
uCosminexus Application Server

Web Service Development Guide

3020-3-Y23-10(E)

■ Relevant program products
See the manual uCosminexus Application Server Overview.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law, and USA export
control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
GIF is a format name developed by the CompuServe Inc. in the United States.

gzip is a software provided by the Free Software Foundation in the United States.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Microsoft Office and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates in the United States and/or other countries.

SOAP (Simple Object Access Protocol) is an XML-based communication protocol for exchanging information in a distributed environment.

W3C is a trademark (registered in numerous countries) of the World Wide Web Consortium.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Windows Server is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Windows Vista is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this document
Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used by the manufacturer,
or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use of a trademark in this
document should not be regarded as affecting the validity of the trademark.

■ Microsoft product screen shots
Microsoft product screen shots reprinted with permission from Microsoft Corporation.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning

Windows Windows 8 Windows 8 x86 Windows(R) 8 Pro (32-bit)

Windows(R) 8 Enterprise (32-bit)

Windows 8 x64 Windows(R) 8 Pro (64-bit)

Windows(R) 8 Enterprise (64-bit)

Windows 7 Windows 7 x86 Microsoft(R) Windows(R) 7 Professional (32-bit)

Microsoft(R) Windows(R) 7 Enterprise (32-bit)

Microsoft(R) Windows(R) 7 Ultimate (32-bit)

Windows 7 x64 Microsoft(R) Windows(R) 7 Professional (64-bit)

Microsoft(R) Windows(R) 7 Enterprise (64-bit)

Microsoft(R) Windows(R) 7 Ultimate (64-bit)

Windows Server 2012 Standard Microsoft(R) Windows Server(R) 2012 Standard

Windows Server 2012 Datacenter Microsoft(R) Windows Server(R) 2012 Datacenter

Windows Server 2008 x86 Microsoft(R) Windows Server(R) 2008 Standard 32-bit

Microsoft(R) Windows Server(R) 2008 Enterprise 32-bit

Abbreviation Full name or meaning

Windows Windows Server 2008 x64 Microsoft(R) Windows Server(R) 2008 Standard

Microsoft(R) Windows Server(R) 2008 Enterprise

Windows Server 2008 R2 Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Vista Microsoft(R) Windows Vista(R) Business (32-bit)

Microsoft(R) Windows Vista(R) Enterprise (32-bit)

Microsoft(R) Windows Vista(R) Ultimate (32-bit)

Windows XP Microsoft(R) Windows(R) XP Professional Operating System

Note that Windows 32 bit and Windows 64 bit are sometimes respectively referred to as Windows x86 and Windows x64.

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The software
described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of the terms and
conditions governing your use of the software and documentation, including all warranty rights, limitations of liability, and disclaimers of
warranty.

Material contained in this document may describe Hitachi products not available or features not available in your country.

No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in Japan.

■ Issued
Aug. 2013: 3020-3-Y23-10(E)

■ Copyright
All Rights Reserved. Copyright (C) 2013, Hitachi, Ltd.

Summary of amendments

The following table lists changes in the manual 3020-3-Y23-10(E) for uCosminexus Application Server 09-50,
uCosminexus Application Server(64) 09-50, uCosminexus Client 09-50, uCosminexus Developer 09-50,
uCosminexus Service Architect 09-50, uCosminexus Service Platform 09-50, and uCosminexus Service
Platform(64) 09-50 and product changes related to the manual:

Changes Location

The catalog functionality has been added.

Accordingly, the following description has been changed:

• The support range of the JAX-WS 2.2 specifications has been
changed.

1.1, 14.1(2), 15.1.9(1), 16.2.1, 19.1.2, 19.2.2(4), 19.2.3(3), 21, 27

The description on client APIs for RESTful Web Services has been
added.

Accordingly, the following descriptions have been added or
changed:

• The description on some definitions has been added in the
action definition file that you can overwrite through client APIs.

• The settings of a common definition file have been added.

• A description has been added under each annotation with
respect to its functioning on the Web Service client side.

• The description on the support range of the UriBuilder class
has been added under the support range of the interfaces and
classes of JAX-RS API.

• The description on the output destination and the format of the
logon client has been added.

• The description on the performance analysis trace has been
added with respect to the functioning of the performance
analysis trace on the client side.

1.3.2, 1.5.2, 11.4, 12.5.1, 12.6.3, 13.1, 13.1.2(3), 13.2, 13.4, 13.5,
13.6, 13.7.5, 16.2.2, 16.2.19, 16.2.20, 24.2, 24.2.12, 25, 39.3.3(5),
39.3.5(2), 39.4.2

The description on one-way operations has been added.

Accordingly, the following descriptions have been added or
changed:

• The support range of the JAX-WS 2.2 specifications has been
changed.

• The description regarding response of outbounding and
inbounding when using the handler framework has been added.

• The description regarding the process of the close method
when using the handler framework has been added.

• The description on operations on receiving request messages
when using the addressing functionality has been added.

• The description regarding the trace collection point of the
performance analysis trace has been added.

1.4.2(1), 10.15, 10.22, 15.1.3(3), 15.1.4(1), 15.1.5(1), 16.2.1,
16.2.4, 16.2.9(2), 19.1.1, 19.1.2, 19.2.2(1), 19.2.2(2), 36.1, 36.5.3,
37.5.1, 39.4.2(2)

The description regarding the dynamic generation of wrapper beans
has been added. Accordingly, the following descriptions have been
added or changed:

• The description regarding the dynamic generation of stubs by
using the JAX-WS engine has been added.

• The command that compiles Web Services Implementation
Class when developing Web Services starting from SEI has
been added to the javac command.

• The description regarding the use of the cjwsgen command
for checking errors has been added.

• The description on operations when the
javax.xml.ws.Holder type is specified in a parameter has
been added.

1.4.2(1), 1.5.1(1), 2.1.2, 2.1.3, 5.2, 5.3.2, 7.2, 7.3.2, 8.2, 8.3.2,
10.9(1), 10.23, 16.1.5, 19.1.2, 29.2, 29.3.2, 31.2, 31.3.2, 33.2,
33.3.2, 38.2, 38.3.2

Changes Location

The description on injecting service classes and ports has been
added in the javax.xml.ws.WebServiceRef annotation.

3.6.1, 1.4.2(1), 10.21, 19.3

The description regarding injecting or reusing ports for generating
service classes and acquiring ports has been added.

3.6.1(3), 3.6.1(5), 3.6.1(7)

The value of the context root has been changed and the current
directory has been renamed.

5.1, 5.3.3, 5.3.4, 5.3.6, 5.4.1, 5.4.2, 5.5.1, 7.1, 7.3.3, 7.3.4, 7.3.5,
7.4.1, 7.4.2, 7.5.1, 8.1, 8.3.3, 8.3.5, 8.4.1, 8.4.2, 8.5.1, 29.1,
29.3.4, 29.3.5, 29.4.1, 29.5.1, 31.1, 31.3.3, 31.3.4, 31.3.5, 31.4.1,
31.4.2, 31.5.1, 33.1, 33.3.3, 33.3.4, 33.3.5, 33.4.1, 33.4.2, 33.5.1,
38.1, 38.3.3, 38.3.4, 38.3.5, 38.4.1, 38.4.2, 38.5.1, 38.5.2,
Appendix B(4)

The binding results of the wrapper exception class have been
changed for soapenv12:Code of the SOAP 1.2 specifications.

10.4.1

The description regarding injecting Web Services context in the
javax.annotation.Resource annotation has been added

10.19(1), 10.21, 10.21.2

A sample of the development example of RESTful Web Services
has been provided.

12.1

The description on the JSON POJO mapping has been added. 12.3.1, 12.3.3, 13.1.2(3), 17.1.2(1), 17.1.3, 18

The number of child elements of operations that can be coded in the
WSDL when mapping from an operation to the name of a Java
method has been changed.

15.1.3(3)

The notes on entity parameters and return values have been added. 17.1.2(1), 17.1.2(2), 17.1.3

The notes on parameter types for which you can specify the
injection annotation have been added.

17.1.4

The description on the javax.xml.ws.WebServiceContext
interface has been added.

19.2.1(2), 19.2.3(2)

The description on the getBinding() method of the
javax.xml.ws.BindingProvider interface has been added.

19.2.2(1)

The description on the javax.xml.ws.Binding interface has
been added.

19.2.4(4)

The description on the setScope(java.lang.String name,
MessageContext.Scope scope) method of the
javax.xml.ws.handler.MessageContext interface has
been added.

19.2.4(8)

The description on how to access a message context from Web
Services has been added.

19.2.5

The description on referencing and changing a message context
property in Web Services has been added.

19.2.5(2)(l)

The description on the support range of the following elements of
the WSDL 1.1 specifications has been changed:

• wsdl:output element

• wsdl:operation element (for the child element of the
wsdl:binding element)

• wsdl:output element (for the grandchild element of the
wsdl:binding element)

20.1.9, 20.1.12, 20.1.14

The description on adding codes by using the APIs to set a handler
chain of ports has been added.

36.9.2(1)

The description on notes has been moved from Release Notes. 10.6(7), 19.2.5(2)(c), 30.6, 39.3.5(3), 39.3.5(4), Appendix A.1(4),

Changes Location

The notes regarding the version upgrade from 08-00 to 08-70
through 09-00 have been added.

Appendix A.1(4)

In addition to the above changes, minor editorial corrections have been made.

Preface
For details on the prerequisites before reading this manual, see the manual uCosminexus Application Server Overview.

■ Non-supported functionality
Some functionality described in this manual are not supported. The non-supported functionality include:

• Audit log functionality

• Compatibility functionality

• Cosminexus Component Transaction Monitor

• Cosminexus DABroker Library

• Cosminexus Reliable Messaging

• Cosminexus TPBroker and VisiBroker

• Cosminexus Web Service - Security

• Cosminexus XML Security - Core functionality

• JP1 linkage functionality

• Management portal functionality

• Migration functionality

• SOAP applications complying with specifications other than JAX-WS 2.1

• uCosminexus OpenTP1 linkage functionality

• Virtualized system functionality

• XML Processor high-speed parse support functionality

■ Non-supported compatibility functionality
"Compatibility functionality" in the above list refers to the following functionality:

• Basic mode

• Check of JSP source compliance (cjjsp2java) with JSP1.1 and JSP1.2 specifications

• Database connection using Cosminexus DABroker Library

• EJB client application log subdirectory exclusive mode

• J2EE application test functionality

• Memory session failover functionality

• Servlet engine mode

• Simple Web server functionality

• Switching multiple existing execution environments

• Using EJB 2.1 and Servlet 2.4 annotation

I

Contents

Part 1: Overview

1 Overview of Developing and Executing Web services 1

1.1 JAX-WS/JAX-RS specifications compliant version, prefix and name space URI 2

1.2 Overview of developing Web services 4

1.2.1 Overview of developing SOAP Web services 4

1.2.2 Overview of developing RESTful Web services 4

1.3 Functionality used for developing and executing the Web services 5

1.3.1 Functionality of SOAP Web services 5

1.3.2 Functionality of RESTful Web services 8

1.4 Prerequisites for developing and executing Web services 9

1.4.1 Prerequisite component software 9

1.4.2 Prerequisites related to functionality and specifications 9

1.5 Format of Web services and Clients 13

1.5.1 Format of Web services 13

1.5.2 Format of clients 15

1.6 Setting up JAX-WS and JAX-RS engine 18

2 Procedures for Development 19

2.1 Development flow of SOAP Web Services 20

2.1.1 Development starting from WSDL 20

2.1.2 Development starting from SEI 22

2.1.3 Development starting from SEI (When using the cjwsgen command) 23

2.1.4 Development starting from a provider 24

2.2 Procedure of developing Web Service clients 26

2.2.1 Developing stub-based Web Service clients 26

2.2.2 Developing dispatch-based Web Service clients 27

2.3 Development flow of RESTful Web Services 28

Part 2: Development and Execution

3 Points on developing SOAP Web Services 29

3.1 Creating WSDL 30

3.2 Mapping between WSDL and Java sources 31

3.2.1 Examples of mapping WSDL to Java sources 31

3.2.2 Examples of mapping Java sources to WSDL 31

i

3.3 Creating Web Service Implementation Classes and Provider Implementation Classes 33

3.4 Creating web.xml 34

3.5 Creating an archive 38

3.5.1 Configuring WAR files 38

3.5.2 Configuring EJB JAR files 38

3.5.3 Creating EAR files 39

3.5.4 Creating WAR file for the settings of EJB Web Service 39

3.6 Implementing Web Service clients 44

3.6.1 Example of stub-based implementation 44

3.6.2 Example of dispatch-based implementation 51

3.6.3 Examples of implementation using JAX-WS API 53

3.6.4 Notes 54

3.6.5 Notes on accessing the Web Services that use the addressing functionality 55

4 Examples of the Development Starting from WSDL 57

4.1 Configuration examples of development (Starting from WSDL) 58

4.2 Examples for the procedure of development (Starting from WSDL) 60

4.3 Examples for the development of Web Services (Starting from WSDL) 61

4.3.1 Creating a WSDL file 61

4.3.2 Generating SEI 66

4.3.3 Creating a Web Service Implementation Class 66

4.3.4 Compiling the Web Service Implementation Class 67

4.3.5 Creating web.xml 67

4.3.6 Creating application.xml 68

4.3.7 Creating EAR files 68

4.4 Examples of deployment and startup (Starting from WSDL) 69

4.4.1 Deploying EAR files 69

4.4.2 Starting Web Services 69

4.5 Examples for deploying Web Service clients (Starting from WSDL) 70

4.5.1 Generating a service class 70

4.5.2 Creating an implementation class for the Web Service client 71

4.5.3 Compiling the implementation class for the Web Service client 71

4.6 Examples for executing Web Services (Starting from WSDL) 72

4.6.1 Creating an option definition file for Java applications 72

4.6.2 Creating a user property file for Java applications 72

4.6.3 Executing Web Service clients 72

5 Examples for the Development Starting from SEI 73

5.1 Configuration of development examples (Starting from SEI) 74

5.2 Example of development flow (Starting from SEI) 76

5.3 Examples of Web Service development (starting from SEI) 77

Contents

ii

5.3.1 Creating Web Services Implementation Class 77

5.3.2 Compiling Web Services Implementation Class 78

5.3.3 Creating web.xml 78

5.3.4 Creating application.xml 79

5.3.5 Creating a WSDL file (Optional) 79

5.3.6 Creating EAR files 79

5.4 Examples of deployment and startup (Starting from SEI) 81

5.4.1 Deploying EAR files 81

5.4.2 Starting Web Services 81

5.5 Examples of developing Web Service clients (Starting from SEI) 82

5.5.1 Generating a service class 82

5.5.2 Creating an implementation class for the Web Service client 82

5.5.3 Compiling the implementation class for the Web Service client 83

5.6 Examples for executing Web Services (Starting from SEI) 84

5.6.1 Creating an option definition file for Java applications 84

5.6.2 Creating a user property file for Java applications 84

5.6.3 Executing Web Service clients 84

6 Examples of Development Starting from SEI (Using the cjwsgen Command) 85

6.1 Configuration of development examples (starting from SEI and the cjwsgen command) 86

6.2 Flow of development examples (starting from SEI and the cjwsgen command) 88

6.3 Development example of Web Services (Starting from SEI and the cjwsgen command) 89

6.3.1 Saving the already compiled class files (starting from SEI and the cjwsgen command) 89

6.3.2 Generating Java sources (starting from SEI and the cjwsgen command) 89

6.3.3 Creating web.xml (starting from SEI and the cjwsgen command) 90

6.3.4 Creating application.xml 90

6.3.5 Creating EAR files 91

6.4 Examples of deployment and startup (Starting from SEI and the cjwsgen command) 92

6.4.1 Deploying EAR files 92

6.4.2 Starting Web Services 92

6.5 Development examples of Web Services clients (Starting from SEI and the cjwsgen command) 93

6.5.1 Creating service classes 93

6.5.2 Creating Implementation Classes for Web Services clients 93

6.5.3 Compiling Implementation Classes for Web Services clients 94

6.6 Examples of executing Web Services (starting from SEI and the cjwsgen command) 95

6.6.1 Creating option definition files for Java applications 95

6.6.2 Creating user property files for Java applications 95

6.6.3 Executing Web Services clients 95

7 Examples of Development Starting from SEI (For Customization) 97

7.1 Configuration examples for development (Starting from SEI and customization) 98

Contents

iii

7.2 Flow of development examples (Starting from SEI and customization) 100

7.3 Examples of developing Web Services (Starting from SEI or customization) 101

7.3.1 Creating Web Services Implementation Class 101

7.3.2 Compiling Web Services Implementation Class 102

7.3.3 Creating web.xml 102

7.3.4 Creating application.xml 103

7.3.5 Creating an EAR file 103

7.4 Examples of deployment and startup (Starting from SEI or customization) 104

7.4.1 Deploying EAR files 104

7.4.2 Starting Web Services 104

7.5 Examples of developing Web Service clients (Starting from SEI or customization) 105

7.5.1 Creating a service class 105

7.5.2 Creating an implementation class for the Web Service client 105

7.5.3 Compiling the implementation class for the Web Service client 106

7.6 Examples for executing Web Services (Starting from SEI or customization) 107

7.6.1 Creating an option definition file for Java applications 107

7.6.2 Creating a user property file for Java applications 107

7.6.3 Executing Web Service clients 107

8 Examples of the Development Starting from SEI (For EJB Web Services) 109

8.1 Configuration of the development examples (Starting from SEI and EJB Web Services) 110

8.2 Procedure for the development examples (Starting from SEI and EJB Web Service) 112

8.3 Example of Web Service development (Starting from SEI and EJB Web Service) 113

8.3.1 Creating Web Services Implementation Class(starting from SEI and EJB Web Service) 113

8.3.2 Compiling Web Services Implementation Class 113

8.3.3 Creating application.xml 114

8.3.4 Creating a WSDL file (optional) 114

8.3.5 Creating EAR files 115

8.4 Examples of deployment and startup (Starting from SEI and EJB Web Service) 116

8.4.1 Deploying EAR files 116

8.4.2 Starting Web Services 116

8.5 Examples of Web Service client development (Starting from SEI and EJB Web Service) 117

8.5.1 Generating a service class 117

8.5.2 Creating an Implementation Class for the Web Services client 117

8.5.3 Compiling the Implementation Class for the Web Services client 118

8.6 Examples of executing Web Services (Starting from SEI and EJB Web Service) 119

8.6.1 Creating an option definition file for Java applications 119

8.6.2 Creating a user property file for Java applications 119

8.6.3 Executing the Web Services clients 119

Contents

iv

9 Examples of Development Starting from a Provider (using SAAJ) 121

9.1 Configuration examples for development (Starting from a provider and SAAJ) 122

9.2 Procedure for the development examples (Starting from a provider and SAAJ) 124

9.3 Examples of developing Web Services (Starting from a provider and SAAJ) 125

9.3.1 Creating Provider Implementation Classes 125

9.3.2 Generating Java sources 126

9.3.3 Creating web.xml 127

9.3.4 Creating application.xml 127

9.3.5 Creating EAR files 128

9.4 Examples of deployment and startup (Starting from a provider and SAAJ) 129

9.4.1 Deploying EAR files 129

9.4.2 Starting Web Services 129

9.5 Examples of Web Services client development (Starting from a provider and SAAJ) 130

9.5.1 Creating Implementation Class for the Web Services client 130

9.5.2 Compiling Implementation Class for the Web Services client 131

9.6 Examples for executing Web Services (Starting from a provider and SAAJ) 132

9.6.1 Creating option definition files for Java applications 132

9.6.2 Creating user property files for Java applications 132

9.6.3 Executing Web Services clients 132

10 Settings and Operations of the JAX-WS Functionality 133

10.1 Action definition file 134

10.1.1 Coding rules for the action definition file 134

10.1.2 Settings for the common definition file 135

10.1.3 Settings for the process-wise definition file 144

10.2 Operations of the JAX-WS engine 145

10.2.1 Operations and support range of the JAX-WS engine 145

10.2.2 Discovery and dispatch 152

10.3 Customization using cosminexus-jaxws.xml 157

10.3.1 File name and storage destination of cosminexus-jaxws.xml 157

10.3.2 Format of cosminexus-jaxws.xml 157

10.4 Fault and exception processing 161

10.4.1 Fault and exception processing on the Web Service 161

10.4.2 Fault processing on the Web Service client 167

10.4.3 Propagation of the Java exception 167

10.4.4 HTTP status code when binding an exception to a fault 169

10.4.5 Notes on customizing an error page 169

10.5 Interface transparency 170

10.6 Issuing the Meta data 173

10.7 Displaying Web Service information 177

Contents

v

10.8 HTTP methods that can be used 178

10.9 Initializing and destroying the Web Service 179

10.10 Connecting through a proxy server 181

10.11 Connection by SSL protocol 185

10.12 Connection by basic authentication 187

10.13 Selecting the SOAP version 188

10.13.1 Selecting the SOAP version (when developing Web Services) 188

10.13.2 Selecting the SOAP version (when developing a Web Service client) 189

10.13.3 Selecting the SOAP version (during the execution) 189

10.14 Executing a client application using the command line 190

10.14.1 Settings for command line usage 190

10.14.2 Executing a command line 190

10.14.3 Precautions on using the command line 191

10.15 HTTP status codes 192

10.16 HTTP header 193

10.17 gzip compression of the HTTP request body 194

10.18 Linking with the HTTP response compression functionality 195

10.19 Invoking an EJB Web Service 196

10.20 Preventing the resending of a request by sun.net.www.http.HttpClient 197

10.21 Injection 198

10.21.1 Injecting service classes and ports 198

10.21.2 Injecting a Web Services context 202

10.22 One-way operations 205

10.22.1 Notes on one-way operations 205

10.23 A functionality to dynamically generate wrapper bean 206

11 Points on developing RESTful Web Services 207

11.1 Creating a root resource class 208

11.2 Creating web.xml 209

11.3 Creating an archive 211

11.3.1 Configuring a WAR file 211

11.3.2 Creating an EAR file 211

11.4 Implementing a client by using a client API for RESTful Web Services 212

11.4.1 Use case of a Web resource client 212

11.4.2 Mechanism of a client API for RESTful Web Services 216

11.4.3 Setting properties and features 217

11.4.4 Setting an HTTP header 219

11.4.5 Notes 223

12 Examples of Developing RESTful Web Services 227

12.1 Configuration of development examples 228

Contents

vi

12.2 Procedures in the development example 230

12.3 Example of developing Web resources 231

12.3.1 Creating root resource classes 231

12.3.2 Compiling Java sources 236

12.3.3 Creating web.xml 236

12.3.4 Creating application.xml 237

12.3.5 Creating an EAR file 237

12.4 Examples of deploying and starting 239

12.4.1 Deploying EAR files 239

12.4.2 Starting Web Services 239

12.5 Examples of developing a Web resource client 240

12.5.1 Creating Implementation Class of a Web resource client (by using the client APIs) 240

12.5.2 Creating Implementation Class of a Web resource client (by using java.net.HttpURLConnection) 244

12.5.3 Compiling Implementation Classes of a Web resource client 246

12.6 Examples of invoking Web resources 248

12.6.1 Creating an option definition file for Java applications 248

12.6.2 Creating a user property file for Java applications 248

12.6.3 Starting a Web resource client 248

13 Settings and Operations of the JAX-RS Functionality 251

13.1 Action definition file 252

13.1.1 Coding rules for the action definition file 252

13.1.2 Settings of a common definition file 252

13.1.3 Setting up a process-wise definition file (JAX-RS) 255

13.2 Operations of the JAX-RS engine 257

13.2.1 Discovery and dispatch 257

13.3 Publishing the meta data 259

13.4 Connecting through a proxy server 263

13.5 Connecting with an SSL protocol 265

13.6 Connecting by basic authentication 266

13.7 Troubleshooting 267

13.7.1 Checking the syntax when initializing a Web resource (KDJJ20003-W and KDJJ10006-E) 267

13.7.2 Errors detected in the received HTTP request processing 267

13.7.3 Exceptions that can be handled with an exception mapping provider 268

13.7.4 Throwing exceptions to the J2EE server 268

13.7.5 Exception (KDJJ18888) that occurs when using client APIs 268

Contents

vii

Part 3: References

14 Commands 269

14.1 cjwsimport command 270

14.2 apt command 277

14.3 cjwsgen command 280

14.4 Notes on using a command line interface in Windows with enabled UAC 290

14.4.1 When the administrator uses a command line interface 290

14.4.2 When a user other than the administrator uses a command line interface 290

15 Mapping from WSDL to Java 291

15.1 Default mapping from WSDL to Java 292

15.1.1 Mapping a namespace to a package name 292

15.1.2 Mapping a port type to a SEI name 293

15.1.3 Mapping from an operation to a method name 294

15.1.4 Mapping a message part to a parameter and return value (For wrapper style) 296

15.1.5 Mapping the message part to the parameter and return value (For non-wrapper style) 300

15.1.6 Mapping the schema type to the Java type 303

15.1.7 Mapping the fault to the exception class 304

15.1.8 Mapping the binding extension element to the parameter 307

15.1.9 Mapping the service and port to the service class 309

15.1.10 Mapping to the skeleton class 312

15.1.11 Precautions on mapping from WSDL to Java 313

15.2 Customized mapping of WSDL to Java 316

15.2.1 Customizations in the embedded binding declaration 316

15.2.2 Customizations with the external binding file 320

15.2.3 Concurrent specification of the embedded binding declaration and external binding file 324

15.2.4 Value that can be specified in the jaxws:bindings element 324

15.2.5 Values of the elements to be customized 327

15.2.6 Dealing with the name conflict 327

15.2.7 Operations when the jaxws:provider element is coded 327

15.2.8 Notes on customizing the SEI name 327

15.2.9 Notes on customizing inout parameter name in the jaxws: parameter element 328

15.2.10 Skeleton class name when the SEI name is customized with the jaxws:class element 328

16 Mapping from Java to WSDL 329

16.1 Default mapping of Java to WSDL 330

16.1.1 Mapping the package name to the name space 330

16.1.2 Mapping the Web Service Implementation Class to SEI 331

16.1.3 Mapping the SEI name to the port type 331

Contents

viii

16.1.4 Mapping the name of method of SEI to an operation 332

16.1.5 Mapping the parameter and return value to the message part (For wrapper style) 334

16.1.6 Mapping the parameter and return value to the message part (For non-wrapper style) 338

16.1.7 Mapping the Java wrapper exception class to the fault 341

16.1.8 Mapping SEI to binding 342

16.1.9 Mapping the Web Service implementation class to the service and port 343

16.1.10 Precautions for mapping from Java to WSDL 344

16.2 Customized mapping from Java to WSDL 346

16.2.1 List of annotations 347

16.2.2 com.sun.xml.ws.developer.StreamingAttachment annotation 350

16.2.3 javax.jws.HandlerChain annotation 351

16.2.4 javax.jws.Oneway annotation 352

16.2.5 javax.jws.soap.SOAPBinding annotation 353

16.2.6 javax.jws.WebMethod annotation 353

16.2.7 javax.jws.WebParam annotation 355

16.2.8 javax.jws.WebResult annotation 357

16.2.9 javax.jws.WebService annotation 359

16.2.10 javax.xml.bind.annotation.XmlElement annotation 361

16.2.11 javax.xml.bind.annotation.XmlMimeType annotation 363

16.2.12 javax.xml.bind.annotation.XmlType annotation 366

16.2.13 javax.xml.ws.Action annotation 367

16.2.14 javax.xml.ws.BindingType annotation 368

16.2.15 javax.xml.ws.FaultAction annotation 370

16.2.16 javax.xml.ws.RequestWrapper annotation 370

16.2.17 javax.xml.ws.ResponseWrapper annotation 372

16.2.18 javax.xml.ws.ServiceMode annotation 374

16.2.19 javax.xml.ws.soap.Addressing annotation 374

16.2.20 javax.xml.ws.soap.MTOM annotation 376

16.2.21 javax.xml.ws.WebFault annotation 377

16.2.22 javax.xml.ws.WebServiceProvider annotation 378

17 Web Resources and Providers 381

17.1 Resource classes 382

17.1.1 Root resource classes 382

17.1.2 Entity parameters 391

17.1.3 Return values 394

17.1.4 Parameter types 397

17.1.5 Exception mapping 401

17.1.6 URI template 401

17.1.7 Sub-resource class 404

17.1.8 Exception handling 405

Contents

ix

17.1.9 Media type declaration 407

17.1.10 Disabling URL decoding 408

17.1.11 Inheriting annotations 408

17.2 Provider 410

17.2.1 Entity provider 410

17.2.2 Exception mapping provider 410

18 Mapping JSON and POJO 413

18.1 Settings for mapping JSON and POJO 414

18.1.1 Mapping on a server 414

18.1.2 Mapping on a client 414

18.2 POJO to JSON mapping 415

18.2.1 Requirements for mapping 415

18.2.2 Available data types 415

18.2.3 Exception handling 417

18.3 JSON to POJO mapping 418

18.3.1 Requirements for mapping 418

18.3.2 Available data types 418

18.3.3 Exception handling 424

18.4 Exceptions that occur during mapping 425

19 Support Range of the JAX-WS Specifications 427

19.1 Support range of the JAX-WS 2.2 specifications 428

19.1.1 Support range of the functionality in the JAX-WS 2.2 specifications 428

19.1.2 Supporting Conformance 431

19.2 Support range of APIs 440

19.2.1 List of interfaces and classes (JAX-WS) 440

19.2.2 Client API 442

19.2.3 Service API 449

19.2.4 Core API 450

19.2.5 Using a message context 462

19.3 Support range of annotations 468

19.3.1 javax.xml.ws.WebServiceRef annotation 468

19.4 Support range of the handler chain configuration file 470

19.4.1 javaee:handler-chains element 470

19.4.2 javaee:handler-chain element 470

19.4.3 javaee:handler element 470

19.4.4 javaee:handler-name element 471

19.4.5 javaee:handler-class element 471

19.4.6 javaee:soap-header element 472

19.4.7 javaee:soap-role element 472

Contents

x

20 Support Range of WSDL Specification 473

20.1 Support range of the WSDL 1.1 specifications 474

20.1.1 wsdl:definitions element 474

20.1.2 wsdl:import element 475

20.1.3 wsdl:types element 476

20.1.4 wsdl:message element 476

20.1.5 wsdl:part element 477

20.1.6 wsdl:portType element 478

20.1.7 wsdl:operation element (For the child element of the wsdl:portType element) 478

