
uCosminexus Service Platform

First Step Guide
User's Guide and Operator's Guide

3020-3-Y41-40(E)

■ Relevant program products
For the relevant program products, see the preface section in the manual uCosminexus Application Server Overview.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law, and USA export
control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
HITACHI and uCosminexus are trademarks or registered trademarks of Hitachi, Ltd.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Other company and product names mentioned in this document may be the trademarks of their respective owners.

Eclipse is an open development platform for tools integration provided by Eclipse Foundation, Inc., an open source community for
development tool providers.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning

Windows Windows Server
2008

Windows Server
2008 x86

Microsoft(R) Windows Server(R) 2008 Standard 32-bit

Microsoft(R) Windows Server(R) 2008 Enterprise 32-bit

Windows Server
2008 x64

Microsoft(R) Windows Server(R) 2008 Standard

Microsoft(R) Windows Server(R) 2008 Enterprise

Windows Server
2008 R2

Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server
2012

Windows Server
2012 Standard

Microsoft(R) Windows Server(R) 2012 Standard

Windows Server
2012 R2 Standard

Microsoft(R) Windows Server(R) 2012 R2 Standard

Windows Server
2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Datacenter

Windows Server
2012 R2 Datacenter

Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Windows XP Microsoft(R) Windows(R) XP Professional Operating System

Windows Vista Windows Vista
Business

Microsoft(R) Windows Vista(R) Business (32-bit Edition)

Windows Vista
Enterprise

Microsoft(R) Windows Vista(R) Enterprise (32-bit Edition)

Windows Vista
Ultimate

Microsoft(R) Windows Vista(R) Ultimate (32-bit Edition)

Abbreviation Full name or meaning

Windows Windows 7 Windows 7 x86 Microsoft(R) Windows(R) 7 Professional (32-bit Edition)

Microsoft(R) Windows(R) 7 Enterprise (32-bit Edition)

Microsoft(R) Windows(R) 7 Ultimate (32-bit Edition)

Windows 7 x64 Microsoft(R) Windows(R) 7 Professional (64-bit Edition)

Microsoft(R) Windows(R) 7 Enterprise (64-bit Edition)

Microsoft(R) Windows(R) 7 Ultimate (64-bit Edition)

Windows 8 Windows 8 x86 Windows(R) 8 Pro (32-bit Edition)

Windows(R) 8 Enterprise (32-bit Edition)

Windows 8 x64 Windows(R) 8 Pro (64-bit Edition)

Windows(R) 8 Enterprise (64-bit Edition)

Windows 8.1 Windows 8.1 x86 Windows(R) 8.1 Pro (32-bit Edition)

Windows(R) 8.1 Enterprise (32-bit Edition)

Windows 8.1 x64 Windows(R) 8.1 Pro (64-bit Edition)

Windows(R) 8.1 Enterprise (64-bit Edition)

Note that a 32-bit edition of Windows might be called Windows x86. Also note that a 64-bit edition of Windows might be called Windows x64.

■ Issued
Oct. 2015: 3020-3-Y41-40(E)

■ Copyright
All Rights Reserved. Copyright (C) 2015, Hitachi, Ltd.

Preface
For the basics required to understand this manual, see the preface section in the manual uCosminexus Application Server
Overview.

I

Contents

Part 1: BASIC

1 Before Using Sample Programs 1

1.1 Overview of this manual 2

1.2 What you can expect from this manual 3

2 Overview of Sample Programs 5

2.1 System configurations of sample programs 6

2.2 Components of sample programs 8

2.3 Processing details of sample programs 9

2.3.1 Calling a service component from the service requester 9

2.3.2 Calling a service component from the business process 9

2.3.3 Integrating processes 10

3 Preparing the Environment for Sample Programs 13

3.1 Overview of installation and setup 14

3.2 Installing Service Architect and preparing for setting it up 15

3.2.1 Installing Service Architect 15

3.2.2 Preparing Eclipse 16

3.3 Using Eclipse Setup to set up the Eclipse environment 17

3.4 Setting up the development environment 20

3.4.1 Setting up Eclipse 20

3.4.2 Installing WSDL4J 23

3.5 Setting up the execution environment 25

3.5.1 Building the test environment 26

3.5.2 Starting the test environment 27

3.5.3 Logging in to Management Server Remote Management 28

3.5.4 Setting up Eclipse 28

3.5.5 Importing Eclipse projects 35

3.5.6 Deploying the web project 38

3.5.7 Deploying definitions to the HCSC server 40

4 Executing Sample Programs 47

4.1 Executing sample programs 48

4.2 Operation when business processes are not applied 49

4.3 Operation when a business process is applied 51

i

4.4 Operation when processes of multiple services are integrated 53

Part 2: APPLICATION

5 Experiencing the Development of Sample Programs 55

5.1 Procedure for developing sample programs 56

5.2 Creating the HCSCTE project 58

5.3 Defining service adapters 61

5.3.1 Creating a service adapter 61

5.3.2 Validating and packaging a service adapter 64

5.3.3 Defining deployment of a service adapter 65

5.4 Defining business processes 67

5.4.1 Creating business processes 67

5.4.2 Validating and packaging a Hello business process 76

5.4.3 Defining deployment of a Hello business process 76

5.5 Developing the product arrangement system 77

5.5.1 Defining the stock management service adapter 77

5.5.2 Defining the delivery reception service adapter 79

5.5.3 Defining the product arrangement business process 81

5.5.4 Validating and packaging components 101

5.5.5 Defining deployment of components 101

5.6 Debugging the product arrangement system 102

5.7 Preparing for running the developed sample program 110

5.8 Defining data transformation by using a Java program 111

5.8.1 Overview of defining the CustomFunction sample program 112

5.8.2 Preparing the custom function 112

5.8.3 Modifying the Hello service adapter 119

5.8.4 Modifying the Hello business process 126

6 Deleting the Environment for Sample Programs 131

6.1 Deleting projects 132

6.1.1 Undeploying and deleting web projects 132

6.1.2 Deleting definitions deployed to the HCSC server 133

6.2 Stopping the test environment 135

6.3 Unsetup and uninstallation 136

6.3.1 Undoing setup of the test environment 136

6.3.2 Undoing setup of Eclipse 136

6.3.3 Uninstalling Service Architect 138

Contents

ii

Appendixes 139

A. Configuration of sample program files 140

A.1 Configuration of the HelloServiceAdapter sample program 140

A.2 Configuration of the HelloBusinessProcess sample program 141

A.3 Configuration of the HelloProductArrangement sample program 142

A.4 Configuration of the CustomFunction sample program 144

B. Collecting the Information Output When Eclipse Setup Was Executed 145

C. Glossary 146

Index 147

Contents

iii

Part 1: BASIC

1 Before Using Sample Programs
This chapter provides an overview of this manual and what you can expect from it.

1

1.1 Overview of this manual
This manual gives you experience in performing tasks from creating the service platform environment to executing
sample programs through actual operations on a machine.

Chapter 2 describes the three sample programs that are provided by this product, and the components of each sample
program.

Chapter 3 describes the procedure for creating the service platform environment and the preparation for executing the
three sample programs.

Chapter 4 describes the procedure for executing the sample programs that were prepared in Chapter 3.

Chapter 5 describes the procedure for creating programs (sample programs used in Chapters 3 and 4) in the
development environment.

Chapter 6 describes the procedure for deleting the service platform and sample program environments that were
prepared in Chapter 3.

The chapters of this manual are intended to be read sequentially. Read through the chapters in the organized order,
while operating the machine.

Tip

Conventions: Fonts and symbols
This manual uses the following conventions for screens and operations:

Text formatting Convention

Italic Italic characters indicate a placeholder for text to be provided by the user or system.

Monospace Monospace characters indicate text that the user enters without change, or text (such as messages) output by the
system.

Conventions: Types of text in syntax
The following defines the types of text in syntax:

Type Definition

Alphabetic A-Z and a-z

Alphanumeric A-Z, a-z, and 0-9

String Any string of characters

Conventions: Installation directory
The default installation directory for the service platform is C:\Program Files\Hitachi\Cosminexus. If you
do not want to use the default installation directory, replace service-platform-installation-directory with the name of the
desired directory in this manual.

Conventions: Language pack
This manual uses the Eclipse menu item names for which Babel Japanese Language Pack (version 2012-07-21)
provided by Eclipse Babel Project was applied. The menu item names might differ depending on the version of the
language pack.

1. Before Using Sample Programs

2

1.2 What you can expect from this manual
This manual gives you experience in using Eclipse to perform tasks from setting up the environment for sample
programs to developing and actually executing the sample programs.

The following explains what to expect from each chapter:

• Experiences in Chapter 3
You can install Service Architect, use Eclipse Setup to set up the Eclipse environment with HCSCTE plug-ins
installed, and use HCSC Easy Setup to set up the execution environment.

• What to expect from Chapter 4
You can use the environment that you set up in Chapter 3 to execute sample programs from a web browser.

• Experiences in Chapter 5
By performing the procedures as described, you can use the development environment for the service platform to
gain experience in performing a sequence of steps, from developing to executing three sample programs.
During development of sample programs, you can perform operations related to service adapters, business
processes, data conversion definition, and other basic functions for using the service platform. You can also
perform operations related to debugging functions provided by the service platform, by using a sample program as
an example.

• Experiences in Chapter 6
You can delete the project that was prepared in Chapter 3, stop the test environment, undo setup of Eclipse, and
uninstall Service Architect.

1. Before Using Sample Programs

3

2 Overview of Sample Programs
This chapter provides an overview of sample programs. This chapter also describes
learning points and objectives of the sample programs.

5

2.1 System configurations of sample programs
The service platform provides sample programs that execute the following three types of processing:

• Calling a service component from the service requester

• Calling a service component from the business process

• Integrating processes

The following describes the processing of each sample program:

(1) Calling a service component from the service requester
Sample program name: HelloServiceAdapter
This sample program calls a service component from the service requester via the service adapter. With this sample
program, you will learn about service adapter definitions.

The following figure shows the system configuration of HelloServiceAdapter:

Figure 2‒1: System configuration of HelloServiceAdapter

(2) Calling a service component from the business process
Sample program name: HelloBusinessProcess
This sample program calls a service component from the business process via the service adapter. With this sample
program, you will learn about business process definitions.

The following figure shows the system configuration of HelloBusinessProcess:

2. Overview of Sample Programs

6

Figure 2‒2: System configuration of HelloBusinessProcess

(3) Integrating processes
Sample program name: HelloProductArrangement
This sample program calls a service component that allocates product stock or arranges for delivery from the business
process via the service adapter. With this sample program, you will learn about definitions that are similar to the
definitions for actual jobs.

The following figure shows the system configuration of HelloProductArrangement:

Figure 2‒3: System configuration of HelloProductArrangement

2. Overview of Sample Programs

7

2.2 Components of sample programs
This section describes the roles of the sample program components shown in 2.1 System configurations of sample
programs.

• Service requester
An application program that uses a service. This component sends a service calling request (request message) to
the HCSC server. The service requester in the sample program uses SOAP Communication Infrastructure.

• Standard reception
A function (interface) for receiving a service component request message from the service requester. This
component is provided as a function of the HCSC server.

• User-defined reception
A function (interface) for receiving a service component request message from the service requester. For this
component, unlike the standard reception provided as a function of the HCSC server, the user can define any
interface.

• Business process
The processing order and processing conditions of services, and other information defined as a sequence of tasks.

• Service adapter
A function that receives a request from the service requester or business process and calls a service. This
component exists on the HCSC server. This component returns the results of calling a service to the business
process or service requester as a response message.

• Service component
A business-processing program. This component executes the processing requested by the service requester.

• HCSC server
A server function that manages the service adapter and business process to execute a service. This component
exists in the service platform.

• J2EE server
A server function required to execute a J2EE application (application consisting of JSPs, servlets, enterprise
beans, and other items).

2. Overview of Sample Programs

8

2.3 Processing details of sample programs
This section describes the processing details of the components that make up each sample program.

2.3.1 Calling a service component from the service requester
The following figure and table describe the processing details of the HelloServiceAdapter sample program:

Figure 2‒4: Processing details of the HelloServiceAdapter sample program

Table 2‒1: Processing contents of the HelloServiceAdapter sample program

Component Type Description

Service requester HTML

Servlet

• Displays the input screen, and sends a Hello service
calling request to the service adapter.

• Receives the results of calling the Hello service from
the service adapter, and displays them on the output
screen.

Hello service adapter Service adapter • Receives a request from the service requester, and
calls the Hello service.

• Returns the response of the Hello service to the
service requester.

Hello service Web Service • In response to a call from the service adapter, edits the
entered string and returns the string to the Hello
service adapter.

2.3.2 Calling a service component from the business process
The following figure and table describe the processing details of the HelloBusinessProcess sample program:

2. Overview of Sample Programs

9

Figure 2‒5: Processing details of the HelloBusinessProcess sample program

Table 2‒2: Processing contents of the HelloBusinessProcess sample program

Component Type Description

Service requester HTML

Servlet

• Displays the input screen, and calls the Hello business
process.

• Obtains (as the return value) the string edited by the
Hello business process, and displays the string on the
output screen.

Hello business process Business process • Receives a request from the service requester, and
calls the Hello service via the Hello service adapter.

• Obtains (as the return value) the results of calling the
Hello service via the service adapter.

• Edits the string (return value), and returns it to the
service requester.

Hello service adapter Service adapter • Receives a request from the Hello business process,
and calls the Hello service.

• Returns the response of the Hello service to the Hello
business process.

Hello service Web Service • In response to a call from the Hello business process,
edits the entered string and returns the string to the
Hello business process.

2.3.3 Integrating processes
The HelloProductArrangement sample program introduced here assumes that shop staff use a business system
to perform stock allocation and delivery arrangement when securing products.

The following figure and table describe the processing details of the HelloProductArrangement sample
program:

2. Overview of Sample Programs

10

Figure 2‒6: Processing details of the HelloProductArrangement sample program

Table 2‒3: Processing contents of the HelloProductArrangement sample program

Component Type Description

Service requester HTML

Servlet

JSP

• Displays the input screen, and calls the product
arrangement business process.

• Obtains (as the return value) the results of calling the
stock management service, and displays them on the
output screen.

• Obtains (as the return value) the results of calling the
delivery reception service, and displays them on the
output screen.

Product arrangement business
process

Business process • Receives a request from the service requester, and
calls the stock management service via the stock
management adapter.

• Receives a request from the service requester, and
calls the delivery reception service via the delivery
reception adapter.

• Obtains the results of calling the stock management
service via the stock management adapter, and returns
them to the service requester.

• Obtains the results of calling the delivery reception
service via the delivery reception adapter, and returns
them to the service requester.

Stock management adapter Service adapter • Receives a request from the product arrangement
business process, and calls the stock management
service.

• Returns the response of the stock management service
to the product arrangement business process.

2. Overview of Sample Programs

11

Component Type Description

Delivery reception adapter Service adapter • Receives a request from the product arrangement
business process, and calls the delivery reception
service.

• Returns the response of the delivery reception service
to the product arrangement business process.

Stock management service Web Service • In response to a call from the product arrangement
business process, allocates product stock and returns
the allocation number to the product arrangement
business process.

Delivery reception service Web Service • In response to a call from the product arrangement
business process, returns the delivery number
obtained as a result of delivery arrangement.

2. Overview of Sample Programs

12

3 Preparing the Environment for
Sample Programs
This chapter describes how to build the environment required to execute sample
programs.

13

3.1 Overview of installation and setup
The following figure shows an overview of building the environment for executing sample programs:

Figure 3‒1: Overview of building the environment for executing sample programs

1. Installing Service Architect and preparing for setting it up
Use the installer to install Service Architect. Also install Eclipse, which is required for setup. For details, see 3.3
Using Eclipse Setup to set up the Eclipse environment.

2. Using Eclipse Setup to set up the Eclipse environment
Use Eclipse Setup to set up the Eclipse-based development environment with HCSCTE plug-ins installed. For
details, see 3.2 Installing Service Architect and preparing for setting it up.

3. Setting up the development environment
Specify the settings that are necessary to develop J2EE applications by using Eclipse. For details, see 3.4 Setting
up the development environment.

4. Setting up the execution environment
Use HCSC Easy Setup of Service Architect to build the execution environment. For details, see 3.5 Setting up the
execution environment.

The following sections describe the above stages.

3. Preparing the Environment for Sample Programs

14

3.2 Installing Service Architect and preparing for setting
it up

This section describes how to install Service Architect and how to prepare Eclipse, which is required to set up Service
Architect.

3.2.1 Installing Service Architect
This subsection describes the procedure for installing Service Architect.

! Important note

Before installing Service Architect, exit all Windows applications. In addition, make sure that you are logged on as a
member of the Administrators group.

1. Set the installation CD-ROM in the CD-ROM drive.
The Hitachi Integrated Installer dialog box appears, displaying the following message: The selected
software will be installed.
If the Hitachi Integrated Installer dialog box does not appear, use Explorer to double-click HCD_INST.EXE in the
CD-ROM directory.

2. Select uCosminexus Service Architect, and then click the Install button.
The Confirm Starting of Installer - Hitachi Integrated Installer dialog box appears, displaying the following
message: "Installation will start. Do you want to continue?"

3. Click the OK button.
The Welcome to the uCosminexus Service Architect Setup Program page appears.

4. Click the Next button.
The Choose Destination Location page appears.

5. If you do not want to use the default installation directory, select the desired installation directory, and then click
the Next button.
Tip

When you specify the installation directory that is not the default one, make sure that the directory path name is 50 or
fewer alphanumeric characters.

The Select Features page appears.

6. Click the button on the left of Standard - (Recommended).
The Customer Information page appears.

3. Preparing the Environment for Sample Programs

15

7. Enter User Name and Company Name, and then click the Next button.
The Select Program Folder page appears.

8. If you do not want to use the default program folder, select the desired program folder, and then click the Next
button.
The Start the installation page appears.

