap size shown to the left of the recycle bin icon.

6. If the amount of unused heap memory is insufficient, edit the eclipse.ini file to increase the memory
size specified in -Xmx. For details about how to edit eclipse.ini, see Appendixes B.1 Installation in
the Application Server Application Development Guide.

To perform actual operations by using the repository information imported into the development environment, export
this repository information from the development environment to the operation environment, and deploy the HCSC
components from the operation environment.

A.3 Migrating procedure when a repository is shared between
development environment and operating environment in earlier
version
In 07-60 and higher versions, you cannot share the same repository between a development environment and an
operating environment. If the same repository is shared between a development environment and an operating
environment, migrate the Cosminexus Service Platform from the earlier version to the version 09-60 according to
steps (1) to (6) shown in the following figure:

A. Migrating from an Earlier Version

517

Figure A‒2: Procedure for migrating from an earlier version (When the repository is shared between the
development environment and operating environment)

The details of steps (1) to (6) of Figure A-2 are described below.

(1) Repository export (operating environment)
Execute the cscrepctl command (the -export option) in the operating environment and export the repository
prior to the version upgrade. If multiple repositories are being used, export all the required repositories and save them.

(2) Deleting the HCSCTE project (Development environment)
Delete the HCSCTE project once.

For details about the procedure, see 3.1.4 Deleting a Project.

(3) Uninstalling the environment
Uninstall the Cosminexus Service Platform of the earlier version in the development environment and the operating
environment. Hitachi recommends that you save the directory information under Cosminexus, and then uninstall the
Cosminexus Service Platform of the earlier version.

A. Migrating from an Earlier Version

518

#

• Uninstall components of the execution environment, such as the J2EE server, the Management Server, and
PRF after stopping them.

• If you are using an embedded database, stop the embedded database before uninstalling.

• After unsetting up the HCSC server, delete all the entries under the repository root.

(4) Installing each environment
In the development environment and the operating environment, install the Cosminexus Service Platform of version
09-60 to upgrade the version.

(5) Creating an HCSCTE project (development environment)
Create a new HCSCTE project in the upgraded development environment. Specify the directory to be used as a
repository. Do not specify the repository of the operating environment in the directory to be used as repository.

For details about the procedure, see 3.1.1 Creating a Project.

(6) Importing the repository (Development environment)
Import the repository information that was exported in Appendix A.3(1) Repository export (operating environment) to
the development environment. When importing, in the Eclipse menu, turn OFF Project - Build automatically, and
then import the repository. After you have imported the repository, turn it back to ON.

When you import the repository of an earlier version, packaging and deployment definition are executed
automatically, and the repository information is inherited into the current version. Note that automatic execution of
packaging and deployment definition is performed only for the HCSC components for which packaging and
deployment definition were executed in the earlier version.

For details about how to import a repository, see 3.2.3 Importing a Repository.

#

Notes when migrating from a version earlier than 07-50
If the following file names are set up in the user-defined class of the service adapter (SessionBean), a warning
message will appear.

• csmsvcadpdef.jar
• cscmsg_adpejb.jar

When the warning message appears, delete the above user-defined class in the Service Adapter Definition
screen, change the file name, and then set up the name again.

Notes when migrating from versions prior to 08-10
If the following elements (compositor) with the occurrence count fixed at "once" are defined below the
sequence or choice elements in the data transformation definition, the node display is changed; therefore,
an error message is displayed indicating that the XML Schema used in the mapping definition file is changed:

• sequence
• choice

If the error message is displayed, start the mapping definition again to apply the changes.

Notes on migrating from a version earlier than 09-50
If a schema that meets the following conditions is defined in the data transformation definition, the namespace
is changed. Therefore, an error message is displayed indicating that the XML Schema used in the mapping
definition file has changed.

1. A schema that has its target namespace (targetNamespace) defined at the import destination is
specified for the transformation source node.

2. The namespace in 1 above is not defined in any namespace declarations (xmlns[:prefix]) including
import and include destinations.

If an error message is displayed, start the mapping definition again to apply the changes.

A. Migrating from an Earlier Version

519

Notes regarding the memory
When importing an earlier-version repository, you need a large amount of memory. Therefore, use the
procedure below to check whether the memory size is sufficient. If the memory is insufficient, increase the
memory size before importing the repository.

1. From the Eclipse menu, select Window and then Preferences.

2. Select General in the tree view on the left side of the dialog box.

3. Select the Show heap status check box on the right side of the dialog box.

4. Select the recycle bin icon on the bottom right of the Eclipse window, and then run the garbage collector.

5. Check the heap size shown to the left of the recycle bin icon.

6. If the amount of unused heap memory is insufficient, edit the eclipse.ini file to increase the memory
size specified in -Xmx. For details about how to edit eclipse.ini, see Appendixes B.1 Installation in
the Application Server Application Development Guide.

To perform actual operations by using the repository information imported into the development environment, export
this repository information from the development environment to the operating environment, and then deploy the
HCSC components from the operating environment.

A. Migrating from an Earlier Version

520

B. Migrating from the Evaluation Version
If you have been using the evaluation version of uCosminexus Service Architect, you can migrate the repository
information of the operating environment of the evaluation version to the operating environment of the product
version.

! Important note

The information about the process instance execution log and the message execution log cannot be migrated.

The following figure shows the procedure of migration from the evaluation version to the product version:

Figure B‒1: Procedure of migration from the evaluation version

(1) Exporting the repository
Export the repository of the operating environment of the evaluation version, and save once. If multiple repositories
are being used, export all the required repositories and save them.

1. Enter the following command:

cscrepctl -user admin -pass admin -export file-name-of-the-repository-to-be-exported-
(extension:.zip)

For details about the cscrepctl command, see the manual Cosminexus Service Platform Reference.

(2) Unsetup of the test environment
Unsetup the test environment set up in the development environment of the evaluation version.

For details about how to unsetup the test environment, see 2.4.2(2) Unsetting up the test environment.

(3) Overwrite installation of the product version
Overwrite install the product version of uCosminexus Service Architect.

B. Migrating from the Evaluation Version

521

Note

• Stop the execution environment components such as the J2EE server, Management Server, and PRF and then
perform overwrite installation.

• If an embedded database is being used, stop the embedded database and then perform overwrite installation.

(4) Setup of the test environment
Set up the test environment in the development environment.

For details about the procedure, see 2.4.2(1) Setting up the test environment.

On the HCSC Easy Setup screen (Main tab), make sure that you select the same SOAP mode as the SOAP mode
(SOAP1.1 mode or SOAP1.1/1.2 combined mode) specified when you set up the test environment of the evaluation
version. If a different SOAP mode is selected, the procedure might not operate normally.

(5) Importing the repository
Import the exported repository information into the operating environment.

1. Enter the following command:

cscrepctl -user admin -pass admin -import file-name-of-the-repository-to-be-imported-
(extension:.zip)

To use the imported repository information for development, import this repository information into the development
environment.

For details about how to import the repository into the development environment, see 3.2.3 Importing a Repository.

(6) Deploying or starting an HCSC component
Start the HCSC server and then deploy or start the imported HCSC component.

1. Enter the following command to start the HCSC server:

cscsvstart -user admin -pass admin -system

2. Enter the following command to deploy the HCSC component on the HCSC server:

csccompodeploy -user admin -pass admin -csc MyCSC -all

3. Enter the following command to start the deployed HCSC component:

csccompostart -user admin -pass admin -csc MyCSC -all

4. Enter the following command to start standard reception:

cscrcptnstart -user admin -pass admin -csc MyCSC

B. Migrating from the Evaluation Version

522

C. System development using High Level Design Tools
In the development environment of the Cosminexus Service Platform, you can develop business processes integrated
with the high level design tools that support BPEL. Many of the high level design tools support the easy-to-understand
flow notations such as BPMN; and therefore, possess the feature whereby the business process can be reviewed by
involving the customer in the upper processes of system development.

This appendix describes how to develop the system by combining the high level design tools and the Cosminexus
Service Platform.

C.1 Overview of system development using high level design tools
The following figure shows the procedure of system development combining the high level design tools and the
Cosminexus Service Platform and the image of the deliverables:

C. System development using High Level Design Tools

523

Figure C‒1: System development combining the high level design tools and the Cosminexus Service
Platform

System development based on SOA involves business process development and service development and the
operations proceed concurrently while drilling down the respective deliverables.

The following table describes the operating procedure and the details of the developments:

Table C‒1: Development procedure and operation details of business process development and service
development

Step Operations in business process development Operations in service development

1 Outline design of business process (for the customer)

In order to review the details and scope of the business to be
systematized with the customer, the basic flow of business is
created as a high-level business process and a middle level
business process.

Extraction of service

In parallel with the business process design, the granularity
of the service that processes the business is studied.

C. System development using High Level Design Tools

524

Step Operations in business process development Operations in service development

2 Outline design of business process (for development)

The business process is detailed and changed into a low-level
business process. In detailing, processes such as stratification of
flow considering the reusability and readability, supporting the
business exceptions, and adding comments are performed.

Outline design of service

The service interface (list of operations that the service
releases) is determined and the WSDL overview is created.

3 Detailing of the business process (for development)

The results of service extraction and outline design are received
and then message definition or message transformation is added
to the business process. Also, support is added for the system
exceptions assumed to occur actually.

Detailed design of service

The message structure used in the service operations and
the service processing method is determined and
implemented.

When you develop a system combining the high level design tools and the Cosminexus Service Platform, you use the
high level design tools in step 1 and step 2 and the development environment of the Cosminexus Service Platform
from step 3. The design is inherited from the high level design tools to the development environment through the
BPEL file.

C.2 Procedure of system development using high level design tools
The following figure shows the procedure of system development using the high level design tools. In Appendix D.
Examples of System Development Using High Level Design Tools, you develop the sample programs according to this
procedure.

C. System development using High Level Design Tools

525

Figure C‒2: Procedure of system development using high level design tools

(1) Overview of designing business process
You create a high-level business process using the high level design tools. Reviews are repeated with the customer for
the high-level business process that is then changed into a more concrete middle level business process.

(2) Overview of service interfaces
When the review of the middle level business process ends, review the outline interface of the service. Also, based on
the reviewed results, create the WSDL overview.

(3) Detail description of business process
A business process is detailed and changed into a low-level business process. To design an optimum business process
for the Cosminexus Service Platform, design the flow according to Appendix C.3 Prerequisites for using high level
design tools.

(4) Business process output
A business process designed using an high level design tool is output in the BPEL file format. In this case, the WSDL
of the service integrated with the business process is also compiled.

C. System development using High Level Design Tools

526

(5) Detail description of service interface
Based on the specifications reviewed until now, review the message structure for the service operations. Also, on the
basis of the reviewed results, add the message structure declaration to the WSDL overview.

(6) Creating the service adapter
In the development environment of the Cosminexus Service Platform, you create the service adapter from WSDL. The
service name must be the same as the port type (portType) attribute described in WSDL. For details about how to
create a service adapter, see 5.2.1 Adding New Service Adapters.

(7) Importing the business process
In the development environment of the Cosminexus Service Platform, you import the BPEL file that was output in
Appendix C.2(4) Business process output, as a business process. For details about how to import the BPEL file, see
5.2.2 Using an Already Defined Business Process to Add Business Processes.

(8) Adding user-defined reception
Add the user-defined reception to the business process. For details about how to add the user-defined reception, see
8.4.1 Adding a New User-Defined Reception.

(9) Registering the message schema
Register the schema (structure) of the messages (variable) used in the business process.

(10) Adding message conversion and system exception processing
As and when required, add message transformation processing and processing to support the system exceptions to the
business process.

C.3 Prerequisites for using high level design tools
This section describes the prerequisites (points to remember when using high level design tools) for designing a
business process for the Cosminexus Service Platform.

(1) Prerequisites related to the overall business process

(a) Settings for instance correction

The Cosminexus Service Platform does not perform instance correction. When instance correction can be set up for a
business process using the high level design tools, specify "No correction". When the settings cannot be specified,
design the flow assuming that instance correction is not performed.

(b) Specifying the abstract process

The Cosminexus Service Platform can only handle the business processes with an executable implementation level.
When a business process can be set up as an abstract process using the high level design tools, do not specify the
process as an "Abstract Process".

(c) Controlling the joinFailure fault

The Cosminexus Service Platform always controls and operates the joinFailure fault. When the controlling of
joinFailure fault can be set up using the high level design tools, specify "Control". When the settings cannot be
specified, design the flow assuming that the joinFailure fault is controlled.

C. System development using High Level Design Tools

527

(2) Prerequisites related to activities

(a) Using unsupported elements and attributes

Do not use BPEL elements and attributes that are not supported by the BPEL import functionality. Unsupported
elements and attributes skip the fetching operation or are replaced by other elements; therefore, the process might
change into an unintended flow. For details about the supported status of BPEL import functionality, see Appendix E.
Support Range of BPEL Used by Linking with an High Level Design Tool.

For details about the elements (BPMN elements) and settings for the high level design tools and the mapping to BPEL
elements and attributes, see the documentation for the BPMN specifications or high level design tools.

(b) Using the compensation handler

The BPEL import functionality does not support the compensationHandler element. If a compensation marker
is used in the high level design tools that use BPMN, the compensation marker is output in BPEL as the
compensationHandler element; therefore, it is recommended that you do not use the compensation marker in the
design. The following figure shows an example of the same design without using the compensation marker:

Figure C‒3: Example of a design without using the compensation marker

C. System development using High Level Design Tools

528

(c) Character types of the service name

The Cosminexus Service Platform can only use NCName as the name of the service integrated with a business
process. When specifying the service name (interface attribute in BPMN) using the high level design tool, specify the
value with NCName. If characters other than NCName are used, the fetching of the information is partially skipped.

(d) Partially specifying a message

Do not partially specify messages with the high level design tools. Specify a message partially after fetching the
business process definition into the development environment, since the message structure must be determined. If
partially specified (part) attributes are specified in the BPEL assign activity, the specification is ignored by the BPEL
import functionality.

(3) Prerequisites related to messages

(a) Specifying the message type

Do not specify the message structure in the high level design tools. Specify the message structure after fetching the
business process into the development environment, since the service interface must be determined. If the message
type (messageType) attribute is specified in BPEL, the attribute is fetched after being replaced by the string type
variable.

(b) Specifying the type

If the message is of a basic type (without a structure), specify a type belonging to the XML schema namespace
(http://www.w3.org/2001/XMLSchema). If another type is specified in the BPEL type (type) attribute, the
type is fetched after being replaced by a type that is presumed to be compatible.

C.4 Troubleshooting when the high level design tools are used
This section describes the message details and the solutions for messages displayed when a BPEL file, created by the
high level design tools, is imported.

The message format described in this section is as follows:

Message text

Description of the message

Output conditions
Message output conditions

Action
Action and supplementary notes for the message

Message text
Indicates the message text output on the Cosminexus Service Platform.
The part enclosed within [] (square brackets) is displayed by XPath and the part enclosed within { } (curly
brackets) is displayed by the value.

Message description
Indicates the supplementary description for the message text.

Output conditions
Indicates the conditions in which the message is output.

Action
Indicates the action to be taken when the message is output or the supplementary notes related to the action.

The following points describe the messages output for each defined BPEL element:

C. System development using High Level Design Tools

529

(1) Process

The attribute targetNamespace of the element [process] is not supported and, hence, not applied.

On the Cosminexus Service Platform, the fixed value reserved for the system is always used as the
targetNamespace attribute value. Even if the targetNamespace attribute value is specified, when the BPEL
file is imported, the value is replaced by the fixed value reserved for the system.

Output conditions
When the targetNamespace attribute is defined

Action
Does not affect the execution of the business process. Specific action need not be taken.

The element [process] attribute enableInstanceCompensation is not supported and, hence, not applied.

On the Cosminexus Service Platform, the enableInstanceCompensation attribute (instance correction) is not
supported. Therefore, the operation is always the same as when "no" is specified in the
enableInstanceCompensation attribute.
Note that in the case of BPEL 1.1, the default value of the enableInstanceCompensation attribute is "no". In
the case of BPEL 2.0, the enableInstanceCompensation attribute cannot be specified.

Output conditions
When the enableInstanceCompensation attribute is defined

Action
When this message is output, check the specification of the enableInstanceCompensation attribute in the
BPEL file and take action from the following viewpoints:

• When "no" is specified in the enableInstanceCompensation attribute
The operation is same as that on the Cosminexus Service Platform. Specific action need not be taken.

• When "yes" is specified in the enableInstanceCompensation attribute
When the BPEL file is imported, the specification of the enableInstanceCompensation attribute is
replaced by "no". Therefore, if the flow is designed assuming instance correction, the execution results of the
business process might differ. Open the imported business process in a business process editor and review
whether the business process is defined for the intended details.

The details of the instance correction depend on the header. If the business process is created assuming instance
correction, sometimes the runtime compatibility cannot be guaranteed.
Therefore, either do not specify the enableInstanceCompensation attribute from the upper-level design
stage, or design the process by specifying "no".

The element [process] attribute abstractProcess is not supported and, hence, not applied.

On the Cosminexus Service Platform, the abstractProcess attribute is not supported. The Cosminexus Service
Platform always targets the business processes with executable implementation level. Therefore, the operation is
always the same as when "no" is specified for the abstractProcess attribute.
Note that in the case of BPEL 1.1, the default value of the abstractProcess attribute is "no". In the case of BPEL
2.0, the abstractProcess attribute cannot be specified.

Output conditions
When the abstractProcess attribute is defined

Action
When this message is output, check the specification of the abstractProcess attribute in the BPEL file and
take action from the following viewpoint:

• When "no" is specified for the abstractProcess attribute
The operation is the same as on the Cosminexus Service Platform. Specific action need not be taken.

• When "yes" is specified for the abstractProcess attribute

C. System development using High Level Design Tools

530

The business process might be of a non-executable abstract level. Open the imported business process using a
business process editor and review the business process definition.

(2) Partner link

The element [partnerLinks] is not supported and, hence, not applied. Also, if lower attributes and elements exist, these
attributes and elements are also not applied.

On the Cosminexus Service Platform, the partnerLinks attribute is not supported. When the BPEL file is
imported, the partnerLinks element indicating the relationship between the business process and the external
service is not fetched.

Output conditions
When the partnerLinks element is defined

Action
Does not affect the execution of the business process. Specific action need not be taken.
On the Cosminexus Service Platform, the partner link information of the BPEL file corresponds to the user-
defined reception and service adapter.
As and when required, create the user-defined reception and service adapter from the WSDL file that makes a set
with the BPEL file.
See the actions for the following messages as well:

• Reference: Appendix C.4(5) Activity (receive)
The attribute partnerLink of the element [receive] is not supported and, hence, not applied.

• Reference: Appendix C.4(6) Activity (reply)
The attribute partnerLink of the element [reply] is not supported and, hence, not applied.

• Reference: Appendix C.4(8) Activity (invoke)
The attribute partnerLink of the element [invoke] is not supported and, hence, not applied.

(3) Variable or correlation set (variable)

The variable {variable-name} was replaced by the string type. Change the variable type to messageType and register the
message format.

When the BPEL file is imported, a structured message is not fetched as a variable.
In the high level design tools, specify only the name of the message (variable) and define the message structure when
you enter the detailed design phase.

Output conditions
When the messageType attribute of the variable element is defined

Action
After importing the BPEL file, change the variable type into messageType using the business process editor
and then specify the schema file.

The variable {variable-name} type {old-variable-type} must belong to the namespace "http://www.w3.org/2001/
XMLSchema". The type is applied as the {new-variable-type} type, but check whether there is a problem.

The types that are not defined in the XML schema namespace are specified in the variable. The variable is fetched
after the type is replaced by a type that is presumed to be compatible.

Output conditions
When a type that is not defined in the XML schema namespace is specified in the variable

Action
Check whether the replaced variable type affects the business process. As and when required, import the BPEL
file and then review the variable types using the business process editor.

C. System development using High Level Design Tools

531

(4) Variable or correlation set (correlation set)

The element [correlationSets] is not supported and, hence, not applied. Also, if lower attributes and elements exist,
these attributes and elements are also not applied.

When the BPEL file imported, the correlationSets element defining the correlation set is not fetched.
Do not define the correlation set in the high level design tools.

Output conditions
When the correlationSets element is defined

Action
After importing the BPEL file, redefine the correlation set using the business process editor.

(5) Activity (receive)

The attribute partnerLink of the element [receive] is not supported and, hence, not applied.

When the BPEL file is import, the partnerLink attribute is not fetched.

Output conditions
When the partnerLink attribute is defined

Action
Need not be a cause for concern within the usage of standard reception.
The partnerLink attribute of the receive element is equivalent to the user-defined reception on the
Cosminexus Service Platform.
As and when required, import the BPEL file and then create the user-defined reception from the WSDL file of the
business process.

The attribute portType of the element [receive] is not supported and, hence, not applied.

When the BPEL file is imported, the portType attribute is not fetched.

Output conditions
When the portType attribute is defined

Action
The portType attribute is specified for the readability of the BPEL file and WSDL file. Does not affect the
execution of the business process. Specific action need not be taken.

The operation name of the activity [receive] is repeated and, therefore, replaced by {operation-name}.

The same operation name is specified for multiple receive elements having different portType attribute values.
The operation name is replaced such that the name is not repeated when the BPEL file is imported and then fetched.

Output conditions
When the same operation name is specified for multiple receive elements having different portType attribute
values

Action
Does not affect the execution of the business process. Specific action need not be taken. However, the operation
name might not match the business process WSDL; therefore, as and when required, change the operation name
using the business process editor.

The receive activity [receive] was replaced with an empty activity since an activity with the same portType and
operation already exists.

The same operation name was specified for multiple receive elements having the same portType attribute
values. When the BPEL file is imported, the second and subsequent receive elements are replaced by empty
activities and then fetched.

C. System development using High Level Design Tools

532

Output conditions
When the same operation name was specified for multiple receive elements having the same portType
attribute values

Action
Import the BPEL file and then redefine the empty activity as an appropriate receive activity.

The value "no" specified in the attribute [createInstance] of the element [receive] is replaced with "yes".

When the BPEL file is imported, the createInstance attribute of the receive element is always fetched as
"yes".

Output conditions

• When the createInstance attribute is not specified

• When "no" is specified for the createInstance attribute

Action
Import the BPEL file and then re-specify the instance generation for the receive activity.

The element [correlations] is not supported and, hence, not applied. Also, if lower attributes and elements exist, these
attributes and elements are also not applied.

When the BPEL file is imported, the correlations element specifying the correlation set is not fetched. Do not
specify the correlation set in the high level design tools.

Output conditions
When the correlations element is defined

Action
Import the BPEL file and then specify the correlation set using the business process editor.

(6) Activity (reply)

The attribute partnerLink of the element [reply] is not supported and, hence, not applied.

When the BPEL file is imported, the partnerLink attribute is not fetched.

Output conditions
When the partnerLink attribute is defined

Action
On the Cosminexus Service Platform, the partnerLink attribute of the reply element is equivalent to the
user-defined reception.
If necessary, import the BPEL file and then create the user-defined reception from the WSDL file of the business
process.

The attribute portType of the element [reply] is not supported and, hence, not applied.

When the BPEL file is imported, the portType attribute is not fetched.

Output conditions
When the portType attribute is defined

Action
The portType attribute is specified for the readability of the BPEL file and WSDL file. Does not affect the
execution of the business process. Specific action need not be taken.

The value {namespace}:{local-name} specified in the attribute faultName of the element [reply] was replaced by {local-
name}.

On the Cosminexus Service Platform, the fault namespace is not supported by default.

C. System development using High Level Design Tools

533

If the fault namespace is specified in the BPEL file, only the local name is fetched.

Output conditions
When the namespace is specified in the faultName attribute value

Action
When the standard reception is used, the fault message only stores the local name.
When the user-defined reception is used, the fault message stores both, the namespace and the local name.
As and when required, create the user-defined reception from the WSDL file of the business process such that the
fault message conforms to the business process interface.

The operation name of the activity [reply] is repeated and, therefore, replaced by {operation-name}.

The same operation name is specified for multiple reply elements having different portType attribute values. The
operation name is replaced such that the name is not repeated when the BPEL file is imported and then fetched.

Output conditions
When the same operation name is specified for multiple reply elements having different portType attribute
values

Action
Does not affect the execution of the business process. Specific action need not be taken. However, the operation
name might not match the business process WSDL; therefore, as and when required, change the operation name
using the business process editor.

The element [correlations] is not supported and, hence, not applied. Also, if lower attributes and elements exist, these
attributes and elements are also not applied.

