HITACHI

Inspire the Next

uCosminexus Service Platform

First Step Guide

User's Guide and Operator's Guide

3020-3-Y41-40(E)

m Relevant program products

For the relevant program products, see the preface section in the manual uCosminexus Application Server Overview.

m Export restrictions

If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law, and USA export
control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

m Trademarks

HITACHI and uCosminexus are trademarks or registered trademarks of Hitachi, Ltd.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Other company and product names mentioned in this document may be the trademarks of their respective owners.

Eclipse is an open development platform for tools integration provided by Eclipse Foundation, Inc., an open source community for
development tool providers.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

m Microsoft product name abbreviations

This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning
Windows Windows Server Windows Server Microsoft(R) Windows Server(R) 2008 Standard 32-bit
2008 2008 x86

Microsoft(R) Windows Server(R) 2008 Enterprise 32-bit
Windows Server Microsoft(R) Windows Server(R) 2008 Standard
2008 x64

Microsoft(R) Windows Server(R) 2008 Enterprise
Windows Server Microsoft(R) Windows Server(R) 2008 R2 Standard
2008 R2

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server Windows Server Microsoft(R) Windows Server(R) 2012 Standard
2012 2012 Standard
Windows Server Microsoft(R) Windows Server(R) 2012 R2 Standard
2012 R2 Standard
Windows Server Microsoft(R) Windows Server(R) 2012 Datacenter
2012 Datacenter
Windows Server Microsoft(R) Windows Server(R) 2012 R2 Datacenter
2012 R2 Datacenter
Windows XP Microsoft(R) Windows(R) XP Professional Operating System
Windows Vista Windows Vista Microsoft(R) Windows Vista(R) Business (32-bit Edition)
Business
Windows Vista Microsoft(R) Windows Vista(R) Enterprise (32-bit Edition)
Enterprise
Windows Vista Microsoft(R) Windows Vista(R) Ultimate (32-bit Edition)

Ultimate

Abbreviation

Full name or meaning

Windows Windows 7

Windows 7 x86

Microsoft(R) Windows(R) 7 Professional (32-bit Edition)

Microsoft(R) Windows(R) 7 Enterprise (32-bit Edition)

Microsoft(R) Windows(R) 7 Ultimate (32-bit Edition)

Windows 7 x64

Microsoft(R) Windows(R) 7 Professional (64-bit Edition)

Microsoft(R) Windows(R) 7 Enterprise (64-bit Edition)

Microsoft(R) Windows(R) 7 Ultimate (64-bit Edition)

Windows 8

Windows 8 x86

Windows(R) 8 Pro (32-bit Edition)

Windows(R) 8 Enterprise (32-bit Edition)

Windows 8 x64

Windows(R) 8 Pro (64-bit Edition)

Windows(R) 8 Enterprise (64-bit Edition)

Windows 8.1

Windows 8.1 x86

Windows(R) 8.1 Pro (32-bit Edition)

Windows(R) 8.1 Enterprise (32-bit Edition)

Windows 8.1 x64

Windows(R) 8.1 Pro (64-bit Edition)

Windows(R) 8.1 Enterprise (64-bit Edition)

Note that a 32-bit edition of Windows might be called Windows x86. Also note that a 64-bit edition of Windows might be called Windows x64.

m Issued
Oct. 2015: 3020-3-Y41-40(E)

m Copyright

All Rights Reserved. Copyright (C) 2015, Hitachi, Ltd.

Preface

For the basics required to understand this manual, see the preface section in the manual uCosminexus Application Server
Overview.

Part 1: BASIC
] Before Using Sample Programs 1
1.1 Overview of this manual 2
1.2 What you can expect from this manual 3
2 Overview of Sample Programs 5
2.1 System configurations of sample programs 6
2.2 Components of sample programs 8
2.3 Processing details of sample programs 9
2.3.1 Calling a service component from the service requester 9
2.3.2 Calling a service component from the business process 9
2.3.3 Integrating processes 10
3 Preparing the Environment for Sample Programs 13
3.1 Overview of installation and setup 14
3.2 Installing Service Architect and preparing for setting it up 15
3.2.1 Installing Service Architect 15
3.2.2 Preparing Eclipse 16
3.3 Using Eclipse Setup to set up the Eclipse environment 17
3.4 Setting up the development environment 20
3.4.1 Setting up Eclipse 20
3.4.2 Installing WSDL4J 23
3.5 Setting up the execution environment 25
3.5.1 Building the test environment 26
3.5.2 Starting the test environment 27
3.5.3 Logging in to Management Server Remote Management 28
3.5.4 Setting up Eclipse 28
3.5.5 Importing Eclipse projects 35
3.5.6 Deploying the web project 38
3.5.7 Deploying definitions to the HCSC server 40
4 Executing Sample Programs 47
4.1 Executing sample programs 48
4.2 Operation when business processes are not applied 49
4.3 Operation when a business process is applied 51

Contents

4.4 Operation when processes of multiple services are integrated 53
Part 2: APPLICATION
5 Experiencing the Development of Sample Programs 55
5.1 Procedure for developing sample programs 56
5.2 Creating the HCSCTE project 58
5.3 Defining service adapters 61
5.3.1 Creating a service adapter 61
5.3.2 Validating and packaging a service adapter 64
5.3.3 Defining deployment of a service adapter 65
5.4 Defining business processes 67
5.4.1 Creating business processes 67
5.4.2 Validating and packaging a Hello business process 76
5.4.3 Defining deployment of a Hello business process 76
5.5 Developing the product arrangement system 77
5.5.1 Defining the stock management service adapter 77
5.5.2 Defining the delivery reception service adapter 79
5.5.3 Defining the product arrangement business process 81
5.5.4 Validating and packaging components 101
5.5.5 Defining deployment of components 101
5.6 Debugging the product arrangement system 102
5.7 Preparing for running the developed sample program 110
5.8 Defining data transformation by using a Java program 111
5.8.1 Overview of defining the CustomFunction sample program 112
5.8.2 Preparing the custom function 112
5.8.3 Modifying the Hello service adapter 119
5.8.4 Modifying the Hello business process 126
6 Deleting the Environment for Sample Programs 131
6.1 Deleting projects 132
6.1.1 Undeploying and deleting web projects 132
6.1.2 Deleting definitions deployed to the HCSC server 133
6.2 Stopping the test environment 135
6.3 Unsetup and uninstallation 136
6.3.1 Undoing setup of the test environment 136
6.3.2 Undoing setup of Eclipse 136
6.3.3 Uninstalling Service Architect 138

Contents

Appendixes 139

A. Configuration of sample program files 140
A.1 Configuration of the HelloServiceAdapter sample program 140
A.2 Configuration of the HelloBusinessProcess sample program 141
A.3 Configuration of the HelloProductArrangement sample program 142
A.4 Configuration of the CustomFunction sample program 144
B. Collecting the Information Output When Eclipse Setup Was Executed 145
C. Glossary 146

Index 147

Part 1: BASIC

Before Using Sample Programs

This chapter provides an overview of this manual and what you can expect from it.

1. Before Using Sample Programs

1.1

Overview of this manual

This manual gives you experience in performing tasks from creating the service platform environment to executing
sample programs through actual operations on a machine.

Chapter 2 describes the three sample programs that are provided by this product, and the components of each sample
program.

Chapter 3 describes the procedure for creating the service platform environment and the preparation for executing the
three sample programs.

Chapter 4 describes the procedure for executing the sample programs that were prepared in Chapter 3.

Chapter 5 describes the procedure for creating programs (sample programs used in Chapters 3 and 4) in the
development environment.

Chapter 6 describes the procedure for deleting the service platform and sample program environments that were
prepared in Chapter 3.

The chapters of this manual are intended to be read sequentially. Read through the chapters in the organized order,
while operating the machine.

Tip
Conventions: Fonts and symbols
This manual uses the following conventions for screens and operations:
Text formatting Convention
Ttalic Italic characters indicate a placeholder for text to be provided by the user or system.
Monospace Monospace characters indicate text that the user enters without change, or text (such as messages) output by the
system.
Conventions: Types of text in syntax
The following defines the types of text in syntax:
Type Definition
Alphabetic A-Z and a-z
Alphanumeric A-7, a-z,and 0-9
String Any string of characters

Conventions: Installation directory
The default installation directory for the service platform is C: \Program Files\Hitachi\Cosminexus. If you
do not want to use the default installation directory, replace service-platform-installation-directory with the name of the
desired directory in this manual.

Conventions: Language pack

This manual uses the Eclipse menu item names for which Babel Japanese Language Pack (version 2012-07-21)
provided by Eclipse Babel Project was applied. The menu item names might differ depending on the version of the
language pack.

1. Before Using Sample Programs

1.2 What you can expect from this manual

This manual gives you experience in using Eclipse to perform tasks from setting up the environment for sample
programs to developing and actually executing the sample programs.

The following explains what to expect from each chapter:

Experiences in Chapter 3

You can install Service Architect, use Eclipse Setup to set up the Eclipse environment with HCSCTE plug-ins
installed, and use HCSC Easy Setup to set up the execution environment.

What to expect from Chapter 4

You can use the environment that you set up in Chapter 3 to execute sample programs from a web browser.

Experiences in Chapter 5

By performing the procedures as described, you can use the development environment for the service platform to
gain experience in performing a sequence of steps, from developing to executing three sample programs.

During development of sample programs, you can perform operations related to service adapters, business
processes, data conversion definition, and other basic functions for using the service platform. You can also
perform operations related to debugging functions provided by the service platform, by using a sample program as
an example.

Experiences in Chapter 6

You can delete the project that was prepared in Chapter 3, stop the test environment, undo setup of Eclipse, and
uninstall Service Architect.

Overview of Sample Programs

This chapter provides an overview of sample programs. This chapter also describes
learning points and objectives of the sample programs.

2. Overview of Sample Programs

2.1 System configurations of sample programs

The service platform provides sample programs that execute the following three types of processing:

¢ Calling a service component from the service requester
* Calling a service component from the business process

* Integrating processes

The following describes the processing of each sample program:

(1) Calling a service component from the service requester

Sample program name: HelloServiceAdapter

This sample program calls a service component from the service requester via the service adapter. With this sample
program, you will learn about service adapter definitions.

The following figure shows the system configuration of HelloServiceAdapter:
Figure 2—1: System configuration of HelloServiceAdapter

—> — —>
<—sStandard < <

reception
Service

. . adapter .
Service Business Service

requester process component

reception

HCSC server

J2EE server

Service platform

Legend:
—> : Flow of tasks for a request or response that calls a service component

: Component provided by this sample program

(2) Calling a service component from the business process
Sample program name: HelloBusinessProcess

This sample program calls a service component from the business process via the service adapter. With this sample
program, you will learn about business process definitions.

The following figure shows the system configuration of HelloBusinessProcess:

2. Overview of Sample Programs

Figure 2—2: System configuration of HelloBusinessProcess

Standard
> reception > N
Service
. < _ <— adapter <— .
Service Business Service
it t
requester User- process componen
defined
reception
HCSC server
J2EE server
L 1
Service platform
Legend:

—> : Flow of tasks for a request or response that calls a service component

: Component provided by this sample program

(3) Integrating processes
Sample program name: HelloProductArrangement

This sample program calls a service component that allocates product stock or arranges for delivery from the business
process via the service adapter. With this sample program, you will learn about definitions that are similar to the
definitions for actual jobs.

The following figure shows the system configuration of HelloProductArrangement:

Figure 2—-3: System configuration of HelloProductArrangement

Standard
reception
Service
. . adapter .
Service Business Service
requester rocess component
. User- & P
defined
<—reception<— < <
HCSC server
J2EE server
L]
Service platform
Legend:

—> : Flow of tasks for a request or response that calls a service component

: Component provided by this sample program

2. Overview of Sample Programs

2.2 Components of sample programs

This section describes the roles of the sample program components shown in 2.1 System configurations of sample
programs.

* Service requester
An application program that uses a service. This component sends a service calling request (request message) to
the HCSC server. The service requester in the sample program uses SOAP Communication Infrastructure.

¢ Standard reception
A function (interface) for receiving a service component request message from the service requester. This
component is provided as a function of the HCSC server.

¢ User-defined reception
A function (interface) for receiving a service component request message from the service requester. For this
component, unlike the standard reception provided as a function of the HCSC server, the user can define any
interface.

* Business process
The processing order and processing conditions of services, and other information defined as a sequence of tasks.

* Service adapter
A function that receives a request from the service requester or business process and calls a service. This
component exists on the HCSC server. This component returns the results of calling a service to the business
process or service requester as a response message.

* Service component
A business-processing program. This component executes the processing requested by the service requester.

¢ HCSC server
A server function that manages the service adapter and business process to execute a service. This component
exists in the service platform.

* J2EE server

A server function required to execute a J2EE application (application consisting of JSPs, servlets, enterprise
beans, and other items).

2. Overview of Sample Programs

2.3 Processing details of sample programs

This section describes the processing details of the components that make up each sample program.

2.3.1 Calling a service component from the service requester

The following figure and table describe the processing details of the HelloServiceAdapter sample program:

Figure 2—4: Processing details of the HelloServiceAdapter sample program

Service
requester

[——]
1. Input

B

Input
screen

Output
screen

4. Output

<

Legend:
—>

HCSC server 2.Calla
service
component.
_— Hello service
) (service
Hello service component
adapter 3.Return | (Web Service))
(service adapter) results
<—

: Flow of tasks for a request or response that calls a service component

: Section where you experience definition in 5. Experiencing Development of
Sample Programs

Table 2—1: Processing contents of the HelloServiceAdapter sample program

Component

Type Description

Service requester

HTML ¢ Displays the input screen, and sends a Hello service

Servlet calling request to the service adapter.

¢ Receives the results of calling the Hello service from
the service adapter, and displays them on the output
screen.

Hello service adapter

Receives a request from the service requester, and
calls the Hello service.

Service adapter .

* Returns the response of the Hello service to the
service requester.

Hello service

Web Service * Inresponse to a call from the service adapter, edits the
entered string and returns the string to the Hello

service adapter.

2.3.2 Calling a service component from the business process

The following figure and table describe the processing details of the HelloBusinessProcess sample program:

2. Overview of Sample Programs

Figure 2-5: Processing details of the HelloBusinessProcess sample program

HCSC server
Service :
Hello business process
requester (business process)
[——]
| t 1. Input
npu
screen @ 2.Calla
Hello service coﬁ?{%ﬁsm.
adapter Hello service
Call the Hello (service .
service. componen
. (Web Service))
\I/ (service 3 Return
adapter) results
4. | Edit the string.
[——]
5. Output

Output

screen
Legend:

—> : Flow of tasks for a request or response that calls a service component

: Section where you experience definition in 5. Experiencing Development of
Sample Programs

Table 2—2: Processing contents of the HelloBusinessProcess sample program

Component Type Description

Service requester HTML Displays the input screen, and calls the Hello business

Servlet process.

* Obtains (as the return value) the string edited by the
Hello business process, and displays the string on the
output screen.

Hello business process Business process * Receives a request from the service requester, and
calls the Hello service via the Hello service adapter.

¢ Obtains (as the return value) the results of calling the
Hello service via the service adapter.

« Edits the string (return value), and returns it to the
service requester.

Hello service adapter Service adapter ¢ Receives a request from the Hello business process,
and calls the Hello service.

* Returns the response of the Hello service to the Hello
business process.

Hello service Web Service * Inresponse to a call from the Hello business process,
edits the entered string and returns the string to the
Hello business process.

2.3.3 Integrating processes

The HelloProductArrangement sample program introduced here assumes that shop staff use a business system
to perform stock allocation and delivery arrangement when securing products.

The following figure and table describe the processing details of the HelloProductArrangement sample
program:

10

2. Overview of Sample Programs

Figure 2—6: Processing details of the HelloProductArrangement sample program

HCSC server

(service adapter)

Delivery reception service

Service
requester Product arrangement
business process
[r— (business process)
Input 1. Input
screen Start
Stock
allocation
Output
utpu 4. Output
screen wipd Out of
(out of stock
stock)
Delivery
arrangement
[——]
Output
screen 7. Output
(in stock) End
Legend:

(service adapter) 6. Return

2.Calla
service
Stock management | | Somponent. Stock
management
service
(service
component
3. Return f
results (Web Service))
5.Calla
component. | Delivery reception
service
(service
component
(Web Service))
results

—> : Flow of tasks for a request or response that calls a service component

: Section where you experience definition in 5. Experiencing Development of Sample Programs

Table 2-3: Processing contents of the HelloProductArrangement sample program

Component

Type

Description

Service requester

HTML
Servlet
JSP

Displays the input screen, and calls the product
arrangement business process.

Obtains (as the return value) the results of calling the
stock management service, and displays them on the
output screen.

Obtains (as the return value) the results of calling the
delivery reception service, and displays them on the
output screen.

Product arrangement business
process

Business process

Receives a request from the service requester, and
calls the stock management service via the stock
management adapter.

Receives a request from the service requester, and
calls the delivery reception service via the delivery
reception adapter.

Obtains the results of calling the stock management
service via the stock management adapter, and returns
them to the service requester.

Obtains the results of calling the delivery reception
service via the delivery reception adapter, and returns
them to the service requester.

Stock management adapter

Service adapter

Receives a request from the product arrangement
business process, and calls the stock management
service.

Returns the response of the stock management service
to the product arrangement business process.

11

2. Overview of Sample Programs

12

Component

Type

Description

Delivery reception adapter

Service adapter

Receives a request from the product arrangement
business process, and calls the delivery reception
service.

Returns the response of the delivery reception service
to the product arrangement business process.

Stock management service

Web Service

In response to a call from the product arrangement
business process, allocates product stock and returns
the allocation number to the product arrangement
business process.

Delivery reception service

Web Service

In response to a call from the product arrangement
business process, returns the delivery number
obtained as a result of delivery arrangement.

Preparing the Environment for
Sample Programs

This chapter describes how to build the environment required to execute sample

programs.

13

3. Preparing the Environment for Sample Programs

3.1 Overview of installation and setup

The following figure shows an overview of building the environment for executing sample programs:

Figure 3—1: Overview of building the environment for executing sample programs
Section

1. Installing Service Architect and 3.2
preparing for setting it up ’

v

2. Using Eclipse Setup to set up the 33
Eclipse environment ’

Y

3. Setting up the development 3.4
environment ’

4. Setting up the execution environment D

1. Installing Service Architect and preparing for setting it up
Use the installer to install Service Architect. Also install Eclipse, which is required for setup. For details, see 3.3
Using Eclipse Setup to set up the Eclipse environment.

2. Using Eclipse Setup to set up the Eclipse environment

Use Eclipse Setup to set up the Eclipse-based development environment with HCSCTE plug-ins installed. For
details, see 3.2 Installing Service Architect and preparing for setting it up.

3. Setting up the development environment
Specify the settings that are necessary to develop J2EE applications by using Eclipse. For details, see 3.4 Setting
up the development environment.

4. Setting up the execution environment
Use HCSC Easy Setup of Service Architect to build the execution environment. For details, see 3.5 Setting up the
execution environment.

The following sections describe the above stages.

14

3. Preparing the Environment for Sample Programs

3.2 Installing Service Architect and preparing for setting
it up

This section describes how to install Service Architect and how to prepare Eclipse, which is required to set up Service
Architect.

3.2.1 Installing Service Architect

This subsection describes the procedure for installing Service Architect.

@ 'mportant note

Before installing Service Architect, exit all Windows applications. In addition, make sure that you are logged on as a
member of the Administrators group.

. Set the installation CD-ROM in the CD-ROM drive.

The Hitachi Integrated Installer dialog box appears, displaying the following message: The selected
software will be installed.

If the Hitachi Integrated Installer dialog box does not appear, use Explorer to double-click HCD INST.EXE in the
CD-ROM directory.

2. Select uCosminexus Service Architect, and then click the Install button.
The Confirm Starting of Installer - Hitachi Integrated Installer dialog box appears, displaying the following
message: "Installation will start. Do you want to continue?"

3. Click the OK button.
The Welcome to the uCosminexus Service Architect Setup Program page appears.

4. Click the Next button.
The Choose Destination Location page appears.

Ju—

5.1f you do not want to use the default installation directory, select the desired installation directory, and then click
the Next button.

Tip

When you specify the installation directory that is not the default one, make sure that the directory path name is 50 or
fewer alphanumeric characters.

The Select Features page appears.

Application Server Setup
Select Features

Select the feature you want to install.
Please select the feature that you want to install

Standard - (Recommended)

Custom - This type of setup is for experienced users and system
All options can be

[< Back \1[Next >][Cancel]

6. Click the button on the left of Standard - (Recommended).
The Customer Information page appears.

15

3. Preparing the Environment for Sample Programs

Application Server Setup
Customer Information
Please enter your information.

Please enter your name and the name of the company for which you work.

User Name:

Company Name:

7. Enter User Name and Company Name, and then click the Next button.
The Select Program Folder page appears.

8.If you do not want to use the default program folder, select the desired program folder, and then click the Next
button.

The Start the installation page appears.

9. Check the settings that you specified, and then, if no problems exist, click the Next button.

Installation starts. When installation finishes, the Completing the Setup dialog box appears. Installation might take
a few minutes.

10. Click the Finish button.
The dialog box asking you whether to immediately restart the OS appears.

11. Click the Yes button.
The OS restarts, and installation of Service Architect finishes.

Now you have installed Service Architect.

3.2.2 Preparing Eclipse
Prepare the environment for using Eclipse. The following shows the procedure for preparing the Eclipse archive file:

1. Obtain the Eclipse archive file.

Obtain the Eclipse archive file shown below. Although it comes with Service Architect, you can also download it
from the Eclipse.org download site.

For Windows x86 (including the WOW64 environment):
Eclipse IDE for Java EE Developers 4.2.1 (eclipse-jee-juno-SR1-win32.zip)
For Windows x64:
Eclipse IDE for Java EE Developers 4.2.1 (eclipse-jee-juno-SR1-win32-x86 64.zip)

2. Store the Eclipse archive file.
Store the obtained Eclipse archive file in the following directory:

service-platform-installation-directory\ADP\archives

Now you are ready to install Eclipse.

Reference note

The Eclipse language pack comes with Service Architect. If you store the language pack in the directory that contains the
Eclipse archive file, you can localize Eclipse into Japanese.

16

3. Preparing the Environment for Sample Programs

3.3 Using Eclipse Setup to set up the Eclipse
environment

Use Eclipse Setup to build the Eclipse environment.

The following shows the procedure for building the Eclipse environment:

1. Start the machine as a user with administrator privileges. (In Windows Vista or later, start the machine in Admin
mode.)

2. From the Windows Start menu, select Programs, Cosminexus, First Setup, and then Setup Eclipse.
The dialog box asking you whether the Eclipse archive file was prepared appears.

Setup - Eclipse Setup [

Before setting up Eclipse, download the following archive file:
Eclipse IDE for Java EE Developers

The archive files can downloaded from the following URL:

“http://www eclipse ore”

If you use the archive files that come with Developer
you do not need to download the archive files from the above site.

[Do not display this dialog box next time.

3.In the dialog box that appears, click the OK button.
The Eclipse Installation page appears.

4 Setup - Eclipse Setup ol

Eclipse Installation

Edipse installation directory:
C:\Program Files\Hitachi\Cosminexus\ADP\IDE Browse...

Archive files directory:

C:\Program Fies Hitachi\Cosminexus \ADP \Archives
Edipse archive file name:edipse-jee-juno-SR 1-win32-x86_64.zip
Babel archive file name:

[Restore Defaults] i Next

4. On the Eclipse Installation page, specify the Eclipse installation directory and the directory that contains the
Eclipse archive file, and then click the Next button.

The Comfirm Setup Details page appears.

17

3. Preparing the Environment for Sample Programs

18

K¢ Setup - Eclipse Setup [7<]
Confirm Setup Details
Make sure the setup details are correct, and then dick the [Execute] button.

Setup details:
Install Eclipse
Edipse installation directory:C:\Program Files \Hitachi\Cosminexus \ADP\IDE
Archive files directory:C:\Program Files Hitachi\Cosminexus \ADP\Archives
Edipse archive file:edipse-jee-juno-SR 1-win32-x86_64.zip
Babel archive file:Will not be installed

5.0n the Comfirm Setup Details page, confirm that the displayed information is correct, and then click the
Execute button.

The Progress Status page appears and setup starts. When setup finishes, the Setup Results page appears.
Eclipse setup might take a few minutes.

g Setup - Eclipse Setup
Setup Results
Edipse setup Completed
[REDTI00U3-T Copying filé has finished. (details=C:Program Files itachi ADPEC

KEDT 10004-I Editing file has started. (details=C:\Program Files\Hitachi\Cosminexus\ADP\Edlips
KEDT 10005-1 Editing file has finished. (details=C: \Program Files \Hitachi\Cosminexus \ADP \Ediips
KEDT10017-1 Extracting archive files has started. (details=C:\Program Files Hitachi\Cosminexu
KEDT10018-1 Extracting archive files has finished. (details=C:\Program Files\Hitachi\Cosminext
KEDT 10002-1 Copying file has started. (details=C: \Program Files \Hitachi\Cosminexus \ADP \Ediic
KEDT 10003-I Copying file has finished. (details=C:\Program Files\Hitachi\Cosminexus\ADP \Ediy
KEDT 100041 Editing file has started. (details=C: \Program Files Hitachi\Cosminexus\ADP\IDE e
KEDT 10005-I Editing file has finished. (details=C:\Program Files\Hitachi\Cosminexus\ADP\IDE \¢
KEDT 10002-I Copying file has started. (details=C:\Program Files\Hitachi\Cosminexus\ADP\Edif|
KEDT 10003-I Copying file has finished. (detail \Program Files\Hitachi\Cosminexus \ADP \Edli
KEDT 10004-1 Editing file has started. (details: -ogram Files \Hitachi\Cosminexus\ADP \Edips
KEDT 10005-I Editing file has finished. (details=C:\Program Files\Hitachi\Cosminexus\ADP \Edlips
KEDT 10011-I Making folder has started. (details=C:\Program Files\Hitachi\Cosminexus\ADP\ID
KEDT 10012-1 Making folder has finished. (details=C:\Program Files\Hitachi\Cosminexus\ADP\IC
KEDT 10002-I Copying file has started. (details=C: \Program Files \Hitachi\Cosminexus \common
KEDT 10003-I Copying file has finished. (details=C:\Program Files\Hitachi\Cosminexus\common'| =
KEDT 10002-I Copying file has started. (details=C: \Program Files \Hitachi\Cosminexus \plugins\d
KEDT 10003-I Copying file has finished. (details=C:\Program Files\Hitachi\Cosminexus\plugins\c|
KEDT 10002-I Copying file has started. (details=C: \Program Files \Hitachi\Cosminexus \ADP \Ediif|
KEDT 10003-I Copying file has finished. (details=C: \Program Files\Hitachi\Cosminexus\ADP \Edii|
KEDT 10004-I Editing file has started. (details=C:\Program Files\Hitachi\Cosminexus\ADP\Edlips|
KEDT 10005-1 Editing file has finished. (details=C: \Program Files\Hitachi\Cosminexus\ADP \Edlips
KEDT 10006-I Executing file has started. (details=C:\Program Files\Hitachi\Cosminexus\ADP\Ec
KEDT 10007-I Executing file has finished. (details=C:\Program Files\Hitachi\Cosminexus\ADP\Ec
KEDT11002-I Setup of the Edlipse Setup functionality has finished.

1

« T] »

6.On the Setup Results page, click the Finish button.
The Setup - Eclipse Setup dialog box closes and Eclipse setup finishes.
A shortcut to Eclipse is created on the desktop.

Now you have built the Eclipse environment.

Confirm that Eclipse was set up correctly.

1. Start Eclipse.
2. From the Eclipse menu, select Help, About Eclipse, and then Installation Details to display the Eclipse
Installation Details dialog box.

Confirm that the version number displayed for HCSC-Definer is the version number of the Eclipse instance that
you installed.