9. Check the settings that you specified, and then, if no problems exist, click the Next button.
Installation starts. When installation finishes, the Completing the Setup dialog box appears. Installation might take
a few minutes.

10. Click the Finish button.
The dialog box asking you whether to immediately restart the OS appears.

11. Click the Yes button.
The OS restarts, and installation of Service Architect finishes.

Now you have installed Service Architect.

3.2.2 Preparing Eclipse
Prepare the environment for using Eclipse. The following shows the procedure for preparing the Eclipse archive file:

1. Obtain the Eclipse archive file.
Obtain the Eclipse archive file shown below. Although it comes with Service Architect, you can also download it
from the Eclipse.org download site.

For Windows x86 (including the WOW64 environment):
Eclipse IDE for Java EE Developers 4.2.1 (eclipse-jee-juno-SR1-win32.zip)

For Windows x64:
Eclipse IDE for Java EE Developers 4.2.1 (eclipse-jee-juno-SR1-win32-x86_64.zip)

2. Store the Eclipse archive file.
Store the obtained Eclipse archive file in the following directory:
service-platform-installation-directory\ADP\archives

Now you are ready to install Eclipse.

Reference note
The Eclipse language pack comes with Service Architect. If you store the language pack in the directory that contains the
Eclipse archive file, you can localize Eclipse into Japanese.

3. Preparing the Environment for Sample Programs

16

3.3 Using Eclipse Setup to set up the Eclipse
environment

Use Eclipse Setup to build the Eclipse environment.

The following shows the procedure for building the Eclipse environment:

1. Start the machine as a user with administrator privileges. (In Windows Vista or later, start the machine in Admin
mode.)

2. From the Windows Start menu, select Programs, Cosminexus, First Setup, and then Setup Eclipse.
The dialog box asking you whether the Eclipse archive file was prepared appears.

3. In the dialog box that appears, click the OK button.
The Eclipse Installation page appears.

4. On the Eclipse Installation page, specify the Eclipse installation directory and the directory that contains the
Eclipse archive file, and then click the Next button.
The Comfirm Setup Details page appears.

3. Preparing the Environment for Sample Programs

17

5. On the Comfirm Setup Details page, confirm that the displayed information is correct, and then click the
Execute button.
The Progress Status page appears and setup starts. When setup finishes, the Setup Results page appears.
Eclipse setup might take a few minutes.

6. On the Setup Results page, click the Finish button.
The Setup - Eclipse Setup dialog box closes and Eclipse setup finishes.
A shortcut to Eclipse is created on the desktop.

Now you have built the Eclipse environment.

Confirm that Eclipse was set up correctly.

1. Start Eclipse.

2. From the Eclipse menu, select Help, About Eclipse, and then Installation Details to display the Eclipse
Installation Details dialog box.
Confirm that the version number displayed for HCSC-Definer is the version number of the Eclipse instance that
you installed.

3. Preparing the Environment for Sample Programs

18

Reference note

How to check the setup log
The events that occurred when Eclipse Setup is executed are recorded in the Eclipse setup log. For details about
how to check the setup log, see Appendix B. Collecting the Information Output When Eclipse Setup Was Executed.

3. Preparing the Environment for Sample Programs

19

3.4 Setting up the development environment
This section describes the setup that is required to develop J2EE applications. The following figure shows an overview
of setup:

Figure 3‒2: Overview of setup for the development environment

The following is a brief description of the stages in the above figure:

1. Setting up Eclipse
In this stage, you set the JDK version to be used in Eclipse and specify the settings for outputting the information
about local variables. For details, see 3.4.1 Setting up Eclipse.

2. Installing WSDL4J
In this stage, you install WSDL4J. WSDL is required to parse and generate documents. For details, see 3.4.2
Installing WSDL4J.

The following subsections describe the stages of development environment setup in the same order as in the above
figure.

3.4.1 Setting up Eclipse
This subsection shows the procedure for checking the JDK version set in Eclipse. This subsection also shows the
procedure for specifying the settings for outputting information about the local variables that are in the J2EE
application.

(1) Checking the version of JDK
Check whether the JDK version to be used for development in the Eclipse environment is a JDK version provided by
Service Architect. The following shows the check procedure:

1. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

2. In the left pane, select Java, and then Installed JREs.
The Installed JREs page is displayed in the right pane.

3. Preparing the Environment for Sample Programs

20

3. Check whether a JDK version provided by Service Architect is displayed in the Installed JREs list.
Check whether the following path is displayed in the Location column:

service-platform-installation-directory\jdk

If the path is not displayed:
Click the Add button. The JRE Type page appears.

Select Standard VM, and then click the Next button. The JRE Definition page appears.

3. Preparing the Environment for Sample Programs

21

Enter service-platform-installation-directory\jdk in JRE home, enter jdk in JRE name, and then click the
Finish button. After you add the entry, select the check box in the Name column.

If the path is displayed:
Check whether the check box in the Name column for the appropriate version is selected. If that check box is
not selected, select it.
Note that if two or more JDK versions have been installed, the check box for the appropriate version (service-
platform-installation-directory\jdk) might not be selected. If that check box is not selected, select it.

4. Click the OK button.
The settings are saved.

(2) Specifying the settings for outputting the information about local variables
You can specify the Eclipse compiler settings so that the information about local variables in the J2EE application is
output as a stack trace when an exception occurs.

The following shows the procedure for specifying the compiler settings to output the information about local variables
as a stack trace:

1. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

2. In the left pane, select Java, and then Compiler.
The Compiler page is displayed.

3. Preparing the Environment for Sample Programs

22

3. Specify the following settings:

Item name Value to be specified

JDK
Compliance

Compiler compliance
level

Select 1.7.

Classfile Generation Select Add variable attributes to generated class files (used by the
debugger).

For other items, select the necessary options according to the information
that you want to output.

Optionally, specify the following settings:

Item name Value to be specified

JDK
Compliance

Use default compliance
settings

Specify the settings that you want to use for the compiler.

• If this item is selected:
The settings that are appropriate for the level specified by Compiler
compliance level are applied.

• If this item is not selected:
Manually specify the following options:
Generated .class file compatibility
Source compatibility
Disallow identifiers called 'assert'
Disallow identifiers called 'enum'

4. Click the Apply or OK button.
The settings are saved.

3.4.2 Installing WSDL4J
Install WSDL4J, which is required to parse and generate WSDL documents. WSDL4J is supplied with a CD-ROM
different from the Service Architect CD-ROM.

1. Create a work directory that will be temporarily used to install WSDL4J.

3. Preparing the Environment for Sample Programs

23

In this example, create C:\WSDL4J_work.

2. Copy the wsdl4j-bin-1.5.1.zip file from the WSDL4J CD-ROM to the WSDL4J work directory that you
created in step 1.
The wsdl4j-bin-1.5.1.zip file is stored in the following directory:
CD-ROM-drive:\WSDL4J

3. Decompress the wsdl4j-bin-1.5.1.zip file that was copied to the WSDL4J work directory.

4. Copy wsdl4j.jar (JAR library file), license.html (license file), and Readme, which were extracted from
the compressed file.

Files to be copied:
WSDL4J-work-directory\wsdl4j-bin-1.5.1\wsdl4j-1_5_1\lib\wsdl4j.jar
WSDL4J-work-directory\wsdl4j-bin-1.5.1\wsdl4j-1_5_1\license.html
WSDL4J-work-directory\wsdl4j-bin-1.5.1\wsdl4j-1_5_1\Readme

Copy-destination directory:
service-platform-installation-directory\c4web\lib

5. Delete the WSDL4J work directory that you created in step 1.

3. Preparing the Environment for Sample Programs

24

3.5 Setting up the execution environment
This section describes the procedure for using HCSC Easy Setup of Service Architect to set up the execution
environment (test environment).

The following figure shows an overview of setup:

Figure 3‒3: Overview of setup for the execution environment

The following is a brief description of the stages in the above figure:

1. Building the test environment
In this stage, you use HCSC Easy Setup to build the test environment. For details, see 3.5.1 Building the test
environment.

2. Starting the test environment
In this stage, you start the test environment that you built. For details, see 3.5.2 Starting the test environment.

3. Logging in to Management Server Remote Management
In this stage, you log in from Eclipse to Management Server Remote Management to perform the task in step 4.
For details, see 3.5.3 Logging in to Management Server Remote Management.

4. Setting up Eclipse
In this stage, you set library paths, create a server runtime, and select the J2EE server. For details, see 3.5.4 Setting
up Eclipse.

5. Importing an Eclipse project
In this stage, you import the Eclipse projects for the sample programs. For details, see 3.5.5 Importing Eclipse
projects.

6. Deploying the web project
In this stage, you deploy the web project that is appropriate for the sample program you will use. For details, see
3.5.6 Deploying the web project.

7. Deploying definitions to the HCSC server

3. Preparing the Environment for Sample Programs

25

In this stage, you deploy definitions (that are appropriate for the sample program you will use) to the HCSC
server. The definitions to be deployed differ depending on the sample program. For details, see 3.5.7 Deploying
definitions to the HCSC server.

The following subsections describe the stages of execution environment setup in the same order as in the above figure.

3.5.1 Building the test environment
To build the test environment, use HCSC Easy Setup. The following shows how to build the test environment:

1. Make sure that Eclipse is not running.

2. From the Start menu, select Programs, Cosminexus#, First Setup, and then Setup Testing Environment.
The Main page of the HCSC Easy Setup window opens.
Select the DB/RM-Use model radio button.

#
This program folder name might have been changed. If it has been changed, select the changed program folder
name.

3. Click the Server Name tab.
The Server Name page appears.

4. Select the V7 compatible name radio button.
The names of the logical server and HCSC server are changed as follows:

• V7 compatible name radio button

• Logical J2EE server Name = MyServer

• Logical PRF Name = MyPRF

• Cluster Name = MyUnit

• HCSC-Server Name = MyCSC

• Manager Name = MyMNG

3. Preparing the Environment for Sample Programs

26

5. Click the Setup button.
Setup of the test environment starts. The progress of setup is displayed in the Console of the HCSC Easy Setup
window. Setup of the test environment normally terminates when the Console displays a message that indicates
the end of setup by HCSC Easy Setup.

Note:
If an error is displayed in the Console and setup of the test environment terminates abnormally, you must
perform re-setup. The re-setup procedure differs depending on whether the Setup button in the HCSC Easy
Setup window was enabled or disabled when setup terminated abnormally.
If the Setup button was enabled:
Click the Setup button to perform setup again.
If the Setup button was disabled:
Click the Unsetup button to undo setup. After that, perform setup again.

6. From the menu of the HCSC Easy Setup window, select Operation and then End to close the window.

3.5.2 Starting the test environment
The following shows how to start the test environment that you built:

1. From the Start menu, select Programs, Cosminexus#, and then Start Database to start the embedded database of
the test environment.
When you start the database, the following message might be output: KFPS01853-W Hostname=host-name,
unable to execute pdstart command, unit state not OFFLINE. This message is output
because the embedded database is already started when the sample program is executed again on the same
machine. You do not need to take any actions when this message is output.

2. From the Start menu, select Programs, Cosminexus#, and then Start Test Server to start Performance Tracer,
the J2EE server, and the HCSC server (including the standard reception and user-defined reception) in the test
environment.

#
This program folder name might have been changed. If it has been changed, select the changed program folder
name.

3. Preparing the Environment for Sample Programs

27

To terminate using Service Architect, stop the active test environment, and then exit Eclipse. For details about how to
stop the test environment, 6.2 Stopping the test environment.

3.5.3 Logging in to Management Server Remote Management
The following shows the procedure for logging in to Management Server Remote Management:

1. Start Eclipse.

2. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

3. In the left-pane tree view, select Server, and then Remote Management.
The Remote Management page appears.

4. Select the host of the Management Server to be connected (localhost), and then click the Log in button.
The login window appears.

5. Enter admin in Administrator ID and Password, and then click the OK button.
You are connected to Management Server Remote Management.

6. Click the OK button.

3.5.4 Setting up Eclipse
In this stage, you set library paths, create a server runtime, and select the J2EE server.

(1) Setting library paths
Set the following service platform library paths:

C:\Program Files\Hitachi\Cosminexus\CC\client\lib\j2ee-javax.jar
C:\Program Files\Hitachi\Cosminexus\jaxp\lib\csmjaxp.jar
C:\Program Files\Hitachi\Cosminexus\c4web\lib\hitjaxrpc.jar
C:\Program Files\Hitachi\Cosminexus\c4web\lib\hitc4web.jar

The service platform library path C:\Program Files\Hitachi\Cosminexus is the default installation
directory of the service platform. If a directory that is not the default installation directory is specified during

3. Preparing the Environment for Sample Programs

28

installation of the service platform, you must replace the default installation directory with the directory specified
during installation.

The following shows the procedure for setting the library paths:

1. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

2. In the left-pane tree view, select Java, Build Path, and then User Libraries.
The User Libraries page appears in the right pane.

3. Click the New button.
The New User Library dialog box opens.

3. Preparing the Environment for Sample Programs

29

Enter CosminexusSOAP in User library name, and then click the OK button.

4. On the User Libraries page, select CosminexusSOAP, and then click the Add External JARs button.
The JAR Selection dialog box opens.

5. Select service-platform-installation-directory\CC\client\lib\j2ee-javax.jar, and then click the Open
button.
The j2ee-javax.jar library is added.

6. Using the same procedure as above, add the following JAR files by clicking the Add External JARs button:

3. Preparing the Environment for Sample Programs

30

• service-platform-installation-directory\jaxp\lib\csmjaxp.jar
• service-platform-installation-directory\c4web\lib\hitjaxrpc.jar
• service-platform-installation-directory\c4web\lib\hitc4web.jar

7. Click the OK button.

8. Restart Eclipse.

(2) Creating a server runtime
Create a server runtime before you can operate the J2EE server. A server runtime is a collection of environment
settings, such as the J2EE server installation destination. The following shows the creation procedure:

1. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

2. From the left-pane tree view, select Server, and then Runtime Environments.
The Server Runtime Environments page appears in the right pane.

3. Preparing the Environment for Sample Programs

31

3. Click the Add button.
The New Server Runtime Environment dialog box opens.

4. In the tree view, select Cosminexus, and then Cosminexus J2EE.

5. Click the Finish button.

3. Preparing the Environment for Sample Programs

32

6. Confirm that Cosminexus J2EE was added to the Server runtime environments list, and then click the OK
button.
The settings are saved.

(3) Selecting the J2EE server
Select the J2EE server that you will operate from Eclipse. For the J2EE server selected here, you perform start and
stop operations, or you deploy J2EE applications from Eclipse.

The following shows the setup procedure:

1. From the Eclipse menu, select File, New, and then Other.
The New dialog box appears.

2. Select Server, and then Server, and then click the Next button.
The New Server dialog box opens, displaying the Define a New Server page.

3. Specify the following settings:

3. Preparing the Environment for Sample Programs

33

Item name Value to be specified

Select the server type Under Cosminexus, select J2EE server.

Server name You do not need to specify this item because the server name on the J2EE Server
page is used.

Server runtime environment Specify the server runtime Cosminexus J2EE.

4. Click the Next button.
The J2EE Server page appears.

5. In the Remote Management Function area, from the Connection Host drop-down list, select the connection-
destination host. If you are not logged in to the connection-destination host, click the Log in button.
Enter admin in Administrator ID and Password, and then click the OK button.
You are connected to Management Server Remote Management. The connection-destination J2EE server appears.

6. Select the check box of the J2EE server to be used (MyServer).

7. Click the Finish button.
The settings are saved.

3. Preparing the Environment for Sample Programs

34

3.5.5 Importing Eclipse projects
A separate Eclipse project is provided for each sample program. Import the Eclipse projects for the sample programs.
This subsection describes the import procedure in the case where you will use the HelloServiceAdapter sample
program.

Reference note
If the imported project includes an XML file for which no applicable XML schema is registered in Eclipse, a warning is
generated. However, you can use the XML file without any problems.

1. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box opens.

2. Select Java EE (default), and then click the OK button.
The Java EE perspective opens.

3. Preparing the Environment for Sample Programs

35

3. From the menu, select File, and then Import.
The Select page appears.

4. In the tree view, select General, and then Existing Projects into Workspace.

5. Click the Next button.
The Import Projects page appears.

6. Select the Select root directory radio button, and then click the Browse button.
The dialog box for selecting a directory opens.

7. Select the directory that contains the target sample program, and then click the OK button. In this example, the
directory you select is as follows: service-platform-installation-directory\CSCTE\Samples
\HelloServiceAdapter
The Import Projects page appears again. Make sure that the check boxes of all projects are selected.
The locations of other sample programs are as follows:

3. Preparing the Environment for Sample Programs

36

HelloBusinessProcess sample program:
service-platform-installation-directory\CSCTE\Samples\HelloBusinessProcess

HelloProductArrangement sample program:
service-platform-installation-directory\CSCTE\Samples\ProductStock

8. If the Copy projects into workspace check box is not selected, select it.
If you do not select this check box, the sample programs might be deleted. Make sure that this check box is
selected.

9. Click the Finish button.
The selected projects are imported into the perspective.

3. Preparing the Environment for Sample Programs

37

3.5.6 Deploying the web project
The web project needs to be deployed for each sample program. This subsection describes the web project deployment
procedure in the case where you will use the HelloServiceAdapter sample program.

1. From the menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box opens.

2. Select Java EE (default), and then click the OK button.
The Java EE perspective opens.

3. In the Servers view, right-click MyServer at localhost, and then select Start.
At this time, you might see an error dialog box that reports the server MyServer is externally running and asks
you to stop the server. In this case, from the Start menu, select Programs, Cosminexus#, and then Stop Test
Server to stop Performance Tracer, the J2EE server, and the HCSC server (including the standard reception and
user-defined reception) in the test environment. Then, in the Servers view, right-click MyServer at localhost, and
then select Start again.

#
This program folder name might have been changed. If it has been changed, select the changed program folder
name.

The login window appears.