When the BPEL file is imported, the correlations element specifying the correlation set is not fetched. Do not
specify the correlation set in the high level design tools.

Output conditions
When the correlations element is defined

Action
Import the BPEL file and then specify the correlation set using the business process editor.

(7)  Activity (assign)

The attribute part of the element [assign/copy/from] is not supported and, hence, not applied.

When the BPEL file is imported, the part attribute is not fetched.
In the high level design tools, specify only the name of the message (variable) and define the message structure when
you enter the detailed design phase.

Output conditions
When the part attribute is defined

Action
Import the BPEL file and then define the message structure and specify the parts using the business process editor.

The attribute part of the element [assign/copy/to] is not supported and, hence, not applied.

When the BPEL file is imported, the part attribute is not fetched.
In the high level design tools, specify only the name of the message (variable) and define the message structure when
you enter the detailed design phase.

Output conditions
When the part attribute is defined

Action
Import the BPEL file and then define the message structure and specify the parts using the business process editor.

C. System development using High Level Design Tools

534

The copy element of the assign activity [assign] is not applied because the format of the attributes defined in copy/from
is not supported.

To fetch the copy element of the assign activity, the attributes of the copy/from element must be defined in a
fetchable combination.
For details about the fetchable combinations, see Appendix E. Support Range of BPEL Used by Linking with an High
Level Design Tool.

Output conditions
When the attributes of the copy/from element are defined using an unfetchable combination

Action
Import the BPEL file and then redefine the assign settings for the assign activity.

The to element of the assign activity [assign] is not applied because the format of the attributes defined in copy/to is not
supported.

To fetch the to element of the assign activity, the attributes of the copy/to element must be defined in a fetchable
combination.
For details about the fetchable combinations, see Appendix E. Support Range of BPEL Used by Linking with an High
Level Design Tool.

Output conditions
When the attributes of the copy/to element are defined using an unfetchable combination

Action
Import the BPEL file and then redefine the assign settings for the assign activity.

(8) Activity (invoke)

The attribute partnerLink of the element [invoke] is not supported and, hence, not applied.

When the BPEL file is imported, the partnerLink attribute is not fetched.

Output conditions
When the partnerLink attribute is defined

Action
On the Cosminexus Service Platform, the partnerLink attribute of the invoke element is equivalent to the
service adapter.
If a service adapter corresponding to the partnerLink attribute is already created, specific action need not be
taken.

The applicable service or operation does not exist in the repository; therefore, the service name {service-name} specified in
portType of the invoke activity [invoke] is not applied.

If the service adapter corresponding to the portType attribute and operation attribute does not exist in the
repository, the portType attribute is not fetched.

Output conditions

• When the service adapter corresponding to the portType attribute does not exist in the repository

• When the service adapter corresponding to the portType attribute does not have an operation corresponding
to the operation attribute

Action
Create the corresponding service adapter and re-set the service name of the invoke activity.

The applicable service or operation does not exist in the repository; therefore, the operation name {operation-name} specified
in operation of the invoke activity [invoke] is not applied.

C. System development using High Level Design Tools

535

If the service adapter corresponding to the portType attribute and operation attribute does not exist in the
repository, the operation attribute is not fetched.

Output conditions

• When the service adapter corresponding to the portType attribute does not exist in the repository

• When the service adapter corresponding to the portType attribute does not have an operation corresponding
to the operation attribute

Action
Create the corresponding service adapter and re-set the operation name of the invoke activity.

The value {variable-name} of the attribute inputVariable specified in the invoke activity [invoke] is not applied
because the corresponding operation {operation-name} does not exist in the repository.

If the service adapter corresponding to the portType attribute and operation attribute does not exist in the
repository, the inputVariable attribute is not fetched.

Output conditions

• When the service adapter corresponding to the portType attribute does not exist in the repository

• When the service adapter corresponding to the portType attribute does not have an operation corresponding
to the operation attribute

Action
Create the corresponding service adapter and reset the allocation variable for the request message of the invoke
activity.

The value {variable-name} of the attribute outputVariable specified in the invoke activity [invoke] is not applied
because the corresponding operation {operation-name} does not exist in the repository.

If the service adapter corresponding to the portType attribute and operation attribute does not exist in the
repository, the outputVariable attribute is not fetched.

Output conditions

• When the service adapter corresponding to the portType attribute does not exist in the repository

• When the service adapter corresponding to the portType attribute does not have an operation corresponding
to the operation attribute

Action
Create the corresponding service adapter and reset the allocation variable for the response message of the
invoke activity.

The value {variable-name} of the attribute outputVariable specified in the invoke activity [invoke] is not applied
because the operation {operation-name} of the service {service-name} in the repository is asynchronous.

If the communication method of the operation for the invocation destination service is asynchronous, the response
message is not required; therefore, the outputVariable attribute is not fetched.

Output conditions
When the communication method of the operation for the invocation destination service is asynchronous and the
outputVariable attribute is defined

Action
The BPEL file and WSDL file used as input might not be consistent. Check whether the asynchronous
communication method of operation is acceptable.

The attribute faultName of the element [invoke/catch] is not supported and, hence, not applied.

The Cosminexus Service Platform does not support fault catching using the faultName attribute.

Output conditions
When the faultName attribute is defined

C. System development using High Level Design Tools

536

Action
Import the BPEL file and then re-set fault catching using a business process editor.

The attribute faultMessageType of the element [invoke/catch] is not supported and, hence, not applied.

The Cosminexus Service Platform does not support fault catching using the faultMessageType attribute.

Output conditions
When the faultMessageType attribute is defined

Action
Import the BPEL file and then re-set fault catching using a business process editor.

The attribute faultElement of the element [invoke/catch] is not supported and, hence, not applied.

The Cosminexus Service Platform does not support fault catching using the faultElement attribute.

Output conditions
When the faultElement attribute is defined

Action
Import the BPEL file and then re-set fault catching using a business process editor.

The element [correlations] is not supported and, hence, not applied. Also, if lower attributes and elements exist, these
attributes and elements are also not applied.

When the BPEL file is imported, the correlations element specifying the correlation set is not fetched.
Do not specify the correlation set in the high level design tools.

Output conditions
When the correlations element is defined

Action
Import the BPEL file and then specify the correlation set using the business process editor.

(9) Activity (flow)

The element [flow/links] is not supported and, hence, not applied. Also, if lower attributes and elements exist, these
attributes and elements are also not applied.

When the BPEL file is imported, the links element specifying the link is not fetched.
Do not specify the link in the high level design tools.

Output conditions
When the links element is defined

Action
Import the BPEL file and then specify the link using the business process editor.

(10) Activity (throw)

The attribute faultName of the element [throw] is not supported and, hence, not applied.

The Cosminexus Service Platform does not support fault throwing using the faultName attribute.

Output conditions
When the faultName attribute is defined

Action
Import the BPEL file and then set up fault throwing using the business process editor.

C. System development using High Level Design Tools

537

(11) Activity (general)

The name of the activity [someElement] is repeated and, therefore, replaced by {new-name}.

On the Cosminexus Service Platform, the activity name (name attribute) cannot be repeated.
If the activity name is repeated when the BPEL file is imported, a number is added to the end of the activity name and
then the activity is fetched. The number is sequentially specified from 1.

Output conditions
When the activity name (name attribute) is repeated

Action
The activity name is used for the output of the execution log for the operating environment and the execution
environment log. As and when required, change the activity name.

The element [someElement] is not supported and, hence, replaced by an empty activity. Also, if lower attributes and
elements exist, these attributes and elements are also not applied.

The Cosminexus Service Platform does not support the activities described in [someElement].
When the BPEL file is imported, [someElement] is replaced by an empty activity and then fetched.

Output conditions
When an unsupported activity is defined

Action
Replace the processing by an activity supported on the Cosminexus Service Platform.

(12) Handler (compensation handler)

The element [compensationHandler] is not supported and, hence, not applied. Also, if lower attributes and elements
exist, these attributes and elements are also not applied.

The Cosminexus Service Platform does not support the compensationHandler element.

Output conditions
When the compensationHandler element is defined

Action
Replace the processing by an activity supported on the Cosminexus Service Platform.

(13) Handler (event handler)

The element [eventHandler] is not supported and, hence, not applied. Also, if lower attributes and elements exist, these
attributes and elements are also not applied.

The Cosminexus Service Platform does not support the eventHandler element.

Output conditions
When the eventHandler element is defined

Action
Replace the processing by an activity supported on the Cosminexus Service Platform.

(14) Handler (termination handler)

The element [terminationHandler] is not supported and, hence, not applied. Also, if lower attributes and elements exist,
these attributes and elements are also not applied.

The Cosminexus Service Platform does not support the terminationHandler element.

C. System development using High Level Design Tools

538

Output conditions
When the terminationHandler element is defined

Action
Replace the processing by an activity supported on the Cosminexus Service Platform.

(15) Handler (fault handler)

FaultHandlers [faultHandlers] are not applied because catch/catchAll is not defined.

The fault handlers in which one or more catch or catchAll is not defined are not fetched.

Output conditions
When one or more catch element or catchAll element are not defined in the faultHandler element

Action
Does not affect the execution of the business process. Specific action need not be taken.

The attribute faultName of the element [faultHandlers/catch] is not supported and, hence, not applied.

The Cosminexus Service Platform does not support fault catching using the faultName attribute.

Output conditions
When the faultName attribute is defined

Action
Import the BPEL file and then re-set fault catching using the business process editor.

The attribute faultMessageType of the element [faultHandlers/catch] is not supported and, hence, not applied.

The Cosminexus Service Platform does not support fault catching using the faultMessageType attribute.

Output conditions
When the faultMessageType attribute is defined

Action
Import the BPEL file and then re-set fault catching using the business process editor.

The attribute faultElement of the element [faultHandlers/catch] is not supported and, hence, not applied.

The Cosminexus Service Platform does not support fault catching using the faultElement attribute.

Output conditions
When the faultElement attribute is defined

Action
Import the BPEL file and then re-set fault catching using the business process editor.

(16) Others

The value no specified in the attribute suppressJoinFailure of the element [someElement] is replaced by yes.

The Cosminexus Service Platform does not support the suppressJoinFailure attribute. Therefore, the
bpws:joinFailure fault is always controlled and the operation is the same as when "yes" is specified for the
suppressJoinFailure attribute.
Note that in the case of BPEL 1.1 and BPEL 2.0, the default value of the suppressJoinFailure attribute is "no".

Output conditions

• When the suppressJoinFailure attribute is not specified

• When "no" is specified for the suppressJoinFailure attribute

C. System development using High Level Design Tools

539

Action
When the BPEL file is imported, the specification of the suppressJoinFailure attribute is replaced by
"yes". Therefore, the execution results of the business process might differ. Open the BPEL file in the business
process editor and review whether the business process is defined for the intended details.

Note
The operations of the business process differ depending on the value of the suppressJoinFailure attribute.
On the Cosminexus Service Platform, operations are always executed with the suppressJoinFailure
attribute as "yes"; therefore, if joinCondition of the activity is not fulfilled, the business process goes into an
interrupted state that cannot be restarted immediately.
In an environment where the suppressJoinFailure attribute is operated as "no", if joinCondition is
not fulfilled, the bpws:joinFailure fault is thrown, but the processing continues according to the defined
business process.
The following figure shows the relationship between the specification of the suppressJoinFailure attribute
and bpws:joinFailure:

Figure C‒4: Relationship between the specification of the suppressJoinFailure attribute and
bpws:joinFailure

When the suppressJoinFailure attribute is "no":
When joinFailure occurs at (1), joinFailure is propagated to the upper scope. In this example,
joinFailure is propagated in the order of scope Y scope X process, but error processing of
joinFailure is executed in FaultHandler of scope X and the processing continues.
When joinFailure occurs at (2), an attempt is made to propagate to the upper level of the process, but
there is nothing to catch joinFailure; therefore, the business process stops. In this case, the business
process goes into a restartable interrupted state.

When the suppressJoinFailure attribute is "yes":
When joinFailure occurs at (1), the propagation of joinFailure is controlled and the business
process goes into a non-restartable interrupted state.
When joinFailure occurs at (2) as well, the propagation of joinFailure is controlled and the business
process goes into a non-restartable interrupted state.

The attribute queryLanguage of the element [someElement] is not supported and, hence, not applied.

The Cosminexus Service Platform does not support the queryLanguage attribute. XPath1.0 is always used as the
query language. XPath1.0 for the Cosminexus Service Platform has a partially unique extension.
Note that in the case of BPEL 1.1 and BPEL 2.0, the default query value is XPath1.0.

Output conditions
When the queryLanguage attribute is defined

Action
If a query is not used in the high level design tools, specific action need not be taken.

C. System development using High Level Design Tools

540

If a query language other than XPath1.0 is used, import the BPEL file and then correct the query specification
using the business process editor.

The attribute expressionLanguage of the element [someElement] is not supported and, hence, not applied.

The Cosminexus Service Platform does not support the expressionLanguage attribute. XPath1.0 is always used
as the expression language. XPath1.0 for the Cosminexus Service Platform has a partially unique extension.
Note that in the case of BPEL 1.1 and BPEL 2.0, the default expression value is XPath1.0.

Output conditions
When the expressionLanguage attribute is defined

Action
If an expression is not used in the high level design tools, specific action need not be taken.
If a expression other than XPath1.0 is used, import the BPEL file and then correct the specification of the
expression using the business process editor.

An empty activity was added because no activity was defined in the element [someElement].

If one or more child elements are not defined for a BPEL element (such as while activity) that can have a child
element, an empty activity is added as a child element when the BPEL file is imported.

Output conditions
When the activity element of [someElement] does not have a child element

Action
Does not affect the execution of the business process. Specific action need not be taken.

The element [someElement] is not supported and, hence, not applied. Also, if lower attributes and elements exist, these
attributes and elements are also not applied.

The Cosminexus Service Platform does not support the BPEL elements described by [someElement].

Output conditions
When unsupported elements are defined

Action
Replace the processing by functionality supported on the Cosminexus Service Platform.

The attribute [someAttribute] of the element [someElement] is not supported and, hence, not applied.

The Cosminexus Service Platform does not support the BPEL attributes described by [someAttribute].

Output conditions
When unsupported attributes are defined

Action
Replace the processing by functionality supported on the Cosminexus Service Platform.

C. System development using High Level Design Tools

541

D. Examples of System Development Using High Level Design
Tools
INTENTIONALLY DELETED

D.1 Designing the business process overview
INTENTIONALLY DELETED

D.2 Reviewing the service overview interface
INTENTIONALLY DELETED

D.3 Detailing the business process
INTENTIONALLY DELETED

D.4 Output the business process
INTENTIONALLY DELETED

D.5 Reviewing the detailed interface of the service
INTENTIONALLY DELETED

D.6 Creating the service adapter
INTENTIONALLY DELETED

D.7 Importing the business process
INTENTIONALLY DELETED

D.8 Adding user-defined reception interfaces
INTENTIONALLY DELETED

D.9 Registering message schemas
INTENTIONALLY DELETED

D.10 Adding the message transformation and system exception
processing

INTENTIONALLY DELETED

D. Examples of System Development Using High Level Design Tools

542

E. Support Range of BPEL Used by Linking with an High Level
Design Tool

The Cosminexus Service Platform supports the import of BPEL1.1 and BPEL2.0. The support range of a BPEL file
and rules for converting to a business process definition are different for BPEL1.1 and BPEL2.0.

This section explains (for BPEL1.1 and BPEL2.0) the support range of a BPEL file and the rules for converting to a
business process definition, when you import the BPEL file created with an high level design tool.

! Important note

Among the elements and attributes of the BPEL file, the elements and attributes that are not described hereafter are not
converted to the business process definitions.

The following table describes which elements of the BPEL file are converted to which definition contents of a
business process:

Table E‒1: Relation between the elements of a BPEL file and business process definitions

Element before conversion (BPEL
file)

Definition contents after
conversion (business process)

Reference for conversion method

BPEL1.1 BPEL2.0

process
element

variables element Variable Appendix E.1(1)(b) Appendix E.2(1)(b)

correlationSets
element

Correlation set Appendix E.1(1)(c) Appendix E.2(1)(c)

faultHandlers
element

Fault handling Appendix E.1(1)(d) Appendix E.2(1)(d)

receive element Receive activity Appendix E.1(2)(a) Appendix E.2(2)(a)

reply element Reply activity Appendix E.1(2)(b) Appendix E.2(2)(b)

invoke element Invoke Service Activity Appendix E.1(2)(c) Appendix E.2(2)(c)

assign element Assign activity Appendix E.1(2)(d) Appendix E.2(2)(d)

empty element Empty activity Appendix E.1(2)(e) Appendix E.2(2)(e)

throw element Throw activity Appendix E.1(2)(f) Appendix E.2(2)(f)

scope element Scope activity Appendix E.1(3)(a) Appendix E.2(3)(a)

while element While activity Appendix E.1(3)(b) Appendix E.2(3)(b)

switch element#1 Start switch activity

End switch activity

Appendix E.1(3)(c) --

if element#2 -- Appendix E.2(3)(c)

flow element Start flow activity

End flow activity

Appendix E.1(3)(d) Appendix E.2(3)(d)

sequence element Sequence activity Appendix E.1(3)(e) Appendix E.2(3)(e)

wait element Standby activity Appendix E.1(2)(g) Appendix E.2(2)(g)

compensate
element#3

Empty activity -- --

terminate
element#1#3

pick element#3

E. Support Range of BPEL Used by Linking with an High Level Design Tool

543

Element before conversion (BPEL
file)

Definition contents after
conversion (business process)

Reference for conversion method

BPEL1.1 BPEL2.0

process
element

extensionActivi
ty element#2#3

Empty activity -- --

rethrow element#2#3

exit element#2#3

validate
element#2#3

compensateScope
element#2#3

forEach element#2#3

repeatUntil
element#2#3

Legend:
--: There is no reference.

#1
These elements can be defined only for BPEL1.1.

#2
These elements can be defined only for BPEL2.0.

#3
Because these elements are not supported, they are converted to an empty activity during the import.

Tip

• The definition contents of the connection that connects each activity within a business process are decided from the
structure of BPEL file and definition of each element.

• When you create a business process by importing a BPEL file, the Invoke Java Activity and Data Transformation
Activity are not defined.

The following subsection explains the details of the relation between each element of the BPEL file and contents of
the business process definition for BPEL1.1 and BPEL2.0.

E.1 Importing business process definitions for BPEL1.1
This section describes the support range of BPEL files and rules for converting to business process definitions for
BPEL1.1.

Service Platform does not support some elements and attributes defined in the BPEL file for BPEL1.1. The following
table indicates the elements and attributes defined in the BPEL file for BPEL1.1 that are supported or not supported in
Service Platform.

Table E‒2: Elements and attributes defined in the BPEL file for BPEL1.1 that are supported or not
supported in Service Platform

Category Element Lower element or attribute Support range

Elements related
to overall
business process
definitions

process element name attribute N

targetNamespace attribute N

queryLanguage attribute N

expressionLanguage attribute N

E. Support Range of BPEL Used by Linking with an High Level Design Tool

544

Category Element Lower element or attribute Support range

Elements related
to overall
business process
definitions

process element suppressJoinFailure attribute N

enableInstanceCompensation attribute N

abstractProcess attribute N

partnerLinks element N

partners element N

correlationSets element N

variables
element

variable
element

name attribute Y

messageType attribute Y

type attribute Y

element attribute N

faultHandle
rs element

catch element faultName attribute N

faultVariable
attribute

Y

activity#1 Y

catchAll
element

activity#1 Y

compensationHandler element N

eventHandlers element N

activity#1 Y

Elements related
to basic activities

receive element name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

partnerLink attribute N

portType attribute N

operation attribute Y

variable attribute Y

createInstance attribute C

target element N

source element N

correlations element N

reply element name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

partnerLink attribute N

portType attribute N

E. Support Range of BPEL Used by Linking with an High Level Design Tool

545

Category Element Lower element or attribute Support range

Elements related
to basic activities

reply element operation attribute Y

variable attribute Y

faultName attribute Y

target element N

source element N

correlations element N

invoke element name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

partnerLink attribute N

portType attribute Y

operation attribute Y

inputVariable attribute Y

outputVariable attribute Y

target element N

source element N

correlations element N

catch element faultName attribute N

faultVariable attribute Y

activity#1 Y

catchAll
element

activity#1 Y

assign element name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

target element N

source element N

copy element from element variable attribute Y

expression attribute Y

part attribute N

partnerLink attribute N

endpointReference
attribute

N

property attribute N

opaque attribute N

query attribute N

E. Support Range of BPEL Used by Linking with an High Level Design Tool

546

Category Element Lower element or attribute Support range

Elements related
to basic activities

assign element copy element from element Tag value#2 Y

to element variable attribute Y

part attribute N

partnerLink attribute N

property attribute N

query attribute N

empty element name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

target element N

source element N

throw element faultName attribute N

faultVariable attribute Y

name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

target element N

source element N

wait element name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

target element N

source element N

for attribute Y

until attribute Y

terminate element#3 name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

target element N

source element N

compensate
element#3

name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

scope attribute N

E. Support Range of BPEL Used by Linking with an High Level Design Tool

547

Category Element Lower element or attribute Support range

Elements related
to basic activities

compensate
element#3

target element N

source element N

Elements related
to structure
activities

scope element name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

variableAccessSerializable attribute N

target element N

source element N

correlationSets element N

variables
element

variable
element

name attribute Y

messageType attribute Y

type attribute Y

element attribute N

faultHandle
rs element

catch element faultName attribute N

faultVariable
attribute

Y

activity#1 Y

catchAll
element

activity#1 Y

compensationHandler element N

eventHandlers element N

activity#1 Y

while element name attribute Y

joinCondition attribute N

condition attribute Y

suppressJoinFailure attribute N

target element N

source element N

activity#1 Y

switch element name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

target element N

source element N

case element condition attribute Y

E. Support Range of BPEL Used by Linking with an High Level Design Tool

548

Category Element Lower element or attribute Support range

Elements related
to structure
activities

switch element case element activity#1 Y

otherwise
element

activity#1 Y

flow element name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

target element N

source element N

links element N

activity#1 Y

sequence element name attribute N

joinCondition attribute N

suppressJoinFailure attribute N

target element N

source element N

activity#1 Y

pick element#3 name attribute Y

joinCondition attribute N

suppressJoinFailure attribute N

createInstance attribute N

target element N

source element N

onAlarm element N

onMessage element N

Legend:
Y: Supported.
C: Supported, but with restrictions.
N: Not supported.

#1
In practice, elements such as receive, reply, and invoke are entered in activity.

#2
The tag value of the from element becomes the conversion source.

#3
Because this element is an unsupported activity, it is incorporated as an empty activity to which only the name attribute is
applied.

(1) Converting elements related to overall business process definitions
This subsection explains the conversion of the elements defined in the BPEL file that are the contents related to the
overall business process (such as settings of the business process and variables used).

E. Support Range of BPEL Used by Linking with an High Level Design Tool

549

(a) Converting the process element

The process element and its lower elements and attributes are converted to the contents related to the overall
business process definitions.

The following table describes the conversion details.

Table E‒3: Converting the process element

Elements of the BPEL file
Business process definitions

Definition item Explanation

process
element

variables element Variable For details, see (1)(b) Converting the variables element.

correlationSets
element

Correlation set For details, see (1)(c) Converting the correlationSets element.

faultHandlers
element

Fault handling For details, see (1)(d) Converting the faultHandlers element.

activity# Activity This element is converted to activities that constitute a business
process.

-- Business process
name

This item is set to the business process name specified in the dialog
box for adding a business process definition.

-- Business process
version

This item is set to 1.

-- Persistence This item is set to the persistence settings (persistent or non-
persistent) specified in the dialog box for adding business process
definitions.

Legend:
--: No corresponding element. Definition information is set automatically, or the information specified in the dialog box for
adding business process definitions is set.

#
In reality, elements such as receive, reply, and invoke are entered in activity.

For practice about the elements converted to each activity of a business process, see (2) Converting elements related to
basic activities and (3) Converting elements related to structure activities.

(b) Converting the variables element

The variables element and its lower elements and attributes are converted to definitions of the variables set in the
business process (or in the scope). After importing the definitions, you can change the definitions in the List Of
Variables And Correlation Sets dialog box.

! Important note

In Service Platform, the variables defined in the scopes above the scope that contains fault handling can be defined as the
allocated variables of the activities that constitute the fault handling within the scope.