20.1.8 wsdl:input element (For the grandchild element of the wsdl:portType element) 479

20.1.9 wsdl:output element (For the grandchild element of the wsdl:portType element) 480

20.1.10 wsdl:fault element (For the grandchild element of the wsdl:portType element) 480

20.1.11 wsdl:binding element 481

20.1.12 wsdl:operation element (For the child element of the wsdl:binding element) 482

20.1.13 wsdl:input element (For the grandchild element of the wsdl:binding element) 484

20.1.14 wsdl:output element (For the grandchild element of the wsdl:binding element) 484

20.1.15 wsdl:fault element (For the grandchild element of the wsdl:binding element) 485

20.1.16 wsdl:service element 486

20.1.17 wsdl:port element 487

20.1.18 wsdl:documentation element 488

20.1.19 soap:binding element 488

20.1.20 soap:operation element 489

20.1.21 soap:body element 490

20.1.22 soap:header element 490

20.1.23 soap:fault element 491

20.1.24 soap:address element 492

20.1.25 soap12:operation element 492

20.1.26 soap12:binding element 493

20.1.27 soap12:body element 494

20.1.28 soap12:header element 494

20.1.29 soap12:fault element 495

20.1.30 soap12:address element 496

20.1.31 xsd:schema element 496

20.2 Notes on creating WSDL 500

21 Support Range of XML Catalogs 1.1 505

21.1 Support range list of the XML Catalogs 1.1 specifications 506

21.2 Details of the Support Range of the XML Catalogs 1.1 Specifications 508

21.2.1 er:catalog element 508

21.2.2 er:public element 508

Contents

xi

21.2.3 er:system element 509

22 Support Range of the SAAJ Specifications 511

22.1 Support range of the SAAJ 1.3 specifications 512

22.1.1 Detail interface 516

22.1.2 Node interface 516

22.1.3 SOAPBody interface 516

22.1.4 SOAPElement interface 517

22.1.5 SOAPEnvelope interface 518

22.1.6 SOAPFault interface 518

22.1.7 SOAPHeader interface 519

22.1.8 SOAPHeaderElement interface 519

22.1.9 AttachmentPart class 519

22.1.10 MessageFactory class 520

22.1.11 MimeHeader class 520

22.1.12 MimeHeaders class 520

22.1.13 SAAJResult class 520

22.1.14 SOAPFactory class 520

22.1.15 SOAPMessage class 521

22.1.16 SOAPPart class 522

22.1.17 Support range for using attachments 522

23 Support Range of the WS-RM Specifications 525

23.1 Support range of the WS-RM 1.2 specifications 526

23.2 Support range of the WS-RM Policy 1.2 specifications 529

23.3 com.sun.xml.ws.Closeable class 531

23.4 Settings using WS-Policy 532

24 Support Range of JAX-RS Specifications 535

24.1 Support range of JAX-RS 1.1 specifications 536

24.2 Support range of API 540

24.2.1 HttpHeaders interface 543

24.2.2 PathSegment interface 543

24.2.3 Request interface 544

24.2.4 SecurityContext interface 544

24.2.5 UriInfo interface 544

24.2.6 Cookie class 545

24.2.7 EntityTag class 545

24.2.8 MediaType class 545

24.2.9 NewCookie class 546

Contents

xii

24.2.10 Response class 546

24.2.11 Response.ResponsBuilder class 546

24.2.12 The UriBuilder class 547

24.2.13 Provider annotation 548

24.3 Annotations 549

24.3.1 Injectable annotation 549

24.3.2 Built-in request method identifier 554

24.3.3 Path specifying an annotation 556

24.3.4 Annotation for declaring the media type 556

24.4 Context 558

24.4.1 javax.ws.rs.core.UriInfo 558

24.4.2 javax.ws.rs.core.HttpHeaders 559

24.4.3 javax.ws.rs.core.Request 559

24.4.4 javax.ws.rs.core.SecurityContext 560

24.4.5 javax.ws.rs.core.ext.Providers 561

24.4.6 javax.servlet.ServletConfig 561

24.4.7 javax.servlet.ServletContext 562

24.4.8 javax.servlet.http.HttpServletRequest 563

24.4.9 javax.servlet.http.HttpServletResponse 563

25 Support Range of the Client APIs for RESTful Web Services 565

25.1 Support range of the client API interfaces and classes 566

25.1.1 Supported properties and features 572

25.1.2 Information included in the ClientRequest class and the Web resource class 573

25.2 Method specifications and notes for the Client class 574

create() method 574

create(ClientConfig cc) method 574

destroy() method 575

getProperties() method 575

handle(ClientRequest request) method 576

resource(String u) method 577

resource(URI u) method 577

setChunkedEncodingSize(Integer chunkSize) method 578

setConnectTimeout(Integer interval) method 579

setFollowRedirects(Boolean redirect) method 579

setReadTimeout(Integer interval) method 580

25.3 Method specifications and notes for the ClientHandlerException class 582

25.4 Method specifications and notes for the ClientRequest class 583

clone() method 583

create() method 583

getEntity() method 584

Contents

xiii

getHeaders() method 584

getHeaderValue(Object headerValue) method 585

getMethod() method 585

getProperties() method 586

getPropertyAsFeature(String name) method 587

getPropertyAsFeature(String name, boolean defaultValue) method 587

getURI() method 588

setEntity(Object entity) method 588

setMethod(String method) method 589

setURI(java.net.URI uri) method 589

25.5 Method specifications and notes for the ClientRequest.Builder class 590

accept(MediaType... types) method 590

accept(String... types) method 591

acceptLanguage(Locale... locales) method 591

acceptLanguage(String... locales) method 592

build(URI uri, String method) method 593

cookie(Cookie cookie) method 594

entity(Object entity) method 594

entity(Object entity, MediaType type) method 595

entity(Object entity, String type) method 596

header(String name, Object value) method 597

type(MediaType type) method 599

type(String type) method 600

25.6 Method specifications and notes for the ClientResponse class 601

bufferEntity() method 601

close() method 601

getAllow() method 602

getClient() method 602

getClientResponseStatus() method 603

getCookies() method 603

getEntity(Class<T> c) method 603

getEntity(GenericType<T> gt) method 604

getEntityInputStream() method 605

getEntityTag() method 605

getHeaders() method 606

getLanguage() method 606

getLastModified() method 607

getLength() method 607

getLocation() method 608

getResponseDate() method 608

getStatus() method 609

Contents

xiv

getType() method 609

hasEntity() method 610

25.7 Enumerated constants of the ClientResponse.Status class and specifications for the methods 611

Enumerated constants of the ClientResponse.Status class 611

StatusCode(int statusCode) method 613

getFamily() method 613

getReasonPhrase() method 613

getStatusCode() method 614

toString() method 614

valueOf(String name) method 615

values() method 615

25.8 Constructor and method specifications and notes for the GenericType class 617

GenericType() constructor 617

GenericType(Type genericType) constructor 617

getRawClass() method 618

getType() method 618

25.9 Method specifications and notes for the UniformInterfaceException class 619

getResponse() method 619

25.10 Method specifications and notes for the WebResource class 620

accept(MediaType... types) method 620

accept(String... types) method 621

acceptLanguage(Locale... locales) method 621

acceptLanguage(String... locales) method 622

cookie(Cookie cookie) method 623

delete() method 624

delete(Class<T> c) method 624

delete(Class<T> c, Object requestEntity) method 625

delete(GenericType<T> gt) method 626

delete(GenericType<T> gt, Object requestEntity) method 627

delete(Object requestEntity) method 627

entity(Object entity) method 628

entity(Object entity, MediaType type) method 629

entity(Object entity, String type) method 630

get(Class<T> c) method 631

get(GenericType<T> gt) method 631

getRequestBuilder() method 632

getURI() method 633

getUriBuilder() method 633

head() method 633

header(String name, Object value) method 634

method(String method) method 635

Contents

xv

method(String method, Class<T> c) method 636

method(String method, Class<T> c, Object requestEntity) method 637

method(String method, GenericType<T> gt) method 638

method(String method, GenericType<T> gt, Object requestEntity) method 639

method(String method, Object requestEntity) method 640

options(Class<T> c) method 640

options(GenericType<T> gt) method 641

path(String path) method 642

post() method 643

post(Class<T> c) method 643

post(Class<T> c, Object requestEntity) method 644

post(GenericType<T> gt) method 645

post(GenericType<T> gt, Object requestEntity) method 645

post(Object requestEntity) method 646

put() method 647

put(Class<T> c) method 648

put(Class<T> c, Object requestEntity) method 648

put(GenericType<T> gt) method 649

put(GenericType<T> gt, Object requestEntity) method 650

put(Object requestEntity) method 651

queryParam(String key, String value) method 651

queryParams(MultivaluedMap<String, String> params) method 652

type(MediaType type) method 653

type(String type) method 654

uri(java.net.URI uri) method 655

25.11 Method specifications and notes for the WebResource.Builder class 656

accept(MediaType... types) method 656

accept(String... types) method 657

acceptLanguage(Locale... locales) method 657

acceptLanguage(String... locales) method 658

cookie(Cookie cookie) method 659

delete() method 660

delete(Class<T> c) method 660

delete(Class<T> c, Object requestEntity) method 661

delete(GenericType<T> gt) method 662

delete(GenericType<T> gt, Object requestEntity) method 663

delete(Object requestEntity) method 663

entity(Object entity) method 664

entity(Object entity, MediaType type) method 665

entity(Object entity, String type) method 666

get(Class<T> c) method 667

Contents

xvi

get(GenericType<T> gt) method 667

head() method 668

header(String name, Object value) method 669

method(String method) method 670

method(String method, Class<T> c) method 671

method(String method, Class<T> c, Object requestEntity) method 672

method(String method, GenericType<T> gt) method 673

method(String method, GenericType<T> gt, Object requestEntity) method 673

method(String method, Object requestEntity) method 674

options(Class<T> c) method 675

options(GenericType<T> gt) method 676

post() method 676

post(Class<T> c) method 677

post(Class<T> c, Object requestEntity) method 678

post(GenericType<T> gt) method 679

post(GenericType<T> gt, Object requestEntity) method 679

post(Object requestEntity) method 680

put() method 681

put(Class<T> c) method 681

put(Class<T> c, Object requestEntity) method 682

put(GenericType<T> gt) method 683

put(GenericType<T> gt, Object requestEntity) method 684

put(Object requestEntity) method 684

type(MediaType type) method 685

type(String type) method 686

25.12 Constant and method specifications and notes for the DefaultClientConfig class 688

PROPERTY_BUFFER_RESPONSE_ENTITY_ON_EXCEPTION constant 688

PROPERTY_CHUNKED_ENCODING_SIZEconstant 688

PROPERTY_CONNECT_TIMEOUT constant 688

PROPERTY_FOLLOW_REDIRECTS constant 689

PROPERTY_READ_TIMEOUT constant 689

getPropertyAsFeature(String featureName) method 689

getFeatures() method 690

getFeature(String featureName) method 690

getProperties() method 691

getProperty(String propertyName) method 692

25.13 Specifications for the constant, constructors, and methods and the notes for the
HTTPSProperties class 693

PROPERTY_HTTPS_PROPERTIES constant 693

HTTPSProperties() constructor 693

HTTPSProperties(Hostname Verifier hv) constructor 694

HTTPSProperties(Hostname Verifier hv, SSLContext c) constructor 694

Contents

xvii

getHostnameVerifier() method 695

getSSLContext() method 695

25.14 Constructor and method specifications and notes for the MultivaluedMapImpl class 697

25.15 Combinations of available Java types and MIME media types 698

25.15.1 Combination of Java types and MIME media types available for an HTTP request entity 698

25.15.2 Combination of Java types and MIME media types available for an HTTP response entity 700

25.16 Thread safety of the client APIs for RESTful Web Services 703

Part 4: Extension Functionality

26 WSDL Import Functionality 707

26.1 What is the WSDL import functionality 708

26.2 WSDL definitions that can be imported 709

26.3 Format of the wsdl:import element 711

27 Catalog Functionality 713

27.1 What is the catalog functionality 714

27.2 Using the catalog functionality (when developing a Web Services client) 715

27.3 Using the catalog functionality (when starting a Web Services client) 718

27.4 Performance of the catalog functionality 720

27.5 Notes when using the catalog functionality 721

27.6 Catalog file 722

27.6.1 Syntax of the catalog file 722

27.6.2 Storing the catalog file 722

27.6.3 Example of coding the catalog file 722

28 Attachment Functionality (wsi:swaRef format) 723

28.1 What is the attachment functionality (wsi:swaRef format) 724

28.2 Java interface of attachments (wsi:swaRef format) 725

28.3 WSDL for attachments (wsi:swaRef format) 727

28.3.1 WSDL coding when attachments are used (wsi:swaRef format) 727

28.3.2 Mapping of Java type of attachments and WSDL (wsi:swaRef format) 728

28.3.3 Mapping WSDL to the Java type of attachments (wsi:swaRef format) 728

28.4 SOAP Messages with attachments (wsi:swaRef format) 730

28.4.1 Mapping an attachment to a SOAP Message (wsi:swaRef format) 731

28.4.2 Precautions on mapping from an attachment to a SOAP Message (wsi:swaRef format) 733

28.4.3 Mapping the SOAP message to the attachment (wsi:swaRef format) 736

28.5 Generating and obtaining the Java instance of the attachment (wsi:swaRef format) 737

28.5.1 Method of generating the attachment instance (wsi:swaRef format) 737

Contents

xviii

28.5.2 Method of obtaining the attachment data (wsi:swaRef format) 739

29 Examples of the Development Starting from SEI (When using Attachments of the
wsi:swaRef format) 741

29.1 Configuration examples of development (Starting from SEI and attachments of wsi:swaRef
format) 742

29.2 Example of the development flow (Starting from SEI and attachments of wsi:swaRef) 744

29.3 Examples of Web Service development (Starting from SEI and attachments of wsi:swaref
format) 745

29.3.1 Creating the Web Service Implementation Class 745

29.3.2 Compiling Web Services Implementation Class 746

29.3.3 Creating web.xml 747

29.3.4 Creating application.xml 747

29.3.5 Creating EAR files 748

29.4 Examples of deployment and startup (Starting from SEI and attachments of wsi:swaRef format) 749

29.4.1 Deploying EAR files 749

29.4.2 Starting Web Services 749

29.5 Examples of Web Service client development (Starting from SEI and attachments of
wsi:swaRef format) 750

29.5.1 Generating a service class 750

29.5.2 Creating the Web Service Implementation Class 750

29.5.3 Compiling the implementation class for the Web Service client 751

29.6 Examples of Web Service execution (Starting from SEI and attachments of wsi:swaRef format) 752

29.6.1 Creating the option definition file for Java applications 752

29.6.2 Creating the user property file for Java applications 752

29.6.3 Executing the Web Service client 752

30 Attachment functionality (MTOM/XOP) 753

30.1 Description of the attachment functionality (MTOM/XOP) 754

30.2 Java interface of an attachment (MTOM/XOP) 755

30.3 Attachment WSDL (MTOM/XOP) 757

30.3.1 non-wrapper style attachments in MTOM/XOP specification format (MTOM/XOP) 757

30.4 Behavior of the JAX-WS engine 758

30.4.1 Behavior of the JAX-WS engine on a Web Service machine 758

30.4.2 Behavior of the JAX-WS engine on a Web Service client machine 759

30.5 SOAP messages of the attachments in the MTOM/XOP specification format 762

30.5.1 Mapping the attachments to the SOAP messages (MTOM/XOP) 763

30.5.2 Notes on mapping from the attachments to the SOAP messages (MTOM/XOP) 765

30.5.3 Mapping the SOAP messages to the attachments (MTOM/XOP) 768

30.6 Precautions 769

30.7 Data that can be sent and received and the Java types that can be used in the attachment
(MTOM/XOP format) 770

Contents

xix

30.7.1 How to create Java objects for data to be sent 770

30.7.2 How to acquire the received data 773

31 Example of the development starting from SEI (when using attachments in the
MTOM/XOP specification format) 775

31.1 Configuration of the development example (starting from SEI or the attachments in the
MTOM/XOP specification format) 776

31.2 Flow of the development example (starting from SEI or attachments in MTOM/XOP
specification format) 778

31.3 Example of Web Service development(starting from SEI or attachment in MTOM/XOP
specification format) 779

31.3.1 Creating a Web Service Implementation Class 779

31.3.2 Compiling Web Services Implementation Classes 780

31.3.3 Creating a web.xml file 781

31.3.4 Creating an application.xml file 782

31.3.5 Creating EAR files 782

31.4 Examples of deployment and startup (Starting from SEI or attachments in the MTOM/XOP
specification format) 783

31.4.1 Deploying EAR files 783

31.4.2 Starting Web Service 783

31.5 Examples of developing the Web Service clients (starting from SEI or attachments in the
MTOM/XOP specification format) 784

31.5.1 Generating a service class 784

31.5.2 Creating an implementation class for the Web Service client 784

31.5.3 Compiling an implementation class for the Web Service client 785

31.6 Examples for executing the Web Services (starting from SEI or attachments in the MTOM/XOP
specification format) 786

31.6.1 Creating an option definition file for Java applications 786

31.6.2 Creating a user property file for Java applications 786

31.6.3 Executing Web Service clients 786

32 Streaming 787

32.1 What is the Streaming functionality 788

32.2 How to use Streaming 789

32.2.1 Web Services machine 789

32.2.2 Web Service client side 789

32.2.3 Variations due to parseEagerly 790

32.2.4 Operating streamed attachments 790

32.3 Temporary files (Streaming) 794

32.3.1 Naming convention 794

32.3.2 Output and Deletion 795

32.3.3 How to estimate 795

Contents

xx

33 Example of the development starting from SEI (when using streaming) 797

33.1 Starting from development example (starting from SEI and streaming) 798

33.2 Flow of development examples (Starting from SEI and streaming) 800

33.3 Examples of Web Service development (Starting from SEI and streaming) 801

33.3.1 Creating the Web Service Implementation Class 801

33.3.2 Compiling Web Services Implementation Class 802

33.3.3 Creating web.xml 803

33.3.4 Creating application.xml 803

33.3.5 Creating EAR files 804

33.4 Examples of deployment and startup (Starting from SEI and streaming) 805

33.4.1 Deploying EAR files 805

33.4.2 Starting Web Services 805

33.5 Examples of developing the Web Service client (Starting from SEI and streaming) 806

33.5.1 Generating a service class 806

33.5.2 Creating an implementation class for the Web Service client 807

33.5.3 Compiling the implementation class for the Web Service client 808

33.6 Examples of executing the Web Services (Starting from SEI and streaming) 810

33.6.1 Creating option definition files for Java applications 810

33.6.2 Creating user property files for Java applications 810

33.6.3 Executing the Web Service client 810

34 WS-RM 1.2 Functionality 811

34.1 What is the WS-RM 1.2 functionality 812

34.2 Message flow when the WS-RM 1.2 functionality is used 813

34.3 Delivery assurance functionality of WS-RM 1.2 815

34.4 How to add the WS-RM Policy 816

35 Example of the Development Starting from WSDL (using WS-RM 1.2) 817

35.1 Configuration of the development example (Starting from WSDL/WS-RM 1.2) 818

35.2 Flow of the development example (Starting from WSDL/WS-RM 1.2) 820

35.3 Examples of developing a Web Service (Starting from WSDL/WS-RM 1.2) 821

35.3.1 Creating a WSDL file 821

35.3.2 Adding the WS-RM Policy in the WSDL file 827

35.3.3 Creating SEI 827

35.3.4 Creating the Web Service Implementation Class 828

35.3.5 Compiling the Web Service Implementation Class 829

35.3.6 Creating a web.xml file 829

35.3.7 Creating an application.xml file 829

35.3.8 Creating EAR files 830

35.4 Example of deploying and starting the service (Starting from WSDL/WS-RM 1.2) 831

Contents

xxi

35.4.1 Deploying the EAR files 831

35.4.2 Starting Web Services 831

35.5 Example of developing a Web Service client (starting from WSDl/WS-RM 1.2) 832

35.5.1 Generating a service class 832

35.5.2 Creating an implementation class for the Web Service client 833

35.5.3 Adding sequence termination processing in the Implementation Class for Web Service client 833

35.5.4 Compiling the implementation class for the Web Service client 834

35.6 Example of executing the Web Service (Starting from WSDL/WS-RM 1.2) 835

35.6.1 Creating an option definition file for Java applications 835

35.6.2 Creating a user property file for Java applications 835

35.6.3 Executing the Web Service client 835

36 Handler Frame Work 837

36.1 What is the handler framework 838

36.2 Precautions on using the Web Service security functionality 840

36.3 Notes on applying to the EJB Web Services 841

36.4 Types of handlers 842

36.5 Execution sequence and organization of the handler chain 843

36.5.1 Processing of the handleMessage method 843

36.5.2 Processing of the handleFault method 850

36.5.3 Processing of the close method 854

36.6 Initializing and destroying the handler 855

36.7 Operations and settings for the handler when the SOAP Header is included in the SOAP
Message 856

36.7.1 Operations of the handler when the SOAP Header is included in the SOAP Message (in the Web
Service) 856

36.7.2 Operations of the handler when the SOAP Header is included in the SOAP Message (in the Web
Service client) 859

36.7.3 Setting the SOAP Header that can be processed 863

36.8 Deploying the handlers 866

36.9 Setting the handler chain 867

36.9.1 Setting the handler chain in the Web Service 867

36.9.2 Setting the handler chain in the Web Service client 868

37 Addressing Functionality 871

37.1 Addressing functionality 872

37.1.1 Synchronous communication 872

37.1.2 Asynchronous communication 873

37.2 WSDL extension elements and extension attributes 875

37.2.1 WSDL extension elements 875

37.2.2 WSDL extension attributes 876

37.3 Notes for the annotations used with the addressing functionality 878

Contents

xxii

37.4 Fault messages 879

37.4.1 Un-supported sub-sub code 879

37.4.2 Notes for fault messages 879

37.5 Operations of the JAX-WS engine on a Web Service machine (When using the addressing
functionality) 880

37.5.1 Operations for receiving request messages 880

37.5.2 Response messages 880

37.5.3 Operations when the wsaw:Anonymous element is specified 882

37.5.4 Operations when an Addressing annotation is specified 882

37.5.5 Operations when an Action annotation is specified 883

37.5.6 Operations when the wsa:Action element is specified 883

37.5.7 Operations when the wsa:MessageID element is not specified 883

37.6 Operations of the JAX-WS engine on a Web Service client machine (When using the
addressing functionality) 884

37.6.1 Operations for sending and receiving messages 884

37.6.2 AddressingFeature class and anonymous URI 885

37.6.3 Notes for the wsaw:Action and wsam:Action attributes 886

37.6.4 Notes for the wsa:Action element 886

37.6.5 Notes related to acquiring SEI 886

38 Examples of development from SEI (when addressing functionality used) 887

38.1 Configuration examples of development (Starting from SEI and addressing) 888

38.2 Flow of development examples (Starting from SEI and addressing) 890

38.3 Examples of Web Service development (Starting from SEI and addressing) 891

38.3.1 Creating the Web Service Implementation Class 891

38.3.2 Compiling Web Services Implementation Classes 892

38.3.3 Creating web.xml 893

38.3.4 Creating application.xml 893

38.3.5 Creating EAR files 894

38.4 Examples of deployment and startup (Starting from SEI and addressing) 895

38.4.1 Deploying EAR files 895

38.4.2 Starting Web Services 895

38.5 Examples of Web Service client development (Starting from SEI and addressing) 896

38.5.1 Generating a service class 896

38.5.2 Creating an implementation class for the Web Service client 897

38.5.3 Compiling the implementation class for the Web Service client 898

38.6 Examples of Web Service execution (Starting from SEI and addressing) 900

38.6.1 Creating option definition files for Java applications 900

38.6.2 Creating user property files for Java applications 900

38.6.3 Executing the Web Service client 900

Contents

xxiii

Part 5: Troubleshooting

39 Troubleshooting 901

39.1 Types of failure and actions 902

39.1.1 When a running program ends abnormally 902

39.1.2 When a program does not operate as intended 903

39.1.3 When the performance is not as expected 904

39.2 Material to be acquired when a failure occurs 906

39.3 Log 907

39.3.1 Types of log 907

39.3.2 Log file rotation 907

39.3.3 Log output destination 908

39.3.4 Importance level and output conditions of logs 911

39.3.5 Log format 914

39.3.6 Setting logs 916

39.3.7 Estimating the log 917

39.4 Performance analysis trace (PRF) 920

39.4.1 Collection level of Trace based performance analysis 920

39.4.2 Trace output information of Trace based performance analysis 920

39.4.3 Method of performance analysis based on Trace based performance analysis 939

Appendixes 941

A. Migrating from an Earlier Version 942

A.1 Installing an upgraded version 942

A.2 Compatibility of WSDL created in an earlier version 947

B. Migrating from the POJO Web Service to the EJB Web Service 949

C. Calculating the Memory Usage for JAX-WS Engine 951

C.1 Memory usage when the application starts 951

C.2 Memory usage per request 951

C.3 Memory usage per request when attachments are used 951

C.4 Calculating the memory usage per unit time 952

D. Glossary 954

Index 955

Contents

xxiv

Part 1: Overview

1 Overview of Developing and
Executing Web services
You can use the JAX-WS functionality of Cosminexus to develop SOAP Web
services that are compliant with the JAX-WS 2.2 specifications. You can also use the
JAX-RS functionality of Cosminexus to develop RESTful Web Services (Web
resource) that are compliant with the JAX-RS 1.1 specifications.

This chapter gives an overview of Web services, and describes the prerequisites for
developing them.

1

1.1 JAX-WS/JAX-RS specifications compliant version,
prefix and name space URI

This manual describes how to develop and execute the web services compliant with the JAX-WS 2.2 or JAX-RS 1.1
specifications by using the functionality provided with Cosminexus.

The following are the details on the JAX-WS 2.2 specifications, JAX-RS1.1 specifications, and the mapping of the
prefixes and name space URIs.

JAX-WS 2.2 specifications compliant version
The JAX-WS 2.2 specifications described in this manual are the specifications of the following version:

Specification: JSR-000224 - JavaTM API for XML-Based Web services
Version: 2.2
Status: Maintenance Release 3
Release: 10 December 2009

The schema of the binding declaration described in this manual is the following schema:

http://java.sun.com/xml/ns/jaxws/wsdl_customizationschema_2_0.xsd(Date Published:
May 11, 2006)

JAX-RS 1.1 specifications compliant version
The JAX-RS 1.1 specifications described in this manual are the specifications of the following version:

Specification: JSR-000311 - JavaTM API for RESTful Web services
Version: 1.1
Status: Final Release
Release: September 17, 2009

Mapping of the prefixes and name space URIs
The mapping of the prefixes and name space URIs used in this manual is as follows. Unless otherwise specified,
the following prefixes are used.