4. Enter admin in both Administrator ID and Password, and then click the OK button.
A message indicating that processing is in progress appears, and then the server starts.

5. In the Servers view, right-click MyServer at localhost, and then select Add and Remove.
The Add and Remove dialog box appears.

3. Preparing the Environment for Sample Programs

38

6. In the Available list box, select HelloClient and HelloService, and then click the Add button.

HelloClient and HelloService moves from the Available list box to the Configured list box.

7. Click the Finish button.
After processing terminates, the Java EE perspective appears again. Confirm that the HelloClient and
HelloService projects are displayed under MyServer at localhost in the Servers view.

3. Preparing the Environment for Sample Programs

39

8. In the Servers view, right-click MyServer at localhost, and then select Stop.

9. From the Start menu, select Programs, Cosminexus#, and then Start Test Server to start Performance Tracer,
the J2EE server, and the HCSC server (including standard reception and user-defined reception) in the test
environment.

#
This program folder name might have been changed. If it has been changed, select the changed program folder
name.

3.5.7 Deploying definitions to the HCSC server
Deploy definitions to the HCSC server for each sample program. The definitions to be deployed differ depending on
the sample program. This subsection describes the deployment procedure in the case where you will use the
HelloServiceAdapter sample program.

(1) Creating HCSCTE projects
Before deploying definitions, you must create HCSCTE projects.

! Important note

An HCSCTE project is required for each program. When you develop multiple programs, you must use a separate
workspace for the HCSCTE project of each program. If you create multiple HCSCTE projects in the same workspace, the
programs will not operate correctly.

The following shows the procedure for creating an HCSCTE project:

1. From the menu, select File, New, and then Project.
The New Project dialog box appears.

2. Select HCSCTE Project, and then click the Next button.
The HCSCTE Project dialog box appears, displaying the page for creating a new HCSCTE project.

3. Preparing the Environment for Sample Programs

40

3. Specify the following items, and then click the Next button:

Project name
Specify any name. In this example, specify HCSCTE.

Use default location
Select the Use default location check box.

The HCSCTE Project dialog box appears, displaying the page for setting the HCSCTE repository.

4. Specify the following items, and then click the Finish button:

Repository directory
Specify the directory in which to store repository information. In this example, specify C:\work
\HelloServiceAdapter\repository. Note the following points when you specify the repository
directory:
- Do not specify the same path for the repository directory path and project path.
- Use an absolute path to specify the path.
- The specified absolute path is normalized, and then the length is verified with the normalized path.

Login user name
Specify the user name that will be used for logging in to the repository. The user name can contain 1 to 16
alphanumeric characters.

If a dialog box asking you whether to open the associated perspective appears, click the Yes button.
An HCSCTE project is created, and the perspective for the project opens.

3. Preparing the Environment for Sample Programs

41

(2) Exporting the system configuration definition from the operation environment
To import the system configuration definition from the execution environment to the development environment,
export the repository information of the operation environment to a file compressed in ZIP format.

1. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box opens.

2. Select HCSCTE, and then click the OK button.
The HCSCTE perspective opens.

3. From the Eclipse menu, select Run, External Tools, and then External Tools Configurations.
The External Tools Configurations dialog box appears.

4. In the left pane, right-click Program, and then select New.
The Create, manage, and run configurations page appears.

3. Preparing the Environment for Sample Programs

42

Select the Main tab, and then enter the following information:

Item name Value to be set

Name Specify any name.

In this example, enter Get System Configuration Definition.

Location Enter the following file:${env_var:COSMINEXUS_HOME}\csc\bin\cscrepctl.bat
Alternatively, click the Browse File System button, and select the following file:

service-platform-installation-directory\csc\bin\cscrepctl.bat

Working
Directory

Specify a directory to which the file specified with the argument entered next will be output.

Arguments -export
any-output-file-name.zip
In this example, enter systemdef.zip.

5. Click the Run button.
The command is registered and executed. As a result, the repository information of the operation environment is
exported as a ZIP file to the specified output-destination directory.

(3) Importing the system configuration definition into the development environment
From the export file that contains the operation environment's repository information, import only the system
configuration definition to the development environment.

1. From the Eclipse menu, select HCSC-Definer, Repository management, and then Import repository.
The dialog box confirming that the repository will be overwritten appears.

2. Click the Yes button.
The Import Repository dialog box for selecting the ZIP file that contains repository information appears.
Specify the ZIP file named systemdef.zip that was exported from the operation environment.

3. Click the Open button.
The Import Repository dialog box for selecting the definition information to be imported appears.

3. Preparing the Environment for Sample Programs

43

4. Select the System Configurations check box, and then click the OK button.
When the system configuration definition of the execution environment is imported, a dialog box reporting that
processing was normally completed appears.

5. Click the OK button.

(4) Importing a sample program
Import the repository information for the sample program.

1. Select HCSC-Definer, Repository management, and then Import repository.
The dialog box confirming that the repository will be overwritten appears.

2. Click the Yes button.
The Import Repository dialog box for selecting the ZIP file that contains repository information appears. Select
the following ZIP file:
service-platform-installation-directory\CSCTE\Samples\HelloServiceAdapter\Repository
\HelloServiceAdapter.zip
The repository information of other sample programs is stored in the following files:

HelloBusinessProcess sample program:
service-platform-installation-directory\CSCTE\Samples\HelloBusinessProcess\Repository
\HelloBusinessProcess.zip

HelloProductArrangement sample program:
service-platform-installation-directory\CSCTE\Samples\ProductStock\Repository
\ProductStock.zip

3. Click the Open button.
The Import Repository dialog box for selecting the definition information to be imported appears. Select only the
Services Definitions check box, and then click the OK button.

(5) Deploying HCSC components
Deploy and start HCSC components.

1. In the tree view, right-click Service Definition List, and then select Deploy all services to server and start.

3. Preparing the Environment for Sample Programs

44

If you are not logged in, the account authentication window appears. Perform step 2.

2. Enter admin in both User ID and Password, and then click the OK button.
A message indicating that processing is in progress appears, and then a message reporting the results appears.

3. Click the OK button.
You have now completed deployment.

(6) Confirming HelloServiceAdapter and starting the standard reception
Confirm that HelloServiceAdapter is running, and then start the standard reception.

1. From the menu, select Window, Show View, and then Other.
The Show View dialog box appears.

2. In the Show View dialog box, under HCSC-Manager, select HCSC-Manager View, and then click the OK
button.
The HCSC-Manager view appears.

3. In the HCSC-Manager view, right-click HCSC-Manager(Logout), and then select Login.
The login window appears.

4. Enter admin in both Administrator ID and Password, and then click the OK button.
Login to HCSC - Manager finishes.

5. Confirm that HelloServiceAdapter is running.
In the HCSC-Manager view, expand HCSC-Manager(Login), HCSC-Domain, MyUnit(LBCluster), and then
MyCSC[localhost:28099]. Then, double-click HelloServiceAdapter to display the Information page. Click the
Operations tab to open the Operations page. Confirm that Status is active.
For the other sample programs, confirm that the following services are running:

HelloBusinessProcess sample program:
Confirm that HelloServiceAdapter and HelloBusinessProcess are running.

HelloProductArrangement sample program:
Confirm that ProductStock, DeliveryReceipt, and InventoryManagement are running.

6. Confirm that the standard reception has started.
In the HCSC-Manager view, expand HCSC-Manager(Login), HCSC-Domain, and then MyUnit(LBCluster).
Then, double-click MyCSC[localhost:28099] to display the Operations page for MyCSC. Click the Start button
to change the status of Standard reception to active. When the status of Standard reception becomes
active, the Start button is disabled.

3. Preparing the Environment for Sample Programs

45

7. In the HCSC-Manager view, right-click HCSC-Manager(Login), and then select Logout.
A message confirming that you will log out from HCSC-Manager appears.

8. Click the OK button.
Logout from HCSC - Manager finishes, and HCSC-Manager(Logout) is displayed.

You are now ready to run sample programs.

3. Preparing the Environment for Sample Programs

46

4 Executing Sample Programs
This chapter describes how to execute sample programs.

47

4.1 Executing sample programs
After preparing the environment for sample programs, execute sample programs.

! Important note

For sample programs, separate projects are provided for each type of processing. Therefore, to execute a sample program
after executing another program, use the following procedure:

1. Delete the projects for the previously executed sample program.
For details about how to delete projects, see 6.1 Deleting projects.

2. Import Eclipse projects for the sample program to be executed next.
For details about how to import Eclipse projects, see 3.5.5 Importing Eclipse projects.

3. Deploy web projects for the sample program to be executed next.
For details about how to deploy web projects, see 3.5.6 Deploying the web project.

4. Deploy definitions of the sample program to be executed next to the HCSC server.
For details about how to deploy definitions to the HCSC server, see the procedure in 3.5.7(4) Importing a sample
program and later.

5. Execute a sample program.

See one of the following sections based on the sample program you want to execute:

To execute the HelloServiceAdapter sample program:
See 4.2 Operation when business processes are not applied.

To execute the HelloBusinessProcess sample program:
See 4.3 Operation when a business process is applied.

To execute the HelloProductArrangement sample program:
See 4.4 Operation when processes of multiple services are integrated.

! Important note

To execute a sample program, the test environment must be started. For details about how to start the test environment, see
3.5.2 Starting the test environment. If you do not execute a sample program, stop the test environment. For details about
how to stop the test environment, see 6.2 Stopping the test environment.

4. Executing Sample Programs

48

4.2 Operation when business processes are not applied
Execute the HelloServiceAdapter sample program by performing the following procedure.

1. Enter the following URL into the browser:
http://localhost/HelloClientWeb/index.html
The HelloServiceAdapter sample program is started.

2. Enter a character string for Your Name?

3. Click the Submit button.
The following is displayed:

Normal response
The following is displayed on the screen:

Hello entered-character-string from Web Service

: Space

If an error occurred
Details about the error are displayed.

4. Executing Sample Programs

49

4. Executing Sample Programs

50

4.3 Operation when a business process is applied
Execute the HelloBusinessProcess sample program by performing the following procedure.

1. Enter the following URL into the browser:
http://localhost/HelloClientWeb/index.html
The HelloBusinessProcess sample program is started.

2. Enter a character string for Your Name?.

3. Click the Submit button.
The following is displayed:

Normal response
The following is displayed on the screen:

Hello entered-character-string from Web Service and Business Process

: Space

If an error occurred
Details about the error are displayed.

4. Executing Sample Programs

51

4. Executing Sample Programs

52

4.4 Operation when processes of multiple services are
integrated

Execute the product arrangement sample program by performing the following procedure.

1. Enter the following URL into the browser:
http://localhost/ArrangementClientWeb/index.html
The HelloProductArrangement sample program is started.

2. Select the product name and quantity.

3. Click the Arrangement button.
The following is displayed:

Normal response (arrangement completed)
A message indicating that arrangement is completed appears. The product name, quantity, and delivery
number are also displayed.

Normal response (out of stock)
A message indicating that there is no stock appears. The product name and quantity are also displayed.

4. Executing Sample Programs

53

If an error occurred
Details about the error are displayed.

How to reset the quantity of product stock to the initial value
For the HelloProductArrangement sample program, the total quantity of stock for each product is 10. If
arrangements are completed, the quantity is reduced for the number of products arranged. If there is no stock,
restart the server or redeploy the J2EE project. The quantity of stock returns to 10. The following describes how to
restart the server and how to redeploy the J2EE project.

How to restart the server

1. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box appears.

2. Select Java EE (default), and then click OK.
The Java EE perspective appears.

3. In the Servers view, right-click MyServer at localhost, and then select Restart.

How to redeploy the J2EE project

1. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box appears.

2. Select Java EE (default), and then click OK.
The Java EE perspective appears.

3. In the Servers view, right-click MyServer at localhost, and then select Add and Remove.
The Add and Remove dialog box appears.
Undeploy the J2EE project, and then deploy it again. For details about undeployment, see 6.1.1(1)
Undeploying web projects. For details about deployment, see 3.5.6 Deploying the web project.

4. Executing Sample Programs

54

Part 2: APPLICATION

5 Experiencing the Development of
Sample Programs
This chapter describes how to define service adapters and business processes by using
provided sample programs.

55

5.1 Procedure for developing sample programs
The following figure shows the procedure for developing sample programs.

Figure 5‒1: Procedure for developing sample programs

1. Building the test environment
In this section, use HCSC Easy Setup to build the test environment. If the test environment has already been built,
undo setup from the HCSC Easy Setup window, and then rebuild the test environment. For details, see 3.5.1
Building the test environment.

2. Starting the test environment
In this section, start the test environment that you built. For details, see 3.5.2 Starting the test environment.

3. Logging in to Management Server Remote Management

5. Experiencing the Development of Sample Programs

56

In this section, log in from Eclipse to Management Server Remote Management. For details, see 3.5.3 Logging in
to Management Server Remote Management.

4. Setting up Eclipse
In this section, set up Eclipse for each sample program. For details, see 3.5.4 Setting up Eclipse.

5. Creating the HCSCTE project
In this section, create a project and set properties before defining service adapters and business processes. For
details, see 5.2 Creating the HCSCTE project.

6. Exporting and importing the system configuration definition
In this section, export the system configuration definition of the execution environment, and then import the
system configuration definition into the development environment. For details, see 3.5.7(2) Exporting the system
configuration definition from the operation environment and 3.5.7(3) Importing the system configuration
definition into the development environment.

7. Creating HCSC components
In this section, create HCSC components, such as a service adapter that calls a service component and a business
process that calls multiple service components. In addition, debug the created HCSC components in the test
environment. For details, see the following sections:

• 5.3 Defining service adapters

• 5.4 Defining business processes

• 5.5 Developing the product arrangement system

• 5.6 Debugging the product arrangement system

8. Preparing for running the developed sample program
In this section, validate operation of the developed sample program by using the sample service requester and
service component provided by Service Architect. For details, see 5.7 Preparing for running the developed sample
program.

The following sections describe the above stages.

This chapter also describes how to develop a sample program that defines data transformation using a Java program.
For details, see 5.8 Defining data transformation by using a Java program.

5. Experiencing the Development of Sample Programs

57

5.2 Creating the HCSCTE project
In this section, create an HCSC project before defining service adapters and business processes.

! Important note

An HCSCTE project is required for each program. When you develop multiple programs, you must use a separate
workspace for the HCSCTE project of each program. If you create multiple HCSCTE projects in the same workspace, the
programs will not operate correctly.

The following is the procedure for creating an HCSCTE project.

1. Start Eclipse.

2. From the menu, select File, New, and then Project.
The New Project dialog box appears.

3. Select HCSCTE Project, and then click the Next button.
The HCSCTE Project dialog box appears, and then the page for creating a new HCSCTE project appears.

4. Specify the following items, and then click the Next button.

Project name
Specify any name. In this example, specify HCSCTE.

Use default location
Select the Use default location check box.

The HCSCTE Project dialog box appears, and then the page for setting the HCSCTE repository appears.

5. Experiencing the Development of Sample Programs

58

5. Specify the following items, and then click the Finish button.

Repository directory
Specify the directory in which to store repository information. Note the following points when you specify the
repository directory:

 Do not specify the same path for the repository directory path and project path.

 Use an absolute path to specify the path.

 The specified absolute path is normalized, and then the length is verified with the normalized path.

Login user name
Specify the user name that will be used for logging in to the repository. The user name can consist of 1 to 16
alphanumeric characters.

If a dialog box asking you whether to switch the perspective appears, click the Yes button.
An HCSCTE project is created, and then the perspective for the project opens.

5. Experiencing the Development of Sample Programs

59

After you have completed the above procedure, export and import the system configuration definition. For details
about the procedure, see 3.5.7(2) Exporting the system configuration definition from the operation environment and
3.5.7(3) Importing the system configuration definition into the development environment.

5. Experiencing the Development of Sample Programs

60

5.3 Defining service adapters
In this section, define a service adapter by using the HelloServiceAdapter sample program, which calls a
service adapter from the service requester.

You need to define a service adapter according to the service component to be called. The following table shows the
values that you need to set when using the HelloServiceAdapter sample program to define a service adapter.

Table 5‒1: Values that need to be set when using the HelloServiceAdapter sample program to define a
service adapter

Item Value to be set Description

Service component
type

Web Service Specify the type of service adapter that is set according to the type of
service component to be called. Because the service component type
of this sample program is a Web Service, specify Web Service.

Service name HelloServiceAdapte
r

Specify the name of the service adapter to be defined.

WSDL file HelloService.wsdl Specify the WSDL file to be used.

For the Hello service adapter, use HelloService.wsdl (WSDL
for the Hello service).

Port specification Hello Specify the port of the Hello service adapter.

Service ID HelAdp Specify the ID of the Hello service adapter.

Client definition file c4webcl.properties Specify the client definition file.

The client definition file controls the client-side behavior. The name
of this file is fixed to c4webcl.properties.

The client definition file of this sample program contains the
following entry:

c4web.logger.log_file_prefix=HelloService

This entry sets HelloService as the prefix of the trace file and
application log.

Note:
For details about the location of each file, see A.1 Configuration of the HelloServiceAdapter sample program.

5.3.1 Creating a service adapter
The following is the procedure for creating the Hello service adapter.

1. Start Eclipse.

2. In the tree view, select and right-click Service Definition List, and then select Add Service Adapter.

5. Experiencing the Development of Sample Programs

61

The dialog box for setting the type of service to be used from the service adapter that you are creating appears.

3. Select Web Service as the type of service component, and then click the Next button.

The dialog box for entering the information that is necessary for adding a SOAP adapter appears.

4. Enter HelloServiceAdapter as the service name.

5. Click the ... button.
The Open dialog box appears.

6. Select HelloService.wsdl, and then click the Open button.
HelloService.wsdl is located in the following directory:
service-platform-installation-directory\CSCTE\Samples\HelloServiceAdapter\Service\WSDL

7. Click the Next button.

5. Experiencing the Development of Sample Programs

62

The dialog box for specifying the port appears.