For this reason, if the elements below the scope or faultHandlers element in the BPEL file use the variables in the
same scope element, redefine the allocated variables in the business process after importing the BPEL file.

The table below describes the conversion details. The names in the Item column in the following table are the item
names in the List Of Variables And Correlation Sets dialog box.

Table E‒4: Converting the variables element

Lower element or attribute of the variables
element

Business process definitions

Item Explanation

variable
element

name attribute Variable name This attribute is set to the name of the variable.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

550

Lower element or attribute of the variables
element

Business process definitions

Item Explanation

variable
element

messageType attribute Type If this attribute has been defined, the type attribute is
converted to the string type (string).

For this reason, after converting the attribute, you must
change the variable type to the message type (XML), and
register the message format.

type attribute Type This attribute is set to the following variable types:

• For boolean
boolean is set.

• For a type that can be represented by double#

numeric is set.

• For other types or undefined types
string is set.

-- Part Specifications No value is set in part specifications of a variable. To use
part specifications, specify settings in the List Of
Variables And Correlation Sets dialog box after importing
the definitions.

Legend:
--: No corresponding element.

#
The following types are applicable:
int, short, byte, unsignedInt, unsignedShort, unsignedByte, float, double

(c) Converting the correlationSets element

The definition information of the correlationSets element corresponds to a correlation set in business process
definitions. No value is set even if you create a business process by importing a BPEL file.

To use a correlation set in a business process, after importing the business process, first define a correlation set in the
List Of Variables And Correlation Sets dialog box. Then, allocate the correlation set by using the Allocating
Correlation Set Group dialog box for the activity that uses the correlation set.

(d) Converting the faultHandlers element

The faultHandlers element and its lower elements and attributes are converted to the definitions of the fault
handling within the business process. You can change the converted definitions in the Fault Handler dialog box.

! Important note

• If a faultHandlers element is defined immediately below the process element, a scope is created in the highest-
level business process, and the faultHandlers element is defined as the fault handling in that scope. In such a case,
the activities immediately below the process element are moved to the scope that has been created.

• If a faultHandlers element is defined below the scope element, fault handling is set in the upper scope.

The table below describes the conversion details. The names listed in the Item column in the following table are the
item names in the Fault Handler dialog box.

Table E‒5: Converting the faultHandlers element

Lower element or attribute of the
faultHandlers element

Business process definitions

Item Explanation

catch element faultVariable
attribute

Allocated variable For details about the variable, see also the notes in (1)(b)
Converting the variables element.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

551

Lower element or attribute of the
faultHandlers element

Business process definitions

Item Explanation

catch element activity# Activity This element is converted to activities that constitute a
business process.

catchAll
element

activity# Activity This element is converted to activities that constitute a
business process.

-- Allocated variable catch-all is set at all times.

-- Transition destination If the catch or catchAll element is defined, the
transition destination of the fault handling is set
automatically.

Legend:
--: No corresponding element. Definitions are set automatically.

#
In reality, elements such as receive, reply, and invoke are entered in activity.

(2) Converting elements related to basic activities
This subsection explains the conversion of the elements defined in the BPEL file that are converted to basic activities.

(a) Converting the receive element

The receive element and its lower elements and attributes are converted to the definition contents of the receive
activity. After importing the definitions, you can change the definitions in the Receive Activity dialog box.

! Important note

If more than one receive element that meets the following conditions is defined, the second and subsequent receive
elements are converted to empty activities:

• The portType attribute has the same value.

• The operation attribute has the same value.

The table below describes the conversion details. The names in the Item column in the following table are the item
names in the Receive Activity dialog box.

Table E‒6: Converting the receive element

Lower element or attribute of the
receive element

Business process definitions

Item Explanation

operation attribute Operation name If a receive element with a different portType
attribute value and the same operation attribute value
is already defined, n (n is an integer value of 1 or more) is
appended at the end of the operation name.

variable attribute Allocated variable For details about the variable, see also the notes in (1)(b)
Converting the variables element.

createInstance attribute Instance generation This attribute is converted to yes, regardless of the
attribute value.

name attribute Activity name An activity name is set. If an activity with the same name
is already defined in the business process, n (n is an
integer value of 1 or more) is appended at the end of the
activity name.

-- Communication model Sync or Async is set according to the contents of the
business process definition.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

552

Legend:
--: No corresponding element. Definitions are set automatically.

(b) Converting the reply element

The reply element and its lower elements and attributes are converted to the definition contents of the reply activity.
After importing the definitions, you can change the definitions in the Reply Activity dialog box.

The table below describes the conversion details. The names in the Item column in the following table are the item
names in the Reply Activity dialog box.

Table E‒7: Converting the reply element

Lower element or attribute of the reply
element

Business process definitions

Item Explanation

operation attribute Operation name If n (n is an integer value of 1 or more) is appended at
the end of the operation name of a receive element
where the portType attribute value and the
operation attribute value match (see the
operation attribute in Table E-6), the same value n is
also appended at the end of the operation name of the
reply element.

Figure E-1 shows the conversion of a receive
element and a reply element where the portType
attribute value and the operation attribute value
match.

variable attribute Allocated variable For details about the variable, see also the notes in (1)(b)
Converting the variables element.

faultName attribute Fault name The fault name is converted to a local name if a prefix is
assigned.

name attribute Activity name An activity name is set. If an activity with the same
name is already defined in the business process, n (n is
an integer value of 1 or more) is appended at the end of
the activity name.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

553

Figure E‒1: Conversion of a receive element and a reply element where the portType attribute value and
the operation attribute value match

(c) Converting the invoke element

The invoke element and its lower elements and attributes are converted to the definition contents of the invoke
service activity. Furthermore, if a catch element or catchAll element is defined as a lower element of the
invoke element, these elements are converted to a fault handler (an activity connected with a fault connection) for
the invoke service activity. After importing the definitions, you can change the definitions in the Invoke Service
Activity dialog box or Fault Handler dialog box.

The table below describes the conversion details. The names listed in the Item column in the following table are the
item names in the Invoke Service Activity dialog box or Fault Handler dialog box.

Table E‒8: Converting the invoke element

Lower element or attribute of the invoke
element

Business process definitions

Item Explanation

portType attribute Service name This attribute is converted only when the corresponding service
components and operations exist in the repository. The service name is
converted to a local name.

operation attribute Operation
name

This attribute is converted only when the corresponding service
components and operations exist in the repository.

inputVariable attribute Body
allocated
variable for
request
message

This attribute is set only when the corresponding service components
and operations exist in the repository.

For details about the variable, see also the notes in (1)(b) Converting
the variables element.

outputVariable attribute Body
allocated
variable for
reply message

This attribute is set when the service components and operations exist
in the repository, and the communication type is synchronous.

For details about the variable, see also the notes in (1)(b) Converting
the variables element.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

554

Lower element or attribute of the invoke
element

Business process definitions

Item Explanation

name attribute Activity name An activity name is set. If an activity with the same name is already
defined in the business process, n (n is an integer value of 1 or more) is
appended at the end of the activity name.

catch element faultVariable
attribute

Allocated
variable

This element is an item in the Fault Handler dialog box.

For details about the variable, see also the notes in (1)(b) Converting
the variables element.

activity# Activity This element is converted to activities that constitute a business
process.

catchAll
element

activity# Activity This element is converted to activities that constitute a business
process.

-- Allocated
variable

This element is an item in the Fault Handler dialog box.

catch-all is set at all times.

Legend:
--: No corresponding element. Definitions are set automatically.

#
In practice, elements such as receive, reply, and invoke are entered in activity.

(d) Converting the assign element

The assign element and its lower elements and attributes are converted to the definition contents of the assign
activity. After importing the definitions, you can change the definitions in the Assign Activity dialog box or Assign
Activity sub-dialog box.

The table below describes the conversion details. The names listed in the Item column in the following table are the
item names in the Assign Activity dialog box or Assign Activity sub-dialog box.

Table E‒9: Converting the assign element

Lower element or attribute of the assign element
Business process definitions

Item Explanation

name attribute Activity name An activity name is set. If an activity
with the same name is already defined in
the business process, n (n is an integer
value of 1 or more) is appended at the
end of the activity name.

copy element from
element

variable
attribute

Name (under Variable in
the Copy source frame)

This attribute is an item in the Assign
Activity sub-dialog box.

For details about the variable, see also
the notes in (1)(b) Converting the
variables element.

expression
attribute

Value (under Expression
in the Copy source frame)

This attribute is an item in the Assign
Activity sub-dialog box.

This attribute is not converted if the
variable attribute has been defined.

Tag value# Value (under Expression
in the Copy source frame)

This attribute is an item in the Assign
Activity sub-dialog box.

If the variable and expression
attributes are not defined, the tag value
is set as the value of the expression.

to
element

variable
attribute

Variable name (in the
Copy destination frame)

This attribute is an item in the Assign
Activity sub-dialog box.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

555

Lower element or attribute of the assign element
Business process definitions

Item Explanation

copy element to
element

variable
attribute

Variable name (in the
Copy destination frame)

For details about the variable, see also
the notes in (1)(b) Converting the
variables element.

#
The tag value of the from element becomes the conversion source.

(e) Converting the empty element

The empty element is converted to the definition contents of the empty activity. After importing the definitions, you
can change the definitions in the Empty Activity dialog box.

The table below describes the conversion details. The names in the Item column in the following table are the item
names in the Empty Activity dialog box.

Table E‒10: Converting the empty element

Lower element or attribute of the empty
element

Business process definitions

Item Explanation

name attribute Activity name An activity name is set. If an activity with the same name is
already defined in the business process, n (n is an integer
value of 1 or more) is appended at the end of the activity
name.

(f) Converting the throw element

The throw element and its lower elements and attributes are converted to the definition contents of the throw
activity. After importing the definitions, you can change the definitions in the Throw Activity dialog box.

The table below describes the conversion details. The names in the Item column in the following table are the item
names in the Throw Activity dialog box.

Table E‒11: Converting the throw element

Lower element or attribute of the throw
element

Business process definitions

Item Explanation

faultVariable attribute Allocated variable For details about the variable, see also the notes in (1)(b)
Converting the variables element.

name attribute Activity name An activity name is set. If an activity with the same name is
already defined in the business process, n (n is an integer
value of 1 or more) is appended at the end of the activity
name.

(g) Converting the wait element

The wait element is converted to the definition contents of the standby activity. After importing the definitions, you
can change the definitions in the Wait Activity dialog box.

The table below describes the conversion details. The names in the Item column in the following table are the item
names in the Wait Activity dialog box.

Table E‒12: Converting the wait element

Lower element or attribute of the wait
element

Business process definitions

Item Explanation

name attribute Activity name An activity name is set. If an activity with the same name is
already defined in the business process, n (n is an integer

E. Support Range of BPEL Used by Linking with an High Level Design Tool

556

Lower element or attribute of the wait
element

Business process definitions

Item Explanation

name attribute Activity name value of 1 or more) is appended at the end of the activity
name.

for attribute# Expression This attribute sets information about the standby interval. The
For radio button is selected.

until attribute# Expression This attribute sets information about the standby time period.
The Until radio button is selected.

#
If both the for attribute and the until attribute are defined, the for attribute is enabled and the until attribute is disabled. If
neither the for attribute nor the until attribute is defined, the For radio button is selected.

(3) Converting elements related to structure activities
This subsection explains the conversion of the elements defined in the BPEL file that are converted to structure
activities.

(a) Converting the scope element

The scope element and its lower elements and attributes are converted to the definition contents of the scope activity.
After importing the definitions, you can change the definitions in the Scope Activity dialog box.

Furthermore, the variables, correlation sets, fault handling, and transaction control information defined within the
scope element can be changed in the List Of Variables And Correlation Sets dialog box and Fault Handler dialog
box.

The following table describes the conversion details.

Table E‒13: Converting the scope element

Lower element or attribute of the scope
element

Business process definitions

Item Explanation

name attribute Activity name An activity name is set. If an activity with the same name is
already defined in the business process, n (n is an integer
value of 1 or more) is appended at the end of the activity
name.

-- Transaction control This item specifies whether to execute transaction control.
Commit after each activity is selected by default.

variables element Variable This element sets information about the variables used in the
scope.

For details about variables, see (1)(b) Converting the variables
element.

correlationSets element Correlation set This element sets information about the correlation sets used
in the scope.

For details about correlation sets, see (1)(c) Converting the
correlationSets element.

faultHandlers element Fault handling This item sets information about the fault handling in the
scope.

For details about fault handling, see (1)(d) Converting the
faultHandlers element.

activity# Activity This element is converted to activities that constitute a
business process.

Legend:
--: No corresponding element. Definitions are set automatically.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

557

#
In practice, elements such as receive, reply, and invoke are entered in activity.

(b) Converting the while element

The while element and its lower elements and attributes are converted to the definition contents of the while activity.
After importing the definitions, you can change the definitions in the While Activity dialog box and Condition Setting
dialog box.

The table below shows the conversion details. The names listed in the Item column in the following table are the item
names in the While Activity dialog box or Condition Setting dialog box.

Table E‒14: Converting the while element

Lower element or attribute of the while
element

Business process definitions

Item Explanation

name attribute Activity name An activity name is set. If an activity with the same name is
already defined in the business process, n (n is an integer
value of 1 or more) is appended at the end of the activity
name.

condition attribute Condition Expression Values are set in the conditional expression in the Condition
Setting dialog box.

activity# Activity This element is converted to activities that constitute a
business process.

-- Max Loop Count This item is automatically set to 100.

Legend:
--: No corresponding element. Definitions are set automatically.

#
In practice, elements such as receive, reply, and invoke are entered in activity.

(c) Converting the switch element

The switch element and its lower elements and attributes are converted to the definition contents of the switch start
activity. After importing the definitions, you can change the definitions in the Switch Activity dialog box and
Condition Setting dialog box.

! Important note

A switch end activity is set automatically when the elements below the switch element are converted to a switch start
activity. In such a case, _end is added to the name of the switch start activity to assign a name to the switch end activity.

The table below describes the conversion details. The names listed in the Item column in the following table are the
item names in the Switch Activity dialog box or Condition Setting dialog box.

Table E‒15: Converting the switch element

Lower element or attribute of the switch
element

Business process definitions

Item Explanation

name attribute Activity name An activity name is set. If an activity with the same name is
already defined in the business process, n (n is an integer
value of 1 or more) is appended at the end of the activity
name.

case element activity# Activity This element is converted to activities that constitute a
business process.

condition
attribute

Condition
Expression

Values are set in the conditional expression in the Condition
Setting dialog box.

-- Condition name This attribute is an item in the Switch Activity dialog box.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

558

Lower element or attribute of the switch
element

Business process definitions

Item Explanation

case element -- Condition name This item is automatically set to condition n. n indicates a
unique integer within the switch.

-- Priority This attribute is an item in the Switch Activity dialog box.

Priorities are assigned according to the occurrence order of
the conditions within the switch element.

otherwise element activity# Activity This element is converted to activities that constitute a
business process.

-- Priority This attribute is an item in the Switch Activity dialog box.

This item is set to the default value.

-- Transition
destination

This attribute is an item in the Switch Activity dialog box.

This item is set according to the definitions of the case and
otherwise elements.

Legend:
--: No corresponding element. Definitions are set automatically.

#
In practice, elements such as receive, reply, and invoke are entered in activity.

(d) Converting the flow element

The flow element and its lower elements and attributes are converted to the definition contents of the flow start
activity. After importing the definitions, you can change the definitions in the Flow Start Activity dialog box.

! Important note

• The link definitions (definitions below the links element in the BPEL file) are not converted.

• A flow end activity is set automatically when the elements below the flow element are converted to a flow start
activity. In such a case, _end is added to the name of the flow start activity to assign a name to the flow end activity.

The table below describes the conversion details. The names in the Item column in the following table are the item
names in the Flow Activity dialog box.

Table E‒16: Converting the flow element

Lower element or attribute of the flow
element

Business process definitions

Item Explanation

name attribute Activity name An activity name is set. If an activity with the same name
is already defined in the business process, n (n is an
integer value of 1 or more) is appended at the end of the
activity name.

activity# Activity This element is converted to activities that constitute a
business process.

#
In practice, elements such as receive, reply, and invoke are entered in activity.

(e) Converting the sequence element

The sequence element is converted to the definition contents of the sequence activity. You cannot modify the
definition contents.

The sequence element does not have any lower attributes to be converted.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

559

In Service Platform, only the sequence elements specified at the positions described in 5.6.17 Sequence Activity are
converted to business process definitions.

E.2 Importing a business process definition of BPEL2.0
This section describes the support range of a BPEL file and rules for converting to a business process definition for
BPEL2.0.

The Cosminexus Service Platform does not support some elements and attributes defined in a BPEL file for BPEL2.0.
The following table describes whether or not the elements and attributes defined in a BPEL file in BPEL2.0 are
supported in Cosminexus Service Platform:

Table E‒17: Support range of elements and attributes defined in a BPEL file (For BPEL2.0)

Classificati
on Element Lower element or attribute Support

range

Elements
related to
the overall
business
process
definitions

process
element

name attribute N

targetNamespace attribute N

queryLanguage attribute N

expressionLanguage attribute N

suppressJoinFailure attribute N

exitOnStandardFault attribute N

partnerLinks element N

correlationSets element N

variables element documentation element N

variable
element

name attribute Y

messageType attribute Y

type attribute Y

element attribute N

documentation element N

From element N

faultHandlers
element

documentation element N

catch element faultName attribute N

faultVariable attribute Y

faultMessageType attribute N

faultElement attribute N

documentation element N

activity#1 Y

catchall
element

documentation element N

activity#1 Y

eventHandlers element N

import element N

E. Support Range of BPEL Used by Linking with an High Level Design Tool

560

Classificati
on Element Lower element or attribute Support

range

Elements
related to
the overall
business
process
definitions

process
element

messageExchanges element N

documentation element N

activity#1 Y

Elements
related to
the basic
activity

receive
element

name attribute Y

suppressJoinFailure attribute N

partnerLink attribute N

portType attribute N

operation attribute Y

variable attribute Y

createInstance attribute C

messageExchange attribute N

targets element N

sources element N

documentation element N

correlations element N

fromParts element N

reply element name attribute Y

suppressJoinFailure attribute N

partnerLink attribute N

portType attribute N

operation attribute Y

variable attribute Y

faultName attribute Y

messageExchange attribute N

targets element N

sources element N

documentation element N

correlations element N

toParts element N

invoke
element

name attribute Y

suppressJoinFailure attribute N

partnerLink attribute N

portType attribute Y

E. Support Range of BPEL Used by Linking with an High Level Design Tool

561

Classificati
on Element Lower element or attribute Support

range

Elements
related to
the basic
activity

invoke
element

operation attribute Y

inputVariable attribute Y

outputVariable attribute Y

targets element N

sources element N

documentation element N

correlations element N

toParts element N

fromParts element N

catch element faultName attribute N

faultVariable attribute Y

faultMessageType attribute N

faultElement attribute N

documentation element N

activity#1 Y

catchall element documentation element N

activity#1 Y

assign
element

name attribute Y

suppressJoinFailure attribute N

validate attribute N

targets element N

sources element N

documentation element N

copy element keepSrcElementName attribute N

ignoreMissingFromData attribute N

documentation element N

from element variable attribute Y

expressionLanguage attribute N

part attribute N

partnerLink attribute N

endpointReference attribute N

property attribute N

documentation element N

literal element Y

E. Support Range of BPEL Used by Linking with an High Level Design Tool

562

Classificati
on Element Lower element or attribute Support

range

Elements
related to
the basic
activity

assign
element

copy element from element query element queryLanguage
attribute

N

to element variable attribute Y

part attribute N

partnerLink attribute N

expressionLanguage attribute N

property attribute N

documentation element N

query element queryLanguage
attribute

N

empty element name attribute Y

suppressJoinFailure attribute N

targets element N

sources element N

documentation element N

throw element name attribute Y

suppressJoinFailure attribute N

faultName attribute N

faultVariable attribute Y

targets element N

sources element N

documentation element N

wait element name attribute Y

suppressJoinFailure attribute N

targets element N

sources element N

documentation element N

for element Y

+ expressionLanguage attribute N

until element Y

+ expressionLanguage attribute N

compensate
element#2

name attribute Y

suppressJoinFailure attribute N

targets element N

sources element N

E. Support Range of BPEL Used by Linking with an High Level Design Tool

563

Classificati
on Element Lower element or attribute Support

range

Elements
related to
the basic
activity

compensate
element#2

documentation element N

extensionAc
tivity
element#2

anyElementQName#3 name attribute Y

suppressJoinFailure attribute N

anyAttribute#3 N

targets element N

sources element N

documentation element N

any#3 N

rethrow
element#2

name attribute Y

suppressJoinFailure attribute N

targets element N

sources element N

documentation element N

exit element#2 name attribute Y

suppressJoinFailure attribute N

targets element N

sources element N

documentation element N

validate
element#2

name attribute Y

suppressJoinFailure attribute N

variables attribute N

targets element N

sources element N

documentation element N

compensateS
cope element#2

name attribute Y

suppressJoinFailure attribute N

target attribute N

targets element N

sources element N

documentation element N

Elements
related to
the structure
activity

scope element name attribute Y

suppressJoinFailure attribute N

exitOnStandardFault attribute N

E. Support Range of BPEL Used by Linking with an High Level Design Tool

564

Classificati
on Element Lower element or attribute Support

range

Elements
related to
the structure
activity

scope element isolated attribute N

targets element N

sources element N

documentation element N

correlationSets element N

variables element documentation element N

variable
element

name attribute Y

messageType attribute Y

type attribute Y

element attribute N

documentation element N

From element N

faultHandlers
element

documentation element N

catch element faultName attribute N

faultVariable attribute Y

faultMessageType attribute N

faultElement attribute N

documentation element N

activity#1 Y

catchall
element

documentation element N

activity#1 Y

compensationHandler element N

eventHandlers element N

terminationHandle element N

partnerLinks element N

messageExchanges element N

activity#1 Y

while element name attribute Y

suppressJoinFailure attribute N

targets element N

sources element N

documentation element N

condition element Y

+ expressionLanguage attribute N

E. Support Range of BPEL Used by Linking with an High Level Design Tool

565

Classificati
on Element Lower element or attribute Support

range

Elements
related to
the structure
activity

while element activity#1 Y

if element name attribute Y

suppressJoinFailure attribute N

targets element N

sources element N

documentation element N

condition element Y

+ expressionLanguage attribute N

elseif element documentation element N

condition element Y

activity#1 Y

else element documentation element N

activity#1 Y

activity#1 Y

flow element name attribute Y

suppressJoinFailure attribute N

targets element N

sources element N

documentation element N

links element N

activity#1 Y

sequence
element

name attribute Y

suppressJoinFailure attribute N

targets element N

sources element N

documentation element N

activity#1 Y

pick element#2 name attribute Y

suppressJoinFailure attribute N

createInstance attribute N

targets element N

sources element N

documentation element N

onAlarm element N

E. Support Range of BPEL Used by Linking with an High Level Design Tool

566

Classificati
on Element Lower element or attribute Support

range

Elements
related to
the structure
activity

pick element#2 onMessage element N

forEach
element#2

name attribute Y

suppressJoinFailure attribute N

counterName attribute N

parallel attribute N

targets element N

sources element N

documentation element N

startCounterValue element N

finalCounterValue element N

completionCondition element N

scope element N

repeatUntil
element#2

name attribute Y

suppressJoinFailure attribute N

targets element N

sources element N

documentation element N

condition element N

Legend:
Y: Supported.
C: Supported, but with restrictions.
N: Not supported.

#1
In reality, elements such as the receive element, the reply element, and the invoke element are entered in activity.

#2
Because this is an unsupported activity, this will be incorporated as an empty activity in which only the name attribute is applied.

#3
In reality, an element expressing the extension activity is entered in anyElementQName. anyAttribute indicates an attribute
specific to the extension activity, while any indicates an element specific to the extension activity.

(1) Converting elements related to the overall business process definitions
Among the elements defined in the BPEL file, the conversion of the contents related to the overall business process
(such as settings of the business process and variables used) is explained below.

(a) process element conversion

The process element and its lower elements and attributes are converted to the contents related to the overall business
process definitions.

The table below describes the conversion details.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

567

Table E‒18: process element conversion

Element of the BPEL file
Definition contents of the business process

Definition content Explanation

process
element

variables element Variable For details, see Appendix E.2(1)(b)
variables element conversion.

correlationSets
element

Correlation set For details about the variables, see Appendix
E.2(1)(c) correlationSets element
conversion.

faultHandlers element Fault handling For details about the variables, see Appendix
E.2(1)(d) faultHandlers element conversion.

activity# Activity Converted to the activity constituting the
business process.