Table 1‒1: Mapping of the prefixes and namespace URIs

No. Prefix Namespace URI

1 cwsrm http://jaxws.cosminexus.com/cwsrm

2 er urn:oasis:names:tc:entity:xmlns:xml:catalog

3 javaee http://java.sun.com/xml/ns/javaee

4 jaxb http://java.sun.com/xml/ns/jaxb

5 jaxws http://java.sun.com/xml/ns/jaxws

6 jaxwsdd http://java.sun.com/xml/ns/jax-ws/ri/runtime

7 net35rmp http://schemas.microsoft.com/ws-rx/wsrmp/200702

8 S Indicates S11 or S12

9 S11 http://schemas.xmlsoap.org/soap/envelope/

10 S12 http://www.w3.org/2003/05/soap-envelope

11 soap http://schemas.xmlsoap.org/wsdl/soap/

12 soap12 http://schemas.xmlsoap.org/wsdl/soap12/

13 soapenv http://schemas.xmlsoap.org/soap/envelope/

14 soapenv12 http://www.w3.org/2003/05/soap-envelope

15 wsa http://www.w3.org/2005/08/addressing

16 wsam http://www.w3.org/2007/05/addressing/metadata

1. Overview of Developing and Executing Web services

2

No. Prefix Namespace URI

17 wsaw http://www.w3.org/2006/05/addressing/wsdl

18 wsdl http://schemas.xmlsoap.org/wsdl/

19 wsi http://ws-i.org/profiles/basic/1.1/xsd

20 wsp http://www.w3.org/ns/ws-policy

21 wsrm http://docs.oasis-open.org/ws-rx/wsrm/200702

22 wsrmp http://docs.oasis-open.org/ws-rx/wsrmp/200702

23 wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

24 xmime http://www.w3.org/2005/05/xmlmime

25 xop http://www.w3.org/2004/08/xop/include

26 xsd http://www.w3.org/2001/XMLSchema

27 xsi http://www.w3.org/2001/XMLSchema-instance

1. Overview of Developing and Executing Web services

3

1.2 Overview of developing Web services
Cosminexus provides a JAX-WS engine and JAX-RS engine as the communication base for the Web services. The
JAX-WS engine binds the SOAP Messages according to the JAX-WS 2.2 specifications, whereas the JAX-RS engine
binds the RESTful HTTP messages according to the JAX-RS 1.1 specifications.

This manual describes how to develop the Web services that can be used through JAX-WS engines or JAX-RS
engines.

1.2.1 Overview of developing SOAP Web services
You develop a SOAP Web service (Web service using the JAX-WS engine) by using one of the following methods:

• Development starting from WSDL
The development starts from the WSDL that is used for coding Web Service definitions. Use commands to
generate Java sources from the WSDL and implement the required processing.

• Development starting from SEI (Service End Point Interface)
The development starts from SEI. Use commands to generate the additional Java source (Java Beans class)
required for implementing Web services. You can create Web Service Implementation Class as a POJO and which
is based on EJB.

• Development starting from a provider
The development starts from a provider. Implement the provider implementation class.

For details on each of these development procedures, see the chapter 2.1 Development flow of SOAP Web Services.

Reference note
Developing SOAP applications

You can also use the existing SOAP application development support functionality and the SOAP Communication
Infrastructure functionality to develop Web services (applications developed using this functionality are called SOAP
applications). However, as a prerequisite the SOAP applications must run on the SOAP Communication Infrastructure, and
therefore, there are conditions for using the SOAP applications on JAX-WS engines.

For developing SOAP applications, see the uCosminexus Application Server SOAP Application Development Guide.

For the conditions and migration procedures when using SOAP applications on JAX-WS engines, see Appendix A Migrating
from an Earlier Version.

1.2.2 Overview of developing RESTful Web services
You develop the RESTful Web Services (Web services using the JAX-RS engine) by implementing Web resources.
For Web resources, implement the processes corresponding to the HTTP requests. Note that at times the RESTful
Web services are called a Web resource.

For details on the flow of development, see 2.3 Development flow of RESTful Web Services.

1. Overview of Developing and Executing Web services

4

1.3 Functionality used for developing and executing the
Web services

This section describes the functionality to be used for developing and executing SOAP Web services and RESTful
Web Services (Web resources).

1.3.1 Functionality of SOAP Web services
The functionalities of a JAX-WS engine are described based on the configuration of the SOAP Web services shown in
the following figure.

Figure 1‒1: Configuration of a SOAP Web service (POJO Web service)

1. Overview of Developing and Executing Web services

5

Figure 1‒2: Configuration of a SOAP Web service (EJB Web service)

1. Overview of Developing and Executing Web services

6

Figure 1‒3: Configuration of SOAP Web Services (Web service client that operates on a J2EE container)

• JAX-WS engine
A JAX-WS engine is a communication infrastructure of SOAP Web services. The JAX-WS engine is deployed on
a Web Service machine and on a Web Service client machine, and plays the role of marshalling/ un-marshalling of
the sent and received SOAP Messages.

JAX-WS engine on the Web Service client machine
The JAX-WS engine receives Java objects through JAX-WS APIs from the Web Service client, and generates
SOAP request messages (marshalling). The generated SOAP request messages are sent to the Web services of
invoking destination.
Moreover, the JAX-WS engine receives SOAP response messages from Web services and generates Java
objects (unmarshalling) . The generated Java objects are returned to the Web Service client.

JAX-WS engine on the Web Service machine
The JAX-WS engine receives SOAP request messages from the Web Service client, and generates Java
objects (unmarshalling). At this stage, the JAX-WS engine discovers the target Web Service Implementation
Class or the Provider Implementation Class, (discovery)and invokes a method for the operation (dispatch).
(dispatch)The JAX-WS engine also receives Java objects from the target Web Service Implementation Class
or the Provider Implementation Class, and generates SOAP response messages (marshalling). The generated
SOAP response message is returned to the Web Service client that is the invoking source.

• Command
The commands are used for developing SOAP Web services. You can generate Java sources and WSDL required
for implementing Web services and Web Service clients. Use the following commands for developing Web
services using the JAX-WS engine:

• cjwsimport command

• apt command

• cjwsgen command

1. Overview of Developing and Executing Web services

7

For using commands, see the chapter 14. Commands.

• Automatically generated class
Execute commands to generate Java sources. Implement Web services and Web Service clients by using the
generated Java sources.

• JAX-WS APIs
The APIs of the JAX-WS 2.2 specifications. Use the APIs of JAX-WS for developing Web services starting from
a provider and developing dispatch-based Web Service clients. You can also use APIs for adding the handler
framework and addressing functionality.

1.3.2 Functionality of RESTful Web services
This section describes the functionality of a JAX-RS engine based on the configuration of RESTful Web Services
(Web resources) shown in the following figure.

Figure 1‒4: Configuration of RESTful Web Services

• JAX-RS engine
The JAX-RS engine acts as a communication base of the RESTful Web Services (Web resource).

• JAX-RS engine on a Web resource client
The JAX-RS engine receives Java objects from Web resource clients through client APIs for RESTful Web
Services and generates HTTP requests. The engine then sends the generated HTTP requests to the Web
resource to be invoked.
Next, the engine receives HTTP responses from Web resources and generates Java objects and then returns the
generated Java objects to the Web resource client.

• JAX-RS engine on a Web resource
The engine, deployed on a Web resource, receives the HTTP requests from the client, finds the target resource
class (discovery), and calls a method corresponding to the request (dispatch). The engine also generates the
HTTP response from the target resource class, and returns the response to the caller client. When dispatching,
the JAX-RS engine executes the required injections based on the annotations included in the resource class.

• Client APIs for RESTful Web Services
This is an API that can be used on a client that calls RESTful Web Services (Web resource).

1. Overview of Developing and Executing Web services

8

1.4 Prerequisites for developing and executing Web
services

This section describes the prerequisites for developing Web services on Cosminexus, and support range.

1.4.1 Prerequisite component software
To develop and execute Web services, use Developer and the Application Server respectively.

For the prerequisite software for Developer, see 1.3 Machine configuration of the development environment in the
uCosminexus Application Server Application Development Guide.

For the prerequisite software for Application Servers, see 2.2 Component software in the uCosminexus Application
Server Overview.

1.4.2 Prerequisites related to functionality and specifications

(1) Preconditions related to the functionality and specifications of SOAP Web services
This subsection describes the functionality and specifications that you can use for developing SOAP Web services in
Cosminexus. For details on the support range of the standard specifications, see the following sections:

• 19. Support Range of the JAX-WS specifications

• 20. Support Range of the WSDL specifications

• 22. Support Range of the SAAJ specifications

• 23. Support Range of the WS-RM specifications

(a) Default mapping

The commands provided with the JAX-WS functionality of Cosminexus operate according to the default mapping of
WSDL to Java that is defined in Chapter 2 of JAX-WS 2.2 specifications and according to the default mapping of Java
to WSDL that is defined in Chapter 3 of JAX-WS 2.2 specifications.

Also, when the JAX-WS engine on the Web Service machine requires the WSDL that is the meta data for Web
services, and if the WSDL does not exist in WAR files or EJB JAR files generate the WSDL according to the default
mapping of Java to the WSDL defined in Chapter 3 of JAX-WS 2.2 specifications.

For the default mapping of the WSDL to Java, see the subsection 15.1 Default mapping of WSDL to Java. For the
default mapping of Java to WSDL, see the subsection 16.1 Default mapping of Java to WSDL.

(b) Customization of mapping

The commands provided with the JAX-WS functionality of Cosminexus operate according to the customized mapping
(binding declaration) of the WSDL to Java that is defined in Chapter 7 of JAX-WS 2.2 specifications and according to
the customized mapping (annotation) of Java to the WSDL that is defined in Chapter 8 of JAX-WS 2.2 specifications.

Also, when the JAX-WS engine on the Web Service machine requires the WSDL that is the meta data for Web
services, and if the WSDL does not exist in WAR files or EJB JAR files, generate the WSDL according to the
customized mapping of Java to the WSDL defined in Chapter 7 of JAX-WS 2.2 specifications.

For the WAR files, see 3.5.1 Configuring WAR files. For the EJB JAR files, see 3.5.2 Configuring EJB JAR files. For
the customized mapping of the WSDL to Java, see 15.2 Customized mapping of WSDL to Java. For the customized
mapping of Java to the WSDL, see 16.2 Customized mapping of Java to WSDL.

(c) Binding between Java and WSDL

The JAX-WS engine of Cosminexus binds Java and the WSDL according to Chapter 2 and Chapter 3 of the JAX-WS
2.2 specifications for both Web services and Web Service clients.

For the support range of JAX-WS engines of Cosminexus, see 10.2 Operations of the JAX-WS engine.

1. Overview of Developing and Executing Web services

9

(d) WSDL specifications

The JAX-WS functionality of Cosminexus supports the WSDL of WSDL 1.1 specifications. Only the document/literal
style is supported as the WSDL definition style. For the document/literal style, you can use both the wrapper style and
the non-wrapper style.

For the support range of WSDL 1.1 specifications, see 19.1 Support range of WSDL 1.1 specifications.

(e) SOAP specifications

The JAX-WS functionality of Cosminexus supports SOAP Messages of the SOAP 1.1 and SOAP 1.2 specifications.

(f) Message Exchange Pattern (MEP)

The JAX-WS functionality of Cosminexus only supports the request-response operations and one-way operations as
MEP. For details on how to define the request-response operations and one-way operations, see the following
subsections:

• 15.1.4 Mapping the message part to the parameter and the return value (For wrapper style)

• 15.1.5 Mapping the message part to the parameter and the return value (For non-wrapper style)

• 16.2.4 javax.jws.Oneway annotation

For details on one-way operations and notes, see 10.22 One-way operations.

(g) Functionality for asynchronous invocation

The JAX-WS functionality of Cosminexus does not support the functionality used for implementing asynchronous
invocation of Web Service clients that are described in Section 2.3.4 and Chapter 4 of JAX-WS 2.2 specifications.

(h) Functionality related to Dispatch/ Provider interface

The JAX-WS functionality of Cosminexus supports the Dispatch interface described in Chapter 4 of the JAX-WS
2.2 specifications, the Provider interface described in Chapter 5 of the JAX-WS 2.2 specifications, and the
functionality related to the Dispatch interface and Provider interface. However, among all the objects described
in Chapter 4 of the JAX-WS 2.2specifications, the JAX-WS functionality does not support the following objects:

• javax.activation.DataSource
• javax.xml.transform.stax.StAXSource

(i) Functionality related to Endpoint class and issuing

The JAX-WS functionality of Cosminexus does not support the functionality for dynamically creating and issuing the
Web Service endpoints that are described in Chapter 5 of JAX-WS 2.2 specifications.

(j) Functionality related to handler

The JAX-WS functionality of Cosminexus supports the API-based dynamic handler settings for implementing Web
Service clients. The functionality also supports the annotation-based dynamic handler settings for implementing Web
services. The static settings assuming JSR-109 specifications are not supported.

(k) Using the attachments

The JAX-WS functionality of Cosminexus supports the attachments of the SAAJ 1.3 specifications, attachments with
the format for coding the wsi:swaRef format in a WSDL, and attachments in the MTOM/XOP specification
format. The functionality does not support coding that uses the MIME extension element of the WSDL 1.1
specifications (MIME binding). For using attachments in the wsi:swaRef format, see 28. Attachment Functionality
(wsi:swaRef format). For using attachments in the MTOM/XOP specification format, see 30. Attachment
Functionality (MTOM/XOP).

(l) Message context

With the JAX-WS functionality of Cosminexus, the standard message context property described in Chapter 9 of
JAX-WS 2.2 specifications is read-only. The functionality supports the property used for specifying a timeout when
implementing Web services. For the usage and precautions for the message context, see the section 19.2.5 Using a
message context.

1. Overview of Developing and Executing Web services

10

(m) API

The JAX-WS functionality of Cosminexus supports the APIs of the JAX-WS 2.2 specifications. For the support range
of the JAX-WS APIs, see the section 19.2 Support Range of APIs.

(n) XML/ HTTP binding

The JAX-WS functionality of Cosminexus does not support the XML/ HTTP binding described in Chapter 11 of the
JAX-WS 2.2 specifications.

(o) Dynamically generating wrapper beans

For Web Services developed, starting from SEI, the JAX-WS functionality of Application Server supports the
functionality of the JAX-WS engine (hereafter, also referred to as the functionality to dynamically generate wrapper
beans) that dynamically generates JavaBeans classes of wrapper beans (request beans and response beans) and fault
beans described in the section 3.6.2.1 and section 3.7 of the JAX-WS2.2 specifications. The Web service clients or
Web Services that start from the WSDL do not support the functionality that dynamically generates wrapper beans.

For details on the functionality that dynamically generates wrapper beans, see 10.23 A functionality that dynamically
generates wrapper beans.

(p) Related standard specifications

The following points describe the related standard specifications:

• Functionality related to the MTOM specifications
The JAX-WS functionality of Cosminexus supports the functionality related to the MTOM specifications
described in Sections 2.4 and Section 6.5 of the JAX-WS 2.2 specifications.

• WS-Addressing specifications
The JAX-WS functionality of Cosminexus supports the functionality related to the WS-Addressing specifications
described in Section 5.2.8 of the JAX-WS 2.2 specifications. For details, see 37. Addressing Functionality.

• XML Catalogs 1.1 specifications
The JAX-WS functionality of Cosminexus supports the functionality related to the XML Catalogs 1.1
specifications described in section 4.4 of the JAX-WS 2.2 specifications.
For details on the support range of the XML Catalogs 1.1 specifications, see 21. Support Range of XML Catalogs
1.1.

• WSEE (JSR-109) specifications
The JAX-WS functionality of Cosminexus supports the WSEE (JSR-109) specifications. The following table
describes the items and the support of the WSEE (JSR-109) specifications.

Table 1‒2: Items and support of WSEE (JSR-109) specifications

No. Item Support

1 The methods of Stateless session bean and singletone session bean are as
follows:

• Method of mapping or binding to WSDL

• Method of mapping or binding to SOAP

Stateless Y

Singletone --

2 Client model. A method for detecting service interface by using JNDI and
a method of using WebServiceRef annotation of JAX-WS
specifications

Contents of the
section 4.2.2
(service class and
port injection)

Y

Contents of sections
other than 4.2.2

--

3 Deployment model. A method of packaging to EAR file and life cycle. Contents described
in section 5.4

Y

Contents other than
those described in
section 5.4

--

1. Overview of Developing and Executing Web services

11

No. Item Support

4 Deployment descriptor. The contents that must be coded along with WebServices.xml syntax
and mapping with annotation that is defined in JAX-WS specifications (Web services Metadata
(JSR-181) specifications).

--

5 Mapping with the existing Java EE container functionality such as role --

Legend:
Y: Indicates that WSEE specifications are supported.
--: Indicates that WSEE specifications are not supported.

Also supports operations when the Web.xml is omitted. For the operations when Web.xml is omitted, see the
subsection 3.4 (3) Operations when Web.xml is not included in a WAR file.

• SAAJ 1.3 specifications
The JAX-WS functionality of Cosminexus supports the SAAJ 1.3 specifications. For the APIs of the SAAJ 1.3
specifications, see the section 22.1 Support range of the SAAJ 1.3 specifications.

(2) Prerequisites for the functionalities and specifications of RESTful Web Services
This section describes the functionality and specifications you can use for developing RESTful Web Services (Web
resource) with Cosminexus. For details on the support range of the standard specifications, see 24. Support range of
the JAX-RS specifications.

(a) Resource Class

A resource class is used for implementing Web resources. Chapter 3(8) of the JAX-RS 1.1 specifications defines
resource classes. There are two types of resource class; root resource classes and sub resource classes.(8) The JAX-RS
functionality of Cosminexus supports both the resource classes.

For details on root resource classes, see 17.1.1 Root resource class. For details on sub resource classes, see 17.1. 7 Sub
resource class.

(b) Provider

A provider is an extended functionality for the JAX-RS engine. Chapter 4 of the JAX-RS 1.1 specifications defines
Provider. There are three types of providers; entity providers, context providers, and exception mapping providers.

An entity provider maps an HTTP entity body and a Java type. The JAX-RS functionality supports a built-in entity
provider. For details on the MIME types and Java types supported by a built-in entity provider, see 17.1.1(4)(c) Entity
parameter.

A context provider provides the context to a resource, or to the other resource providers. The JAX-RS functionality
supports a built-in context provider. For details on the context supported by a built-in context provider, see 24.4
Context.

An exception mapping provider customizes the mapping between the Web resource exceptions and HTTP responses.
For details on the exception mapping provider, see 17.2.2 Exception mapping provider.

(c) Application

The Application is a factory of the resource classes and providers. Chapter 2 of the JAX-RS 1.1 specifications defines
the Application. The JAX-RS 1.1 specifications support a built-in Application. For details on the built-in Application,
see 11.3.1 Configuration of WAR files.

1. Overview of Developing and Executing Web services

12

1.5 Format of Web services and Clients
This section describes the format of Web services and clients supported by Cosminexus.

1.5.1 Format of Web services
Cosminexus supports the following formats of Web services:

• SOAP Web services using Web Service Implementation Classes

• SOAP Web services using Provider Implementation Classes

• RESTful Web Services (Web resource)

The following subsections describe each of the above formats:

(1) SOAP Web services using Web Service Implementation Classes
The following figure shows the format of Web services using Web Service Implementation Classes:

Figure 1‒5: Format of a SOAP Web service that uses a Web service implementation class

When using Web Service Implementation Classes, Web services can be realized only by implementing a Java method
that corresponds with the operations of a WSDL. The automatically generated stubs execute complicated
transformation, so for developing Web Services, you need not perform complicated programming such as using APIs
to assemble XMLs that configure SOAP Messages.

Either the tool automatically generates the stubs or the JAX-WS engine dynamically generates the stubs. The WSDL
is mandatory and can be automatically generated. Note that you will not be able to send and receive the SOAP
Messages that are not included in the WSDL. You can create a Web service implementation class as a POJO and also
as a class based on EJB.

1. Overview of Developing and Executing Web services

13

(2) SOAP Web services using Provider Implementation Classes
The following figure shows the format of Web services using Provider Implementation Classes.

Figure 1‒6: Format of a SOAP Web service that uses (1)Provider Implementation Classes

When using Provider Implementation Classes, you neither need stubs nor a WSDL, so Provider Implementation
Classes are suitable for dynamically sending and receiving any SOAP Message. A Provider Implementation Class
accepts an object marshaled by the JAX-WS engine as it is, and therefore for developing Web services, you must
directly acquire values from XMLs that configure SOAP Messages using APIs, and then assemble the XMLs.

(3) RESTful Web Services (Web resource)
You can execute RESTful Web Services (Web resource) by implementing a resource class.

1. Overview of Developing and Executing Web services

14

Figure 1‒7: RESTful Web service (Web resource)

A resource class consists of a root resource class and sub resource class.

A root resource class is a Java class annotated with the Path annotation at the class level, whereas a sub-resource
class is a Java class that is not annotated with the Path annotation at the class level.

You can implement any of the following methods in a resource class:

• Resource method

• Sub resource method

• Sub resource locator

1.5.2 Format of clients
Cosminexus supports the following forms of clients to call the SOAP Web services:

• Stub-based Web Service clients

• Dispatch-based Web Service clients

The following section describes each format.

Note that you must use either the client APIs for RESTful Web Services or standard Java APIs such as
java.net.URL or java.net.HttpURLConnection to implement a Web resource client.

(1) Stub-based Web Service clients
The following figure shows the format using a stub-based Web Service client:

1. Overview of Developing and Executing Web services

15

Figure 1‒8: Web Service client (Stub-based)

When using stub-based Web Service clients, Web services can be invoked only by invoking the Java method that
corresponds with the operations of a WSDL. The automatically generated stubs execute complicated transformation,
so for developing Web Service clients you need not perform complicated programming such as using APIs to
assemble XMLs configuring SOAP Messages. However, note that it is not possible to send and receive SOAP
Messages that are not defined in the WSDL. Also, the stubs and WSDL will be required. You must acquire a WSDL
from the corresponding Web Service.

(2) Dispatch-based Web Service clients
The following figure shows the format using dispatch-based Web Service clients:

1. Overview of Developing and Executing Web services

16

Figure 1‒9: Web Service client (Dispatch-based)

When using dispatch-based Web Service clients, you neither need stubs nor a WSDL, so dispatch-based Web Service
clients are suitable for dynamically sending and receiving any SOAP Message. A dispatch-based Web Service client
transfers the generated objects to the JAX-WS engine via the javax.xml.ws.Dispatch interface, and therefore,
when developing a Web Service client, you must directly acquire values from XMLs and use APIs to assemble the
XMLs configuring SOAP Messages.

! Important note

With the dispatch-based Web Service client, you can also send and receive SOAP Messages using the
javax.xml.soap.SOAPConnection class instead of the javax.xml.ws.Dispatch interface. However, note
that when you use the javax.xml.soap.SOAPConnection class, the settings of operation definition files and the
message context are disabled and a log is also not output.

Also, this manual does not describe operations for using the javax.xml.soap.SOAPConnection class. For details,
see the JDK documentation as you would for the other APIs of the SAAJ 1.3 specifications. If there is no problem, use the
javax.xml.ws.Dispatch interface instead of the javax.xml.soap.SOAPConnection class.

1. Overview of Developing and Executing Web services

17

1.6 Setting up JAX-WS and JAX-RS engine
To use a JAX-WS engine and JAX-RS engine, you must specify definitions, for enabling the JAX-WS engine and
JAX-RS engine, in the option definition file for a J2EE server.

For the definitions to be used for enabling the JAX-WS engine and JAX-RS engine, see the description of using the
JAX-WS engine and JAX-RS engine in Appendix A.1 (3) Switching the operating environment.

1. Overview of Developing and Executing Web services

18

2 Procedures for Development
You develop JAX-WS 2.2 compliant SOAP Web Services based on a WSDL, SEI, or
provider. The client that calls SOAP Web Services is developed either on a stub base
or a dispatch base.

You develop RESTful Web Services (Web resources) by implementing a resource
class. You develop a client that calls RESTful Web Services by using a client API for
RESTful Web resources or the standard Java API.

This chapter describes the development procedure of Web Services and Web Service
clients.

19

2.1 Development flow of SOAP Web Services
Use the following methods for developing SOAP Web Services:

• Development starting from a WSDL (2.1.1)

• Development starting from SEI (2.1.2)

• Development starting from SEI (when using the cjwsgen command) (2.1.3)

• Development starting from a provider (2.1.4)

The following figure shows how to select a development method:

Figure 2‒1: How to select a method for developing SOAP Web Services

2.1.1 Development starting from WSDL
The following figure shows the flow of the development starting from the WSDL:

2. Procedures for Development

20

Figure 2‒2: Development of Web Services starting from the WSDL

1. Creating a WSDL file
You can create a WSDL file either manually or with commands.

• Creating manually
As the meta data of Web Services, create a WSDL file according to the WSDL 1.1 specifications, XML
Schema specifications, and WS-I Basic Profile 1.1. For receiving messages of SOAP 1.1, code extension
elements of the SOAP 1.1 specifications and for receiving messages of SOAP 1.2, code extension elements of
the SOAP 1.2 specifications.
For the support range of the WSDL 1.1 specifications, see 20.1 Support range of the WSDL 1.1 specifications.

• Generating with commands
We recommend the generation of a WSDL using commands, when a user is accustomed of developing with
Java language rather than with syntaxes of a WSDL and XML Schema.
After temporarily creating or compiling a Web Service Implementation Class, specify the -wsdl option and
execute the WSDL generation functionality of the cjwsgen command to generate a WSDL file. Change the
generated WSDL, as and when required. Use the generated Web Service Implementation Class only for
entering the cjwsgen command. Therefore, you need not execute any method.
For receiving the messages of the SOAP 1.2 specifications, specify http://www.w3.org/2003/05/
soap/bindings/HTTP/ in the javax.xml.ws.BindingType annotation while creating the Web
Service Implementation Class.
After generating the WSDL, delete the Web Service Implementation Class that is not required anymore.

2. Executing the cjwsimport command (Generating Java sources)
Execute the cjwsimport command to generate Java sources such as SEI, skeleton of the Web Service
Implementation Class, and JavaBeans class (stubs) that are required for developing and executing Web Services,
from the created WSDL file. Specify the -generateService option and execute the cjwsimport
command. For the cjwsimport command, see 14.1 cjwsimport command.

3. Implementing Web Services
Using the stubs generated in step 2, code the required processing in the skeleton of the Web Service
Implementation Class and implement the Web Services. Also, compile the implemented Web Service
Implementation Class. Note that the javax.xml.ws.BindingType annotation is automatically added
according to the contents of the WSDL.

4. Creating a DD

2. Procedures for Development

21

Create web.xml and application.xml. Code the Web Service-specific information in web.xml. For
creating web.xml, see 3.4 Creating web.xml.

5. Creating an EAR file
Create an EAR file containing the created file. For creating EAR files, see 3.5.3 Creating EAR files.

6. Deploying and starting the EAR file
Deploy the created EAR file and start the file as a J2EE application (Web Service). For details on the import
and start commands of J2EE applications, see cjimportapp (Importing J2EE applications) and cjstartapp
(Starting J2EE applications) in the uCosminexus Application Server Command Reference Guide.
For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.
For the method to start J2EE applications by using the management portal, see 12.3.1 Starting the J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

For examples in which the development of Web Services starts from the WSDL, see the following sections:

• 4.3 Examples of the Web Service development (Starting from WSDL)

• 35.3 Examples of Web Service development (Starting from WSDL/WS-RM 1.2)

2.1.2 Development starting from SEI
The following figure shows the flow of the development starting from SEI:

Figure 2‒3: Development of Web Services starting from SEI

Although the JAX-WS engine automatically generates WSDLs, you can also generate WSDLs by executing the
commands according to step 4. If you are not generating a WSDL with the commands, step 4 will not be required.

1. Creating a Web Service Implementation Class
There are cases when a Web Service Implementation Class is created as POJO or created based on EJB. In both
the cases, create a Web Service Implementation Class according to the JAX-WS 2.2 specifications and JAXB 2.2
specifications. For receiving messages of the SOAP 1.2 specifications, specify http://www.w3.org/
2003/05/soap/bindings/HTTP/ in the javax.xml.ws.BindingType annotation.

2. Procedures for Development

22

For the support range of the JAX-WS 2.2 specifications, see 19.1 Support range of the JAX-WS 2.2 specifications.
For the support range of the JAXB 2.2 specifications, see Appendix B Support Range of the JAXB Specifications in
the uCosminexus Application Server XML Processor User Guide.