3. Preparing the Environment for Sample Programs

78} Eclipse Installation Details E==
Installed Software ion History l Features | Plug-ins l G
Name Version Id Provider
4 [Cosmi ication Devel Plug-in 950 com.cosminexus.adp.feature.group Hitachi, Ltd.
(% Cosminexus Sharing Library Plug-in 9.00 com.cosmi adp. feature.gr... Hitachi, Ltd.
§* Cosminexus Sharing Library Plug-in 9.00 com.c i adp. feature.gr... Hitachi, Ltd.
4 g Eclipse IDE for Java EE Developers 1.51.20120917-1257 epp.package.jee
>+ Eclipse Platform 4.21.M20120914-18... org.eclipse.platform.ide
, % Java EE IDE Feature 1.5.1.20120917-1257 org.eclipse.epp.package jee.featurefeatur... Eclipse Packaging Project
§* HCSC-Definer 951 com.cosminexus.plugin.cscte.feature.group Hitachi, Ltd.
g+ HCSC-Definer DB Adapter Definition Support Tool 951 jp-co.Hitachi.soft.cscte.dbeditor.feature.gr... Hitachi, Ltd.
{* HCSC-Manager 960 com.cosminexus.plugin.cscmng.feature.g... Hitachi, Ltd.
HCSC-Definer ~
® Uninstall... [Properties] [Close]

Reference note

How to check the setup log

The events that occurred when Eclipse Setup is executed are recorded in the Eclipse setup log. For details about
how to check the setup log, see Appendix B. Collecting the Information Output When Eclipse Setup Was Executed.

19

3. Preparing the Environment for Sample Programs

3.4 Setting up the development environment

This section describes the setup that is required to develop J2EE applications. The following figure shows an overview
of setup:

Figure 3—-2: Overview of setup for the development environment

Section
1. Setting up Eclipse 3.4.1
2. Installing WSDL4J 342

The following is a brief description of the stages in the above figure:

1. Setting up Eclipse

In this stage, you set the JDK version to be used in Eclipse and specify the settings for outputting the information
about local variables. For details, see 3.4.7 Setting up Eclipse.

2. Installing WSDLA4J

In this stage, you install WSDL4J. WSDL is required to parse and generate documents. For details, see 3.4.2
Installing WSDL4J.

The following subsections describe the stages of development environment setup in the same order as in the above
figure.

3.4.1 Setting up Eclipse

This subsection shows the procedure for checking the JDK version set in Eclipse. This subsection also shows the
procedure for specifying the settings for outputting information about the local variables that are in the J2EE
application.

(1) Checking the version of JDK

Check whether the JDK version to be used for development in the Eclipse environment is a JDK version provided by
Service Architect. The following shows the check procedure:

1. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

2.1n the left pane, select Java, and then Installed JREs.
The Installed JREs page is displayed in the right pane.

20

3. Preparing the Environment for Sample Programs

(8] Preferences L= 5|
type filter text Installed JREs =4 v v
> General

Add, remove or edit JRE definitions. By default, the checked JRE is added to the build path of newly

Ant created Java projects.

> Data Management
» HCSC-Definer Installed JREs:

> Help -
> Install/Update Name Location Type

4 Java [V] ®mAjdk C:\Program Files\Hitachi\Cosminexus\jdk Standard VM
> Appearance
> Build Path Duplicate
> Code Style
> Compiler
> Editor
> |Installed JREs

JUnit
Properties Files Editor
> Java EE
Java Persistence

Add...

Edit

Remove

> JavaScript
> Mylyn
> Plug-in Development
> Remote Systems
Run/Debug
> Server
> Team
Terminal
User Extended Performance A
Validation
> Web
Web Services
> XML

LI P— p— »

®

3. Check whether a JDK version provided by Service Architect is displayed in the Installed JREs list.
Check whether the following path is displayed in the Location column:

service-platform-installation-directory\jdk

If the path is not displayed:
Click the Add button. The JRE Type page appears.

€] Add IRE E=3Ecl <=
JRE Type \
Select the type of JRE to add to the workspace.)

Installed JRE Types:

‘ Execution Environment Description
| Standard 1.1.x VM
Standard VM

® T Fran

Select Standard VM, and then click the Next button. The JRE Definition page appears.

21

3. Preparing the Environment for Sample Programs

18} Add JRE o -5k
JRE Definition)\

1) Enter the home directory of the JRE. E’h)
JRE home:) Directory... |
JRE name:]
Default VM arguments: Variables...

JRE system libraries:

| Add External JARs...

Restore Default

®

Next > Cancel

Enter service-platform-installation-directory\jdk in JRE home, enter jdk in JRE name, and then click the
Finish button. After you add the entry, select the check box in the Name column.

If the path is displayed:

Check whether the check box in the Name column for the appropriate version is selected. If that check box is
not selected, select it.

Note that if two or more JDK versions have been installed, the check box for the appropriate version (service-
platform-installation-directory\ 7 dk) might not be selected. If that check box is not selected, select it.
4. Click the OK button.

The settings are saved.

(2) Specifying the settings for outputting the information about local variables

You can specify the Eclipse compiler settings so that the information about local variables in the J2EE application is
output as a stack trace when an exception occurs.

The following shows the procedure for specifying the compiler settings to output the information about local variables
as a stack trace:

1. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

2. In the left pane, select Java, and then Compiler.
The Compiler page is displayed.

22

3. Preparing the Environment for Sample Programs

{®] Preferences = ‘
type filter text Compiler =1 v v
General Configure Project Specific Settings...
Ant
Data Management IDkCcipibnce
HCSC-Definer Compiler compliance level: 17 v
Help 7] Use default compliance settings
Install/Update =
4 Java L
Appearance 17
Build Path
Code Style Error
Compiler Error
Debug
Editor Classfile Generation
Installed JREs 7] Add variable attributes to generated class files (used by the debugger)
Wnit— 7] Add line number attributes to generated class files (used by the debugger)
Properties Files Editor ~ .
Java EE V| Add source file name to generated class file (used by the debugger)
Java Persistence 7] Preserve unused (never read) local variables
JavaScript Inline finally blocks (larger class files, but improved performance)
Mylyn

Plug-in Development
Remote Systems

Run/Debug

Server

Team

Terminal

User Extended Performance A
Validation

Web

Web Services

XML
< T » Restore Defaults
@

3. Specify the following settings:

Item name Value to be specified
JDK Compiler compliance Select 1.7.
Compliance level
Classfile Generation Select Add variable attributes to generated class files (used by the
debugger).

For other items, select the necessary options according to the information
that you want to output.

Optionally, specify the following settings:

ltem name Value to be specified
JDK Use default compliance Specify the settings that you want to use for the compiler.
Compliance settings

 Ifthis item is selected:
The settings that are appropriate for the level specified by Compiler
compliance level are applied.
e If this item is not selected:
Manually specify the following options:
Generated .class file compatibility
Source compatibility
Disallow identifiers called 'assert’
Disallow identifiers called 'enum’'

4. Click the Apply or OK button.
The settings are saved.

3.4.2 Installing WSDL4J

Install WSDLA4J, which is required to parse and generate WSDL documents. WSDLA4]J is supplied with a CD-ROM
different from the Service Architect CD-ROM.

1. Create a work directory that will be temporarily used to install WSDLA4]J.

23

3. Preparing the Environment for Sample Programs

24

In this example, create C: \WSDL4J_work.
2.Copy the wsd14j-bin-1.5.1.zip file from the WSDL4J CD-ROM to the WSDL4J work directory that you
created in step 1.
The wsd1l4j-bin-1.5.1.zip fileis stored in the following directory:
CD-ROM-drive:\WSDL4J
3.Decompress the wsd14j-bin-1.5.1.zip file that was copied to the WSDL4J work directory.
4.Copy wsdl4j.jar (JAR library file), license.html (license file), and Readme, which were extracted from
the compressed file.
Files to be copied:
WSDL4J-work-directory\wsd14j-bin-1.5.1\wsd14j-1 5 1\lib\wsdl4j.jar
WSDL4J-work-directory\wsd14j-bin-1.5.1\wsdl4j-1 5 1\license.html
WSDL4J-work-directory\wsd14j-bin-1.5.1\wsd14j-1 5 1\Readme
Copy-destination directory:

service-platform-installation-directory\ c4web\1ib

5. Delete the WSDLA4J work directory that you created in step 1.

3. Preparing the Environment for Sample Programs

3.5 Setting up the execution environment

This section describes the procedure for using HCSC Easy Setup of Service Architect to set up the execution
environment (test environment).

The following figure shows an overview of setup:

Figure 3-3: Overview of setup for the execution environment

Section

1. Building the test environment 3.5.1
2. Starting the test environment 3.5.2
3. Logging in to Management Server

37518

Remote Management

4. Setting up Eclipse 354
5. Importing Eclipse projects 3.5.5
6. Deploying the web project 3.5.6
7. Deploying definitions to the HCSC 357

server

The following is a brief description of the stages in the above figure:

1. Building the test environment
In this stage, you use HCSC Easy Setup to build the test environment. For details, see 3.5.1 Building the test
environment.

2. Starting the test environment
In this stage, you start the test environment that you built. For details, see 3.5.2 Starting the test environment.

3. Logging in to Management Server Remote Management
In this stage, you log in from Eclipse to Management Server Remote Management to perform the task in step 4.
For details, see 3.5.3 Logging in to Management Server Remote Management.

4. Setting up Eclipse
In this stage, you set library paths, create a server runtime, and select the J2EE server. For details, see 3.5.4 Setting
up Eclipse.

5. Importing an Eclipse project
In this stage, you import the Eclipse projects for the sample programs. For details, see 3.5.5 Importing Eclipse
projects.

6. Deploying the web project
In this stage, you deploy the web project that is appropriate for the sample program you will use. For details, see
3.5.6 Deploying the web project.

7. Deploying definitions to the HCSC server

25

3. Preparing the Environment for Sample Programs

In this stage, you deploy definitions (that are appropriate for the sample program you will use) to the HCSC
server. The definitions to be deployed differ depending on the sample program. For details, see 3.5.7 Deploying
definitions to the HCSC server.

The following subsections describe the stages of execution environment setup in the same order as in the above figure.

3.5.1 Building the test environment
To build the test environment, use HCSC Easy Setup. The following shows how to build the test environment:

1. Make sure that Eclipse is not running.

2. From the Start menu, select Programs, Cosminexus#, First Setup, and then Setup Testing Environment.
The Main page of the HCSC Easy Setup window opens.
Select the DB/RM-Use model radio button.

#
This program folder name might have been changed. If it has been changed, select the changed program folder
name.
) HCSC Easy Setup ol o=
Operation Other |

((Main_| server Name |

O DB-Use/RM-Less model () DB/RM-Less model ® DB/RM-Use model

Embedded database HCSC-Server
Data storage destination (at least 660 MB)

® SOAP 1.1 mode () SOAP 1.1/1.2 combined mode
[seCOSMINEXUS_HOME%\CSCIDBIared|

Port number for accepting Web services or MDBs (WS-R)
Port number for the database

i 80 <1-85535>
22200 | <5001-85535>
— Port number for accepting SessionBean
Management Server 900 <1-85535>
Port number for HCSC server operation Port number for accepting MDBs (database queue)
28099 e D 20351 <1024-05535>
Port number for logical server operation Port number for resource information
28080 | <1essas> ﬁﬂéz,, "
Termination request recv. port (internal mgmt.) Port number for simple Web servers(internal mgmt.)
28005 <1-85535> ’78030 <1-85535>
Internal communication port (internal mgmt.)
28009 | <tesses
Port number for inprocess naming service (internal mgmt.)
28900 | <1~ess525>

Administration Agent
Port number for agent connections (internal mgmt.)

20295 | <1-85535>
————
Setup Unsetup
Console
-
[Dl |

3. Click the Server Name tab.
The Server Name page appears.

4. Select the V7 compatible name radio button.
The names of the logical server and HCSC server are changed as follows:

¢ V7 compatible name radio button

* Logical J2EE server Name = MyServer
* Logical PRF Name = MyPRF

¢ Cluster Name = MyUnit

* HCSC-Server Name = MyCSC

* Manager Name = MyMNG

26

3. Preparing the Environment for Sample Programs

&) HCSC Easy Setup = EcE =

Operation Other |

(" Main | Server Name |

' ® V7 compatible name ' _) HCSC Production Environment Easy Setup () Custum Name N

Logical server

Logical J2EE server Name
MyServer <1-128 alphanumeric characters, underscores, and hyphens>
Logical PRF Name

MyPRF <1-128 alphanumeric characters, underscores, and hyphens>

HCSC-Server
Cluster Name

MyUnit <18 hs and

HCSC-Server Name

MyCSC <18 h: and
Manager Name

MyMNG <118 h: and

|_sewp || unsewp |

Console

»

<]

34] »

5. Click the Setup button.

Setup of the test environment starts. The progress of setup is displayed in the Console of the HCSC Easy Setup
window. Setup of the test environment normally terminates when the Console displays a message that indicates
the end of setup by HCSC Easy Setup.

Note:

If an error is displayed in the Console and setup of the test environment terminates abnormally, you must
perform re-setup. The re-setup procedure differs depending on whether the Setup button in the HCSC Easy
Setup window was enabled or disabled when setup terminated abnormally.

If the Setup button was enabled:

Click the Setup button to perform setup again.

If the Setup button was disabled:

Click the Unsetup button to undo setup. After that, perform setup again.

6. From the menu of the HCSC Easy Setup window, select Operation and then End to close the window.

3.5.2 Starting the test environment

The following shows how to start the test environment that you built:

1. From the Start menu, select Programs, Cosminexus”, and then Start Database to start the embedded database of
the test environment.
When you start the database, the following message might be output: KFPS01853-W Hostname=host-name,
unable to execute pdstart command, unit state not OFFLINE. This message is output
because the embedded database is already started when the sample program is executed again on the same
machine. You do not need to take any actions when this message is output.

2. From the Start menu, select Programs, Cosminexus”, and then Start Test Server to start Performance Tracer,
the J2EE server, and the HCSC server (including the standard reception and user-defined reception) in the test
environment.

This program folder name might have been changed. If it has been changed, select the changed program folder
name.

27

3. Preparing the Environment for Sample Programs

To terminate using Service Architect, stop the active test environment, and then exit Eclipse. For details about how to
stop the test environment, 6.2 Stopping the test environment.

3.5.3 Logging in to Management Server Remote Management

The following shows the procedure for logging in to Management Server Remote Management:

1. Start Eclipse.

2. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

3. In the left-pane tree view, select Server, and then Remote Management.
The Remote Management page appears.

& Preferences =
type filter text 3 Remote Management O v v
Gy |
Ae"m Set the remote management host to connect for running and debugging.
nt The set host is used for running, debugging, and deploying.
Data Management C bt
HCSC-Definer =
Help Host Status Connection Port Number ~ HTTP Traffic Port Number Management Portal
Install/Update E localhost Disconnected 28099 28080
Java =
ova €
Java Persistence T
JavaScript
Mylyn
Plugin Development
Remote Systems
Run/Debug t
4 Server
Audio
Launching
_Remote Management
Team
Terminal
User Extended Performance Ar
Validation
Web
Web Services
XML
< m »
@ - [=
|

4. Select the host of the Management Server to be connected (Localhost), and then click the Log in button.

The login window appears.

5.Enter admin in Administrator ID and Password, and then click the OK button.

You are connected to Management Server Remote Management.
6. Click the OK button.

3.5.4 Setting up Eclipse
In this stage, you set library paths, create a server runtime, and select the J2EE server.

(1) Setting library paths

Set the following service platform library paths:

:\Program Files\Hitachi\Cosminexus\CC\client\1lib\j2ee-javax.jar
:\Program Files\Hitachi\Cosminexus\jaxp\lib\csmjaxp.jar
:\Program Files\Hitachi\Cosminexus\c4web\lib\hitjaxrpc.jar
:\Program Files\Hitachi\Cosminexus\c4web\lib\hitc4web.jar

Qa0

The service platform library path C: \Program Files\Hitachi\Cosminexus is the default installation
directory of the service platform. If a directory that is not the default installation directory is specified during

28

3. Preparing the Environment for Sample Programs

installation of the service platform, you must replace the default installation directory with the directory specified

during installation.

The following shows the procedure for setting the library paths:

1. From the Eclipse menu, select Window, and then Preferences.

The Preferences dialog box appears.

@ Preferences
type filter text Ganeral
i i:r:eral [7] Always run in background
, Data Management] Keep next/previous editor, view and perspectives dialog open
» HCSC-Definer [T] Show heap status
> Help Open mode
> Install/Update © Double click
» Java O Single click
: j:: Eirsistence SEEERliE
) JavaSeript Open when using arrow keys
> Mylyn Note: This preference may not take effect on all views

> Plug-in Development
> Remote Systems
> Run/Debug
> Server
> Team
Terminal
User Extended Performance Ar
Validation
> Web
> Web Services
> XML

< | (TT— »

@

St

2. In the left-pane tree view, select Java, Build Path, and then User Libraries.

The User Libraries page appears in the right pane.

f_.:} Preferences

type filter text User Libraries
General

Ant

Data Management
HCSC-Definer

libraries will be added to the boot class path when launched.
Defined user libraries:

User libraries can be added to a Java Build path and bundle a number of external archives. System

= o)

v vw

Help

Install/Update
4 Java

Appearance

4 Build Path

Compiler
Debug
Editor
Installed JREs
JUnit
Properties Files Editor
Java EE
Java Persistence
JavaScript
> Mylyn
Plug-in Development
Remote Systems
Run/Debug
Server
Team
Terminal
User Extended Performance Ana
Validation
Web
Web Services
XML

< m »

Add External JARs...

Remove

®

3. Click the New button.
The New User Library dialog box opens.

29

3. Preparing the Environment for Sample Programs

@] New User Library ==

User library name:

l CosminexusSOAP '
System library (added to the boot class path)

@ (Lo J] canee

Enter CosminexusSOAP in User library name, and then click the OK button.

:.} Preferences

type filter text User Libraries Y

> |
X ienera User libraries can be added to a Java Build path and bundle a number of external archives. System
> Ant libraries will be added to the boot class path when launched.

> Data Management Defined user libraries:

HCSC-Definer
> Help =), CosminexusSOAP =

> Install/Update
4 Java
1 Appearance
4 Build Path
Classpath Variables
User Libraries
> Code Style
» Compiler
1 Debug
> Editor T
b Installed JREs
JUnit
Properties Files Editor
b Java EE
> Java Persistence
> JavaScript
> Mylyn
> Plug-in Development
> Remote Systems
> Run/Debug
> Server

Add JARs...

Add External JARS...

i

ort.

EH

> Team
Terminal
User Extended Performance Ana
Validation

> Web

> Web Services

> XML

< 1 »

®

4.0On the User Libraries page, select CosminexusSOAP, and then click the Add External JARs button.
The JAR Selection dialog box opens.

{8} JAR Selection =
@Ovl 1. « Cosminexus » CC » client » lib v|&,H Search lib)
Organize v New folder = 0 @

1. Hitachi 4 Name ’ Date modified Typ
1. Cosminexus) R L
b |} cjendorsed.jar 4/1/2013148PM JAR
= tch | L HilBClientStaticjar 3/10/20148:49AM JAR
- cccm 7| [2eesjavaxjer 4/1/2013148PM JAR
")
1. adapters
1. admin
| batch
I gmsp
1. client
l. bin
L lib
1. sysconf
= ~ < m | »
File name: j2ee-javax.jar v Z

5. Select service-platform-installation-directory\CC\client\1ib\j2ee-javax. jar, and then click the Open
button.
The j2ee-javax. jar library is added.

6. Using the same procedure as above, add the following JAR files by clicking the Add External JARs button:

30

3. Preparing the Environment for Sample Programs

e service-platform-installation-directory\ jaxp\lib\csmjaxp.jar
* service-platform-installation-directory\ c4web\1lib\hitjaxrpc.jar

* service-platform-installation-directory\ c4web\1lib\hitc4web. jar

f_.} Preferences 7‘;”‘
type filter text User Libraries =14 v v
General

User libraries can be added to a Java Build path and bundle a number of external archives. System

Java Persistence

Ant libraries will be added to the boot class path when launched.
Data Management Defined user libraries:
HCSC-Definer s
Help o |m) CrosminexusSOAP New...
Install/Update (o j2ee-javax.jar - C:\Program Files\Hitachi\Cosminexus\CC\client\lib -
e 8 csmjaxpjar - C:\Program Files\Hitachi\ Cosminexus\jaxp\lib Edit..
Appearance m-? hitjaxrpc.jar - C:\Program Files\Hitachi\Cosminexus\c4web\lib
4 Build Path (o9 hitcdwebjar - C:\Program Files\Hitachi\Cosminexus\c4web\lib
Classpath Variables
User Libraries
Code Style —
Compiler
Debug =
Editor Down
Installed JREs =
JUnit

JavaScript

Mylyn

Plug-in Development
Remote Systems
Run/Debug

Server

Team

Terminal

User Extended Performance Ana
Validation

Web

Web Services

XML

< m »

7. Click the OK button.
8. Restart Eclipse.

(2) Creating a server runtime

Create a server runtime before you can operate the J2EE server. A server runtime is a collection of environment
settings, such as the J2EE server installation destination. The following shows the creation procedure:

1. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

2. From the left-pane tree view, select Server, and then Runtime Environments.
The Server Runtime Environments page appears in the right pane.

31

3. Preparing the Environment for Sample Programs

| type filter text Server Runtime Environments P~ Y

> General
> Ant
» Data Management Server runtime environments:
> HCSC-Definer
> Help
b Install/Update Edit...
b Java
b JavaEE Remove
i Java Persistence
b JavaScript
> Mylyn
b Plug-in Development
1 Remote Systems
> Run/Debug
4 Server
Audio
Launching
Profilers

l>

Terminal

Add, remove, or edit server runtime environments.

Name Type Add...

User Extended Performance Ana
Validation
> Web
» Web Services
> XML
< [0 »

@

3. Click the Add button.
The New Server Runtime Environment dialog box opens.

4. In the tree view, select Cosminexus, and then Cosminexus J2EE.

Define a new server runtime environment

New Server Runtime Environment @

Download additional server adapters

Select the type of runtime environment:
type filter text

b (& Apache

b (& JBoss
> (& ObjectWeb
» (= Oracle

Provides basic functions for using a J2EE server to develop applications.

[7] Create a new local server

® (< Back [Next > I [Finish I I Cancel

5. Click the Finish button.

32

3. Preparing the Environment for Sample Programs

:.} Preferences
type filter text

General
Ant
> Data Management
> HCSC-Definer
Help
Install/Update
Java
> Java EE
Java Persistence
JavaScript
Mylyn
Plug-in Development
> Remote Systems
> Run/Debug
Server
Audio
Launching
Profilers
Remote Management
Runtime Environments

N

Team

Terminal

User Extended Performance Ana
Validation

Web

Web Services

XML

<[T »

©)

Server Runtime Environments

Add, remove, or edit server runtime environments.

Server runtime environments:

Name Type
mCosminexus J2EE

Cosminexus J2EE

Remove

6. Confirm that Cosminexus J2EE was added to the Server runtime environments list, and then click the OK

button.
The settings are saved.

(3) Selecting the J2EE server

Select the J2EE server that you will operate from Eclipse. For the J2EE server selected here, you perform start and

stop operations, or you deploy J2EE applications from Eclipse.

The following shows the setup procedure:

1. From the Eclipse menu, select File, New, and then Other.

The New dialog box appears.

2. Select Server, and then Server, and then click the Next button.

The New Server dialog box opens, displaying the Define a New Server page.

f_.:} New Server
Define a New Server

Choose the type of server to create

Select the server type:
type filter text

Lo (@)

E

Download additional server adapters

» (= Apache
(& Basic
4 (= Cosminexus
§ J2EE server
= IBM
(& JBoss
(= ObjectWeb

m

function to develop applications.

localhost

Server name:

Provides basic functions for using a J2EE server

d by the remote

J2EE server at localhost

Server runtime environment: | Cosminexus J2EE

v | Add...

Configure runtime environments...

Next > Einish

Cancel

3. Specify the following settings:

33

3. Preparing the Environment for Sample Programs

Iltem name

Value to be specified

Select the server type

Under Cosminexus, select J2EE server.

Server name

You do not need to specify this item because the server name on the J2EE Server
page is used.

Server runtime environment

Specify the server runtime Cosminexus J2EE.

4. Click the Next button.
The J2EE Server page appears.

(8] New Server == (23]
J2EE Server
Specify a J2EE server.
Server name:
J2EE server at localhost
Remote Management Function
Connection Host: (localhost | [Login...| [Logout]
Name Server Name Status Host Name
(T s®MyServer MyServer Running B Win7xbd.locaidomain |

5.1In the Remote Management Function area, from the Connection Host drop-down list, select the connection-
destination host. If you are not logged in to the connection-destination host, click the Log in button.

Enter admin in Administrator ID and Password, and then click the OK button.

You are connected to Management Server Remote Management. The connection-destination J2EE server appears.

6. Select the check box of the J2EE server to be used (MyServer).

@] New Server
J2EE Server
Specify a J2EE server.

Server name:
MyServer at localhost

Remote Management Function

Lo o]

Connection Host: (localhost

,J Login [LogQUtJ

Name Server Name Status

Host Name

WMyserver Running

B Win7x6d.localdomain |

@ [< Back H Next >] [Finish I [Cancel

7. Click the Finish button.
The settings are saved.

34

3. Preparing the Environment for Sample Programs

3.5.5 Importing Eclipse projects

A separate Eclipse project is provided for each sample program. Import the Eclipse projects for the sample programs.
This subsection describes the import procedure in the case where you will use the HelloServiceAdapter sample
program.

Reference note

If the imported project includes an XML file for which no applicable XML schema is registered in Eclipse, a warning is
generated. However, you can use the XML file without any problems.

1. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box opens.

18] Open Perspective o o]

& CVS Repository Exploring
(3xDatabase Debug
(%3 Database Development
%5 Debug
EHCSC-Managev

3 HCSCTE

% HCSCTE-DBEditor
ajlava
¢ Java Browsing
52 Java EE (default)
EJJava Type Hierarchy
& JavaScript
4 JPA

D) Planning
< Plug-in Development
EHRemote System Explorer
[Z5Resource
50 Team Synchronizing
@ Web
X XML

Cancel

2.Select Java EE (default), and then click the OK button.
The Java EE perspective opens.

@] Java EE - Eclipse [E=NEoR =5

File Edit Navigate Search Project HCSC-Manager Run Window Help

C NIF R R D% P UBRIFE O IRIGOIBE SRR S
Quick Access | |)

[Project Explorer 53 =! (| = 0 5% Outli... 2 = B8

An outline is not available.

[2 Markers 52 h ® =08
0 items
Description & Resource Path Location Type

35

3. Preparing the Environment for Sample Programs

3. From the menu, select File, and then Import.

The Select page appears.
4.In the tree view, select General, and then Existing Projects into Workspace.
& Import o o]
Select
Y
Create new projects from an archive file or directory. E 5 I

Select an import source:

type filter text

4 (= General
i ikl
[}g Existing Projects into Workspace]

Ty
[, Preferences

= Qs

[=43:]

& Install

(& Java EE

(& Plug-in Development

(& Remote Systems

& Run/Debug

(& Tasks

& Team

(& User Extended Performance Analysis Trace

& Web

(= Web services

& XML

5. Click the Next button.
The Import Projects page appears.

@] Import ‘N‘;'»‘
Import Projects el
Select a directory to search for existing Eclipse projects. @J
© Select root directory:
Select archive file: Browse.
Projects:
|

[7] Copy projects into workspace
Working sets

[7] Add project to working sets

6. Select the Select root directory radio button, and then click the Browse button.
The dialog box for selecting a directory opens.
7. Select the directory that contains the target sample program, and then click the OK button. In this example, the

directory you select is as follows: service-platform-installation-directory\CSCTE\ Samples
\HelloServiceAdapter

The Import Projects page appears again. Make sure that the check boxes of all projects are selected.
The locations of other sample programs are as follows:

36

3. Preparing the Environment for Sample Programs

HelloBusinessProcess sample program:
service-platform-installation-directory\CSCTE\ Samples\HelloBusinessProcess

HelloProductArrangement sample program:
service-platform-installation-directory\ CSCTE\ Samples\ProductStock

8.If the Copy projects into workspace check box is not selected, select it.
If you do not select this check box, the sample programs might be deleted. Make sure that this check box is
selected.