-- Business process name The business process name specified in the
dialog box for adding a business process
definition is set.

-- Business process version 1 is set.

-- Persistence The persistence existence specified in the
dialog box for adding a business process
definition is set.

Legend:
--: No corresponding element. Either the definition contents are set automatically, or contents specified in the dialog box for
adding the business process definition are set.

#
In reality, elements such as the receive element, the reply element, and the invoke element are entered in activity.

For details about the elements converted to each activity of a business process, see Appendix E.2(2) Converting
elements related to the Basic Activity and Appendix E.2(3) Converting elements related to the Structure Activity.

(b) variables element conversion

The variables element and its lower elements and attributes are converted to definitions of the variables set in the
business process (or in scope). After importing, you can change the definition contents using the List Of Variables
And Correlation Sets dialog box.

! Important note

In the Cosminexus Service Platform, the variables defined in the scopes above the scope that contains the fault handler, can
be defined as the allocated variables of the activities constituting the fault handler within the scope.

As a result, if the variables present in the same scope element are being used as variables in the elements below the scope/
faultHandlers element of the BPEL file, redefine the assigned variables in the business process, after importing.

The table below describes the conversion details. The names indicated in Item are the item names of the List Of
Variables And Correlation Sets dialog box.

Table E‒19: variables element conversion

Lower elements or attributes of the variables
element

Definition contents of the business process

Item Explanation

variable element name attribute Variable name The name of the variable is set.

messageType attribute Type If this attribute is defined, the type attribute is converted
to the string type (string).

As a result, after conversion you must change the type
of variable to the message type (messageType), and
register the message format.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

568

Lower elements or attributes of the variables
element

Definition contents of the business process

Item Explanation

variable element type attribute Type The following variable types are set:

• For boolean
boolean is set.

• For a type# that can be represented by double
numeric is set.

• For other than above or when the type is not defined
string is set.

-- Part specifications Value is not set in part specifications of a variable.
When you want to use part specifications, perform the
setting with the List Of Variables And Correlation Sets
dialog box, after importing.

Legend:
--: No corresponding element.

#
The following types are applicable:
int, short, byte, unsignedInt, unsignedShort, unsignedByte, float, double

(c) correlationSets element conversion

The definition contents of the correlationSets element correspond to Correlation set in the business process
definition. The value will not be set even when you import the BPEL file and create a business process.

When you want to use a correlation set in the business process, you define the correlation set with the List Of
Variables And Correlation Sets dialog box after importing, and then allocate the correlation set with the Allocating
Correlation Set Group dialog box of the activity that uses the correlation set.

(d) faultHandlers element conversion

The faultHandlers element and its lower elements and attributes are converted to the definition contents of the
fault handler within the business process. You can change the definition contents after conversion using the Fault
Handler dialog box.

! Important note

• If the faultHandlers element is defined immediately below the process element, scope is created in the highest
business process, and the faultHandlers element is defined as the fault handler of that scope. In such a case, the
activities immediately below the process element moves to the scope that is created.

• If the faultHandlers element is defined below the scope element, the fault handler is set in the upper scope.

The table below describes the conversion details. The names indicated in Item are the item names of the Fault Handler
dialog box.

Table E‒20: faultHandlers element conversion

Lower elements or attributes of the
faultHandlers element

Definition contents of the business process

Item Explanation

catch element faultVariable
attribute

Allocated variable For details about the variable, also see the notes in
Appendix E.2(1)(b) variables element conversion.

activity# Activity Converted to the activity constituting the business process.

catchall
element

activity# Activity Converted to the activity constituting the business process.

-- Allocated variable catch-all is set always.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

569

Lower elements or attributes of the
faultHandlers element

Definition contents of the business process

Item Explanation

-- Transition destination If the catch element or catchAll element is defined, the
transition destination of the fault handler is set
automatically.

Legend:
--: No corresponding element. The definition contents are set automatically.

#
In reality, elements such as the receive element, the reply element, and the invoke element are entered in activity.

(2) Converting elements related to the Basic Activity
Of the elements defined in the BPEL file, the conversion of the elements converted to the Basic Activity is explained
below.

(a) receive element conversion

The receive element and its lower elements and attributes are converted to the definition contents of the Receive
Activity. After importing, you can change the definition contents with the Receive dialog box.

! Important note

If more than one receive element fulfilling the following conditions is defined, the second receive element onwards
will be converted to an empty activity:

• The portType attribute is the same

• The operation attribute is the same

The table below describes the conversion details. The names indicated in Item are the item names of the Receive
dialog box.

Table E‒21: receive element conversion

Lower elements or attributes of the
receive element

Definition contents of the business process

Item Explanation

operation attribute Operation name If a receive element with a different portType attribute
and the same operation attribute is already defined, n (n is
an integer value of 1 or more) is added at the end of the
operation name.

variable attribute Allocated variable For details about the variable, also see the notes in
Appendix E.2(1)(b) variables element conversion.

createInstance attribute Instance generation Converted to yes, without any concern with the attribute
value.

name attribute Activity name The name of the activity is set. If an activity with the same
name is already defined in the business process, n (n is an
integer value of 1 or more) will be added at the end of the
activity name.

-- Communication model Sync or Async is set based on the contents of the
business process definition.

Legend:
--: No corresponding element. The definition contents are set automatically.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

570

(b) reply element conversion

The reply element and its lower elements and attributes are converted to definition contents of the Reply Activity.
After importing, you can change the definition contents with the Reply dialog box.

The table below describes the conversion details. The names indicated in Item are the item names of the Reply dialog
box.

Table E‒22: reply element conversion

Lower elements or attributes of the reply
element

Definition contents of the business process

Item Explanation

operation attribute Operation name If n (n is an integer value of 1 or more) is added at the
end of the operation name of a receive element with
the same portType attribute and the operation
attribute (see the operation attribute in Table E-21),
the same n will be added at the end of the operation
name of the reply element as well.

The conversion of the receive element and the
reply element with the same portType attribute and
the operation attribute is shown in Figure E-2.

variable attribute Allocated variable For details about the variable, also see the notes in
Appendix E.2(1)(b) variables element conversion.

faultName attribute Fault name Converted to a local name, if a prefix is attached.

name attribute Activity name The name of the activity is set. If an activity with the
same name is already defined in the business process, n
(n is an integer value of 1 or more) will be added at the
end of the activity name.

Figure E‒2: Conversion of receive element and reply element with the same portType attribute and
operation attribute

E. Support Range of BPEL Used by Linking with an High Level Design Tool

571

(c) invoke element conversion

The invoke element and its lower elements and attributes are converted to definition contents of the Invoke Service
Activity. Furthermore, if the catch element or catchAll element is defined as a lower element of the invoke
element, these elements are converted to the fault handler (activity connected with the fault connection) in the Invoke
Service Activity. After importing, you can change the definition contents with the Invoke Service Activity dialog box
or Fault Handler dialog box.

The table below describes the conversion details. The names indicated in Item are the item names of the Invoke
Service Activity dialog box or Fault Handler dialog box.

Table E‒23: invoke element conversion

Lower elements or attributes of the invoke
element

Definition contents of the business process

Item Explanation

portType attribute Service name Converted only when the corresponding service
components and operations exist in the repository.
Converted to a local name.

operation attribute Operation name Converted only when the corresponding service
components and operations exist in the repository.

inputVariable attribute Request message variable Set when the service components and operations
exist in the repository.

For details about the variable, also see the notes in
Appendix E.2(1)(b) variables element conversion.

outputVariable attribute Reply message variable Set when the service components and operations
exist in the repository, and the communication
type is synchronous.

For details about the variable, also see the notes in
Appendix E.2(1)(b) variables element conversion.

name attribute Activity name The name of the activity is set. If an activity with
the same name is already defined in the business
process, n (n is an integer value of 1 or more) will
be added at the end of the activity name.

catch element faultVariable
attribute

Allocated variable An item of the Fault Handler dialog box.

For details about the variable, also see the notes in
Appendix E.2(1)(b) variables element conversion.

activity# Activity Converted to the activity configuring a business
process.

catchall element activity# Activity Converted to the activity configuring a business
process.

-- Allocated variable An item of the Fault Handler dialog box.

catch-all is set always.

Legend:
--: No corresponding element. The definition contents are set automatically.

#
In reality, elements such as the receive element, the reply element, and the invoke element are entered in activity.

(d) assign element conversion

The assign element and its lower elements and attributes are converted to the definition contents of the Assign
Activity. After importing, you can change the definition contents using the Assign Activity dialog box or Assign
Activity sub dialog box.

The table below describes the conversion details. The names indicated in Item are the item names of the Assign
Activity dialog box or Assign Activity sub dialog box.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

572

Table E‒24: assign element conversion

Lower elements or attributes of the assign
element

Definition contents of the business process

Item Explanation

name attribute Activity name The name of the activity is set. If an activity with the
same name is already defined in the business process, n
(n is an integer value of 1 or more) will be added at the
end of the activity name.

copy element from
element

variable
attribute

Name (variable of the
copy source)

An item of the Assign Activity sub dialog box.

The value set in the Assign Activity sub dialog box
differs depending on the specification of the
variable attribute, the literal element, and the
query element. For details, see Table E-25.

For details about the variable, also see the notes in
Appendix E.2(1)(b) variables element conversion.

literal
element

Value (expression of the
copy source)

An item of the Assign Activity sub dialog box.

The value set in the Assign Activity sub dialog box
differs depending on the specification of the
variable attribute, the literal element, and the
query element. For details, see Table E-25.

query element Value (expression of the
copy source)

An item of the Assign Activity sub dialog box.

The value set in the Assign Activity sub dialog box
differs depending on the specification of the
variable attribute, the literal element, and the
query element. For details, see Table E-25.

to
element

variable
attribute

Variable name (copy
destination)

An item of the Assign Activity sub dialog box.

For details about the variable, also see the notes in
Appendix E.2(1)(b) variables element conversion.

The following table describes the values set in the Assign Activity sub dialog box according to the specification of the
variable attribute, the literal element, and the query element:

Table E‒25: Values set in the Assign Activity sub dialog box

Item
No.

Attributes of the from element under the assign
element

Value set in the Assign Activity sub dialog box
variable
attribute literal element query element

1 N N N No value is set.

2 Y N N The value specified in the variable attribute is set in Name in
Variable of the Copy source.

3 N Y N The value specified in the literal element is set in Value in
Expression of the Copy source.

4 N N Y The value specified in the query element is set in Value in
Expression of the Copy source.

5 Y Y N The value specified in the variable attribute is set in Name in
Variable of the Copy source.

6 Y N Y The value specified in the query element is set in Value in
Expression of the Copy source.

7 N Y Y The assign element is not converted (an error occurs).

8 Y Y Y The assign element is not converted (an error occurs).

E. Support Range of BPEL Used by Linking with an High Level Design Tool

573

Legend:
Y: Indicates that a value is set.
N: Indicates that no value is set.

(e) empty element conversion

The empty element is converted to definition contents of the Empty Activity. After importing, you can change the
definition contents with the Empty dialog box.

The table below describes the conversion details. The names indicated in Item are the item names of the Empty
Activity dialog box.

Table E‒26: empty element conversion

Lower elements or attributes of the
empty element

Definition contents of the business process

Item Explanation

name attribute Activity name The name of the activity is set. If an activity with the same
name is already defined in the business process, n (n is an
integer value of 1 or more) will be added at the end of the
activity name.

(f) throw element conversion

The throw element and its lower elements and attributes are converted to the definition contents of the Fault Handler
Activity. After importing, you can change the definition contents with the Fault Handler dialog box.

The table below describes the conversion details. The name indicated in Item is the item name of the Fault Handler
dialog box.

Table E‒27: throw element conversion

Lower elements or attributes of the
throw element

Definition contents of the business process

Item Explanation

faultVariable attribute Allocated variable For details about the variable, also see the notes in Appendix
E.2(1)(b) variables element conversion.

name attribute Activity name The name of the activity is set. If an activity with the same
name is already defined in the business process, n (n is an
integer value of 1 or more) will be added at the end of the
activity name.

(g) Transforming the wait element

The wait element is transformed into the definition contents of the standby activity. After importing this element,
you can change the definition contents in the standby activity dialog box.

The following table describes the details of transformation. The names described in the Item column in the table are
the item names from the standby activity dialog box.

Table E‒28: Transforming the wait element

Lower elements or attributes of the wait
element

Definition contents of the business process

Item Explanation

name attribute Activity name The activity name is set up. If an activity with the same name
is already defined in the business process, n (n is an integer
value of 1 or more) is added at the end of the activity name.

for element Expression Information about the standby interval. Interval becomes
ON.

until element Expression Information about the standby time period. Time Period
becomes ON.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

574

(3) Converting elements related to the Structure Activity
Of the elements defined in the BPEL file, the conversion of the elements converted to the Basic Activity is explained
below.

(a) scope element conversion

The scope element and its lower elements and attributes are converted to definition contents of the Scope Activity.
After importing, you can change the definition contents with the Scope Activity dialog box.

Furthermore, the variables, correlation sets, and information about the fault handlers defined within the scope element
can be changed with the List Of Variables And Correlation Sets dialog box and Fault Handler dialog box.

The table below describes the conversion details.

Table E‒29: scope element conversion

Lower elements or attributes of the
scope element

Definition contents of the business process

Item Explanation

name attribute Activity name The name of the activity is set. If an activity with the same
name is already defined in the business process, n (n is an
integer value of 1 or more) will be added at the end of the
activity name.

variables element Variable Information about the variables used in scope.

For details about the variables, see Appendix E.2(1)(b)
variables element conversion.

correlationSets element Correlation set Information about the correlation sets used in scope.

For details about the correlation set information, see Appendix
E.2(1)(c) correlationSets element conversion.

faultHandlers element Fault handling Information about the fault handlers used in scope.

For details about the fault handler information, see Appendix
E.2(1)(d) faultHandlers element conversion.

activity# Activity Converted to the activity configuring a business process.

#
In reality, elements such as the receive element, reply element, and invoke element are entered in activity.

(b) while element conversion

The while element and its lower elements and attributes are converted to definition contents of the While Activity.
After importing, you can change the definition contents with the While Activity dialog box and Condition Setting
dialog box.

The table below describes the conversion details. The names indicated in Item are the item names of the While
Activity dialog box or Condition Setting dialog box.

Table E‒30: while element conversion

Lower elements or attributes of the
while element

Definition contents of the business process

Item Explanation

name attribute Activity name The name of the activity is set. If an activity with the same
name is already defined in the business process, n (n is an
integer value of 1 or more) will be added at the end of the
activity name.

condition element Condition Expression A value is set in the condition expression of the Condition
Setting dialog box.

activity# Activity Converted to the activity constituting the business process.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

575

Lower elements or attributes of the
while element

Definition contents of the business process

Item Explanation

-- Maximum Loop Count 100 is set automatically.

Legend:
--: No corresponding element. The definition contents are set automatically.

#
In reality, elements such as the receive element, the reply element, and the invoke element are entered in activity.

(c) if element conversion

The if element and its lower elements and attributes are converted to definition contents of the Switch Start Activity.
After importing, you can change the definition contents with the ConBranch Activity dialog box and Condition setting
dialog box.

! Important note

The Switch End Activity is set automatically when the elements below the if element are converted to the Switch Start
Activity. In such a case, _end is added to the name of the Switch Start Activity to set the name of the Switch End Activity.

The table below describes the conversion details. The names indicated in Item are the item names of the Switch
Activity dialog box or Condition Setting dialog box.

Table E‒31: if element conversion

Lower elements or attributes of the if
element

Definition contents of the business process

Item Explanation

name attribute Activity name The name of the activity is set. If an activity with the same
name is already defined in the business process, n (n is an
integer value of 1 or more) will be added at the end of the
activity name.

condition element Condition Expression A value is set in the condition expression of the Condition
Setting dialog box.

activity# Activity Converted to the activity constituting the business process.

-- Priority An item of the Switch Activity dialog box.

1 is set at all times.

elseif element condition
element

Condition Expression A value is set in the condition expression of the Condition
Setting dialog box.

activity# Activity Converted to the activity configuring a business process.

-- Condition name An item of the Switch Activity dialog box.

condition n is set automatically. n indicates a unique integer
within switch.

-- Priority An item of the Switch Activity dialog box.

Set in the order of occurrence starting from 2.

else element activity# Activity Converted to the activity configuring a business process.

-- Priority An item of the Switch Activity dialog box.

The default value is set.

Legend:
--: No corresponding element. The definition contents are set automatically.

#
In reality, elements such as the receive element, the reply element, and the invoke element are entered in activity.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

576

(d) flow element conversion

The flow element and its lower elements and attributes are converted to the definition contents of the Flow Start
Activity. After importing, you can change the definition contents using the Flow Start Activity dialog box.

! Important note

• The link definitions (definitions below the links element in the BPEL file) are not converted.

• The Flow End Activity is set automatically when the elements below the flow element are converted to the Flow Start
Activity. In such a case, _end is added to the name of the Flow Start Activity to set the name of the Flow End Activity.

The table below describes the conversion details. The names indicated in Item are the item names of the Flow Activity
dialog box.

Table E‒32: flow element conversion

Lower elements or attributes of the flow
element

Definition contents of the business process

Item Explanation

name attribute Activity name The activity name is set up. If an activity with the same
name is already defined in the business process, n (n is an
integer value of 1 or more) is added at the end of the
activity name.

activity# Activity Converted to the activity constituting the business process.

#
In reality, elements such as the receive element, reply element, and invoke element are entered in activity.

(e) sequence element conversion

The sequence element is converted to definition contents of the Sequence Activity. You cannot modify the
definition contents.

The sequence element does not have any lower attributes to be converted.

With the Cosminexus Service Platform, only the sequence elements described at the positions corresponding to 5.6.17
Sequence Activity are converted to a business process definition.

E. Support Range of BPEL Used by Linking with an High Level Design Tool

577

F. Inheriting HTTP header and Cookie information in which
service adapter is used

This section describes method to inherit HTTP header and Cookie information in the business process, by using
Inherit HTTP header function of the service adapter.

For overview of Inherit HTTP header function, see "2.2.5 Inherit HTTP header in case of Web service(SOAP
communication)" in the "Service Platform Function Guide"

Following section describes the method of defining a business process with example of inheriting HTTP header and
Cookie information in the business process shown in the following figure:

Figure F‒1: FigureBusiness process used for inheriting Cookie information

Flow for defining a business process is as follows:

1. Defining activities

2. Creating schema of header variable

3. Creating header variables

4. Setting up allocation variables in Invoke service activity

5. Mapping the transformation source variable and transformation destination variable

(1) Defining activities
Schedule an activity in business process definition screen. For details on scheduling and connecting an activity, see
"5.4 Deploying and Linking Activities".

(2) Creating schema of header variable
Create a schema of header variable for HTTP request and schema of header variable for HTTP response. The created
schema use a template file provided by Service Platform, according to the following objectives:

• To inherit as a batch, without editing Cookie information

• To inherit by dividing for each Cookie name, in configurable status

When sending and receiving Cookie of " JSESSIONID" by using SOAP1.1 mode, change
c4web.application.app_maintainsession of the client definition file to true. For details on the client definition file, see
"10.3 Setting up the client definition file" in the "Application Server SOAP Application Development Guide"

F. Inheriting HTTP header and Cookie information in which service adapter is used

578

(a) Schema of header variable for HTTP request

Create a schema of header variable for HTTP request. Tilted part indicates change locations.

• Definition of the HTTP header request part (for handling Cookie information in a batch)

Template file storing destination:
<Service Platform installation directory>\CSC\schema\soap\soap_http_header_request1.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- All Rights Reserved. Copyright (C) 2012, Hitachi, Ltd. -->
<xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/
header_request"
 xmlns:hrc="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/header_request"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:include schemaLocation="soap_cookie_request1.xsd#1"/>
 <xsd:element name="HTTPHeader_request">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Cookies" type="hrc:Cookie_types#2" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="HTTPHeader" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="skip"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

#1
Change to the include target schema file name that defines Cookie elements.

#2
Change according to the include target name attribute.

• Definition to be used when handling Cookie information part in a batch(part included in Cookies elements)

Template file storage destination:
<Service Platform installation directory>\CSC\schema\soap\soap_cookie_request1.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- All Rights Reserved. Copyright (C) 2012, Hitachi, Ltd. -->
<xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/
header_request"
 xmlns:hrc="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/header_request"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="Cookie_types#">
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="skip" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

#
Describe the name attribute of Cookie name to be received.

• Definition of HTTP header request part(for handling Cookie information individually)

Template file storing destination:
<Service Platform installation directory>\CSC\schema\soap\soap_http_header_request2.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- All Rights Reserved. Copyright (C) 2012, Hitachi, Ltd. -->
<xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/
header_request"
 xmlns:hrc="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/header_request"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:include schemaLocation="soap_cookie_request2.xsd#1"/>
 <xsd:element name="HTTPHeader_request">
 <xsd:complexType>

F. Inheriting HTTP header and Cookie information in which service adapter is used

579

 <xsd:sequence>
 <xsd:element name="Cookies" type="hrc:Cookie_types#2" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="HTTPHeader" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="skip"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

#1
Change to the include target schema file name that defines Cookie elements.

#2
Change according to include target name attribute.

• Definition to be used for individually handling Cookie information part(part included in Cookies element)

Template file storage destination:
<Service Platform installation directory>\CSC\schema\soap\soap_cookie_request2.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- All Rights Reserved. Copyright (C) 2012, Hitachi, Ltd. -->
<xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/
header_request"
 xmlns:hrc="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/header_request"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="Cookie_types#1">
 <xsd:sequence>
 <xsd:element name="Cookie" type="hrc:Cookie_type" minOccurs="0"
maxOccurs="unbounded"#2 />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Cookie_type">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="path" type="xsd:string" use="optional"/>
 <xsd:attribute name="host" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:schema>

#1
Describe name attribute of Cookie name to be received.

#2
Set up the maximum count and minimum count of elements that can be defined, in maxOccurs attribute and
minOccurs attribute.

Following table describes the contents of schema for HTTP request header settings:

Table F‒1: TableContents of schema for HTTP request header settings

Tag name Type Occurrence
count Description

1 HTTPHeader_request - One time -

2 +<Cookies>

|
|

- 0 times or 1 time Acquires and stores Cookie information stored in the HTTP
request header.

3 +<HTTPHeader> - 0 times or 1 time Acquires and stores the extension header stored in the HTTP
requester header. Ignores the extension header existing in
HTTP request header.

F. Inheriting HTTP header and Cookie information in which service adapter is used

580

Legend:
-: Corresponding description does not exist.

(b) Schema of header variable for HTTP response

Create a schema of header variable for HTTP response. Tilted part indicates change locations.

• Definition of HTTP header response part(for handling Cookie information in a batch)

Template file storing destination:
<Service Platform installation directory>\CSC\schema\soap\soap_http_header_response1.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- All Rights Reserved. Copyright (C) 2012, Hitachi, Ltd. -->
<xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/
header_response"
 xmlns:hrc="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/header_response"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:include schemaLocation="soap_cookie_response1.xsd#1"/>
 <xsd:element name="HTTPHeader_response">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Cookies" type="hrc:Cookie_types#2" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="HTTPHeader" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="skip"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

#1
Change to the include target schema file name that defines Cookie elements.

#2
Change according to include target name attribute.

• Definition to be used for handling Cookie information part in a batch(part included in Cookies element)

Template file storing destination:
<Service Platform installation directory>\CSC\schema\soap\soap_cookie_response1.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- All Rights Reserved. Copyright (C) 2012, Hitachi, Ltd. -->
<xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/
header_response"
 xmlns:hrc="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/header_response"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="Cookie_types#">
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="skip" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

#
Describe the name attribute of Cookie name to be received.

• Definition of HTTP header response part(for individually handling Cookie information)

Template file storing destination:
<Service Platform installation directory>\CSC\schema\soap\soap_http_header_response2.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- All Rights Reserved. Copyright (C) 2012, Hitachi, Ltd. -->
<xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/
header_response"
 xmlns:hrc="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/header_response"

F. Inheriting HTTP header and Cookie information in which service adapter is used

581

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:include schemaLocation="soap_cookie_response2.xsd#1"/>
 <xsd:element name="HTTPHeader_response">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Cookies" type="hrc:Cookie_types#2" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="HTTPHeader" minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="skip"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

#1
Change to the include target schema file name that defines Cookie elements.