2. Compiling Web Services Implementation Classes
Execute the javac command to compile the created Web Services Implementation Classes. For details on the
javac command, see the JDK documentation.

3. Creating a DD
Create web.xml and application.xml. Code the Web Service-specific information in web.xml. For
creating web.xml, see 3.4 Creating web.xml.

4. Executing the WSDL generation functionality of the cjwsgen command (optional)
Specify the -wsdl option to execute the cjwsgen command, generate a WSDL from Web Services
Implementation Class, and check errors such as the annotation errors. To ensure that no errors occur when
dynamically generating the JavaBeans class (stub) mentioned in step 6, execute the cjwsgen command for
the compiled Web Services Implementation Classes. This step is optional. Do not change the WSDL that is
generated in this step.
To deploy the WSDL generated with the WSDL generation functionality of the cjwsgen command, you can
develop any method other than the meta data issuing functionality, such as sending through mail.
For the cjwsgen command, see 14.3 cjwsgen command.

5. Creating an EAR file
Create an EAR file containing the created file. For creating EAR files, see 3.5.3 Creating EAR files.

6. Deploying and starting the EAR file
Deploy the created EAR file and start the file as a J2EE application (Web Service). For details on the import
and start commands of J2EE applications, see cjimportapp (Importing J2EE applications) and cjstartapp
(Starting J2EE applications) in the uCosminexus Application Server Command Reference Guide.
For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.
For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications
in the uCosminexus Application Server Management Portal User Guide.
The JAX-WS engine dynamically generates the JavaBeans class (stub) when you start a J2EE application (Web
Services). Also, to ensure that no error occurs when dynamically generating the JavaBeans class (stub), if you
execute commands for the compiled Web Services Implementation Classes as mentioned in step 4 of this section,
you can check any errors such as annotation errors in advance. See 10.23(1) Using the cjwsgen command to check
errors.

For examples of the development of Web Services starting from SEI, see the following sections:

• 5.3 Examples of Web Service development (Starting from SEI)

• 6.3 Examples of Web Service development (Starting from SEI or cjwsgen command)

• 7.3 Examples for developing Web Services (Starting from SEI or customization)

• 8.3 Examples of Web Service development (Starting from SEI/EJB Web Service)

• 29.3 Examples of Web Service development (Starting from SEI and attachments of wsi:swaref format)

• 33.3 Examples of Web Service development (Starting from SEI and streaming)

• 38.3 Examples of Web Service development (Starting from SEI and addressing)

2.1.3 Development starting from SEI (When using the cjwsgen
command)

The following figure shows how to develop Web Services starting from SEI, when you generate Java sources with the
cjwsgen command from a compiled Web Service Implementation Class:

2. Procedures for Development

23

Figure 2‒4: Developing Web Services starting from SEI (When using the cjwsgen command)

1. Executing the cjwsgen command
There are cases when a Web Services implementation class is created as POJO or created based on EJB. In both
the cases, if you specify the -wsdl option when executing the cjwsgen command, you can generate a WSDL or
check annotation errors. In such cases, do not change the generated WSDL.
For the cjwsgen command, see 14.3 cjwsgen command.

2. Creating a DD
Create web.xml and application.xml. Code the Web Service-specific information in web.xml. For
creating web.xml, see 3.4 Creating web.xml.

3. Creating an EAR file
Create an EAR file containing the created file. For creating EAR files, see 3.5.3 Creating EAR files.

4. Deploying and starting the EAR file
Deploy the created EAR file and start the file as a J2EE application (Web Services). For details on the import
and start commands of J2EE applications, see cjimportapp (Importing J2EE applications) and cjstartapp
(Starting J2EE applications) in the uCosminexus Application Server Command Reference Guide.
For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applicationsin the uCosminexus Application Server Management Portal User Guide.
For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications
in the uCosminexus Application Server Management Portal User Guide.
The JAX-WS engine dynamically generates the JavaBeans class (stub) when you start a J2EE application (Web
Services).

For the examples of developing the Web Services starting from SEI, see the following sections:

• 5.3 Examples of Web Service development (Starting from SEI)

• 6.3 Examples of Web Service development (Starting from SEI or cjwsgen command)

• 7.3 Examples for developing Web Services (Starting from SEI or customization)

• 8.3 Examples of Web Service development (Starting from SEI/EJB Web Service)

• 29.3 Examples of Web Service development (Starting from SEI and attachments of wsi:swaref format)

• 33.3 Examples of Web Service development (Starting from SEI and streaming)

• 38.3 Examples of Web Service development (Starting from SEI and addressing)

2.1.4 Development starting from a provider
The following figure shows how to develop Web Services starting from a provider:

2. Procedures for Development

24

Figure 2‒5: Developing Web Services starting from a provider

1. Creating a Provider Implementation Class
Create the Web Service Implementation Class as POJO.
Create Provider Implementation Classes according to the JAX-WS 2.2 and JAXB 2.2 specifications. For receiving
messages of the SOAP 1.2 specifications, specify http://www.w3.org/2003/05/soap/bindings/
HTTP/ in the javax.xml.ws.BindingType annotation.
For the support range of the JAX-WS 2.2specifications, see 19.1 Support range of the JAX-WS 2.2 specifications.
For the support range of the JAXB 2.2 specifications, see Appendix B Support Range of the JAXB Specifications in
the uCosminexus Application Server XML Processor User Guide.

2. Executing the apt command (Compiling and error checking)
Execute the apt command for compiling the created Provider Implementation Classes and for error checking.

3. Creating a DD
Create web.xml and application.xml. Code the Web Service-specific information in web.xml. For
creating web.xml, see 3.4 Creating web.xml.

4. Creating an EAR file
Create an EAR file containing the created file. For creating EAR files, see 3.5.3 Creating EAR files.

5. Deploying and starting the EAR file
Deploy the created EAR file and start the file as a J2EE application (Web Services). For details on the import
and start commands of J2EE applications, see cjimportapp (Importing J2EE applications) and cjstartapp
(Starting J2EE applications) in the uCosminexus Application Server Command Reference Guide.
For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.
For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications
in the uCosminexus Application Server Management Portal User Guide.

For the examples of developing Web Services starting from a provider, see 9.3 Examples of developing Web Services
(Starting from a provider and SAAJ).

2. Procedures for Development

25

2.2 Procedure of developing Web Service clients
Use the following methods to develop clients that call SOAP Web Services:

• Developing stub-based Web Service clients (2.2.1)

• Developing dispatch-based Web Service clients (2.2.2)

2.2.1 Developing stub-based Web Service clients
The following figure shows how to develop stub-based Web Service clients:

Figure 2‒6: Procedure of developing a Web Service client (Stub-based)

1. Acquiring a WSDL file (Or acquiring a public WSDL URL)
Acquire a WSDL file coding the meta data for the Web Service that you are trying to invoke, or if the Web
Service that you are trying to invoke has the WSDL file URL public, acquire the URL.

2. Executing the cjwsimport command (Generating Java sources)
Execute the cjwsimport command to generate Java sources, such as service class and SEI that are required for
developing and executing the Web Service client, from the acquired WSDL file or the acquired WSDL file URL.
Execute the cjwsimport command without specifying the -generateService option. For the
cjwsimport command, see 14.1 cjwsimport command.

3. Implementing a Web Service client
Use the generated Java source to implement a Web Service client. Compile the implemented Web Service client
using the javac command. For implementing Web Service clients, see 3.6 Implementing Web Service clients.

4. Invoking a Web Service
Execute the created Web Service client to invoke a Web Service.

For examples of the development of stub-based Web Service clients starting from the WSDL, see 4.5 Examples for
deploying Web Service clients (Starting from WSDL).

For the examples of developing stub-based Web Service clients starting from SEI, see the following sections:

• 5.5 Examples of developing Web Service clients (Starting from SEI)

• 6.5 Examples of Web Service client development (Starting from SEI or cjwsgen command)

• 7.5 Examples of developing Web Service clients (Starting from SEI or customization)

• 8.5 Examples of Web Service client development (Starting from SEI/EJB Web Service)

• 29.5 Examples of Web Service client development (Starting from SEI and attachments of wsi:swaRef format)

• 33.3 Examples of Web Service development (Starting from SEI and streaming)

• 38.5 Examples of Web Service client development (Starting from SEI and addressing)

2. Procedures for Development

26

2.2.2 Developing dispatch-based Web Service clients
For developing dispatch-based Web Service clients, implement Web Service clients according to the JAX-WS 2.2 and
JAXB 2.2 specifications.

For the examples of developing dispatch-based Web Service clients, see 9.5 Examples of Web Service client
development (Starting from a provider and SAAJ).

2. Procedures for Development

27

2.3 Development flow of RESTful Web Services
The following figure shows the development flow of RESTful Web Services (Web Services).

Figure 2‒7: Development flow of RESTful Web Services

1. Creating a root resource class
Create a root resource class and implement at least one from among the resource method, sub-resource method, or
the sub-resource locator. Also create a sub-resource class or an exception mapping provider as and when required.

2. Executing the javac command
Execute the javac command to compile the created Java source.

3. Creating a DD
Create web.xml and application.xml. Code the information specific to Web Services in web.xml. For
details on creating web.xml, see 11.2 Creating web.xml.

4. Creating EAR files
Create an EAR file that includes the created file. For creating EAR files, see 11.3.2 Creating EAR files.

5. Deploying and starting EAR files
Deploy the created EAR file and start the file as a J2EE application (Web Service). For details on the import
and start commands of J2EE applications, see cjimportapp (Importing J2EE applications) and cjstartapp
(Starting J2EE applications) in the uCosminexus Application Server Command Reference Guide.
For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.
For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications
in the uCosminexus Application Server Management Portal User Guide.

For examples of developing RESTful Web Services, see 12.3 Examples of developing Web resources.

2. Procedures for Development

28

Part 2: Development and Execution

3 Points on developing SOAP Web
Services
This chapter describes the points you must understand in advance and the precautions
you must take for each operation of developing Web Services.

29

3.1 Creating WSDL
For the development starting from WSDL, create a WSDL according to WSDL 1.1 specifications and WS-I Basic
Profile 1.1. For the support range of the WSDL 1.1 specifications, see 20.1 Support range of the WSDL 1.1
specifications.

For POJO Web Services, store the created WSDL in the wsdl directory configuring WAR files. For the WSDL storage
destination, see 3.5.1 Configuring WAR files.

For EJB Web Services, store the created WSDL in the wsdl directory configuring EJB JAR files. For the WSDL
storage destination, see 3.5.2 Configuring EJB JAR files.

If WSDL is not included in the wsdl directory, a WSDL will be automatically generated according to the JAX-WS 2.2
specifications using the JAX-WS engine of the Web Service machine, when deploying the Web Service.

3. Points on developing SOAP Web Services

30

3.2 Mapping between WSDL and Java sources
When executing the cjwsimport command and the apt command, a WSDL and a Java source will be mapped.
This section describes the examples of mapping between a WSDL and a Java source (default mapping).

3.2.1 Examples of mapping WSDL to Java sources
When executing the cjwsimport command, a WSDL will be mapped to a Java source. The following figure shows
an example of mapping a WSDL to a Java source:

Figure 3‒1: Example of mapping WSDL to Java sources

For mapping, see 15. Mapping WSDL to Java.

3.2.2 Examples of mapping Java sources to WSDL
When executing the apt command, a Java source will be mapped to a WSDL. The following figure shows an
example of mapping Java sources to the WSDL:

3. Points on developing SOAP Web Services

31

Figure 3‒2: Example of mapping Java sources to WSDL

For mapping, see 16. Mapping Java to WSDL.

3. Points on developing SOAP Web Services

32

3.3 Creating Web Service Implementation Classes and
Provider Implementation Classes

Create a Web Service Implementation Class or a Provider Implementation Class as a compiled Java class file
(*.class).

(1) In POJO Web Service
Web Service Implementation Class or Provider Implementation Class is included in the directory configuring WAR
files. Include one or more Web Service Implementation Classes in one or both of the following:

• Below the classes directory

• In the JAR file included below the lib directory

For the storage destination of the Web Service Implementation Class or the Provider Implementation Class, see 3.5.1
Configuring WAR files.

(2) In EJB Web Service
Web Service Implementation Class is included in the directory configuring the EJB JAR files. Include one or more
classes in the following directory:

• Below the classes directory

For the storage destination of the Web Service Implementation Class, see 3.5.2 Configuring EJB JAR files.

3. Points on developing SOAP Web Services

33

3.4 Creating web.xml
This section describes the web.xml included in the WAR file to be used in POJO Web Service.

When creating web.xml, specify the file name as web.xml and save directly under the WEB-INF directory
configuring WAR files. The requirement of saving the web.xml file differs as per a value specified in the
webserver.container.jaxws.webservice.no_webxml.enabled property of the user property file
(usrconf.properties) that is used for J2EE servers.

• When specifying "strict" or "true" (we recommend that you specify "strict")
It is optional for you to save the web.xml file with the name web.xml directly under the WEB-INF directory. If
saving the web.xml file, the definitions required for executing Web Services must be coded.

• When specifying "lax"
It is optional for you to save the web.xml file with the name web.xml directly under the WEB-INF directory. If
saving the web.xml file, you are not required to code the definitions for executing Web Services.

• When specifying "none" or "false" (we recommend that you specify "none")
Always save the web.xml file with the name web.xml directly under the WEB-INF directory.

The following are the definitions required to execute Web Services, examples of web.xml, and operations when
web.xml is not included in a WAR file:

(1) Definitions required for executing Web Services
For specifying strict in the webserver.container.jaxws.webservice.no_webxml.enabled
property to include web.xml in the WAR file, or for specifying none, create web.xml in such a way so that the
following conditions are fulfilled:

• Version
The web.xml version must be 2.5 or later.

• Listener
Include the following listener elements in the web-app element:

<listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
</listener>

• Servlet
Include the following servlet elements in the web-app element:

<servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
</servlet>

• Servlet mapping
Code the servlet-mapping element under the web-app element and include the same number of url-
pattern elements as the number of Web Service Implementation Classes or Provider Implementation Classes.
The following is a coding example of servlet-mapping element:

<servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>"/"+Service name of Web Service 1</url-pattern>
 <url-pattern>"/"+Service name of Web Service 2</url-pattern>
 ...
 <url-pattern>"/"+Service name of Web Service n</url-pattern>
</servlet-mapping>

3. Points on developing SOAP Web Services

34

For "/" + Service name of Web Service 1 in the url-pattern element, code a string with /
(slash) added as a prefix to the following values:

• Value of serviceName attribute of the javax.jws.WebService annotation of the Web Service
Implementation Class

• Values of the serviceName attribute of the javax.xml.ws.WebServiceProvider annotation for
the Provider Implementation Class
Reference note

To include cosminexus-jaxws.xml in a WAR file

Code a value for the url-pattern attribute of the endpoint element corresponding to the Web Service
Implementation Class or the Provider Implementation Class of cosminexus-jaxws.xml. For cosminexus-
jaxws.xml, see 10.3 Customization using cosminexus-jaxws.xml.

• Other elements
You can code any other element. To include the servlet, listener, and JSP created in the WAR file, specify the
definition in web.xml appropriately.

(2) Examples of web.xml
An example of web.xml is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
 <description>Sample web service "fromwsdl"</description>
 <display-name>Sample_web_service_fromwsdl</display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/TestJaxWsService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

The above example is based on the assumption that the value of the following attributes is TestJaxWsService:

• The serviceName attribute of the javax.jws.WebService annotation for the Web Service
Implementation Class

• The serviceName attribute of the javax.xml.ws.WebServiceProvider annotation for the Provider
Implementation Class

At this time, add / (slash) and code the value of the url-pattern element as /TestJaxWsService.

Reference note
To include cosminexus-jaxws.xml in a WAR file

3. Points on developing SOAP Web Services

35

If a value for the url-pattern attribute of the endpoint element that corresponds to the Web Service Implementation
Class or the Provider Implementation Class is /TestJaxWsService, specify the coding as described in the example.

(3) Operations when web.xml is not included in a WAR file
With the JAX-WS functionality of Cosminexus, if you do not specify strict or lax in the
webserver.container.jaxws.webservice.no_webxml.enabled property to include web.xml in the
WAR file, the processing will be performed considering that the web.xml with the following contents exist while
invoking Web Services:

<?xml version="1.0" encoding="UTF-8"?>
<!-- code the web-app element-->
 <description>Cosminexus JAX-WS Default web.xml</description>
 <display-name>Cosminexus_JAX_WS_Default_web_xml</display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>"/"+Service name of Web Service 1</url-pattern>
 <url-pattern>"/"+Service name of Web Service 2</url-pattern>
 :
 <url-pattern>"/"+Service name of Web Service n</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

For "/" + Service name of Web Service 1, a string is defined with / (slash) that is added as a prefix to
values of the following attributes:

• A value of the serviceName attribute of the javax.jws.WebService annotation for the Web Service
Implementation Class.

• A value of the serviceName attribute of the javax.xml.ws.WebServiceProvider annotation for the
Provider Implementation Class

The operations for all the Web Service Implementation Classes or the Provider Implementation Classes stored in the
WAR file will be performed assuming that the url-pattern element exists.

When you specify lax in the webserver.container.jaxws.webservice.no_webxml.enabled
property to include web.xml in a WAR file, and if the contents of the section 3.4(1) Definitions required for
executing Web Services are not coded correctly in web.xml, invoke Web Services considering that the web.xml
with the above contents exist, in the same way as you would consider when web.xml is not included. Note that the
web.xml file that is considered in such cases will have the above mentioned contents excluding the contents of the
session-config element.

! Important note

• The web.xml file that the JAX-WS engine considers need not be actually generated within the WAR file. This
assumption is only applicable when invoking Web Services.

Example:
The attribute files that can be acquired with the cjgetappprop command do not include the information related to
web.xml. Also, when specifying lax in the
webserver.container.jaxws.webservice.no_webxml.enabled property and including web.xml with
invalid contents in a WAR file, the information that is actually included in web.xml can only be acquired.

3. Points on developing SOAP Web Services

36

• When specifying lax in the webserver.container.jaxws.webservice.no_webxml.enabled property
and including web.xml with invalid contents in a WAR file, the contents of the web.xml file that the JAX-WS
engine considers while invoking the Web Services are not necessarily be coded in the actual web.xml.

• When specifying lax in the webserver.container.jaxws.webservice.no_webxml.enabled property,
include web.xml defining all the contents of the section 3.4(1) Definitions required for executing Web Services in a
WAR file. If web.xml with only partial contents is included in the WAR file, the operation cannot be guaranteed.

3. Points on developing SOAP Web Services

37

3.5 Creating an archive
This section describes the configuration of WAR and EJB JAR files, and how to create EAR files.

3.5.1 Configuring WAR files
The following table describes the configuration of the WAR file to be used in a POJO Web Service:

Table 3‒1: Configuration of a WAR file

Directory Remarks

/ --

META-INF/ --

MANIFEST.M
F

--

WEB-INF/ --

web.xml The created web.xml.

classes/ Stores the compiled Java class.

lib/ Stores the JAR file that contains the compiled Java classes.

wsdl/ Stores the created WSDL. To publish WSDL as the meta data of the Web Service, WSDL must be
included in this directory. Also, do not include the WSDL files that are included in any other WAR
file or EJB JAR file in this directory.

Legend:
--: Indicates that there is no particular description or supplementary notes

Note:

• When you include cosminexus-jaxws.xml in a WAR file, include it directly below the WEB-INF
directory. For cosminexus-jaxws.xml, see 10.3 Customization using cosminexus-jaxws.xml.

• With the JAX-WS engine of Cosminexus, multiple Web Services are included in the same WAR file. When
multiple Web Services are included, the class names of the classes with different functionality cannot be
repeated. If the class names of the classes with different functionality are repeated, the Web Service might not
operate properly. However, if the same class is used in multiple Web Services, you can repeat the class name.

3.5.2 Configuring EJB JAR files
The following table describes the configuration of the EJB JAR file to be used in EJB Web Service:

Table 3‒2: Configuration of the EJB JAR file

Directory Remarks

/ Stores the compiled Java class. You must include the EJB Web Service Implementation Class in
this directory.

META-INF/ --

wsdl/ Stores the created WSDL. To publish the WSDL as a meta data of the Web Service, you must
include the WSDL in this directory. Also, do not include the WSDL files included in any other
WAR file or EJB JAR file in this directory.

MANIFEST.M
F

--

3. Points on developing SOAP Web Services

38

Legend:
--: Indicates that there is no particular description or supplementary note.

#
In the JAX-WS engine of Cosminexus, multiple Web Services can be included in the same EJB JAR file. If
multiple Web Services are included, you cannot duplicate the class names of classes with different functions. If
the class names of classes with different functions are duplicated, the Web Service might operate abnormally.
However, if the same class is used in multiple Web Services, you can duplicate the class name.

3.5.3 Creating EAR files
To deploy a Web Service on a J2EE server, you create an EAR file containing the created WAR file or EJB JAR file.
To create an EAR file, application.xml is required.

For the EAR file configuration, see 14.2 J2EE applications in archive format in the uCosminexus Application Server
Application Development Guide.

3.5.4 Creating WAR file for the settings of EJB Web Service
You can use the EJB Web Service invoke functionality in a configuration where the EAR files do not include the
WAR file for settings. However, to use the Application Server functionality where the specification of WAR file is
required, you can include the WAR file for settings in the EAR file. The following subsections describe about the
WAR file for settings.

(1) When WAR file for settings is not included in the EAR file
When EJB JAR file is included in EAR file, and EJB Web Service Implementation Class is included in EJB JAR file,
the JAX-WS engine operates assuming that the WAR file for settings is also included. The following table describes
the configuration of the assumed WAR file for settings:

Table 3‒3: Configuration of assumed WAR file for settings

Directory Remarks

/ --

WEB-INF/ --

web.xml See 3.5.4(4)

META-INF/ --

Legend:
--: Indicates that there is no particular description or supplementary note.

(2) When WAR file for settings is included in EAR file
When invoking the EJB Web Service Implementation Class, if you want to concurrently perform additional settings to
web.xml such as applying the servlet filter functionality, store the created web.xml in the WAR file for settings
and include the file in the EAR file. The following table describes the configuration of WAR file for settings. Note
that the WAR files for settings have naming rules. For the file name of WAR file for settings, see 3.5.4(3) Name of the
WAR file for settings.

Table 3‒4: Configuration of WAR file for settings

Directory Remarks

/ --

WEB-INF/ --

3. Points on developing SOAP Web Services

39

Directory Remarks

classes/ Stores the compiled Java classes. When using the filter, store the filter of the Java class in this
directory.#

lib/ Stores the JAR files that include the compiled Java classes. When using the filter, store the JAR file
including the Java class of the filter in this directory.#

web.xml See 3.5.4(4).

META-INF/ --

Legend:
--: Indicates that there is no particular description or supplementary note.

#
Do not include POJO Web Service in the classes of WAR file for settings. If the POJO Web Service is included the operations
cannot be guaranteed.

(3) Name of the WAR file for settings
If the WAR file for settings is included in the EAR file, the name of the WAR file for settings for EJB Web Service
must be same as the file name specified in the
webserver.container.jaxws.webservice.wsee.warname property of the User Property file
(usrconf.properties) for J2EE server.

If WAR file for settings is not included in the EAR file, the operation is executed assuming that the WAR file for
settings with the file name specified in the webserver.container.jaxws.webservice.wsee.warname
property is included. When WAR file for settings is not included in the EAR file, a message is output in the J2EE
server log. You can thereby confirm the assumption that the JAX-WS engine includes the WAR file for settings
(KDJE42391-I). If this message is not output, you can check whether the WAR file for settings specified in the
property is included in the EAR file.

Note that the default value of the property is CosminexusWSEE.war.

You can use the following settings for invoking the EJB Web Service. To use these settings, include the WAR file for
settings in the EAR file and specify the name of the WAR file for settings.

• Settings of the context root
Specify the name of the WAR file for settings in the "<web-uri> element of application.xml".
When context root is not set for the WAR file for settings of EJB Web Services, the context root is assumed as "/".

• Settings to be specified in the <war> element of cosminexus.xml
Specify the name of WAR file for settings in the "<module-name> element of cosminexus.xml".

! Important note
To change the value of the webserver.container.jaxws.webservice.wsee.warname property, stop the
Web application that includes the EJB Web Service. The operation cannot be guaranteed if the property value is
changed when the Web application is running. Other applications might become invalid resulting in the occurrence of
an unexpected exception.

(4) web.xml of the WAR file for settings
This subsection describes the web.xml that is included in the WAR file for settings of EJB Web Service.

When creating web.xml, specify the file name as web.xml and save directly below the WEB-INF directory
configuring the WAR files. Whether the saving of the web.xml file is mandatory differs depending upon the value
set in the webserver.container.jaxws.webservice.no_webxml.enabled property of the User
Property file for J2EE server (usrconf.properties).

• When "strict" is specified
Saving the web.xml with the name web.xml directly below the WEB-INF directory is optional. To save the
web.xml, you must code the definitions required for executing the Web Services.

• When "lax" is specified

3. Points on developing SOAP Web Services

40

Saving the web.xml with the name web.xml directly below the WEB-INF directory is optional. To save the
web.xml file, you need not code the definitions required for executing Web Services.

• When "none" is specified
You must save the web.xml with the name web.xml directly below the WEB-INF directory.

The following subsections describe the operations when web.xml is not included in the WAR file for settings and
the operations when web.xml is included in the WAR file for settings.

(a) When web.xml is not included in the WAR file for settings

If you specify strict or lax in setup value of the
webserver.container.jaxws.webservice.wsee.no_webxml.enabled property and do not include
the web.xml in the WAR file for settings of the EJB Web Service, the processing is performed considering that the
web.xml with the following contents exist while invoking the Web Service.

<?xml version="1.0" encoding="UTF-8"?>
<!-- code the web-app element-->
 <description>Cosminexus JAX-WS Default web.xml</description>
 <display-name>Cosminexus_JAX_WS_Default_web_xml</display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.EJBWSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>EJB Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>EJB_Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsEjbServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.EJBWSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsEjbServlet</servlet-name>
 <url-pattern>"/" + Service name of Web Service 1 + "/" + Class name of Web
Service 1</url-pattern>
 <url-pattern>"/" + Service name of Web Service 2 + "/" + + Class name of Web
Service 2</url-pattern>
 :
 <url-pattern>"/" + Service name of Web Service n + "/" + Class name of Web
Service n</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

For "/" + Service-name-of-Web-Service-1 + "/" + Class-name-of-Web-Service-1 in the url-pattern element, a
string with / (forward slash) added as a prefix is defined in the value of the serviceName attribute and the name
attribute of the javax.jws.WebService annotation for the Web Service Implementation Class.

Operations for all the Web Service Implementation Classes stored in the WAR file for settings are performed
assuming that the url-pattern element exists.

! Important note

• The web.xml assumed by the JAX-WS engine need not be actually generated within the WAR file for settings. This
assumption is only applicable when invoking Web Services.

Example
The property files that can be acquired by the cjgetappprop command do not include the information related to
web.xml. Also, if lax is specified in the
webserver.container.jaxws.webservice.wsee.no_webxml.enabled property and web.xml with
invalid contents is included in the WAR file for settings, you can acquire only the contents related to the web.xml that
are actually included.

• If lax is specified in the webserver.container.jaxws.webservice.wsee.no_webxml.enabled property and web.xml with
invalid contents is included in the WAR file for settings, the contents of the web.xml that the JAX-WS engine assumes
while invoking the Web Services might not be necessarily coded in the actual web.xml.

3. Points on developing SOAP Web Services

41

(b) When web.xml is included in the WAR file for settings

If you specify strict in the webserver.container.jaxws.webservice.wsee.no_webxml.enabled property and include the
web.xml in the WAR file, or if you specify none, create web.xml so that the following conditions are fulfilled:

• Version
The web.xml version must be 2.5 or later.

• Listener
Include the following listener elements in the web-app element:

<listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.EJBWSServletContextListener
 </listener-class>
</listener>

• Servlet
Include the following servlet elements in the web-app element.

<servlet>
 <description>EJB Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>EJB_Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsEjbServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.EJBWSServlet
 </servlet-class>
</servlet>

• Servlet mapping
Code the servlet-mapping element under the web-app element and include the same number of url-pattern
elements as the number of Web Service Implementation Classes.
The following is an coding example of servlet-mapping element:

<servlet-mapping>
 <servlet-name>CosminexusJaxwsEjbServlet</servlet-name>
 <url-pattern>"/" + Service name of Web Service 1 + "/" + Class name of Web
Service 1</url-pattern>
 <url-pattern>"/" + Service name of Web Service 2 + "/" + Class name of Web
Service 2</url-pattern>
 :
 <url-pattern>"/" + Service name of Web Service n + "/" + Class name of Web
Service n</url-pattern>
</servlet-mapping>

Code the following strings in the "Service name of Web Service n" and the "Class name of Web Service n" in the
url-pattern element.