&} Import (rl(eE1a]
Import Projects
Select a directory to search for existing Eclipse projects.

I

©) Select root directory: C:\Program Files\Hitachi\Cosminexus\CSCTE\¢

*) Select archive file: Browse.
Projects:
[¥] HelloClient (C:\Prog Files\Hitachi\C i CSCTE\Samply Select All
[¥] HelloClientWeb (C:\Program Files\Hitachi\C i SCTE\Sa

[7] HelloService (C:\Program Files\Hitachi\Cosminexus\CSCTE\Samp| | Deselect All

. ’ " i i S
[¥] HelloServiceWeb (C:\Program Files\Hitachi\Cosminexus\CSCTE\S

Working sets

[T Add project to working sets

Select.

®

9. Click the Finish button.
The selected projects are imported into the perspective.

{8 Java EE - Eclipse =5 R =5
File Edit Navigate Search Project HCSC-Manager Run Window Help
i NIRRT IOTRIE G @O A QIR v v
Quick Access :21 ‘-m
[Project Explorer 52 = 8 = 0 8% Outli... 52 = B8
=R-q 7 -
SR O
. 82 HelloClient An outline is not available.
22 HelloClientWeb
85 HelloService

72 HelloServiceWeb

[£ Markers [Properties | 4t Servers 52 §3 Data Source Explorer [Snippets BEx0¢ 8 Y=0
g MyServer at localhost [Stopped]

g 1 items selected

37

3. Preparing the Environment for Sample Programs

3.5.6 Deploying the web project

The web project needs to be deployed for each sample program. This subsection describes the web project deployment
procedure in the case where you will use the HelloServiceAdapter sample program.

1. From the menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box opens.

2. Select Java EE (default), and then click the OK button.
The Java EE perspective opens.

3.In the Servers view, right-click MyServer at localhost, and then select Start.
At this time, you might see an error dialog box that reports the server MyServer is externally running and asks
you to stop the server. In this case, from the Start menu, select Programs, Cosminexus”, and then Stop Test
Server to stop Performance Tracer, the J2EE server, and the HCSC server (including the standard reception and

user-defined reception) in the test environment. Then, in the Servers view, right-click MyServer at localhost, and
then select Start again.

#
This program folder name might have been changed. If it has been changed, select the changed program folder
name.
New >
Open F3
Show In Alt+Shift+W »
Copy Ctrl+C
Paste Ctrl+V
& Delete Delete

Rename F2
s Debug Ctrl+Alt+D

Ctrl+Alt+S

Stop

Publish Ctrl+Alt+P
Clean...
ffy Add and Remove...
Monitoring >
0} - . -
|21 Markers [Properties Properties AltsEnter %xppe&s

88 MyServer at localhobe

The login window appears.
4. Enter admin in both Administrator ID and Password, and then click the OK button.
A message indicating that processing is in progress appears, and then the server starts.

5.1In the Servers view, right-click MyServer at localhost, and then select Add and Remove.
The Add and Remove dialog box appears.

38

:Q] Add and Remove...

Add and Remove

Modify the resources that are configured on the server

Move resources to the right to configure them on the server
Available:

Configured:

(5 HelloService

< Remove

Add All >>

< Remove All

[V]1f server is started, publish changes immediately

®

(@] Add and Remove... [o[e])=s
Add and Remove
Modify the resources that are configured on the server
=

Move resources to the right to configure them on the server
Available:

Configured:

(5 HelloClient
RS (@ HelloService

< Remove

[V] ¥ server is started, publish changes immediately

®@ < Back Next >

7. Click the Finish button.

3. Preparing the Environment for Sample Programs

6.In the Available list box, select HelloClient and HelloService, and then click the Add button.

HelloClient and HelloService moves from the Available list box to the Configured list box.

After processing terminates, the Java EE perspective appears again. Confirm that the HelloClient and
HelloService projects are displayed under MyServer at localhost in the Servers view.

39

3. Preparing the Environment for Sample Programs

E.] Java EE - Eclipse = |- &
File Edit Navigate Search Project HCSC-Manager Run Window Help
- R | | PO - UG I®E S @I i
Quick Access B |
[Project Explorer §2 = 8 = B8 5% Outli... 2 = 8
85 HelloClient An outline is not available.
72 HelloClientWeb
35 HelloService
9= HelloServiceWeb
[2(Markers [Z] Properties | 44 Servers 52 & Data Source Explorer [Snippets [l Console =0
=% 0 ® -
4 !'3 MyServer at localhost [Started, Synchronized]
(5 HelloClient [Synchronized]
B HelloService
g? 1 items selected

8. In the Servers view, right-click MyServer at localhost, and then select Stop.

9. From the Start menu, select Programs, Cosminexus”, and then Start Test Server to start Performance Tracer,

the J2EE server, and the HCSC server (including standard reception and user-defined reception) in the test
environment.

#

This program folder name might have been changed. If it has been changed, select the changed program folder
name.

3.5.7 Deploying definitions to the HCSC server

Deploy definitions to the HCSC server for each sample program. The definitions to be deployed differ depending on
the sample program. This subsection describes the deployment procedure in the case where you will use the
HelloServiceAdapter sample program.

(1) Creating HCSCTE projects
Before deploying definitions, you must create HCSCTE projects.
@ 'mportant note
An HCSCTE project is required for each program. When you develop multiple programs, you must use a separate

workspace for the HCSCTE project of each program. If you create multiple HCSCTE projects in the same workspace, the
programs will not operate correctly.

The following shows the procedure for creating an HCSCTE project:

1. From the menu, select File, New, and then Project.
The New Project dialog box appears.
2.Select HCSCTE Project, and then click the Next button.
The HCSCTE Project dialog box appears, displaying the page for creating a new HCSCTE project.

40

{8 HCSCTE Project

HCSCTE Project
Page for creation of new HCSCTE project

Project name:

V| Use default location

Cancel

3. Specify the following items, and then click the Next button:

Project name

Specify any name. In this example, specify HCSCTE.

Use default location

Select the Use default location check box.

3. Preparing the Environment for Sample Programs

The HCSCTE Project dialog box appears, displaying the page for setting the HCSCTE repository.

{6} HCSCTE Project =5
HCSCTE Repository Configuration Ve
—1,
Repository settings / /
Repository directory:
Login user name: Administratior
®@ [<Back J[mNet> |[Enish [Concel |

4. Specify the following items, and then click the Finish button:

Repository directory

Specify the directory in which to store repository information. In this example, specify C: \work
\HelloServiceAdapter\repository. Note the following points when you specify the repository

directory:

- Do not specify the same path for the repository directory path and project path.

- Use an absolute path to specify the path.

- The specified absolute path is normalized, and then the length is verified with the normalized path.

Login user name

Specify the user name that will be used for logging in to the repository. The user name can contain 1 to 16
alphanumeric characters.

If a dialog box asking you whether to open the associated perspective appears, click the Yes button.

An HCSCTE project is created, and the perspective for the project opens.

41

3. Preparing the Environment for Sample Programs

18} HCSCTE - Eclipse folla ==
File Edit Navigate Search Project HCSC-Definer HCSC-Manager Run Window Help
F'e R0 (6) T O T 9 bl Quick Access i B3| ¥® sava ke (B HCSCTE
gr. BH. x| =0 =8
Ber
type filter text

E“} Service Definition List

[Properties §2 = B8

o ([B)%

Property Value

4

B Console 52 bl # B-ri-=0
HCSCTE message view
[2015/08/27 22:46:21]INFO: HCSCTE project HCSCTE created in the workspace. -

(2) Exporting the system configuration definition from the operation environment

To import the system configuration definition from the execution environment to the development environment,
export the repository information of the operation environment to a file compressed in ZIP format.

1. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box opens.

18] Open Perspective o o]

& CVS Repository Exploring
(3xDatabase Debug
(%3 Database Development
%5 Debug
EHCSC-Managev

3 HCSCTE

% HCSCTE-DBEditor
ajlava
¢ Java Browsing
52 Java EE (default)
EJJava Type Hierarchy
& JavaScript
4 JPA

D) Planning
< Plug-in Development
EHRemote System Explorer
[Z5Resource
50 Team Synchronizing
@ Web

X XML

Cancel

2. Select HCSCTE, and then click the OK button.
The HCSCTE perspective opens.

3. From the Eclipse menu, select Run, External Tools, and then External Tools Configurations.
The External Tools Configurations dialog box appears.

4. In the left pane, right-click Program, and then select New.
The Create, manage, and run configurations page appears.

42

3. Preparing the Environment for Sample Programs

{8} External Tools Configurations

and run

Create,

Run a program

CRx B3~
type filter text

% AntBuild
@: APIUse Report

4 @, Program
Q, New_configuration

Filter matched 4 of 4 items

@

Name: Get System Configuration Definition
;;)5 Refresb{ oo Build -] Environment‘ B Qommor{
Location:

C:\Program Files\Hitachi\Cosminexus\CSC\bin\cscrepctl.bat

lBrowse Worksgace...l [Browsg File System...] [Variables... l
Working Directory:
C:\work\workspace\Export

[Browse Worl_tspacem] [Browse File System...] [Variables...]
Arguments:
-export
systemdef.zip
Note: Enclose an arg; spaces using double-quotes (").

Apply

Select the Main tab, and then enter the following information:

Iltem name Value to be set

Name Specify any name.

In this example, enter Get System Configuration Definition.

Location Enter the following file:$ {env_var:COSMINEXUS HOME}\csc\bin\cscrepctl.bat
Alternatively, click the Browse File System button, and select the following file:
service-platform-installation-directory\ csc\bin\cscrepctl.bat

Working Specity a directory to which the file specified with the argument entered next will be output.

Directory

Arguments -export
any-output-file-name . zip
In this example, enter systemdef.zip.

5. Click the Run button.

The command is registered and executed. As a result, the repository information of the operation environment is
exported as a ZIP file to the specified output-destination directory.

(3) Importing the system configuration definition into the development environment

From the export file that contains the operation environment's repository information, import only the system
configuration definition to the development environment.

1. From the Eclipse menu, select HCSC-Definer, Repository management, and then Import repository.
The dialog box confirming that the repository will be overwritten appears.

2. Click the Yes button.
The Import Repository dialog box for selecting the ZIP file that contains repository information appears.
Specify the ZIP file named systemdef . zip that was exported from the operation environment.

3. Click the Open button.
The Import Repository dialog box for selecting the definition information to be imported appears.

43

3. Preparing the Environment for Sample Programs

@ Import Repository

Choose import target.

Services Definitions

7] System Configurations

=

4. Select the System Configurations check box, and then click the OK button.

When the system configuration definition of the execution environment is imported, a dialog box reporting that
processing was normally completed appears.

5. Click the OK button.

(4) Importing a sample program
Import the repository information for the sample program.

1. Select HCSC-Definer, Repository management, and then Import repository.
The dialog box confirming that the repository will be overwritten appears.
2. Click the Yes button.

The Import Repository dialog box for selecting the ZIP file that contains repository information appears. Select
the following ZIP file:

service-platform-installation-directory\CSCTE\ Samples\HelloServiceAdapter\Repository
\HelloServiceAdapter.zip

The repository information of other sample programs is stored in the following files:

HelloBusinessProcess sample program:

service-platform-installation-directory\ CSCTE\ Samples\HelloBusinessProcess\Repository
\HelloBusinessProcess.zip

HelloProductArrangement sample program:

service-platform-installation-directory\ CSCTE\ Samples\ProductStock\Repository
\ProductStock.zip

3. Click the Open button.

The Import Repository dialog box for selecting the definition information to be imported appears. Select only the
Services Definitions check box, and then click the OK button.

(5) Deploying HCSC components
Deploy and start HCSC components.

1. In the tree view, right-click Service Definition List, and then select Deploy all services to server and start.

44

3. Preparing the Environment for Sample Programs

1€} HCSCTE - Eclipse
File Edit Navigate Search Project HCSC-Definer HCSC-Manager Run W

. RSP s ar Nl s 27 Yol I
[# Package.. B} HCSCTE.. 2| = B
© G e

type filter text

4 [“_7, Service Definition'*-* =
o3 HelloServicefd Add Service Adapter
Add Business Process

[Properties 53

Property Value S rver
l Deploy all services to server and start
Op and undeploy all Services Trom server

Debug Configurations...

Refresh

If you are not logged in, the account authentication window appears. Perform step 2.
2. Enter admin in both User ID and Password, and then click the OK button.
A message indicating that processing is in progress appears, and then a message reporting the results appears.

3. Click the OK button.
You have now completed deployment.

(6) Confirming HelloServiceAdapter and starting the standard reception

Confirm that He11loServiceAdapter is running, and then start the standard reception.

1. From the menu, select Window, Show View, and then Other.
The Show View dialog box appears.

2.1In the Show View dialog box, under HCSC-Manager, select HCSC-Manager View, and then click the OK
button.

The HCSC-Manager view appears.

3.In the HCSC-Manager view, right-click HCSC-Manager(Logout), and then select Login.
The login window appears.

4. Enter admin in both Administrator ID and Password, and then click the OK button.
Login to HCSC - Manager finishes.

5.Confirm that HelloServiceAdapter is running.

In the HCSC-Manager view, expand HCSC-Manager(Login), HCSC-Domain, MyUnit(LBCluster), and then
MyCSCllocalhost:28099]. Then, double-click HelloServiceAdapter to display the Information page. Click the
Operations tab to open the Operations page. Confirm that Status is active.

For the other sample programs, confirm that the following services are running:

HelloBusinessProcess sample program:

Confirm that HelloServiceAdapter and HelloBusinessProcess are running.

HelloProductArrangement sample program:
Confirm that ProductStock, DeliveryReceipt, and InventoryManagement are running.

6. Confirm that the standard reception has started.
In the HCSC-Manager view, expand HCSC-Manager(Login), HCSC-Domain, and then MyUnit(LBCluster).
Then, double-click MyCSC[localhost:28099] to display the Operations page for MyCSC. Click the Start button
to change the status of Standard reception to active. When the status of Standard reception becomes
active, the Start button is disabled.

45

3. Preparing the Environment for Sample Programs

18} HCSCTE - MyCSC - Eclipse o lie ==
File Edit Navigate Search Project HCSC-Definer HCSC-Manager Run Window Help
e SR A N SR R R = IO Quick Access | B | #® Javate (BJHCSCTE
BJHcsCTE.. 8 = B ¢&H eAdapt & Mycsc 2 =8
o} [c] [P "
2Boe Operations
type filter text

HCSC-Server operation

4 [B} Service Definition List

= The HCSC-Server operations to execute are shown below.
48 HelloServiceAdapter

HCSC-Server display name: MyCSC HCSC-Server

Status : active Start Stop

Standard reception status: active Standard reception
—

v Dependency User-defined Reception Normal Stop

Start

‘ Reception name Dependency service name Status
] Properties 52 = 8 |

Property

Definition i ion | O i Resource

1% Problems [E] Console B HCSC-Manager View 3 B'5) HCSCTE Results]
4 B3 HCSC-Manager(Login)
4 & HCSC-Domain
4 ¥ MyUnit(LBCluster)
4 [MyCSC [localhost:28099]
'f!;' HelloServiceAdapter

7.1n the HCSC-Manager view, right-click HCSC-Manager(Login), and then select Logout.
A message confirming that you will log out from HCSC-Manager appears.

8. Click the OK button.
Logout from HCSC - Manager finishes, and HCSC-Manager (Logout) is displayed.

You are now ready to run sample programs.

46

Executing Sample Programs

This chapter describes how to execute sample programs.

47

4. Executing Sample Programs

4.1 Executing sample programs

After preparing the environment for sample programs, execute sample programs.

@ 'mportant note
For sample programs, separate projects are provided for each type of processing. Therefore, to execute a sample program

after executing another program, use the following procedure:

1. Delete the projects for the previously executed sample program.
For details about how to delete projects, see 6.1 Deleting projects.
2. Import Eclipse projects for the sample program to be executed next.
For details about how to import Eclipse projects, see 3.5.5 Importing Eclipse projects.
3. Deploy web projects for the sample program to be executed next.
For details about how to deploy web projects, see 3.5.6 Deploying the web project.
4. Deploy definitions of the sample program to be executed next to the HCSC server.
For details about how to deploy definitions to the HCSC server, see the procedure in 3.5.7(4) Importing a sample

program and later.

5. Execute a sample program.

See one of the following sections based on the sample program you want to execute:

To execute the HelloServiceAdapter sample program:

See 4.2 Operation when business processes are not applied.
To execute the HelloBusinessProcess sample program:

See 4.3 Operation when a business process is applied.
To execute the HelloProductArrangement sample program:

See 4.4 Operation when processes of multiple services are integrated.

@ 'mportant note

To execute a sample program, the test environment must be started. For details about how to start the test environment, see
3.5.2 Starting the test environment. If you do not execute a sample program, stop the test environment. For details about
how to stop the test environment, see 6.2 Stopping the test environment.

48

4. Executing Sample Programs

4.2 Operation when business processes are not applied

Execute the HelloServiceAdapter sample program by performing the following procedure.

1. Enter the following URL into the browser:
http://localhost/HelloClientWeb/index.html

The HelloServiceAdapter sample program is started.

2. Enter a character string for Your Name?

=0 o =
(3; @ nttp://localhost/HelloClientWeb/indexhtml O v G ” @ Hello 1 ‘ N e

Your Name?

ubmi

3. Click the Submit button.
The following is displayed:

Normal response
The following is displayed on the screen:

Hello A entered-character-string A from A Web A Service

A : Space

=0 o =
961@ http://localhost/HelloClientWeb/HelloSerlet O ~ G ” @ Hello ~,:| ‘ A oA

Hello Cosminexus from Web Service

If an error occurred
Details about the error are displayed.

49

4. Executing Sample Programs

50

m|e http://localhost/HelloClientWeb/Helloserviet 0 + & | @ Hello x | | T oag 603

Error occured while calling CSCMsgSyncServiceDeliveryWSImpl#invokeXML() A

a
a:
a
at
a
at
at
at
a:
a:
a;
at
at
at
a;
at
at
a
at

o o ot

o

o ot ot

o

o

jp.co.Hitachi.soft.csc.msg.message.reception.ejb.CSCMsgServerFaultException

sun.reflect.NativeConstructorAccessorImpl.newInstance((Native Method)
sun.reflect.NativeConstr! Impl.newInst (NativeConstructorAccessorImpl.java:
sun.reflect.DelegatingConstructorAccessorImpl.newInstance (DelegatingConstructorAccessorIr
java.lang.reflect.Constructor.newInstance (Constructor.java:526)
java.lang.Class.newInstance (Class.java:374)
com.cosminexus.cws.axis.encoding.ser.BeanDeserializer. (BeanDeserializer.java:139)
com.cosminexus.cws.axis.encoding.ser.BeanDeserializer. (BeanDeserializer.java:118)
jp.co.Hitachi.soft.csc.msg.message.reception.ejb.CSCMsgServerFaultException.getDeseriali:
sun.reflect.NativeMethodAccessorImpl.invoke0 (Native Method)
sun.reflect.NativeMethodAccessorImpl.invoke (NativeMethodAccessorImpl.java:57)
sun.reflect.DelegatingMethodAccessorImpl.invoke (DelegatingMethodAccessorImpl.java:43)
java.lang.reflect.Method.invoke (Method.java:606)
com.cosminexus.cws.axis.encoding.ser.BaseDeserializerFactory.getSpecialized (BaseDeserial:
com.cosminexus.cws.axis.encoding.ser.BaseDeserializerFactory.getDeserializerAs (BaseDeser:
com.cosminexus.cws.axis.encoding.DeserializationContext.getDeserializer (DeserializationCc
com.cosminexus.cws.axis.encoding.DeserializationContext.getDeserializerForType (Deserial.
com.cosminexus.cws.axis.message.SOAPFaultDetailsBuilder.onStartChild (SCAPFaultDetailsBuil
com.cosminexus.cws.axis.encoding.DeserializationContext.startElement (DeserializationConteV
com.cosminexus.jaxp.impl.parsers.parsers.AbstractSAXParser.startElement (AbstractSAXParsel

4. Executing Sample Programs

4.3 Operation when a business process is applied

Execute the HelloBusinessProcess sample program by performing the following procedure.

1. Enter the following URL into the browser:
http://localhost/HelloClientWeb/index.html

The HelloBusinessProcess sample program is started.

2. Enter a character string for Your Name?.

=0 o =
(3; @ nttp://localhost/HelloClientWeb/indexhtml O v G ” @ Hello 1 ‘ N e

Your Name?

ubmi

3. Click the Submit button.
The following is displayed:

Normal response
The following is displayed on the screen:

Hello A entered-character-string A from A Web A Service A and A Business A Process

A : Space

[E=8 Kol 5

@ nttp://localhost/HelloClientWeb/HelloServlet O ~ € ” @ Hello x i ‘ A oA

Hello Cosminexus from Web Service and Business Process

If an error occurred
Details about the error are displayed.

51

4. Executing Sample Programs

52

m|e http://localhost/HelloClientWeb/Helloserviet 0 + & | @ Hello x | | T oag 603

Error occured while calling CSCMsgSyncServiceDeliveryWSImpl#invokeXML() A

a
a:
a
at
a
at
at
at
a:
a:
a;
at
at
at
a;
at
at
a
at

o o ot

o

o ot ot

o

o

jp.co.Hitachi.soft.csc.msg.message.reception.ejb.CSCMsgServerFaultException

sun.reflect.NativeConstructorAccessorImpl.newInstance((Native Method)
sun.reflect.NativeConstr! Impl.newInst (NativeConstructorAccessorImpl.java:
sun.reflect.DelegatingConstructorAccessorImpl.newInstance (DelegatingConstructorAccessorIr
java.lang.reflect.Constructor.newInstance (Constructor.java:526)
java.lang.Class.newInstance (Class.java:374)
com.cosminexus.cws.axis.encoding.ser.BeanDeserializer. (BeanDeserializer.java:139)
com.cosminexus.cws.axis.encoding.ser.BeanDeserializer. (BeanDeserializer.java:118)
jp.co.Hitachi.soft.csc.msg.message.reception.ejb.CSCMsgServerFaultException.getDeseriali:
sun.reflect.NativeMethodAccessorImpl.invoke0 (Native Method)
sun.reflect.NativeMethodAccessorImpl.invoke (NativeMethodAccessorImpl.java:57)
sun.reflect.DelegatingMethodAccessorImpl.invoke (DelegatingMethodAccessorImpl.java:43)
java.lang.reflect.Method.invoke (Method.java:606)
com.cosminexus.cws.axis.encoding.ser.BaseDeserializerFactory.getSpecialized (BaseDeserial:
com.cosminexus.cws.axis.encoding.ser.BaseDeserializerFactory.getDeserializerAs (BaseDeser:
com.cosminexus.cws.axis.encoding.DeserializationContext.getDeserializer (DeserializationCc
com.cosminexus.cws.axis.encoding.DeserializationContext.getDeserializerForType (Deserial.
com.cosminexus.cws.axis.message.SOAPFaultDetailsBuilder.onStartChild (SCAPFaultDetailsBuil
com.cosminexus.cws.axis.encoding.DeserializationContext.startElement (DeserializationConteV
com.cosminexus.jaxp.impl.parsers.parsers.AbstractSAXParser.startElement (AbstractSAXParsel

4. Executing Sample Programs

4.4 Operation when processes of multiple services are
integrated

Execute the product arrangement sample program by performing the following procedure.

1. Enter the following URL into the browser:
http://localhost/ArrangementClientWeb/index.html
The HelloProductArrangement sample program is started.

2. Select the product name and quantity.

Ge[@) http://localhost/ArrangementClientWeb/indext 0 ~ & ” @ Product Stock | l

Product Stock

l Product Name |60 plasma television with HDD measures v]]
&anmy H

Arrangement

NN E N TN KA N

o

3. Click the Arrangement button.
The following is displayed:

Normal response (arrangement completed)

A message indicating that arrangement is completed appears. The product name, quantity, and delivery
number are also displayed.

[E=8 HoR ==

Q [@ http://localhost/ArrangementClientWeb/Arrang O + & ” @ Product Stock ‘| l AL

Product Stock

Product is available for arrangement.

Product Name (/60 plasma television with HDD measures
Quantity 1
Delivery Number([D00000001

Normal response (out of stock)

A message indicating that there is no stock appears. The product name and quantity are also displayed.

53

4. Executing Sample Programs

E=8 En =X

Arrang O ~ C” @ Product Stock ? l K

Product Stock

No stock is available.

||Produc1 Name|(60 plasma television with HDD measures|

[Quantiy 10

If an error occurred
Details about the error are displayed.

G [53 http://localhost/ArrangementClientWeb/Arrang O v C ” @ Product Stock 1

Product Stock o

Error occurred while calling Arrangement#arrangeltem()

com.cosminexus.cws.service.exception.C4Fault: (.,C\,PQCJDCJ— C4Fault exception occurred. Detail =
at . .Jjava:2433)
at gStub.arrangeltem(ArrangementSoapBindingSt
at e let.java:211)
at jav .servlet.http. HccpSez viet.service (HttpServliet.java:714)

at javax.servlet. http HttpServlet.service (HttpServlet.java:807)

at . Filter (ApplicationFilterChain.

at . he. 1 . WA i ionFil .access$.;J(App'_;cac;onk';'_\:ercha;n.java:l}
at org.apache.catalina.core.ApplicationFilterChain$l.run(ApplicationFilterChain.java:307)

at java.security.AccessController.doPrivileged(Native Method)

at org.apache.catalina.core.ApplicationFilterChain.doFilter (ApplicationFilterChain.java:303)VvV
at org.apache.catalina.core.StandardWrapperValve.invoke (StandardWrapperValve.java:386)

How to reset the quantity of product stock to the initial value
For the HelloProductArrangement sample program, the total quantity of stock for each product is 10. If
arrangements are completed, the quantity is reduced for the number of products arranged. If there is no stock,
restart the server or redeploy the J2EE project. The quantity of stock returns to 10. The following describes how to
restart the server and how to redeploy the J2EE project.

How to restart the server
1. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box appears.

2.Select Java EE (default), and then click OK.
The Java EE perspective appears.

3.In the Servers view, right-click MyServer at localhost, and then select Restart.
How to redeploy the J2EE project

1. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box appears.

2.Select Java EE (default), and then click OK.
The Java EE perspective appears.

3.1n the Servers view, right-click MyServer at localhost, and then select Add and Remove.
The Add and Remove dialog box appears.

Undeploy the J2EE project, and then deploy it again. For details about undeployment, see 6.1.1(1)
Undeploying web projects. For details about deployment, see 3.5.6 Deploying the web project.

54

Part 2: APPLICATION

Experiencing the Development of
Sample Programs

This chapter describes how to define service adapters and business processes by using
provided sample programs.

55

5. Experiencing the Development of Sample Programs

5.1 Procedure for developing sample programs

The following figure shows the procedure for developing sample programs.

Figure 5-1: Procedure for developing sample programs

Experience development Experience development Experience development of
of sample program of sample program sample program
HelloServiceAdapter HelloBusinessProcess HelloProductArrangement
+ + + Section
1. Building the test environment 3.5.1
2. Starting the test environment 3.5.2
3. Logging in to Management Server Remote Management 353
4. Setting up Eclipse 3.5.4
5. Creating the HCSCTE project 5.2
] . .) . — 3.5.7(2)
6. Exporting and importing the system configuration definition 357(3)
Defining service Defining service 53
adapters adapters ’
Defining business
%) 54
£ processes
[0}
]
g \/
8 Developing a product arrangement 1
&) system (defining service adapters and 55110
8 business processes) 553
I
o
£
® Developing a product
8 arrangement system 5.5.4to
N (validation, packaging, and 5.5.5
deployment definition)
Debugging the 56
system
L v v v
8. Preparing for running the developed sample program 5.7

1. Building the test environment

In this section, use HCSC Easy Setup to build the test environment. If the test environment has already been built,
undo setup from the HCSC Easy Setup window, and then rebuild the test environment. For details, see 3.5.1
Building the test environment.