8. Select Hello from the Specification of Port drop-down list, and then click the Finish button.

The service adapter for calling the Hello service (HelloServiceAdapter) is created, and then the service
adapter definition (standard) window appears.

9. Change the service ID to HelAdp.

5. Experiencing the Development of Sample Programs

63

In the service adapter definition (standard) window, the information that has been read from the specified WSDL,
such as the service type and access-target address, is displayed. In addition, the message format that has been
automatically generated from WSDL is displayed (in Message format) in the Request message and Response
message areas. The contents of the message format can be checked by clicking the Display button.

10. Click the Service adapter definition (details) tab at the bottom of the window.
The service adapter definition (details) window appears. In the service adapter definition (details) window, specify
the client definition file.

11. In the service adapter definition (details) window, click the Browse button.

12. Specify c4webcl.properties as the client definition file.
For the HelloServiceAdapter sample program, the location of the above file is as follows:
service-platform-installation-directory\CSCTE\Samples\HelloServiceAdapter\Service
\HelloService\c4webcl.properties

13. From the menu, select File, and then Save.
The service adapter definition is now completed.

5.3.2 Validating and packaging a service adapter
When you have created the Hello service adapter, validate that it is defined correctly, and then package it. The
following is the procedure for validating and packaging a service adapter.

5. Experiencing the Development of Sample Programs

64

1. In the tree view, select and right-click HelloServiceAdapter, and then select Verify.

The validation results are displayed in the Console view. If an error occurs, correct it according to the message.

2. In the tree view, select and right-click HelloServiceAdapter, and then select Packaging.

Packaging starts. When processing finishes, a message reporting the processing results appears.

3. Perform either of the following operations:
- If the packaging is successful, click the OK button.
- If the packaging fails, take action according to the message, and then re-execute packaging.

5.3.3 Defining deployment of a service adapter
When you have packaged a service adapter, define its deployment. The following shows the deployment definition
procedure.

1. In the tree view, right-click Service Definition List, and then select Deploy all services to server and start.

5. Experiencing the Development of Sample Programs

65

If you are not logged in, the account authentication window appears. Perform step 2.

2. Enter admin in both User ID and Password, and then click the OK button.
A message indicating that processing is in progress appears, and then a message reporting the results appears.

5. Experiencing the Development of Sample Programs

66

5.4 Defining business processes
In this section, define a business process by using the HelloBusinessProcess sample program, which calls a
service adapter from a business process.

! Important note

Before you define a business process, define the service adapter. The service adapter that you use for the
HelloBusinessProcess sample program is the Hello service adapter. For details about how to define the Hello service
adapter, see 5.3 Defining service adapters.

5.4.1 Creating business processes
For a business process, define how the request received from the service requester will be processed. The Hello
business process of the HelloBusinessProcess sample program executes processing as follows:

1. The Hello business process receives the character string entered from the service requester.

2. The Hello service is called via the Hello service adapter.

3. When the Hello service is called, the following character string is concatenated to the received one: and
Business Process (: single-byte space)

Generated string: string-output-by-Hello-service and Business Process

4. The concatenation result is returned to the service requester, and is displayed in the output window.

Define a business process of the HelloBusinessProcess sample program as follows:

1. Add a new business process.

2. Set variables.

3. Deploy activities#.

4. Define activities#.

5. Finish defining the business process.

#
An activity is a component that defines an overview of the processing of a business process.

(1) Adding a business process
The following table shows the values that you need to set when adding a business process.

Table 5‒2: Values that need to be set when adding a business process

Item Value to be set Description

Business process name HelloBusinessProcess Specify the name of the business process.

Status persistence yes Specify whether to leave records in the database.

Records left in the database can be used to check the
progress of a process. For this sample program, you
leave records in the database. Therefore, select yes.

Import check box in the
BPEL file area

Clear the check box. Specify whether to import the BPEL file that was
created by using a tool in the upper process.

If you import the BPEL file, the activities necessary
for the business process are automatically displayed.
For this sample program, you do not import the file.
Therefore, clear the check box.

5. Experiencing the Development of Sample Programs

67

Item Value to be set Description

Service ID HelBP Specify the ID of the business process.

The following is the procedure for adding the Hello business process.

1. In the tree view, select and right-click Service Definition List, and then select Add Business Process.

The dialog box for adding a business process definition appears.

2. Enter HelloBusinessProcess in Business Process Name, and then select yes for Status Persistence.
Clear the Import check box in the BPEL file area.

3. Click the Finish button.
A business process named HelloBusinessProcess is created, and then the Define Business Process window
appears.

4. In the tree view, select HelloBusinessProcess.
A list of properties for the Hello business process is displayed in the properties view.

5. In the properties view, click the cell for the value of the service ID.
A value can be entered in the cell.

6. Change the value to HelBP, and then press the Enter key.

5. Experiencing the Development of Sample Programs

68

7. When a message asking you whether you really want to change the value appears, click the OK button.

(2) Setting variables
For a business process, variables are used to define activities. Therefore, the variables to be used must be set before
activities are defined. The following table shows the variables to be used for the Hello business process.

Table 5‒3: Variables to be used for the Hello business process

Variable name Type XSD file

InputData XML InputData.xsd

OutputData XML OutputData.xsd

The following is the procedure for setting the variables to be used for the Hello business process.

1. On the canvas of the Define Business Process window, double-click the Variable-Correlation icon.

The List Of Variables And Correlation Sets dialog box appears.

2. In the tree view, select Variable List.

3. Enter InputData in Variable name, and then select XML from the Type drop-down list.

4. Click the Take In button.
The Take In Message Format dialog box appears.

5. Select Service name, and then, from the drop-down list, select Hello service adapter.

6. Select getHelloString from the Operation name drop-down list, and Request message (Body) from the
Message type drop-down list. For Message format, enter InputData.

5. Experiencing the Development of Sample Programs

69

7. Click the OK button.
The Take In Message Format dialog box closes.

8. In the List Of Variables And Correlation Sets dialog box, click the Add button.
InputData is added to the Variable List node in the tree view.

9. In the List Of Variables And Correlation Sets dialog box, select Variable List. Enter OutputData in Variable
name, and then select XML from the Type drop-down list.

10. Click the Take In button.
The Take In Message Format dialog box appears.

11. Select Service name, and then, from the drop-down list, select Hello service adapter.

12. Select getHelloString from the Operation name drop-down list, and Response message (Body) from the
Message type drop-down list. For Message format, enter OutputData.

13. Click the OK button to close the Take In Message Format dialog box.

14. In the List Of Variables And Correlation Sets dialog box, click the Add button.
OutputData is added to the Variable List node in the tree view.

15. In the List Of Variables And Correlation Sets dialog box, click the OK button.
The variables are now set.

5. Experiencing the Development of Sample Programs

70

(3) Deploying activities
The following table shows the activities that are necessary for the business process of the
HelloBusinessProcess sample program.

Table 5‒4: Activities necessary for the business process of the HelloBusinessProcess sample program

Value to be set Description

Receive activity Receives a response from the service requester

Invoke service activity Calls the Hello service

Data transformation activity Edits a string

Reply activity Returns the processing result to the service requester

The following shows the activity deployment procedure.

1. On the palette, click the following activities, and then place them at appropriate positions by clicking them on the
canvas.

• Receive

• Invoke service

• Data transformation

• Reply

2. To connect activities, on the palette, click Connection.

3. Click the start activity to start the connection.

4. Click the receive activity as the connection destination.
The start activity is now connected to the receive activity.

5. Chain the activities by connecting adjacent ones (as in steps 2 to 4) from the receive activity to the reply activity.
Make sure that the activities are chained as follows.

5. Experiencing the Development of Sample Programs

71

(4) Defining activities
Define each of the activities that were placed on the canvas.

(a) Receive activity

1. Double-click the receive activity on the canvas.
The Receive Activity dialog box appears.

2. Enter information as shown in the following figure.

Item Value to be set Description

Activity name Receive Specify the name of the activity.

Operation name getHelloString Specify the name of the operation that is used to call a service
component from the service requester.

Body allocated variable InputData From the drop-down list, select the variable to be allocated to
the body of the request message for the business process.

Header allocated variable None Set this item when you allocate a variable to the header of the
request message for the business process. This item is not used
for this sample program. Therefore, do not set this item.

Correlation set group None Set this item when you allocate a correlation set group to an
activity. This item is not used for this sample program.
Therefore, do not set this item.

Communication model Sync Specify the communication model of the operation. The Hello
service used for this sample program is a Web Service.
Therefore, set Sync.

Instance generation yes Select whether to initialize the process when a request message
is received. For this sample program, set yes.

3. Click the OK button.

(b) Invoke service activity

1. Double-click the invoke service activity on the canvas.

5. Experiencing the Development of Sample Programs

72

The Invoke Service Activity dialog box appears.

2. Enter information as shown in the following figure.

Item Value to be set Description

Activity name HelloService Enter the name of the activity.

Service name HelloServiceAdapter From the drop-down list, select the name of the
service component to be called by sending a
request message.

Operation name getHelloString Among the operations for the service component
(Hello service adapter) specified in Service
name, select the name of the operation that is to
be called from the drop-down list.

Communication model Sync The communication model set for the operation
specified in Operation name is displayed.

Body allocated variable
(in the Request message
area)

InputData From the drop-down list, select the variable to be
allocated to the body of the request message that
calls the stock management service.

Header allocated variable
(in the Request message
area)

None Set this item when you allocate a variable to the
header of the request message that calls the stock
management service. This item is not used for
this sample program. Therefore, do not set this
item.

Body allocated variable
(in the Response message
area)

OutputData From the drop-down list, select the variable to be
allocated to the body of the response message to
be received from the synchronization operation.

Header allocated variable
(in the Response message
area)

None Set this item when you allocate a variable to the
header of the response message to be received
from the synchronization operation. This item is
not used for this sample program. Therefore, do
not set this item.

Correlation set group None Set this item when you allocate a correlation set
group to an activity. This item is not used for this
sample program. Therefore, do not set this item.

3. Click the OK button.

5. Experiencing the Development of Sample Programs

73

(c) Data transformation activity

1. Double-click the data transformation activity on the canvas.
The Data Transformation Activity dialog box appears.

2. Enter information as shown in the following figure.

Item Value to be set Description

Activity name EditOutputString Specify the name of the activity.

Variable (in the Source
Variables area)

OutputData Select the transformation-source variable from the
drop-down list, and then click the Add button.

Variable (in the Destination
Variable area)

OutputData Select the transformation-destination variable from the
drop-down list.

DataTransDefnFile EditOutputString Specify a name for the data transformation definition
file.

3. Click the OK button.

4. Right-click the data transformation activity on the canvas, and then select Launch mapping definition.
The Select Root Element dialog box appears.

5. As the root element of OutputData (schema logical name) for Source, select
hls:getHelloStringResponse from the drop-down list. As the root element of OutputData (schema
logical name) for Target, select hls:getHelloStringResponse.

6. Click the OK button.
The data transformation definition window appears.

5. Experiencing the Development of Sample Programs

74

7. On the palette of the data transformation definition window, click concat. Then, on the canvas, click between the
transformation source and destination to place the concat there.

8. On the palette of the data transformation definition window, click const. Then, on the canvas, click between the
transformation source and destination to place the const there.

9. On the palette of the data transformation definition window, select Mapping.

10. Click the node adapter of the transformation-source node as the mapping source.

11. Click concat as the mapping destination.
A mapping line is set.

12. In the same way as steps 9 to 11, set a mapping line from concat to the node adapter of the transformation-
destination node.
Do not set a mapping line from const to concat first. Doing so will change the order of output strings.

13. In the same way as steps 9 to 11, set a mapping line from const to concat.

14. On the palette of the data transformation definition window, click Select.

15. Double-click const.
The Set Constant dialog box appears.

16. Select String, and then enter the following character string: and Business Process (:
single-byte space)

17. Click the OK button.

(d) Reply activity

1. Double-click the reply activity on the canvas.
The Reply Activity dialog box appears.

2. Enter information as shown in the following figure.

5. Experiencing the Development of Sample Programs

75

Item Value to be set Description

Activity name Reply Specify the name of the activity.

Operation name getHelloString Specify the name of the operation specified for the
corresponding receive activity.

Body allocated variable OutputData From the drop-down list, select the variable to be allocated
to the body of the response message.

Header allocated variable None Set this item when you allocate a variable to the header of
the response message. This item is not used for this sample
program. Therefore, do not set this item.

Correlation set group None Set this item when you allocate a correlation set group to
an activity. This item is not used for this sample program.
Therefore, do not set this item.

Fault name None Define the reply activity as fault processing, and then
specify the fault name to be used when a response message
that indicates that a fault occurred in the service requester
is received. No fault processing is used for this sample
program. Therefore, do not set this item.

3. Click the OK button.

4. When you have defined all activities, from the menu, select File and then Save. The business process is now
defined.

5.4.2 Validating and packaging a Hello business process
When you have created a business process, validate that it is defined correctly, and then package it. The validation and
packaging procedures are the same as those for a Hello service adapter. For details about validation and packaging, see
5.3.2 Validating and packaging a service adapter.

5.4.3 Defining deployment of a Hello business process
When you have packaged a business process, define its deployment. The deployment procedure is the same as that for
a Hello service adapter. For details about deployment definitions, see 5.3.3 Defining deployment of a service adapter.

5. Experiencing the Development of Sample Programs

76

5.5 Developing the product arrangement system
In this section, define a business process by using the HelloProductArrangement sample program, which calls
a service adapter from a business process whose processing is close to an actual job.

For the HelloProductArrangement sample program, define the following three components:

• Stock management service adapter

• Delivery reception service adapter

• Product arrangement business process

5.5.1 Defining the stock management service adapter
Use the WSDL file for the stock management service (InventoryManagementService.wsdl) to define the stock
management service adapter. The following table shows the values that you need to set when defining the stock
management service adapter.

Table 5‒5: Values that need to be set when defining the stock management service adapter

Item Value to be set Description

Service component
type

Web Service Specify the type of service adapter that is set according to the type
of service component to be called. Because the service component
type of this sample program is a Web Service, also specify Web
Service as the service adapter type.

Service name StockManagement Specify the name of the service adapter.

WSDL file InventoryManagementS
ervice.wsdl

The WSDL file defines the method of writing what functions the
Web Service has and what requests you need to send to use those
functions, etc. Use the WSDL file for the stock management
service (InventoryManagementService.wsdl) to create
the stock management service adapter.

Port specification InventoryManager Specify the port of the stock management service adapter.

Service ID InvAdp Specify the ID of the stock management service adapter.

Client definition file c4webcl.properties
(This file contains the
following entry:
c4web.logger.log_fil
e_prefix=InventoryMa
nagementService)

The client definition file controls the client-side behavior. The
user creates this file with the name c4webcl.properties.

This sample program provides a client definition file that sets
InventoryManagementService as the prefix of the trace
file and application log.

Note:
For details about the location of each file, see A.3 Configuration of the HelloProductArrangement sample program.

The following is the procedure for adding and defining the stock management service adapter.

1. In the tree view, select and right-click Service Definition List, and then select Add Service Adapter.
The dialog box for setting the type of service to be used from the service adapter to be added appears.

2. From the drop-down list, select Web Services, and then click the Next button.
The dialog box for entering the information that is necessary for adding a SOAP adapter appears.

3. Enter StockManagement as the service name, specify InventoryManagementService.wsdl as the
WSDL file, and then click the Next button.

5. Experiencing the Development of Sample Programs

77

The dialog box for specifying the port appears.

4. From the Specification of Port drop-down list, select InventoryManager, and then click the Finish button.

A service adapter named StockManagement service adapter is created, and then the service adapter definition
window appears.

5. In the service adapter definition (standard) window, change the service ID to InvAdp.

5. Experiencing the Development of Sample Programs

78

6. In the service adapter definition (details) window, click the Browse button, and then specify
c4webcl.properties as the client definition file.
For the HelloProductArrangement sample program, the location of the above file is as follows:
service-platform-installation-directory\CSCTE\Samples\ProductStock\Service
\InventoryManagementService\c4webcl.properties

7. From the menu, select File, and then Save.

5.5.2 Defining the delivery reception service adapter
Use the WSDL file for the delivery reception service (DeliveryService.wsdl) to define the delivery reception service
adapter. The following table shows the values that you need to set when defining the delivery reception service
adapter.

Table 5‒6: Values that need to be set when defining the delivery reception service adapter

Item Value to be set Description

Service component type Web Service Specify the type of service adapter that is set according to the
type of service component to be called. Because the service
component type of this sample program is a Web Service, also
specify Web Service as the service adapter type.

Service name DeliveryReception Specify the name of the service adapter.

WSDL file DeliveryService.wsdl The WSDL file defines the method of writing what functions
the Web Service has and what requests you need to send to use
those functions, etc. Use the WSDL file for the delivery
reception service (DeliveryService.wsdl) to define the
delivery reception service adapter.

Port specification Delivery Specify the port of the delivery reception service adapter.

Service ID DelAdp Specify the ID of the delivery reception service adapter.

5. Experiencing the Development of Sample Programs

79

Item Value to be set Description

Client definition file c4webcl.properties
(This file contains the
following entry:
c4web.logger.log_fil
e_prefix=DeliverySer
vice)

The client definition file controls the client-side behavior. The
user creates this file with the name c4webcl.properties.

This sample program provides a client definition file that sets
DeliveryService as the prefix of the trace file and
application log.

Note:
For details about the location of each file, see A.3 Configuration of the HelloProductArrangement sample program.

The following is the procedure for adding and defining the delivery reception service adapter.

1. In the tree view, select and right-click Service Definition List, and then select Add Service Adapter.
The dialog box for setting the type of service to be used from the service adapter to be added appears.

2. From the drop-down list, select Web Services, and then click the Next button.
The dialog box for entering the information that is necessary for adding a SOAP adapter appears.