• Service name of Web Service n
Code the serviceName attribute value of the javax.jws.WebService annotation of the Web Service
Implementation Class. If the serviceName attribute is omitted, code a string with Service suffixed to
the class name (simple name) of Web Service Implementation Class.

• Class name of Web Service n
Code the name attribute value of the javax.xml.ws.WebService annotation of the Web Service Implementation
Class. If the name attribute is omitted, code the class name (simple name) of Web Service Implementation
Class.

• Other elements
You can code any other element. To include the servlet created in the WAR file, define the element appropriately
in the web.xml.

The following is an example of web.xml that is included in WAR file for settings of EJB Web Service:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
 <description>Cosminexus JAX-WS Default web.xml</description>
 <display-name>Cosminexus_JAX_WS_Default_web_xml</display-name>

3. Points on developing SOAP Web Services

42

 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.EJBWSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>EJB Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>EJB_Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.EJBWSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/AddNumbersImplService/AddNumbersImpl</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

In this example, it is assumed that the value of the serviceName attribute of the javax.jws.WebService annotation for
the Web Service Implementation Class is AddNumbersImplService and the value of the name attribute is
AddNumbersImpl.

The operations cannot be guaranteed when lax is set in the
webserver.container.jaxws.webservice.wsee.no_webxml.enabled property and web.xml is
included in the WAR file for settings, and listener, servlet, servlet-mapping, or any other element is not completely
included.

3. Points on developing SOAP Web Services

43

3.6 Implementing Web Service clients
There is no limit for the types of Web Service clients. For example, you can develop the Web Service clients
mentioned below. When developing a Web Service client operating on a J2EE container, use the EJB version 3.0 or
later, and Servlet version 2.5 or later for Web applications such as the JSP or servlets. For example, when including
web.xml in a WAR file by using a Web application, use the web.xml version 2.5 or later.

• Java applications (Calling Web Services from a Java application)

• JSPs (Invoking Web Service from JSPs)

• Servlets (Invoking Web Services from servlets)

• EJBs (Invoking Web Services from EJBs)

• Web Services (Invoking another Web Service from the Web Service Implementation Class)

With the JAX-WS functionality of Cosminexus, you can implement a Web Service client using any of the following
methods:

• Using a service class and stubs (Developing stub-based Web Service clients)

• Using the javax.xml.ws.Dispatch interface (Developing dispatch-based Web Service clients)

• Using other JAX-WS APIs (Developing API-based Web Service clients)

This section describes the examples of implementing Web Service clients. This section also describes the precautions
to be taken for using a service class and ports.

3.6.1 Example of stub-based implementation
You can develop a Web Services client by using a service class or stub that is automatically generated by executing
the cjwsimport command. You can use any of the following methods to generate a service class or to acquire a
port by implementing the stub-based Web Services client.

• Using a constructor of service classes
Create service class instances by using a constructor of service classes. Acquire ports from the generated service
class instances.

• Using the javax.xml.ws.WebServiceRef annotation
Inject service classes or ports by using the javax.xml.ws.WebServiceRef annotation.

For injecting service classes and ports, see 10.21.1 Injecting service classes and ports, for the
javax.xml.ws.WebServiceRef annotation, see 19.3 Support range of annotations.

(1) Referenced WSDLs
For executing stub-based Web Service clients, you require a path or a URL for a WSDL. During this, WSDLs to be
referenced differs depending on the combination of the following conditions:

• When injecting service classes and ports by using the javax.xml.ws.WebServiceRef annotation
For the WSDL documents that are referenced when injecting service classes or ports, see 19.3.1(2) The
wsdlLocation element (javax.xml.ws.WebServiceRef).

• When generating service class instances by using a constructor for service classes

• WSDLs to be referenced vary for different combinations of the following conditions:

• Which constructor of a service class is to be used

• Whether the cjwsimport command is executed by specifying the -wsdllocation option

The following table describes the mapping between each condition and the referenced WSDL. For the examples of
each condition, see 3.6.1(5)(a) Creating service class instances.

3. Points on developing SOAP Web Services

44

Table 3‒5: Mapping between the combination of conditions and referenced WSDLs

Item
No. Constructor to be used -wsdllocation

option Referenced WSDL

1 Default constructor N The WSDL specified in the arguments of
the cjwsimport command#1

2 Default constructor Y The WSDL specified in the -
wsdllocation option#2

3 Constructor with the java.net.URL and
javax.xml.namespace.QName objects
as parameters

-- The WSDL specified in the URL of the
parameters#2

Legend:
Y: When the option is specified.
N: When the option is not specified.
--: Specifying the option does not affect the referenced WSDL.

#1
When you execute a Web service client, the WSDL must exist at the location same as would exist during the execution of the
cjwsimport command. Even when you specify a relative path for executing the cjwsimport command, the WSDL must
exist at the location same as would exist during the execution of the cjwsimport command.

#2
When you specify an absolute URL, the WSDL must exist at the location that is indicated in the URL during the execution of the
Web Services client.
When you specify a relative URL, the WSDL must exist at the location where the relative URL is resolved with the current
directory as a base.

(2) Referenced endpoint address
For a URL (endpoint address) of the Web Service to be connected, the address information (location attribute of
the soap:address child element) included in the WSDL port (wsdl:port element) will be used by default.
However, if using the javax.xml.ws.service.endpoint.address property of the message context, you
can dynamically change the endpoint address. For the examples about dynamically changing the endpoint addresses,
see 3.6.1(5)(c) Invoking a method of the port.

(3) Generating service classes and acquiring ports
The generation of a service class and acquisition of ports involves a processing cost, and therefore, we recommend
that you inject or reuse ports as follows:

• When implementing Web Services clients as servlets or EJB
Inject ports when implementing Web Services clients as servlets or EJB. For details on the port injection, see
10.21 Injection.

• When implementing a Web Services client by using a different application (such as a command line application)
You can use the initialization process to generate service classes and acquire ports, and reuse the generated classes
and the acquired ports. You need not generate a service class every time you acquire a port or acquire a port every
time you call a method.

(4) Selecting a service
When a WSDL of the Web Service to be invoked contains multiple services (wsdl:service element), use a
constructor with the java.net.URL and javax.xml.namespace.QName objects as parameters for generating
service classes, and clearly specify whether to invoke the services (wsdl:service element) with the
javax.xml.namespace.QName object.

3. Points on developing SOAP Web Services

45

(5) Basic implementation example
To implement a Web Services client, you can generate a service class by using a constructor or can use the port
injection. This sub-section describes the procedure to implement the Web Services client when generating a service
class by using a constructor. For details on the port injection, see 10.21.1 Injecting service classes and ports.

When developing stub-based Web Service clients, use the cjwsimport command to generate the Java sources
required for invoking Web Services. Execute the cjwsimport command without specifying the -
generateService option.

The stub-based Web Service client uses the following Java sources to invoke Web Services:

• Service class
A service class corresponds to the WSDL services (wsdl:service element) that are used for invoking Web
Services defined in the JAX-WS 2.2 specifications. The wsdl:service element compiles multiple ports in
such a way so that the wsdl:port elements are compiled.
For implementing a Web Service client, first of all generate the instances of the service classes.

• Port
This is an instance corresponding to the WSDL port (wsdl:port element), and the interface is the Service
Endpoint Interface (SEI). To operate as a proxy of remote connection-destination Web Services, the Web Service
client can invoke a method of this port for transparently invoking the operations of the Web Services.

To implement a Web Services client for invoking the operations of Web Services:

1. Create a service class instance

2. Acquire a port

3. Invoke a method of the port

This point describes an implementation example for a Web Service client that invokes a Web Service (Web Service
that performs additions) with the configuration described in 5.1 Configuration of development examples (Starting from
SEI).

The following table describes the classes and methods used for implementing Web Service clients. As and when
required, see the contents of service class products described in 5.5.1 Generating a service class.

Table 3‒6: Classes and methods used in the implementation example for Web Service clients

No. Type Class and method

1 Service class AddNumbersImplService

2 SEI AddNumbersImpl

3 Method of SEI int add(int, int)

4 Main class of the client TestClient

(a) Creating service class instances

The following is an example of generating objects of a service class using the default constructor:

// Creating a service class instance
AddNumbersImplService service = new AddNumbersImplService();

In this case, the WSDL that is specified in the arguments of the cjwsimport command or in the -wsdllocation
option is referenced.

The following are three examples of the cases when you do not specify the -wsdllocation option while executing
the cjwsimport command:

Execution example 1

> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" D:\dev\development.wsdl

3. Points on developing SOAP Web Services

46

D:\dev\development.wsdl must also exist during the execution of the Web Service client, and must be
available for the reference.

Execution example 2

> D:
> cd D:\dev\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" relative\development.wsdl

D:\dev\relative\development.wsdl must exist during the execution of the Web Service client, and
must also be available for the reference.

Execution example 3

> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" http://sample.com/fromjava/
AddNumbersImplService?wsdl

http://sample.com/fromjava/AddNumbersImplService?wsdl must exist during the execution of
the Web Service client, and must also be available for the reference.

The following are two examples of the cases when you specify the -wsdllocation option while executing the
cjwsimport command:

Execution example 1

> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -wsdllocation file:/home/
wsdl4runtime/master.wsdl D:\dev\development.wsdl

file:/home/wsdl4runtime/master.wsdl must exist during the execution of the Web Service client,
and must also be available for the reference. D:\dev\development.wsdl is used only to generate the Java
code required for the implementation, for developing a Web Service client. Therefore, there is no problem even if
D:\dev\development.wsdl does not exist during the execution or D:\dev\development.wsdl is not
available for the reference.

Execution example 2

> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -wsdllocation ./wsdl4runtime/
master.wsdl D:\dev\development.wsdl

When you assume the current directory during the execution of the Web Service client as runtime-current-
directory, runtime-current-directory/wsdl4runtime/master.wsdl must exist and available for the
reference.

The following example describes a case when using a constructor having the java.net.URL object and the
javax.xml.namespace.QName object as parameters, instead of using the default constructor:

// Creating a service class instance
java.net.URL wsdlLocation = new java.io.File("./wsdl4runtime/master.wsdl").toURL();
javax.xml.namespace.QName serviceName =
 new javax.xml.namespace.QName("http:/sample.com/", "AddNumbersImplService");
AddNumbersImplService service =
 new AddNumbersImplService(wsdlLocation, serviceName);

Because a WSDL with the URL specified by the java.net.URL object is referenced, it is all right even if the
WSDL specified by the arguments of the cjwsimport command and by the -wsdllocation option do not exist
or cannot be referenced during the execution of the Web Service client. However, when you assume runtime-current-
directory as the current directory during the execution of the Web Service client, runtime-current-directory/
wsdl4runtime/master.wsdl must exist and available for the reference.

(b) Acquiring a port

The following is an example of acquiring a port from the service class for which instances are created:

// Acquire a port
AddNumbersImpl port = service.getAddNumbersImplPort();

3. Points on developing SOAP Web Services

47

(c) Invoking a method of the port

The following is an example of invoking a method of the port acquired from the service class for which instances are
created:

// Invoke a method of the port
int returnValue = port.add(205, 103)

In this execution example, if you pass two values to the arguments of the method of the port, the addition processing
will be performed in the Web Services. The result of addition will be returned as the return value.

By default, the address information (location attribute of the soap:address child element) included in the
WSDL port (wsdl:port element) is used as the URL (endpoint address) of the Web Service to be connected.
However, if you use the javax.xml.ws.service.endpoint.address property of the message context, you
can dynamically change the endpoint address.

If you are not dynamically changing the endpoint address, check that a URL that can be accessed from the Web
Service client is coded in the location attribute of the soap:address child element of the referenced WSDL.

If you are dynamically changing the endpoint address, acquire a request context before invoking a method of the port,
and then change the value of the javax.xml.ws.service.endpoint.address property. The following is an
example:

// Acquire a request context
java.util.Map<String, Object> context =
 ((javax.xml.ws.BindingProvider)port).getRequestContext();

// Change the endpoint address
// (javax.xml.ws.BindingProvider.ENDPOINT_ADDRESS_PROPERTY is a constant
// defining "javax.xml.ws.service.endpoint.address")
context.put(javax.xml.ws.BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://other.remote.org/fromjava/AddNumbersImplService");

// Invoke a method of the port
int returnValue = port.add(205, 103)

Notes
The generation of a service class and acquisition of a port involve a processing cost, so we recommend the re-
usage of the generated or acquired service classes and ports. For invoking a Web method of port multiple times,
you need not generate the service class and acquire the port multiple times However, when sharing the port with
multiple threads, the changes in the property of request context of the port to be shared must be performed before
operating multiple threads. If the changes are performed when operating multiple threads, communication might
fail and an invalid SOAP message might be sent.
The following is an example of invoking a method of port multiple times:

// Create a service class instance
AddNumbersImplService service = new AddNumbersImplService();
// Acquire a port
AddNumbersImpl port = service.getAddNumbersImplPort();
// Invoke a method of the port multiple times
for (int i = 0; i < 10; i++) {
 int returnValue = port.add(i, i);
}

(6) Implementation example of Web Service clients for a Java application
From a Web Service client for a Java application, use the service classes to implement the processing for invoking a
Web Service.

This point describes an implementation example for a Web Service client that invokes a Web Service (Web Service
that performs additions) with the configuration described in 5.1 Configuration of development examples (Starting from
SEI). The following table describes the classes and methods used for implementing Web Service clients. As and when
required, see the contents of service class products described in 5.5.1 Generating a service class.

3. Points on developing SOAP Web Services

48

Table 3‒7: Classes and methods used in the implementation example for Web Service clients (Web
Service client for a Java application)

No. Type Class and method

1 Service class AddNumbersImplService

2 Port AddNumbersImpl

3 Method of the port int add(int, int)

4 Main class of the client of a Web Service client TestClient

The following is an execution example for Java applications:

package com.example.sample.client;

import com.example.sample.AddNumbersImplTestJaxWs;
import com.example.sample.AddNumbersImplTestJaxWsService;
import com.sample.AddNumbersFault_Exception;

// Sample implementation of web service's client
public class TestClient {
 public static void main(String[] args) {
 try {
 // Create a service class instance
 AddNumbersImplTestJaxWsService service = new
AddNumbersImplTestJaxWsService();
 // Acquire a port
 AddNumbersImplTestJaxWs port = service.getAddNumbersImplPortTestJaxWs();

 // Invoke a method of the port
 port.jaxWsTest1(...);
 int number1 = 205;
 int number2 = 103;
 int returnValue = port.add(number1, number2);

 // Display the results
 System.out.println("[RESULT] " + number1 + " + " + number2 + " = " +
returnValue);
 }
 catch(Exception e){
 // Exception processing (Here, simply output the stack trace)
 e.printStackTrace();
 }
 }
}

The execution result of the program is as follows:

[RESULT] 205 + 103 = 308

(7) Implementation example of Web Services clients for servlets
From a Web Service client of the servlet type, implement the processing for invoking Web Services using the service
class.

This point describes an implementation example for a Web Service client that invokes a Web Service (Web Service
that performs additions) with the configuration described in 5.1 Configuration of development examples (Starting from
SEI). The following table describes the classes and methods used for implementing Web Service clients. As and when
required, see the contents of service class products described in 5.5.1 Generating a service class.

Table 3‒8: Classes and methods used in the implementation example for the Web Service client (When
invoked from servlets)

No. Type Class and method

1 Service class AddNumbersImplService

2 Port AddNumbersImpl

3 Method of the port int add(int, int)

3. Points on developing SOAP Web Services

49

No. Type Class and method

4 Servlet Implementation Class acting as a Web Service client TestClient

(a) Injecting ports

When a Web Service is invoked from a servlet, specify the javax.xml.ws.WebServiceRef annotation in the
port type field, and inject ports.

The following is an example of injecting a port:

...
public class TestClient extends HttpServlet {

 // Inject a port in the port(AddNumbersImpl)type field
 @WebServiceRef(AddNumbersImplService.class)
 AddNumbersImpl port;

 @Override
 public void init() {

 }
 ...
}

(b) Executing Web Service operations by invoking a method of the port

Use the port generated as a field of the servlet and invoke a method.

The following is an example of invoking the method:

...
public class TestClient extends HttpServlet {

 // Inject a port in the port(AddNumbersImpl)type field
 @WebServiceRef(AddNumbersImplService.class)
 AddNumbersImpl port;
 ...
 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 ...
 int number1 = ...; // Substitute the value acquired from the request
object
 int number2 = ...; // Substitute the value acquired from the request
object
 // Invoke the method of the port
 int returnValue = port.add(number1, number2);
 ...
 }
}

The following is a complete implementation example for invoking a Web Service from a servlet:

package com.sample.client;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.sample.AddNumbersFault_Exception;
import com.sample.AddNumbersImpl;
import com.sample.AddNumbersImplService;
public class TestClient extends HttpServlet {

 // Inject a port in the port(AddNumbersImpl)type field
 @WebServiceRef(AddNumbersImplService.class)
 AddNumbersImpl port;

 @Override
 public void init() {

3. Points on developing SOAP Web Services

50

 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 PrintWriter out = response.getWriter();

 try {
 // Invoke a method of the target web service.
 int number1 = ...; // Substitute the value acquired from the request
object
 int number2 = ...; // Substitute the value acquired from the request
object
 // Invoke the method of the port
 int returnValue = port.add(number1, number2);
 // Display the results
 out.println("<html><body>");
 out.println("<h1>RESULT</h1>");
 out.println(number1 + " + " + number2 + " = " + returnValue);
 out.println("</body></html>");
 } catch(AddNumbersFault_Exception e) {
 // Exception processing (Here, simply output the detailed message of the
exception)
 out.println("<html><body>");
 out.println("<h1>" + e.getMessage() + "</h1>");
 out.println("</body></html>");
 }
 }
}

The following is the execution result of the program. The execution result is displayed when you connect browser to
the servlet.

RESULT
205 + 103 = 308

(C) Notes

In an environment where a Web Services client (servlet) and Web Service you want to connect to, both are deployed
on the same J2EE server, an exception occurs if you start the J2EE server in the following conditions:

• When generating a service class by acquiring the WSDL from Web Services, if you specify the load-on-
startup element in web.xml of the WAR file that has the Web Services client, in methods in which you have
specified the init method or the javax.annotation.PostConstruct annotation.

• If you inject a service class or a port by acquiring the WSDL from Web Services by using the
javax.xml.ws.WebServiceRef annotation.

The following is a list of actions to be taken if an exception is thrown:

• End the Web application that includes the Web Services client before you stop the J2EE server. After you restart
the J2EE server, restart a Web application that includes the Web Services client.

• After you deploy Web Service and a Web Services client on a different J2EE server and start the J2EE server on
which Web Service is deployed, start the J2EE server on which the Web Services client is deployed.

• Use the catalog functionality to perform the settings in such a way that you can reference the WSDL document
that is locally stored when service classes are generated.

• When generating a service class by using the init method or a method in which the
javax.annotation.PostConstruct annotation is specified, specify the local WSDL document in a
constructor that uses a URL as a parameter and then generate a service class. Alternatively, do not specify the
load-on-startup element in web.xml.

• When using the javax.xml.ws.WebServiceRef annotation, specify the locally stored WSDL document in
the wsdlLocation element with a relative path or absolute path.

3.6.2 Example of dispatch-based implementation
Use APIs of the javax.xml.ws.Dispatch interface, the JAX-WS 2.2 specifications, JAXB 2.2 specifications,
and SAAJ 1.3 specifications that are supported by Cosminexus, and perform the development.

3. Points on developing SOAP Web Services

51

(1) Examples of implementing a dispatch-based Web Service client
The following is an example of implementing a dispatch-based Web Service client:

package com.example.sample.client;

import javax.xml.namespace.QName;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Service;
import javax.xml.ws.soap.SOAPBinding;
public class TestClient {
 public static void main(String[] args) {
 QName port = new QName("http://sample.com", "AddNumbersImplPort");
 SOAPBody soapBody = null;

 // Generate a service
 Service service = Service.create(
 new QName("http://sample.com", "UserInfoPort"));

 // Add a port to the service
 service.addPort(port, SOAPBinding.SOAP11HTTP_BINDING,
 "http://localhost:80/dispatch_provider/UserInfoService");

 // Generate a dispatch
 Dispatch<SOAPMessage> dispatch = service.createDispatch(
 port, SOAPMessage.class, Service.Mode.MESSAGE);

 SOAPMessage request = null;
 try{
 // Generate a request message using the APIs of the SAAJ 1.3
specifications
 request = MessageFactory.newInstance().createMessage();
 SOAPBody reqSoapBody = request.getSOAPBody();
 SOAPElement soapElement = null;
 // Add elements to the SOAP Body
 SOAPBodyElement requestRoot= reqSoapBody.addBodyElement(
 new QName(...));
 soapElement = requestRoot.addChildElement(
 new QName(...));
 soapElement.addTextNode(...);
 // Add an attachment
 File attachment = new File(...);
 FileDataSource fds = new FileDataSource(attachment);
 AttachmentPart apPart = request.createAttachmentPart(new
DataHandler(fds));
 request.addAttachmentPart(apPart);
 }
 catch(SOAPException e){
 // Exception processing
 }
 // Specify the created request message, and invoke the Web Service using the
dispatch
 SOAPMessage response = dispatch.invoke(request);

 try{
 // Perform the required processing for the response message
 SOAPBody resSoapBody = response.getSOAPBody();
 ...
 }
 catch(SOAPException e){
 // Exception processing
 }
 }
}

When using a SOAP fault sent from the provider implementation class for implementing a Web Service client, invoke
the invoke() method within the try-catch block and acquire the
javax.xml.ws.soap.SOAPFaultException exception. You can also acquire the SOAP fault from the
javax.xml.ws.soap.SOAPFaultException exception. The following is an implementation example:

package com.example.sample.client;

import javax.xml.namespace.QName;

3. Points on developing SOAP Web Services

52

...
import javax.xml.ws.soap.SOAPBinding;
import javax.xml.ws.soap.SOAPFaultException;

public class TestClient {
 public static void main(String[] args) {
...
 try{
 // Generate the request message using the APIs of SAAJ 1.3 specifications
 ...
 }
 catch(SOAPException e){
 // Exception processing
 }
 SOAPMessage response = null;
 try{
 // Specify the created request message, and invoke a Web Service using
the dispatch
 response = dispatch.invoke(request);
 }
 catch(SOAPFaultException e){
 // Processing for acquiring the SOAP fault
 SOAPFault fault = e.getFault();
 // Perform the required processing for the acquired SOAP fault
 String faultCode = fault.getFaultCode();
 ...
 }
 try{
 // Perform the required processing for the response message
 ...
 }
 catch(SOAPException e){
 e.printStackTrace();
 }
 }
}

(2) Referenced endpoint address
You can specify and change a URL (endpoint address) of the Web Service to be connected with the
javax.xml.ws.service.endpoint.address property of the message context. For the examples about
specifying and changing the endpoint addresses, see 3.6.1(5)(c) Invoking a method of the port.

(3) Reusing a service class and dispatch
The generation of a service class and dispatch requires processing cost, so we recommend that you reuse the generated
service class and the dispatch. You need not generate a service class more than once to add a port and generate a
dispatch. Also, you need not acquire a dispatch more than once to invoke a method of the dispatch multiple times
However, when sharing the dispatch with multiple threads, the changes in the property of request context of the
dispatch to be shared must be performed before operating multiple threads. If the changes are performed when
operating multiple threads, communication might fail and an invalid SOAP message might be sent.

For implementing a Web Service client with servlets and EJBs, we recommend that you acquire service classes and
the dispatch using each of the initialization methods, and then reuse them. Changes in the request context property of
dispatch must be performed in each of the initialization methods.

3.6.3 Examples of implementation using JAX-WS API
You can use the JAX-WS API supported by the JAX-WS functionality of Cosminexus to implement a Web Service
client. For the support range of the JAX-WS APIs, see 19.2 Support range of the JAX-WS APIs.

(1) Example of implementing a Web Service client using JAX-WS API
An example of implementing a Web Service client using JAX-WS API is as follows:

package com.example.sample.client;

import com.example.sample.TestJaxWs;
import com.example.sample.TestJaxWsService;

3. Points on developing SOAP Web Services

53

import java.net.URL;
import java.net.MalformedURLException;
import java.util.Iterator;
import java.util.Map;
import javax.xml.namespace.QName;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.Service;
import javax.xml.ws.WebServiceException;
public class TestClient {
 public static void main(String[] args) {

 // Specify the WSDL URL and service name
 URL url = null;
 try {
 url = new URL("http://localhost:8085/fromwsdl/test?wsdl");
 } catch (MalformedURLException e) {
 // Exception processing
 }
 QName serviceName =
 new QName("http://example.com/sample", "TestJaxWsService");
 // Generating a Service instance
 Service service = Service.create(url, serviceName);
 System.out.println(service.getWSDLDocumentLocation());

 QName portName = null;

 // Display the list of port names
 Iterator it = service.getPorts();
 while(it.hasNext()) {
 portName = (QName)it.next();
 System.out.println(portName);
 }

 // Acquire a port
 TestJaxWs port = (TestJaxWs)service.getPort(TestJaxWs.class);

 // Acquire the sending context
 Map<java.lang.String, java.lang.Object>context =
((BindingProvider)port).getRequestContext();
 System.out.println(context.entrySet());

 // Invoke the service method
 try {
 port.jaxWsTest1("TEST", 1c23);
 } catch (WebServiceException e) {
 // Exception processing
 }
 }
}

(2) Reusing the javax.xml.ws.Service object and the port
The generation of a javax.xml.ws.Service object and the acquisition of a port require processing cost, so we
recommend that you reuse the generated javax.xml.ws.Service object. You need not generate
javax.xml.ws.Service objects more than once to acquire a port.

Similarly, acquisition of the port also incurs processing costs and therefore we recommend the reuse of acquired ports.
You need not acquire the port more than once for invoking the Web method of port multiple times. However, when
sharing the port with multiple threads, the changes in the property of request context of the port to be shared must be
performed before operating multiple threads. If the changes are performed when operating multiple threads,
communication might fail and an invalid SOAP message might be sent.

To implement a Web Service client using servlets and EJBs, generate the javax.xml.ws.Service object or
acquire the port in each of the initialization methods, and reuse the object. Changes in the request context property of
the port must be executed in each of the initialization methods.

3.6.4 Notes
This subsection describes the notes for implementing Web Service clients.

3. Points on developing SOAP Web Services

54

(1) Reusing an object
The generation of a service class, port, and dispatch requires processing cost, so we recommend that you use the
injection (only for the stub-based Web Service clients) or reuse the objects. For reusing the objects, see each of the
following sections:

• For stub-based Web Service clients
3.6.1(3) Generating service classes and acquiring ports

• For dispatch-based Web Service clients
3.6.2(3) Reusing a service class and dispatch

• For API-based Web Service clients
3.6.3(2) Reusing the javax.xml.ws.Service object and the port

(2) Setting a proxy, SSL connection, and basic authentication
As and when required, specify the settings for a proxy, SSL connection, and the basic authentication in the execution
environment of Web Service clients. For details, see each of the following sections:

• Setting a proxy
10.10 Connecting through a proxy server

• Setting an SSL connection
10.11 Connection by SSL protocol

• Setting basic authentication
10.12 Connection by basic authentication

(3) Notes for the Windows environment
In the environment in which you send a large number of requests from the Web Service client, the following exception
might be recorded in some cases:
java.net.BindException: Address already in use: connect [errno=10048,
syscall=select]
For example, an exception occurs when large number of requests reach the Web Service client that is implemented as
a servlet.

In such a case, revise either one or both of the following values:

• Increase the range of port numbers that are available in the OS

• Decrease the duration of TIME_WAIT

For example, revise the settings of MaxUserPort and TcpTimedWaitDelay in the registry. However, the
specifications differ depending on the OS version, edition, and the application status of the security update program,
and therefore, see the documentation of each OS for details. Also, you must note that the settings affect the entire OS.

3.6.5 Notes on accessing the Web Services that use the addressing
functionality

When you access Web Services in which the addressing functionality is enabled, use stub-based Web Service clients.
Note that you cannot use dispatch-based Web Service clients.

3. Points on developing SOAP Web Services

55

4 Examples of the Development
Starting from WSDL
This chapter describes the examples for the development of Web Services starting
from WSDL.