2. Starting the test environment
In this section, start the test environment that you built. For details, see 3.5.2 Starting the test environment.

3.Logging in to Management Server Remote Management

56

5. Experiencing the Development of Sample Programs

In this section, log in from Eclipse to Management Server Remote Management. For details, see 3.5.3 Logging in
to Management Server Remote Management.

4. Setting up Eclipse
In this section, set up Eclipse for each sample program. For details, see 3.5.4 Setting up Eclipse.

5. Creating the HCSCTE project
In this section, create a project and set properties before defining service adapters and business processes. For
details, see 5.2 Creating the HCSCTE project.

6. Exporting and importing the system configuration definition

In this section, export the system configuration definition of the execution environment, and then import the
system configuration definition into the development environment. For details, see 3.5.7(2) Exporting the system
configuration definition from the operation environment and 3.5.7(3) Importing the system configuration
definition into the development environment.

7. Creating HCSC components

In this section, create HCSC components, such as a service adapter that calls a service component and a business
process that calls multiple service components. In addition, debug the created HCSC components in the test
environment. For details, see the following sections:

e 5.3 Defining service adapters

¢ 5.4 Defining business processes

e 5.5 Developing the product arrangement system
* 5.6 Debugging the product arrangement system

8. Preparing for running the developed sample program
In this section, validate operation of the developed sample program by using the sample service requester and
service component provided by Service Architect. For details, see 5.7 Preparing for running the developed sample
program.

The following sections describe the above stages.

This chapter also describes how to develop a sample program that defines data transformation using a Java program.
For details, see 5.8 Defining data transformation by using a Java program.

57

5. Experiencing the Development of Sample Programs

5.2 Creating the HCSCTE project

In this section, create an HCSC project before defining service adapters and business processes.

@ 'mportant note

An HCSCTE project is required for each program. When you develop multiple programs, you must use a separate
workspace for the HCSCTE project of each program. If you create multiple HCSCTE projects in the same workspace, the
programs will not operate correctly.

The following is the procedure for creating an HCSCTE project.

1. Start Eclipse.

2. From the menu, select File, New, and then Project.
The New Project dialog box appears.

3.Select HCSCTE Project, and then click the Next button.
The HCSCTE Project dialog box appears, and then the page for creating a new HCSCTE project appears.

18} HCSCTE Project [E=8 EcE =5
HCSCTE Project ,

»
Page for creation of new HCSCTE project / /

Project name:

[¥] Use default location
Ci\temp\workspace

default

4. Specify the following items, and then click the Next button.

Project name
Specify any name. In this example, specify HCSCTE.

Use default location
Select the Use default location check box.

The HCSCTE Project dialog box appears, and then the page for setting the HCSCTE repository appears.

58

18] HCSCTE Project =3 ECR~<=
HCSCTE Repository Configuration r
Repository settings { /
Repository directory:
Login user name: Administratior
®@ [<Beck | Net> |[Ensh [conca |

5. Specify the following items, and then click the Finish button.
Repository directory

5. Experiencing the Development of Sample Programs

Specify the directory in which to store repository information. Note the following points when you specify the
repository directory:

. Do not specify the same path for the repository directory path and project path.

. Use an absolute path to specify the path.

Login user name

. The specified absolute path is normalized, and then the length is verified with the normalized path.

Specify the user name that will be used for logging in to the repository. The user name can consist of 1 to 16
alphanumeric characters.

If a dialog box asking you whether to switch the perspective appears, click the Yes button.

@] HCSCTE - Eclipse

File Edit Navigate Search Project HCSC-Definer HCSC-Manager Run Window Help
£ - PrO-QrE T

g P.

BH. 2| =0

Boge
type filter text

E“} Service Definition List

[Properties §2

(B %

Value

4

Property

& Console
HCSCTE message view
[2015/08/27 22:46:21]INFO:

P4

HCSCTE project HCSCTE created in the workspace.

An HCSCTE project is created, and then the perspective for the project opens.

B3 8
Quick Access

| 3 59 1m0 = ETTESETE)

= 0

59

5. Experiencing the Development of Sample Programs

After you have completed the above procedure, export and import the system configuration definition. For details
about the procedure, see 3.5.7(2) Exporting the system configuration definition from the operation environment and
3.5.7(3) Importing the system configuration definition into the development environment.

60

5. Experiencing the Development of Sample Programs

5.3 Defining service adapters

In this section, define a service adapter by using the HelloServiceAdapter sample program, which calls a
service adapter from the service requester.

You need to define a service adapter according to the service component to be called. The following table shows the
values that you need to set when using the HelloServiceAdapter sample program to define a service adapter.

Table 5-1: Values that need to be set when using the HelloServiceAdapter sample program to define a
service adapter

Item

Value to be set

Description

Service component

type

Web Service

Specify the type of service adapter that is set according to the type of
service component to be called. Because the service component type
of this sample program is a Web Service, specify Web Service.

Service name

HelloServiceAdapte
r

Specify the name of the service adapter to be defined.

WSDL file

HelloService.wsdl

Specify the WSDL file to be used.

For the Hello service adapter, use HelloService.wsdl (WSDL
for the Hello service).

Port specification

Hello

Specify the port of the Hello service adapter.

Service ID

HelAdp

Specity the ID of the Hello service adapter.

Client definition file

c4webcl.properties

Specify the client definition file.

The client definition file controls the client-side behavior. The name
of this file is fixed to c4webcl.properties.

The client definition file of this sample program contains the
following entry:

cdweb.logger.log file prefix=HelloService

This entry sets Hel1loService as the prefix of the trace file and
application log.

Note:

For details about the location of each file, see 4.1 Configuration of the HelloServiceAdapter sample program.

5.3.1 Creating a service adapter

The following is the procedure for creating the Hello service adapter.

1. Start Eclipse.

2.1n the tree view, select and right-click Service Definition List, and then select Add Service Adapter.

61

5. Experiencing the Development of Sample Programs

@} HCSCTE - Eclipse
File Edit Navigate Search Project HCSC-Definer HCSC-Manager Run Windov

o B0 - Q- S v e
[£ Package Expl... ;HCSCTEView gl = (=]
[0} [} P}
type filter text

[0} Service Defigitign L
Add Service Adapter
uSINess Process

Add User Defined Reception
Delete User Defined Reception
Duplicate
Delete
Packaging
Package multiple services
Verify
] Properties 53 1 Upgrade

Property Value Deploy to server and start
Stop and undeploy from server
Deploy all services to server and start
Stop and undeploy all services from server

Debug Configurations...

Refresh

HCSCTE messaqge view

The dialog box for setting the type of service to be used from the service adapter that you are creating appears.

3. Select Web Service as the type of service component, and then click the Next button.

18] Service adapter definition addition =3 EcR "<~
Wizard

Service component type:

The dialog box for entering the information that is necessary for adding a SOAP adapter appears.
4.Enter HelloServiceAdapter as the service name.

5. Click the ... button.
The Open dialog box appears.

6.Select HelloService.wsdl, and then click the Open button.
HelloService.wsdl is located in the following directory:

service-platform-installation-directory\ CSCTE\ Samples\HelloServiceAdapter\Service\WSDL
7. Click the Next button.

62

5. Experiencing the Development of Sample Programs

(@] Service adapter definition addition (Web Service) o [0)=
Wizard (1/2)
Service name: HelloServiceAdapter
WSDL Definition

© File: C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\HelloServiceAdapter\Service\WS|

URL:

e i [

The dialog box for specifying the port appears.
8. Select Hello from the Specification of Port drop-down list, and then click the Finish button.

18] Service adapter definition addition (Web Service) =)
Wizard (2/2)

Specification of Port:

Next> [P — [—————

The service adapter for calling the Hello service (HelloServiceAdapter) is created, and then the service

adapter definition (standard) window appears.

9. Change the service ID to He1Adp.

63

5. Experiencing the Development of Sample Programs

&8 HelloServiceAdapter 52 = B8
+ Service component control information + Request message
Service name HelloServiceAdapter Body Header
Service ID [HelAdp] Standard
Service type Web Service [[luse
Address http://localhost/HelloServiceW: £
Maximum instances 0
Service class name Hello A -
Operation getHelloString v
Service component
Convert a system exception into a fault message
Format ID format1

Message format cscformatl.xsd
+ Operation information

Display... Acquire...
Operation name getHelloString

Communication model ~ Sync

+ Response message
Body Header
Standard

< m »
Service adapter definition (standard) | Service adapter definition (details)

In the service adapter definition (standard) window, the information that has been read from the specified WSDL,
such as the service type and access-target address, is displayed. In addition, the message format that has been
automatically generated from WSDL is displayed (in Message format) in the Request message and Response
message areas. The contents of the message format can be checked by clicking the Display button.

10. Click the Service adapter definition (details) tab at the bottom of the window.

The service adapter definition (details) window appears. In the service adapter definition (details) window, specify
the client definition file.

11.In the service adapter definition (details) window, click the Browse button.

&3 HelloServiceAdapter 52 = g

+ Web Service control information

Client definition file c4webcl.properties [Browse...]I Edit... [Acquire...]

Basic authentication

Use

Service adapter definition (standard) | Service adapter definition (details)

12. Specify c4webcl.properties as the client definition file.
For the HelloServiceAdapter sample program, the location of the above file is as follows:

service-platform-installation-directory\CSCTE\ Samples\HelloServiceAdapter\Service
\HelloService\cdwebcl.properties

13. From the menu, select File, and then Save.
The service adapter definition is now completed.

5.3.2 Validating and packaging a service adapter

64

When you have created the Hello service adapter, validate that it is defined correctly, and then package it. The
following is the procedure for validating and packaging a service adapter.

5. Experiencing the Development of Sample Programs

1. In the tree view, select and right-click HelloServiceAdapter, and then select Verify.

[# Package Explorer B2 HCSCTE View 52 = 0 48 HelloServiceAdapte
L)
type filter text
L — ! + Web Service o
4 [0} Service Definition List
4@ HelloServirnAdantar Client definition
Add Service Ad

- c
Add Business Pi

Add User Defined Reception
Delete User Defined Reception

Duplicate
Delete

Packaging

Package multiple services
' Verify '

oparade

Deploy to server and start

Stop and undeploy from server fi
Deploy all services to server and start
[Properties §2 Stop and undeploy all services from server r
[it
Property Debug Configurations... o
Refresh

The validation results are displayed in the Console view. If an error occurs, correct it according to the message.
2. In the tree view, select and right-click HelloServiceAdapter, and then select Packaging.

[# Package Explorer B} HCSCTE View 52 = 0 48 HelloServiceAdapte
Bo®

type filter text
N) + Web Service o
4 [0} Service Definition List
43 HelloServiraadantar
Add S

Client definition

Add Business P £

Add User Defined Rec:
Delete User Defined Reception
Duplicate

Delete

Packaging

UIT| [
Verify
Upgrade

Deploy to server and start

Stop and undeploy from server fi
Deploy all services to server and start
[Properties §2 Stop and undeploy all services from server r
i
Property Debug Configurations... o
Refresh

Packaging starts. When processing finishes, a message reporting the processing results appears.

3. Perform either of the following operations:
- If the packaging is successful, click the OK button.
- If the packaging fails, take action according to the message, and then re-execute packaging.

5.3.3 Defining deployment of a service adapter

When you have packaged a service adapter, define its deployment. The following shows the deployment definition
procedure.

1. In the tree view, right-click Service Definition List, and then select Deploy all services to server and start.

65

5. Experiencing the Development of Sample Programs

@} HCSCTE - Eclipse
File Edit Navigate Search Project HCSC-Definer HCSC-Manager Run W
e BP0 QB A O
[# Package.. BJ HCSCTE.. 2 = B
[0} [} P}
type filter text
a E’} Service Definition"-
é HelloServices Add Service Adapter
Add Business Process
Add User Defined Reception
Delete User Defined Reception

Duplicate
Delete

Packaging
Package multiple services
Verify

[Properties 53 Upgrade

| Deploy to server and start

Property Value Stop and undeploy fro er
' Deploy all services to server and start)
Op and undeploy all Services ITom server

Debug Configurations...

Refresh

If you are not logged in, the account authentication window appears. Perform step 2.

2.Enter admin in both User ID and Password, and then click the OK button.

A message indicating that processing is in progress appears, and then a message reporting the results appears.

66

5. Experiencing the Development of Sample Programs

5.4 Defining business processes

In this section, define a business process by using the Hel1loBusinessProcess sample program, which calls a
service adapter from a business process.

@ 'mportant note

Before you define a business process, define the service adapter. The service adapter that you use for the
HelloBusinessProcess sample program is the Hello service adapter. For details about how to define the Hello service
adapter, see 5.3 Defining service adapters.

5.4.1 Creating business processes

For a business process, define how the request received from the service requester will be processed. The Hello
business process of the HelloBusinessProcess sample program executes processing as follows:

1. The Hello business process receives the character string entered from the service requester.
2. The Hello service is called via the Hello service adapter.
3. When the Hello service is called, the following character string is concatenated to the received one: A and A

Business A Process (A : single-byte space)

Generated string: string-output-by-Hello-service A and A Business A Process

4. The concatenation result is returned to the service requester, and is displayed in the output window.
Define a business process of the Hel1oBusinessProcess sample program as follows:

1. Add a new business process.
2. Set variables.

3. Deploy activities”.

4. Define activities”.

5. Finish defining the business process.

#
An activity is a component that defines an overview of the processing of a business process.

(1) Adding a business process

The following table shows the values that you need to set when adding a business process.

Table 5-2: Values that need to be set when adding a business process

Item Value to be set Description
Business process name HelloBusinessProcess Specify the name of the business process.
Status persistence yes Specify whether to leave records in the database.

Records left in the database can be used to check the
progress of a process. For this sample program, you
leave records in the database. Therefore, select yes.

Import check box in the Clear the check box. Specify whether to import the BPEL file that was
BPEL file area created by using a tool in the upper process.

If you import the BPEL file, the activities necessary
for the business process are automatically displayed.
For this sample program, you do not import the file.
Therefore, clear the check box.

67

5. Experiencing the Development of Sample Programs

ltem Value to be set Description

Service ID HelBP Specify the ID of the business process.

The following is the procedure for adding the Hello business process.

1. In the tree view, select and right-click Service Definition List, and then select Add Business Process.

[# Package Explorer B HCSCTE View 52 = 0
0} e} B}
type filter text
4 [0} Service Definition List
43 Hellose Add Service Adapter

Add User Defined Reception
e

ete User Defined Reception

Packaging

Package multiple services
Verify

Upgrade

Deploy t art

Stop and undeploy from server

Deploy all services to server and start

Stop and undeploy all services from server
[Properties 2

Debug Configurations...
Property

Refresh

The dialog box for adding a business process definition appears.

2.Enter HelloBusinessProcess in Business Process Name, and then select yes for Status Persistence.
Clear the Import check box in the BPEL file area.

18] Add Business Process Definition =
Wizard
Business Process Name: [HelloBusinessProcess]

Status persistence: no

BPEL file

rtical Horizontal

Einish I [Cancel

3. Click the Finish button.
A business process named HelloBusinessProcess is created, and then the Define Business Process window
appears.

4.In the tree view, select HelloBusinessProcess.
A list of properties for the Hello business process is displayed in the properties view.

5. In the properties view, click the cell for the value of the service ID.
A value can be entered in the cell.

6. Change the value to He1BP, and then press the Enter key.

68

5. Experiencing the Development of Sample Programs

[Properties 52 = LR Y=0
Property Value
Business Process Name __HelloBucinessProcess
Service Id
Status Persistence Ve
Version 1

7. When a message asking you whether you really want to change the value appears, click the OK button.

(2) Setting variables

For a business process, variables are used to define activities. Therefore, the variables to be used must be set before
activities are defined. The following table shows the variables to be used for the Hello business process.

Table 5-3: Variables to be used for the Hello business process

Variable name Type XSD file
InputData XML InputData.xsd
OutputData XML OutputData.xsd

The following is the procedure for setting the variables to be used for the Hello business process.

1. On the canvas of the Define Business Process window, double-click the Variable-Correlation icon.

) HelloBusinessProcess 53

4 % Palette El?variable-(:orrelation

IS celact

The List Of Variables And Correlation Sets dialog box appears.
2.1n the tree view, select Variable List.

3.Enter InputData in Variable name, and then select XML from the Type drop-down list.

{8 List Of Variables And Correlation Sets o @)=

Yagablellist Variable name: l InputData '
CorrelationSet List

Type(K): XML -

| Part name Expression Type Add Line

E OK 3 [Cancel

4. Click the Take In button.
The Take In Message Format dialog box appears.

5. Select Service name, and then, from the drop-down list, select Hello service adapter.

6. Select getHelloString from the Operation name drop-down list, and Request message (Body) from the
Message type drop-down list. For Message format, enter InputData.

69

5. Experiencing the Development of Sample Programs

70

{8} Take In Message Format ==

Service/Reception

© Service name: HelloServiceAdapter vJ

Reception name:

Target for take in

Operation name: l getHelloString v '
Message type: l Request message (Body) - '

Message format: [InputData].xsd

f OK ; l Cancel]

7. Click the OK button.
The Take In Message Format dialog box closes.

8.In the List Of Variables And Correlation Sets dialog box, click the Add button.
InputData is added to the Variable List node in the tree view.

9.1n the List Of Variables And Correlation Sets dialog box, select Variable List. Enter OutputData in Variable
name, and then select XML from the Type drop-down list.

10. Click the Take In button.
The Take In Message Format dialog box appears.

11. Select Service name, and then, from the drop-down list, select Hello service adapter.

12. Select getHelloString from the Operation name drop-down list, and Response message (Body) from the
Message type drop-down list. For Message format, enter OutputData.

{8} Take In Message Format [o &)=

Service/Reception

© Service name: HelloServiceAdapter vJ

Reception name:

Target for take in

Operation name: getHelloString

Message type: l Response message (Body) ~ '

Message format: [OutputData].xsd

E OK ; [Cancel]

13. Click the OK button to close the Take In Message Format dialog box.
14. In the List Of Variables And Correlation Sets dialog box, click the Add button.
OutputData is added to the Variable List node in the tree view.

15. In the List Of Variables And Correlation Sets dialog box, click the OK button.
The variables are now set.

5. Experiencing the Development of Sample Programs

18] List Of Variables And Correlation Sets =3 ECR 5|
4 Variable List Variable name: InputData
InputData
OutputData Type(K): [XML vJ

CorrelationSet List

Message format: InputData.xsd

[7] Part Specifications

Part name Expression Type Add Line

Add [Delete] [Update]

(3) Deploying activities

The following table shows the activities that are necessary for the business process of the
HelloBusinessProcess sample program.

Table 5—4: Activities necessary for the business process of the HelloBusinessProcess sample program

Value to be set Description
Receive activity Receives a response from the service requester
Invoke service activity Calls the Hello service
Data transformation activity Edits a string
Reply activity Returns the processing result to the service requester

The following shows the activity deployment procedure.
1. On the palette, click the following activities, and then place them at appropriate positions by clicking them on the
canvas.

* Receive
* Invoke service
e Data transformation
* Reply

2. To connect activities, on the palette, click «" comection Connection.

3. Click the start activity to start the connection.

4. Click the receive activity as the connection destination.

The start activity is now connected to the receive activity.

5. Chain the activities by connecting adjacent ones (as in steps 2 to 4) from the receive activity to the reply activity.
Make sure that the activities are chained as follows.

7

5. Experiencing the Development of Sample Programs

BJ HCSCTEVi.. 52 = B[R "HelloBusinessProcess 53 = B8
BEE | g 5 ralette Eﬁv&nable{orr&!atlon
type filter text [select
4 [B) Service Definition List (= Connection
%) HelloBusinessProcess " Connection
43 HelloServiceAdapter Link
o Fault =
ey s, Q@ . & . @ .8 __ .= __,0
& Receive StartActivity ReceiveActivityl InvokeActivityl DataActivityl ReplyActivityl EndActivity
b Reply
{9 Invoke Service
19 Invoke Java
(4) Defining activities
Define each of the activities that were placed on the canvas.
(a) Receive activity
1. Double-click the receive activity on the canvas.
The Receive Activity dialog box appears.
2. Enter information as shown in the following figure.
18} Receive Activity Lo o =]
Activity name: Receive
Operation name: getHelloString
Body allocated variable: [InputData v] [Edit...
Header allocated variable:
Correlation set group:
Communication model: © Sync © Async
Instance generation: © yes no
f oK] Cancel]
ltem Value to be set Description
Activity name Receive Specify the name of the activity.
Operation name getHelloString Specity the name of the operation that is used to call a service
component from the service requester.
Body allocated variable InputData From the drop-down list, select the variable to be allocated to
the body of the request message for the business process.
Header allocated variable = None Set this item when you allocate a variable to the header of the
request message for the business process. This item is not used
for this sample program. Therefore, do not set this item.
Correlation set group None Set this item when you allocate a correlation set group to an
activity. This item is not used for this sample program.
Therefore, do not set this item.
Communication model Sync Specify the communication model of the operation. The Hello
service used for this sample program is a Web Service.
Therefore, set Sync.
Instance generation yes Select whether to initialize the process when a request message
is received. For this sample program, set yes.

(b) Invoke service activity

72

3. Click the OK button.

1. Double-click the invoke service activity on the canvas.

5. Experiencing the Development of Sample Programs

The Invoke Service Activity dialog box appears.

2. Enter information as shown in the following figure.

{€] Invoke Service Activity [o]
Activity name: HelloService
Service name: [HelloServiceAdapter -]
Operation name: [getHeIIoStnng v]
Communication model: ~ Sync
Request message
Body allocated variable(Q): [InputData v] [Edit...
Header allocated variable: Setting(H)...
Reply message
Body allocated variable(R): [om:putData v] [Edit...
Header allocated variable: Setting(1)...
Correlation set group:
L OK 3 [Cancel]

Iltem Value to be set Description

Activity name HelloService Enter the name of the activity.

Service name HelloServiceAdapter From the drop-down list, select the name of the
service component to be called by sending a
request message.

Operation name getHelloString Among the operations for the service component
(Hello service adapter) specified in Service
name, select the name of the operation that is to
be called from the drop-down list.

Communication model Sync The communication model set for the operation
specified in Operation name is displayed.

Body allocated variable InputData From the drop-down list, select the variable to be

(in the Request message allocated to the body of the request message that

area) calls the stock management service.

Header allocated variable None Set this item when you allocate a variable to the

(in the Request message header of the request message that calls the stock

area) management service. This item is not used for
this sample program. Therefore, do not set this
item.

Body allocated variable OutputData From the drop-down list, select the variable to be

(in the Response message allocated to the body of the response message to

area) be received from the synchronization operation.

Header allocated variable None Set this item when you allocate a variable to the

(in the Response message header of the response message to be received

area) from the synchronization operation. This item is
not used for this sample program. Therefore, do
not set this item.

Correlation set group None Set this item when you allocate a correlation set
group to an activity. This item is not used for this
sample program. Therefore, do not set this item.

3. Click the OK button.

73

5. Experiencing the Development of Sample

(c) Data transformation activity

1. Double-click the data transform

Programs

ation activity on the canvas.

The Data Transformation Activity dialog box appears.

2. Enter information as shown in the following figure.

{8} Data Transformation Activity =
Activity name: EditOutputString
Source Variables
Variable: [vJ A { Edit..]
List: OutputData D e
Destination Variable

Variable: [OutputData v] 1 Edit..]

DataTransDefnFile: EditOutputString Delete File(X
L OK 3 [Cancel]
ltem Value to be set Description
Activity name EditOutputString Specify the name of the activity.
Variable (in the Source OutputData Select the transformation-source variable from the
Variables area) drop-down list, and then click the Add button.
Variable (in the Destination OutputData Select the transformation-destination variable from the
Variable area) drop-down list.
DataTransDefnFile EditOutputString Specify a name for the data transformation definition
file.

3. Click the OK button.

4. Right-click the data transformation activity on the canvas, and then select Launch mapping definition.

74

The Select Root Element dialog box appears.

5. As the root element of OutputData (schema logical name) for Source, select

hls:getHelloStringResponse from the drop-down list. As the root element of OutputData (schema

logical name) for Target, select h1s:getHelloStringResponse.

18] Select Root Element X
Please select a root element for each schema:
Schema logi... Root element Source/Target
OutputData his:getHelloStringResponse J Source
utputData s:getHelloStringResponse | Target
« I »
E OK J l Cancel

6. Click the OK button.
The data transformation definition window appears.

%) "HelloBusinessProcess 53
4 [3) OutputData

4 @ his:getHelloStringResponse
@ hls:OutputString

4 [3) OutputData
4 o his:getHelloStringResponse o) &
@ hls:OutputString 2 =

5. Experiencing the Development of Sample Programs

7. On the palette of the data transformation definition window, click concat. Then, on the canvas, click between the

transformation source and destination to place the concat there.

8. On the palette of the data transformation definition window, click const. Then, on the canvas, click between the

transformation source and destination to place the const there.

9. On the palette of the data transformation definition window, select Mapping.
10. Click the node adapter of the transformation-source node as the mapping source.
11. Click concat as the mapping destination.

A mapping line is set.

12.In the same way as steps 9 to 11, set a mapping line from concat to the node adapter of the transformation-
destination node.

Do not set a mapping line from const to concat first. Doing so will change the order of output strings.
13.In the same way as steps 9 to 11, set a mapping line from const to concat.

i), *HelloBusinessProcess 53
4 [2 OutputData 4 [3 OutputData
4 @ his:getHelloStringResponse =) = 4 o his:getHelloStringResponse
@ hls:OutputString @ hls:OutputString

- concatlI =
—

constl

14. On the palette of the data transformation definition window, click Select.

15. Double-click const.
The Set Constant dialog box appears.

16. Select String, and then enter the following character string: A and A Business A Process (A :

single-byte space)

16} Set Constant

Function name(1): constl

© String Value:
Number [and Business Process]
Boolean
Boolean e R
© True False
Value
Spediichioce © Do not output the node Empty node

E OK i [Cancel

17. Click the OK button.

(d) Reply activity

1. Double-click the reply activity on the canvas.
The Reply Activity dialog box appears.

2. Enter information as shown in the following figure.

75

5. Experiencing the Development of Sample Programs

1@ Reply Activity o a])=
Activity name: Reply
Operation name: getHelloString
Body allocated variable: {Outputoata v] [Edit...

Header allocated variable: Setting(H)...
Corelation set group:

Fault name:

E OK i [Cancel J

Iltem Value to be set Description

Activity name Reply Specify the name of the activity.

Operation name getHelloString Specity the name of the operation specified for the
corresponding receive activity.

Body allocated variable OutputData From the drop-down list, select the variable to be allocated
to the body of the response message.

Header allocated variable None Set this item when you allocate a variable to the header of
the response message. This item is not used for this sample
program. Therefore, do not set this item.

Correlation set group None Set this item when you allocate a correlation set group to
an activity. This item is not used for this sample program.
Therefore, do not set this item.

Fault name None Define the reply activity as fault processing, and then
specify the fault name to be used when a response message
that indicates that a fault occurred in the service requester
is received. No fault processing is used for this sample
program. Therefore, do not set this item.

3. Click the OK button.

4. When you have defined all activities, from the menu, select File and then Save. The business process is now
defined.

5.4.2 Validating and packaging a Hello business process

When you have created a business process, validate that it is defined correctly, and then package it. The validation and
packaging procedures are the same as those for a Hello service adapter. For details about validation and packaging, see
5.3.2 Validating and packaging a service adapter.

5.4.3 Defining deployment of a Hello business process

When you have packaged a business process, define its deployment. The deployment procedure is the same as that for
a Hello service adapter. For details about deployment definitions, see 5.3.3 Defining deployment of a service adapter.