#2
Change according to the include target name attribute.

• Definition to be used for individually handling the Cookie information part(part included in Cookies
element)

Template file storing destination:
<Service Platform installation directory>\CSC\schema\soap\soap_cookie_response2.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- All Rights Reserved. Copyright (C) 2012, Hitachi, Ltd. -->
<xsd:schema elementFormDefault="qualified"
 targetNamespace="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/
header_response"
 xmlns:hrc="http://www.hitachi.co.jp/soft/xml/cosminexus/csc/soap/http/header_response"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="Cookie_types#1">
 <xsd:sequence>
 <xsd:element name="Cookie" type="hrc:Cookie_type" minOccurs="0"
maxOccurs="unbounded"#2 />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Cookie_type">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="path" type="xsd:string" use="optional"/>
 <xsd:attribute name="host" type="xsd:string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:schema>

#1
Describe the name attribute of Cookie name to be received.

#2
Set up the maximum count and minimum count of elements that you can define, in maxOccurs attribute and
minOccurs attribute.

Following table describes the contents of schema for HTTP response header settings

Table F‒2: TableContents of schema for HTTP response header settings

Tag name Type Occurrence
count Description

1 HTTPHeader_response - 1 time -

2 +<Cookies>

|
|

- 0 times or 1 time Acquires and stores Cookie information stored in HTTP
response header. Set-Cookie attribute in the HTTP response
header is ignored.

F. Inheriting HTTP header and Cookie information in which service adapter is used

582

Tag name Type Occurrence
count Description

2 | - 0 times or 1 time Acquires and stores Cookie information stored in HTTP
response header. Set-Cookie attribute in the HTTP response
header is ignored.

3 +<HTTPHeader> - 0 times or 1 time Acquires and stores the extension header stored in HTTP
response header. Extension header existing in the HTTP
response header is deleted.

Legend:
-: Corresponding description does not exist.

(3) Creating header variables
Create header variable for HTTP request and header variable for HTTP response. Procedure for creating is as follows:

1. Double click Variable/correlation set icon on the canvas on the business process definition screen.
Variable/correlation set list dialog is displayed. For details on the variable/correlation set list dialog, see "1.4.1
Variable/correlation set list dialog" in the "Service Platform Reference Guide".

2. Select Variables list from the list.

3. Enter any name in the variable name.

4. From Type drop down list, select XML.

5. Click ... button to set up schema of header variable for HTTP request created in "(2) Creating schema of header
variable".

6. Insert check mark in the [Specify part] check box.

7. Click Add row button and specify part name, specification expression and type.

8. Click Add button.
Added variables are displayed in the variables list.

9. Create header variable for HTTP response, by the procedure similar to step 3.~8..

10. Click OK button.

(4) Setting up allocation variables in Invoke service activity
Set up variables for created request message and response message, in the header allocation variables of Invoke
service activity.

1. Double click the Invoke service activity "Invoke service 1" in the business process definition screen.
Invoke service activity dialog is displayed. For details on the Invoke service activity dialog, see "1.4.9 Invoke
service activity dialog" in the "Service Platform Reference Guide".

2. Click Settings button of Header allocation variables of Request message.
Header allocation variable dialog for request message is displayed.

3. Click Add button.
Line for setting up the allocation variables is displayed.

4. Click Allocation variables column and select the allocation variables for the request corresponding to Invoke
service 1.

5. Click Root element column and select the root element.

6. Check the namespace of allocation variables displayed in Namespace column.

7. Click OK button.

8. Set up allocation variables for request, in header allocation variables of Response message, with the procedure
similar to step 2.~7.

9. Set up allocation variable for request and response also in Invoke service activity "Invoke service 2" and "Invoke
service 3", with the procedure similar to step1.~8.

F. Inheriting HTTP header and Cookie information in which service adapter is used

583

(5) Mapping the transformation source variable and transformation destination variable
Perform mapping of transformation source schema and transformation destination schema in the data transformation
definition screen.

Perform mapping of allocation variable set in response message of Invoke service 1 and allocation variable set in the
request message of Invoke service 2, for inheriting the Cookie information between Invoke service 1 and Invoke
service 2.

Similarly, perform mapping of allocation variable set in the response message in Invoke service 2 and allocation
variable set in the request message of Invoke service 3, for inheriting Cookie information between Invoke service 2
and Invoke service 3.

Also, perform mapping of allocation variable set in response message of Invoke service 3 and allocation variable set
in response 1, for inheriting the Cookie information between Invoke service 3 and response 1.

Procedure for mapping is as follows:

1. Right click the data transformation activity "Data transformation 1" and select Start mapping definition.

2. Perform mapping of the node of transformation source variable and node of transformation destination variable.
Edit the inherited data by scheduling each function.

3. Perform mapping from Invoke service 2 to invoke service 3 and Invoke service 3 to response 1, with the
procedure similar to step1.~2.

4. Right click the appropriate locations in transformation source schema tree viewer, mapping viewer or
transformation destination schema tree viewer, in the data transformation definition screen and select Validate.
Validation is executed. If validation result has no problem, you can execute the business process.

F. Inheriting HTTP header and Cookie information in which service adapter is used

584

G. Emulating the Service Requester
When you test the HCSC components, you can use the Web Service Explorer included in Eclipse as the service
requester. This appendix describes how to emulate the service requester when the Web Service Explorer is used for
testing.

Note that the Web Service Explorer uses SOAP (HTTP) as the protocol; therefore, the receptions that can be sent are
standard reception (synchronous reception (Web service)) and user-defined reception. For details about the Web
Service Explorer, see Eclipse Help.

G.1 Flow of service requester emulation
This section describes the flow of service requester emulation using the Web Service Explorer. The examples of
emulation are described in Appendix G.2 How to emulate the service requester in accordance with this flow.

Figure G‒1: Flow of service requester emulation

(1) Deploying the HCSC components
Deploy the HCSC components you want to test in such a way that the request messages can be sent from the Web
Service Explorer.

(2) Acquiring the WSDL file for reception
Acquire the WSDL file of the reception to be sent and copy the file into any Eclipse project. For details about how to
acquire the standard reception WSDL file, see 8.2.2 Acquiring the WSDL.

For the user-defined reception, copy the WSDL file used for creating the user-defined reception. However, the service
location values are corrected in the user-defined reception WSDL. For details about setting up the service location
values, see 8.7.2 Editing a WSDL.

(3) Sending the request messages using Web Service and Explorer
Start the Web Service Explorer and send the request messages. To send request messages from the Web Service
Explorer, select the operation for sending the messages and set up the required parameters.

G.2 How to emulate the service requester
This section describes the procedure of testing with the Web Service Explorer using the Product Arrangement Sample
Program that comes with the Cosminexus Service Platform as an example. For details about the sample program, see
the manual Cosminexus Service Platform Sample Program Guide.

(1) Deploying the HCSC components
Deploy the Web services and the HCSC components of the Product Arrangement Sample Program in such a way that
the request messages can be sent from the Web Service Explorer.

G. Emulating the Service Requester

585

(2) Acquiring the reception WSDL file
The user-defined reception is used in the Product Arrangement Sample Program. This WSDL file for the user-defined
reception is available in the following location:

uCosminexus-Service-Architect-installation-directory\CSCTE\Samples\ Product Arrangement\Service
\WSDL\ArrangementService.wsdl
Copy this file into any Eclipse project.

(3) Sending the request messages using the Web Service Explorer
The request message is sent as follows from the Web Service Explorer:

1. Right click the copied WSDL file and choose Web Services and then Testing in Web Services Explorer.

The Web Service Explorer starts and the window for selecting the operations appears.

2. Select the operation you want to send.
Select arrangeItem.

G. Emulating the Service Requester

586

3. Set up the parameters for the arrangeItem operation.
Set up the following parameters:

• ItemName: HDD compliant Plasma TV?60 type (? is a one-byte space)

• Quantity: 1

4. Click the Go button.
The sending result (response message or error) appears in the lower right pane.

G. Emulating the Service Requester

587

G. Emulating the Service Requester

588

H. Component common UOC
The property file describes the association between component and common UOC class.

H.1 Property file of component common UOC class
File name

cscmsg_uoc.properties

Description format
Description format is property file format of J2SE..
(UOC class invoking source)=(class path)

Description example
ADP1=sample.AdpUocClass
ADP2=sample.AdpUocClass
RCP1=sample.package.RcpUocClass
adapter.standard.soap=sample.SoapUocClass
adapter.custom.ftp=sample.FtpAdpUocClass
reception.urecp.ftp=sample.FtpRcpUocClass
ADP3=

H.2 Method for specifying the component common UOC class
Method for specifying the component common UOC class is as follows:

• When you specify the class to be invoked only with specific components
Specify UOC class for individual components.
Set reception ID of reception and service ID of service adapter in (UOC class invoking source). In this case, even
if you have specified UOC class in the reception type or adapter type, only the UOC class specified in individual
component is invoked.

• When you want to invoke the same UOC class in the specified component type
Specify UOC class in the reception type or adapter type.
Specify invoking source type ID in the invoking source of UOC class.
Following table describes the invoking source type ID of reception.

Table H‒1: TableInvoking source type ID list (reception)

Reception Invoking source type ID

Standard reception Standard reception (Web service) reception.standard.soap

Standard reception (SessionBean) reception.standard.ejb

Standard reception(MDB(WS-R)) reception.standard.wsr

Standard reception (MDB(DB queue)) reception.standard.dbq

User-defined reception SOAP reception reception.urecp.soap

TP1/RPC reception reception.urecp.tp1

FTP reception reception.urecp.ftp

HTTP reception reception.urecp.http

Message Queue reception reception.urecp.mq

Custom reception reception.urecp.rcpfw

Following table describes the invoking source type ID of the service adapter.

H. Component common UOC

589

Table H‒2: TableInvoking source type ID list (service adapter)

Service adapter Invoking source type ID

SOAP adapter adapter.soap

SessionBean adapter adapter.ejb

MDB (WS-R) adapter adapter.wsr

MDB (DB queue) adapter adapter.dbq

DB adapter adapter.db

TP1 adapter adapter.tp1

File adapter adapter.ff

Object Access adapter adapter.oa

Message Queue adapter adapter.mq

FTP adapter adapter.ftp

File operation adapter adapter.fop

Mail adapter adapter.mail

HTTP adapter adapter.http

General custom adapter adapter.custom

• When UOC class is specified in reception type or adapter type, but UOC class is not invoked from a specific
service
Makes the class path of the specific service as blank. UOC class is not invoked from that service.
Example) ADP3=

Operations regarding description of property file for component common UOC are as follows:

• You must use ISO-8859-1 character coding.

• Data till linefeed is considered as value.

• Lines starting with # are considered as comments.

• Leading and trailing spaces of class path are ignored.

• You cannot add character string such as comment, after the class path. If you add, entire text including the added
comment is parsed as the class path and this may lead to occurrence of exception such as class is not found.

• If you specify multiple class paths for 1 invoking source, only one of the class paths is activated.

• When you set a single class path for multiple invoking sources, single class instance is used in the concerned
invoking source.

• UOC is not invoked for the component for which class path of UOC has not been set.

• If class corresponding to the already set class path does not exist, UOC is not invoked.

• As component dependency existence is not checked, instances of UOC class are created, even when you specify
service ID or reception ID of non-existing service adapter.

• Changes in property file are reflected after you restart HCSC server.

H.3 API for UOC class
An interface exist for each timing of invoking UOC class and UOC class is executed when the interface is added. You
can map to multiple invoking timings, by adding multiple interfaces.

Following interfaces are executed in UOC class:

H. Component common UOC

590

(1) Interfaces
When exception occurs in UOC class, throws that exception by wrapping in CSCUocSystemException.

(a) UOC class common interface

Package
jp.co.Hitachi.soft.csc.msg.uoc

Interface name
ComponentCommonUoc

Description
This is a common interface for defining constants to be used in component common UOC.

Constants
Following table describes constants.

Constant Description

COMPO_TYPE Key for acquiring the code for discriminating wither it is service adapter or reception

COMPO_KIND Key for acquiring the component type

COMPO_ID Key for acquiring the component ID

TELEGRAM_DATA Key for acquiring API for message acquisition

MONITOR_SEND_DATA Key for acquiring Map for setting the data to be sent to monitoring from the parameter

DESTINATION_DATA Key for acquiring the address information# of the invoked service

#
You can acquire the information only in case of user-defined reception (excluding SOAP reception).

For details on how to use the constant, see "4.8.1 Overview of component common UOC" in the "Service Platform
Function Guide".

(b) Interface for the request process

Package
jp.co.Hitachi.soft.csc.msg.uoc

Interface name
ComponentRequestUoc

Description
This is the interface of UOC class invoked at the time of request processing.

#request
Description related to the operations of #request is as follows:

Argument
Map<String,Object>
(object in which data passed to UOC class is consolidated)

Return value
None

Exception
CSCUocSystemException

(c) Interface for response processing

Package
jp.co.Hitachi.soft.csc.msg.uoc

H. Component common UOC

591

Interface name
ComponentResponseUoc

Description
This is the interface of UOC class invoked at the time of response processing.

#response
Description related to operations of #response is as follows:

Argument
Map<String,Object>
(Object in which data to be passed to UOC class is consolidated)

Return value
None

Exception
CSCUocSystemException

(2) Exception class
Exception is thrown from UOC class by wrapping in the following class:

Package
jp.co.Hitachi.soft.csc.msg.uoc

Exception class name
CSCUocSystemException

Constructor
public CSCUocSystemException()
public CSCUocSystemException(String errorMessage)

(3) Class structure example
Following figure shows the example of class structure.

H. Component common UOC

592

Figure H‒1: Figure Class structure example

H.4 API for message acquisition
Details of APIL for acquiring message set through parameter in the UOC class are as follows:

Package
jp.co.Hitachi.soft.csc.msg.uoc

Class name
CSCMsgTelegramManager

Constants
Following table describes constants:

Constant Description

static final int

NONE = 0

Indicates that the body message does not exist.

static final int

TYPE_XML = 1

Indicates that the body message is XML.

static final int

TYPE_BINARY = 2

Indicates that the body message is binary.

#getBody
Description related to operations of #getBody is as follows:

H. Component common UOC

593

Argument
None

Return value
byte[](body message)

Description
Acquires the body message.
If body message does not exist, null is returned.

#getHeader
Description related to operations of #getHeader is as follows:

Argument
String(namespace), String(element name)

Return value
byte[](header message)

Description
Acquires header message.
If header message has not been set, null is returned.

#setBody
Description related to operations of #setBody is as follows:

Argument
byte[](body message)

Return value
None

Description
Updates the body message.

#setHeader
Description related to operations of #setHeader is as follows:

Argument
String(namespace), String(element name), byte[](header message)

Return value
None

Description
Updates header message.

#getTelegramType
Description related to operations of #getTelegramType is as follows:

Argument
None

Return value
int (message type)
0:none(message does not exist)
1:XML
2:binary

Description
Acquires types of the body message.

H.5 Method of specifying jar file of UOC class
For jar file in which UOC class is consolidated, add the storage location in usrconf.cfg.

H. Component common UOC

594

Specification example
add.class.path=C:\uocjar\uocClass2.jar

H.6 Notes
This section describes nodes when designing UOC class.

• As UOC class operates as extension of the container extended library of J2EE server, there are limitations of the
available functions.
For details, see "14.6 Limitations when using container extended library and server start/stop hook function" in
the "Application Server Common Container Functionality Guide".
UOC class is read in the system class loader and hence if you can read and write the external file with full path
specification, if not in scope of limitations, mentioned above.

• When you crate UOC class, specify public in access settings modifier of the class.
When it is not public(not writing the access settings modifier=package private), IllegalAccessException occurs
and you cannot send UOC data.

• Perform process considering the multi-thread access.
UOC class is invoked from multiple threads and hence you must implement thread safe. You must release the
appropriate resources as well, considering the cases of insufficient memory.

• In UOC class of standard reception (SessionBean), you must consider the input of null in the message at the time
of request processing.
When you re-execute the business process, standard reception (SessionBean) is invoked, with message is null
status.

• You must add cscmsg.jar to class path, when compiling. Interface used is included in cscmsg.jar.

H. Component common UOC

595

I. Character code conversion using character code conversion
UOC

When using the character code that is not supported in Service Platform, you can handle the non-supported character
code by creating the character code conversion UOC for processing the concerned character code.

! Important note

You can define only 1 character code conversion UOC in HCSC server.

This section describes about the character code conversion UOC.

I.1 Developing jar file of character code conversion UOC
Develop the character code conversion UOC by using a jar file provided by Service Platform.

Interface and exception class defined in the jar file required for character code conversion UOC is stored in the
following location:

<Service Platform installation directory>\CSC\lib\cscdt_uoc.jar

! Important note

• Store the jar file of the developed character code conversion UOC, in any directory. When you compile the character
code conversion UOC, include cscdt_uoc.jar in the class path.

• Resources secured at the time of executing character code conversion UOC are retained even after the end of the process
and when this poses a high load on the entire system, OutOfMemoryError might occur due to reason like Java heap
insufficiency. Therefore, you must execute process for releasing appropriate resources when OutOfMemoryError occurs
or error processing such as rollback.

I.2 Settings for using the character code conversion UOC
This section describes the settings required for using character code conversion UOC.

(1) Definition of property (self-defined file)
The character code conversion UOC can divide the character code conversion processes by acquiring the custom
reception or self-defined file. Always specify name of self-defined file as "csc_owncodeconvert.properties".

Specify the self-defined file in format such as "<key value>= <specified value>".

Specify any value as the key value and specified value.

(2) Settings for using jar file of the character code conversion UOC
Following settings are required for using the character code conversion UOC created in development environment, in
the execution environment.

• Add a class path in option definition file (usrconf.cfg) for J2EE server

• Add a class name in the system properties file (usrconf.properties)

(a) Adding a class path

Procedure for adding a class path in option definition file (usrconf.cfg) for J2EE server, is as follows:

1. Select Logical server environment settings from the management portal.

2. From Server view, select [Logical J2EE server]-[J2EE server]-[<Logical server name>].

3. Specify a class path in Extension parameter of Container tab.
Specify the class path in following format:

I. Character code conversion using character code conversion UOC

596

add.class.path=<path of jar file>

<Path of jar file>
Specify jar file of character code conversion UOC, in absolute path.

(b) Registering a jar file

Procedure for registering a class name in user property file (usrconf.properties) for J2EE server is as follows:

1. Select Logical server environment settings] from the management portal.

2. From the Server View, select [Logical J2EE server]-[J2EE server]-[<Logical server name>].

3. Specify class name (including package name) in the [Properties] of [JVM] tab.
Specify class name (including package name) in the following format.

csc.dt.ownCodeConverter.className=<class name of character code conversion UOC>

<Class name of character code conversion UOC>
Specify class of character code conversion UOC with the fully qualified name.

I.3 CSCOwnCodeConverter interface

(1) Interface
CSCOwnCodeConverter interface is as follows:

Create the implementation class of following interface, when developing the character code conversion UOC.

I. Character code conversion using character code conversion UOC

597

Figure I‒1: Figurecharacter code conversion UOC class

Interface name
CSCOwnCodeConverter interface

Description
This is interface for implementing character code conversion UOC.
Package name of CSCOwnCodeConverter is jp.co.Hitachi.soft.csc.dt.uoc.CSCOwnCodeConverter.

Format
public class OwnCodeConverter implements CSCOwnCodeConverter
{
 public void setProperties(final Properties properties)
 throws CSCOwnCodeConverterException;
 public char[] ownCodeToUnicode(final byte[] inBuffer)
 throws CSCOwnCodeConverterException;
 public byte[] unicodeToOwnCode(final char[] inBuffer)
 throws CSCOwnCodeConverterException;
 public int available(final byte[] inBuffer)
 throws CSCOwnCodeConverterException;
}

Methods
Following table describes the methods of CSCOwnCodeConverter interface:

Method name Description

setProperties method This is a method for passing definition contents of self-defined file to the character code conversion
UOC.

ownCodeToUnicode method This is method for converting the character string of self-defined character code to Unicode.

I. Character code conversion using character code conversion UOC

598

Method name Description

unicodeToOwnCode method This is the method for converting the character string of Unicode(UTF-16) to self-defined character
code.

Available method This is the method of returning bytes count of character string that can be converted at the time of
character code conversion.

Following figure shows the order of invoking each method from the character code conversion UOC.

Figure I‒2: FigureOrder of invoking each method from character code conversion UOC

1. Generating an instance
After receiving the message before conversion, generate an instance of character code conversion UOC,
depending on data transformation.

2. setProperties method
Pass the definition contents of the self-defined file to character code conversion UOC. This method is invoked
only once at the time of starting character code conversion UOC.

3. ownCodeToUnicode method, unicodeToOwnCode method, available ,method
The respective methods are invoked from character code conversion at the time of executing character code
conversion UOC. Method execution order depends on the message format.

• ownCodeToUnicode method
This method is used to convert character string of self-defined character code to Unicode.

• unicodeToOwnCode method
This method is used to convert the character string of Unicode(UTF-16) to the self-defined character code.

• available method
This method is used to return the bytes count of character string that can be converted at the time of character
code conversion.

I. Character code conversion using character code conversion UOC

599

(a) setProperties method

Description
Passes the definition contents of the self-defined file to character code conversion UOC.

Format
public void setProperties(final Properties properties)
 throws CSCOwnCodeConverterException;

Parameter

properties:
Definition contents of self-defined file are stored.

Notes
In the following cases, arguments of setProperties method always become null. Implement such that error does not
occur for character code conversion UOC, even when the argument of setProperties method are null.

• When self-defined file does not exist (not defined)

• When executing character code conversion UOC from reception other than custom reception (reception for
which self-defined file cannot be defined)

• When executing character code conversion UOC from adapter for which self-defined file cannot be defined

Exception

CSCOwnCodeConverterException:
Entire data transformation process is aborted as an error occurred during the character code conversion
process.

Return value
None

(b) ownCodeToUnicode method

Description
This method converts the character string of self-defined character code to Unicode.

Format
public char[] ownCodeToUnicode(final byte[] inBuffer)
 throws CSCOwnCodeConverterException;

Parameter

inBuffer:
Buffer of the byte array that stores the character string of self-defined character code is stored. As this buffer is
read-only, you cannot edit the same.

Exception

CSCOwnCodeConverterException:
Entire data transformation process was aborted as error occurred during the character code conversion process.

Return value
Returns the buffer of character array that stores the character string converted to Unicode.

(c) unicodeToOwnCode method

Description
Coverts the character string in Unicode(UTF-16) to self-defined character code.

Format
public byte[] unicodeToOwnCode(final char[] inBuffer)
 throws CSCOwnCodeConverterException;

Parameter

inBuffer:
Buffer of character array that stores the character string of Unicode is stored.

I. Character code conversion using character code conversion UOC

600

Since this buffer is read-only you cannot edit the same.

Exception

CSCOwnCodeConverterException:
Entire data transformation process was aborted, as error occurred during the character code conversion
process.

Return value
Returns the byte array buffer that stores the character string converted to the self-defined character code.

(d) available method

Description
Returns the byte count of character string that can be converted at the time of character code conversion.

Format
public int available(final byte[] inBuffer)
 throws CSCOwnCodeConverterException;

Parameter

inBuffer:
Buffer of the byte array that stores the character string of self-defined character code is stored. Since this
buffer is read-only, you cannot edit the same.

Exception

CSCOwnCodeConverterException:
Entire data transformation process was aborted, as error occurred during the character code conversion
process.

Return value
Stores the byte count of character string that can be successfully converted. If any character cannot be converted,
stores the byte count till character just before the concerned character.

(2) Exception class
Exception class that occurs at the time of developing character code conversion UOC is as follows:

Class name
CSCOwnCodeConverterException class

Description
This exception is sent when error occurs during the character code conversion process.
When this exception occurs, entire data transformation process is aborted.