3. Enter DeliveryReception as the service name, specify DeliveryService.wsdl as the WSDL file, and
then click the Next button.

The dialog box for specifying the port appears.

4. From the drop-down list, select Delivery, and then click the Finish button.

A service adapter named DeliveryReception service adapter is created, and then the service adapter
definition window appears.

5. In the service adapter definition (standard) window, change the service ID to DelAdp.

5. Experiencing the Development of Sample Programs

80

6. In the service adapter definition (details) window, click the Browse button, and then specify
c4webcl.properties as the client definition file.
For the HelloProductArrangement sample program, the location of the above file is as follows:
service-platform-installation-directory\CSCTE\Samples\ProductStock\Service
\DeliveryService\c4webcl.properties

7. From the menu, select File, and then Save.

5.5.3 Defining the product arrangement business process
The product arrangement business process of the HelloProductArrangement sample program executes
processing as follows:

1. The product arrangement business process receives the product name and quantity entered from the service
requester.

2. The stock management service is called via the stock management service adapter.

3. When the stock management service is called, if the product is out of stock, an asterisk (*), which means out of
stock, is returned to the service requester.

4. If the product is in stock, the delivery number is obtained by calling the delivery reception service via the delivery
reception service adapter.

5. The obtained delivery number is returned to the service requester.

Note that because the product arrangement business process is called by using a user-defined reception, you need to
create a user-defined reception by using WSDL (ArrangementService.wsdl).

Define a business process of the HelloProductArrangement sample program as follows:

1. Add a new business process.

2. Add a user-defined reception.

3. Set variables.

4. Deploy activities.

5. Experiencing the Development of Sample Programs

81

5. Define activities.

6. Finish defining the business process.

(1) Adding a business process
The following table shows the values that you need to set when adding the product arrangement business process.

Table 5‒7: Values that need to be set when adding a business process

Item Value to be set Description

Business process
name

ProductArrangement Specify the name of the business process.

Status persistence yes Specify whether to leave records in the database. The records
left in the database can be used to check the progress of a
process. For this sample program, you leave records in the
database. Therefore, select yes.

Import check box in
the BPEL file area

Clear the check box. To import the BPEL file that was created by using a tool in the
upper process, select the check box. If you import the file, the
activities necessary for the business process are automatically
displayed. For this sample program, you do not import the file.
Therefore, clear the check box.

Service ID ArrBP Specify the ID of the business process.

The following is the procedure for adding the product arrangement business process.

1. In the tree view, select and right-click Service Definition List, and then select Add Business Process.
The dialog box for adding a business process definition appears.

2. Enter ProductArrangement in Business Process Name, and then select yes for Status Persistence. Clear
the Import check box in the BPEL file area.

3. Click the Finish button.
A business process named ProductArrangement is created, and then the Define Business Process window
appears.

4. In the tree view, select Product Arrangement.
A list of properties for the ProductArrangement business process is displayed in the properties view.

5. In the properties view, click the cell for the value of the service ID.
A value can be entered in the cell.

6. Change the value to ArrBP, and then press the Enter key.

5. Experiencing the Development of Sample Programs

82

7. When a message asking you whether you really want to change the value appears, click the OK button.

(2) Adding a user-defined reception
The HelloProductArrangement sample program receives a request from the service requester by using a
reception that has been defined by the user according to the interface of the business process. The interface of the
business process includes the operation name and message format to be set for the receive activity and reply activity.
The following table shows the values that you need to set when adding a user-defined reception.

Table 5‒8: Values that need to be set when adding a user-defined reception

Item Value to be set Description

Reception type SOAP Reception Select the reception type.

Reception name ServiceReception Specify the name of the user-defined reception.

WSDL file ArrangementService.wsdl Specify the name of the WSDL file to be used.

Port name Arrangement Specify the port name.

Note:
For details about the location of the file, see A.3 Configuration of the HelloProductArrangement sample program.

The following is the procedure for adding a user-defined reception for product arrangement.

1. In the tree view, select and right-click the Product Arrangement business process, and then select Add User
Defined Reception.

The dialog box for selecting the reception type appears.

2. From the Reception type drop-down list, select SOAP Reception.

5. Experiencing the Development of Sample Programs

83

3. Click the Next button.
The dialog box for adding the SOAP reception appears.

4. Enter ServiceReception as the reception name, and then specify ArrangementService.wsdl as the
WSDL file.

5. Click the Next button.

6. From the drop-down list, select Arrangement, and then click the Finish button.

The SOAP reception is added to the business process, and then the window for defining a user-defined reception
appears.

5. Experiencing the Development of Sample Programs

84

(3) Setting variables
For a business process, variables are used to define activities. Therefore, the variables to be used must be set before
activities are defined. The following table shows the variables to be used for the product arrangement business
process.

Table 5‒9: Variables to be used for the product arrangement business process

Variable name Type XSD file

InputData XML InputData.xsd

OutputData XML OutputData.xsd

StockAllocationInputData XML StockAllocationInputData.xsd

StockAllocationOutputData XML StockAllocationOutputData.xsd

DeliveryArrangementInputData XML DeliveryArrangementInputData.xsd

DeliveryArrangementOutputData XML DeliveryArrangementOutputData.xsd

The following is the procedure for setting the variables to be used for the product arrangement business process.

1. On the canvas of the Define Business Process window, double-click the Variable-Correlation icon.
The List Of Variables And Correlation Sets dialog box appears.

2. Select Variable List. Enter InputData in Variable name, and then select XML from the Type drop-down list.

3. Click the Take In button.
The Take In Message Format dialog box appears.

4. Select Reception name, and then, from the drop-down list, select Service Reception.

5. Select arrangeItem from the Operation name drop-down list, and Request message (Body) from the Message
type drop-down list. For Message format, enter InputData.

5. Experiencing the Development of Sample Programs

85

6. Click the OK button.
The Take In Message Format dialog box closes.

7. In the List Of Variables And Correlation Sets dialog box, click the Add button.
The InputData variable is added to the Variable List node.

8. In the same way as steps 2 to 7, set the variables OutputData, StockAllocationInputData,
StockAllocationOutputData, DeliveryArrangementInputData, and
DeliveryArrangementOutputData.
The values to be set are as follows.
All of the types set in the List Of Variables And Correlation Sets dialog box are XML. The values to be set in the
Take In Message Format dialog box are as follows.

Item

Variable name

OutputData StockAllocationI
nputData

StockAllocation
OutputData

DeliveryArrange
mentInputData

DeliveryArrange
mentOutputDat

a

Service/
Reception

Reception name Service name Service name Service name Service name

Name of Service/
Reception

ServiceRece
ption

StockManage
ment

StockManagem
ent

DeliveryRece
ption

DeliveryRece
ption

Operation name arrangeItem reserveItem reserveItem deliverItem deliverItem

Message type Response
message (Body)

Request message
(Body)

Response
message (Body)

Request message
(Body)

Response
message (Body)

Message format Output data Stock allocation
input data

Stock allocation
output data

Delivery
arrangement
input data

Delivery
arrangement
output data

9. In the List Of Variables And Correlation Sets dialog box, click the OK button.
The variables are now set.

5. Experiencing the Development of Sample Programs

86

(4) Deploying activities
The following table shows the activities that are necessary for the business process of the
HelloProductArrangement sample program.

Table 5‒10: Activities necessary for the business process of the HelloProductArrangement sample
program

Value to be set Description

Receive activity Receives a response from the service requester

Data transformation activity Edits input data, output data, stock allocation data, and delivery arrangement
data

Invoke service activity Calls the stock management service or delivery reception service

Switch start activity Starts the processing selected according to the condition (whether the product is
in stock)

Reply activity Returns the processing result to the service requester

Switch end activity Ends the processing selected according to the condition (whether the product is
in stock)

The following shows the activity deployment procedure.

1. Place activities on the canvas as shown in the following figure. To place an activity, click on it on the palette, and
then click the position at which to place it on the canvas.

5. Experiencing the Development of Sample Programs

87

2. To connect activities, click Connection on the palette.

3. Click the start activity to start the connection.

4. Click the receive activity as the connection destination.
The start activity is now connected to the receive activity.

5. Chain the activities by connecting adjacent ones (as in steps 2 to 4) from the receive activity to the end activity.
Make sure that the activities are chained as follows.

5. Experiencing the Development of Sample Programs

88

(5) Defining activities
Define each of the activities that were placed on the canvas.

(a) Receive activity

1. Double-click the receive activity (ReceiveActivity1) on the canvas.
The Receive Activity dialog box appears.

2. Enter information as shown in the following figure.

Item Value to be set Description

Activity name Receive Enter the name of the activity.

Operation name arrangeItem Specify the name of the operation that is used to call the
stock management service from the service requester.

Body allocated variable InputData From the drop-down list, select the variable to be allocated to
the body of the request message for the business process.

Header allocated variable None Set this item when you allocate a variable to the header of the
request message for the business process. This item is not
used for this sample program. Therefore, do not set this item.

Correlation set group None Set this item when you allocate a correlation set group to an
activity. This item is not used for this sample program.
Therefore, do not set this item.

Communication model Sync Specify the communication model of the operation. The
product arrangement service used for this sample program is
a Web Service. Therefore, set Sync.

Instance generation yes Select whether to initialize the process when a request
message is received. For this sample program, set yes to
enable initialization.

3. Click the OK button.

(b) Data transformation activity (for preprocessing of stock allocation)

1. Double-click the data transformation activity (DataActivity1) on the canvas.
The Data Transformation Activity dialog box appears.

2. Enter information as shown in the following figure.

5. Experiencing the Development of Sample Programs

89

Item Value to be set Description

Activity name StockAllocationPreprocessing Enter the name of the activity.

Variable (in the Source
Variables area)

InputData Select the transformation-source
variable from the drop-down list,
and then click the Add button.

Variable (in the
Destination Variable
area)

StockAllocationInputData Select the transformation-
destination variable from the drop-
down list.

DataTransDefnFile StockAllocationPreprocessing Enter the name of the data
transformation definition file to be
used to transform variables.

3. Click the OK button.

4. Right-click the data transformation activity on the canvas, and then select Launch mapping definition.
The Select Root Element dialog box appears.

5. Click the root element of InputData (schema logical name) for Source, and then, from the drop-down list,
select ars:arrangeItem.

6. Click the root element of StockAllocationInputData (schema logical name) for Destination, and then,
from the drop-down list, select ims:reserveItem.

7. Click the OK button.
The data transformation definition window appears.

8. On the palette of the data transformation definition window, select Mapping.

9. Click the node adapter of the transformation-source node as the mapping source.

5. Experiencing the Development of Sample Programs

90

10. Click the node adapter of the transformation-destination node as the mapping-destination.
A mapping line is set. The correspondence between the mapping-source and mapping-destination node adapters is
as follows.

(c) Data transformation activity (in the case where the product is out of stock)

1. Double-click the data transformation activity (DataActivity2) on the canvas.
The Data Transformation Activity dialog box appears.

2. Enter information as shown in the following figure.

Item Value to be set Description

Activity name Out-Of-Stock-Setting Enter the name of the activity.

Variable (in the Source
Variables area)

StockAllocationOutputData Select the transformation-source
variable from the drop-down list,
and then click the Add button.

Variable (in the
Destination Variable area)

OutputData Select the transformation-
destination variable from the drop-
down list.

DataTransDefnFile Out-Of-Stock-Setting Enter the name of the data
transformation definition file to be
used to transform variables.

3. Click the OK button.

4. Right-click the data transformation activity on the canvas, and then select Launch mapping definition.
The Select Root Element dialog box appears.

5. Click the root element of StockAllocationOutputData (schema logical name) for Source, and then, from
the drop-down list, select ims:reserveItemResponse.

6. Click the root element of OutputData (schema logical name) for Destination, and then, from the drop-down
list, select ars:arrangeItemResponse.

5. Experiencing the Development of Sample Programs

91

7. Click the OK button.
The data transformation definition window appears.

8. On the palette of the data transformation definition window, select Mapping.

9. Click the node adapter of the transformation-source node as the mapping source.

10. Click the node adapter of the transformation-destination node as the mapping-destination.
A mapping line is set. The correspondence between the mapping-source and mapping-destination node adapters is
as follows.

(d) Data transformation activity (for preprocessing of delivery arrangement)

1. Double-click the data transformation activity (DataActivity3) on the canvas.
The Data Transformation Activity dialog box appears.

2. Enter information as shown in the following figure.

5. Experiencing the Development of Sample Programs

92

Item Value to be set Description

Activity name DeliveryArrangementPreprocessing Enter the name of the activity.

Variable (in the Source
Variables area)

StockAllocationOutputData Select the transformation-source
variable from the drop-down
list, and then click the Add
button.

Variable (in the
Destination Variable
area)

DeliveryArrangementInputData Select the transformation-
destination variable from the
drop-down list.

DataTransDefnFile DeliveryArrangementPreprocessing Enter the name of the data
transformation definition file to
be used to transform variables.

3. Click the OK button.

4. Right-click the data transformation activity on the canvas, and then select Launch mapping definition.
The Select Root Element dialog box appears.

5. Click the root element of StockAllocationOutputData (schema logical name) for Source, and then, from
the drop-down list, select ims:reserveItemResponse.

6. Click the root element of DeliveryArrangementInputData (schema logical name) for Destination, and
then, from the drop-down list, select dls:deliverItem.

7. Click the OK button.
The data transformation definition window appears.

8. On the palette of the data transformation definition window, select Mapping.

9. Click the node adapter of the transformation-source node as the mapping source.

10. Click the node adapter of the transformation-destination node as the mapping destination.
A mapping line is set. The correspondence between the mapping-source and mapping destination node adapters is
as follows.

5. Experiencing the Development of Sample Programs

93

(e) Data transformation activity (for setting a delivery number)

1. Double-click the data transformation activity (DataActivity4) on the canvas.
The Data Transformation Activity dialog box appears.

2. Enter information as shown in the following figure.

Item Value to be set Description

Activity name DeliveryNumberSetting Enter the name of the activity.

Variable (in the Source
Variables area)

DeliveryArrangementOutputData Select the transformation-source
variable from the drop-down list,
and then click the Add button.

Variable (in the
Destination Variable
area)

OutputData Select the transformation-
destination variable from the
drop-down list.

DataTransDefnFile DeliveryNumberSetting Enter the name of the data
transformation definition file to be
used to transform variables.

3. Click the OK button.

4. Right-click the data transformation activity on the canvas, and then select Launch mapping definition.
The Select Root Element dialog box appears.

5. Click the root element of DeliveryArrangementOutputData (schema logical name) for Source, and then,
from the drop-down list, select dls:deliverItemResponse.

6. Click the root element of OutputData (schema logical name) for Destination, and then, from the drop-down
list, select ars:arrangeItemResponse.

5. Experiencing the Development of Sample Programs

94

7. Click the OK button.
The data transformation definition window appears.

8. On the palette of the data transformation definition window, select Mapping.

9. Click the node adapter of the transformation-source node as the mapping source.

10. Click the node adapter of the transformation-destination node as the mapping destination.
A mapping line is set. The correspondence between the mapping-source and mapping destination node adapters is
as follows.

(f) Invoke service activity (for stock allocation)

1. Double-click the invoke service activity (InvokeActivity1) on the canvas.
The Invoke Service Activity dialog box appears.

2. Enter information as shown in the following figure.

5. Experiencing the Development of Sample Programs

95

Item Value to be set Description

Activity name StockAllocation Enter the name of the activity.

Service name StockManagement From the drop-down list, select the
name of the service component to be
called by sending a request message.

Operation name reserveItem Among the operations for the service
component (stock management)
specified in Service name, select the
name of the operation that is to be
called.

Communication model Sync The communication model set for the
operation specified in Operation
name is displayed.

Body allocated variable
(in the Request message
area)

StockAllocationInputData From the drop-down list, select the
variable to be allocated to the body of
the request message that calls the
stock management service.

Header allocated
variable (in the Request
message area)

None Set this item when you allocate a
variable to the header of the request
message that calls the stock
management service. This item is not
used for this sample program.
Therefore, do not set this item.

Body allocated variable
(in the Response message
area)

StockAllocationOutputData From the drop-down list, select the
variable to be allocated to the body of
the response message to be received
from the synchronization operation.

Header allocated
variable (in the Response
message area)

None Set this item when you allocate a
variable to the header of the response
message to be received from the
synchronization operation. This item
is not used for this sample program.
Therefore, do not set this item.

Correlation set group None Set this item when you allocate a
correlation set group to an activity.
This item is not used for this sample
program. Therefore, do not set this
item.

5. Experiencing the Development of Sample Programs

96

3. Click the OK button.

(g) Invoke service activity (for delivery arrangement)

1. Double-click the invoke service activity (InvokeActivity2) on the canvas.
The Invoke Service Activity dialog box appears.

2. Enter information as shown in the following figure.

Item Value to be set Description

Activity name DeliveryArrangement Enter the name of the activity.

Service name DeliveryReception From the drop-down list, select
the name of the service
component to be called by
sending a request message.

Operation name deliverItem Among the operations for the
service component (delivery
arrangement) specified in
Service name, select the name
of the operation that is to be
called.

Communication model Sync The communication model set
for the operation specified in
Operation name is displayed.

Body allocated variable
(in the Request message
area)

DeliveryArrangementInputData From the drop-down list, select
the variable to be allocated to
the body of the request
message that calls the delivery
arrangement service.

Header allocated
variable (in the Request
message area)

None Set this item when you allocate
a variable to the header of the
request message that calls the
delivery arrangement service.
This item is not used for this
sample program. Therefore, do
not set this item.

Body allocated variable
(in the Response
message area)

DeliveryArrangementOutputData From the drop-down list, select
the variable to be allocated to
the body of the response
message to be received from
the synchronization operation.

5. Experiencing the Development of Sample Programs

97

Item Value to be set Description

Header allocated
variable (in the
Response message area)

None Set this item when you allocate
a variable to the header of the
response message to be
received from the
synchronization operation.
This item is not used for this
sample program. Therefore, do
not set this item.