76

5. Experiencing the Development of Sample Programs

5.5 Developing the product arrangement system

In this section, define a business process by using the HelloProductArrangement sample program, which calls
a service adapter from a business process whose processing is close to an actual job.

For the HelloProductArrangement sample program, define the following three components:

» Stock management service adapter

* Delivery reception service adapter

* Product arrangement business process

5.5.1 Defining the stock management service adapter

Use the WSDL file for the stock management service (InventoryManagementService.wsdl) to define the stock
management service adapter. The following table shows the values that you need to set when defining the stock
management service adapter.

Table 5-5: Values that need to be set when defining the stock management service adapter

ltem

Value to be set

Description

Service component

type

Web Service

Specify the type of service adapter that is set according to the type
of service component to be called. Because the service component
type of this sample program is a Web Service, also specify Web
Service as the service adapter type.

Service name

StockManagement

Specify the name of the service adapter.

WSDL file

InventoryManagementS
ervice.wsdl

The WSDL file defines the method of writing what functions the
Web Service has and what requests you need to send to use those
functions, etc. Use the WSDL file for the stock management
service (InventoryManagementService.wsdl) to create
the stock management service adapter.

Port specification InventoryManager Specify the port of the stock management service adapter.

Service ID InvAdp Specify the ID of the stock management service adapter.

Client definition file cdwebcl.properties The client definition file controls the client-side behavior. The
(This file contains the user creates this file with the name c4webcl.properties.
following entry: This sample program provides a client definition file that sets
cdweb.logger.log fil InventoryManagementService as the prefix of the trace
e_prefix=InventoryMa | file and application log.
nagementService)

Note:

For details about the location of each file, see 4.3 Configuration of the HelloProductArrangement sample program.

The following is the procedure for adding and defining the stock management service adapter.

1. In the tree view, select and right-click Service Definition List, and then select Add Service Adapter.

The dialog box for setting the type of service to be used from the service adapter to be added appears.

2. From the drop-down list, select Web Services, and then click the Next button.

The dialog box for entering the information that is necessary for adding a SOAP adapter appears.

3.Enter StockManagement as the service name, specify InventoryManagementService.wsdl as the
WSDL file, and then click the Next button.

77

5. Experiencing the Development of Sample Programs

{®] Service adapter definition addition (Web Service) o [@ =
Wizard (1/2)
Service name: StockManagement
WSDL Definition

@ File: C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\ProductStock\Service\WSDL\Inv ‘

URL:

TN

The dialog box for specifying the port appears.

4. From the Specification of Port drop-down list, select InventoryManager, and then click the Finish button.

{8} Service adapter definition addition (Web Service) =
Wizard (2/2)

Specification of Port:

TR (mr—| [———

A service adapter named StockManagement service adapter is created, and then the service adapter definition
window appears.

5.1In the service adapter definition (standard) window, change the service ID to InvAdp.

78

@8 *StockManagement 52

5. Experiencing the Development of Sample Programs

+ Service component control information + Request message

Service name StockManagement Body I Header

Service ID [InvAdp] Standard ‘ o

Service type Web Service [[Tuse

Address http://localhost/InventoryManz

Maximum instances 0 Browse
Service class name InventoryManager

[7] Convert a system exception into a fault message

+ Operation information

Format ID

Message format

Operation name reserveltem

Communication model ~ Sync

+ Response message

n

Service component

format1

cscformatl.xsd Browse

Body | Header

Standard

[[use

Service adapter definition (standard) Service adapter definition (details)

6. In the service adapter definition (details) window, click the Browse button, and then specify
cdwebcl.properties as the client definition file.

For the HelloProductArrangement sample program, the location of the above file is as follows:

service-platform-installation-directory\ CSCTE\ Samples\ProductStock\Service
\InventoryManagementService\c4webcl.properties

7.From the menu, select File, and then Save.

5.5.2 Defining the delivery reception service adapter

Use the WSDL file for the delivery reception service (DeliveryService.wsdl) to define the delivery reception service
adapter. The following table shows the values that you need to set when defining the delivery reception service

adapter.

Table 5-6: Values that need to be set when defining the delivery reception service adapter

ltem

Value to be set

Description

Service component type

Web Service

Specify the type of service adapter that is set according to the
type of service component to be called. Because the service
component type of this sample program is a Web Service, also
specify Web Service as the service adapter type.

Service name

DeliveryReception

Specify the name of the service adapter.

WSDL file

DeliveryService.wsdl

The WSDL file defines the method of writing what functions
the Web Service has and what requests you need to send to use
those functions, etc. Use the WSDL file for the delivery
reception service (DeliveryService.wsdl) to define the
delivery reception service adapter.

Port specification

Delivery

Specify the port of the delivery reception service adapter.

Service ID

DelAdp

Specity the ID of the delivery reception service adapter.

79

5. Experiencing the Development of Sample Programs

Iltem Value to be set Description

Client definition file cd4webcl.properties The client definition file controls the client-side behavior. The

(This file contains the user creates this file with the name c4webcl.properties.

following entry: This sample program provides a client definition file that sets
cdweb.logger.log fil DeliveryService as the prefix of the trace file and

e prefix=DeliverySer application log.

vice)

Note:
For details about the location of each file, see 4.3 Configuration of the HelloProductArrangement sample program.

The following is the procedure for adding and defining the delivery reception service adapter.

1. In the tree view, select and right-click Service Definition List, and then select Add Service Adapter.
The dialog box for setting the type of service to be used from the service adapter to be added appears.
2. From the drop-down list, select Web Services, and then click the Next button.
The dialog box for entering the information that is necessary for adding a SOAP adapter appears.

3.Enter DeliveryReception as the service name, specify DeliveryService.wsdl as the WSDL file, and
then click the Next button.

18] Service adapter definition addition (Web Service) o [@ k==
Wizard (1/2)
Service name: DeliveryReception
WSDL Definition

@ File: C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\ProductStock\Service\WSDL\Del ‘

URL:

ST —

The dialog box for specifying the port appears.
4. From the drop-down list, select Delivery, and then click the Finish button.

1@ Service adapter definition addition (Web Service) o
Wizard (2/2)
Specification of Port: [i%Delivery v]]

ETR (T | E——

A service adapter named DeliveryReception service adapter is created, and then the service adapter
definition window appears.

5.1In the service adapter definition (standard) window, change the service ID to De1Adp.

80

5. Experiencing the Development of Sample Programs

48 StockManagement &8 *DeliveryReception 53 = 0
+ Service component control information + Request message
Service name DeliveryReception Body Header
Service ID [DeIAdp[] Standard
Service type Web Service Use
Address http://localhost/DeliveryServic
Maximum instances 0
Service class name Delivery

m

Operation deliveritem -
Service component

Convert a system exception into a fault message
Format ID format3

Message format cscformat1.xsd

+ Operation information
Display... Acquire... |

Operation name deliveritem

Communication model ~ Sync

+ Response message
Body Header
Standard

Use

Service adapter definition (standard) | Service adapter definition (details)

6. In the service adapter definition (details) window, click the Browse button, and then specify
cdwebcl.properties as the client definition file.

For the HelloProductArrangement sample program, the location of the above file is as follows:

service-platform-installation-directory\CSCTE\ Samples\ProductStock\Service
\DeliveryService\cdwebcl.properties

7.From the menu, select File, and then Save.

5.5.3 Defining the product arrangement business process

The product arrangement business process of the Hel1loProductArrangement sample program executes
processing as follows:

1. The product arrangement business process receives the product name and quantity entered from the service
requester.
2. The stock management service is called via the stock management service adapter.

3. When the stock management service is called, if the product is out of stock, an asterisk (*), which means out of
stock, is returned to the service requester.

4.1f the product is in stock, the delivery number is obtained by calling the delivery reception service via the delivery
reception service adapter.

5. The obtained delivery number is returned to the service requester.
Note that because the product arrangement business process is called by using a user-defined reception, you need to
create a user-defined reception by using WSDL (ArrangementService.wsdl).

Define a business process of the HelloProductArrangement sample program as follows:

1. Add a new business process.
2.Add a user-defined reception.
3. Set variables.

4. Deploy activities.

81

5. Experiencing the Development of Sample Programs

5. Define activities.

6. Finish defining the business process.

(1) Adding a business process

The following table shows the values that you need to set when adding the product arrangement business process.

Table 5-7: Values that need to be set when adding a business process

ltem Value to be set

Description

Business process
name

ProductArrangement

Specify the name of the business process.

Status persistence yes

Specify whether to leave records in the database. The records
left in the database can be used to check the progress of a
process. For this sample program, you leave records in the
database. Therefore, select yes.

Import check box in Clear the check box.
the BPEL file areca

To import the BPEL file that was created by using a tool in the
upper process, select the check box. If you import the file, the
activities necessary for the business process are automatically
displayed. For this sample program, you do not import the file.
Therefore, clear the check box.

Service ID ArrBP

Specify the ID of the business process.

The following is the procedure for adding the product arrangement business process.

1. In the tree view, select and right-click Service Definition List, and then select Add Business Process.

The dialog box for adding a business process definition appears.

2.Enter ProductArrangement in Business Process Name, and then select yes for Status Persistence. Clear

the Import check box in the BPEL file area.

{8} Add Business Process Definition o [0)=
Wizard
Business Process Name: [ProductArrangement]
Status persistence: no
BPEL file
k Finish i [Cancel

3. Click the Finish button.

A business process named ProductArrangement is created, and then the Define Business Process window

appears.

4. In the tree view, select Product Arrangement.

A list of properties for the ProductArrangement business process is displayed in the properties view.

5.1In the properties view, click the cell for the value of the service ID.

A value can be entered in the cell.

6. Change the value to ArrBP, and then press the Enter key.

82

[Properties 532

(&)

= 0

]

Property Value

Business Process Name ProductArran
Service Id
Status Persistence ye

Version 1

7. When a message asking you whether you really want to change the value appears, click the OK button.

(2) Adding a user-defined reception

The HelloProductArrangement sample program receives a request from the service requester by using a

reception that has been defined by the user according to the interface of the business process. The interface of the
business process includes the operation name and message format to be set for the receive activity and reply activity.
The following table shows the values that you need to set when adding a user-defined reception.

Table 5-8: Values that need to be set when adding a user-defined reception

5. Experiencing the Development of Sample Programs

Item

Value to be set

Description

Reception type

SOAP Reception

Select the reception type.

Reception name

ServiceReception

Specify the name of the user-defined reception.

WSDL file ArrangementService.wsdl Specify the name of the WSDL file to be used.
Port name Arrangement Specity the port name.
Note:

For details about the location of the file, see 4.3 Configuration of the HelloProductArrangement sample program.

The following is the procedure for adding a user-defined reception for product arrangement.

1. In the tree view, select and right-click the Product Arrangement business process, and then select Add User

Defined Reception.

[# PackageE.. BJ HCSCTEVI.. 32| = O

type filter text
a h’} Service Definition List
%, Product#
42 Delivery
48 StockMg

0} P} q 5% Palette E?v.
[y select

(& Connection

l Add User Defined Reception '

Duplicate

Delete

Packaging
Package multiple services

Verify

Upgrade

Deploy to server and start

Stop and undeploy from server

Deploy all services to server and start

[Properties 52 Stop and undeploy all services from server

Debug
Property

Riicinece Procec. ...

Configurations...

Refresh

The dialog box for selecting the reception type appears.

2.From the Reception type drop-down list, select SOAP Reception.

83

5. Experiencing the Development of Sample Programs

{8} Reception Type Selection =
Wizard

Reception type:

3. Click the Next button.
The dialog box for adding the SOAP reception appears.

4.Enter ServiceReception as the reception name, and then specify ArrangementService.wsdl as the

WSDL file.
1@ User Defined Reception Addition (SOAP Reception) o (B)=
Wizard (1/2)
Reception name: ServiceReception
WSDL file: C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\ProductStock\Service\WS(

[< Back |E Next > i

m
5

5. Click the Next button.

6. From the drop-down list, select Arrangement, and then click the Finish button.

1@ User Defined Reception Addition (SOAP Reception) o
Wizard (2/2)
Specification of Port: [Ef\n’angement v]]

T (mr—| [————

The SOAP reception is added to the business process, and then the window for defining a user-defined reception
appears.

84

5. Experiencing the Development of Sample Programs

43 StockManagement 43 DeliveryReception Product
a 9 sEs

+ User defined reception information

Reception name ServiceReception
Reception ID repl

Reception type SOAP Reception
Port name Arrangement
Context root repl

Operation name arrangeltem v

arrangeltem

User defined reception (standard)

(3) Setting variables

& ServiceRec

duct P = .

+ Request message

Body Header

Message format

+ Response message

Body Header

Message format

cscformat1.xsd

cscformat1.xsd

For a business process, variables are used to define activities. Therefore, the variables to be used must be set before
activities are defined. The following table shows the variables to be used for the product arrangement business

process.

Table 5-9: Variables to be used for the product arrangement business process

Variable name Type XSD file
InputData XML InputData.xsd
OutputData XML OutputData.xsd
StockAllocationInputData XML StockAllocationInputData.xsd
StockAllocationOutputData XML StockAllocationOutputData.xsd
DeliveryArrangementInputData XML DeliveryArrangementInputData.xsd
DeliveryArrangementOutputData XML DeliveryArrangementOutputData.xsd

The following is the procedure for setting the variables to be used for the product arrangement business process.

1. On the canvas of the Define Business Process window, double-click the Variable-Correlation icon.

The List Of Variables And Correlation Sets dialog box appears.

2. Select Variable List. Enter InputData in Variable name, and then select XML from the Type drop-down list.

3. Click the Take In button.

The Take In Message Format dialog box appears.

4.Select Reception name, and then, from the drop-down list, select Service Reception.

5. Select arrangeltem from the Operation name drop-down list, and Request message (Body) from the Message
type drop-down list. For Message format, enter InputData.

85

5. Experiencing the Development of Sample Programs

86

Service/Reception

Service name:
© Reception name:
Target for take in
Qperation name:

Message type:

1@ Take In Message Format

Lo o]

[ServiceReception

arrangeltem -
l Request message (Body) - '

Message format: [InputData

i oK

; [Cancel

6. Click the OK button.
The Take In Message Format dialog box closes.
7.1n the List Of Variables And Correlation Sets dialog box, click the Add button.
The InputData variable is added to the Variable List node.

8.1In the same way as steps 2 to 7, set the variables OutputData, StockAllocationInputData,
StockAllocationOutputData, DeliveryArrangementInputData, and
DeliveryArrangementOutputData.

The values to be set are as follows.
All of the types set in the List Of Variables And Correlation Sets dialog box are XML. The values to be set in the
Take In Message Format dialog box are as follows.

Variable name

. . . DeliveryArrange
i OutputData StockAllocationl = StockAllocation | DeliveryArrange mentC?L/J t utht
P nputData OutputData mentinputData a P
Service/ Reception name Service name Service name Service name Service name
Reception
Name of Service/ | ServiceRece StockManage StockManagem | DeliveryRece | DeliveryRece
Reception ption ment ent ption ption
Operation name arrangeltem reserveltem reserveltem deliverItem deliverItem
Message type Response Request message Response Request message Response
message (Body) (Body) message (Body) (Body) message (Body)
Message format Output data Stock allocation Stock allocation Delivery Delivery
input data output data arrangement arrangement
input data output data

9.1n the List Of Variables And Correlation Sets dialog box, click the OK button.

The variables are

now set.

4 Variable List
DeliveryArrangementInput

InputData
OutputData

StockAllocationOutputDat|
CorrelationSet List

Variable name:

{@] List Of Variables And Correlation Sets

StockAllocationOutputData

5. Experiencing the Development of Sample Programs

DeliveryArrangementOutp| Type(K): [XML

)

StockAllocationInputData Message format: StockAllocationOut

[7] Part Specifications

Part name Expression

Type feCbns

Delete] [Update]

(4) Deploying activities

The following table shows the activities that are necessary for the business process of the
HelloProductArrangement sample program.

Table 5-10: Activities necessary for the business process of the HelloProductArrangement sample

program

Value to be set

Description

Receive activity

Receives a response from the service requester

Data transformation activity

Edits input data, output data, stock allocation data, and delivery arrangement
data

Invoke service activity

Calls the stock management service or delivery reception service

Switch start activity

Starts the processing selected according to the condition (whether the product is
in stock)

Reply activity

Returns the processing result to the service requester

Switch end activity

Ends the processing selected according to the condition (whether the product is
in stock)

The following shows the activity deployment procedure.

1. Place activities on the canvas as shown in the following figure. To place an activity, click on it on the palette, and
then click the position at which to place it on the canvas.

87

5. Experiencing the Development of Sample Programs

43 StockManagement 43 DeliveryReception 1) *ProductA 2 | b ServiceRecepti d g ==+0
4 4% Palette S99 Variable-Correlation
[select

(& Connection ©

" Connection
e €] O
o Link StartActivity

& Fault

(> Basic Activity

EndActivity

+5 Receive
% [61
E» Reply e i] Q] _] \-"
@ Invoke Service ReceiveActivityl DataActivityl InvokeActivity1 SwitchStartActivityl DataActivity2
£9 Invoke Java
9 Data
Transformation] 2 -
, 2 2 2
9 Assign

N ReplyActivityl DataActivity3 InvokeActivity2 DataActivity4 ReplyActivity2
{3 Empty

8 Throw
O wait
% validate
@ Structure A... © ﬁ
[&]Scope SwitchEndActivityl
(5] while
1 Switch Start
‘¢! Switch End
14 Flow Start
44 Flow End

= Utility ®
(3 comment

ProductArrangement [

2. To connect activities, click Connection on the palette.
3. Click the start activity to start the connection.
4. Click the receive activity as the connection destination.

The start activity is now connected to the receive activity.

5. Chain the activities by connecting adjacent ones (as in steps 2 to 4) from the receive activity to the end activity.
Make sure that the activities are chained as follows.

43 StockManagement <3 DeliveryReception [§), *Produc 52 | & ServiceRecepti ductA =

P 9 g
4 5% Palette ‘?Variable{orrelation
[select

(& Connection ©

«" Connection O ﬁ]

u.:n Link StartActivity SwitchStartActivityl
o+ Fault l / \
> Basic Activity < g
5 Receive ReceiveActivityl DataActivity2 DataActivity3
E» Reply l l
£ Invoke Service
£9 Invoke Java $ 9
= pata DataActivityl InvokeActivity2
Transformation l l
I Assign
2 5
) Empty & —_— L
@ Throw InvokeActivityl DataActivity4
QO wait l
£ validate) @
(= Structure A... @ ReplyActivityl ReplyActivity2
[Z] scope \\ //
[Zwhile . J
&, Switch Start O L?.I
¢ Switch End EndActivi SwitchEndActivity1l
ty ty:
4, Flow Start
4 Flow End
(& Utility ®
(3 comment
ProductArrangement |

88

(5) Defining activities

Define each of the activities that were placed on the canvas.

(a) Receive activity

5. Experiencing the Development of Sample Programs

1. Double-click the receive activity (ReceiveActivityl) on the canvas.

The Receive Activity dialog box appears.

2. Enter information as shown in the following figure.

18] Receive Activity =
Activity name: Receive
Operation name: arrangeltem
Body allocated variable: [InputData v] [Edit...
Header allocated variable:
Correlation set group:
Communication model: @ Sync Async
Instance generation: © yes no
E OK ; [Cancel]
ltem Value to be set Description
Activity name Receive Enter the name of the activity.
Operation name arrangeltem Specify the name of the operation that is used to call the
stock management service from the service requester.
Body allocated variable InputData From the drop-down list, select the variable to be allocated to
the body of the request message for the business process.
Header allocated variable None Set this item when you allocate a variable to the header of the
request message for the business process. This item is not
used for this sample program. Therefore, do not set this item.
Correlation set group None Set this item when you allocate a correlation set group to an
activity. This item is not used for this sample program.
Therefore, do not set this item.
Communication model Sync Specify the communication model of the operation. The
product arrangement service used for this sample program is
a Web Service. Therefore, set Sync.
Instance generation yes Select whether to initialize the process when a request
message is received. For this sample program, set yes to
enable initialization.

3. Click the OK button.

(b) Data transformation activity (for preprocessing of stock allocation)

1. Double-click the data transformation activity (DataActivity1) on the canvas.

The Data Transformation Activity dialog box appears.

2. Enter information as shown in the following figure.

89

5. Experiencing the Development of Sample Programs

90

1@ Data Transformation Activity o [[a])==
Activity name: StockAllocationPreprocessing
Source Variables
Variable: [Inputoata vH Add H Edit...]

List:

InputData

Destination Variable

Variable: [StockAIlocationlnputData

DataTransDefnFile: locationPreprocessing

(oK

Item

Value to be set

Description

Activity name

StockAllocationPreprocessing

Enter the name of the activity.

Variable (in the Source
Variables arca)

InputData

Select the transformation-source
variable from the drop-down list,
and then click the Add button.

Variable (in the StockAllocationInputData Select the transformation-
Destination Variable destination variable from the drop-
area) down list.

DataTransDefnFile StockAllocationPreprocessing Enter the name of the data

transformation definition file to be
used to transform variables.

3. Click the OK button.

4. Right-click the data transformation activity on the canvas, and then select Launch mapping definition.

The Select Root Element dialog box appears.

5. Click the root element of InputData (schema logical name) for Source, and then, from the drop-down list,
select ars:arrangeItemn.

6. Click the root element of StockAllocationInputData (schema logical name) for Destination, and then,
from the drop-down list, select ims: reserveItem.

InputData ars:arrangeltem Source
StockA|Iocat|onInputDatarget

1@] Select Root Element
Please select a root element for each schema:
Schema logical name Root element Source/Target

[oK] [

Cancel]

7. Click the OK button.

The data transformation definition window appears.

8. On the palette of the data transformation definition window, select Mapping.

43 StockManagement 43 DeliveryReception %) *Produc 52 | b ServiceRecepti d

4 [2 InputData
4 @ ars:arrangeltem
@ ars:ItemName
@ ars:Quantity

9. Click the node adapter of the transformation-source node as the mapping source.

4 [3 StockAllocationInputData

=0

s Select
Marquee
& String ©
£} concat

£} substr

5. Experiencing the Development of Sample Programs

10. Click the node adapter of the transformation-destination node as the mapping-destination.
A mapping line is set. The correspondence between the mapping-source and mapping-destination node adapters is

as follows.
£3 StockM &2 Deli i) *Produc 2| B Seni i d
4 [3) InputData 4 [3) StockAllocationInputData
4 o ars:arrangeltem 3 = 4 © ims:reserveltem

@ ars:ItemName
@ ars:Quantity

@ ims:ItemName
@ ims:Quantity

Mapping-source
node adapter

Mapping-destination
node adapter

(c) Data transformation activity (in the case where the product is out of stock)

1. Double-click the data transformation activity (DataActivity2) on the canvas.
The Data Transformation Activity dialog box appears.

2. Enter information as shown in the following figure.

(@] Data Transformation Activity =3
Activity name: Out-Of-Stock-Setting
Source Variables
Variable: [StockAlIocatlonqu vJ [Add J { Edit...]

List: StockAllocationOutputData

Destination Variable

Variable: [Outputoata 'H Edit...]

DataTransDefnFile: Out-Of-Stock-Setting Delete File(X

£ OK ; [Cancel]

ltem

Value to be set

Description

Activity name

Out-0f-Stock-Setting

Enter the name of the activity.

Variable (in the Source
Variables arca)

StockAllocationOutputData

Select the transformation-source
variable from the drop-down list,
and then click the Add button.

Variable (in the
Destination Variable area)

OutputData

Select the transformation-
destination variable from the drop-
down list.

DataTransDefnFile

Out-0f-Stock-Setting

Enter the name of the data
transformation definition file to be
used to transform variables.

3. Click the OK button.

4. Right-click the data transformation activity on the canvas, and then select Launch mapping definition.

The Select Root Element dialog box appears.

5. Click the root element of StockAllocationOutputData (schema logical name) for Source, and then, from
the drop-down list, select ims : reserveItemResponse.

6. Click the root element of OutputData (schema logical name) for Destination, and then, from the drop-down
list, select ars:arrangeltemResponse.

91

92

5. Experiencing the Development of Sample Programs

1@ Select Root Element ()

Please select a root element for each schema:

Schema logical name Root element Source/Target
StockAllocationOutputData ims:reserveltemResponse Source

OutputData ars:arrangeltemResponse | Target

E OK i [Cancel

7. Click the OK button.

The data transformation definition window appears.

8. On the palette of the data transformation definition window, select Mapping.

43 StockManagement <3 DeliveryReception [§) *Produc 52 | @b ServiceRecepti di =7
4 [3) StockAllocationOutputData

4 [3) OutputData
= ==} 4 © ars:arrangeltemResponse
] (=] @ ars:DeliveryNumber

4 © ims:reserveltemResponse
@ ims:ReservationNumber

@ String ©
£} concat
£+ substr

£} length

9. Click the node adapter of the transformation-source node as the mapping source.

10. Click the node adapter of the transformation-destination node as the mapping-destination.

A mapping line is set. The correspondence between the mapping-source and mapping-destination node adapters is
as follows.

&3 StockManagement 43 DeliveryReception 1% *Produc 2 | &b ServiceRecepti di
4 [3) StockAllocationOutputData

4 O ims:reserveltemResponse

@ ims:ReservationNumber

4 [3) OutputData
B &= 4 O ars:arrangeltemResponse
B & @ ars:DeliveryNumber

Mapping-source Mapping-destination
node adapter node adapter

(d) Data transformation activity (for preprocessing of delivery arrangement)

1. Double-click the data transformation activity (DataActivity3) on the canvas.
The Data Transformation Activity dialog box appears.

2. Enter information as shown in the following figure.

(€] Data Transformation Activity =)
Activity name: DeliveryArrangementPreprocessing

Source Variables

Variable: [smckAuocationqu vH Add H Edit...]

List: StockAllocationOutputData

Destination Variable

Variable: [DeliveryArTangementInputData vH Edit...]

DataTransDefnFile: DeliveryArrangement

f oK] [Cancel]

5. Experiencing the Development of Sample Programs

ltem

Value to be set

Description

Activity name

DeliveryArrangementPreprocessing

Enter the name of the activity.

Variable (in the Source
Variables area)

StockAllocationOutputData

Select the transformation-source
variable from the drop-down
list, and then click the Add
button.

Variable (in the DeliveryArrangementInputData Select the transformation-
Destination Variable destination variable from the
area) drop-down list.
DataTransDefnFile DeliveryArrangementPreprocessing Enter the name of the data

transformation definition file to
be used to transform variables.

3. Click the OK button.

4.Right-click the data transformation activity on the canvas, and then select Launch mapping definition.

The Select Root Element dialog box appears.

5. Click the root element of StockAllocationOutputData (schema logical name) for Source, and then, from
the drop-down list, select ims : reserveItemResponse.

6. Click the root element of DeliveryArrangementInputData (schema logical name) for Destination, and
then, from the drop-down list, select d1s:deliverItem.

1@ Select Root Element ==
Please select a root element for each schema:
| schema logical name Root element Source/Target

1
!StockAIlocationOutputData ims:reserveltemResponse Source ‘
| DeliveryArrangementInputDatq dls:deliverItem Target ‘
|
|

] | Cancel J

7. Click the OK button.

The data transformation definition window appears.

8. On the palette of the data transformation definition window, select Mapping.

43 StockManagement 43 DeliveryReception %), *Produc

4 [3) StockAllocationOutputData

4 o ims:reserveltemResponse
@ ims:ReservationNumber

9. Click the node adapter of the transformation-source node as the mapping source.

53 b ServiceReception@Pi

= =]

4 [3) DeliveryArrangementInputData [Select

4 o dis:deliveritem
@ dls:ReservationNumber

. Marquee
(= String @
“£} concat
£} substr

£+ length

& Number <«

£+ format

10. Click the node adapter of the transformation-destination node as the mapping destination.

A mapping line is set. The correspondence between the mapping-source and mapping destination node adapters is

as follows.