(3) Implementation example
Implementation example of CSCOwnCodeConverter interface is as follows:

public class OwnConvertUoc implements CSCOwnCodeConverter {

 // Code conversion option
 HJCOption option = null;
 // Code conversion result
 HJCResult result = null;
 // Encode
 String encode = null;

 // Constructor
 public void OwnConvertUoc() {
 result = new HJCResult();
 option = new HJCOption();
 }

 // Receive self-defined file in property format of Java
 public void setProperties(final Properties properties)

I. Character code conversion using character code conversion UOC

601

 throws CSCOwnCodeConverterException {

 if (properties == null) {
 // self-defined file has not been registered
 // self-defined file is executed from the non-defined reception/
service adapter
 // Since there is a possibility of occurrence, it is not considered
as error
 encode = "";
 return;
 }

 encode = properties.getProperty("encode");

 if (encode == null) {
 // When key does not exist
 String message = "Character code is not specified.";
 throw new CSCOwnCodeConverterException(message);
 }
 }

 // Convert the self-defined code to Unicode
 public char[] ownCodeToUnicode(final byte[] inBuffer)
 throws CSCOwnCodeConverterException {

 if (encode.equals("SJIS")) {
 // Convert from SJIS(MS932) to Unicode
 // Use code conversion
 HJCString inStr = new HJCString(inBuffer);
 try {
 HJCConverters.cs_ms932tounicode(inStr, result, option);
 } catch (Exception e){
 throw new CSCOwnCodeConverterException(e);
 }
 return result.getStrResult().toString().toCharArray();
 }
 else if (encode.equals("KEIS")) {
 // Convert from KEIS to Unicode
 // Use code conversion
 HJCString inStr = new HJCString(inBuffer);
 try {
 HJCConverters.cs_keistounicode(inStr, result, option);
 } catch (Exception e){
 throw new CSCOwnCodeConverterException(e);
 }
 return result.getStrResult().toString().toCharArray();
 }
 else {
 // Character code not considered as target
 String message = "This is a character code not considered as target.";
 throw new CSCOwnCodeConverterException(message);
 }
 }

 // Convert Unicode to self-defined code
 public byte[] unicodeToOwnCode(final char[] inBuffer)
 throws CSCOwnCodeConverterException {
 // (omitted)
 }

 // Returns the byte count, that can be successfully converted
 public int available(final byte[] inBuffer)
 throws CSCOwnCodeConverterException {
 // (omitted)
 }
}

! Important note

For implementation same as example, you must purchase code conversion separately.

I. Character code conversion using character code conversion UOC

602

I.4 CSCOwnCodeReader interface

(1) Interface
Following figure shows CSCOwnCodeReader interface:

Figure I‒3: FigureCSCOwnCodeReader interface

Interface name
CSCOwnCodeReader interface

Description
This is the interface for reading the character string of self-defined character code.
Package of CSCOwnCodeReader is jp.co.Hitachi.soft.csc.dt.uoc.CSCOwnCodeReader.
In the binary character string reading process, when you parse the separator without converting the character code,
you can relax the restrictions of conversion in which bytes count or character count is changed and improve the
conversion performance.
Implementation of this interface is optional. If you do not implement, the separator is parsed by executing the
character code conversion.
As the instances of this interface are shared in multiple threads, you must set thread safe at the time of
implementation.

Format
package jp.co.Hitachi.soft.csc.dt.uoc ;

import jp.co.Hitachi.soft.csc.dt.uoc.CSCOwnCodeConverterException ;

public interface CSCOwnCodeReader {

I. Character code conversion using character code conversion UOC

603

 CSCOwnCodeReaderContext start(byte[] data, int offset, int length)
 throws CSCOwnCodeConverterException ;

 boolean readChar(CSCOwnCodeReaderContext context)
 throws CSCOwnCodeConverterException ;

 void end(CSCOwnCodeReaderContext context) ;
}

Method
Following table describes the methods of CSCOwnCodeReader interface.

Method name Description

start method This is the method to start the reading of character string of self-defined character code.

readChar method This is the method to read 1 character of self-defined character code characters.

end method This is the method to end the reading of character string of self-defined character code.

When data transformation target is variable length character string and separator has been set in the binary format
definition, data transformation executes the separator parsing process. Following figure shows the order of invoking
each method of CSCOwnCodeReader and CSCOwnCodeReaderContext.

Figure I‒4: FigureOrder of invoking each method of CSCOwnCodeReader and
CSCOwnCodeReaderContext

1. Generating an instance

I. Character code conversion using character code conversion UOC

604

Generate an instance of CSCOwnCodeReader, by data transformation.

2. CSCOwnCodeReader#start method
Generate instance of self-thread dedicated CSCOwnCodeReaderContext. From here onwards, delivery of value
with CSCOwnCodeReader is executed through instance of CSCOwnCodeReaderContext saved by the self thread.

3. CSCOwnCodeReader#readChar method
When executing readChar, data transformation process passes the instance of CSCOwnCodeReaderContext to the
argument. In readChar process, parsing result is set to the instance of CSCOwnCodeReaderContext. The set
parsing result is used for parsing the separator in the data transformation process.

4. getPosition method, getLength method, canSeparate method
Respective methods are invoked from the data transformation. Execution order of method depends on the message
format.

• getPosition method
This method returns the current character position.

• getLength method
This method returns the current character length.

• canSeparate method
This method returns whether to consider the current character as the separator parsing target.

5. CSCOwnCodeReader#end method
If the process to release implementation class of CSCOwnCodeReaderContext is required, execute end method.

(a) start method

Description
Starts the reading of character string of self-defined character code.

Format
public CSCOwnCodeReaderContext start(byte[] data, int offset, int length)

Parameter

data:
This is reading target data.

offset:
This is reading start position.

length:
This is length from the reading start position.

Exception

CSCOwnCodeConverterException:
Entire data transformation process was aborted, as error occurred during the character code conversion
process.

Return value
This is instance of the implementation class of CSCOwnCodeReaderContext. You cannot use this instance in any
other thread.

(b) readChar method

Description
Reads 1 character of self-defined character code character.
You can acquire character position and length by CSCOwnCodeReaderContext#getPosition,
CSCOwnCodeReaderContext#getLength.

Format
public boolean readChar(CSCOwnCodeReaderContext context)

I. Character code conversion using character code conversion UOC

605

Parameter

context:
This is instance of implementation class of CSCOwnCodeReaderContext, which is returned in #start.

Exception

CSCOwnCodeConverterException:
Entire data transformation process was aborted, as error occurred during the character code conversion
process.

Return value
When upper limit for reading is exceeded and character cannot be converted, returns false. Otherwise, returns true.

(c) end method

Description
Ends the reading of character string of the self-defined character code.
This method is always called regardless of success or failure (error) in reading process.

Format
public void end(CSCOwnCodeReaderContext context)

Parameter

context:
This is instance of implementation class of CSCOwnCodeReaderContext, which is returned in #start.

Exception

CSCOwnCodeConverterException:
Entire data transformation process was aborted, as error occurred during the character code conversion
process.

Return value
None

(2) Exception class
The exception class that occurs at the time of developing character code conversion UOC is as follows:

Class name
CSCOwnCodeConverterException class

Description
This is the exception, which is sent when error occurs in character code conversion process.
When this exception occurs, entire data transformation process is aborted.

(3) Implementation example (MS932)
Implementation example (MS932) of CSCOwnCodeReader interface is as follows:

public class CSCOwnCodeReaderImpl implements CSCOwnCodeConverter,
CSCOwnCodeReader {

 private static final String UNICODE = "ISO-10646-UCS-2" ;

 private final HJCOption option ;

 private static byte[] charSizeTable = initCharSizeTable() ;

 private static byte[] initCharSizeTable() {

 final byte[] objTable = new byte[0x100] ;

 for (int i = 0; i <= 0xff; i++) {
 if (i <= 0x80
 || (i >= 0xA0 && i <= 0xDF)

I. Character code conversion using character code conversion UOC

606

 || (i >= 0xFD && i <= 0xFF)) {
 objTable[i] = 1 ;
 }
 else {
 objTable[i] = 2 ;
 }
 }

 return objTable ;
 }

 public CSCOwnCodeReaderImpl() {

 option = new HJCOption() ;
 try {
 // Unicode is Big Endian
 option.enableOption(HJCOption.COP_BIGENDIAN) ;
 }
 catch (Exception e) {
 e.printStackTrace() ;
 }
 }

 @Override
 public void setProperties(Properties properties)
 throws CSCOwnCodeConverterException {

 String codetablepath = null ;
 if (properties != null) {
 codetablepath = properties.getProperty("codetablepath") ;
 }

 try {
 if (codetablepath == null) {
 option
 .setTablePath("C:\\Program Files\\HITACHI\\Cosminexus\\CSC
\\lib\\external\\table") ;
 }
 else {
 option.setTablePath(codetablepath) ;
 }
 }
 catch (Exception e) {
 e.printStackTrace() ;
 }
 }

 @Override
 public int available(byte[] inBuffer) throws
CSCOwnCodeConverterException {

 if (inBuffer == null) {
 final String message = "You cannot convert blank character
string" ;
 throw new CSCOwnCodeConverterException(message) ;
 }

 int retInt = -1 ;
 final HJCResult result = new HJCResult() ;
 final HJCString inStr = new HJCString(inBuffer) ;

 try {
 HJCConverters.cs_ms932tounicode(inStr, result, option) ;
 }
 catch (Exception e) {
 e.printStackTrace() ;
 throw new CSCOwnCodeConverterException(e) ;
 }

 final byte[] resultData = result.getStrResult().getBytes() ;
 final int resultState = result.getConvertState() ;

I. Character code conversion using character code conversion UOC

607

 if (resultState == HJCConvertState.CST_NORMAL) {
 // Conversion ended successfully
 if (resultData != null) {
 retInt = result.getResultLength() ;
 }
 }
 else {
 // Conversion ended abnormally
 final byte[] bytes = new byte[result.getResultLength() - 1] ;
 System.arraycopy(
 inBuffer,
 0,
 bytes,
 0,
 result.getResultLength() - 1) ;
 retInt = available(bytes) ;
 }
 return retInt ;
 }

 @Override
 public char[] ownCodeToUnicode(byte[] inBuffer)
 throws CSCOwnCodeConverterException {

 char[] retChar = null ;
 final HJCResult result = new HJCResult() ;
 final HJCString inStr = new HJCString(inBuffer) ;

 try {
 HJCConverters.cs_ms932tounicode(inStr, result, option) ;
 final byte[] resultData = result.getStrResult().getBytes() ;
 final String retstr = new String(resultData, UNICODE) ;
 retChar = retstr.toCharArray() ;
 }
 catch (Exception e) {
 e.printStackTrace() ;
 throw new CSCOwnCodeConverterException(e) ;
 }

 return retChar ;
 }

 @Override
 public byte[] unicodeToOwnCode(char[] inBuffer)
 throws CSCOwnCodeConverterException {

 byte[] retByte = null ;
 final String data = new String(inBuffer) ;
 final HJCResult result = new HJCResult() ;

 try {
 final HJCString inStr = new HJCString(data.getBytes(UNICODE)) ;
 HJCConverters.cs_unicodetoms932(inStr, result, option) ;
 retByte = result.getStrResult().getBytes() ;
 }
 catch (Exception e) {
 e.printStackTrace() ;
 throw new CSCOwnCodeConverterException(e) ;
 }

 return retByte ;
 }

 @Override
 public CSCOwnCodeReaderContext start(byte[] data, int offset, int length)
 throws CSCOwnCodeConverterException {

 return new CSCOwnCodeReaderContextImpl(Arrays.copyOfRange(
 data,
 offset,
 length)) ;
 }

I. Character code conversion using character code conversion UOC

608

 @Override
 public boolean readChar(CSCOwnCodeReaderContext context)
 throws CSCOwnCodeConverterException {

 final CSCOwnCodeReaderContextImpl contextImpl =
(CSCOwnCodeReaderContextImpl)context ;

 final int offset = contextImpl.getNextPosition() ;
 contextImpl.setPosition(offset) ;

 final byte[] data = contextImpl.getData() ;

 // Acquire maximum length of input data (not the size of character)
 final int maxLength = data.length ;
 if (offset >= maxLength) {
 // Current position is outside the range of input data
 return false ;
 }

 final int len = charSizeTable[data[offset] & 0xff] ;

 contextImpl.setLength(len) ;

 final int next = offset + len ;
 contextImpl.setNextPosition(next) ;

 if (next > maxLength) {
 // Conversion result is error
 // Occurs when input data is invalid
 // Returns false and aborts the parsing
 return false ;
 }

 return true ;
 }

 @Override
 public void end(CSCOwnCodeReaderContext context)
 throws CSCOwnCodeConverterException {

 // No process is performed as resources to be released do not exist
 }

}

(4) Implementation example(IBM Kanji code)
Implementation example (IBM Kanji code) of CSCOwnCodeReader interface is as follows:

public class CSCOwnCodeReaderImpl
 implements
 CSCOwnCodeConverter,
 CSCOwnCodeReader {

 private static final String UNICODE = "ISO-10646-UCS-2" ;

 private static final byte SHIFT_SINGLEBYTE = (byte)0x0f ;

 private static final byte SHIFT_MULTIBYTE = (byte)0x0e ;

 private final HJCOption option ;

 public CSCOwnCodeReaderImpl() {

 option = new HJCOption() ;
 try {
 // Unicode is Big Endian
 option.enableOption(HJCOption.COP_BIGENDIAN) ;
 // EBCDIC
 option.enableOption(HJCOption.COP_EBCDIC) ;
 }

I. Character code conversion using character code conversion UOC

609

 catch (Exception e) {
 e.printStackTrace() ;
 }
 }

 @Override
 public void setProperties(Properties properties)
 throws CSCOwnCodeConverterException {

 String codetablepath = null ;
 if (properties != null) {
 codetablepath = properties.getProperty("codetablepath") ;
 }

 try {
 if (codetablepath == null) {
 option
 .setTablePath("C:\\Program Files\\HITACHI\\Cosminexus\\CSC
\\lib\\external\\table") ;
 }
 else {
 option.setTablePath(codetablepath) ;
 }
 }
 catch (Exception e) {
 e.printStackTrace() ;
 }
 }

 @Override
 public int available(byte[] inBuffer) throws
CSCOwnCodeConverterException {

 if (inBuffer == null) {
 final String message = "You cannot convert blank character
string." ;
 throw new CSCOwnCodeConverterException(message) ;
 }

 int retInt = -1 ;
 final HJCResult result = new HJCResult() ;
 final HJCString inStr = new HJCString(inBuffer) ;

 try {
 HJCConverters.cs_ibmtounicode(inStr, result, option) ;
 }
 catch (Exception e) {
 e.printStackTrace() ;
 throw new CSCOwnCodeConverterException(e) ;
 }

 final byte[] resultData = result.getStrResult().getBytes() ;
 final int resultState = result.getConvertState() ;
 if (resultState == HJCConvertState.CST_NORMAL) {
 // Conversion ends successfully
 if (resultData != null) {
 retInt = result.getResultLength() ;
 }
 }
 else {
 // Conversion ends abnormally
 final byte[] bytes = new byte[result.getResultLength() - 1] ;
 System.arraycopy(
 inBuffer,
 0,
 bytes,
 0,
 result.getResultLength() - 1) ;
 retInt = available(bytes) ;
 }
 return retInt ;
 }

I. Character code conversion using character code conversion UOC

610

 @Override
 public char[] ownCodeToUnicode(byte[] inBuffer)
 throws CSCOwnCodeConverterException {

 char[] retChar = null ;
 final HJCResult result = new HJCResult() ;
 final HJCString inStr = new HJCString(inBuffer) ;

 try {
 HJCConverters.cs_ibmtounicode(inStr, result, option) ;
 final byte[] resultData = result.getStrResult().getBytes() ;
 final String retstr = new String(resultData, UNICODE) ;
 retChar = retstr.toCharArray() ;
 }
 catch (Exception e) {
 e.printStackTrace() ;
 throw new CSCOwnCodeConverterException(e) ;
 }

 return retChar ;
 }
 @Override
 public byte[] unicodeToOwnCode(char[] inBuffer)
 throws CSCOwnCodeConverterException {

 byte[] retByte = null ;
 final String data = new String(inBuffer) ;
 final HJCResult result = new HJCResult() ;

 try {
 final HJCString inStr = new HJCString(data.getBytes(UNICODE)) ;
 HJCConverters.cs_unicodetoibm(inStr, result, option) ;
 retByte = result.getStrResult().getBytes() ;
 }
 catch (Exception e) {
 e.printStackTrace() ;
 throw new CSCOwnCodeConverterException(e) ;
 }

 return retByte ;
 }

 @Override
 public CSCOwnCodeReaderContext start(byte[] data, int offset, int length)
 throws CSCOwnCodeConverterException {

 final byte[] tempData = Arrays.copyOfRange(data, offset, length) ;

 // Start parsing from position of offset
 return new CSCOwnCodeReaderContextImpl(tempData) ;
 }

 @Override
 public boolean readChar(CSCOwnCodeReaderContext context)
 throws CSCOwnCodeConverterException {

 final CSCOwnCodeReaderContextImpl contextImpl =
(CSCOwnCodeReaderContextImpl)context ;

 // Current position
 final int position = contextImpl.getNextPosition() ;

 // Byte string of parsing target character string
 final byte[] data = contextImpl.getData() ;

 // Upper limit of parsing is till end of input data
 final int maxLength = data.length ;

 // Parse 1 by 1 byte from current position
 for (int i = position; i < maxLength; i++) {

 // Parse the next character

I. Character code conversion using character code conversion UOC

611

 if (data[i] == SHIFT_SINGLEBYTE) {
 // Transit to single byte mode
 contextImpl.setLength(1) ;
 contextImpl.setCanSeparate(true) ;
 continue ;
 }
 else if (data[i] == SHIFT_MULTIBYTE) {
 // Transit to multi-byte mode
 contextImpl.setLength(2) ;
 contextImpl.setCanSeparate(false) ;
 continue ;
 }

 contextImpl.setPosition(i) ;
 contextImpl.setNextPosition(i + contextImpl.getLength()) ;

 if (contextImpl.getNextPosition() > maxLength) {
 // Data is not sufficient
 return false ;
 }

 // Parsing is successful
 return true ;
 }

 contextImpl.setPosition(maxLength) ;
 contextImpl.setNextPosition(maxLength) ;

 return false ;
 }

 @Override
 public void end(CSCOwnCodeReaderContext context)
 throws CSCOwnCodeConverterException {

 // Performs nothing as the resources to be parsed do not exist
 }

}

I.5 CSCOwnCodeReaderContext interface

(1) Interface
Reading information interface is as follows:

Create the implementation class of following interface, when developing character code conversion UOC.

I. Character code conversion using character code conversion UOC

612

Figure I‒5: FigureCSCOwnCodeReaderContext implementation class

Interface name
CSCOwnCodeReaderContext interface

Description
This is reading information interface.
Package name of CSCOwnCodeReaderContext is jp.co.Hitachi.soft.csc.dt.uoc.CSCOwnCodeReaderContext.
Uses the parsing result of CSCOwnCodeReader to pass to the data transformation process.
Generates 1 instance in 1 thread. In CSCOwnCodeReader#readChar, parsing result of character string must be set
to the implementation class of CSCOwnCodeReaderContext. The set information is referenced in the data
transformation process.

Format
package jp.co.Hitachi.soft.csc.dt.uoc ;

public interface CSCOwnCodeReaderContext {

 int getPosition() ;

 int getLength() ;

 boolean canSeparate() ;
}

Methods
Following table describes the methods of CSCOwnCodeReaderContext interface.

Method name Description

getPosition method This method returns the current character position or size of data to be read.

getLength method This method returns the current character length.

canSeparate method This method returns whether to consider the current character as the separator parsing target.

I. Character code conversion using character code conversion UOC

613

When data transformation target is variable length character string and separator has been set in the binary format
definition, data transformation executes the separator parsing process. Following figure shows the order of invoking
each method of CSCOwnCodeReader and CSCOwnCodeReaderContext.

Figure I‒6: FigureOrder of invoking each method of CSCOwnCodeReader and
CSCOwnCodeReaderContext

1. Generating an instance
Generate an instance of CSCOwnCodeReader by data transformation.

2. CSCOwnCodeReader#start method
Generate an instance of self-thread dedicated CSCOwnCodeReaderContext. Here onwards, deliver of values with
CSCOwnCodeReader is executed by instance of CSCOwnCodeReaderContext saved by self-thread.

3. CSCOwnCodeReader#readChar method
At the time of executing readChar, data transformation process passes the instance of
CSCOwnCodeReaderContext to the argument. In process of readChar, parsing result is set in the instance of
CSCOwnCodeReaderContext. The set parsing result is used for parsing the separator in the data transformation
process.

4. getPosition method, getLength method, canSeparate method
The respective methods are invoked from data transformation. Method execution order depends on the message
format.

• getPosition method
This method returns the current character position.

• getLength method
This method returns the current character length.

I. Character code conversion using character code conversion UOC

614

• canSeparate method
This method returns whether to consider the current character as the separator parsing target.

5. CSCOwnCodeReader#end method
When parsing process of implementation class of CSCOwnCodeReaderContext is required, execute end method.

(a) getPosition method

Description
When result of readChar is true, returns the current character position.
When result of readChar is false, returns the size of data that can be read.

Format
public int getPosition()

Parameter
None

Exception
None

Return value
Current character position and size (unit is byte) of the data that can be read. Position of offset passed by
CSCOwnCodeReader#start is considered as 0.

(b) getLength method

Description
Returns the current character length.

Format
public int getLength()

Parameter
None

Exception
None

Return value
Returns the current character length.

(c) canSeparate method

Description
Returns whether to consider the current character as the separator parsing target. When false is returned, even if
the byte string of separator match with the current character, it is not considered as separator.

Format
public boolean canSeparate()

Parameter
None

Exception
None

Return value
Returns true when separator is to be parsed.
Returns false when separator is not to be parsed.

(2) Exception class
Exception class that occurs at the time of developing character code conversion UOC is as follows:

I. Character code conversion using character code conversion UOC

615

Class name
CSCOwnCodeConverterException class

Description
This exception is sent when error occurs during the character code conversion process.
When this exception occurs, entire data transformation process is aborted.

(3) Implementation example(MS932)
Implementation example (MS932) of CSCOwnCodeReaderContext interface is as follows:

public class CSCOwnCodeReaderContextImpl implements CSCOwnCodeReaderContext {

 private final byte[] data ;

 private int position = 0 ;

 private int next = 0 ;

 private int length = 0 ;

 public CSCOwnCodeReaderContextImpl(
 final byte[] data) {

 this.data = data ;
 }

 @Override
 public int getPosition() {

 return position ;
 }

 @Override
 public int getLength() {

 return length ;
 }

 @Override
 public boolean canSeparate() {

 // MS932 does not have shift (escape sequence) status and
 // no limitation for occurrence of separator. Hence, always returns
true
 return true ;
 }

 public byte[] getData() {

 return data ;
 }

 public void setPosition(int position) {

 this.position = position ;
 }

 public void setLength(int length) {

 this.length = length ;
 }

 public int getNextPosition() {

I. Character code conversion using character code conversion UOC

616

 return this.next ;
 }

 public void setNextPosition(int position) {

 this.next = position ;
 }
}

(4) Implementation example (IBM Kanji code)
Implementation example (IBM Kanji code) of CSCOwnCodeReaderContext interface is as follows:

public class CSCOwnCodeReaderContextImpl implements CSCOwnCodeReaderContext {

 private final byte[] data ;

 private int position = 0 ;

 private int length = 1 ;

 private int next = 0 ;

 private boolean canSeparate = true ;

 public CSCOwnCodeReaderContextImpl(final byte[] data) {

 this.data = data ;
 }

 @Override
 public int getPosition() {

 return position ;
 }

 @Override
 public int getLength() {

 return length ;
 }

 @Override
 public boolean canSeparate() {

 return canSeparate ;
 }

 public byte[] getData() {

 return data ;
 }

 public void setPosition(int position) {

 this.position = position ;
 }

 public void setLength(int length) {

 this.length = length ;
 }

I. Character code conversion using character code conversion UOC

617

 public void setCanSeparate(boolean canSeparate) {

 this.canSeparate = canSeparate ;
 }

 public int getNextPosition() {

 return this.next ;
 }

 public void setNextPosition(int position) {

 this.next = position ;
 }
}

I. Character code conversion using character code conversion UOC

618

J. Examples of transforming the format of data acquired by
using the database adapter

Values in the data acquired by using the database adapter cannot be referenced easily by using a column name as a
key. However, you can easily handle such data if you transform the data into a format where column names become
element names.

This appendix uses examples to explain how to transform the data acquired with the database adapter into a format
where column names become element names.