Correlation set group None Set this item when you allocate
a correlation set group to an
activity. This item is not used
for this sample program.
Therefore, do not set this item.

3. Click the OK button.

(h) Reply activity (if the product is out of stock)

1. Double-click the reply activity (ReplyActivity1) on the canvas.
The Reply Activity dialog box appears.

2. Enter information as shown in the following figure.

Item Value to be set Description

Activity name Reply_Out-Of-Stock-Error Enter the name of the activity.

Operation name arrangeItem Specify the name of the operation
specified for the corresponding receive
activity.

Body allocated
variable

OutputData From the drop-down list, select the
variable to be allocated to the body of the
response message for the business
process.

Header allocated
variable

None Set this item when you allocate a variable
to the header of the response message for
the business process. This item is not used
for this sample program. Therefore, do not
set this item.

Correlation set group None Enter this item when you allocate a
correlation set group to an activity. This
item is not used for this sample program.
Therefore, do not set this item.

Fault name None Define the reply activity as fault
processing, and then specify the fault
name to be used when a response message

5. Experiencing the Development of Sample Programs

98

Item Value to be set Description

Fault name None that indicates that a fault occurred in the
service requester is received. No fault
processing is used for this sample
program. Therefore, do not set this item.

3. Click the OK button.

(i) Reply activity (in the case where delivery arrangement is successful)

1. Double-click the reply activity (ReplyActivity2) on the canvas.
The Reply Activity dialog box appears.

2. Enter information as shown in the following figure.

Item Value to be set Description

Activity name Reply_Arrangement-Success Enter the name of the activity.

Operation name arrangeItem Specify the name of the operation
specified for the corresponding receive
activity.

Body allocated
variable

OutputData From the drop-down list, select the
variable to be allocated to the body of
the response message for the business
process.

Header allocated
variable

None Set this item when you allocate a
variable to the header of the response
message for the business process. This
item is not used for this sample program.
Therefore, do not set this item.

Correlation set group None Enter this item when you allocate a
correlation set group to an activity. This
item is not used for this sample program.
Therefore, do not set this item.

Fault name None Define the reply activity as fault
processing, and then specify the fault
name to be used when a response
message that indicates that a fault
occurred in the service requester is
received. No fault processing is used for
this sample program. Therefore, do not
set this item.

3. Click the OK button.

5. Experiencing the Development of Sample Programs

99

(j) Switch start activity

1. Double-click the switch start activity (SwitchStartActivity1) on the canvas.
The Switch Activity dialog box appears.

2. Enter CheckStockAllocationResult as the activity name.

3. Click the line on which the value of the Transition destination column is Out-Of-Stock-Setting. Then,
click the To Upper button to move the line to the top line.

4. Select the top line, and then click the Condition Setting... button.
The Set Condition dialog box appears.

5. Enter information as shown in the following figure.

Item Value to be set Description

Condition
name

Out-Of-Stock Specify the condition for determining
whether the product is out of stock as a
result of a stock allocation check.

Variable
contents

StockAllocationOutputData From the drop-down list, select the
variable to be used in the condition
expression.

Condition
expression

csc:getVariableData("StockAllocationOutputDa
ta", "/*[local-name()
='reserveItemResponse' and namespace-uri()
='http://sample/
InventoryManagementService']/*[local-name()
='ReservationNumber' and namespace-uri()
='http://sample/
InventoryManagementService']")="*"

Specify the condition expression for
determining whether the product is out
of stock in XPath expression format.

Note:
Line breaks are not applied to the displayed condition expression.

6. Click the OK button.
The Switch Activity dialog box appears again.

7. On the line on which the value of the Transition destination column is
DeliveryArrangementPreprocessing, click Priority, and then select Default from the drop-down list.
If you select Default, you do not need to specify the condition settings.

5. Experiencing the Development of Sample Programs

100

8. Click the OK button.

(k) Switch end activity

1. Double-click the switch end activity (SwitchEndActivity1) on the canvas.
The details of the switch end activity are displayed in the properties view.

2. Enter CheckStockAllocationResult_End as the activity name.

3. When you have defined all activities, from the menu, select File and then Save. The business process is now
defined.

5.5.4 Validating and packaging components
When you have created a component, validate that it is defined correctly, and then package it. The validation and
packaging targets are the Stock Management service adapter, Delivery Reception service adapter, and Product
Arrangement business process in the tree view.

The validation and packaging procedures are the same as those for a Hello service adapter. For details about validation
and packaging, see 5.3.2 Validating and packaging a service adapter.

5.5.5 Defining deployment of components
When you have packaged a component, define its deployment. The deployment procedure is the same as that for a
Hello service adapter. For details about deployment definitions, see 5.3.3 Defining deployment of a service adapter.

5. Experiencing the Development of Sample Programs

101

5.6 Debugging the product arrangement system
In this section, debug the business process that was defined in 5.5.3 Defining the product arrangement business
process, and then check how the business process will be processed.

The following is an overview of debugging the business process described in this section:

1. Set a break point in an activity.

2. Deploy the service requester.

3. Start the HCSC server.

4. Start the debugger.

5. Send a request from the service requester to start the processing of the process instance.

6. Debug each activity.

7. To debug without calling services, use service emulation.

8. Finish debugging the business process.

(1) Setting a break point
Set a break point in the activity at which to stop processing of the process instance.

In this example, set a break point in the invoke service activity (StockAllocation).

The following is the procedure for setting a break point.

1. On the canvas of the business process definition window, right-click the invoke service activity (StockAllocation),
and then select Add Breakpoint.
A break point is added to the activity. As shown in the following figure, a check mark indicating a break point
appears beside the activity icon.

(2) Deploying the service requester
To send a request, import the Eclipse project of the HelloProductArrangement sample program, and then
deploy the service requester on the J2EE server.

The following is the procedure for deploying the service requester.

1. Stop the HCSC server.
From the Start menu, select Programs, Cosminexus#, and then Stop Test Server to stop Performance Tracer,
J2EE server, and HCSC server (including the standard reception and user-defined reception) in the test
environment.

#
This program folder name might have been changed. If it was changed, select the changed program folder
name.

2. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box opens.

3. Select Java EE (default), and then click the OK button.
The Java EE perspective opens.

4. From the menu, select File, and then Import.
The Select page appears.

5. In the tree view, select General, and then Existing Projects into Workspace.

5. Experiencing the Development of Sample Programs

102

6. Click the Next button.
The Import Projects page appears.

7. Select the Select root directory radio button, and then click the Browse button.
The dialog box for selecting a directory opens.

8. Select the directory that contains the target sample program, and then click the OK button. In this example, the
directory to select is as follows: service-platform-installation-directory\CSCTE\Samples\ProductStock
The Import Projects page appears again. Make sure that the check boxes of all projects are selected.

9. If the Copy projects into workspace check box is not selected, select it.
If you do not select this check box, the sample programs might be deleted. Make sure that this check box is
selected.

5. Experiencing the Development of Sample Programs

103

10. Click the Finish button.
The selected projects are imported into the workspace.

11. In the Servers view, right-click MyServer at localhost, and then select Debug.

A message indicating that processing is in progress appears, and then the server starts. If no server is displayed,
see 3.5.4(3) Selecting the J2EE server.

12. In the Servers view, right-click MyServer at localhost, and then select Add and Remove.
The Add and Remove dialog box appears.

13. In the Available list box, select ArrangementClient, DeliveryService, and InventoryManagementService, and
then click the Add button.

5. Experiencing the Development of Sample Programs

104

14. Click the Finish button.
A message indicating that processing is in progress appears. After processing finishes, the Java EE perspective
appears again.
When you have completed the setting, confirm that the projects ArrangementClient, DeliveryService,
and InventoryManagementService are displayed under MyServer at localhost in the Servers view.

(3) Starting the HCSC server
Before starting the debugger, start the HCSC server.

1. Start the HCSC server.
From the Start menu, select Programs, Cosminexus#, and then Start Test Server to start Performance Tracer,
J2EE server, and HCSC server (including the standard reception and user-defined reception) in the test
environment.

#
This program folder name might have been changed. If it was changed, select the changed program folder
name.

(4) Starting the debugger
The following is the procedure for starting the debugger.

1. From the Eclipse menu, select Run, and then Debug Configurations.
The Debug Configurations dialog box appears.

2. In the menu of the Debug Configurations dialog box, right-click HCSC-BP, and then select New.

3. Enter any name in Name, and then select ProductArrangement from the Debug target drop-down list.

5. Experiencing the Development of Sample Programs

105

4. Click the Debug button.
The account authentication window appears.

5. Enter admin in both User ID and Password, and then click the OK button.
A message indicating that processing is in progress appears. When you start the debugger again, the account
authentication window does not appear, but processing immediately starts.

6. Click the OK button.
The debugger starts.

(5) Sending a request
Send a request from the service requester to start the processing of the process instance.

The following is the procedure for sending a request.

1. Access the following URL with a browser:
http://localhost/ArrangementClientWeb/index.html
The window for running the HelloProductArrangement sample program opens.

2. Select the product name and quantity.

5. Experiencing the Development of Sample Programs

106

3. Click the Arrangement button.
The dialog box asking you whether to switch the perspective appears.

4. Click the Yes button.
The view that displays debugging information and variables appears, and the processing of the process instance
starts.
The processing of the process instance stops at the invoke service activity (StockAllocation). On the canvas of the
business process definition window, the icon color of the activity changes as shown as follows to indicate that
processing is temporarily stopped.

(6) Debugging the business process
If processing of the process instance is temporarily stopped, you can debug in the following window.

Figure 5‒2: Business process debugging window

The following table shows the operations that can be performed during debugging of a business process.

Table 5‒11: Operations that can be performed during debugging of a business process

Item Description

Check variables and correlation sets You can check the variables and correlation sets that are currently used in the business
process.

Update variables You can update the values of the variables that are currently used in the business process.

5. Experiencing the Development of Sample Programs

107

Item Description

Step over and resume In the Debug view, you can perform the operations below. Use these operations to debug
each activity.

• Step-in ()

Moves processing to the next activity. If the step-in operation is performed for a switch
start activity, processing moves to the first-branch activity.

• Step-over ()

If the step-over operation is performed for a switch start activity, the activities up to the
corresponding switch end activity are processed at one time. If the step-over operation is
performed for an activity other than a switch start activity, the same operation as the
step-in operation is performed.

• Step-return ()

If the step-return operation is performed for an activity that is subordinate to a scope
activity or while activity, the activities up to the next activity to that scope or while
activity are processed.

• Resume ()

Resumes the processing of the process instance up to the activity at which the next break
point is set.

Emulate services You can emulate services by using already-created response messages.

For details about the procedure for emulating services, see (7) Service emulation.

(7) Service emulation
To debug without calling services, enable service emulation. If you enable service emulation, you can use already-
created response messages instead of calling actual services.

Service emulation allows you to execute a business process even when services called by the business process do not
exist.

You can enable service emulation while the processing of the process instance is temporarily stopped. This subsection
describes the procedure for emulating the StockAllocation service on the assumption that the processing of the process
instance is temporarily stopped at an invoke service activity (StockAllocation).

The following is the procedure for emulating the StockAllocation service.

1. Create an XML file.

2. Display the HCSC emulation view.

3. Use the created XML file to execute service emulation.

Before you execute service emulation, you must start the debugger and send a request from the service requester.

(a) Creating an XML file

Create an XML file that will be used as a service response.

The following shows how to create an XML file.

1. From the Eclipse menu, select File, New, and then Other. In the dialog box that appears, select General, and then
File.
The New File dialog box appears.

2. In the New File dialog box, select the directory in which to save the XML file.

3. In File name, enter any file name (with a file name extension of xml).

4. Click the Finish button.
An XML editor appears.

5. In the XML editor, click the Source tab, and then enter the following code (: single-byte space):

5. Experiencing the Development of Sample Programs

108

<?xml version="1.0" encoding="UTF-8"?><reserveItemResponse xmlns="http://
sample/InventoryManagementService" ><ReservationNumber>R00000001</
ReservationNumber></reserveItemResponse>

6. From the menu, select File, and then Save.
The XML file is saved.

(b) Displaying the HCSC emulation view

You can emulate services in the HCSC emulation view.

The following is the procedure for displaying the HCSC emulation view.

1. From the Eclipse menu, select Window, Show View, and then Other.
The Show View dialog box appears.

2. Select Debug, and then HCSC Emulate. Then, click the OK button.
The HCSC emulation view appears.

(c) Emulating a service

1. In the Debug view, select Stock Allocation (invoke service activity).

2. In the HCSC emulation view, click the Add button.
A line is added to the table in the HCSC emulation view.

3. Select the Response Type cell, and then select Normal Response.

4. Select the Response Message cell, and then click the ... button.
The Select files dialog box appears.

5. Select the created XML file, and then click the OK button.

6. Click the Step Over button.
The response from the invoke service activity (StockAllocation) is emulated.
The processing of the process instance proceeds to the switch start activity (CheckStockAllocationResult).

To proceed to the subsequent activities, use the Debug view. For details, see (6) Debugging the business process.

(8) Finishing the debugging the business process
Finish debugging the business process.

The following is the procedure for finishing the debugging of the business process.

1. In the Debug view, select ProductArrangement, and then click the Finish icon.

Debugging of the business process finishes.

5. Experiencing the Development of Sample Programs

109

5.7 Preparing for running the developed sample program
In this section, validate operation of the developed sample program by using the sample service requester and service
component provided by Service Architect.

To verify operation of the sample program, first, perform the procedures in 3.5.5 Importing Eclipse projects and 3.5.6
Deploying the web project. Then, execute the sample program by following the procedure in Chapter 4. Executing
Sample Programs.

5. Experiencing the Development of Sample Programs

110

5.8 Defining data transformation by using a Java
program

In this section, use the CustomFunction sample program to develop a program that uses a Java program.

Development with the CustomFunction sample program uses a custom function. The custom function defines data
transformations by calling a Java program in which certain data processing is defined.

The following figure shows an overview of the processing of the CustomFunction sample programs.

Figure 5‒3: Processing of the CustomFunction sample program

The CustomFunction sample program executes processing as follows:

1. The Custom business process receives the character string entered from the service requester.

2. The business process calls the Hello service via the Hello service adapter. At this time, the custom function is used
to convert all lowercase characters to uppercase characters.

3. When the Hello service is called, the following character string is concatenated to the received one: and
Business Process (: single-byte space)

4. In addition, the custom function is used to add the execution date and time to the end of the character string (in
yyyy/MM/dd HH:mm:ss.SSS format).

5. Experiencing the Development of Sample Programs

111

Generated string: uppercase-string-output-by-Hello-service and Business
Process yyyy/MM/dd HH:mm:ss.SSS

5. The concatenation result is returned to the service requester, and then it is displayed in the output window.

5.8.1 Overview of defining the CustomFunction sample program
The following describes the general procedure for defining the CustomFunction sample program.

Note that you create the CustomFunction sample program by partially modifying the Hello service adapter and
Hello business process. Therefore, you must create the Hello service adapter and Hello business process before
creating the CustomFunction sample program. For details about how to create the Hello service adapter and Hello
business process, see 5.3 Defining service adapters and 5.4 Defining business processes.

Define the CustomFunction sample program as follows:

1. Prepare the custom function.

2. Change the Hello service adapter.

3. Change the Hello business process.

The following subsections describe the stages of developing the CustomFunction sample program above.

5.8.2 Preparing the custom function
If you choose to use the custom function, create the following two items, which are used for the custom function:

• Transformation function definition file that defines the configuration of the Java program to be called

• Java program

The following describes the procedure for creating the items above.

(1) Creating the transformation function definition file

1. From the Eclipse menu, select File, New, and then Other.
The New dialog box appears.

2. Select XML, and then XML File. Then, click the Next button.
The XML page appears.

5. Experiencing the Development of Sample Programs

112

3. Specify the directory that will contain the transformation function definition file and the desired transformation
function definition file. Then, click the Next button.
In this example, the directory that will store the transformation function definition file is
HCSCTE_HelloBusinessProcess (HCSCTE project folder), and the transformation function definition file
to be used is transfunc.xml.
The Create XML File From page appears.

4. Select the Create XML file from an XML schema file radio button, and then click the Next button.
The Select XML Schema File page appears.

5. Experiencing the Development of Sample Programs

113

5. Click the Import Files button.
The Import dialog box appears.

6. For From directory, specify the following directory:
service-platform-installation-directory\CSCTE\resources\customfunc

7. Select the check boxes of customfunc and customfunction_XMLSchema.xsd.

8. For Into folder, specify the folder to which the schema file will be imported.
In this example, specify HCSCTE_HelloBusinessProcess.

9. Click the Finish button.
The Select XML Schema File page appears again.

10. Click the Next button.
The Select Root Element page appears.

5. Experiencing the Development of Sample Programs

114

11. From Root element drop-down list, select customFunc, and then click the Finish button.
A model file of the transformation function definition file is generated.

12. Define necessary information for the model transformation function definition file.
To add an element, select and right-click the parent item in the node column. Select the position at which to add
the element.
You can edit the information of the element in the content column.
The following shows the information to be defined.

5. Experiencing the Development of Sample Programs

115

Table 5‒12: Information to be defined in the transformation function definition file

Element Information to be defined

xml version="1.0" encoding="UTF-8"

func:customFunc --

xmlns:func http://www.hitachi.co.jp/soft/xml/cosminexus/cscdt/
functions

xmlns:xsi http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation http://www.hitachi.co.jp/soft/xml/cosminexus/cscdt/
functions customfunction_XMLSchema.xsd

func:jar --

name CustomFunctions.jar

func:package --

name sample.transform.CustomFunction

func:class --

name CustomFunctions

func:method --

name changeCase

func:comment The alphabetic characters included in the transform-from string are output to the
transform-to string by changing all lowercase letters to uppercase letters, or vise
versa, according to the specified transformation flag.

func:arguments --

func:argument --

name text

func:comment Transform-from string

5. Experiencing the Development of Sample Programs

116

Element Information to be defined

func:argument --

name flag

func:comment Transformation flag (upper | lower)

func:method --

name currentDateTime

func:comment The current date and time is output in yyyy/MM/dd HH:mm:ss.SSS format.