93

5. Experiencing the Development of Sample Programs

43 StockManagement 43 DeliveryReception %) *Produc

4 [3) StockAllocationOutputData

4 o ims:reserveltemResponse
@ ims:ReservationNumber

Mapping-source
node adapter

32 | @) ServiceReception@Prod

4 [2) DeliveryArrangementInputData

40

(e) Data transformation activity (for setting a delivery number)

1. Double-click the data transformation activity (DataActivity4) on the canvas.

The Data Transformation Activity dialog box appears.

2. Enter information as shown in the following figure.

1@ Data Transformation Activity o
Activity name: DeliveryNumberSetting
Source Variables
Variable: [DellveryArrangeme vJ [Add J { Edit...]

List: DeliveryArrangementOutputData

Destination Variable

Mapping-destination
node adapter

@ dls:ReservationNumber

Variable: [OutputData v]] Edit..]
DataTransDefnFile: DeliveryNumberSettii Delete File(X
[oK] [Cancel]
Iltem Value to be set Description

Activity name

DeliveryNumberSetting

Enter the name of the activity.

Variable (in the Source
Variables arca)

DeliveryArrangementOutputData

Select the transformation-source
variable from the drop-down list,
and then click the Add button.

Variable (in the OutputData Select the transformation-
Destination Variable destination variable from the
area) drop-down list.
DataTransDefnFile DeliveryNumberSetting Enter the name of the data

transformation definition file to be
used to transform variables.

3. Click the OK button.

4. Right-click the data transformation activity on the canvas, and then select Launch mapping definition.

The Select Root Element dialog box appears.

5. Click the root element of DeliveryArrangementOutputData (schema logical name) for Source, and then,
from the drop-down list, select d1s:deliverItemResponse.

6. Click the root element of OutputData (schema logical name) for Destination, and then, from the drop-down
list, select ars:arrangeltemResponse.

94

5. Experiencing the Development of Sample Programs

(@] Select Root Element

Please select a root element for each schema:

Schema logical name Root element
DeliveryArrangementOutputDat:

a_dls:deliverltemResponse Source
OutputData a rangeltemResponse fTarget

Source/Target

E OK ; [Cancel

7. Click the OK button.
The data transformation definition window appears.

8. On the palette of the data transformation definition window, select Mapping.

&3 StockManagement 3 DeliveryReception 1) *ProductArrangement 52 | & ServiceRecepti Prod

4 [3) DeliveryArrangementOutputData
4 o dis:deliverltemResponse = 4 © ars:arrangeltemResponse
@ dls:DeliveryNumber &= @ ars:DeliveryNumber

4 [3) OutputData

= String «©
£} concat
£+ substr

£+ length

> Number <

9. Click the node adapter of the transformation-source node as the mapping source.
10. Click the node adapter of the transformation-destination node as the mapping destination.

A mapping line is set. The correspondence between the mapping-source and mapping destination node adapters is
as follows.

43 StockManagement 43 DeliveryReception %) *Produc
4 [2) DeliveryArrangementOutputData
4 o dis:deliverltemResponse = 4 o ars:arrangeltemResponse
@ dls:DeliveryNumber = @ ars:DeliveryNumber

32 | &b ServiceRecepti

4 [3) OutputData

Mapping-source Mapping-destination
node adapter node adapter

(f) Invoke service activity (for stock allocation)

1. Double-click the invoke service activity (InvokeActivityl) on the canvas.
The Invoke Service Activity dialog box appears.

2. Enter information as shown in the following figure.

95

5. Experiencing the Development of Sample Programs

18} Invoke Service Activity [o o)==
Activity name: StockAllocation
Service name: [StockManagement v]
Operation name: [reserveltem v]
Communication model: Sync
Request message
Body allocated variable(Q): [StockAIIocationlnputData v] [Edit...

Reply message

Header allocated variable: Setting(H)...

Body allocated variable(R): [stockAllocatjonOutputData v][Edit...

Header allocated variable: Setting(1)...
Correlation set group:

k OK 3 I Cancel }
ltem Value to be set Description

Activity name StockAllocation Enter the name of the activity.

Service name StockManagement From the drop-down list, select the
name of the service component to be
called by sending a request message.

Operation name reserveltem Among the operations for the service
component (stock management)
specified in Service name, select the
name of the operation that is to be
called.

Communication model Sync The communication model set for the

operation specified in Operation
name is displayed.

Body allocated variable
(in the Request message
area)

StockAllocationInputData

From the drop-down list, select the
variable to be allocated to the body of
the request message that calls the
stock management service.

Header allocated
variable (in the Request
message area)

None

Set this item when you allocate a
variable to the header of the request
message that calls the stock
management service. This item is not
used for this sample program.
Therefore, do not set this item.

Body allocated variable
(in the Response message
area)

StockAllocationOutputData

From the drop-down list, select the
variable to be allocated to the body of
the response message to be received
from the synchronization operation.

Header allocated None Set this item when you allocate a
variable (in the Response variable to the header of the response
message arca) message to be received from the
synchronization operation. This item
is not used for this sample program.
Therefore, do not set this item.
Correlation set group None Set this item when you allocate a

correlation set group to an activity.
This item is not used for this sample
program. Therefore, do not set this
item.

96

3. Click the OK button.

5. Experiencing the Development of Sample Programs

(9) Invoke service activity (for delivery arrangement)

1. Double-click the invoke service activity (InvokeActivity2) on the canvas.

The Invoke Service Activity dialog box appears.

2. Enter information as shown in the following figure.

18} Invoke Service Activity =
Activity name: DeliveryArrangement
Service name: [DeliveryReception -]
Operation name: [dellverltem v]
Communication model: Sync
Request message
Body allocated variable(Q): [DeliveryArrangementInput[v] [Edit...
Header allocated variable: Setting(H)...
Reply message
Body allocated variable(R): [DeliveryArrangementOutpul v] l Edit..
Header allocated variable: Setting()...
Correlation set group:
E OK 3 [Cancel]
Iltem Value to be set Description

Activity name

DeliveryArrangement

Enter the name of the activity.

Service name DeliveryReception

From the drop-down list, select
the name of the service
component to be called by
sending a request message.

Operation name deliverItem

Among the operations for the
service component (delivery
arrangement) specified in
Service name, select the name
of the operation that is to be
called.

Communication model Sync

The communication model set
for the operation specified in
Operation name is displayed.

Body allocated variable DeliveryArrangementInputData

(in the Request message

From the drop-down list, select
the variable to be allocated to

area) the body of the request
message that calls the delivery
arrangement service.

Header allocated None Set this item when you allocate

variable (in the Request
message area)

a variable to the header of the
request message that calls the
delivery arrangement service.
This item is not used for this
sample program. Therefore, do
not set this item.

Body allocated variable = DeliveryArrangementOutputData

(in the Response
message area)

From the drop-down list, select
the variable to be allocated to
the body of the response
message to be received from
the synchronization operation.

97

5. Experiencing the Development of Sample Programs

Item

Value to be set

Description

Header allocated None
variable (in the
Response message area)

Set this item when you allocate
a variable to the header of the
response message to be

received from the
synchronization operation.
This item is not used for this
sample program. Therefore, do
not set this item.

Set this item when you allocate
a correlation set group to an
activity. This item is not used
for this sample program.
Therefore, do not set this item.

Correlation set group None

3. Click the OK button.

(h) Reply activity (if the product is out of stock)

1. Double-click the reply activity (ReplyActivityl) on the canvas.
The Reply Activity dialog box appears.

2. Enter information as shown in the following figure.

& Reply Activity =3
Activity name: Reply_Out-Of-Stock-Error
Operation name: arrangeltem
Body allocated variable: [OutputData v} [Edit...
Header allocated variable:
Correlation set group:
Fault name:
[oK] [Cancel]
Iltem Value to be set Description

Activity name Reply Out-Of-Stock-Error Enter the name of the activity.

Operation name arrangeIltem Specity the name of the operation
specified for the corresponding receive
activity.

Body allocated OutputData From the drop-down list, select the

variable variable to be allocated to the body of the
response message for the business
process.

Header allocated None Set this item when you allocate a variable

variable to the header of the response message for

the business process. This item is not used
for this sample program. Therefore, do not
set this item.

Enter this item when you allocate a
correlation set group to an activity. This
item is not used for this sample program.
Therefore, do not set this item.

Correlation set group None

Define the reply activity as fault
processing, and then specify the fault
name to be used when a response message

Fault name None

98

5. Experiencing the Development of Sample Programs

ltem Value to be set Description

Fault name None that indicates that a fault occurred in the
service requester is received. No fault
processing is used for this sample
program. Therefore, do not set this item.

3. Click the OK button.

(i) Reply activity (in the case where delivery arrangement is successful)

1. Double-click the reply activity (ReplyActivity2) on the canvas.
The Reply Activity dialog box appears.

2. Enter information as shown in the following figure.

{8} Reply Activity ==
Activity name: Reply_Arrangement-Success
Operation name: arrangeltem
Body allocated variable: [OutputData v] [Edit...

Header allocated variable: Setting(H)...
Correlation set group:
K] [

Fault name:

Cancel }

ltem Value to be set Description

Activity name Reply Arrangement-Success Enter the name of the activity.

Operation name arrangeltem Specify the name of the operation
specified for the corresponding receive
activity.

Body allocated OutputData From the drop-down list, select the
variable variable to be allocated to the body of
the response message for the business
process.

Header allocated None Set this item when you allocate a
variable variable to the header of the response
message for the business process. This
item is not used for this sample program.
Therefore, do not set this item.

Correlation set group None Enter this item when you allocate a
correlation set group to an activity. This
item is not used for this sample program.
Therefore, do not set this item.

Fault name None Define the reply activity as fault
processing, and then specify the fault
name to be used when a response
message that indicates that a fault
occurred in the service requester is
received. No fault processing is used for
this sample program. Therefore, do not
set this item.

3. Click the OK button.

99

5. Experiencing the Development of Sample Programs

(j) Switch start activity

1. Double-click the switch start activity (SwitchStartActivityl) on the canvas.

The Switch Activity dialog box appears.

100

2.Enter CheckStockAllocationResult as the activity name.

3. Click the line on which the value of the Transition destination column is Out-Of-Stock-Setting. Then,
click the To Upper button to move the line to the top line.

4. Select the top line, and then click the Condition Setting... button.

The Set Condition dialog box appears.

5. Enter information as shown in the following figure.

Condition name:

Expression

1@ Condition Setting

Condition Expression

Variable contents:

Lo o=

Out-Of-Stock

StockAllocationOutputData v] [Show Tree...

csc:getVariableData("StockAllocationOutputData”, "/*[local-name()
='"reserveltemResponse’ and namespace-uri()
="http://sample/InventoryManagementService']/*[local-name()
='ReservationNumber' and namespace-uri()

='http://sample/InventoryManagementSewlce']")=""'|
(oK] | Cancel J
ltem Value to be set Description
Condition | Out-0Of-Stock Specify the condition for determining
name whether the product is out of stock as a
result of a stock allocation check.
Variable StockAllocationOutputData From the drop-down list, select the
contents variable to be used in the condition
expression.
Condition csc:getVariableData ("StockAllocationOutputDa Specify the condition expression for
expression = ta", " /*[local-name () ' , determining whether the product is out
='reserveltemResponse' and namespace-uri () of stock in XPath expression format.
='http://sample/
InventoryManagementService']/*[local-name ()
='ReservationNumber' and namespace-uri ()
='http://sample/
InventoryManagementService']")="*"
Note:

Line breaks are not applied to the displayed condition expression.

6. Click the OK

button.

The Switch Activity dialog box appears again.

7.0n the line on which the value of the Transition destination column is
DeliveryArrangementPreprocessing, click Priority, and then select Default from the drop-down list.
If you select Default, you do not need to specify the condition settings.

5. Experiencing the Development of Sample Programs

{8} Switch Activity o (O

Activity name: CheckStockAllocationResult
Switch Condition

Prior... Condition na... Transition destination
Out-Of-Stock Out-Of-Stock-Setting

DeliveryArr repr ing |

[OK] [Cancel

8. Click the OK button.

(k) Switch end activity

1. Double-click the switch end activity (SwitchEndActivityl) on the canvas.
The details of the switch end activity are displayed in the properties view.

2.Enter CheckStockAllocationResult End as the activity name.

[Properties 22 ":?' B Y= 8
Property alue

XS VYR T W [CheckStockAllocationResult_End|

3. When you have defined all activities, from the menu, select File and then Save. The business process is now
defined.

5.5.4 Validating and packaging components

When you have created a component, validate that it is defined correctly, and then package it. The validation and
packaging targets are the Stock Management service adapter, Delivery Reception service adapter, and Product
Arrangement business process in the tree view.

The validation and packaging procedures are the same as those for a Hello service adapter. For details about validation

and packaging, see 5.3.2 Validating and packaging a service adapter.

5.5.5 Defining deployment of components

When you have packaged a component, define its deployment. The deployment procedure is the same as that for a

Hello service adapter. For details about deployment definitions, see 5.3.3 Defining deployment of a service adapter.

101

5. Experiencing the Development of Sample Programs

5.6 Debugging the product arrangement system

In this section, debug the business process that was defined in 5.5.3 Defining the product arrangement business
process, and then check how the business process will be processed.

The following is an overview of debugging the business process described in this section:

1. Set a break point in an activity.

2. Deploy the service requester.

3. Start the HCSC server.

4. Start the debugger.

5.Send a request from the service requester to start the processing of the process instance.
6. Debug each activity.

7. To debug without calling services, use service emulation.

8. Finish debugging the business process.

(1) Setting a break point
Set a break point in the activity at which to stop processing of the process instance.
In this example, set a break point in the invoke service activity (StockAllocation).
The following is the procedure for setting a break point.

1. On the canvas of the business process definition window, right-click the invoke service activity (StockAllocation),
and then select Add Breakpoint.

A break point is added to the activity. As shown in the following figure, a check mark indicating a break point
appears beside the activity icon.

D

StockAllocation

(2) Deploying the service requester

To send a request, import the Eclipse project of the HelloProductArrangement sample program, and then
deploy the service requester on the J2EE server.

The following is the procedure for deploying the service requester.

1. Stop the HCSC server.

From the Start menu, select Programs, Cosminexus”, and then Stop Test Server to stop Performance Tracer,
J2EE server, and HCSC server (including the standard reception and user-defined reception) in the test
environment.

#

This program folder name might have been changed. If it was changed, select the changed program folder
name.

2. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box opens.

3. Select Java EE (default), and then click the OK button.
The Java EE perspective opens.

4. From the menu, select File, and then Import.
The Select page appears.

5.1n the tree view, select General, and then Existing Projects into Workspace.

102

1@} Import
Select

Create new projects from an archive file or directory.

Select an import source:
type filter text

5. Experiencing the Development of Sample Programs

4 (= General
C .

Existing Projects into Workspace

[, Preferences
@ Cvs
[=33:]
& Install
& Java EE
& Plug-in Development
(& Remote Systems

. Duim Mk

m

I©

@

6. Click the Next button.
The Import Projects page appears.

&} Import = [
Import Projects 1% f
Select a directory to search for existing Eclipse projects. 4
© Select root directory: Browse...
Select archive file: Browse
Projects:
Select All

[V] Copy projects into workspace
Working sets
[C]Add project to working sets

Next Einish Cancel

7. Select the Select root directory radio button, and then click the Browse button.

The dialog box for selecting a directory opens.

8. Select the directory that contains the target sample program, and then click the OK button. In this example, the
directory to select is as follows: service-platform-installation-directory\ CSCTE\ Samples\ProductStock

The Import Projects page appears again. Make sure that the check boxes of all projects are selected.

9.1f the Copy projects into workspace check box is not selected, select it.

If you do not select this check box, the sample programs might be deleted. Make sure that this check box is

selected.

103

5. Experiencing the Development of Sample Programs

1@ Import
Import Projects
Select a directory to search for existing Eclipse projects.

@ Select root directory: C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\ProductStock

© Select archive file:
Projects:
[¥] ArrangementClient (C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\ProductStock\Requester\ArrangementClier Select All

[¥] ArrangementClientWeb (C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\ProductStock\Requester\Arr
[v] DeliveryService (C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\ProductStock\Service\DeliveryService) Deselect All

DeliveryServiceWeb (C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\ProductStock\Service\DeliveryServiceWet

InventoryManagementService (C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\ProductStock\Service\Inventor|
[¥] InventoryManagementServiceWeb (C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\ProductStock\Service\Inve

< n J »

Working sets

[T]Add project to working sets

@ < Back Next > Einish] [Cancel

10. Click the Finish button.
The selected projects are imported into the workspace.

11. In the Servers view, right-click MyServer at localhost, and then select Debug.

E» Reply

New 3
9 Invoke Se Open -
D1nvokedal showIn Alt+Shift+W »
=}
<> Data
T mnatag [COPY Ceri+C
(& Structure A. Paste Ctrl+V
[scope ¥ Delete Delete
o}
] whi Rename 2
- ile
) Switch s' %5 Debug Ctrl+Alt+D l
L9 Switch En| e
rofile
th Flow Star Stop Ctrl+Alt+S
Lok i¥e_a |
& Utility |0 publish Ctri+Alt+P
(2 Comment! Clean...
ProductArrange [ty Add and Remove...
Monitoring »
| Properties Alt+Enter

&8 MyServer at0cainost [Stoppea]

A message indicating that processing is in progress appears, and then the server starts. If no server is displayed,
see 3.5.4(3) Selecting the J2EE server.

12.1In the Servers view, right-click MyServer at localhost, and then select Add and Remove.
The Add and Remove dialog box appears.

13.In the Available list box, select ArrangementClient, DeliveryService, and InventoryManagementService, and
then click the Add button.

104

5. Experiencing the Development of Sample Programs

¢
H

i8] Add and Remove... o

Add and Remove

I ¥
L

Modify the resources that are configured on the server

Move resources to the right to configure them on the server
Available: Configured:

(5 ArrangementClient
(® DeliveryService
(/ InventoryManagementService

<< Remove All

V] If server is started, publish changes immediately

(’3; Bac Next Finish l [Cancel

14. Click the Finish button.
A message indicating that processing is in progress appears. After processing finishes, the Java EE perspective
appears again.
When you have completed the setting, confirm that the projects ArrangementClient, DeliveryService,
and InventoryManagementService are displayed under MyServer at localhost in the Servers view.

(3) Starting the HCSC server
Before starting the debugger, start the HCSC server.

1. Start the HCSC server.

From the Start menu, select Programs, Cosminexus”, and then Start Test Server to start Performance Tracer,
J2EE server, and HCSC server (including the standard reception and user-defined reception) in the test
environment.

#

This program folder name might have been changed. If it was changed, select the changed program folder
name.

(4) Starting the debugger

The following is the procedure for starting the debugger.

1. From the Eclipse menu, select Run, and then Debug Configurations.
The Debug Configurations dialog box appears.

2. In the menu of the Debug Configurations dialog box, right-click HCSC-BP, and then select New.

3. Enter any name in Name, and then select ProductArrangement from the Debug target drop-down list.

105

5. Experiencing the Development of Sample Programs

1@ Debug Configurations o)
Create, and run igurati ﬁ,
R INCE [uame: New_configuration]
pe filter text] Business Process settings . Debug settings

f Apache Tomcat

Cosminexus Batch Applict

@ Eclipse Application

E3 Eclipse Data Tools

f Generic Server

i Generic Server(External |
4 %y HCSC-BP

% New_configuration

& HTTP Preview

& J2EE Preview

5] Java Applet

[31 Java Application

Ju JUnit

JU JUnit Plug-in Test

4 0SGi Framework

@, Remote Java Application

= [Debug target: | ProductArrangement v]l

m

% Remote JavaScript
4 Rhino JavaScript
Juy Task Context Test

3 XSL -
< i »

Filter matched 20 of 20 items

@ [Debug] [Close

4. Click the Debug button.
The account authentication window appears.
5. Enter admin in both User ID and Password, and then click the OK button.

A message indicating that processing is in progress appears. When you start the debugger again, the account
authentication window does not appear, but processing immediately starts.

6. Click the OK button.
The debugger starts.

(5) Sending a request
Send a request from the service requester to start the processing of the process instance.
The following is the procedure for sending a request.
1. Access the following URL with a browser:

http://localhost/ArrangementClientWeb/index.html
The window for running the HelloProductArrangement sample program opens.

2. Select the product name and quantity.

ge[\e http://localhost/ArrangementClientWeb/indext O v € ” @ Product Stock 9 } ‘ {0 59§93

Product Stock

l Product Name |60 plasma television with HDD measures v])

itity

Arrangement

NN E N TN KA N

o

106

3. Click the Arrangement button.

5. Experiencing the Development of Sample Programs

The dialog box asking you whether to switch the perspective appears.

4. Click the Yes button.

The view that displays debugging information and variables appears, and the processing of the process instance

starts.

The processing of the process instance stops at the invoke service activity (StockAllocation). On the canvas of the

business process definition window, the icon color of the activity changes as shown as follows to indicate that

processing is temporarily stopped.

B

IStockAllocation|

(6) Debugging the business process

If processing of the process instance is temporarily stopped, you can debug in the following window.

Figure 5—2: Business process debugging window

Viewing debugging
information

Checking variables and correlation sets

Updating variables

{8 Debug - ProductArrangement - Eclipse | =5 ol 5
File Edit Navigate Search Project HCSC-Manhger Run Window Help
o S [2ad=Ris-0 A" iMool ey Quick Access il 19| 98 savaee B} HescTe (35 Debug)
J = -
ri} Debug 53 | 4 Servers | & ¥ =) w-variables 2 ® #E Y=0)
4 @® MyServer at localhost [J2EE Server (Remote Management)] Name value -
&2 Java HotSpot(TM) 64-Bit Server VM[csc-PC:65238] I Delivery OutputData initiali
o MyServer at localhost 3 StockAllocationInputData <2xml version="1.0" encoding="UTF-8"?> <ims:r| _
4 8, New_configuration [HCSC-8P] OutputData <uninitialized>
4 & ProductArrangement [StockaAllocationOutputData <uninitialized>
4 @ MyServer_010196152184_ProductArrangement_1441089847123_9421955837_105 £ TnnutData <?xml version="1.0" encodinn="LITF-8"?> carran ~
= Stockallocation < n k
» HCSC Server
(" 1) Productirrangement 52 =8) Outline 52 ® =0
This is a published service. An outline is not available.
4 i Palette Q & 7
% Select StartActivity CheckstockAllocationResult > Step over/resume
& Connection /
o Connection =
o <) $ g
o Link Receive Out-Of-Stock-Setting DeliveryArrangementPreprocessing
(> Basic Activity l l £
«E1 Receive
@ Reply ¢ 3
S StockAllocationPreprocessint DeliveryArrangement
& Structure A... < o 9 ryAmang
[Z]scope
[l while @ 8
& Utility ® fsts DeliveryNumberSetting
@ comment .
ProductArrangement
2z
R HCSC Emulate 52 =0)
| Response Type Response Message
|
Add| | Delete esume | [Step Ovel
Py J

Emulating services

The following table shows the operations that can be performed during debugging of a business process.

Table 5-11: Operations that can be performed during debugging of a business process

ltem

Description

Check variables and correlation sets
process.

You can check the variables and correlation sets that are currently used in the business

Update variables

You can update the values of the variables that are currently used in the business process.

107

5. Experiencing the Development of Sample Programs

ltem Description

Step over and resume In the Debug view, you can perform the operations below. Use these operations to debug

each activity.

 Step-in(25)

Moves processing to the next activity. If the step-in operation is performed for a switch
start activity, processing moves to the first-branch activity.

* Step-over (“5)

If the step-over operation is performed for a switch start activity, the activities up to the
corresponding switch end activity are processed at one time. If the step-over operation is
performed for an activity other than a switch start activity, the same operation as the
step-in operation is performed.

e Step-return (_(*)

If the step-return operation is performed for an activity that is subordinate to a scope
activity or while activity, the activities up to the next activity to that scope or while
activity are processed.

o Resume ([[f»)

Resumes the processing of the process instance up to the activity at which the next break
point is set.

Emulate services You can emulate services by using already-created response messages.

For details about the procedure for emulating services, see (7) Service emulation.

(7) Service emulation

To debug without calling services, enable service emulation. If you enable service emulation, you can use already-
created response messages instead of calling actual services.

Service emulation allows you to execute a business process even when services called by the business process do not
exist.

You can enable service emulation while the processing of the process instance is temporarily stopped. This subsection
describes the procedure for emulating the StockAllocation service on the assumption that the processing of the process
instance is temporarily stopped at an invoke service activity (StockAllocation).

The following is the procedure for emulating the StockAllocation service.

1. Create an XML file.
2. Display the HCSC emulation view.

3. Use the created XML file to execute service emulation.

Before you execute service emulation, you must start the debugger and send a request from the service requester.

(a) Creating an XML file

108

Create an XML file that will be used as a service response.
The following shows how to create an XML file.

1. From the Eclipse menu, select File, New, and then Other. In the dialog box that appears, select General, and then
File.

The New File dialog box appears.
2.1In the New File dialog box, select the directory in which to save the XML file.
3.In File name, enter any file name (with a file name extension of xm1).
4. Click the Finish button.

An XML editor appears.

5.In the XML editor, click the Source tab, and then enter the following code (A : single-byte space):

5. Experiencing the Development of Sample Programs

<?xml A version="1.0" A encoding="UTF-8"?><reserveltemResponse A xmlns="http://

sample/InventoryManagementService" A ><ReservationNumber>R00000001</
ReservationNumber></reserveltemResponse>

6. From the menu, select File, and then Save.
The XML file is saved.

(b) Displaying the HCSC emulation view
You can emulate services in the HCSC emulation view.

The following is the procedure for displaying the HCSC emulation view.

1. From the Eclipse menu, select Window, Show View, and then Other.
The Show View dialog box appears.

2. Select Debug, and then HCSC Emulate. Then, click the OK button.
The HCSC emulation view appears.

(c) Emulating a service

1. In the Debug view, select Stock Allocation (invoke service activity).

2.In the HCSC emulation view, click the Add button.
A line is added to the table in the HCSC emulation view.

3. Select the Response Type cell, and then select Normal Response.

4. Select the Response Message cell, and then click the ... button.
The Select files dialog box appears.

5. Select the created XML file, and then click the OK button.

6. Click the Step Over button.
The response from the invoke service activity (StockAllocation) is emulated.
The processing of the process instance proceeds to the switch start activity (CheckStockAllocationResult).

To proceed to the subsequent activities, use the Debug view. For details, see (6) Debugging the business process.

(8) Finishing the debugging the business process

Finish debugging the business process.

The following is the procedure for finishing the debugging of the business process.

1. In the Debug view, select ProductArrangement, and then click the Finish icon.

End

Ci~ N |

%5 Debug 52 | 4 Servers
4 g® MyServer at localhost [J2EE Server (Remote Management)]
&2 Java HotSpot(TM) 64-Bit Server VM[csc-PC:65238]
»] MyServer at localhost
4 3y New_configuration [HCSC-BP]
4 &® ProductArrangement
4 ® MyServer_010196152184_ProductArrangement_1441089847123_9421955837_105
= StockaAllocation
»| HCSC Server

Debugging of the business process finishes.

109

5. Experiencing the Development of Sample Programs

5.7 Preparing for running the developed sample program

In this section, validate operation of the developed sample program by using the sample service requester and service
component provided by Service Architect.

To verify operation of the sample program, first, perform the procedures in 3.5.5 Importing Eclipse projects and 3.5.6
Deploying the web project. Then, execute the sample program by following the procedure in Chapter 4. Executing
Sample Programs.

110

5. Experiencing the Development of Sample Programs

5.8 Defining data transformation by using a Java
program

In this section, use the CustomFunction sample program to develop a program that uses a Java program.

Development with the CustomFunction sample program uses a custom function. The custom function defines data
transformations by calling a Java program in which certain data processing is defined.

The following figure shows an overview of the processing of the CustomFunction sample programs.