57

4.1 Configuration examples of development (Starting
from WSDL)

This section describes the examples of the development of Web Services starting from WSDL.

The following table describes the configuration for developing Web Services:

Table 4‒1: Web Service configuration (Starting from WSDL)

No. Item Value

1 Name of the J2EE server to be deployed jaxwsserver

2 Host name and port number of the Web server webhost:8085

3 URL of the naming server corbaname::testserver:900

4 Context root fromwsdl

5 Style document/literal/wrapped

6 Namespace URI http://example.com/sample

7 Port type Number 1

8 Local name TestJaxWs

9 Operation Number 1

10 Local name jaxWsTest1

11 Service Number 1

12 Local name TestJaxWsService

13 Port Number 1

14 Local name testJaxWs

15 WSDL file name input.wsdl

The following table describes the configuration of the current directory when developing Web Services.

Table 4‒2: Configuration of the current directory (Starting from a WSDL)

Directory Description

c:\temp\jaxws\works\fromwsdl This is the current directory.

server\ Used for the development of Web Services.

META-INF\ Corresponds to the META-INF directory of EAR files.

application.xml Created in 4.3.6 Creating application.xml.

src\ Stores the source file (*.java) for Web Services. Used in 4.3.2 Generating SEI
and 4.3.4 Compiling the Web Service Implementation Class.

WEB-INF\ Corresponds to the WEB-INF directory of WAR files.

web.xml Created in 4.3.5 Creating web.xml.

classes\ Stores the compiled class file (*.class).

wsdl\ Stores the created wsdl.

temporary\ Saves temporary files, when creating a WSDL based on the WSDL that is coded
and converted using Java. Temporary directory is optional.

src\

4. Examples of the Development Starting from WSDL

58

Directory Description

Saves temporary files, when creating a WSDL based on the WSDL that is coded
and converted using Java. Temporary directory is optional.

classes\

fromwsdl.ear Created in 4.3.7 Creating EAR files.

fromwsdl.war

client\ Used for the development of Web Service clients.

src\ Stores the source file (*.java) of the Web Service client. Used in 4.5.1
Generating a service class and 4.5.2 Creating an implementation class for the Web
Service client.

classes\ Stores the compiled class file (*.class). Used in 4.5.3 Compiling the
implementation class for the Web Service client.

usrconf.cfg Created in 4.6.1 Creating an option definition file for Java applications.

usrconf.properties Created in 4.6.2 Creating a user property file for Java applications.

Change the current directory path according to the environment to be developed.

Note that the directory and file names listed in the above table will be used in the description hereafter. The part in
Bold in the command execution examples and in the Java source indicates the specified values and the generated
values that are used in examples. Read according to the environment that you want to build.

Also, in the development examples described in this chapter, Web Services and Web Service clients are developed in
the same environment, but you can also develop them in different environments. For developing Web Services and
Web Service clients in different environments, read the current directory path suitable to the respective environments.

4. Examples of the Development Starting from WSDL

59

4.2 Examples for the procedure of development (Starting
from WSDL)

The development and execution flow described in the development examples of this chapter are as follows:

Developing a Web Service

1. Creating a WSDL file (4.3.1)

2. Executing the cjwsimport command and generating SEI (4.3.2)

3. Creating the Web Service Implementation Class (4.3.3)

4. Compiling the Web Service Implementation Class (4.3.4)

5. Creating web.xml (4.3.5)

6. Creating application.xml (4.3.6)

7. Creating an EAR file (4.3.7)

Deploying and starting

1. Deploying the EAR file (4.4.1)

2. Starting the Web Service (4.4.2)

Developing a Web Service client

1. Executing the cjwsimport command and generating a service class (4.5.1)

2. Creating the implementation class for the Web Service client (4.5.2)

3. Compiling the implementation class for the Web Service client (4.5.3)

Executing a Web Service

1. Creating the option definition file for Java applications (4.6.1)

2. Creating the user property file for Java applications (4.6.2)

3. Executing the Web Service client (4.6.3)

4. Examples of the Development Starting from WSDL

60

4.3 Examples for the development of Web Services
(Starting from WSDL)

This section describes the examples of the development of Web Services starting from WSDL.

4.3.1 Creating a WSDL file
Create a WSDL file and define the meta data for Web Services. Define the WSDL definition within the support range
of the following specifications:

• WSDL 1.1 specifications
For the support range, see 20.1 Support range of the WSDL 1.1 specifications.

• XML Schema specifications
For the support range, see the uCosminexus Application Server XML Processor User Guide.

• WS-I Basic Profile 1.1

There are two methods for creating a WSDL file; create a new WSDL file or create a WSDL file by using other
WSDL file and changing the Java source.

(1) Creating a new WSDL file
Create a WSDL file (input.wsdl). Save the created WSDL file in the c:\temp\jaxws\works\fromwsdl
\server\WEB-INF\wsdl\ directory with the UTF-8 format.

The following is an example of creating a new WSDL file for SOAP 1.1:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="TestJaxWsService"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://example.com/sample"
 targetNamespace="http://example.com/sample">

<wsdl:types>
 <xsd:schema targetNamespace="http://example.com/sample">
 <!-- wrapper element of the request message -->
 <xsd:element name="jaxWsTest1" type="tns:jaxWsTest1"/>

 <!-- wrapper element of the response message -->
 <xsd:element name="jaxWsTest1Response" type="tns:jaxWsTest1Response"/>

 <!-- wrapper element of the fault message -->
 <xsd:element name="UserDefinedFault" type="tns:UserDefinedFault"/>

 <!-- Type referenced by the wrapper element of the request message-->
 <xsd:complexType name="jaxWsTest1">
 <xsd:sequence>
 <xsd:element name="information" type="xsd:string"/>
 <xsd:element name="count" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Type referenced by the wrapper element of the response message-->
 <xsd:complexType name="jaxWsTest1Response">
 <xsd:sequence>
 <xsd:element name="return" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Type referenced by the wrapper element of the fault message-->
 <xsd:complexType name="UserDefinedFault">
 <xsd:sequence>
 <xsd:element name="additionalInfo" type="xsd:int"/>
 <xsd:element name="detail" type="xsd:string"/>
 <xsd:element name="message" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

4. Examples of the Development Starting from WSDL

61

 </xsd:schema>
 </wsdl:types>
 <!-- Request message -->
 <wsdl:message name="jaxWsTest1Request">
 <wsdl:part name="inputParameters" element="tns:jaxWsTest1"/>
 </wsdl:message>

 <!-- Response message -->
 <wsdl:message name="jaxWsTest1Response">
 <wsdl:part name="outputParameters" element="tns:jaxWsTest1Response"/>
 </wsdl:message>

 <!-- Fault message -->
 <wsdl:message name="UserDefinedException">
 <wsdl:part name="fault" element="tns:UserDefinedFault"/>
 </wsdl:message>
 <!-- Port type -->
 <wsdl:portType name="TestJaxWs">
 <!-- Operation -->
 <wsdl:operation name="jaxWsTest1">
 <wsdl:input message="tns:jaxWsTest1Request"/>
 <wsdl:output message="tns:jaxWsTest1Response"/>
 <wsdl:fault name="UserDefinedFault"
 message="tns:UserDefinedException"/>
 </wsdl:operation>
 </wsdl:portType>
 <!-- Binding (SOAP 1.1/ HTTP binding) -->
 <wsdl:binding name="testJaxWsBinding" type="tns:TestJaxWs">
 <!-- document/literal/wrapped -->
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <!-- Operation -->
 <wsdl:operation name="jaxWsTest1">
 <soap:operation/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="UserDefinedFault">
 <soap:fault name="UserDefinedFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <!-- Service-->
 <wsdl:service name="TestJaxWsService">
 <!-- Port -->
 <wsdl:port name="testJaxWs" binding="tns:testJaxWsBinding">
 <soap:address location="http://webhost:8085/fromwsdl/TestJaxWsService"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

The following is an example of creating a new WSDL file for SOAP 1.2:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="TestJaxWsService"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://example.com/sample"
 targetNamespace="http://example.com/sample">

 <wsdl:types>
 <xsd:schema targetNamespace="http://example.com/sample">
 <!-- wrapper element of the request message -->
 <xsd:element name="jaxWsTest1" type="tns:jaxWsTest1"/>

 <!-- wrapper element of the response message -->
 <xsd:element name="jaxWsTest1Response" type="tns:jaxWsTest1Response"/>

 <!-- wrapper element of the fault message -->
 <xsd:element name="UserDefinedFault" type="tns:UserDefinedFault"/>

 <!-- Type referenced by the wrapper element of the request message -->
 <xsd:complexType name="jaxWsTest1">
 <xsd:sequence>
 <xsd:element name="information" type="xsd:string"/>
 <xsd:element name="count" type="xsd:int"/>
 </xsd:sequence>

4. Examples of the Development Starting from WSDL

62

 </xsd:complexType>

 <!-- Type referenced by the wrapper element of the response message -->
 <xsd:complexType name="jaxWsTest1Response">
 <xsd:sequence>
 <xsd:element name="return" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Type referenced by the wrapper element of the fault message -->
 <xsd:complexType name="UserDefinedFault">
 <xsd:sequence>
 <xsd:element name="additionalInfo" type="xsd:int"/>
 <xsd:element name="detail" type="xsd:string"/>
 <xsd:element name="message" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>

 <!-- Request message -->
 <wsdl:message name="jaxWsTest1Request">
 <wsdl:part name="inputParameters" element="tns:jaxWsTest1"/>
 </wsdl:message>
 <!-- Response message -->
 <wsdl:message name="jaxWsTest1Response">
 <wsdl:part name="outputParameters" element="tns:jaxWsTest1Response"/>
 </wsdl:message>

 <!-- Fault message -->
 <wsdl:message name="UserDefinedException">
 <wsdl:part name="fault" element="tns:UserDefinedFault"/>
 </wsdl:message>

 <!-- Port type -->
 <wsdl:portType name="TestJaxWs">
 <!-- Operation -->
 <wsdl:operation name="jaxWsTest1">
 <wsdl:input message="tns:jaxWsTest1Request"/>
 <wsdl:output message="tns:jaxWsTest1Response"/>
 <wsdl:fault name="UserDefinedFault"
 message="tns:UserDefinedException"/>
 </wsdl:operation>
 </wsdl:portType>
 <!-- Binding (SOAP 1.2/HTTP binding) -->
 <wsdl:binding name="testJaxWsBinding" type="tns:TestJaxWs">
 <!-- document/literal/wrapped -->
 <soap12:binding style="document" transport="http://www.w3.org/2003/05/soap/
bindings/HTTP/"/>
 <!-- Operation -->
 <wsdl:operation name="jaxWsTest1">
 <soap12:operation/>
 <wsdl:input>
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="UserDefinedFault">
 <soap12:fault name="UserDefinedFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <!-- Service -->
 <wsdl:service name="TestJaxWsService">
 <!-- Port -->
 <wsdl:port name="testJaxWs" binding="tns:testJaxWsBinding">
 <soap12:address location="http://webhost:8085/fromwsdl/TestJaxWsService"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

(2) Creating a WSDL file based on the WSDL file in which the Java source is converted
Create a Web Service Implementation Class and an exception class to be temporarily implemented for the WSDL
conversion, and execute the WSDL generation functionality of the cjwsgen command to create a WSDL file from
the already compiled Java source. Use the javax.jws.WebService annotation to specify the annotations for the
created class. You need not implement any method.

4. Examples of the Development Starting from WSDL

63

The following is an example of the temporarily implemented Web Service Implementation Class:

package com.example.sample;

@javax.jws.WebService
public class TestJaxWsImpl {

 public String jaxWsTest1(String information, int count)
 throws UserDefinedException
 {
 // Need not be implemented
 return null;
 }

}

The following is an example of the temporarily implemented exception class:

package com.example.sample;

public class UserDefinedFault extends Exception{
 // Need not be implemented
 public int additionalInfo;
 public String detail;
 public String message;
}

Save and compile the created classes TestJaxWsImpl.java and UserDefinedFault.java to the c:\temp
\jaxws\works\fromwsdl\server\temporary\src\com\example\sample\ directory with the UTF-8
format. The following is an compilation example:

> cd c:\temp\jaxws\works\fromwsdl\server\
> mkdir .\temporary
> mkdir .\temporary\classes
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar" -d .\temporary\classes .\temporary\src\com\example
\sample\TestJaxWsImpl.java .\temporary\src\com\example\sample\UserDefinedFault.java

If compilation is successful, TestJaxWsImpl.class and UserDefinedFault.class are generated in the
c:\temp\jaxws\works\fromwsdl\server\temporary\classes\com\example\sample\
directory. Use the class files and create a WSDL file with the WSDL generation functionality of the cjwsgen
command.

The following is an example for executing the cjwsgen command:

> cd c:\temp\jaxws\works\fromwsdl\server\
> mkdir .\WEB-INF\wsdl\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsgen.bat" -r .\WEB-INF\wsdl -d .\temporary\classes -
cp .\temporary\classes com.example.sample.TestJaxWsImpl

If the cjwsgen command is successfully terminated, TestJaxWsService.wsdl and
TestJaxWsService_schema1.xsd are generated in the c:\temp\jaxws\works\fromwsdl\WEB-INF
\wsdl\ directory. Delete the classes that exist in the c:\temp\jaxws\works\fromwsdl\temporary
\classes\ directory.

You must partially modify the generated TestJaxWsService.wsdl and
TestJaxWsService_schema1.xsd.

The following is an example of modifying TestJaxWsService.wsdl. The text in italics indicates the modified
part.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://example.com/sample" name="TestJaxWsImplService"
 xmlns:tns=http://example.com/sample
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xsd:schema targetNamespace=" http://example.com/sample ">
 <xsd:include schemaLocation="TestJaxWsImplService_schema1.xsd"/>
 </xsd:schema>

4. Examples of the Development Starting from WSDL

64

 </types>
 <message name="jaxWsTest1">
 <part name="parameters" element="tns:jaxWsTest1"/>
 </message>
 <message name="jaxWsTest1Response">
 <part name="parameters" element="tns:jaxWsTest1Response"/>
 </message>
 <message name="UserDefinedFault">
 <part name="fault" element="tns:UserDefinedFault"/>
 </message>
 <portType name="TestJaxWs">
 <operation name="jaxWsTest1">
 <input message="tns:jaxWsTest1"/>
 <output message="tns:jaxWsTest1Response"/>
 <fault message="tns:UserDefinedFault" name="UserDefinedFault"/>
 </operation>
 </portType>
 <binding name="testJaxWsBinding" type="tns:TestJaxWs">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="jaxWsTest1">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 <fault name="UserDefinedFault">
 <soap:fault name="UserDefinedFault" use="literal"/>
 </fault>
 </operation>
 </binding>
 <service name="TestJaxWsService">
 <port name="testJaxWs" binding="tns:testJaxWsBinding">
 <soap:address location="http://webhost:8085/fromwsdl/TestJaxWsService"/>
 </port>
 </service>
</definitions>

The following is an example of modifying TestJaxWsService_schema1.xsd. The text in italics indicates the
modified part.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0"
 targetNamespace=http://example.com/sample
 xmlns:tns=http://example.com/sample
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="UserDefinedFault" type="tns:UserDefinedFault"/>

 <xs:element name="jaxWsTest1" type="tns:jaxWsTest1"/>

 <xs:element name="jaxWsTest1Response" type="tns:jaxWsTest1Response"/>

 <xs:complexType name="jaxWsTest1">
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 <xs:element name="arg1" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="jaxWsTest1Response">
 <xs:sequence>
 <xs:element name="return" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="UserDefinedFault">
 <xs:sequence>
 <xs:element name="message" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Change the name of the modified TestJaxWsService.wsdl to input.wsdl, and save under the c:\temp
\jaxws\works\fromwsdl\server\WEB-INF\wsdl\ directory.

4. Examples of the Development Starting from WSDL

65

4.3.2 Generating SEI
If you execute the cjwsimport command, the Java source, such as SEI that you require for developing Web
Services, will be generated. For the cjwsimport command, see 14.1 cjwsimport command.

The following is an execution example of the cjwsimport command:

> cd c:\temp\jaxws\works\fromwsdl\server\
> mkdir src\
> mkdir WEB-INF\classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -generateService -s src -d WEB-INF
\classes WEB-INF\wsdl\input.wsdl

If the cjwsimport command is terminated successfully, the Java source is generated in the c:\temp\jaxws
\works\fromwsdl\server\src\com\example\sample\directory. The directory path com
\example\sample\(directory-path-corresponding-to-the-package) changes as per the coding of the namespace
URI. For the mapping between namespace URIs and packages, see 15.1.1 Mapping a namespace to a package name.

The following table lists and describes the products:

Table 4‒3: Products during SEI generation (Starting from WSDL)

File name Description

JaxWsTest1.java This is the JavaBean class corresponding to 'Type referenced by the wrapper
element of the request message' in the WSDL definition.

JaxWsTest1Response.java This is the JavaBean class corresponding to 'Type referenced by the wrapper
element of the response message' in the WSDL definition.

ObjectFactory.java This is the ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is the package-info.java file.

TestJaxWs.java This is an SEI corresponding to the TestJaxWsPort type.

TestJaxWsImpl.java This is a skeleton class corresponding to the TestJaxWsPort type.

UserDefinedFault.java This is the JavaBean class (fault bean) corresponding to 'Type referenced by
the wrapper element of the fault message' in the WSDL definition.

UserDefinedException.java This is the wrapper exception class of the fault bean.

The file names JaxWsTest1, TestJaxWs and TestJaxWsImpl change according to the coding of the local
name for operation, local name for port type, and local name for services. For the mapping between a local name for
operation, local name for port type, and local name for services and Java sources, see 15. Mapping WSDL to Java.

4.3.3 Creating a Web Service Implementation Class
Add Web Service processing to a skeleton class to create a Web Service Implementation Class. This subsection
describes how to add the processing for returning the contents of the received request message along with the date
information as the response message.

The following is an example for creating a Web Service Implementation Class:

package com.example.sample;

import java.util.Calendar;
import javax.jws.WebService;

@WebService(endpointInterface = "com.example.sample.TestJaxWs", targetNamespace =
"http://example.com/sample", serviceName = "TestJaxWsService", portName = "testJaxWs")
public class TestJaxWsImpl {

public String jaxWsTest1(String information, int count)
 throws UserDefinedException
 {

4. Examples of the Development Starting from WSDL

66

 Calendar today = Calendar.getInstance();
 StringBuffer result = new StringBuffer(256);
 result.append("We've got your #");
 result.append(new Integer(count));
 result.append(" message \"");
 result.append(information);
 result.append("\"! It's ");
 result.append(String.format("%04d.%02d.%02d %02d:%02d:%02d", new Object[]{
 new Integer(today.get(Calendar.YEAR)),
 new Integer(today.get(Calendar.MONTH) + 1),
 new Integer(today.get(Calendar.DAY_OF_MONTH)),
 new Integer(today.get(Calendar.HOUR_OF_DAY)),
 new Integer(today.get(Calendar.MINUTE)),
 new Integer(today.get(Calendar.SECOND)) }));
 result.append(" now. See ya!");

 return result.toString();
 }
}

The locations in italics are the implementation added for skeletons.

4.3.4 Compiling the Web Service Implementation Class
Use the javac command to compile the created Web Service Implementation Class.

The following is a compilation example:

> cd c:\temp\jaxws\works\fromwsdl\server\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;.\WEB-INF\classes" -d .\WEB-INF\classes src\com\example
\sample\TestJaxWsImpl.java

If the javac command is terminated successfully, TestJaxWsImpl.class in c:\temp\jaxws\works
\fromwsdl\server\WEB-INF\classes\com\example\sample\directory is overwritten.

For the javac command, see the JDK documentation.

4.3.5 Creating web.xml
Create the web.xml file that is required as a WAR file component.

The following is an example for creating web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
 <description>Sample web service "fromwsdl"</description>
 <display-name>Sample_web_service_fromwsdl</display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>

<servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/TestJaxWsService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>

4. Examples of the Development Starting from WSDL

67

 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

The created web.xml will be stored in c:\temp\jaxws\works\fromwsdl\server\WEB-INF
\directory with the UTF-8 format. For the web.xml settings, see 3.4 Creating web.xml.

4.3.6 Creating application.xml
Create application.xml that is required as an EAR file component.

The following is an example for creating application.xml:

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "fromwsdl"</description>
 <display-name>Sample_application_fromwsdl</display-name>
 <module>
 <web>
 <web-uri>fromwsdl.war</web-uri>
 <context-root>fromwsdl</context-root>
 </web>
 </module>
</application>

When creating web.xml of version 5, specify 5 in the version attribute of the application element and
specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second location
information in the xsd:schemaLocation attribute.

The created application.xml will be stored in c:\temp\jaxws\works\fromwsdl\server\META-INF
\directory with the UTF-8 format. For notes on creating application.xml, see 5.2.2 Notes on editing
application.xml in the uCosminexus Application Server Application Development Guide.

4.3.7 Creating EAR files
Use the jar command to create an EAR file.

The following is an example for creating an EAR file:

> cd c:\temp\jaxws\works\fromwsdl\server\
> jar cvf fromwsdl.war .\WEB-INF
> jar cvf fromwsdl.ear .\fromwsdl.war .\META-INF\application.xml

If the jar command is terminated successfully, fromwsdl.ear is created in c:\temp\jaxws\works
\fromwsdl\server\directory.

For the jar command, see the JDK documentation.

4. Examples of the Development Starting from WSDL

68

4.4 Examples of deployment and startup (Starting from
WSDL)

This section describes the examples of the deployment and the startup, starting from the WSDL.

4.4.1 Deploying EAR files
Use the cjimportapp command to deploy the created EAR file on the J2EE server.

The following is an example of deployment:

> cd c:\temp\jaxws\works\fromwsdl\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f fromwsdl.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

4.4.2 Starting Web Services
Use the cjstartapp command to start Web Services.

The following is an example for starting a Web Service:

> cd c:\temp\jaxws\works\fromwsdl\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver -nameserver
corbaname::testserver:900 -name Sample_application_fromwsdl

For the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus Application Server
Command Reference Guide.

For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications in
the uCosminexus Application Server Management Portal User Guide.

4. Examples of the Development Starting from WSDL

69

4.5 Examples for deploying Web Service clients
(Starting from WSDL)

This section describes the examples of the development of Web Service clients starting from the WSDL.

4.5.1 Generating a service class
If you execute the cjwsimport command, the Java source, such as a service class, required for Web Service client
development is generated. For the cjwsimport command, see 14.1 cjwsimport command.

The following is an execution example when developing Web Service clients in the same environment in which the
Web Service is developed:

> cd c:\temp\jaxws\works\fromwsdl\client\
> mkdir src/
> mkdir classes/
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes ..\server\WEB-INF
\wsdl\input.wsdl

The following is an execution example when developing Web Service clients on an environment different from the
environment in which the Web Service is developed:

> cd c:\temp\jaxws\works\fromwsdl\client\
> mkdir src/
> mkdir classes/
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes http://webhost:8085/
fromwsdl/TestJaxWsService?wsdl

When the execution is successful, the Java source will be generated in c:\temp\jaxws\works\fromwsdl
\client\src\com\example\sample\directory. The directory path com\example\sample\
(directory-path-corresponding-to-the-package) changes as per the coding of the namespace URI. For the mapping
between namespace URIs and packages, see 15.1.1 Mapping a namespace to a package name.

The following table lists and describes the products:

Table 4‒4: Products during service class generation (Starting from WSDL)

File name Description

JaxWsTest1.java This is a JavaBean class corresponding to 'Type referenced by the
wrapper element of the request message' in the WSDL definition.

JaxWsTest1Response.java This is a JavaBean class corresponding to 'Type referenced by the
wrapper element of the response message' in the WSDL definition.

ObjectFactory.java This is the ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is the package-info.java file.

TestJaxWs.java This is an SEI corresponding to the TestJaxWsPort type.

TestJaxWsService.java This is the service class.

UserDefinedFault.java This is a JavaBean class corresponding to 'Type referenced by the
wrapper element of the fault message' in the WSDL definition.

UserDefinedException.java This is the wrapper exception class of the fault bean.

The file names JaxWsTest1, TestJaxWs, and TestJaxWsService change according to the coding of the local
name for operation, local name for port type, and local name for services. For the mapping between a local name for
operation, local name for port type, and local name for services and Java sources, see the following sections:

• 15.1.2 Mapping a port type to a SEI name

4. Examples of the Development Starting from WSDL

70

• 15.1.3 Mapping an operation to a method name

• 15.1.4 Mapping a message part to a parameter and return value (For wrapper style)

• 15.1.5 Mapping the message part to the parameter and return value (For non-wrapper style)

4.5.2 Creating an implementation class for the Web Service client
Create an implementation class for the Web Service client that uses the Web Service.

The following is an example for creating an implementation class of the Web Service client that invokes a Web
Service once:

package com.example.sample.client;

import com.example.sample.TestJaxWs;
import com.example.sample.TestJaxWsService;
import com.example.sample.UserDefinedException;

public class TestClient {
 public static void main(String[] args) {
 try {
 TestJaxWsService service = new TestJaxWsService();
 TestJaxWs port = service.getTestJaxWs();

 String returnValue = port.jaxWsTest1("Invocation test.", 1003);

 System.out.println("[RESULT] " + returnValue);
 }
 catch(UserDefinedException e){
 e.printStackTrace();
 }
 }

}

The created TestClient.java is stored in c:\temp\jaxws\works\fromwsdl\client\src\com
\example\sample\client\directory with the UTF-8 format. The com.example.sample,
TestJaxWs, TestJaxWsService, TestJaxWs, and jaxWsTest1 change according to the package name,
class name, and method name in the class of the generated Java source. For developing a Web Service with a different
configuration, you must review, and if necessary revise, the coding of the package name, class name, and the method
name in the class.

4.5.3 Compiling the implementation class for the Web Service client
Use the javac command to compile the created Web Service client.

The following is an example of compilation:

> cd c:\temp\jaxws\works\fromwsdl\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\com\example\sample\client\TestClient.java

If the javac command is terminated successfully, the TestClient.class is generated in c:\temp\jaxws
\works\fromwsdl\client\classes\com\example\sample\client\directory.

For the javac command, see the JDK documentation.

4. Examples of the Development Starting from WSDL

71

4.6 Examples for executing Web Services (Starting from
WSDL)

This section describes the examples for the development of Web Service clients, starting from the WSDL.

4.6.1 Creating an option definition file for Java applications
Create an option definition file for Java applications (usrconf.cfg) required for executing Web Services.

The following is an example for creating the option definition file for Java applications:

add.class.path=Cosminexus-installation-directory\jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home= Cosminexus-installation-directory
add.jvm.arg=-Dejbserver.server.prf.PRFID=PRF-ID

For Cosminexus-installation-directory, use the absolute path to specify the path on which Cosminexus is installed.

The created option definition file for Java applications is stored in c:\temp\jaxws\works\fromwsdl
\client\directory with the UTF-8 format. For the option definition file for Java applications, see 14.2
usrconf.cfg (Option definition file for the Java applications) in the uCosminexus Application Server Definition
Reference Guide.

4.6.2 Creating a user property file for Java applications
Create a user property file for the Java applications required for executing Web Services.

Since the settings are not specially changed, create an empty file named usrconf.properties in c:\temp\jaxws
\works\fromwsdl\client\directory. For the user property file for Java applications, see 14.3
usrconf.properties (User property file for Java applications) in the uCosminexus Application Server Definition
Reference Guide.

4.6.3 Executing Web Service clients
Use the cjclstartap command to execute Web Service clients.

The following is an example for executing Web Service clients:

> cd c:\temp\jaxws\works\fromwsdl\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" com.example.sample.client.TestClient

If the cjclstartap command is terminated successfully, the result of Web Service client execution is displayed.
The following is an example for displaying execution results:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\fromwsdl\client, PID = 2636)

[RESULT] We've got your #1003 message "Invocation test."! It's 2007.11.28 14:50:50
now. See ya!
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in italics changes according to the execution timing and environment.

For the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application Server
Command Reference Guide.

4. Examples of the Development Starting from WSDL

72

5 Examples for the Development
Starting from SEI
This chapter describes the examples for the development of Web Services starting
from SEI.

73

5.1 Configuration of development examples (Starting
from SEI)

The development examples of this chapter describe how to develop Web Services starting from SEI.