J.1 Examples
The database contents, executed SQL formats, SQL operation definition file, and formats after transformation used in
the examples are as follows:

Database contents
Database reference name: DB_SERVER1
Schema name: DBA
Table name: Order_Table
Table configuration:

Order_number (INTEGER) Customer_code (CHAR) Product_code (CHAR) Number_of_orders (INTEGER)

1 AA001 0001 5

2 AB002 0001 1

3 AA001 0102 3

4 XA005 0103 1

5 AA001 0105 1

Executed SQL format

OPERATION1:SELECT * FROM DBA.Order_table WHERE val1 val2 val3

SQL operation definition file

<?xml version="1.0" encoding="UTF-8" ?>
<DBadapter_SQL_OPERATION>
 <DATABASE_DATA>
 <DB_NAME>DB_SERVER1</DB_NAME>
 <DB_TYPE>HIRDB</DB_TYPE>
 </DATABASE_DATA>
 <SQL_DATA>
 <OPERATION1>
 SELECT * FROM DBA.Order_table WHERE <val1 dba_inf="column"/>
 <val2 dba_inf="preset"/>
 <val3 dba_inf="data" data_type="CHAR"/>
 </OPERATION1>
 </SQL_DATA>
</DBadapter_SQL_OPERATION>

For details about each item in the SQL operation definition file, see the descriptions related to the creation of an
SQL operation definition file in 3.3.5 Defining Database Adapters in the Service Platform Reception and Adapter
Definition Guide. For the formats of data that can be acquired by using the database adapter, see the descriptions
related to response message format in 3.3.5 Defining Database Adapters in the Service Platform Reception and
Adapter Definition Guide.

XML schema of the post-transformation formats

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.org/DBA_Sample1"
 xmlns:tns="http://www.example.org/DBA_Sample1"
 elementFormDefault="qualified">

J. Examples of transforming the format of data acquired by using the database adapter

619

 <complexType name="DBA_Sample1Type">
 <sequence>
 <element name="record" type="tns:RecordType"
 maxOccurs="unbounded" minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="RecordType">
 <sequence>
 <element name="Order_number" type="int" maxOccurs="unbounded" minOccurs="0"/>
 <element name="Customer_code" type="string" maxOccurs="unbounded" minOccurs="0"/>
 <element name=" Product_code" type="string" maxOccurs="unbounded" minOccurs="0"/>
 <element name="Number_of_orders" type="int" maxOccurs="unbounded" minOccurs="0"/>
 </sequence>
 </complexType>

 <element name="Order_table" type="tns:DBA_Sample1Type"/>
</schema>

J.2 Format transformation methods
To transform the formats of data acquired using the database adapter:

1. Data settings at transformation source and transformation destination
To transform the formats of the data acquired using the database adapter, use the data transformation definition.
Before you begin data format transformation, set up the data transformation source and transformation destination
in the Data Transformation Definition screen.

2. Acquiring the cid attribute value of the column name
Use the trim node function to acquire the column name ID (cid attribute value).

3. Settings for the loop node function
Specify settings for the loop node function such that all the values acquired using the database adapter can be
assigned to the transformation destination.

4. Assigning the values to the column name element at the transformation destination
Compare the column name ID and the value ID. If the IDs are the same, assign the value to the transformation
destination.

5. Validating the defined contents
Validate the defined contents and confirm that the mapping is consistent.

The following is a description of each of the steps:

(1) Data settings at transformation source and transformation destination
To transform the formats of the data acquired using the database adapter, use the data transformation definition.

In the Data Transformation Definition screen, set up the data acquired using the database adapter in the transformation
source schema tree viewer and the XML schema with the post-transformation format in the transformation destination
schema tree viewer.

J. Examples of transforming the format of data acquired by using the database adapter

620

(2) Acquiring the cid attribute value of the column name
In the DBA_ResultSetName element of the response message, the column name and the ID (cid attribute) are
stored in pairs. Use the trim node function to acquire the cid attribute corresponding to the column name specified in
the node conditions.

To acquire the cid attribute value of the column name:

1. Define the trim node function for the cid attribute under the DBA_ResultColumnName element.
For details about how to define the trim node function, see 6.5.5 Removing Spaces from a String.

J. Examples of transforming the format of data acquired by using the database adapter

621

2. In the Trim Node dialog box, click the Set Node Conditions button.
The Set Node Conditions dialog box appears.

3. In the Set Node Conditions dialog box, click the Set Conditions button.
The Set Conditions dialog box appears.

4. Set up the node conditions.
Specify the settings as follows:

• Left-hand side: DBA_ResultColumnName element

• Right-hand side: Column name (here, Order_number)

5. Similarly define the elements for the Customer_code, Product_code, and the Number_of_orders.

(3) Settings for the loop node function
Map the loop node function from the DBA_ResultSet element of the transformation source to the record element
of the transformation destination. For details about how to define the loop node function, see 6.5.16 Mapping Looping.

J. Examples of transforming the format of data acquired by using the database adapter

622

(4) Assigning the values to the column name element at the transformation destination
Assign a value to each row name element at the transformation destination. In this case, set up the conditions such that
the trim node function defined in (2) Acquiring the cid attribute value of the column name matches the cid attribute
under the DBA_ResultColumn element.

To assign a value to each row name element of the transformation destination:

1. Right click the transformation destination element (here, Order_number) and choose Mapping Source.
The Set Mapping Source dialog box appears.

2. In the Mapping Source, select DBA_ResultColumn.

3. In the Set Mapping Source dialog box, click the Set Node Conditions button.
The Set Node Conditions dialog box appears.

4. In the Set Node Conditions dialog box, click the Set Conditions button.
The Set Conditions dialog box appears.

5. Set up the node conditions.
Specify the settings as follows:

• Left-hand side: cid attribute under the DBA_ResultColumn element

• Right-hand side: Trim node function defined to correspond to the transformation destination column name

J. Examples of transforming the format of data acquired by using the database adapter

623

6. Similarly define the elements for the Customer_code, Product_code, and the Number_of_orders.

(5) Validating the defined contents
Validate whether the defined mapping is consistent. For details about the validation method, see 5.10.2 Validation
Method.

J. Examples of transforming the format of data acquired by using the database adapter

624

K. Auto mapping of data acquired by DB adapter
This section describes the method of automatically mapping the data acquired by DB adapter, in the format in which
column name serves as element name.

Use this method for automatically implementing "Appendix J. Examples of transforming the format of data acquired
by using the database adapter". However, take note of the following points, while defining.

• In "Appendix J. Examples of transforming the format of data acquired by using the database adapter", mapping is
done with cid attribute as key. However, in this method, auto mapping is performed with transformation source
column number as key.

• As repeat function is not set automatically, you must set the function manually.

Flow of mapping is as follows:

1. Create the column definition file, based on the SQL operation definition file, request message and response
message.

2. Perform mapping to the data transformation definition screen, by using the created column definition file.

The respective activities are described as follows:

(1) Creating the column definition file
The column definition file is CSV format file in which Position()[transformation source column number] of the search
result of DB adapter is associated with transformation destination element name of XML schema.

(a) Format

Format of the column definition file is as follows:

Transformation source string number, transformation destination element name [linefeed]
 :

Following table describes the syntax of the column definition file:

Table K‒1: TableSyntax of the column definition file

Item Syntax of the column definition file

Column definition file (Line data linefeed code)*

Line data Space* [transformation source string number blank*] [',' blank* transformation destination
element name blank*]

Linefeed code '\r\n' | '\r' | '\n'

Blank ' ' | '\t'

Transformation source string number ('0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9') +

Transformation destination element
name

(MS932 character - (',' | ':' | blank | linefeed code))+

(b) Definition example

This section describes the definition example of column definition file when acquiring the following table structure
data with DB adapter, by considering the contents of database of "Appendix J.1 Examples" as an example.

Table K‒2: TableTable structure (first row indicates column name)

Order_number (INTEGER) Customer_code (CHAR) Product_code (CHAR) Number_of_orders (INTEGER)

1 AA001 0001 5

K. Auto mapping of data acquired by DB adapter

625

Order_number (INTEGER) Customer_code (CHAR) Product_code (CHAR) Number_of_orders (INTEGER)

2 AB002 0001 1

3 AA001 0102 3

4 XA005 0103 1

5 AA001 0105 1

This table stricture data is acquired from DB adapter, as described in the following table.

Table K‒3: TableData acquired from DB adapter (first row indicates acquisition order (column number))

1 2 3 4

1 AA001 0001 5

2 AB002 0001 1

3 AA001 0102 3

4 XA005 0103 1

5 AA001 0105 1

As described above, in case of data acquired from DB adapter, you cannot reference the value with column name as
key. Therefore, you must transform to the format where column name is the element name.

Accordingly, use the column definition file to define which column number of the data acquired from the DB adapter
is to be mapped with which element name.

Definition example of the column definition file

1,Order_number
2,Customer_code
3,Product_code
4,Number_of_orders

First row of this column definition file indicates that the DB adapter maps the data in first column to the
Order_number.

Thus, When you perform auto mapping by using this column definition file, the data acquired from the DB adapter is
transformed as follows and you can reference the value by considering the element name (column name) as key.

Table K‒4: TableTable structure (first row indicates the column name)

Order_number Customer_code Product_code Number_of_orders

1 AA001 0001 5

2 AB002 0001 1

3 AA001 0102 3

4 XA005 0103 1

5 AA001 0105 1

(c) Notes

This section describes the points to be considered when creating the column definition file.

• You can use any file name and extension.

• Available character code is MS932.

• Transformation destination element name is case sensitive.

K. Auto mapping of data acquired by DB adapter

626

• When you omit the transformation source column number, transformation destination element name or both,
definition of that row is ignored and a warning message is output.

• Maximum length of the character string of transformation source column number is 1,024 characters.

• When you define the same transformation destination element name in duplication, element defined at first is
ignored. In that case, a warning message is displayed.

• In the auto mapping using the column definition file, evaluation is performed only with the transformation
destination element name of the column definition file and namespace is not differentiated.
For example, if you define as follows, in the column definition file and mapping is performed in the schema in
which element name is duplicated as "Home:Tel1" "Mobile:Tel1", mapping is performed in both the elements, as
shown in the following figure:
Contents of the column definition file

1,Name_Kanji
2,Name_Kana
3,Address
4,Tel1

Figure K‒1: FigureExample of mapping in case of same element name having different namespace

(2) Mapping in the data transformation definition screen
Use the data transformation definition to perform automatic mapping to the format in which column name is the
element name.

In the transformation source schema tree view of the data transformation definition screen, set the data acquired with
DB adapter and in the transformation destination schema tree viewer, set the XML schema having format after
conversion.

Method of mapping is as follows:

1. Select parent element (complex contents element) of the element that is transformation destination mapping target.

2. Right click when the parent element is in selected status.
Popup menu is displayed.

K. Auto mapping of data acquired by DB adapter

627

3. From popup menu, select [Special mapping]-[DB adapter].
DB adapter mapping settings dialog is displayed.

4. Select the mapping source and specify the column definition file.

5. Click Finish button.
Auto mapping is performed.

K. Auto mapping of data acquired by DB adapter

628

If the element name under the node for which you selected DB adapter in the popup menu, and the
transformation destination element name of the column definition file do not match, or the matching element is
not the mapping target, warning message is displayed.

6. Perform mapping of Repeat function from transformation source element to transformation destination element.
For details on how to define the repeat function, see "6.5.16 Mapping Looping".

K. Auto mapping of data acquired by DB adapter

629

L. Customizing WSDL using the external binding file
You can customize the WSDL parsing method by using the external binding file. Flow of WSDL customizing using
the external binding file is as follows:

1. Create the external binding file
You can use any file name.
For details on how to create the external binding file, see "15.2 Customizing the mapping from WSDL to Java" in
the "Application Server Web Service Development Guide".

2. Set up the created external binding file through WSDL customized binding setting page.
For details on the WSDL customized binding setting page, see (Data transformation settings) in the "Service
Platform Reference Guide".
When external binding file is used in the version prior to 09-00 and version is upgraded to 09-50 onwards in the
overwrite installation, Soecuft external binding file that you want to use (<Service Platform installation directory>
\CSCTE\config\tools\custom\custombinding.xml) in the WSDL custom binding settings page.

Parse WSDL file based on the stored external binding file. You can use the customized WSDL file when creating the
service adapter or user-defined reception.

L. Customizing WSDL using the external binding file

630

M. Changing IBM kanji code character set
When you select IBM kanji code as a character code, in binary format definition file, by default it is set as follows:

Table M‒1: TableDefault when you select IBM kanji code in the character code

Character code type Code system

IBM_CODE+EBCDIC(LATIN) IBM kanji code + standard English lower case characters set

IBM_CODE+EBCDIC(KANA) IBM kanji code + standard Katakana character set

When setting the character code of binary format definition file, use Format dialog. For details on Format dialog, see
"1.3.1 Format dialog" in the "Service Platform Reference Guide".

For details on character code, see "Appendix A Character code support table" in the "Service Platform Reference
Guide".

M.1 Procedure for changing the character set of IBM kanji code
Overwrite all the table files stored in the following copy source directories, to the copy destination directories, after
stopping HCSC server.

Table M‒2: TableChanging IBM kanji code

Change contents Copy source Overwrite destination

Change from standard character set to extended character
set (for Windows)

<Service Platform installation
directory>\CSC\lib\external\table
\ibmE

<Service Platform installation
directory>\CSC\lib\external
\table

Changing from extended character set to standard
character set (for Windows)

<Service Platform installation
directory>\CSC\lib\external\table
\ibmB

<Service Platform installation
directory>\CSC\lib\external
\table

Changing from standard character set to extended
character set (for UNIX)

/opt/Cosminexus/CSC/lib/external/
table/ibmE

/opt/Cosminexus/CSC/lib/external/
table

Changing from extended character set to standard
character set (for UNIX)

/opt/Cosminexus/CSC/lib/external/
table/ibmB

/opt/Cosminexus/CSC/lib/external/
table

M. Changing IBM kanji code character set

631

N. Glossary
Terminology used in this manual

For the terms used in the manual, see Application Server and BPM/ESB Platform Terminology Guide.

N. Glossary

632

Index

A
acquire node count function 267
acquire node name function 267
acquire string length function 255
acquire substring function 253
activities to which correlation sets can be assigned 157
activity 139

defining fault handling 143
deploying 140
to which variable can be assigned 148

adding breakpoints 494
adding HCSC components to cluster 387
adding message transformation and system exception

processing 542
adding user-defined reception interfaces 542
applicability of service components that use Web service 42
assign activity 172
auto mapping of data acquired by DB adapter 625
automatic service emulation 508

B
batch execution of process

deploying HCSC components on HCSC Server 391
stopping HCSC components on HCSC Server 397

binary data
creating 472
specifying in shared receive queue 477

binary format definition file 90
creating 93
creating new 101
defining element (for CSV format) 106
defining element (for non-CSV format) 101
displaying validation results 122
editing 107
specifying complex content elements 102
specifying format information (for CSV format) 107
specifying format information (for non-CSV

format) 102
specifying globally defined simple content elements

102
validating 108
validation method 122

BitOpObjects(Logical operation function) 361
Bit string 98
BPEL

support range 543
BPEL file, creating 136
business process

adding 136
adding new 136
adding new by importing BPEL file 136
adding new undefined 136
changing running definition 206
defining 133
defining contents 139

deleting 231
displaying validation contents 230
editing 205
that cannot be deleted 231
using already defined business process to add 138
validating 219
validation contents 219
work flow for defining 134

Bytes string 98

C
CalculateObjects(Perform node operation function) 357
changing criteria setting of breakpoints 494
changing IBM kanji code character set 631
changing message formats 132
changing soap modes 62
character code conversion UOC 54
character code conversion using character code conversion

UOC 596
character code types in binary format definition file 94
character string 97
character strings that can be specified as standby time 176
checking soap modes 38
checking unused RD area 39
checking variables and correlation sets 506
check node function 268
check string function 255
check usage existence of database and Reliable Messaging

21
choose node function 271
ChooseObjects(Select function) 369
cluster

to which HCSC components can be deployed (or
single HCSC servers) 387

comment 203
complex content element, specifying 102
component 103

specifying 103
specifying globally defined element as 103
specifying locally defined simple content element

as 104
specifying selection condition 104

component common UOC 589
concatenate function 253, 279
ConcatenateObjects(concatenate function) 349
conditions for linking activities 141
configuration format 15
ConstantObjects(Set constant function) 375
ContainObjects(Check string function) 354
conversion table

creating 275
saving 276

converting assign element (BPEL1.1) 555
converting correlationSets element (BPEL1.1) 551
converting element (bpel2.0)

assign element 572

633

correlationSets element 569
empty element 574
faultHandlers element 569
flow element 577
invoke element 572
process element 567
receive element 570
related to Basic Activity 570
related to overall business process definition 567
related to Structure Activity 575
reply element 571
scope element 575
throw element 574
variables element 568
while element 575

converting elements related to basic activities (BPEL1.1)
552

converting elements related to overall business process
definitions (BPEL1.1) 549

converting elements related to structure activities
(BPEL1.1) 557

converting empty element (BPEL1.1) 556
converting faultHandlers element (BPEL1.1) 551
converting flow element (BPEL1.1) 559
converting invoke element (BPEL1.1) 554
converting process element (BPEL1.1) 550
converting receive element (BPEL1.1) 552
converting reply element (BPEL1.1) 553
converting scope element (BPEL1.1) 557
converting sequence element (BPEL1.1) 559
converting switch element (BPEL1.1) 558
converting throw element (BPEL1.1) 556
converting variables element (BPEL1.1) 550
converting wait element (BPEL1.1) 556
converting while element (BPEL1.1) 558
convert number format function 258
copying mapping definitions 300
CopyObjects(mapping to transformation destination node)

346
correlation set 139
correlation set definition method 159
Cosminexus RM, application scopes of service components

using local queue of 51
Cosminexus Service Platform

developing system using 19
relationship between overall system and

development environment 6
types of available services and their application

scopes used in 42
CountObjects(Acquire node count function) 364
creating

service requester using jax-ws engine (web
services) 427

creating embedded database 11
creating Java form file 311
creating Java programs to be used in custom function 308
creating service adapter 542
creating service requester that sends request for operating

status of service adapter from application (web services
and soap communication infrastructure) 419

creating table format XML file 326
creating transformation function definition file 309

CSCMsgServerException class 447
CSCOwnCodeConverter interface 597
CSCOwnCodeReaderContext interface 612
CSCOwnCodeReader interface 603
custom function 281
customizing WSDL using the external binding file 630
CustomObjects(custom function) 373

D
database queue

application scopes of service components using 51
data transformation 88

defining 233
defining (mapping) 237
definitions necessary for 234
files necessary for 234
procedure for defining 237

data transformation activity 171
data transformation definition 237
data types in binary format definition file 94
Date and time 99
debugging business processes 491
defining activities 163
defining correlation sets 155
defining new correlation sets 159
definition details of table format XML schema definition

file 344
definition example that uses correlation sets 160
deleting breakpoints 495
deleting HCSC components from cluster 388
deployment definition 385
description format of COBOL library text file that can be

transformed 124
designing business process overview 542
detailing business process 542
determining similarities 302
determining similarities during automatic mapping 249
developing jar file of character code conversion UOC 596
development environment

setup for using 10
disabling breakpoints 495
displaying function name after edition 323

E
Eclipse

setting up environment in which HCSCTE is
embedded in 11

editing function name directly 323
empty activity 174
emulating service requester 585
end activity 193
ending debugging of business processes 511
error information

acquiring [standard synchronous reception
(SessionBean)] 446

acquiring [standard synchronous reception (Web
services)] 414

acquiring [user-defined reception (Web Services)]
485

evaluating xpath 507

Index

634

Examples of system development using high level design
tools 542

Examples of transforming the format of data acquired by
using the database adapter 619

executing HCSC easy setup functionality 24
ExistObjects(Check node function) 365
expanding code conversion 54
exporting and importing/ breakpoints 495
extension function 201

F
fixed fraction numeric value 96
flow activity 190
flow form development to actual application 2
flow of copying mapping definitions 300
flow of debugging 492
flow of messages 88
flow of service requester emulation 585
format information

specifying (for CSV format) 107
specifying (for non-CSV format) 102

FormatObjects(Convert number format function) 356
functions

assigning specified value 273
converting value with conversion table 274
deleting 247
outputting different values according to conditions

271
using to process values 252

G
generating binary format definition file from COBOL

library text file 124
generating xml schema file from binary format definition

file 131
global variable 148

H
HCSC components

application scopes 42
displaying information about 389
information that can be referenced 389
referencing information about 389
types of 42
updating list of 390

hcsc easy setup functionality
environment that can be built 22

HCSC Easy Setup functionality 22
HCSC easy setup screen ([Main] tab) 25
HCSC easy setup screen ([Server name] tab) 26
header and record elements

specifying component of 107
specifying occurrence count of 107

how to emulate service requester 585

I
identifying process instances 155
identifying process instances based on correlation sets 155

if element conversion (BPEL2.0) 576
importing business process 542
importing business process definitions for BPEL1.1 544
importing mapping definition 343
importing mapping definition using Excel 325
information required for operating test environment 31
Information that can be output as design information 74
inheriting HTTP header and Cookie information in which

service adapter is used 578
installation 11
installing HiRDB SQL Executer and setting up

environment variable 12
instance, creating 443
integer 95
invoke java activity 168
invoke java program created by user 281
invoke service activity 166
Items to be checked before output 81
items to be input in HCSC easy setup screen 27

J
JMS messages

creating [standard asynchronous reception (MDB
(database queue))] 471

creating [standard asynchronous reception (MDB
(WS-R))] 457

sending [standard asynchronous reception (MDB
(database queue))] 477

sending [standard asynchronous reception (MDB
(WS-R))] 461

JMS service requester 466

L
LengthObjects (Acquire string length function) 353
linking activities 140
local variable 148
logical operation function 263
looping dependent targets

changing 289
checking 289
mapping 285

loop node function 269
LoopObjects(Repeat function) 366

M
making mapping lines and functions easier to view 248
manual service emulation 509
mapping 241

canceling 247
conditions 315
correspondences between nodes and functions that

can be mapped 315
looping 269
looping dependent targets 285
non--targets 315
notes on 250
specifying looping 284
synthesizing loops 284
targets 315

Index

635

transformation-source node values directly to
transformation-destination nodes 241

using Loop Settings dialog box 284
mapping definition 237
mapping information 300
mapping lines

deleting 247
mapping source display format 247
message format 88

creating 87
type of 90

message format definition file 88
creating 235

message formats and data transformations 88
messages

creating 91
message types 88
method of editing function name 323
method of generating binary format definition file 129
migrating from earlier version 514

version to be performed 514
migrating from evaluation version 521
modifying activity names 206
modifying definition information for activities 205
modifying definition information for business processes 205
modifying definition information for business processes

and activities 205

N
NameObjects(Acquire node name function) 363
namespace prefix option 379
Namespaces(namespace information) 345
NOT operation function 261
node

assigning count 266
assigning name 267
numbers of multiple node sets, summing up 260
specifying conditions for 298
verifying existence 268

Notes at the time of development 62
notes on copying mapping definitions 304
notes on outputting design information 84
notes regarding binary format definition 123
notes regarding Eclipse 85
NotObjects(NOT operation function) 360
number of mapping lines that can be connected 321
numbers

computing 258
converting format of 257
rounding decimal digits 259

numeric value type 116

O
object

generating [standard synchronous reception (Web
Services)] 408

generating [user-defined reception (Web Services)]
484

objects for which you can define same Name element in
multiple rows 377

operating test environment set up with HCSC easy setup
functionality 31

output business process 542
output of design information 74

P
packaging 384
pack format numeric value 97
parameters

specifying [standard asynchronous reception (MDB
(database queue))] 475

specifying [standard asynchronous reception (MDB
(WS-R))] 457

specifying [standard synchronous reception
(SessionBean)] 444

specifying [standard synchronous reception (Web
Services)] 410

performing basic number transformation 277
perform node operation function 259, 280
points to be considered for data transformation definition