Legend:
--: Nothing needs to be defined.

13. From the Eclipse menu, select File, and then Save.
The transformation function definition file has now been created.

(2) Creating a Java program
In the CustomFunction sample program, you create a custom function that calls the following Java program.

Figure 5‒4: Java program called by the custom function

The CustomFunction sample program provides a source file (CustomFunctions.java) that contains the Java
code above. Import and package this source file to create a Java program to be called by the custom function.

The following is the procedure for creating a Java program.

1. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box opens.

2. Select Java, and then click the OK button.
The Java perspective opens.

3. From the Eclipse menu, select File, and then Import.
The Select page appears.

4. In the tree view, select General, and then Existing Projects into Workspace.

5. Experiencing the Development of Sample Programs

117

5. Click the Next button.
The Import Projects page appears.

6. Select the Select root directory radio button, and then click the Browse button.
The dialog box for selecting a directory opens.

7. Select the directory that contains the CustomFunction sample program, and then click the OK button. In this
example, the directory to select is as follows: service-platform-installation-directory\CSCTE\Samples
\CustomFunctions\CustomFunction\CustomFunctions
The Import Projects page appears again.

8. Select the Copy projects into workspace check box.

5. Experiencing the Development of Sample Programs

118

9. Click the Finish button.
Import of the Java program is completed.

10. In the Package Explorer view, under the CustomFunctions project, right-click build.xml. Then, select Run, and
then Ant Build.
The Java program is packaged, and then a JAR file (CustomFunctions.jar) is created in the following
directory:
eclipse-workspace-directory\CustomFunctions\build\lib
If Ant Build does not appear, from the Eclipse menu, select Run, External Tools, and then Open External Tools
Dialog. In the dialog box that appears, specify the Ant Build settings.

11. Copy the created JAR file to the following location:
service-platform-installation-directory\CSC\userlib\customfunc
The Java program has now been created.

5.8.3 Modifying the Hello service adapter
The CustomFunction sample program changes the case of alphabetic data to uppercase when calling a service via
the service adapter. To implement this processing, you need to define data transformation in the Hello service adapter
by modifying the definition of the Hello service adapter.

The following is the procedure for modifying the Hello service adapter.

1. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

2. In the left pane, select HCSC-Definer, and then Data Transformation.
The setting items that are specified in the data transformation definition window are displayed.

5. Experiencing the Development of Sample Programs

119

3. Click the Custom Function tab.
The Custom Function tab in the Preference dialog box opens.

4. Click the Browse button.
The dialog box for selecting a file opens.

5. Select the transformation function definition file that you created in 5.8.2(1) Creating the transformation function
definition file, and then click the OK button.
The transformation function definition file is selected.

5. Experiencing the Development of Sample Programs

120

6. Click the OK button.
The transformation function definition file is registered.

7. Click the HelloServiceAdapter tab.
The service adapter definition (standard) window defined during development of the Hello service adapter
appears.

5. Experiencing the Development of Sample Programs

121

8. In the Request message area, in the Standard group, select the Use check box. Then, for Format ID, Message
format, and Data-conversion definition, set the values listed below.

5. Experiencing the Development of Sample Programs

122

No. Item Value to be set

1 Format ID hello01

2 Message format service-platform-installation-directory\CSCTE\Samples\CustomFunctions
\CustomFunction\Schema\HelloService.xsd

3 Data-conversion definition TRANSFORM

9. Click the Edit button.
The Select Root Element dialog box appears.

10. As the root elements for Source and Destination, select the following values from the drop-down list:

• Root element of HelloService.xsd (schema logical name) for Source: hls:getHelloString
• Root element of cscformat1.xsd (schema logical name) for Destination: hls:getHelloString

11. Click the OK button.
The data transformation definition window appears.

5. Experiencing the Development of Sample Programs

123

12. On the palette of the data transformation definition window, click custom. Then, on the canvas, click between the
transformation source and destination to place the custom there.

13. On the palette of the data transformation definition window, click const. Then, on the canvas, click between the
transformation source and destination to place the const there.

14. On the palette of the data transformation definition window, click Mapping.

15. Click the node adapter of the transformation-source node as the mapping source.

16. Click custom as the mapping destination.
A mapping line is set.

17. In the same way as steps 14 to 16, set a mapping line from custom to the node adapter of the transformation-
destination node.

18. In the same way as steps 14 to 16, set a mapping line from const to custom.

19. On the palette of the data transformation definition window, click Select.

5. Experiencing the Development of Sample Programs

124

20. On the palette of the data transformation definition window, double-click const.
The Set Constant dialog box appears.

21. Select String, and then enter upper.

22. Click the OK button.
The Set Constant dialog box closes.

23. In the data transformation definition window, double-click custom.
The Custom dialog box appears.

24. Click the Select Transform function button.
The Select Transform function dialog box appears.

25. In the transformation function tree, select String changeCase(text,flag), and then click the OK button.
The Select Transform function dialog box closes, and then the Custom dialog box re-appears.

5. Experiencing the Development of Sample Programs

125

26. Confirm that Argument name and Input value are defined as shown below.
If the combination of Argument name and Input value is different from the combination shown below, use the
Up Input value or Down Input value button to combine them correctly.

No. Argument name Input value

1 text /hls:getHelloString/hls:InputString

2 flag {const1}

27. Click the OK button.
The Custom dialog box closes.

28. From the Eclipse menu, select File, and then Save.
The Hello service adapter has now been modified completely.

29. Validate and package the modified service adapter.
For details about validation and packaging, see 5.3.2 Validating and packaging a service adapter.

30. Define deployment of the modified service adapter.
For details about deployment definitions, see 5.3.3 Defining deployment of a service adapter.

5.8.4 Modifying the Hello business process
The CustomFunction sample program adds the time that the business process was executed to the end of the
output string. To implement this processing, you need to modify the data transformation definition of the Hello
business process.

The following is the procedure for modifying the Hello business process.

1. Click the HelloBusinessProcess tab.
The business process definition window defined during Hello business process development appears.

5. Experiencing the Development of Sample Programs

126

2. Click the EditOutputString tab.
The data transformation definition window defined during Hello business process development appears.

3. On the palette of the data transformation definition window, click custom. Then, on the canvas, click between the
transformation source and destination to place the custom there.

4. On the palette of the data transformation definition window, click Mapping.

5. Click custom as the mapping source.

6. Click concat as the mapping destination.
A mapping line is set.

5. Experiencing the Development of Sample Programs

127

7. On the palette of the data transformation definition window, click Select.

8. In the data transformation definition window, double-click custom.
The Custom dialog box appears.

9. Click the Select Transform function button.
The Select Transform function dialog box appears.

10. In the transformation function tree, select String currentDateTime(), and then click the OK button.
The Select Transform function dialog box closes, and the then Custom dialog box re-appears.

11. Click the OK button.
The Custom dialog box closes.

12. In the data transformation definition window, double-click concat.
The Concatenate dialog box appears.

13. Confirm that {custom1} has been added at the bottom of the Input list box, and then click the OK button.
The Concatenate dialog box closes.

14. On the palette of the data transformation definition window, double-click const.
The Set Constant dialog box appears.

15. Select String, and then enter the following character string: and Business Process (:
single-byte space)

5. Experiencing the Development of Sample Programs

128

16. Click the OK button.
The Set Constant dialog box closes.

17. From the Eclipse menu, select File, and then Save.
The Hello business process has now been modified completely.

18. Validate and package the modified business process.
For details about validation and packaging, see 5.3.2 Validating and packaging a service adapter.

19. When you have modified a business process, define its deployment.
For details about deployment definitions, see 5.3.3 Defining deployment of a service adapter.

To execute the CustomFunction sample program that you developed
Use the following procedure to execute the sample program in the same way as in the example of executing the
HelloBusinessProcess sample program:

1. Perform the procedure in 3.5.5 Importing Eclipse projects.

2. Perform the procedure in 3.5.6 Deploying the web project.

3. Perform the procedure in 4.3 Operation when a business process is applied.

5. Experiencing the Development of Sample Programs

129

6 Deleting the Environment for
Sample Programs
This chapter describes how to delete the environment for sample programs.

131

6.1 Deleting projects
The projects to be deleted differ depending on the sample program. This section describes how to delete projects,
taking an example of the HelloServiceAdapter sample program. To run the same sample program (you
previously used) or another sample program after deleting all sample programs, you must begin with importing
Eclipse projects. For details about how to import Eclipse projects, see 3.5.5 Importing Eclipse projects.

The following figure shows an overview of deleting projects:

Figure 6‒1: Overview of deleting projects

An overview of each process is provided below. Before you start deleting projects, start Eclipse.

1. Undeploying and deleting web projects
For each sample program, undeploy the web projects deployed in 3.5.6 Deploying the web project. Then, delete
the Eclipse projects imported in 3.5.5 Importing Eclipse projects. For details, see 6.1.1 Undeploying and deleting
web projects.

2. Deleting definitions deployed to the HCSC server
For each sample program, delete definitions deployed to the HSCS server in 3.5.7 Deploying definitions to the
HCSC server. For details, see 6.1.2 Deleting definitions deployed to the HCSC server.

The following subsections describe how to delete projects in the order shown above.

6.1.1 Undeploying and deleting web projects
This subsection describes how to delete web projects, taking an example of the HelloServiceAdapter sample
program.

(1) Undeploying web projects
The following describes how to undeploy web projects:

! Important note

Do not delete the projects created in 3.5.7(1) Creating HCSCTE projects.

1. From the Eclipse menu, click Window, Open Perspective, and then Other.
The Open Perspective dialog box appears.

2. Select Java EE (default), and then click the OK button.
The Java EE perspective appears.

3. In the Servers view, right-click MyServer at localhost, and then select Add and Remove.
The Add and Remove dialog box appears.

4. In the Configured list box, select HelloClient and HelloService, and then click the Remove button.
HelloClient and HelloService are moved from the Configured list box to the Available list box.

5. Click the Finish button.
A message indicating that operation is in progress appears.
After processing terminates, the Java EE perspective appears again. Make sure that the HelloClient and
HelloService projects have been deleted from under MyServer at localhost in the Servers view.

6. Deleting the Environment for Sample Programs

132

(2) Deleting web projects
The following describes how to delete web projects:

1. In the Project Explorer view, select the imported Eclipse project.
For details about the Eclipse projects imported for each sample program, see 3.5.5 Importing Eclipse projects.

2. Right-click, and then select Delete.
The Delete Resources dialog box that asks you to confirm deletion appears.

3. Select the Delete project contents on disk check box, and then click the OK button.
The selected Eclipse project is deleted.

6.1.2 Deleting definitions deployed to the HCSC server
This subsection describes how to delete the service adapter deployed to the HCSC server, taking an example of the
HelloServiceAdapter sample program.

1. In the HCSCTE tree view, right-click Service Definition List, and then select Stop and undeploy all services
from server.

The account authentication window appears.

2. Enter admin in both User ID and Password, and then click the OK button.
A message indicating that operation is in progress appears. Then, a message indicating the results appears. This
completes deletion of the HCSC component deployed to the HCSC server.

3. To completely delete the definitions from the HCSCTE project, select HCSC-Definer, Repository management,
and then Initialize repository.

6. Deleting the Environment for Sample Programs

133

When the dialog box that asks you to confirm initialization appears, click the Yes button. Definitions are now
completely deleted.

6. Deleting the Environment for Sample Programs

134

6.2 Stopping the test environment
To terminate use of Service Architect, stop the active test environment, and then exit Eclipse.

To stop the test environment:

1. From the Start menu, select Programs, Cosminexus#, and then Stop Test Server to stop Performance Tracer, the
J2EE server, and the HCSC server (including the standard reception and user-defined reception) in the test
environment.

2. From the Start menu, select Programs, Cosminexus#, and then Stop Database to stop the embedded database in
the test environment.

#
If this program folder name has been changed, select the changed program folder name.

! Important note

If you exit Eclipse before stopping the test environment, process-termination processing is performed to terminate the test
environment even after the Eclipse window is closed. Therefore, when you start Eclipse the next time, an error message
indicating that another process is using the HCSCTE temporary directory might appear. The following describes what to do
if an error message appears:

1. Open Windows Task Manager.

2. Wait until the eclipse.exe and javaw.exe processes, which are running Eclipse, disappear from the list of
processes.

3. After confirming that the processes have disappeared, start Eclipse.

6. Deleting the Environment for Sample Programs

135

6.3 Unsetup and uninstallation
This section describes how to undo setup of the test environment and Eclipse, and how to uninstall Service Architect.

6.3.1 Undoing setup of the test environment
Use HCSC Easy Setup to undo setup of the test environment. To undo setup of the test environment:

1. Stop the test environment if it is active. Exit Eclipse if it is running.

2. From the Start menu, select Programs, Cosminexus#, First Setup, and then Setup Testing Environment.
The Main page of the HCSC Easy Setup window appears.

3. Click the Unsetup button.
Unsetup of the test environment starts, and then finishes after a while.

#
If this program folder name has been changed, select the changed program folder name.

6.3.2 Undoing setup of Eclipse
Use Eclipse Setup to undo setup of an environment that was built by using Eclipse Setup.

The following table lists the items that are deleted when setup is undone by using Eclipse Setup:

Table 6‒1: Items deleted when setup is undone by using Eclipse Setup

Item Deleted?

Eclipse Platform Deleted#1

Eclipse configuration folder

(folder for each user)
Not deleted#2

Eclipse workspace Not deleted

Shortcut to Eclipse Deleted

#1
All data in the target folder, including user-created files, will be deleted.

#2
The configuration folder and workspace are created by Eclipse. Therefore, they are not deleted by undoing setup
by using Eclipse Setup provided by Developer. If you want to delete them, you have to do so manually. For
details, see (2) Undoing setup manually .

If you have uninstalled and then re-installed Service Architect before undoing setup of an environment built by using
Eclipse Setup, see (2) Undoing setup manually.

! Important note

Before you start undoing setup, exit Eclipse. If you undo setup while Eclipse is running, the Eclipse installation directory
will not be deleted. If the Eclipse installation directory remains after setup is undone, manually delete the directories and
files in Eclipse-installation-directory\eclipse.

(1) Using Eclipse Setup
To use Eclipse Setup to undo setup:

1. From the Start menu, select Programs, Cosminexus, First Setup, and then Unsetup Eclipse.
Eclipse Setup starts, and then the Verify Unsetup page appears in the Unsetup - Eclipse Setup dialog box.

6. Deleting the Environment for Sample Programs

136

2. Check the information displayed in the Unsetup details area, and then click the Execute button.
The Progress Status page appears.
When unsetup processing terminates, the Unsetup Completed page appears.

3. Click the Finish button.
The Unsetup - Eclipse Setup dialog box closes.

! Important note

If you undo setup in Windows Vista or later, the shortcut to eclipse.exe that was added to the desktop during setup is
deleted. However, the shortcut icon might remain on the screen (as if not deleted). In this case, refresh the desktop to delete
the shortcut from the screen.

(2) Undoing setup manually
If you have uninstalled and then re-installed Service Architect before undoing setup of the environment built by using
Eclipse Setup, manually undo that environment. To manually undo setup of the test environment:

1. Delete the shortcut to Eclipse.

6. Deleting the Environment for Sample Programs

137

The administrator deletes the following files:

In Windows XP:
C:\Documents and Settings\All Users\Desktop\Eclipse.lnk

In Windows Vista or later
C:\Users\Public\Desktop\Eclipse.lnk

2. Delete the Eclipse configuration folder.
The following shows the location of the folder:

In Windows XP:
C:\Documents and Settings\All Users\ADP

In Windows Vista or later
C:\Users\All Users\ADP

3. Delete the Eclipse folder.
The following shows the default location of the folder:
service-platform-installation-directory\ADP\IDE\eclipse

6.3.3 Uninstalling Service Architect
Uninstall Service Architect. For uninstallation, you must have Administrator permissions or administrator privileges.

Before uninstalling Service Architect, you need to undo setup of Eclipse.

1. From the Windows Start menu, select Cosminexus, and then uCosminexus Service Architect Uninstall.
A dialog box that asks you to confirm uninstallation appears.

2. Click the Yes or No button.

If you click the Yes button
Uninstallation starts, and then all the Service Architect configuration software products are deleted.

If you click the No button
A dialog box for selecting the configuration software to be uninstalled appears. Select the configuration
software to uninstall, and then click the Next button. Uninstallation starts, and then the selected configuration
software is deleted.

6. Deleting the Environment for Sample Programs

138

Appendixes

139

A. Configuration of sample program files
The following table lists the locations of the sample programs:

Table A‒1: Storage location of sample programs

Sample program name Storage location

HelloServiceAdapter service-platform-installation-directory\CSCTE\Samples\HelloServiceAdapter

HelloBusinessProcess service-platform-installation-directory\CSCTE\Samples
\HelloBusinessProcess

HelloProductArrangement service-platform-installation-directory\CSCTE\Samples\ProductStock

CustomFunction service-platform-installation-directory\CSCTE\Samples\CustomFunctions

The sections below describe the configuration of files for each sample program.

Bold text indicates files that are installed in a sample program. Files not in bold text are automatically created.