The following table describes the configuration for Web Services to be developed:

Table 5‒1: Web Service configuration (Starting from SEI)

No. Item Value

1 Name of the J2EE server to be deployed jaxwsserver

2 Host name and port number of the Web server webhost:8085

3 URL of the naming server corbaname::testserver:900

4 Context root fromjava_dynamic_generate

5 Style document/literal/wrapped

6 Namespace URI http://sample.com

7 Port type Number 1

8 Local name AddNumbersImpl

9 Operation Number 1

10 Local name add

11 Service Number 1

12 Local name AddNumbersImplService

13 Port Number 1

14 Local name AddNumbersImplPort

15 Web Service Implementation Class com.sample.AddNumbersImpl

16 Method published in the Web
Service Implementation Class

Number 1

17 Local name add

18 Exception thrown with the
methods of the Web Service
implementation

Number 1

19 Local name com.sample.AddNumbersFault

The following table describes the configuration of the current directory when developing Web Services:

Table 5‒2: Configuration of the current directory (Starting from SEI)

Directory Description

c:\temp\jaxws\works\fromjava This is the current directory.

server\ Used for Web Service development.

META-INF\ Corresponds to the META-INF directory of the EAR file.

application.xml Created in 5.3.4 Creating application.xml.

src\ Stores the source file (*.java) for the Web Service. Used in 5.3.1 Creating Web
Services Implementation Class and 5.3.2 Compiling Web Services Implementation
Class.

WEB-INF\ Corresponds to the WEB-INF directory of the WAR file.

5. Examples for the Development Starting from SEI

74

Directory Description

web.xml Created in 5.3.3 Creating web.xml.

classes\ Stores the compiled class file (*.class). Created in 5.3.2 Compiling Web
Services Implementation Class.

wsdl\ Created in the section 5.3.5 Creating a WSDL file (Optional).

fromjava_dynamic_gene
rate.ear

Created in 5.3.6 Creating EAR files.

fromjava_dynamic_gene
rate.war

client\ Used for the development of the Web Service client.

src\ Stores the source file (*.java) of the Web Service client. Used in 5.5.1
Generating a service class and 5.5.2 Creating an implementation class for the Web
Service client.

classes\ Stores the compiled class file (*.class). Used in 5.5.3 Compiling the
implementation class for the Web Service client.

usrconf.cfg Created in 5.6.1 Creating an option definition file for Java applications.

usrconf.properties Created in 5.6.2 Creating a user property file for Java applications.

Change the current directory path according to the environment to be developed.

Note that the directory and file names listed in the above table will be used in the description hereafter. The parts in
Bold in the command execution examples and in the Java source indicate the specified values and the generated values
that are used in this example. Read according to the environment that you want to build.

Also, in the development examples described in this chapter, the Web Service and Web Service client are developed
in the same environment, but you can also develop them in separate environments. For developing Web Services and
Web Service clients in different environments, read the current directory path suitable to the respective environments.

5. Examples for the Development Starting from SEI

75

5.2 Example of development flow (Starting from SEI)
The development and execution flow described in the development examples of this chapter are as follows:

Developing a Web Service

1. Creating Web Services Implementation Class (5.3.1)

2. Compiling Web Services Implementation Class (5.3.2)

3. Creating web.xml (5.3.3)

4. Creating application.xml (5.3.4)

5. Creating a WSDL file (Optional) (5.3.5)

6. Creating an EAR file (5.3.6)

Deploying and starting

1. Deploying EAR files (5.4.1)

2. Starting Web Services (5.4.2)

Developing a Web Service client

1. Executing the cjwsimport command and generating a service class (5.5.1)

2. Creating the implementation class for Web Service clients (5.5.2)

3. Compiling the implementation class for Web Service clients (5.5.3)

Executing a Web Service

1. Creating the option definition file for Java applications (5.6.1)

2. Creating the user property file for Java applications (5.6.2)

3. Executing the Web Service client (5.6.3)

5. Examples for the Development Starting from SEI

76

5.3 Examples of Web Service development (starting
from SEI)

This section describes the examples for the development of Web Services, starting from SEI.

5.3.1 Creating Web Services Implementation Class
Create a new Web Service Implementation Class that codes the processing of the Web Service.

In this subsection, calculate the contents of the received request message and create a Web Service Implementation
Class that returns the response message.

The following is an example for creating a Web Service Implementation Class in SOAP 1.1. The created
AddNumbersImpl.java is stored in the c:\temp\jaxws\works\fromjava\server\src\com
\sample\ directory with the UTF-8 format.

package com.sample;

@javax.jws.WebService
public class AddNumbersImpl{

 public int add(int number1, int number2) throws AddNumbersFault{

 if((number1 < 0) || (number2 < 0)){
 throw new AddNumbersFault("Negative number cannot be added!",
 "Numbers: " + number1 + ", " + number2);
 }
 return number1 + number2;
 }

}

The exception class com.sample.AddNumbersFault thrown using com.sample.AddNumbersImplwill
also be created. Normally, the creation of the exception class is optional, but an exception class is created in this
subsection.

The following is an example of the creation of an exception class. The created AddNumbersFault.java is stored
in the c:\temp\jaxws\works\fromjava\server\src\com\sample\ directory with the UTF-8 format.

package com.sample;

public class AddNumbersFault extends Exception {

 String detail;

 public AddNumbersFault(String message, String detail){
 super(message);
 this.detail = detail;
 }

 public String getDetail(){
 return detail;
 }
}

The following is an example of creating a Web Service Implementation Class for SOAP 1.2:

package com.sample;

@javax.jws.WebService
@javax.xml.ws.BindingType(javax.xml.ws.soap.SOAPBinding.SOAP12HTTP_BINDING)
public class AddNumbersImpl{

 public int add(int number1, int number2) throws AddNumbersFault{

 if((number1 < 0) || (number2 < 0)){
 throw new AddNumbersFault("Negative number cannot be added!",
 "Numbers: " + number1 + ", " + number2);
 }

5. Examples for the Development Starting from SEI

77

 return number1 + number2;
 }

}

5.3.2 Compiling Web Services Implementation Class
Execute the javac command to compile Web Services Implementation Class. For details on the javac command,
see the JDK documentation.

The following is an example of the execution of the javac command.

> cd c:\temp\jaxws\works\fromjava\server\
> mkdir .\WEB-INF\classes\
> javac -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%\CC\client\lib
\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib\csmstax.jar" -d WEB-INF\classes\ -s src src
\com\sample\AddNumbersImpl.java src\com\sample\AddNumbersFault.java

On successful execution of the javac command, the compiled classes are output to the following path:

c:\temp\jaxws\works\fromjava\server\WEB-INF\classes\com\sample\directory
You can run the cjwsgen command for the compiled Web Services Implementation Class to check errors in
advance. For details on the cjwsgen command, see 14.3 cjwsgen command, and for details on the error check, see
10.23(1) Using the cjwsgen command for checking errors.

5.3.3 Creating web.xml
Create web.xml that is required as a WAR file component.

The following is an example for creating web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
 <description>Sample web service "fromjava_dynamic_generate "</description>
 <display-name>Sample_web_service_fromjava_dynamic_generate </display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/AddNumbersImplService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and
specify http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information
in the xsd:schemaLocation attribute.

The created web.xml is stored in the c:\temp\jaxws\works\fromjava\server\WEB-INF\directory
in UTF-8 format. For the web.xml settings, see 3.4 Creating web.xml.

5. Examples for the Development Starting from SEI

78

5.3.4 Creating application.xml
Create application.xml that is required as an EAR file component.

The following is an example for creating application.xml. Note that the items are set in application.xml
because the Web Service do not exist.

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "fromjava_dynamic_generate"</description>
 <display-name>Sample_application_fromjava_dynamic_generate </display-name>
 <module>
 <web>
 <web-uri> fromjava_dynamic_generate </web-uri>
 <context-root>fromjava_dynamic_generate </context-root>
 </web>
 </module>
</application>

When creating web.xml of version 5, specify 5 in the version attribute of the application element and
specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second location
information in the xsd:schemaLocation attribute.

The created application.xml is stored in the c:\temp\jaxws\works\fromjava\server\META-INF
\directory in UTF-8 format. For notes on creating application.xml, see 5.2.2 Notes on editing
application.xml in the uCosminexus Application Server Application Development Guide.

5.3.5 Creating a WSDL file (Optional)
Creating a WSDL file during the development starting from SEI is optional, and if a file is created, include that file in
an EAR file. This subsection describes an example of executing the WSDL generation functionality of the cjwsgen
command to create a WSDL file from the already compiled Java sources. For the cjwsgen command, see 14.3
cjwsgen command.

The following is an example of executing the cjwsgen command:

> cd c:\temp\jaxws\works\fromwsdl\server\
> mkdir .\WEB-INF\wsdl\
> mkdir .\temporary
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsgen.bat" -r .\WEB-INF\wsdl -d .\temporary -cp .
\WEB-INF\classes com.sample.AddNumbersImpl
> rmdir /S /Q .\temporary

If the cjwsgen command is terminated successfully, the resource file is generated in the c:\temp\jaxws\works
\fromjava\WEB-INF\wsdl directory. The following table lists the generated files:

Table 5‒3: Files generated during the execution of the cjwsgen command

File name Description

AddNumbersImplService.wsdl This is a WSDL file corresponding to the specified Java source.

AddNumbersImplService_schema1.xsd This is an XML Schema definition that is referenced from the WSDL
file.

Delete the files generated in the c:\temp\jaxws\works\fromjava\temporary directory because the files
are not required.

5.3.6 Creating EAR files
Use the jar command to create an EAR file containing the files created until now.

5. Examples for the Development Starting from SEI

79

The following is an example for creating an EAR file:

> cd c:\temp\jaxws\works\fromjava\server\
> jar cvf fromjava_dynamic_generate.war .\WEB-INF
> jar cvf fromjava_dynamic_generate.ear .\fromjava_dynamic_generate.war .\META-INF
\application.xml

If the jar command is terminated successfully, fromjava_dynamic_generate.ear is created in the c:\temp\jaxws\works
\fromjava\server\directory.

For the jar command, see the JDK documentation.

5. Examples for the Development Starting from SEI

80

5.4 Examples of deployment and startup (Starting from
SEI)

This section describes the examples for the deployment and the startup, starting from SEI.

5.4.1 Deploying EAR files
Use the cjimportapp command to deploy the created EAR file on a J2EE server.

The following is an example of deployment:

> cd c:\temp\jaxws\works\fromjava\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f fromjava_dynamic_generate.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

5.4.2 Starting Web Services
Use the cjstartapp command to start the Web Service.

The following is an example for starting the Web Service:

> cd c:\temp\jaxws\works\fromjava\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver -nameserver
corbaname::testserver:900 -name Sample_application_fromjava_dynamic_generate

For the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus Application Server
Command Reference Guide.

For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications in
the uCosminexus Application Server Management Portal User Guide.

5. Examples for the Development Starting from SEI

81

5.5 Examples of developing Web Service clients
(Starting from SEI)

This section describes the examples for the development of Web Service clients, starting from SEI.

5.5.1 Generating a service class
If you execute the cjwsimport command, the Java source, such as service class, required for Web Service client
development, will be generated. For the cjwsimport command, see 14.1 cjwsimport command.

The following is an example for executing the cjwsimport command:

> cd c:\temp\jaxws\works\fromjava\client\
> mkdir src\
> mkdir classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes http://webhost:8085/
fromjava_dynamic_generate /AddNumbersImplService?wsdl

If the cjwsimport command is terminated successfully, the Java source will be generated in the c:\temp\jaxws
\works\fromjava\client\src\com\sample\directory. Note that com\sample\(directory-path-
corresponding-to-the-package) changes as per the coding of the namespace URI. For the mapping between namespace
URIs and packages, see 15.1.1 Mapping a namespace to a package name.

The following table lists and describes the products:

Table 5‒4: Products during service class generation (Starting from SEI)

File name Description

Add.java This is a JavaBean class corresponding to the type referenced by the
wrapper element of the request message for 'Operation' in the WSDL
definition.

AddResponse.java This is a JavaBean class corresponding to the type referenced by the
wrapper element of the response message for 'Operation' in the WSDL
definition.

ObjectFactory.java This is the ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is the package-info.java file.

AddNumbersImpl.java This is SEI corresponding to 'Service' in the WSDL definition.

AddNumbersImplService.java This is the service class.

AddNumbersFault.java This is the JavaBean class corresponding to AddNumbersFault.

AddNumbersFault_Exception.java This is the wrapper exception class of the fault bean.

The file names Add, AddNumbersImpl, and AddNumbersImplService change according to the coding of the
local name for operation, local name for port type, and local name for services. For the mapping of a local name for
operation, local name for port type, and local name for services, see the following sections:

• 15.1.2 Mapping a port type to a SEI name

• 15.1.3 Mapping an operation to a method name

• 15.1.4 Mapping a message part to a parameter and return value (For wrapper style)

• 15.1.5 Mapping a message part to a parameter and return value (For non-wrapper style)

5.5.2 Creating an implementation class for the Web Service client
Create an implementation class for the Web Service client that uses Web Services.

5. Examples for the Development Starting from SEI

82

The following is an example for creating Web Service clients that invokes Web Services once:

package com.sample.client;

import com.sample.AddNumbersImpl;
import com.sample.AddNumbersImplService;
import com.sample.AddNumbersFault_Exception;

public class TestClient {
 public static void main(String[] args) {
 try {
 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbersImpl port = service.getAddNumbersImplPort();

 int returnValue = port.add(205, 103);

 System.out.println("[RESULT] " + returnValue);
 }
 catch(AddNumbersFault_Exception e){
 e.printStackTrace();
 }
 }

}

The created TestClient.java is stored in the c:\temp\jaxws\works\fromjava\client\src\com
\sample\client\directory in UTF-8 format.

Note that com.sample, AddNumbersImpl, AddNumbersImplService, AddNumbersImplPort, and add
change according to the package name, class name, and method name in the class of the generated Java sources. When
you want to develop a Web Service with a different configuration, you must review, and if necessary revise, the
coding of the package name, class name, and the method name in the class.

5.5.3 Compiling the implementation class for the Web Service client
Use the javac command to compile the created Web Service client.

The following is an example of compilation:

> cd c:\temp\jaxws\works\fromjava\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\com\sample\client\TestClient.java

If the javac command is terminated successfully, the TestClient.class is generated in the c:\temp\jaxws
\works\fromjava\client\classes\com\sample\client\directory.

For the javac command, see the JDK documentation.

5. Examples for the Development Starting from SEI

83

5.6 Examples for executing Web Services (Starting from
SEI)

This section describes the example for the execution of Web Service clients, starting from SEI.

5.6.1 Creating an option definition file for Java applications
Create an option definition file for Java applications (usrconf.cfg) required for executing Web Services.

The following is an example for creating the option definition file for Java applications:

add.class.path= Cosminexus-installation-directory\jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home= Cosminexus-installation-directory
add.jvm.arg=-Dejbserver.server.prf.PRFID=PRF-ID

For the Cosminexus-installation-directory part, use the absolute path to specify the path where Cosminexus is
installed.

The created option definition file for Java applications is stored in the c:\temp\jaxws\works\fromjava
\client\directory. For the option definition file for Java applications, see 14.2 usrconf.cfg (Option definition
file for Java applications) in the uCosminexus Application Server Definition Reference Guide.

5.6.2 Creating a user property file for Java applications
Create a user property file for Java applications required for executing a Web Service.

Since the settings are not specially changed, create an empty file named usrconf.properties in c:\temp
\jaxws\works\fromjava\client\directory. For the user property file for Java applications, see 14.3
usrconf.properties (User property file for Java applications) in the uCosminexus Application Server Definition
Reference Guide.

5.6.3 Executing Web Service clients
Use the cjclstartap command to execute Web Service client.

The following is an example for executing Web Service client:

> cd c:\temp\jaxws\works\fromjava\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" com.sample.client.TestClient

If the cjclstartap command is terminated successfully, the results of Web Service client execution are displayed.
Following is an example for displaying the execution results:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\fromjava\client, PID = 2636)
[RESULT] 308
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in italics changes according to the execution timing and environment.

For the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application Server
Command Reference Guide.

5. Examples for the Development Starting from SEI

84

6 Examples of Development Starting
from SEI (Using the cjwsgen
Command)
This chapter describes the examples for developing Web Services using the
cjwsgen command, with SEI as the starting point.

85

6.1 Configuration of development examples (starting
from SEI and the cjwsgen command)

In the development examples described in this chapter, a Web Service starting from SEI is developed using the
cjwsgen command provided by Cosminexus. For the method to use the cjwsgen command, see 14.3 cjwsgen
command.

The following table shows the configuration of the Web Service to be developed:

Table 6‒1: Web Service configuration (Starting from SEI or the cjwsgen command)

No. Item Value

1 Name of the J2EE server to be deployed jaxwsserver

2 Host name and port number of the Web server webhost:8085

3 URL of the naming server corbaname::testserver:900

4 Context root wsgen

5 Style document/literal/wrapped

6 Namespace URI http://example.org/sample

7 Port type Number 1

8 Local name TestJaxWs

9 Operation Number 1

10 Local name jaxWsTest1

11 Service Number 1

12 Local name TestJaxWsService

13 Port Number 1

14 Local name testJaxWs

15 Web Service Implementation Class com.sample.AddNumbersImpl

16 Method published in the Web
Service Implementation Class

Number 1

17 Local name add

18 Exception thrown in the
methods in Web Service
implementation

Number 1

19 Local name com.sample.AddNumbersFault

The following table shows the configuration of the current directory when developing Web Services.

Table 6‒2: Configuration of the current directory (Starting from SEI or the cjwsgen command)

Directory Description

c:\temp\jaxws\works
\annotations

This is the current directory.

server\ Used for Web Service development.

META-INF\ Corresponds to the META-INF directory of the EAR file.

application.xml Created in 6.3.4 Creating application.xml.

src\ Stores the source file (*.java) for the Web Service.

6. Examples of Development Starting from SEI (Using the cjwsgen Command)

86

Directory Description

src\ Used in 7.3.1 Creating a Web Service Implementation Class and 7.3.2 Generating
Java sources.

WEB-INF\ Corresponds to the WEB-INF directory of the WAR file.

web.xml Created in 6.3.3 Creating web.xml.

classes\ Stores the compiled class file (*.class). Used in 6.3.2 Generating Java sources.

wsdl\ Created in 6.3.2 Generating Java sources.

wsgen.ear Created in 6.3.5 Creating EAR files.

wsgen.war

client\ Used for the development of the Web Service client.

src\ Stores the source file (*.java) of the Web Service client. Used in 6.5.1 Creating
service classes and 6.5.2 Creating implementation classes for Web Service clients.

classes\ Stores the compiled class file (*.class). Used in 6.5.3 Compiling
implementation classes for Web Service clients.

usrconf.cfg Created in 6.6.1 Creating option definition files for Java applications.

usrconf.properties Created in 6.6.2 Creating user property files for Java applications.

Change the current directory path according to the environment to be developed.

Note that the directory and file names listed in the above table will be used in the description hereafter. The parts in
Bold in the command execution examples and in the Java source indicate the specified values and the generated values
that are used in examples. Read according to the environment you want to build.

Also, in the development examples described in this chapter, the Web Service and Web Service client will be
developed in the same environment, but you can also develop them in different environments. For developing Web
Services and Web Service clients in different environments, read the current directory path suitable to the respective
environment.

6. Examples of Development Starting from SEI (Using the cjwsgen Command)

87

6.2 Flow of development examples (starting from SEI
and the cjwsgen command)

In the development examples described in this chapter, flow of customization and execution is as follows:

Developing a Web Service

1. Saving the already compiled class files (6.3.1)

2. Generating an additional Java code by executing the cjwsgen command, and also generating a WSDL, if
required (6.3.2)

3. Creating web.xml (6.3.3)

4. Creating application.xml (6.3.4)

5. Creating an EAR file (6.3.5)

Deploying and starting

1. Deploying EAR files (6.4.1)

2. Starting Web Services (6.4.2)

Developing a Web Service client

1. Executing the cjwsimport command and generating a service class (6.5.1)

2. Creating the implementation class for Web Service clients (6.5.2)

3. Compiling the implementation class for Web Service clients (6.5.3)

Executing a Web Service

1. Creating the option definition file for Java applications (6.6.1)

2. Creating the user property file for Java applications (6.6.2)

3. Executing the Web Service client (6.6.3)

6. Examples of Development Starting from SEI (Using the cjwsgen Command)

88

6.3 Development example of Web Services (Starting
from SEI and the cjwsgen command)

This section describes an example for developing Web Services using the cjwsgen command, with SEI as the
starting point.

6.3.1 Saving the already compiled class files (starting from SEI and the
cjwsgen command)

Save the already compiled Web Service Implementation Class AddNumbersImpl.class in the c:\temp
\jaxws\works\wsgen\server\WEB-INF\classes\com\sample\ directory. Save the already compiled
exception class AddNumbersFault.class in the c:\temp\jaxws\works\wsgen\server\WEB-INF
\classes\com\sample\ directory.

6.3.2 Generating Java sources (starting from SEI and the cjwsgen
command)

Execute the cjwsgen command to add the Java code required for developing Web Services, and if required, generate
resource files (WSDL and XML Schema definition) that indicate the meta information of the Web Services.

The following is an example for executing the cjwsgen command to generate resource files:

> cd c:\temp\jaxws\works\wsgen\server\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsgen.bat" -r WEB-INF\wsdl -d WEB-INF\classes -cp
WEB-INF\classes com.sample.AddNumbersImpl

If the cjwsgen command is terminated successfully, Java source is generated in the c:\temp\jaxws\works
\wsgen\server\WEB-INF\classes\com\sample\ directory. Note that com\sample\ (directory path
corresponding to the package) changes depending on the coding of namespace URIs. For the mapping between
namespace URIs and packages, see 15.1.1 Mapping a namespace to a package name.

The following table lists the generated files:

Table 6‒3: Files generated during the generation of Java sources (Starting from SEI or the cjwsgen
command)

File name Description

Add.java This is the JavaBean class corresponding to the type referenced by the
wrapper element of the request message in Operation of the WSDL
definition.

AddResponse.java This is the JavaBean class corresponding to the type referenced by the
wrapper element of the response message in Operation of the WSDL
definition.

AddNumbersFaultBean.java This is the JavaBean class corresponding to AddNumbersFault of the
exception class.

The file names Add and AddNumbersFault change according to the coding of the method name and local name of
the port type published in Web Services Implementation Class, and the class names of the exceptions to be thrown in
the Web Services Implementation Class. For mapping local names of the operations, see 15.1.3 Mapping an operation
to a method name.

Note that the resource files are generated in the c:\temp\jaxws\works\wsgen\WEB-INF\wsdl\ directory.

6. Examples of Development Starting from SEI (Using the cjwsgen Command)

89

6.3.3 Creating web.xml (starting from SEI and the cjwsgen command)
Create web.xml that is required as a WAR file component.

The following is an example for creating web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
 <description>Sample web service "wsgen"</description>
 <display-name>Sample_web_service_wsgen</display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/TestJaxWsService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of the version 2.5, specify 2.5 in the version attribute of the web-app element and
specify http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information
in the xsd:schemaLocation attribute.

The created web.xml is stored in the c:\temp\jaxws\works\wsgen\server\WEB-INF\ directory with the
UTF-8 format. For the web.xml settings, see 3.4 Creating web.xml.

6.3.4 Creating application.xml
Create application.xml that is required as an EAR file component.

The following is an example for creating application.xml. Note that the items are set in application.xml
because a Web Service does not exist.

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "wsgen"</description>
 <display-name>Sample_application_wsgen</display-name>
 <module>
 <web>
 <web-uri>wsgen.war</web-uri>
 <context-root>wsgen</context-root>
 </web>
 </module>
</application>

When creating web.xml of the version 5, specify 5 in the version attribute of the application element and
specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second location
information in the xsd:schemaLocation attribute.

6. Examples of Development Starting from SEI (Using the cjwsgen Command)

90

The created application.xml is stored in the c:\temp\jaxws\works\wsgen\server\META-INF
\directory in UTF-8 format. For notes on creating application.xml, see 5.2.2 Notes on editing
application.xml in the uCosminexus Application Server Application Development Guide.

6.3.5 Creating EAR files
Use the jar command to create an EAR file containing the files created until now.

> cd c:\temp\jaxws\works\annotations\server\
> jar cvf wsgen.war .\WEB-INF
> jar cvf wsgen.ear .\wsgen.war .\META-INF\application.xml

If the jar command is terminated successfully, wsgen.ear is created in the c:\temp\jaxws\works\wsgen
\server\ directory.

For the jar command, see the JDK documentation.

6. Examples of Development Starting from SEI (Using the cjwsgen Command)

91

6.4 Examples of deployment and startup (Starting from
SEI and the cjwsgen command)

This section describes the examples of deployment and startup using the cjwsgen command, with SEI as the starting
point.

6.4.1 Deploying EAR files
Use the cjimportapp command to deploy the created EAR file on the J2EE server.

The following is an example of deployment:

> cd c:\temp\jaxws\works\wsgen\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f annotations.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

6.4.2 Starting Web Services
Use the cjstartapp command to start the Web Service.

The following is an example for starting the Web Service:

> cd c:\temp\jaxws\works\wsgen\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver -nameserver
corbaname::testserver:900 -name Sample_application_annotations

For the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus Application Server
Command Reference Guide.

For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications in
the uCosminexus Application Server Management Portal User Guide.

6. Examples of Development Starting from SEI (Using the cjwsgen Command)

92

6.5 Development examples of Web Services clients
(Starting from SEI and the cjwsgen command)

This section describes the examples for developing a Web Service client using the cjwsgen command, with SEI as
the starting point.

6.5.1 Creating service classes
If you execute the cjwsimport command, the Java source, such as service class, required for Web Service client
development, will be created. For the cjwsimport command, see 14.1 cjwsimport command.

The following is an example of the execution of the cjwsimport command:

> cd c:\temp\jaxws\works\wsgen\client\
> mkdir src\
> mkdir classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes http://webhost:8085/
wsgen/AddNumbersImplService?wsdl

If the cjwsimport command is terminated successfully, the Java source is created in the c:\temp\jaxws
\works\wsgen\client\src\com\example\sample\directory. Note that com\example\sample\
(directory-path-corresponding-to-the-package) changes as per the coding of the namespace URI. For the mapping
between namespace URIs and packages, see 15.1.1 Mapping a namespace to a package name.

The following table lists the products:

Table 6‒4: Products during service class generation (Starting from SEI and the cjwsgen command)

File name Description

JaxWsTest1.java This is a JavaBean class corresponding to type referenced by the wrapper
element of the request message for 'Operation' in the WSDL definition.

JaxWsTest1Response.java This is a JavaBean class corresponding to type referenced by the wrapper
element of the response message for 'Operation' in the WSDL definition.

ObjectFactory.java This is the ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is the package-info.java file.

TestJaxWs.java This is SEI corresponding to 'Service' in the WSDL definition.

TestJaxWsService.java This is the service class.

AddNumbersFault.java This is the JavaBean class corresponding to AddNumbersFault.

AddNumbersFault_Exception.java This is the wrapper exception class of the fault bean.

The file names JaxWsTest1, TestJaxWs and TestJaxWsService change according to the coding of the local
name for operation, local name for port type, and local name for services. For the mapping of a local name for
operation, local name for port type, and local name for services see the following sections:

• 15.1.2 Mapping a port type to a SEI name

• 15.1.3 Mapping an operation to a method name

• 15.1.4 Mapping the message part to the parameter and the return value (For wrapper style)

• 15.1.5 Mapping the message part to the parameter and the return value (For non-wrapper style)

6.5.2 Creating Implementation Classes for Web Services clients
Create an implementation class for the Web Service client that uses the Web Service.

6. Examples of Development Starting from SEI (Using the cjwsgen Command)

93

The following is an example for creating a Web Service client that invokes the Web Service once:

package org.example.sample.client;

import org.example.sample.TestJaxWs;
import org.example.sample.TestJaxWsService;
import org.example.sample.AddNumbersFault_Exception;

public class TestClient {
 public static void main(String[] args) {
 try {
 TestJaxWsService service = new TestJaxWsService();
 TestJaxWs port = service.getTestJaxWs();

 int returnValue = port.jaxWsTest1(205, 103);

 System.out.println("[RESULT] " + returnValue);
 }
 catch(AddNumbersFault_Exception e){
 e.printStackTrace();
 }
 }

}

The created TestClient.java is stored in the c:\temp\jaxws\works\wsgen\client\src\com
\example\sample\client\ directory with the UTF-8 format.

Note that org.example.sample, TestJaxWs, TestJaxWsService, and jaxWsTest1 change according to
the package name, class name, and method name in the class of the generated Java source. When you want to develop
a Web Service with a different configuration, you must review and if necessary revise the coding of the package
name, class name, and the method name in the class.