Figure 5-3: Processing of the CustomFunction sample program

HCSC server
SerViCte Custom busjness
requester process ;
—— (business process) Custom ser\znce
1 adapter®
Input - (service
>
screen Start adapter)
2.
Hello service
Call the Hello C“S?mm (service
service. I component
\I/ | (Web Service))
|
3.| Edit the text. |
4.| (Custome- | i I
— I i
Output 5 | |
screen |——— (Fnd | |
' |
' |
' |
| .
r—-——— """~~~ ~—~"~—~—"———-———-- 1 I 1
I I I
| . AAAL . I
I AAA (— Custom function + I aaa [— Custom function AAA |
| time I |
I I I

Legend:
———>: Flow of tasks for a request or response that calls a service component

Custom : Custom function

r=— 1| : Processing by the custom function

#1: Created by partially changing the Hello business process
#2: Created by partially changing the Hello service adapter

The CustomFunction sample program executes processing as follows:

1. The Custom business process receives the character string entered from the service requester.

2. The business process calls the Hello service via the Hello service adapter. At this time, the custom function is used
to convert all lowercase characters to uppercase characters.

3. When the Hello service is called, the following character string is concatenated to the received one: A and A
Business A Process (A : single-byte space)

4.In addition, the custom function is used to add the execution date and time to the end of the character string (in
yyyv/MM/dd HH : mm : ss . SSS format).

111

5. Experiencing the Development of Sample Programs

Generated string: uppercase-string-output-by-Hello-service A and A Business A

Process A yyyy/MM/dd HH:mm:Ss.SSS

5. The concatenation result is returned to the service requester, and then it is displayed in the output window.

5.8.1 Overview of defining the CustomFunction sample program

The following describes the general procedure for defining the CustomFunction sample program.

Note that you create the CustomFunction sample program by partially modifying the Hello service adapter and
Hello business process. Therefore, you must create the Hello service adapter and Hello business process before
creating the CustomFunction sample program. For details about how to create the Hello service adapter and Hello
business process, see 3.3 Defining service adapters and 5.4 Defining business processes.

Define the CustomFunction sample program as follows:

1. Prepare the custom function.
2. Change the Hello service adapter.

3. Change the Hello business process.

The following subsections describe the stages of developing the CustomFunction sample program above.

5.8.2 Preparing the custom function
If you choose to use the custom function, create the following two items, which are used for the custom function:

¢ Transformation function definition file that defines the configuration of the Java program to be called

e Java program

The following describes the procedure for creating the items above.

(1) Creating the transformation function definition file

1. From the Eclipse menu, select File, New, and then Other.
The New dialog box appears.

2. Select XML, and then XML File. Then, click the Next button.
The XML page appears.

112

1@} New XML File

XML

Create a new XML file.

Enter or select the parent folder:
HCSCTE_HelloBusinessProcess
=3

& HCSCTE_HelloBusinessProcess

File name: transfunc.xml

5. Experiencing the Development of Sample Programs

o e
)

Haj

Next >] Einish] | Cancel J

3. Specify the directory that will contain the transformation function definition file and the desired transformation
function definition file. Then, click the Next button.

In this example, the directory that will store the transformation function definition file is
HCSCTE_HelloBusinessProcess (HCSCTE project folder), and the transformation function definition file

to be used is transfunc.xml.
The Create XML File From page appears.

1@} New XML File

Create XML File From
Select how you would like to create your XML file.

Create XML file from a DTD file
@ Create XML file from an XML schema file

Create XML file from an XML template

Lo o]k

=

pR:S|

Next >] | Einish] | Cancel J

4. Select the Create XML file from an XML schema file radio button, and then click the Next button.

The Select XML Schema File page appears.

113

114

5. Experiencing the Development of Sample Programs

18} New XML File lo o=
Select XML Schema File UC_I’;“JI
Select the schema file to create the XML file. 7|
X
@ Select file from Workspace
Select XML Catalog entry
Workspace Files # =

5. Click the Import Files button.
The Import dialog box appears.

6. For From directory, specify the following directory:

1@ Import
File system

Import resources from the local file system.

From directory: C:\Program Files\Hitachi\Cosminexus\CSCTE\resources\customfunc

[¥] & customfunc

service-platform-installation-directory\CSCTE\resources\customfunc

[¥] [x) customfunction_XMLSchema.xsd

Filter Types... J Select All J Deselect All

Into folder: HCSCTE_HelloBusinessProcess
Options

[T] Qverwrite existing resources without warning
[7] Create top-level folder

®

[Finish

) [

Cancel

7. Select the check boxes of customfunc and customfunction XMLSchema.xsd.
8. For Into folder, specify the folder to which the schema file will be imported.
In this example, specify HCSCTE HelloBusinessProcess.
9. Click the Finish button.
The Select XML Schema File page appears again.
10. Click the Next button.
The Select Root Element page appears.

5. Experiencing the Development of Sample Programs

18} New XML File o=

Select Root Element %l

Select the root element of the XML file.

Root element:

customFunc -]

Content options
[7] Create optional attributes
["] Create optional elements
Limit optional element depth to: |2
[V] Create first choice of required choice
[V]Fill elements and attributes with data

Namespace Information

Prefix Namespace Name Location Hint
func

http://www.hitachi.co.jp/soft/xml/cosminexus/csc... ~ customfunction_XMLSchema.xsd

Next > { FEinish l [Cancel

11. From Root element drop-down list, select customFunc, and then click the Finish button.
A model file of the transformation function definition file is generated.

[X) transfuncxml §3 = 0
BEY
Node Content
22 xml version="1.0" encoding="UTF-8"
4 [¢] func:customFunc
@ xmins:func http://www.hitachi.co.jp/soft/xml/cosminexus/cscdt/functions
xmins:xsi http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemaLocation http://www.hitachi.co.jp/soft/xml/cosminexus/cscdt/functions customfunction_XMLSchema.xsd
4 [g] func:jar
name NCName
4 [¢] func:package
name NCName
4 [¢] func:class
@ name NCName
4 [¢] func:method
name NCName

Design | Source

12. Define necessary information for the model transformation function definition file.

To add an element, select and right-click the parent item in the node column. Select the position at which to add
the element.

You can edit the information of the element in the content column.
The following shows the information to be defined.

115

5. Experiencing the Development of Sample Programs

[X] *transfuncxml §2 = 0
H =Y
Node Content
22 xml version="1.0" encoding="UTF-8"
4 [g] func:customFunc jar+
xmins:func http://www.hitachi.co.jp/soft/xml/cosminexus/cscdt/functions
xmins:xsi http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemalocation http://www.hitachi.co.jp/soft/xml/cosminexus/cscdt/functions customfunction_XMLSchema.xsd
4 [¢] func:jar je+
® name CustomFunctions.jar
4 [¢] func:package
® name sample.transform.CustomFunction
4 [¢] func:class +
name CustomFunctions
4 [¢] func:method comment)
@ name changeCase
(€] func:comment The alphabetic characters included in the transform-from string are output to the transform-to strin...
4 [g] func:arguments
4 [¢] func:argument
name text
[e] func:comment Transform-from string
4 [¢] func:argument ment
® name flag
[€] func:comment Transformation flag (upper | lower)
4 [e] func:method t t
name currentDateTime
[e] func:comment The current date and time is output in yyyy/MM/dd HH:mm:ss.SSS format.
Design | Source
Table 5-12: Information to be defined in the transformation function definition file
Element Information to be defined
xml version="1.0" encoding="UTF-8"
func:customFunc -
xmlns: func http://www.hitachi.co.jp/soft/xml/cosminexus/cscdt/
functions
xmlns:xsi http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemaLocation http://www.hitachi.co.jp/soft/xml/cosminexus/cscdt/
functions customfunction XMLSchema.xsd
func:jar -
name CustomFunctions.jar
func:package -
name sample.transform.CustomFunction
func:class -
name CustomFunctions
func:method -
name changeCase
func:comment The alphabetic characters included in the transform-from string are output to the
transform-to string by changing all lowercase letters to uppercase letters, or vise
versa, according to the specified transformation flag.
func:arguments -
func:argument -
name text
func:comment Transform-from string

116

5. Experiencing the Development of Sample Programs

Element Information to be defined
func:argument -
name flag
func:comment Transformation flag (upper | lower)
func:method -
name currentDateTime
func:comment The current date and time is output in yyyy/MM/dd HH : mm : ss . SSS format.

Legend:
--: Nothing needs to be defined.

13. From the Eclipse menu, select File, and then Save.
The transformation function definition file has now been created.

(2) Creating a Java program

In the CustomFunction sample program, you create a custom function that calls the following Java program.

Figure 5-4: Java program called by the custom function

CustomFunctions.jar <— JAR file name
sample.transform.CustomFunction <« Package name
CustomFunctions < Class name
String changeCase < Method that converts uppercase letters in the string to lowercase
letters, or vise versa, according to which of the following flags is
specified:

upper: Converts lowercase letters to uppercase letters.
lower: Converts uppercase letters to lowercase letters.
String currentDateTime <« Method that outputs the current date and time in the following
format: yyyy/MM/dd HH:mm:ss.SSS

The CustomFunction sample program provides a source file (CustomFunctions. java) that contains the Java
code above. Import and package this source file to create a Java program to be called by the custom function.

The following is the procedure for creating a Java program.

1. From the Eclipse menu, select Window, Open Perspective, and then Other.
The Open Perspective dialog box opens.

2. Select Java, and then click the OK button.

The Java perspective opens.

3. From the Eclipse menu, select File, and then Import.
The Select page appears.

4. In the tree view, select General, and then Existing Projects into Workspace.

117

5. Experiencing the Development of Sample Programs

& import =y
Select \
-
Create new projects from an archive file or directory. H

Select an import source:
type filter text

4 (= General
L Archive File

1= ing Projects into Workspace

[, Preferences
@ Ccvs
> (= BB L
& Install
(& Java EE
& Plug-in Development
(& Remote Systems

. Duim Mk

m

I©
x
z
&
v
m

®

5. Click the Next button.
The Import Projects page appears.

(@impon o=
Import Projects E f
Select a directory to search for existing Eclipse projects. 4
© Select root directory: Browse...
_) Select archive file: Browse
Projects:

Select All

[¥] Copy projects into workspace
Working sets

[T]Add project to working sets

n
I
I

m
3

6. Select the Select root directory radio button, and then click the Browse button.
The dialog box for selecting a directory opens.

7. Select the directory that contains the CustomFunction sample program, and then click the OK button. In this
example, the directory to select is as follows: service-platform-installation-directory\CSCTE\ Samples
\CustomFunctions\CustomFunction\CustomFunctions

The Import Projects page appears again.

8. Select the Copy projects into workspace check box.

118

5. Experiencing the Development of Sample Programs

i@ Import =3 EoR <
Import Projects et

Select a directory to search for existing Eclipse projects.

© Select root directory: C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\CustomFunctions Browse...
Select archive file:

Projects:
¥] CustomFunctions (C:\Program Files\Hitachi\Cosminexus\CSCTE\Samples\CustomFunctions\CustomFunction\CustomFi Select All

Deselect All

it 'l

Refresh

« m »
YI{Copy projects into workspacel
Working sets

[C]1Add project to working sets

N —

9. Click the Finish button.
Import of the Java program is completed.

10. In the Package Explorer view, under the CustomFunctions project, right-click build.xml. Then, select Run, and
then Ant Build.

The Java program is packaged, and then a JAR file (CustomFunctions. jar) is created in the following
directory:

eclipse-workspace-directory\CustomFunctions\build\1lib

If Ant Build does not appear, from the Eclipse menu, select Run, External Tools, and then Open External Tools
Dialog. In the dialog box that appears, specify the Ant Build settings.

11. Copy the created JAR file to the following location:
service-platform-installation-directory\CSC\userlib\customfunc

The Java program has now been created.

5.8.3 Modifying the Hello service adapter

The CustomFunction sample program changes the case of alphabetic data to uppercase when calling a service via

the service adapter. To implement this processing, you need to define data transformation in the Hello service adapter
by modifying the definition of the Hello service adapter.

The following is the procedure for modifying the Hello service adapter.
1. From the Eclipse menu, select Window, and then Preferences.
The Preferences dialog box appears.

2. In the left pane, select HCSC-Definer, and then Data Transformation.
The setting items that are specified in the data transformation definition window are displayed.

119

5. Experiencing the Development of Sample Programs

Preferences
pe filter text]
> General
> Ant
> Data Management

HCSC-Definer

Bucinec

N

> Help
Install/Update

> Java

> Java EE

> Java Persistence
JavaScript

Mylyn

Plug-in Development
Remote Systems
Run/Debug
Server

> Team

Terminal
User Extended Performance
Validation

> Web

> Web Services

> XML

Data Transformation

Mapping Custom Function

Line color

Substitution: E]
Condition: [E]

Mapping definition folder

Loop:

Folder:

[Restore pefaults

J

Apply

]

Cancel

J |

3.Click the Custom Function tab.
The Custom Function tab in the Preference dialog box opens.

Preferences o e)

— @

> General

> Ant

> Data Management

HCSC-Definer
Business Process Editor
Data Transformation
WSDL Custom Binding

N

Data Transformation

v

[Mapping l] Custom Function]l

Transform function definition file

File:

Remove

> Help

> Install/Update

> Java

> Java EE

> Java Persistence
> JavaScript
Mylyn

Plug-in Development
Remote Systems
Run/Debug

> Server

> Team

Terminal
User Extended Performance
Validation
> Web
> Web Services
> XML [
< [»

® [

Restore Defaults

J

OK

4. Click the Browse button.
The dialog box for selecting a file opens.

5. Select the transformation function definition file that you created in 5.8.2(1) Creating the transformation function
definition file, and then click the OK button.

The transformation function definition file is selected.

120

5. Experiencing the Development of Sample Programs

(@] preferences o)
type filter text Data Transformation e T
> General
. Ant Mapping Custom Function
> Data Management Transform function definition file

N

HCSC-Definer
)) File: C:\zz_work\workspace\HCSCTE_Hell i ess\transfunc.xml
Business Process Editor

WSDL Custom Binding
> Help
> Install/Update
> Java
> Java EE
> Java Persistence
> JavaScript
> Mylyn
> Plug-in Development
> Remote Systems
> Run/Debug
> Server
> Team

Terminal
User Extended Performance
Validation

> Web

> Web Services

> XML [

Restore Defaults] [Apply]

6. Click the OK button.
The transformation function definition file is registered.

7. Click the HelloServiceAdapter tab.

The service adapter definition (standard) window defined during development of the Hello service adapter
appears.

121

5. Experiencing the Development of Sample Programs

48 HelloServiceAdapter 52 = 0
-
+ Service component control information + Request message
Service name HelloServiceAdapter Body Header
Service ID HelAdp Standard
Service type Web Service [[Juse
Address http://localhost/HelloServiceW:
Maximum instances 0 Message format
Service class name Hello Displa R
splay... Acquire...
Operation getHelloString v
Service component
["] Convert a system exception into a fault message
Format ID format4

Message format cscformat1.xsd

m

+ Operation information

Operation name getHelloString
Communication model ~ Sync Edit Delete
+ Response message
Body Header
Standard
[Muse
€ Browse L
Display... Acquire...

Service component

Format ID format3

Message format cscformat1.xsd Browse

Service adapter definition (standard) | Service adapter definition (detail;)

8.In the Request message area, in the Standard group, select the Use check box. Then, for Format ID, Message
format, and Data-conversion definition, set the values listed below.

122

48 *HelloServiceAdapter 53

+ Service component control information

Service name HelloServiceAdapter

Service ID HelAdp

Service type Web Service

Address http://localhost/HelloServiceW:
Maximum instances 0

Service class name Hello

getHelloString -

[Convert a system exception into a fault message

Operation

+ Operation information
Operation name getHelloString

Communication model ~ Sync

+ Request message

Body Header

5. Experiencing the Development of Sample Programs

Standard

Service component

Format ID

Message format

'For’mat (o] hello01 '

essage format HelloService.xsd Browse...

format4

cscformati.xsd

m

Data-conversion definition

[Standard => Service component]

TRANSFORM

+ Response message

Body Header

Standard

[Fuse

Service component

Format ID

Message format

Service adapter definition (standard) | Service adapter definition (detail:;)

format3

cscformat1.xsd

No. Item Value to be set
1 Format ID helloO1
2 Message format service-platform-installation-directory\CSCTE\ Samples\CustomFunctions
\CustomFunction\Schema\HelloService.xsd
3 Data-conversion definition TRANSFORM

9. Click the Edit button.

The Select Root Element dialog box appears.

10. As the root elements for Source and Destination, select the following values from the drop-down list:

¢ Root element of HelloService.xsd (schema logical name) for Source: hls:getHelloString

* Root element of cscformatl.xsd (schema logical name) for Destination: hls:getHelloString

{®] Select Root Element

Please select a root element for each schema:

Root element Source/Target

hls:getHelloString J) Source
‘H SeEGE ogfrlng‘ Target

Schema logical name
HelloService.xsd

J |

Cancel

11. Click the OK button.

The data transformation definition window appears.

123

5. Experiencing the Development of Sample Programs

4@ "HelloServiceAdapter 52
4 [2 HelloService.xsd 4 [3) cscformati.xsd
4 @ his:getHelloString 4 @ his:getHelloString

@ hls:InputString @ hls:InputString

12. On the palette of the data transformation definition window, click custom. Then, on the canvas, click between the
transformation source and destination to place the custom there.

@ "HelloServiceAdapter 52]
4 [HelloService.xsd 4 [3 cscformat1.xsd [} select
4 o his:getHelloString B = 4 o his:getHelloString 2}, Marquee
@ hls:InputString = = @ his:InputString — Mapping
(= String
(> Number
(= Bit
= Node
. Control _

£} replace

£} radix

Service adapter definition (standard) Service adapter definition (details) TRANSFORM

13. On the palette of the data transformation definition window, click const. Then, on the canvas, click between the
transformation source and destination to place the const there.

@ "HelloServiceAdapter 52 = 0
4 [3) HelloService.xsd 4 [3) cscformatl.xsd
40 hIs::letHeIloStrmg = &= 4 hIs::xetHelloString i}, Marquee
@ hls:InputString = custom1 =] @ his:InputString — Mapping
(= String
(= Number
(= Bit
(= Node

& Etc
£} replace

£} radix

£} custom

Service adapter definition (standard) Service adapter definition (details) TRANSFORM

14. On the palette of the data transformation definition window, click Mapping.
15. Click the node adapter of the transformation-source node as the mapping source.

16. Click custom as the mapping destination.
A mapping line is set.

17.In the same way as steps 14 to 16, set a mapping line from custom to the node adapter of the transformation-
destination node.

18. In the same way as steps 14 to 16, set a mapping line from const to custom.
@ "HelloServiceAdapter 52

4 [3) HelloService.xsd 4 [3) cscformatl.xsd
4 o his:getHelloString 4 o his:getHelloString

@ hlis:InputString o customi| —

constl

@ his:InputString

19. On the palette of the data transformation definition window, click Select.

124

5. Experiencing the Development of Sample Programs

20. On the palette of the data transformation definition window, double-click const.
The Set Constant dialog box appears.

21. Select String, and then enter upper.

1@} Set Constant
Function name(1): constl
Number [upper]
Boolean
Boolean =
© True Ealse
Value
Specific Node ® Do not output the node Empty node
[OK] [Cancel

22. Click the OK button.
The Set Constant dialog box closes.

23.In the data transformation definition window, double-click custom.
The Custom dialog box appears.

24. Click the Select Transform function button.
The Select Transform function dialog box appears.

{®] Select Transform function (=3

Transform function:

4 CustomFunctions.jar
4 sample.transform.CustomFunction.CustomFunctions
String changeCase(text, flag)
String currentDateTime()

Method description:

The alphabetic characters included in the transform- -
from string are output to the transform-to string by
changing all lowercase letters to uppercase letters, or -

l OK l [Cancel }

25.In the transformation function tree, select String changeCase(text,flag), and then click the OK button.
The Select Transform function dialog box closes, and then the Custom dialog box re-appears.

125

5. Experiencing the Development of Sample Programs

{8} custom

Function name(1): custom1

I[*i

Jar file: CustomFunctions.jar Select Transform function...
Class: sample.transform.CustomFunction.CustomFunctic
Method: changeCase(text, flag)
Return type: String

Argument type: String
Method description: The alphabetic characters included in the transform-from string are output to ~
the transform-to string by changing all lowercase letters to uppercase letters,

or vise versa, according to the specified transformation flag.

1

Arguments:
Argument name Input value Select Node...
hls:getHell ing/hls: i
text /hls:getHelloString/hls: InputString Set Node Condition...

flag {const1}
Select Function...

Down Input value

Remove Input value...

Argument description: Transform-from string

E OK i [Cancel]

26. Confirm that Argument name and Input value are defined as shown below.
If the combination of Argument name and Input value is different from the combination shown below, use the
Up Input value or Down Input value button to combine them correctly.

No. Argument name Input value
1 text /hls:getHelloString/hls:InputString
2 flag {constl}

27. Click the OK button.
The Custom dialog box closes.
28. From the Eclipse menu, select File, and then Save.
The Hello service adapter has now been modified completely.
29. Validate and package the modified service adapter.
For details about validation and packaging, see 5.3.2 Validating and packaging a service adapter.

30. Define deployment of the modified service adapter.
For details about deployment definitions, see 5.3.3 Defining deployment of a service adapter.

5.8.4 Modifying the Hello business process

The CustomFunction sample program adds the time that the business process was executed to the end of the
output string. To implement this processing, you need to modify the data transformation definition of the Hello

business process.

The following is the procedure for modifying the Hello business process.

1. Click the HelloBusinessProcess tab.
The business process definition window defined during Hello business process development appears.

126

I HelloBusinessProcess 53
4 ¢ Palette 349 Variable-Correlation
[select

(= Connection @

n/ Connection O g 5_]

5. Experiencing the Development of Sample Programs

2 = O

o Link StartActivity Receive HelloService
& Fault
(& Basic Activity <«
<=1 Receive
E» Reply
£9 Invoke Service
19 mvoke Java

£ pata

Transformation

& Assign
{AEmphy

(& Structure A... «©
E,-J Scope
[Z] while
1, Switch Start
L9 Switch End
;61 Flow Start
4 Flow End

& Utility
(3 comment

HelloBusinessProcess

2. Click the EditOutputString tab.

EditOutputString Reply EndActivity

The data transformation definition window defined during Hello business process development appears.

%) HelloBusinessProcess 53
4 [3) OutputData
4 o hls:getHelloStringResponse
@ his:OutputString

= 8
4 [2) OutputData [Select
4 @ his:getHelloStringResponse

”, Marquee
@ hls:OutputString

2 concatl |

constl

HelloBusinessProcess | EditOutputString

— Mapping
@ String
£} concat
£} substr

Filevanth
@ Number «©

£} format

£+ calc

Fimvind
(& Bit

£} not

£} bitop

FE evifE

& Node
£+ name
£} count

¥} avick
& Control <«

£} loop

£} choose
(& Etc ©

£} replace

£} radix

SFE AveEarn

3. On the palette of the data transformation definition window, click custom. Then, on the canvas, click between the
transformation source and destination to place the custom there.

4. On the palette of the data transformation definition window, click Mapping.

5. Click custom as the mapping source.

6. Click concat as the mapping destination.
A mapping line is set.

127

5. Experiencing the Development of Sample Programs

128

%) HelloBusinessProcess 52
4 [3) OutputData

4 o his:getHelloStringResponse

@ hls:OutputString

4 [3 OutputData
= 4 o his:getHelloStringResponse

= concati & @ his:OutputString

7. On the palette of the data transformation definition window, click Select.

8. In the data transformation definition window, double-click custom.

The Custom dialog box appears.

9. Click the Select Transform function button.

The Select Transform function dialog box appears.

{®] Select Transform function

Transform function:

2]
=X

4 CustomFunctions.jar

4 sample.transform.CustomFunction.CustomFunctions
String changeCase(text, flag)
String currentDateTime()

Method description:

HH:mm:ss.SSS format.

The current date and time is output in yyyy/MM/dd -

) (

Cancel]

10. In the transformation function tree, select String currentDateTime(), and then click the OK button.
The Select Transform function dialog box closes, and the then Custom dialog box re-appears.

11. Click the OK button.
The Custom dialog box closes.

12. In the data transformation definition window, double-click concat.

The Concatenate dialog box appears.

@ Concatenate
Function name(1): concatl

Input:

{const1}

/hls:getHelloStringResponse/hls:Outp %}
{custom1}

»

Add Eunction.

Remove

J |

Cancel]

13. Confirm that { customl } has been added at the bottom of the Input list box, and then click the OK button.
The Concatenate dialog box closes.

14. On the palette of the data transformation definition window, double-click const.
The Set Constant dialog box appears.

15. Select String, and then enter the following character string: A and A Business A Process (A :

single-byte space)

5. Experiencing the Development of Sample Programs

18} Set Constant
Function name(1): constl

Value:

Number [and Business Process]

Boolean

Boolean

@ True False

Value
Specific Node

© Do not output the node Empty node

[OK } [Cancel

16. Click the OK button.
The Set Constant dialog box closes.
17. From the Eclipse menu, select File, and then Save.
The Hello business process has now been modified completely.
18. Validate and package the modified business process.
For details about validation and packaging, see 5.3.2 Validating and packaging a service adapter.
19. When you have modified a business process, define its deployment.
For details about deployment definitions, see 5.3.3 Defining deployment of a service adapter.

To execute the CustomFunction sample program that you developed

Use the following procedure to execute the sample program in the same way as in the example of executing the
HelloBusinessProcess sample program:

1. Perform the procedure in 3.5.5 Importing Eclipse projects.
2.Perform the procedure in 3.5.6 Deploying the web project.

3. Perform the procedure in 4.3 Operation when a business process is applied.

129

Deleting the Environment for
Sample Programs

This chapter describes how to delete the environment for sample programs.

131

6. Deleting the Environment for Sample Programs

6.1 Deleting projects

The projects to be deleted differ depending on the sample program. This section describes how to delete projects,
taking an example of the HelloServiceAdapter sample program. To run the same sample program (you
previously used) or another sample program after deleting all sample programs, you must begin with importing
Eclipse projects. For details about how to import Eclipse projects, see 3.5.5 Importing Eclipse projects.

The following figure shows an overview of deleting projects:
Figure 6-1: Overview of deleting projects

Section

1. Undeploying and deleting web projects 6.1.1

Y

2. Deleting definitions deployed to the

HCSC server ol

An overview of each process is provided below. Before you start deleting projects, start Eclipse.

1. Undeploying and deleting web projects

For each sample program, undeploy the web projects deployed in 3.5.6 Deploying the web project. Then, delete
the Eclipse projects imported in 3.5.5 Importing Eclipse projects. For details, see 6.1.1 Undeploying and deleting
web projects.

2. Deleting definitions deployed to the HCSC server

For each sample program, delete definitions deployed to the HSCS server in 3.5.7 Deploying definitions to the
HCSC server. For details, see 6.1.2 Deleting definitions deployed to the HCSC server.

The following subsections describe how to delete projects in the order shown above.

6.1.1 Undeploying and deleting web projects

This subsection describes how to delete web projects, taking an example of the HelloServiceAdapter sample
program.

(1) Undeploying web projects
The following describes how to undeploy web projects:

@ 'mportant note
Do not delete the projects created in 3.5.7(1) Creating HCSCTE projects.

1. From the Eclipse menu, click Window, Open Perspective, and then Other.
The Open Perspective dialog box appears.
2.Select Java EE (default), and then click the OK button.
The Java EE perspective appears.
3.In the Servers view, right-click MyServer at localhost, and then select Add and Remove.
The Add and Remove dialog box appears.
4.In the Configured list box, select HelloClient and HelloService, and then click the Remove button.
HelloClient and HelloService are moved from the Configured list box to the Available list box.
5. Click the Finish button.
A message indicating that operation is in progress appears.

After processing terminates, the Java EE perspective appears again. Make sure that the HelloClient and
HelloService projects have been deleted from under MyServer at localhost in the Servers view.