A.1 Configuration of the HelloServiceAdapter sample program

HelloServiceAdapter
|-Repository Repository directory
||-HelloServiceAdapter.zip Repository
|-Requester Service requester directory
||-HelloClient Eclipse Java enterprise application project
||| .project
||+.settings
||| org.eclipse.wst.common.component
||| org.eclipse.wst.common.project.facet.core.xml
||+EarContent
|| +META-INF
|| application.xml
||-HelloClientWeb Eclipse Java Web project
| | .classpath
| | .project
| +.settings
| | .jsdtscope
| | org.eclipse.jdt.core.prefs
| | org.eclipse.wst.common.component
| | org.eclipse.wst.common.project.facet.core.xml
| | org.eclipse.wst.jsdt.ui.superType.container
| | org.eclipse.wst.jsdt.ui.superType.name
| +build
| |+classes
| +src
| |+jp
| ||+co
| || +Hitachi
| || +soft
| || +csc
| || +msg
| || +message
| || +reception
| || |-ejb Stores client stubs that are generated based on WSDL
| || CSCMsgServerFaultException.java
| || CSCMsgSyncServiceDeliveryWSImpl.java
| || CSCMsgSyncServiceDeliveryWSImplService.java
| || CSCMsgSyncServiceDeliveryWSImplServiceLocator.java
| || CSCMsgSyncServiceDeliveryWSImplSoapBindingStub.java
| |+sample
| | +servlet
| | | HelloServlet.java Service component invocation servlet
| | +xml
| | DomUtil.java
| | XmlErrorHandler.java
| +WebContent
| | index.html Input window
| +META-INF
| | MANIFEST.MF
| +WEB-INF
| | web.xml DD

A. Configuration of sample program files

140

| +lib
|-Service Service component directory
 |-HelloService Eclipse Java enterprise application project
 || .project
 || c4webcl.properties Client definition file used by the Hello service adapter
 |+.settings
 || org.eclipse.wst.common.component
 || org.eclipse.wst.common.project.facet.core.xml
 |+EarContent
 | +META-INF
 | application.xml
 ||-HelloServiceWeb Eclipse Java Web project
 || .classpath
 || .project
 |+.settings
 || .jsdtscope
 || org.eclipse.jdt.core.prefs
 || org.eclipse.wst.common.component
 || org.eclipse.wst.common.project.facet.core.xml
 || org.eclipse.wst.jsdt.ui.superType.container
 || org.eclipse.wst.jsdt.ui.superType.name
 |+build
 ||+classes
 |+src
 ||+sample
 || +HelloService
 || Hello.java Server skeleton
 || HelloSoapBindingImpl.java Hello service (server skeleton)
 |+WebContent
 | +META-INF
 | | MANIFEST.MF
 | +WEB-INF
 | | server-config.xml Service deploy definition file (server skeleton)
 | | web.xml DD
 | +lib
 +WSDL
 cscmsg_ws.wsdl
 HelloService.wsdl WSDL for the Hello service

A.2 Configuration of the HelloBusinessProcess sample program

HelloBusinessProcess
|-Repository Repository directory
| HelloBusinessProcess.zip Repository
|-Requester Service requester directory
||-HelloClient Eclipse Java enterprise application project
||| .project
||+.settings
||| org.eclipse.wst.common.component
||| org.eclipse.wst.common.project.facet.core.xml
||+EarContent
|| +META-INF
|| application.xml
||-HelloClientWeb Eclipse Java Web project
| | .classpath
| | .project
| +.settings
| | .jsdtscope
| | org.eclipse.jdt.core.prefs
| | org.eclipse.wst.common.component
| | org.eclipse.wst.common.project.facet.core.xml
| | org.eclipse.wst.jsdt.ui.superType.container
| | org.eclipse.wst.jsdt.ui.superType.name
| +build
| |+classes
| +src
| |+jp
| ||+co
| || +Hitachi
| || +soft
| || +csc
| || +msg
| || +message
| || +reception
| || |-ejb Stores client stubs that are generated based on WSDL
| || CSCMsgServerFaultException.java
| || CSCMsgSyncServiceDeliveryWSImpl.java
| || CSCMsgSyncServiceDeliveryWSImplService.java
| || CSCMsgSyncServiceDeliveryWSImplServiceLocator.java

A. Configuration of sample program files

141

| || CSCMsgSyncServiceDeliveryWSImplSoapBindingStub.java
| |+sample
| | +servlet
| | | HelloServlet.java Service component invocation servlet
| | +xml
| | DomUtil.java
| | XmlErrorHandler.java
| +WebContent
| | index.html Input window
| +META-INF
| | MANIFEST.MF
| +WEB-INF
| | web.xml DD
| +lib
|-Service Service component directory
 |-HelloService Eclipse Java enterprise application project
 || .project
 || c4webcl.properties Client definition file used by the Hello service adapter
 |+.settings
 || org.eclipse.wst.common.component
 || org.eclipse.wst.common.project.facet.core.xml
 |+EarContent
 | +META-INF
 | application.xml
 |-HelloServiceWeb Eclipse Java Web project
 || .classpath
 || .project
 |+.settings
 || .jsdtscope
 || org.eclipse.jdt.core.prefs
 || org.eclipse.wst.common.component
 || org.eclipse.wst.common.project.facet.core.xml
 || org.eclipse.wst.jsdt.ui.superType.container
 || org.eclipse.wst.jsdt.ui.superType.name
 |+build
 ||+classes
 |+src
 ||+sample
 || +HelloService
 || Hello.java Server skeleton
 || HelloSoapBindingImpl.java Hello service (server skeleton)
 |+WebContent
 | +META-INF
 | | MANIFEST.MF
 | +WEB-INF
 | | server-config.xml Service deploy definition file (server skeleton)
 | | web.xml DD
 | +lib
 +WSDL
 cscmsg_ws.wsdl
 HelloService.wsdl WSDL for the Hello service

A.3 Configuration of the HelloProductArrangement sample program

ProductStock
|-Repository Repository directory
| ProductStock.zip Repository
|-Requester Service requester directory
||-ArrangementClient Eclipse Java enterprise application project
||| .project
||+.settings
||| org.eclipse.wst.common.component
||| org.eclipse.wst.common.project.facet.core.xml
||+EarContent
|| +META-INF
|| application.xml
||-ArrangementClientWeb Eclipse Java Web project
| | .classpath
| | .project
| +.settings
| | .jsdtscope
| | org.eclipse.jdt.core.prefs
| | org.eclipse.wst.common.component
| | org.eclipse.wst.common.project.facet.core.xml
| | org.eclipse.wst.jsdt.ui.superType.container
| | org.eclipse.wst.jsdt.ui.superType.name
| +build
| |+classes
| +src

A. Configuration of sample program files

142

| |+sample
| | +ArrangementService
| | | Arrangement.java Client stab
| | | ArrangementService.java Client stab
| | | ArrangementServiceLocator.java Client stab
| | | ArrangementSoapBindingStub.java Client stab
| | +servlet
| | ArrangementServlet.java Service component invocation servlet
| +WebContent
| | error.jsp Error response window
| | index.html Input window
| | result.jsp Normal response window
| +META-INF
| | MANIFEST.MF
| +WEB-INF
| | web.xml DD
| +lib
+Service
 |-DeliveryService Eclipse Java enterprise application project
 || .project
 || c4webcl.properties Client definition file used by the delivery reception
service adapter
 |+.settings
 || org.eclipse.wst.common.component
 || org.eclipse.wst.common.project.facet.core.xml
 |+EarContent
 | +META-INF
 | application.xml
 |-DeliveryServiceWeb Eclipse Java Web project
 || .classpath
 || .project
 |+.settings
 || .jsdtscope
 || org.eclipse.jdt.core.prefs
 || org.eclipse.wst.common.component
 || org.eclipse.wst.common.project.facet.core.xml
 || org.eclipse.wst.jsdt.ui.superType.container
 || org.eclipse.wst.jsdt.ui.superType.name
 |+build
 ||+classes
 |+src
 ||+sample
 || +DeliveryService
 || Delivery.java Server skeleton
 || DeliverySoapBindingImpl.java Delivery reception service (server skeleton)
 |+WebContent
 | +META-INF
 | | MANIFEST.MF
 | +WEB-INF
 | | server-config.xml Service deploy definition file (server skeleton)
 | | web.xml DD
 | +lib
 |-InventoryManagementService ... Eclipse Java enterprise application project
 || .project
 || c4webcl.properties Client definition file used by the inventory management
service adapter
 |+.settings
 || org.eclipse.wst.common.component
 || org.eclipse.wst.common.project.facet.core.xml
 |+EarContent
 | +META-INF
 | application.xml
 |-InventoryManagementServiceWeb Eclipse Java Web project
 || .classpath
 || .project
 |+.settings
 || .jsdtscope
 || org.eclipse.jdt.core.prefs
 || org.eclipse.wst.common.component
 || org.eclipse.wst.common.project.facet.core.xml
 || org.eclipse.wst.jsdt.ui.superType.container
 || org.eclipse.wst.jsdt.ui.superType.name
 |+build
 ||+classes
 |+src
 ||+sample
 || +InventoryManagementService
 || InventoryManager.java Server skeleton
 || InventoryManagerSoapBindingImpl.java ... Inventory management service (server
skeleton)
 |+WebContent
 | +META-INF
 | | MANIFEST.MF

A. Configuration of sample program files

143

 | +WEB-INF
 | | server-config.xml Service deploy definition file (server skeleton)
 | | web.xml DD
 | +lib
 +WSDL
 ArrangementService.wsdl WSDL for HelloProductArrangement
 DeliveryService.wsdl WSDL for the delivery reception service
 InventoryManagementService.wsdl WSDL for the inventory management service

A.4 Configuration of the CustomFunction sample program

CustomFunctions
|-Repository Repository directory
| HelloCustomFunction.zip Repository
+CustomFunction
 +CustomFunctions
 ||.classpath
 ||.project
 ||build.xml Ant build definition file
 |+bin
 |+build
 ||+classes
 ||+lib
 || CustomFunctions.jar Custom function jar file
 |+src
 | +sample
 | +transform
 | +CustomFunction
 | CustomFunctions.java Sample source
 +Configuration
 | CustomFunctions.xml Transformation function definition file
 +Schema
 HelloService.xsd Schema used to correct the Hello service adapter

A. Configuration of sample program files

144

B. Collecting the Information Output When Eclipse Setup Was
Executed

Information specified when Eclipse Setup was executed, including setup details, configuration changes, and unsetup
details, is saved in a file as setup log.

The following describes how to check the setup log, and the information recorded in the setup log:

• How to check the setup log
From the Windows Start menu, select Programs, Cosminexus, First Setup, and then Eclipse Setup Log. The
setup log is displayed.

• Information recorded in the setup log
You can check the following information in the setup log in the Eclipse environment:

• Settings specified when the Eclipse environment was set up

• Settings of the Eclipse environment for which setup was undone

These entries are stored in one file in the order in which operations were executed. Therefore, the most recent
information is stored at the end of the file. Even if an error occurred or processing was interrupted, the log
information is stored.
While Eclipse Setup is being executed, error messages are displayed in the Eclipse Setup console window. If error
messages are output, take action according to the manual Application Server Messages.

B. Collecting the Information Output When Eclipse Setup Was Executed

145

C. Glossary
Terms used in the manual

See the Application Server and BPM/ESB Platform Terminology Guide.

C. Glossary

146

Index

A
activities, defining 72, 89
activities, deploying 71, 87
ArrangementService.wsdl 81

B
business process 8
business process, adding 67, 82
business processes, creating 67
business processes, defining 67

C
calling service component from business process 9
calling service component from service requester 9
Compiler (page) 22
components, defining deployment of 101
components, validating and packaging 101
conventions: fonts and symbols 2
conventions: installation directory 2
conventions: language pack 2
conventions: types of text in syntax 2
custom function, preparing 112
CustomFunction sample program, configuration of 144
CustomFunction sample program, general procedure for

defining 112
CustomFunction sample program, processing of 111

D
data transformation, defining (by using Java program) 111
definitions 40
definitions deployed to HCSC server, deleting 133
delivery reception service adapter, defining 79
DeliveryService.wsdl 79
development environment, setting up 20

E
Eclipse, preparing 16
Eclipse, setting up (development environment) 20
Eclipse, setting up (execution environment) 28
Eclipse, undoing setup of 136
Eclipse projects, importing 35
Eclipse Setup, using (to set up Eclipse environment) 17
execution environment, setting up 25

G
glossary 146

H
HCSC Easy Setup 26
HCSC server 8

HCSC server, deploying definitions to 40
HCSCTE project, creating 58
Hello business process, defining deployment of 76
Hello business process, modifying 126
Hello business process, validating and packaging 76
HelloBusinessProcess (sample program), processing

contents 10
HelloBusinessProcess (sample program), processing details

10
HelloBusinessProcess (sample program), system

configuration of 7
HelloBusinessProcess sample program, configuration of141
HelloBusinessProcess sample program (operation

procedure) 51
HelloProductArrangement (sample program), processing

contents 11
HelloProductArrangement (sample program), processing

details 11
HelloProductArrangement (sample program), system

configuration of 7
HelloProductArrangement sample program, configuration

of 142
Hello service adapter, modifying 119
HelloServiceAdapter (sample program), processing

contents 9
HelloServiceAdapter (sample program), processing details 9
HelloServiceAdapter (sample program), system

configuration of 6
HelloServiceAdapter sample program, configuration of 140
HelloServiceAdapter sample program (operation

procedure) 49

I
installation and setup, overview of (Service Architect) 14
Installed JREs (page) 20
installing Service Architect 15
integrating processes 10
InventoryManagementService.wsdl 77

J
J2EE server 8
J2EE server, selecting 33
Java program, creating 117
JDK, checking version of 20

L
library paths, setting 28
local variables, specifying settings for outputting

information about 22

M
Management Server Remote Management, logging in to 28

147

O
operation when business processes are not applied 49
operation when business process is applied 51
operation when processes of multiple services are

integrated 53
overview of this manual 2

P
product arrangement business process, defining 81
product arrangement sample program (operation procedure)

53
product arrangement system, debugging 102
product arrangement system, developing 77
projects, deleting 132

S
sample program, preparing for running 110
sample program files, configuration of 140
sample programs, before using 1
sample programs, components of 8
sample programs, deleting environment for 131
sample programs, executing 47, 48
sample programs, experiencing the development of 55
sample programs, location of 140
sample programs, overview of 5
sample programs, preparing environment for 13
sample programs, procedure for developing 56
sample programs, processing details of 9
sample programs, system configurations of 6
server runtime, creating 31
service adapter 8
service adapter, creating 61
service adapter, defining deployment of 65
service adapter, validating and packaging 64
service adapters, defining 61
Service Architect, installing and setting up 15
Service Architect, uninstalling 138
service component 8
service requester 8
setup log 145
standard reception 8
stock management service adapter, defining 77

T
test environment, building 26
test environment, starting 27
test environment, stopping 135
test environment, undoing setup of 136
transformation function definition file, creating 112

U
unsetup and uninstallation 136
user-defined reception 8
user-defined reception, adding 83

V
variables, setting 69, 85

W
web project, deploying 38
web projects, undeploying and deleting 132
what you can expect from this manual 3
WSDL4J, installing 23

Index

148

	First Step Guide
	Preface
	Contents
	Part 1: BASIC
	1. Before Using Sample Programs
	1.1 Overview of this manual
	1.2 What you can expect from this manual

	2. Overview of Sample Programs
	2.1 System configurations of sample programs
	2.2 Components of sample programs
	2.3 Processing details of sample programs
	2.3.1 Calling a service component from the service requester
	2.3.2 Calling a service component from the business process
	2.3.3 Integrating processes

	3. Preparing the Environment for Sample Programs
	3.1 Overview of installation and setup
	3.2 Installing Service Architect and preparing for setting it up
	3.2.1 Installing Service Architect
	3.2.2 Preparing Eclipse

	3.3 Using Eclipse Setup to set up the Eclipse environment
	3.4 Setting up the development environment
	3.4.1 Setting up Eclipse
	3.4.2 Installing WSDL4J

	3.5 Setting up the execution environment
	3.5.1 Building the test environment
	3.5.2 Starting the test environment
	3.5.3 Logging in to Management Server Remote Management
	3.5.4 Setting up Eclipse
	3.5.5 Importing Eclipse projects
	3.5.6 Deploying the web project
	3.5.7 Deploying definitions to the HCSC server

	4. Executing Sample Programs
	4.1 Executing sample programs
	4.2 Operation when business processes are not applied
	4.3 Operation when a business process is applied
	4.4 Operation when processes of multiple services are integrated

	Part 2: APPLICATION
	5. Experiencing the Development of Sample Programs
	5.1 Procedure for developing sample programs
	5.2 Creating the HCSCTE project
	5.3 Defining service adapters
	5.3.1 Creating a service adapter
	5.3.2 Validating and packaging a service adapter
	5.3.3 Defining deployment of a service adapter

	5.4 Defining business processes
	5.4.1 Creating business processes
	5.4.2 Validating and packaging a Hello business process
	5.4.3 Defining deployment of a Hello business process

	5.5 Developing the product arrangement system
	5.5.1 Defining the stock management service adapter
	5.5.2 Defining the delivery reception service adapter
	5.5.3 Defining the product arrangement business process
	5.5.4 Validating and packaging components
	5.5.5 Defining deployment of components

	5.6 Debugging the product arrangement system
	5.7 Preparing for running the developed sample program
	5.8 Defining data transformation by using a Java program
	5.8.1 Overview of defining the CustomFunction sample program
	5.8.2 Preparing the custom function
	5.8.3 Modifying the Hello service adapter
	5.8.4 Modifying the Hello business process

	6. Deleting the Environment for Sample Programs
	6.1 Deleting projects
	6.1.1 Undeploying and deleting web projects
	6.1.2 Deleting definitions deployed to the HCSC server

	6.2 Stopping the test environment
	6.3 Unsetup and uninstallation
	6.3.1 Undoing setup of the test environment
	6.3.2 Undoing setup of Eclipse
	6.3.3 Uninstalling Service Architect

	Appendixes
	A. Configuration of sample program files
	A.1 Configuration of the HelloServiceAdapter sample program
	A.2 Configuration of the HelloBusinessProcess sample program
	A.3 Configuration of the HelloProductArrangement sample program
	A.4 Configuration of the CustomFunction sample program

	B. Collecting the Information Output When Eclipse Setup Was Executed
	C. Glossary

	Index