240
points to be considered when using mapping definition

using Excel 343
Preparing RDAREAs 12
prerequisites 10
prerequisites for using high level design tools 527
pre-requisite software of test environment 24
procedure (soap communication infrastructure) for creating

service requester (user-defined reception (web service))
482

procedure for creating service requester (user-defined
reception (web service)) (jax-ws engine) 487

procedure from packaging to deployment definition 382
procedure of system development using high level design

tools 525
processing transformation-source node values and mapping

them to transformation-destination node 242
project

creating 58
deleting 62
exporting 62
importing 62
managing 58

properties, setting up 60

R
Radix conversion function 277
RadixObjects(radix conversion function) 372
Real number 96
receive activity 164
registering mapping definitions 301
registering message schemas 542
relating repeat process of each element by setting up

linkage path 293
Releasing empty pages and empty segments 40
ReplaceObjects(Replace value function) 370
Replace Value Function 274
reply activity 165
repository

changing 64

Index

636

exporting 64
importing 66
initializing 64
managing 63
setting up 63
specifying 63

request message 88
request messages

creating [standard asynchronous reception (MDB
(database queue))] 475

creating [standard asynchronous reception (MDB
(WS-R))] 461

creating [standard synchronous reception
(SessionBean)] 445

creating [standard synchronous reception (Web
Services)] 411

response message 88
response messages

acquiring [standard asynchronous reception (MDB
(database queue))] 480

acquiring [standard asynchronous reception (MDB
(WS-R))] 463

acquiring [standard synchronous reception
(SessionBean)] 446

acquiring [standard synchronous reception (Web
Services)] 413

acquiring [user-defined reception (Web Services)]
485

response queue
setting up [standard asynchronous reception (MDB

(database queue))] 477
setting up [standard asynchronous reception (MDB

(WS-R))] 462
responses

extracting [standard asynchronous reception (MDB
(database queue))] 478

extracting [standard asynchronous reception (MDB
(WS-R))] 462

Restarting the embedded database 13
restricting mapping range 249
reviewing detailed interface of service 542
reviewing service overview interface 542
root element

changing 238
specifying (for CSV format) 107
specifying (for non-CSV format) 105

round node function 259
RoundObjects(Round node function) 358

S
saving business processes 204
saving mapping definitions 301
scope activity 181
scope of correlation set 159
scoping of XML schema 52
selecting selection condition node and setting up selection

condition 104
selecting the starting separator of components and setting

up selection condition 105
sending requests 498
separator, specifying 105

sequence activity 193
sequence element conversion (BPEL2.0) 577
service component message 88

creating (for MDB (WS-R or database queue)) 92
creating (for SessionBean) 92
creating (for Web Services) 91

service requester 404
creating 403
procedure for creating (standard asynchronous

reception (MDB (database queue))) 467
procedure for creating (standard asynchronous

reception (MDB (WS-R)) 454
procedure for creating (standard synchronous

reception (SessionBean)) 441
procedure for creating (standard synchronous

reception (Web services)) 405
that sends request for business process re-execution

(SessionBean), creating 451
that sends request for business process re-execution

(web services), creating 417
that sends requests to standard asynchronous

reception (MDB (database queue)) 466
that sends requests to standard asynchronous

reception (MDB (WS-R)) 454
that sends requests to standard synchronous

reception (SessionBean) 441
that sends requests to standard synchronous

reception (web services) 405
that sends requests to user-defined reception (Web

services) 482
types of protocol and types of standard and user-

defined reception 404
SessionBean

application scopes of service components using 48
set constant function 273, 279, 280
setting breakpoints 494
settings for using character code conversion UOC 596
settings in DB client (HCSC server) 13
settings on DB server 12
setting up concurrent connections count of embedded

database 13
setting up DB server and configuring environment 12
setting up environment variables group 13
Setting up environment variables of DB client 13
setting up mapping definition 327
setting up repository 60
setting up test environment 24
setting up user and defining schemas 12
Setting up user limitation and preparing RDAREAs for

Reliable Messaging 13
shared receive queue, specifying binary data in 477
ShiftObjects(Shift operation function) 362
shift operation function 264
signed binary integer 97
simple content element 102

specifying globally defined 102
specifying locally defined as component 104

soap:binding element 44
soap:body element 44
soap:fault element 45
soap:header element 45
soap:operation element 44

Index

637

SOAP1.1/1.2 combined mode 16
SOAP1.1 mode 16
SOAP mode to be used 16
specifying correlation sets from activities 159
specifying java build path 60
specifying scope of transformation-source and destination

nodes and mapping automatically 245
Specifying target from element of transformation-

destination node and mapping automatically 246
standard message 88
standby activity 175
start activity 164
starting and stopping test environment 31
starting debugging of business processes 496
status persistence 137
step-by-step execution and restarting 499
strings

assigning character count 254
concatenating multiple 252
extracting substring from 253
removing spaces from 256
verifying that specified string is present 255
verifying that string begins with specified string 255

stub
acquiring 443
creating [standard synchronous reception (web

services)] 408
creating [user-defined reception (Web Services)]

484
SubstringObjects (acquire substring function) 349
SumObjects(Sum up nodes function) 359
sum up nodes function 260
support to data type of COBOL library text file and binary

format definition file 127
Support range of the SOAP modes 16
support range of WSDL1.1 specifications 47
switch activities 188
system development using high level design tools 523

T
test environment

customizing 34
easy setup 22
editable definition file 35

throw activity 175
TP1/Server Base Enterprise Option (TP1/EE) service

requester 466
transformation-destination node

mapping transformation-source node values directly
to 241

transformation-source node for which looping dependent
target is specified, displaying path of 290

transformation-source node value
assigning value to 279
doubling 280
mapping directly to transformation-destination

nodes 241
transforming wait element [bpel2.0] 574
shared transmission queue, creating 471
transmission queue, creating 456
trim node function 257

TrimObjects(Trim node function) 355
troubleshooting when high level design tools are used 529
types of SOAP mode 16

U
uninstalling 14
unsetting up test environment 30
unsigned binary integer 97
updating variables 506
upgrading version of business process 208
usage existence of database and Reliable Messaging 15
user mapping table 54
using compensation handler 528
using logical operation 263
using NOT operation 261
using shift operation 264

V
validate activity 179
validation

method of 229
settings for 60

validation contents (binary format definition file) 108
variable 139

assigned to activity 148
defining 148
definition method 153
format of 148
showing 149
type of 148

W
Web Service Explorer 585
while activity 183
workflow

creating binary format definition file 93
WSDL

acquiring 407
editing 484

wsdl:fault element 44
wsdl:import element 43
wsdl:operation element 44
wsdl:operation element (SOAP1.1/1.2 combined mode) 46
wsdl:port element 46
wsdl:service element 46
wsdl:types element (SOAP1.1/1.2 combined mode) 46
wsdl:types elements (SOAP1.1 mode) 43

X
XML format definition file 90

creating 91
XML Schema type dateTime 176
XML Schema type duration 176
XPath

specifying 193
xsd:schema element 43

Index

638

Z
zone format numeric value 96

Index

639

	Basic Development Guide
	Preface
	Contents
	1. Overview of System Development Based on SOA
	1.1 Flow from Development up to Actual Operation
	1.2 Relationship Between the Overall System and the Development Environment

	2. Before Developing a System
	2.1 Setup for Using the Development Environment
	2.1.1 Prerequisites
	2.1.2 Installation
	2.1.3 Environment Setup
	2.1.4 Creating embedded database
	2.1.5 Uninstalling

	2.2 Selecting the configuration format and the SOAP modes
	2.2.1 Usage existence of database and Reliable Messaging
	2.2.2 SOAP mode to be used
	2.2.3 SOAP mode settings

	2.3 Development Work Flow
	2.4 Easy Setup of the Test Environment
	2.4.1 Environment that can be Built with the HCSC Easy Setup Functionality
	2.4.2 Executing HCSC easy setup functionality
	2.4.3 Operating the test environment set up with HCSC easy setup functionality
	2.4.4 Customizing a Test Environment
	2.4.5 Checking the SOAP modes

	2.5 Operating an embedded database set up with the HCSC Easy Setup functionality
	2.5.1 Checking unused RD area
	2.5.2 Deleting the execution history of process instances
	2.5.3 Releasing empty pages and empty segments

	2.6 Types of Available Service Components and Their Application Scopes
	2.6.1 Applicability of the service components that use Web service
	2.6.2 Application Scopes of Service Components That Use SessionBean
	2.6.3 Application Scopes of Service Components That Use the Local Queue of Cosminexus RM
	2.6.4 Application Scopes of Service Components That Use a Database Queue
	2.6.5 Scoping of XML schema

	2.7 Expanding code conversion
	2.7.1 Creating character code conversion UOC
	2.7.2 Embedding the user mapping table

	3. Managing Project and Managing Repository
	3.1 Managing a Project
	3.1.1 Creating a Project
	3.1.2 Setting up Properties
	3.1.3 Exporting/Importing a Project
	3.1.4 Deleting a Project
	3.1.5 Changing SOAP modes
	3.1.6 Notes at the time of development

	3.2 Managing a Repository
	3.2.1 Setting Up a Repository
	3.2.2 Exporting a Repository
	3.2.3 Importing a Repository

	3.3 Output of design information
	3.3.1 Information that can be output as design information
	3.3.2 Items to be checked before output
	3.3.3 How to output the design information
	3.3.4 Notes on outputting design information

	3.4 Notes regarding Eclipse

	4. Creating Message Formats
	4.1 Message Formats and Data Transformations
	4.2 Message Format Types
	4.3 Creating Message Formats (XML Format Definition File)
	4.3.1 Creating a Message
	4.3.2 Creating a Service Component Message (for Web Services)
	4.3.3 Creating a Service Component Message (for SessionBean)
	4.3.4 Creating a Service Component Message (for MDB (WS-R or Database Queue))

	4.4 Creating Message Formats (Binary Format Definition File)
	4.4.1 Data types and character code types in the binary format definition file
	4.4.2 Creating a New Binary Format Definition File
	4.4.3 Defining Elements (for Non-CSV Format)
	4.4.4 Defining Elements (for CSV Format)
	4.4.5 Editing a Binary Format Definition File
	4.4.6 Validating a Binary Format Definition File
	4.4.7 Notes regarding binary format definition

	4.5 Generating the binary format definition file from COBOL Library Text File
	4.5.1 Description format of COBOL Library Text File that can be transformed
	4.5.2 Support to data type of COBOL Library Text File and binary format definition file
	4.5.3 Method of generating the binary format definition file

	4.6 Generating an XML schema file from the binary format definition file
	4.7 Changing the message formats

	5. Defining Business Processes
	5.1 Definition Work Flow
	5.2 Adding Business Processes
	5.2.1 Adding New Business Processes
	5.2.2 Using an Already Defined Business Process to Add Business Processes

	5.3 Defining Business Process Contents
	5.4 Deploying and Linking Activities
	5.4.1 Deploying Activities
	5.4.2 Linking Activities
	5.4.3 Defining Fault Handling

	5.5 Defining Variables and Correlation Sets
	5.5.1 Defining Variables
	5.5.2 Defining Correlation Sets

	5.6 Defining Activities
	5.6.1 Start Activity
	5.6.2 Receive Activity
	5.6.3 Reply Activity
	5.6.4 Service Invocation Activity
	5.6.5 Invoke Java Activity
	5.6.6 Data Transformation Activity
	5.6.7 Assign Activity
	5.6.8 Empty Activity
	5.6.9 Throw Activity
	5.6.10 Standby Activity
	5.6.11 Validate activity
	5.6.12 Scope Activity
	5.6.13 While Activity
	5.6.14 Switch Activities
	5.6.15 Flow Activities
	5.6.16 End Activity
	5.6.17 Sequence Activity
	5.6.18 Specifying an XPath

	5.7 Scheduling comments
	5.8 Saving Business Processes
	5.9 Editing Business Processes
	5.9.1 Modifying the definition information for business processes and activities
	5.9.2 Modifying Activity Names
	5.9.3 Changing a Running Business Process Definition
	5.9.4 Upgrading version of business processes

	5.10 Validating Business Processes
	5.10.1 Validation Contents
	5.10.2 Validation Method
	5.10.3 Displaying the Validation Contents

	5.11 Deleting Business Processes

	6. Defining Data Transformation
	6.1 Files and Definitions Necessary for Data Transformation
	6.2 Creating Message Format Definition Files
	6.3 Defining Data Transformation
	6.3.1 Procedure for Defining Data Transformation
	6.3.2 Procedure for defining changed message formats
	6.3.3 Points to be considered for data transformation definition

	6.4 Mapping
	6.4.1 Assigning Transformation-source Node Values Directly to Transformation-destination Nodes
	6.4.2 Processing the Transformation-source Node Values and Mapping Them to the Transformation-destination Node
	6.4.3 Specifying the Scope of Transformation-source and Destination Nodes and Mapping Automatically
	6.4.4 Specifying a Target from the Element of the Transformation-destination Node and Mapping Automatically
	6.4.5 Canceling Mapping
	6.4.6 Mapping Source Display Format
	6.4.7 Making Mapping Lines and Functions Easier to View
	6.4.8 Restricting mapping range
	6.4.9 Determining Similarities during Automatic Mapping
	6.4.10 Notes on Mapping

	6.5 Using Functions to Process Values
	6.5.1 Concatenating Multiple Strings
	6.5.2 Extracting a Substring from a String
	6.5.3 Assigning a String Character Count
	6.5.4 Verifying That the Specified String Is Present or That the String Begins with the Specified String
	6.5.5 Removing Spaces from a String
	6.5.6 Converting the Number Format
	6.5.7 Computing Numbers
	6.5.8 Rounding Decimal Digits
	6.5.9 Summing Up the Node Numbers of Multiple Node Sets
	6.5.10 Using NOT operation
	6.5.11 Using logical operation
	6.5.12 Using shift operation
	6.5.13 Assigning a Node Count
	6.5.14 Assigning a Node Name
	6.5.15 Verifying That a Node Exists
	6.5.16 Mapping Looping
	6.5.17 Outputting Different Values According to Conditions
	6.5.18 Assigning a Specified Value
	6.5.19 Converting a Value with the Conversion Table
	6.5.20 Performing basic number transformation
	6.5.21 Assigning a Value to a Transformation-source Node Value
	6.5.22 Doubling a Transformation-source Node Value
	6.5.23 Invoke a Java program created by the user

	6.6 Specifying Looping
	6.6.1 Mapping Using the Loop Settings Dialog Box
	6.6.2 Synthesizing Loops
	6.6.3 Mapping Looping Dependent Targets
	6.6.4 Checking Looping Dependent Targets
	6.6.5 Changing Looping Dependent Targets
	6.6.6 Displaying the Path of a Transformation-source Node for Which a Looping Dependent Target Is Specified
	6.6.7 Relating repeat process of each element by setting up the linkage path

	6.7 Specifying Node Conditions
	6.8 Copying Mapping Definitions
	6.8.1 Flow of copying mapping definitions
	6.8.2 Saving mapping definitions
	6.8.3 Registering mapping definitions
	6.8.4 Copying mapping definitions
	6.8.5 Determining similarities
	6.8.6 Notes on copying mapping definitions

	6.9 Creating Java programs to be used in the custom function
	6.9.1 Creating the Transformation Function Definition File
	6.9.2 Creating the Java form file
	6.9.3 Referring to external jar from transformation function
	6.9.4 Coding, building and debugging Java programs
	6.9.5 Packaging Java programs

	6.10 Mapping Conditions
	6.10.1 Mapping Targets and Non--Mapping Targets
	6.10.2 Correspondences Between Nodes and Functions That Can Be Mapped
	6.10.3 Number of Mapping Lines That Can Be Connected

	6.11 Editing function name directly
	6.11.1 Method of editing function name
	6.11.2 Displaying function name after edition

	6.12 Importing mapping definition using Excel
	6.12.1 Creating table format XML file
	6.12.2 Setting up the mapping definition
	6.12.3 Importing mapping definition
	6.12.4 Points to be considered when using mapping definition using Excel

	6.13 Definition details of table format XML schema definition file
	6.13.1 Namespaces (namespace information)
	6.13.2 CopyObjects (mapping to transformation destination node)
	6.13.3 ConcatenateObjects (Concatenate function)
	6.13.4 SubstringObjects (Acquire substring function)
	6.13.5 LengthObjects (Acquire string length function)
	6.13.6 ContainObjects(Check string function)
	6.13.7 TrimObjects (Trim node function)
	6.13.8 FormatObjects(Convert number format function)
	6.13.9 CalculateObjects(Perform node operation function)
	6.13.10 RoundObjects(Round node function)
	6.13.11 SumObjects(Sum up nodes function)
	6.13.12 NotObjects(NOT operation function)
	6.13.13 BitOpObjects(Logical operation function)
	6.13.14 ShiftObjects(Shift operation function)
	6.13.15 NameObjects(Acquire node name function)
	6.13.16 CountObjects(Acquire node count function)
	6.13.17 ExistObjects(Check node function)
	6.13.18 LoopObjects(Repeat function)
	6.13.19 ChooseObjects(Select function)
	6.13.20 ReplaceObjects(Replace value function)
	6.13.21 RadixObjects(radix conversion function)
	6.13.22 CustomObjects(Custom function)
	6.13.23 ConstantObjects(Set constant function)
	6.13.24 Objects for which you can define the same Name element in multiple rows

	6.14 Namespace prefix option
	6.14.1 Setting up default value of namespace prefix option

	7. Packaging HCSC Components and Defining Deployment
	7.1 Packaging and Defining Deployment
	7.2 Packaging
	7.3 Defining Deployment of HCSC Components
	7.3.1 Clusters (or Single HCSC Servers) to Which HCSC Components Can Be Deployed
	7.3.2 Adding HCSC Components to a Cluster
	7.3.3 Deleting HCSC Components from a Cluster

	7.4 Referencing HCSC Component Information
	7.4.1 HCSC Component Information That Can Be Referenced
	7.4.2 Displaying HCSC Component Information
	7.4.3 Updating the HCSC Component List

	7.5 Batch execution of processes for deploying HCSC components on the HCSC Server and then starting
	7.5.1 Flow of processes from deploying to starting HCSC components
	7.5.2 How to deploy HCSC components in the HCSC server and start them

	7.6 Batch execution of processes for stopping HCSC components and deleting them from the HCSC server
	7.6.1 Flow of processes from stopping to deleting HCSC Components
	7.6.2 How to stop HCSC components and delete them from the HCSC server

	8. Creating Service Requesters
	8.1 Overview of Creating Service Requesters
	8.2 Service Requester That Sends Requests to a Standard Synchronous Reception (Web Services) (SOAP communication infrastructure)
	8.2.1 Procedure for Creating a Service Requester (Standard Synchronous Reception (Web Services)) (SOAP communication infrastructure)
	8.2.2 Acquiring the WSDL
	8.2.3 Creating Stubs
	8.2.4 Generating Objects
	8.2.5 Specifying Parameters
	8.2.6 Creating Request Messages
	8.2.7 Acquiring Response Messages
	8.2.8 Acquiring Error Information
	8.2.9 Creating a service requester that sends a request for business process re-execution (Web Services and SOAP communication infrastructure)
	8.2.10 Creating a service requester that sends a request for the operating status of service adapter from an application (Web Services and SOAP communication infrastructure)

	8.3 Creating a service requester using standard synchronous reception (Web Services) (JAX-WS engine)
	8.3.1 Procedure for creating a service requester (Standard synchronous reception (Web Service)) (JAX-WS engine)
	8.3.2 Acquiring WSDL
	8.3.3 Creating service classes
	8.3.4 Generating objects
	8.3.5 Specifying parameters
	8.3.6 Creating request messages
	8.3.7 Acquiring response messages
	8.3.8 Acquiring error information
	8.3.9 Creating a service requester requesting re-execution of a business process (Web service and JAX-WS engine)
	8.3.10 Creating service requester for requesting confirmation of operation status of service adapter (Web Service and JAX-WS engine)

	8.4 Service Requester That Sends Requests to a Standard Synchronous Reception (SessionBean)(JAX-WS engine)
	8.4.1 Procedure for Creating a Service Requester (Standard Synchronous Reception (SessionBean))
	8.4.2 Acquiring Stubs
	8.4.3 Creating Instances
	8.4.4 Specifying Parameters
	8.4.5 Creating Request Messages
	8.4.6 Acquiring Response Messages
	8.4.7 Acquiring Error Information
	8.4.8 Creating a Service Requester That Sends a Request for Business Process Re-execution (SessionBean)

	8.5 Service Requester That Sends Requests to a Standard Asynchronous Reception (MDB (WS-R))
	8.5.1 Procedure for Creating a Service Requester (Standard Asynchronous Reception (MDB (WS-R))
	8.5.2 Creating a Transmission Queue
	8.5.3 Creating JMS Messages
	8.5.4 Specifying Parameters
	8.5.5 Creating Request Messages
	8.5.6 Sending JMS Messages
	8.5.7 Setting Up a Response Queue
	8.5.8 Extracting Responses
	8.5.9 Acquiring Response Messages

	8.6 Service Requester That Sends Requests to a Standard Asynchronous Reception (MDB (database queue))
	8.6.1 Service Requester (Standard Asynchronous Reception (MDB (Database Queue))) Creation Procedure
	8.6.2 Creating a Shared Transmission Queue (JMS)
	8.6.3 Creating JMS Messages (JMS)
	8.6.4 Creating Binary Data (TP1/EE or JMS)
	8.6.5 Specifying Parameters (TP1/EE or JMS)
	8.6.6 Creating Request Messages (TP1/EE or JMS)
	8.6.7 Specifying Binary Data in the Shared Receive Queue (TP1/EE)
	8.6.8 Sending JMS Messages (JMS)
	8.6.9 Setting Up a Response Queue (TP1/EE or JMS)
	8.6.10 Extracting Responses (TP1/EE or JMS)
	8.6.11 Acquiring Response Messages (TP1/EE or JMS)

	8.7 Service Requester That Sends Requests to a User-defined Reception (Web Services)
	8.7.1 Procedure (SOAP communication infrastructure)for creating a service requester (User-defined reception (Web Service))
	8.7.2 Editing a WSDL
	8.7.3 Creating Stubs
	8.7.4 Generating Objects
	8.7.5 Acquiring Response Messages
	8.7.6 Acquiring Error Information
	8.7.7 Procedure for creating a service requester (User-defined Reception (Web Service)) (JAX-WS engine)

	9. Debugging Business Processes
	9.1 Flow of Debugging
	9.2 Preparing for Debugging of Business Processes
	9.2.1 Setting Breakpoints
	9.2.2 Setting Service Emulation

	9.3 Starting debugging of business processes
	9.4 Sending requests
	9.5 Debugging Business Processes
	9.5.1 Step-by-Step Execution and Restarting
	9.5.2 Checking Variables and Correlation Sets
	9.5.3 Updating Variables
	9.5.4 Evaluating XPath
	9.5.5 Automatic Service Emulation
	9.5.6 Manual Service Emulation

	9.6 Ending Debugging of Business Processes

	Appendixes
	A. Migrating from an Earlier Version
	A.1 Versions Wherein Migration Is to Be Performed
	A.2 Migrating from an Earlier Version
	A.3 Migrating procedure when a repository is shared between development environment and operating environment in earlier version

	B. Migrating from the Evaluation Version
	C. System development using High Level Design Tools
	C.1 Overview of system development using high level design tools
	C.2 Procedure of system development using high level design tools
	C.3 Prerequisites for using high level design tools
	C.4 Troubleshooting when the high level design tools are used

	D. Examples of System Development Using High Level Design Tools
	D.1 Designing the business process overview
	D.2 Reviewing the service overview interface
	D.3 Detailing the business process
	D.4 Output the business process
	D.5 Reviewing the detailed interface of the service
	D.6 Creating the service adapter
	D.7 Importing the business process
	D.8 Adding user-defined reception interfaces
	D.9 Registering message schemas
	D.10 Adding the message transformation and system exception processing

	E. Support Range of BPEL Used by Linking with an High Level Design Tool
	E.1 Importing business process definitions for BPEL1.1
	E.2 Importing a business process definition of BPEL2.0

	F. Inheriting HTTP header and Cookie information in which service adapter is used
	G. Emulating the Service Requester
	G.1 Flow of service requester emulation
	G.2 How to emulate the service requester

	H. Component common UOC
	H.1 Property file of component common UOC class
	H.2 Method for specifying the component common UOC class
	H.3 API for UOC class
	H.4 API for message acquisition
	H.5 Method of specifying jar file of UOC class
	H.6 Notes

	I. Character code conversion using character code conversion UOC
	I.1 Developing jar file of character code conversion UOC
	I.2 Settings for using the character code conversion UOC
	I.3 CSCOwnCodeConverter interface
	I.4 CSCOwnCodeReader interface
	I.5 CSCOwnCodeReaderContext interface

	J. Examples of transforming the format of data acquired by using the database adapter
	J.1 Examples
	J.2 Format transformation methods

	K. Auto mapping of data acquired by DB adapter
	L. Customizing WSDL using the external binding file
	M. Changing IBM kanji code character set
	M.1 Procedure for changing the character set of IBM kanji code

	N. Glossary

	Index