132

6. Deleting the Environment for Sample Programs

(2) Deleting web projects
The following describes how to delete web projects:

1.In the Project Explorer view, select the imported Eclipse project.
For details about the Eclipse projects imported for each sample program, see 3.5.5 Importing Eclipse projects.
2. Right-click, and then select Delete.

The Delete Resources dialog box that asks you to confirm deletion appears.

{.} Delete Resources =

0‘ Are you sure you want to remove these 4 projects from the workspace?
V| Delete project contents on disk (cannot be undone) |

Project locations:

C:\temp\workspace\HelloClient
C:\temp\workspace\HelloClientWeb
C:\temp\workspace\HelloService
C:\temp\workspace\HelloServiceWeb

[Preview> J ok][cCancel]

3. Select the Delete project contents on disk check box, and then click the OK button.
The selected Eclipse project is deleted.

6.1.2 Deleting definitions deployed to the HCSC server

This subsection describes how to delete the service adapter deployed to the HCSC server, taking an example of the
HelloServiceAdapter sample program.

1.In the HCSCTE tree view, right-click Service Definition List, and then select Stop and undeploy all services
from server.
1@} HCSCTE - Eclipse
File Edit Navigate Search Project HCSC-Definer HCSC-Manager Run Wit
- ?}vovq‘,v S v v - v -
[£ Packa.. B3 HCsc.. 2| = 8
BEE
type filter text
a [ﬂ} Service Definition Lict
48 HelloServiceAd Add Service Adapter
Add Business Process
Add User Defined Reception
Delete User Defined Reception
Duplicate
Delete
Packaging
Package multiple services
Verify
[Properties 53 Upgrade

= s |1
1 Deploy to server and start

Property Value

Stop and undeploy from server

l Stop and undeploy all services from server l

Debug Configurations...

Refresh

The account authentication window appears.

2. Enter admin in both User ID and Password, and then click the OK button.

A message indicating that operation is in progress appears. Then, a message indicating the results appears. This
completes deletion of the HCSC component deployed to the HCSC server.

3. To completely delete the definitions from the HCSCTE project, select HCSC-Definer, Repository management,
and then Initialize repository.

133

6. Deleting the Environment for Sample Programs

When the dialog box that asks you to confirm initialization appears, click the Yes button. Definitions are now
completely deleted.

134

6. Deleting the Environment for Sample Programs

6.2 Stopping the test environment

To terminate use of Service Architect, stop the active test environment, and then exit Eclipse.

To stop the test environment:

1. From the Start menu, select Programs, Cosminexus”, and then Stop Test Server to stop Performance Tracer, the
J2EE server, and the HCSC server (including the standard reception and user-defined reception) in the test
environment.

2. From the Start menu, select Programs, Cosminexus”, and then Stop Database to stop the embedded database in
the test environment.

If this program folder name has been changed, select the changed program folder name.

@ 'mportant note

If you exit Eclipse before stopping the test environment, process-termination processing is performed to terminate the test
environment even after the Eclipse window is closed. Therefore, when you start Eclipse the next time, an error message
indicating that another process is using the HCSCTE temporary directory might appear. The following describes what to do
if an error message appears:

1. Open Windows Task Manager.

2. Wait until the eclipse.exe and javaw.exe processes, which are running Eclipse, disappear from the list of
processes.

3. After confirming that the processes have disappeared, start Eclipse.

135

6. Deleting the Environment for Sample Programs

6.3 Unsetup and uninstallation

This section describes how to undo setup of the test environment and Eclipse, and how to uninstall Service Architect.

6.3.1 Undoing setup of the test environment
Use HCSC Easy Setup to undo setup of the test environment. To undo setup of the test environment:

1. Stop the test environment if it is active. Exit Eclipse if it is running.

2. From the Start menu, select Programs, Cosminexus”, First Setup, and then Setup Testing Environment.
The Main page of the HCSC Easy Setup window appears.

3. Click the Unsetup button.
Unsetup of the test environment starts, and then finishes after a while.

If this program folder name has been changed, select the changed program folder name.

6.3.2 Undoing setup of Eclipse

Use Eclipse Setup to undo setup of an environment that was built by using Eclipse Setup.

The following table lists the items that are deleted when setup is undone by using Eclipse Setup:

Table 6-1: Items deleted when setup is undone by using Eclipse Setup

Item Deleted?
Eclipse Platform Deleted"!
Eclipse configuration folder Not deleted”?
(folder for each user)
Eclipse workspace Not deleted
Shortcut to Eclipse Deleted

#1
All data in the target folder, including user-created files, will be deleted.

#2

The configuration folder and workspace are created by Eclipse. Therefore, they are not deleted by undoing setup
by using Eclipse Setup provided by Developer. If you want to delete them, you have to do so manually. For
details, see (2) Undoing setup manually .

If you have uninstalled and then re-installed Service Architect before undoing setup of an environment built by using
Eclipse Setup, see (2) Undoing setup manually.

@ 'mportant note

Before you start undoing setup, exit Eclipse. If you undo setup while Eclipse is running, the Eclipse installation directory
will not be deleted. If the Eclipse installation directory remains after setup is undone, manually delete the directories and
files in Eclipse-installation-directory\eclipse.

(1) Using Eclipse Setup
To use Eclipse Setup to undo setup:

1. From the Start menu, select Programs, Cosminexus, First Setup, and then Unsetup Eclipse.
Eclipse Setup starts, and then the Verify Unsetup page appears in the Unsetup - Eclipse Setup dialog box.

136

C) Unsetup - Eclipse Setup

Confirm Unsetup Details

Unsetup details:

Make sure the unsetup details are correct, and then dick the [Execute] button.

Uninstall Edipse

Edlipse installation directory:C:\Program Files\Hitachi\Cosminexus \ADP\IDE

Execute

6. Deleting the Environment for Sample Programs

2. Check the information displayed in the Unsetup details area, and then click the Execute button.

The Progress Status page appears.

When unsetup processing terminates, the Unsetup Completed page appears.

“ Unsetup - Eclipse Setup

Unsetup Results

Edipse unsetup

)

Completed

KEDT 11001-I Setup of the Edlipse Setup functionality has started.

KEDT 10003-I Copying file has finished. (details
KEDT 10006-1 Executing file has started. (detai
KEDT 10007-I Executing file has finished. (details

KEDT 10004-1 Editing file has started. (details:
KEDT 10005-1 Editing file has finished. (details:

KEDT11002-1 Setup of the Edlipse Setup functionality has finished.

KEDT 10002-I Copying file has started. (details=C:\Program Files\Hitachi\Cosminexus\ADP\EdipseS
:\Program Files \Hitachi\Cosminexus \ADP \Edlipse:
\Program Files \Hitachi\Cosminexus \ADP \Edips¢
\Program Files \Hitachi\Cosminexus \ADP \Edlips|
KEDT 10002-I Copying file has started. (details=C:\Program Files\Hitachi\Cosminexus\ADP \EdlipseS
KEDT 10003-I Copying file has finished. (details=C: \Program Files\Hitachi\Cosminexus\ADP \Edlipse!
\Program Files \Hitachi\Cosminexus\ADP\EdlipseSe{
\Program Files\Hitachi\Cosminexus \ADP\EdiipseSe
KEDT10029-1 Deleting folder has started. (details=C:\Program Files\Hitachi\Cosminexus\ADP\IDE!
KEDT10030-1 Deleting folder has finished. (details=C:\Program Files\Hitachi\Cosminexus\ADP\IDE'

3. Click the Finish button.

The Unsetup - Eclipse Setup dialog box closes.

@ 'mportant note

If you undo setup in Windows Vista or later, the shortcut to eclipse. exe that was added to the desktop during setup is
deleted. However, the shortcut icon might remain on the screen (as if not deleted). In this case, refresh the desktop to delete

the shortcut from the screen.

(2) Undoing setup manually

If you have uninstalled and then re-installed Service Architect before undoing setup of the environment built by using
Eclipse Setup, manually undo that environment. To manually undo setup of the test environment:

1. Delete the shortcut to Eclipse.

137

6. Deleting the Environment for Sample Programs

The administrator deletes the following files:
In Windows XP:
C:\Documents and Settings\All Users\Desktop\Eclipse.lnk

In Windows Vista or later
C:\Users\Public\Desktop\Eclipse.lnk

2. Delete the Eclipse configuration folder.
The following shows the location of the folder:

In Windows XP:
C:\Documents and Settings\All Users\ADP

In Windows Vista or later
C:\Users\All Users\ADP

3. Delete the Eclipse folder.
The following shows the default location of the folder:
service-platform-installation-directory\ ADP\ IDE\eclipse

6.3.3 Uninstalling Service Architect

Uninstall Service Architect. For uninstallation, you must have Administrator permissions or administrator privileges.

Before uninstalling Service Architect, you need to undo setup of Eclipse.

1. From the Windows Start menu, select Cosminexus, and then uCosminexus Service Architect Uninstall.
A dialog box that asks you to confirm uninstallation appears.

2. Click the Yes or No button.
If you click the Yes button

Uninstallation starts, and then all the Service Architect configuration software products are deleted.

If you click the No button

A dialog box for selecting the configuration software to be uninstalled appears. Select the configuration
software to uninstall, and then click the Next button. Uninstallation starts, and then the selected configuration
software is deleted.

138

Appendixes

139

A. Configuration of sample program files

A. Configuration of sample program files

The following table lists the locations of the sample programs:

Table A—1: Storage location of sample programs

Sample program name Storage location
HelloServiceAdapter service-platform-installation-directory\ CSCTE\Samples\HelloServiceAdapter
HelloBusinessProcess service-platform-installation-directory\CSCTE\ Samples

\HelloBusinessProcess

HelloProductArrangement service-platform-installation-directory\ CSCTE\ Samples\ProductStock

CustomFunction service-platform-installation-directory\CSCTE\ Samples\CustomFunctions

The sections below describe the configuration of files for each sample program.

Bold text indicates files that are installed in a sample program. Files not in bold text are automatically created.

A.1 Configuration of the HelloServiceAdapter sample program

HelloServiceAdapter
|-Repository Repository directory
| | -HelloServiceAdapter.zip Repository
| -Requester Service requester directory
| |-HelloClient Eclipse Java enterprise application project
| .project
.settings
org.eclipse.wst.common.component
org.eclipse.wst.common.project.facet.core.xml
EarContent
+META-INF
application.xml
-HelloClientWeb Eclipse Java Web project
| .classpath
| .project
+
\
\
\
\
\

\
|+
Il
Il
|+
\
\
\

.settings
.jsdtscope
org.eclipse.jdt.core.prefs
org.eclipse.wst.common.component
org.eclipse.wst.common.project.facet.core.xml
org.eclipse.wst.jsdt.ui.superType.container

| org.eclipse.wst.jsdt.ui.superType.name

\

|

\

\

|

\

\

|

\

\

|

\

\

|

\

\

|

| +build

| |+classes

| +src

| I+3p

| Il+co

| | +Hitachi

| | +soft

| | +csc

| [+msg

| | +message

| | +reception

| |l |-ejb Stores client stubs that are generated based on WSDL
| | CSCMsgServerFaultException.java

| [l CSCMsgSyncServiceDeliveryWSImpl. java

[0 CSCMsgSyncServiceDeliveryWSImplService.java
| I CSCMsgSyncServiceDeliveryWSImplServicelocator.java
| [l CSCMsgSyncServiceDeliveryWSImplSoapBindingStub.java
| |+sample

| | +servlet

| | | HelloServlet.java Service component invocation servlet
| | +xml

| | DomUtil. java

| | XmlErrorHandler. java

| +WebContent

| | index.html Input window

| +META-INF

| | MANIFEST.MF

| +WEB-INF

| | web.xml DD

140

A. Configuration of sample program files

| +1ib
|-Service Service component directory
|-HelloService Eclipse Java enterprise application project
| .project
c4webcl .properties Client definition file used by the Hello service adapter
.settings

org.eclipse.wst.common.project.facet.core.xml
EarContent
+META-INF
application.xml
-HelloServiceWeb Eclipse Java Web project

\
+
| org.eclipse.wst.common.component
\
+

\
| .classpath
| .project
+.settings
| .jsdtscope
| org.eclipse.jdt.core.prefs
| org.eclipse.wst.common.component
| org.eclipse.wst.common.project.facet.core.xml
| org.eclipse.wst.jsdt.ui.superType.container
| org.eclipse.wst.jsdt.ui.superType.name
+build
|+classes
+src
| +sample
| +HelloService
| Hello.java Server skeleton
| HelloSoapBindingImpl.java Hello service (server skeleton)
+WebContent
+META-INF
| MANIFEST.MF
+WEB-INF
| server-config.xml Service deploy definition file (server skeleton)
| web.xml DD
+1ib
WSDL
cscmsg_ws.wsdl
HelloService.wsdl WSDL for the Hello service

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
+

A.2 Configuration of the HelloBusinessProcess sample program

HelloBusinessProcess

| -Repository Repository directory

| HelloBusinessProcess.zip Repository

| -Requester Service requester directory

| |-HelloClient Eclipse Java enterprise application project
| .project

\

| |+.settings

[l org.eclipse.wst.common.component

[l org.eclipse.wst.common.project.facet.core.xml
| | +EarContent

| +META-INF

| application.xml
| |-HelloClientWeb Eclipse Java Web project
| | .classpath

| | .project

| +.settings

| | .jsdtscope

| | org.eclipse.jdt.core.prefs

| | org.eclipse.wst.common.component

| | org.eclipse.wst.common.project.facet.core.xml

| | org.eclipse.wst.jsdt.ui.superType.container

| | org.eclipse.wst.jsdt.ui.superType.name

| +build

| |+classes

| +src

| I+Jp

[Il+co

| || +Hitachi

| | +soft

| | +csc

Il +msg

| | +tmessage

| | +reception

| | |-ejb Stores client stubs that are generated based on WSDL
| I CSCMsgServerFaultException.java

| | CSCMsgSyncServiceDeliveryWSImpl.java

| | CSCMsgSyncServiceDeliveryWSImplService.java

| I CSCMsgSyncServiceDeliveryWSImplServiceLocator.java

141

A. Configuration of sample program files

| CSCMsgSyncServiceDeliveryWSImplSoapBindingStub. java
+sample
+servlet
| HelloServlet.java Service component invocation servlet
+xml
DomUtil. java
XmlErrorHandler. java
WebContent
| index.html Input window
+META-INF
| MANIFEST.MF
+WEB-INF
| web.xml DD
+1ib
ervice Service component directory
-HelloService Eclipse Java enterprise application project
.project
c4webcl .properties Client definition file used by the Hello service adapter
.settings
org.eclipse.wst.common.component
org.eclipse.wst.common.project.facet.core.xml
EarContent
+META-INF
application.xml
HelloServiceWeb Eclipse Java Web project
.classpath
.project
.settings
.Jjsdtscope
org.eclipse.jdt.core.prefs
org.eclipse.wst.common.component
org.eclipse.wst.common.project.facet.core.xml
org.eclipse.wst.jsdt.ui.superType.container
org.eclipse.wst.jsdt.ui.superType.name
build
+classes
src
+sample
+HelloService
Hello.java Server skeleton
HelloSoapBindingImpl.java Hello service (server skeleton)
WebContent
+META-INF
| MANIFEST .MF
+WEB-INF
| server-config.xml Service deploy definition file (server skeleton)
| web.xml DD
+1ib

+ -

+—— o+ ——

t———— =t ———— — — + —— |

cscmsg ws.wsdl
HelloService.wsdl WSDL for the Hello service

A.3 Configuration of the HelloProductArrangement sample program

ProductStock

|-Repository Repository directory

| ProductStock.zip Repository

| -Requester Service requester directory

| | -ArrangementClient Eclipse Java enterprise application project

| .project

.settings
org.eclipse.wst.common.component
org.eclipse.wst.common.project.facet.core.xml

EarContent

+META-INF

application.xml

-ArrangementClientWeb Eclipse Java Web project
| .classpath
\
+
\
\
\
\
\

\
| +
I
Il
| +
\
\
\

.project
.settings
.jsdtscope
org.eclipse.jdt.core.prefs
org.eclipse.wst.common.component
org.eclipse.wst.common.project.facet.core.xml
org.eclipse.wst.jsdt.ui.superType.container
| org.eclipse.wst.jsdt.ui.superType.name
+build
|+classes
+src

142

A. Configuration of sample program files

| +sample
| +ArrangementService
| | Arrangement.java Client stab
| | ArrangementService.java Client stab
| | ArrangementServicelLocator.java Client stab
| | ArrangementSoapBindingStub.java Client stab
| +servlet
| ArrangementServlet.java Service component invocation servlet
+WebContent
| error.jsp Error response window
| index.html Input window
| result.jsp Normal response window
+META-INF
| MANIFEST.MF
+WEB-INF
| web.xml DD
+1ib
Service
|-DeliveryService Eclipse Java enterprise application project
| .project
|| c4webcl.properties Client definition file used by the delivery reception
service adapter
|+.settings
|| org.eclipse.wst.common.component
|| org.eclipse.wst.common.project.facet.core.xml
|+EarContent
+META-INF
application.xml
-DeliveryServiceWeb Eclipse Java Web project
| .classpath
| .project
+.settings
| .jsdtscope
| org.eclipse.jdt.core.prefs
| org.eclipse.wst.common.component
| org.eclipse.wst.common.project.facet.core.xml
| org.eclipse.wst.jsdt.ui.superType.container
| org.eclipse.wst.]jsdt.ui.superType.name
+build
\
+
\
\
\
\
+

+—_

+classes
src
+sample
+DeliveryService
Delivery.java Server skeleton
DeliverySoapBindingImpl.java Delivery reception service (server skeleton)
WebContent
+META-INF
| MANIFEST.MF
+WEB-INF
| server-config.xml Service deploy definition file (server skeleton)
| web.xml DD
+1lib
-InventoryManagementService ... Eclipse Java enterprise application project
| .project
| cdwebcl.properties Client definition file used by the inventory management
vice adapter
+.settings
| org.eclipse.wst.common.component
| org.eclipse.wst.common.project.facet.core.xml
+EarContent
+META-INF
application.xml
InventoryManagementServiceWeb Eclipse Java Web project
.classpath
.project
settings
.jsdtscope
org.eclipse.jdt.core.prefs
org.eclipse.wst.common.component
org.eclipse.wst.common.project.facet.core.xml
org.eclipse.wst.jsdt.ui.superType.container
org‘eclipse.wst‘jsdt.ui.superType‘name

\

\

+

\

\

\

\

\

\

+
|+classes

+src

| +sample

| +InventoryManagementSeIVLCe

| InventoryManager.java Server skeleton

| InventoryManagerSoapBindingImpl.java ... Inventory management service (server

skel

+WebContent
+META-INF

[
\
\
[
\
\
[
\
\
[
\
\
[
\
\
[
\
\
[
\
\
[
\
\
[
\
\
[
[
ser
[
\
\
[
\
\
[
\
\
[
\
\
[
\
\
[
\
\
[
\
\
[
[
e
[
\
| | MANIFEST.MF

143

A. Configuration of sample program files

| +WEB-INF

| | server-config.xml Service deploy definition file (server skeleton)

| | web.xml DD

| +1ib

+WSDL
ArrangementService.wsdl WSDL for HelloProductArrangement
DeliveryService.wsdl WSDL for the delivery reception service
InventoryManagementService.wsdl WSDL for the inventory management service

A.4 Configuration of the CustomFunction sample program

CustomFunctions
| -Repository Repository directory
| HelloCustomFunction.zip Repository
+CustomFunction
+CustomFunctions
| | .classpath
| | .project
| |lbuild.xml Ant build definition file
|+bin
[+build
| |+classes

| CustomFunctions.jar Custom function jar file

+sample
+transform
+CustomFunction
CustomFunctions.java Sample source
+Configuration
| CustomFunctions.xml Transformation function definition file
+Schema
HelloService.xsd Schema used to correct the Hello service adapter

144

B. Collecting the Information Output When Eclipse Setup Was Executed

B. Collecting the Information Output When Eclipse Setup Was
Executed

Information specified when Eclipse Setup was executed, including setup details, configuration changes, and unsetup
details, is saved in a file as setup log.

The following describes how to check the setup log, and the information recorded in the setup log:

* How to check the setup log
From the Windows Start menu, select Programs, Cosminexus, First Setup, and then Eclipse Setup Log. The
setup log is displayed.

* Information recorded in the setup log

You can check the following information in the setup log in the Eclipse environment:
 Settings specified when the Eclipse environment was set up
» Settings of the Eclipse environment for which setup was undone

These entries are stored in one file in the order in which operations were executed. Therefore, the most recent
information is stored at the end of the file. Even if an error occurred or processing was interrupted, the log
information is stored.

While Eclipse Setup is being executed, error messages are displayed in the Eclipse Setup console window. If error
messages are output, take action according to the manual Application Server Messages.

145

C. Glossary

C. Glossary

Terms used in the manual
See the Application Server and BPM/ESB Platform Terminology Guide.

146

Index

A HCSC server, deploying definitions to 40
HCSCTE project, creating 58
activities, defining 72, 89 Hello business process, defining deployment of 76
activities, deploying 71, 87 Hello business process, modifying 126
ArrangementService.wsdl 81 Hello business process, validating and packaging 76
HelloBusinessProcess (sample program), processing
B contents 10
HelloBusinessProcess (sample program), processing details
business process 8 10
business process, adding 67, 82 HelloBusinessProcess (sample program), system
business processes, creating 67 configuration of 7
business processes, defining 67 HelloBusinessProcess sample program, configuration of141
HelloBusinessProcess sample program (operation
C procedure) 51
HelloProductArrangement (sample program), processing
calling service component from business process 9 contents 11
calling service component from service requester 9 HelloProductArrangement (sample program), processing
Compiler (page) 22 details 11
components, defining deployment of 101 HelloProductArrangement (sample program), system
components, validating and packaging 101 configuration of 7
conventions: fonts and symbols 2 HelloProductArrangement sample program, configuration
conventions: installation directory 2 of 142
conventions: language pack 2 Hello service adapter, modifying 119
conventions: types of text in syntax 2 HelloServiceAdapter (sample program), processing
custom function, preparing 112 contents 9
CustomFunction sample program, configuration of 144 HelloServiceAdapter (sample program), processing details 9
CustomFunction sample program, general procedure for HelloServiceAdapter (sample program), system
defining 112 configuration of 6
CustomFunction sample program, processing of 111 HelloServiceAdapter sample program, configuration of 140
HelloServiceAdapter sample program (operation
D procedure) 49

data transformation, defining (by using Java program) 111 |
definitions 40

definitions deployed to HCSC server, deleting 133 installation and setup, overview of (Service Architect) 14

delivery reception service adapter, defining 79 Installed JREs (page) 20

DeliveryService.wsdl 79 installing Service Architect 15

development environment, settingup 20 integrating processes 10
InventoryManagementService.wsdl 77

E

: : J

Eclipse, preparing 16

Eclipse, setting up (development environment) 20 J2EE server 8

Eclipse, setting up (execution environment) 28 J2EE server, selecting 33

Eclipse, undoing setup of 136 Java program, creating 117

Eclipse projects, importing 35 JDK, checking version of 20

Eclipse Setup, using (to set up Eclipse environment) 17

execution environment, settingup 25 L

G library paths, setting 28
local variables, specifying settings for outputting

glossary 146 information about 22

H M

HCSC Easy Setup 26 Management Server Remote Management, logging in to 28

HCSC server 8

147

Index

O Vv
operation when business processes are not applied 49 variables, setting 69, 85
operation when business process is applied 51
operation when processes of multiple services are W

integrated 53
overview of this manual 2 web project, deploying 38

web projects, undeploying and deleting 132

P what you can expect from this manual 3

WSDLA4]J, installing 23
product arrangement business process, defining 81
product arrangement sample program (operation procedure)
53
product arrangement system, debugging 102
product arrangement system, developing 77
projects, deleting 132

S

sample program, preparing for running 110
sample program files, configuration of 140
sample programs, before using 1

sample programs, components of 8

sample programs, deleting environment for 131
sample programs, executing 47, 48

sample programs, experiencing the development of 55
sample programs, location of 140

sample programs, overview of 5

sample programs, preparing environment for 13
sample programs, procedure for developing 56
sample programs, processing details of 9
sample programs, system configurations of 6
server runtime, creating 31

service adapter 8

service adapter, creating 61

service adapter, defining deployment of 65
service adapter, validating and packaging 64
service adapters, defining 61

Service Architect, installing and settingup 15
Service Architect, uninstalling 138

service component 8

service requester 8

setup log 145

standard reception 8

stock management service adapter, defining 77

T

test environment, building 26

test environment, starting 27

test environment, stopping 135

test environment, undoing setup of 136
transformation function definition file, creating 112

9]

unsetup and uninstallation 136
user-defined reception 8
user-defined reception, adding 83

148

	First Step Guide
	Preface
	Contents
	Part 1: BASIC
	1. Before Using Sample Programs
	1.1 Overview of this manual
	1.2 What you can expect from this manual

	2. Overview of Sample Programs
	2.1 System configurations of sample programs
	2.2 Components of sample programs
	2.3 Processing details of sample programs
	2.3.1 Calling a service component from the service requester
	2.3.2 Calling a service component from the business process
	2.3.3 Integrating processes

	3. Preparing the Environment for Sample Programs
	3.1 Overview of installation and setup
	3.2 Installing Service Architect and preparing for setting it up
	3.2.1 Installing Service Architect
	3.2.2 Preparing Eclipse

	3.3 Using Eclipse Setup to set up the Eclipse environment
	3.4 Setting up the development environment
	3.4.1 Setting up Eclipse
	3.4.2 Installing WSDL4J

	3.5 Setting up the execution environment
	3.5.1 Building the test environment
	3.5.2 Starting the test environment
	3.5.3 Logging in to Management Server Remote Management
	3.5.4 Setting up Eclipse
	3.5.5 Importing Eclipse projects
	3.5.6 Deploying the web project
	3.5.7 Deploying definitions to the HCSC server

	4. Executing Sample Programs
	4.1 Executing sample programs
	4.2 Operation when business processes are not applied
	4.3 Operation when a business process is applied
	4.4 Operation when processes of multiple services are integrated

	Part 2: APPLICATION
	5. Experiencing the Development of Sample Programs
	5.1 Procedure for developing sample programs
	5.2 Creating the HCSCTE project
	5.3 Defining service adapters
	5.3.1 Creating a service adapter
	5.3.2 Validating and packaging a service adapter
	5.3.3 Defining deployment of a service adapter

	5.4 Defining business processes
	5.4.1 Creating business processes
	5.4.2 Validating and packaging a Hello business process
	5.4.3 Defining deployment of a Hello business process

	5.5 Developing the product arrangement system
	5.5.1 Defining the stock management service adapter
	5.5.2 Defining the delivery reception service adapter
	5.5.3 Defining the product arrangement business process
	5.5.4 Validating and packaging components
	5.5.5 Defining deployment of components

	5.6 Debugging the product arrangement system
	5.7 Preparing for running the developed sample program
	5.8 Defining data transformation by using a Java program
	5.8.1 Overview of defining the CustomFunction sample program
	5.8.2 Preparing the custom function
	5.8.3 Modifying the Hello service adapter
	5.8.4 Modifying the Hello business process

	6. Deleting the Environment for Sample Programs
	6.1 Deleting projects
	6.1.1 Undeploying and deleting web projects
	6.1.2 Deleting definitions deployed to the HCSC server

	6.2 Stopping the test environment
	6.3 Unsetup and uninstallation
	6.3.1 Undoing setup of the test environment
	6.3.2 Undoing setup of Eclipse
	6.3.3 Uninstalling Service Architect

	Appendixes
	A. Configuration of sample program files
	A.1 Configuration of the HelloServiceAdapter sample program
	A.2 Configuration of the HelloBusinessProcess sample program
	A.3 Configuration of the HelloProductArrangement sample program
	A.4 Configuration of the CustomFunction sample program

	B. Collecting the Information Output When Eclipse Setup Was Executed
	C. Glossary

	Index