6.5.3 Compiling Implementation Classes for Web Services clients
Use the javac command to compile the created Web Services client.

The following is an example of compilation:

> cd c:\temp\jaxws\works\wsgen\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\org\example\sample\client\TestClient.java

If the javac command is terminated successfully, the TestClient.class is generated in the c:\temp\jaxws
\works\wsgen\client\classes\org\example\sample\client\directory.

For the javac command, see the JDK documentation.

6. Examples of Development Starting from SEI (Using the cjwsgen Command)

94

6.6 Examples of executing Web Services (starting from
SEI and the cjwsgen command)

This section describes the examples of executing Web Service clients using the cjwsgen command, with SEI as the
starting point.

6.6.1 Creating option definition files for Java applications
Create an option definition file for Java applications (usrconf.cfg) required for executing Web Services.

The following is an example for creating the option definition file for Java applications:

add.class.path=Cosminexus-installation-directory\jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home=Cosminexus-installation-directory
add.jvm.arg=-Dejbserver.server.prf.PRFID=PRF-ID

For the Cosminexus-installation-directory part, use the absolute path to specify the path where Cosminexus is
installed.

The created option definition file for Java applications is stored in the c:\temp\jaxws\works\annotations
\client\directory. For the option definition file for Java applications, see 14.2 usrconf.cfg (Option definition
file for Java applications) in the uCosminexus Application Server Definition Reference Guide.

6.6.2 Creating user property files for Java applications
Create a user property file for Java applications required for executing a Web Service.

Since the settings are not specially changed, create an empty file named usrconf.properties in c:\temp
\jaxws\works\wsgen\client\directory. For the user property file for Java applications, see 14.3
usrconf.properties (User property file for Java applications) in the uCosminexus Application Server Definition
Reference Guide.

6.6.3 Executing Web Services clients
Use the cjclstartap command to execute Web Service client.

The following is an example for executing a Web Service client:

> cd c:\temp\jaxws\works\wsgen\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" org.example.sample.client.TestClient

If the cjclstartap command is terminated successfully, the results of Web Service client execution are displayed.
Following is an example for displaying the execution results:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\wsgen\client, PID = 2636)
[RESULT] 308
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in italics changes according to the execution timing and environment.

For the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application Server
Command Reference Guide.

6. Examples of Development Starting from SEI (Using the cjwsgen Command)

95

7 Examples of Development Starting
from SEI (For Customization)
This chapter describes examples of the customization of Web Services starting from
SEI.

97

7.1 Configuration examples for development (Starting
from SEI and customization)

Referencing the development examples described in this chapter, develop the Web Services starting from SEI. Use
annotations to customize the Web Service to be developed.

The following table describes the configuration of the Web Service to be developed:

Table 7‒1: Web Service configuration (Starting from SEI and customization)

No. Item Value

1 Name of the J2EE server to be deployed jaxwsserver

2 Host name and port number of the Web server webhost:8085

3 URL of the naming server corbaname::testserver:900

4 Context root annotations_dynamic_generate

5 Style document/literal/wrapped

6 Namespace URI http://example.org/sample

7 Port type Number 1

8 Local name TestJaxWs

9 Operation Number 1

10 Local name jaxWsTest1

11 Service Number 1

12 Local name TestJaxWsService

13 Port Number 1

14 Local name testJaxWs

15 Web Service Implementation Class com.sample.AddNumbersImpl

16 Method published in the Web
Service Implementation Class

Number 1

17 Local name add

18 Exception thrown in the
methods in Web Service
implementation

Number 1

19 Local name com.sample.AddNumbersFault

The following table describes the configuration of the current directory when developing Web Services.

Table 7‒2: Configuration of the current directory (Starting from SEI or customization)

Directory Description

c:\temp\jaxws\works
\annotations

This is the current directory.

server\ Used for Web Service development.

META-INF\ Corresponds to the META-INF directory of the EAR file.

application.xml Created in 7.3.4 Creating application.xml.

src\ Stores the source file (*.java) for the Web Service.

Used in 7.3.1 Creating Web Services Implementation Class and 7.3.2 Compiling
Web Services Implementation Class.

7. Examples of Development Starting from SEI (For Customization)

98

Directory Description

WEB-INF\ Corresponds to the WEB-INF directory of the WAR file.

web.xml Created in 7.3.3 Creating web.xml.

classes\ Stores the compiled class file (*.class). Used in 7.3.2 Compiling Web
Services Implementation Class.

annotations_dynamic_gen
erate.ear

Created in 7.3.5 Creating an EAR file.

annotations_dynamic_gen
erate.war

client\ Used for the development of the Web Service client.

src\ Stores the source file (*.java) of the Web Service client. Used in 7.5.1
Creating a service class and 7.5.2 Creating an implementation class for the Web
Service client.

classes\ Stores the compiled class file (*.class). Used in 7.5.3 Compiling the
implementation class for the Web Service client.

usrconf.cfg Created in 7.6.1 Creating an option definition file for Java applications.

usrconf.properties Created in 7.6.2 Creating a user property file for Java applications.

Change the current directory path according to the environment to be developed.

Note that the directory and file names listed in the above table will be used in the description hereafter. The parts in
bold in the command execution examples and in the Java source indicate the specified values and the generated values
that are used in examples. Read according to the environment you want to build.

Also, in the development examples described in this chapter, the Web Service and Web Service client will be
developed in the same environment, but you can also develop them in different environments. For developing Web
Services and Web Service clients in different environments, read the current directory path suitable to the respective
environments.

7. Examples of Development Starting from SEI (For Customization)

99

7.2 Flow of development examples (Starting from SEI
and customization)

In the development examples described in this chapter, the flow of customization and execution is as follows:

Developing Web Services

1. Creating Web Services Implementation Class (7.3.1)

2. Compiling Web Services Implementation Class (7.3.2)

3. Creating web.xml (7.3.3)

4. Creating application.xml (7.3.4)

5. Creating an EAR file (7.3.5)

Deploying and starting

1. Deploying EAR files (7.4.1)

2. Starting Web Services (7.4.2)

Developing a Web Service client

1. Executing the cjwsimport command and generating a service class (7.5.1)

2. Creating the implementation class for Web Service clients (7.5.2)

3. Compiling the implementation class for Web Service clients (7.5.3)

Executing a Web Service

1. Creating the option definition file for Java applications (7.6.1)

2. Creating the user property file for Java applications (7.6.2)

3. Executing the Web Service client (7.6.3)

7. Examples of Development Starting from SEI (For Customization)

100

7.3 Examples of developing Web Services (Starting from
SEI or customization)

This section describes examples of the development of Web Services (customized) starting from SEI.

7.3.1 Creating Web Services Implementation Class
Create a Web Service Implementation Class that codes the processing of the Web Service. In this subsection, calculate
the contents of the received request message and create the Web Service Implementation Class that returns the
response message.

The following is an example of creating a Web Service Implementation Class for SOAP 1.1. The created
AddNumbersImpl.java file is saved in the c:\temp\jaxws\works\annotations\server\src\com
\sample\ directory with the UTF-8 format.

package com.sample;

@javax.jws.WebService(name = "TestJaxWs",
 targetNamespace = "http://example.org/sample",
 serviceName = "TestJaxWsService", portName = "testJaxWs")
@javax.xml.ws.BindingType(javax.xml.ws.soap.SOAPBinding.SOAP11HTTP_BINDING)
@javax.jws.soap.SOAPBinding(style = javax.jws.soap.SOAPBinding.Style.DOCUMENT, use =
javax.jws.soap.SOAPBinding.Use.LITERAL)
public class AddNumbersImpl{

 @javax.jws.WebMethod(operationName = "jaxWsTest1")
 @javax.jws.WebResult(name = "return")
 public int add(@javax.jws.WebParam(name="num1")int number1,
@javax.jws.WebParam(name="num2")int number2) throws AddNumbersFault{

 if((number1 < 0) || (number2 < 0)){
 throw new AddNumbersFault("Negative number cannot be added!",
 "Numbers: " + number1 + ", " + number2);
 }
 return number1 + number2;
 }

}

The exception class com.sample.AddNumbersFault thrown using com.sample.AddNumbersImplwill
also be created. Normally, the creation of the exception class is optional, but an exception class will be created here.

The following is an example of creating an exception class. The created AddNumbersFault.java file is saved in
the c:\temp\jaxws\works\annotations\server\src\com\sample\ directory with the UTF-8 format.

package com.sample;

public class AddNumbersFault extends Exception {

 String detail;

 public AddNumbersFault(String message, String detail){
 super(message);
 this.detail = detail;
 }

 public String getDetail(){
 return detail;
 }
}

The following is an example of creating a Web Service Implementation Class for SOAP 1.2:

package com.sample;

@javax.jws.WebService(name = "TestJaxWs",
 targetNamespace = "http://example.org/sample",
 serviceName = "TestJaxWsService", portName = "testJaxWs")
@javax.xml.ws.BindingType(javax.xml.ws.soap.SOAPBinding.SOAP12HTTP_BINDING)

7. Examples of Development Starting from SEI (For Customization)

101

@javax.jws.soap.SOAPBinding(style = javax.jws.soap.SOAPBinding.Style.DOCUMENT, use =
javax.jws.soap.SOAPBinding.Use.LITERAL)
public class AddNumbersImpl{

 @javax.jws.WebMethod(operationName = "jaxWsTest1")
 @javax.jws.WebResult(name = "return")
 public int add(@javax.jws.WebParam(name="num1")int number1,
@javax.jws.WebParam(name="num2")int number2) throws AddNumbersFault{

 if((number1 < 0) || (number2 < 0)){
 throw new AddNumbersFault("Negative number cannot be added!",
 "Numbers: " + number1 + ", " + number2);
 }
 return number1 + number2;
 }

}

7.3.2 Compiling Web Services Implementation Class
Execute the javac command to compile Web Services Implementation Class. For details on the javac command,
see the JDK documentation.

The following is an example of the execution of the javac command.

> cd c:\temp\jaxws\works\annotations\server\
> mkdir .\WEB-INF\classes\
> javac -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%\CC\client\lib
\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib\csmstax.jar" -d WEB-INF\classes\ -s src src
\com\sample\AddNumbersImpl.java src\com\sample\AddNumbersFault.java

The compiled classes are output to c:\temp\jaxws\works\addressing\server\WEB-INF\classes
\com\sample\directory, if the javac command successfully ends. When you execute the cjwsgen
command for the compiled Web Services Implementation Class, you can check for errors in advance. For details on
the cjwsgen command, see 14.3 cjwsgen command, and for details on the error check, see 10.23 (1) Using the
cjwsgen command for checking errors.

7.3.3 Creating web.xml
Create the web.xml file that is required as a WAR file component.

The following is an example of creating web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3.0.xsd">
 <description>Sample web service "annotations_dynamic_generate "</
description>
 <display-name>Sample_web_service_annotations_dynamic_generate </display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/TestJaxWsService</url-pattern>
 </servlet-mapping>
 <session-config>

7. Examples of Development Starting from SEI (For Customization)

102

 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

The created web.xml is saved in the c:\temp\jaxws\works\annotations\server\WEB-INF\ directory
with the UTF-8 format. For the web.xml settings, see the section 3.4 Creating web.xml.

7.3.4 Creating application.xml
Create the application.xml file that is required as an EAR file component.

The following is an example of creating application.xml. Note that the items are set in application.xml
because a Web Service does not exist.

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "annotations_dynamic_generate "</
description>
 <display-name>Sample_application_annotations_dynamic_generate </display-name>
 <module>
 <web>
 <web-uri>annotations_dynamic_generate.war</web-uri>
 <context-root>annotations_dynamic_generate </context-root>
 </web>
 </module>
</application>

When creating web.xml of version 5, specify 5 in the version attribute of the application element and
specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second location
information in the xsd:schemaLocation attribute.

The created application.xml file is saved in the c:\temp\jaxws\works\annotations\server
\META-INF\ directory with the UTF-8 format. For notes on creating application.xml, see 5.2.2 Notes on
editing application.xml in the uCosminexus Application Server Application Development Guide.

7.3.5 Creating an EAR file
Use the jar command to create EAR files containing the files created until now.

> cd c:\temp\jaxws\works\annotations\server\
> jar cvf annotations_dynamic_generate.war .\WEB-INF
> jar cvf annotations_dynamic_generate.ear .\annotations_dynamic_generate.war .\META-
INF\application.xml

If the jar command is terminated successfully, annotations_dynamic_generate.ear is created under the
c:\temp\jaxws\works\annotations\server\ directory.

For the jar command, see the JDK documentation.

7. Examples of Development Starting from SEI (For Customization)

103

7.4 Examples of deployment and startup (Starting from
SEI or customization)

This section describes examples of the deployment and startup, starting from SEI.

7.4.1 Deploying EAR files
Use the cjimportapp command to deploy the created EAR file on the J2EE server.

The following is an example of deployment:

> cd c:\temp\jaxws\works\annotations\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f annotations_dynamic_generate.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

7.4.2 Starting Web Services
Use the cjstartapp command to start the Web Service.

The following is an example of starting the Web Service:

> cd c:\temp\jaxws\works\annotations\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver -nameserver
corbaname::testserver:900 -name Sample_application_annotations_dynamic_generate

For the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus Application Server
Command Reference Guide..

For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications in
the uCosminexus Application Server Management Portal User Guide.

7. Examples of Development Starting from SEI (For Customization)

104

7.5 Examples of developing Web Service clients
(Starting from SEI or customization)

This section describes the examples of the customization of Web Service clients, starting from SEI.

7.5.1 Creating a service class
If you execute the cjwsimport command, the Java sources, such as service class, required for Web Service client
development will be created. For the cjwsimport command, see 14.1 cjwsimport command.

The following is an example of the execution of the cjwsimport command:

> cd c:\temp\jaxws\works\annotations\client\
> mkdir src\
> mkdir classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes http://webhost:8085/
annotations_dynamic_generate /TestJaxWsService?wsdl

If the cjwsimport command is terminated successfully, the Java source is created in the c:\temp\jaxws
\works\annotations\client\src\com\example\sample\ directory. Note that com\example
\sample\(directory-path-corresponding-to-the-package) changes as per the coding of the namespace URI. For the
mapping between namespace URIs and packages, see 15.1.1 Mapping a namespace to a package name.

The following table lists and describes the products:

Table 7‒3: Products during service class generation (Starting from SEI or customization)

File name Description

JaxWsTest1.java This is a JavaBean class corresponding to type referenced by the wrapper
element of the request message for 'Operation' in the WSDL definition.

JaxWsTest1Response.java This is a JavaBean class corresponding to type referenced by the wrapper
element of the response message for 'Operation' in the WSDL definition.

ObjectFactory.java This is the ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is the package-info.java file.

TestJaxWs.java This is SEI corresponding to 'Service' in the WSDL definition.

TestJaxWsService.java This is the service class.

AddNumbersFault.java This is the JavaBean class corresponding to AddNumbersFault.

AddNumbersFault_Exception.java This is the wrapper exception class of the fault bean.

The file names JaxWsTest1, TestJaxWs and TestJaxWsService change according to the coding of the local
name for operation, local name for port type, and local name for services. For the mapping of a local name for
operation, local name for port type, and local name for services see the following sections:

• 15.1.2 Mapping a port type to a SEI name

• 15.1.3 Mapping an operation to a method name

• 15.1.4 Mapping a message part to a parameter and return value (For wrapper style)

• 15.1.5 Mapping a message part to a parameter and return value (For non-wrapper style)

7.5.2 Creating an implementation class for the Web Service client
Create an implementation class for the Web Service client that uses the Web Service.

The following is an example of creating a Web Service client that invokes the Web Service once:

7. Examples of Development Starting from SEI (For Customization)

105

package org.example.sample.client;

import org.example.sample.TestJaxWs;
import org.example.sample.TestJaxWsService;
import org.example.sample.AddNumbersFault_Exception;

public class TestClient {
 public static void main(String[] args) {
 try {
 TestJaxWsService service = new TestJaxWsService();
 TestJaxWs port = service.getTestJaxWs();

 int returnValue = port.jaxWsTest1(205, 103);

 System.out.println("[RESULT] " + returnValue);
 }
 catch(AddNumbersFault_Exception e){
 e.printStackTrace();
 }
 }

}

The created TestClient.java is stored in the c:\temp\jaxws\works\annotations\client\src
\com\example\sample\client\directory in UTF-8 format.

Note that org.example.sample, TestJaxWs, TestJaxWsService, and jaxWsTest1 change according to
the package name, class name, and method name in the class of the generated Java source. When you want to develop
a Web Service with a different configuration, you must review and if necessary revise the coding of the package
name, class name, and the method name in the class.

7.5.3 Compiling the implementation class for the Web Service client
Use the javac command to compile the created Web Service client.

The following is an example of compilation:

> cd c:\temp\jaxws\works\annotations\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\org\example\sample\client\TestClient.java

If the javac command is terminated successfully, the TestClient.class file is generated in the c:\temp
\jaxws\works\annotations\client\classes\org\example\sample\client\ directory.

For the javac command, see the JDK documentation.

7. Examples of Development Starting from SEI (For Customization)

106

7.6 Examples for executing Web Services (Starting from
SEI or customization)

This section describes the execution example of the customization of Web Service clients starting from SEI.

7.6.1 Creating an option definition file for Java applications
Create an option definition file for Java applications (usrconf.cfg) required for executing Web Services.

The following is an example of creating the option definition file for Java applications:

add.class.path=Cosminexus-installation-directory\jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home=Cosminexus-installation-directory
add.jvm.arg=-Dejbserver.server.prf.PRFID=PRF-ID

For the Cosminexus-installation-directory part, use the absolute path to specify the path where Cosminexus is
installed.

The created option definition file for Java applications is stored in the c:\temp\jaxws\works\annotations
\client\directory. For the option definition file for Java applications, see 14.2 usrconf.cfg (Option definition
file for Java applications) in the uCosminexus Application Server Definition Reference Guide.

7.6.2 Creating a user property file for Java applications
Create a user property file for Java applications required for executing a Web Service.

Since the settings are not specially changed, create an empty file named usrconf.properties under c:\temp
\jaxws\works\annotations\client\directory. For the user property file for Java applications, see 14.3
usrconf.properties (User property file for Java applications) in the uCosminexus Application Server Definition
Reference Guide.

7.6.3 Executing Web Service clients
Use the cjclstartap command to execute Web Service client.

The following is an example of executing a Web Service client:

> cd c:\temp\jaxws\works\annotations\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" org.example.sample.client.TestClient

If the cjclstartap command is terminated successfully, the results of the Web Service client execution are
displayed. The following is an example of displaying the execution results:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\annotations\client, PID = 2636)
[RESULT] 308
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in italics changes according to the execution timing and environment.

For the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application Server
Command Reference Guide.

7. Examples of Development Starting from SEI (For Customization)

107

8 Examples of the Development
Starting from SEI (For EJB Web
Services)
This chapter describes examples of the development of EJB Web Services starting
from SEI.

109

8.1 Configuration of the development examples (Starting
from SEI and EJB Web Services)

This chapter describes an example of developing a Web Service starting from SEI. Although this section describes a
stub-based development example, you can perform dispatch-based or API-based development of Web Services.

The following table describes the configuration of Web Services to be developed:

Table 8‒1: Web Service configuration (Starting from SEI)

Sr.No. Item Value

1 Name of the J2EE server to be deployed jaxwsserver

2 Host name and port number of the Web Server webhost:8085

3 URL of the naming server corbaname::testserver:900

4 Context root statelessjava_dynamic_generate

5 Style document/literal/wrapped

6 Namespace URI http://sample.com

7 Port type Count 1

8 Local name AddNumbersImpl

9 Operation Count 1

10 Local name add

11 Service Count 1

12 Local name AddNumbersImplService

13 Port Count 1

14 Local name AddNumbersImplPort

15 Web Service Implementation Class com.sample.AddNumbersImpl

16 Method that is to be made
public in the Web Service
Implementation Class

Count 1

17 Method name add

18 Exceptions thrown in the
methods used in Web Service
implementation

Count 1

19 Class name com.sample.AddNumbersFault

The following table describes the configuration of the current directory used in the Web Service development.

Table 8‒2: Configuration of the current directory (Starting from SEI)

Directory Description

c:\temp\jaxws\works
\statelessjava

This is the current directory.

server\ This is used in the Web Service development.

META-INF\ Corresponds to the META-INF directory of the EAR file.

application.xml Created in 8.3.3 Creating application.xml

src\ Stores the source files (*.java) of the Web Service. Used in

8.3.1 Creating Web Services Implementation Class and 8.3.2 Compiling Web
Services Implementation Class.

8. Examples of the Development Starting from SEI (For EJB Web Services)

110

Directory Description

jar\ Stores the compiled class files (*.class). Used in 8.3.1 Creating Web Services
Implementation Class and 8.3.2 Compiling Web Services Implementation Class.

WEB-INF\ Corresponds to the WEB-INF directory of the EJB JAR files.

wsdl\ Created in 8.3.4 Creating a WSDL file (optional).

statelessjava_dynamic_g
enerate.ear

Created in 8.3.5 Creating EAR files.

statelessjava_dynamic_g
enerate.war

client\ This is used in the Web Service client development.

src\ Stores the source files (*.java) of the Web Service client. Used in 8.5.1
Generating a service class and 8.5.2 Creating an Implementation Class for the
Web Service client.

classes\ Stores the compiled class files (*.class). Used in 8.5.3 Compiling the
Implementation Class for the Web Service client.

usrconf.cfg Created in 8.6.1 Creating an option definition file for Java applications.

usrconf.properties Created in 8.6.2 Creating a user property file for Java applications.

Change the current directory path according to the development environment.

Note that the description below uses the directory and files names mentioned in the above table. The values in bold
used in the command execution examples or Java source are the values that are specified or generated in the examples
used within this document. Use appropriate values according to the environment to be built.

Furthermore, in the development example described in this chapter, the Web Service and Web Service client are
developed in the same environment; however, they can be developed in different environments. To develop the Web
Service and Web Service client in separate environments, you must change the current directory path according to the
respective environment.

8. Examples of the Development Starting from SEI (For EJB Web Services)

111

8.2 Procedure for the development examples (Starting
from SEI and EJB Web Service)

In the development examples described in this chapter, the procedure for development and execution is as follows:

Developing a Web Service

1. Create Web Services Implementation Class (8.3.1)

2. Compiling Web Services Implementation Class (8.3.2)

3. Create an application.xml file (8.3.3)

4. Create a WSDL file (optional) (8.3.4)

5. Create an EAR file (8.3.5)

Deploying and starting the service

1. Deploy the EAR file (8.4.1)

2. Start the Web Service (8.4.2)

Developing the Web Service client

1. Execute the cjwsimport command and generate a service class (8.5.1)

2. Create an Implementation Class for Web Service client (8.5.2)

3. Compile the Implementation Class for Web Service client (8.5.3)

Executing the Web Service

1. Create an option definition file for Java applications (8.6.1)

2. Create a user property file for Java applications (8.6.2)

3. Execute the Web Service client (8.6.3)

8. Examples of the Development Starting from SEI (For EJB Web Services)

112

8.3 Example of Web Service development (Starting from
SEI and EJB Web Service)

This section describes an example of developing an EJB Web Service starting from SEI.

8.3.1 Creating Web Services Implementation Class(starting from SEI and
EJB Web Service)

Create a Web Service Implementation Class that codes the processing of the Web Service.

In this subsection, calculate the contents of the received request message and create a Web Service Implementation
Class that returns a response message. Save the created AddNumbersImpl.java to the c:\temp\jaxws
\works\statelessjava\server\src\com\sample\ directory in UTF-8 format.

package com.sample;

@javax.ejb.Stateless
@javax.jws.Web Service
public class AddNumbersImpl{

 public int add(int number1, int number2) throws AddNumbersFault{

 if((number1 < 0) || (number2 < 0)){
 throw new AddNumbersFault("Negative number cannot be added!",
 "Numbers: " + number1 + ", " + number2);
 }
 return number1 + number2;
 }

}

Also, create an exception class com.sample.AddNumbersFault thrown in
com.sample.AddNumbersImpl. Usually, creating the exception class is optional. We will however, create the
exception class in this example.

The following is an example of creating an exception class. Save the created AddNumbersFault.java in the c:
\temp\jaxws\works\statelessjava\server\src\com\sample\ directory in UTF-8 format.

package com.sample;

public class AddNumbersFault extends Exception {

 String detail;

 public AddNumbersFault(String message, String detail){
 super(message);
 this.detail = detail;
 }

 public String getDetail(){
 return detail;
 }
}

8.3.2 Compiling Web Services Implementation Class
Execute the javac command to compile Web Services Implementation Class. For details on the javac command,
see the JDK documentation.

The following is an example of the execution of the javac command.

> cd c:\temp\jaxws\works\statelessjava\server\
> mkdir .\WEB-INF\classes\
> javac -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%\CC\client\lib
\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;%COSMINEXUS_HOME%\jaxp\lib

8. Examples of the Development Starting from SEI (For EJB Web Services)

113

\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib\csmstax.jar" -d jar\ -s src src\com\sample
\AddNumbersImpl.java src\com\sample\AddNumbersFault.java

On successful execution of the javac command, the compiled classes are output to the c:\temp\jaxws\works
\statelessjava\server\WEB-INF\classes\com\sample\ directory. When you execute the cjwsgen
command for the compiled Web Services Implementation Class, you can check the errors in advance. For details on
the cjwsgen command, see 14.3 cjwsgen command and for the error check, see 10.23(1) Using the cjwsgen
command for checking errors.

8.3.3 Creating application.xml
Create the application.xml file that is required as an EAR file component.

The following is an example of creating an application.xml file. Note that there is no item to be set as Web
Service in the application.xml.

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "statelessjava_dynamic_generate "</
description>
 <display-name>Sample_application_statelessjava_dynamic_generate </display-name>
 <module>
 <ejb>statelessjava_dynamic_generate.jar</ejb>
 </module>

When creating web.xml of version 5, specify 5 in the version attribute of the application element and
specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second location
information in the xsd:schemaLocation attribute.

Save the created application.xml in the c:\temp\jaxws\works\statelessjava\server\META-
INF\ directory in UTF-8 format. For notes on creating application.xml, see 5.2.2 Notes on editing
application.xml in the uCosminexus Application Server Application Development Guide.

8.3.4 Creating a WSDL file (optional)
Creation of a WSDL file during the development starting from SEI is optional, and if a file is created, include that file
in an EAR file. This subsection describes an example of executing the WSDL generation functionality of the
cjwsgen command to create a WSDL file from the compiled Java sources. For the cjwsgen command, see 14.3
cjwsgen command.

The following is an example of executing the cjwsgen command:

> cd c:\temp\jaxws\works\statelessjava\server\
> mkdir .\jar\META-INF\wsdl\
> mkdir .\temporary
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsgen.bat"
-d .\temporary -cp .\jar com.sample.AddNumbersImpl
> rmdir /S /Q .\temporary

On successful termination of the cjwsgen command, a resource file is generated in the c:\temp\jaxws\works
\statelessjava\META-INF\wsdl\ directory. The following table lists the generated products:

Table 8‒3: Products generated when the cjwsgen command is executed

File name Description

AddNumbersImplService.wsdl This is a WSDL file corresponding to the specified Java source.

AddNumbersImplService_schema1.xsd This is an XML Schema definition referenced from the WSDL file.

8. Examples of the Development Starting from SEI (For EJB Web Services)

114

Delete the files generated in the c:\temp\jaxws\works\statelessjava\temporary\ directory as the
files are not required.

8.3.5 Creating EAR files
Use the jar command to create an EAR file that includes the files created until now.

The following is an example of creating an EAR file:

> cd c:\temp\jaxws\works\statelessjava\server\
> jar cvf statelessjava_dynamic_generate.jar -C jar com
> jar cvf statelessjava_dynamic_generate.ear .\statelessjava_dynamic_generate.jar .
\META-INF\application.xml

On successful termination of the jar command, statelessjava_dynamic_generate.ear is created in the
c:\temp\jaxws\works\statelessjava\server\ directory. For the jar command, see the JDK
documentation.

8. Examples of the Development Starting from SEI (For EJB Web Services)

115

8.4 Examples of deployment and startup (Starting from
SEI and EJB Web Service)

This section describes the examples of deployment and startup of services for the development starting from SEI.

8.4.1 Deploying EAR files
Use the cjimportapp command to deploy the created EAR file to the J2EE server.

The following is an example of deployment:

> cd c:\temp\jaxws\works\statelessjava\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f statelessjava_dynamic_generate.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

8.4.2 Starting Web Services
Use the cjstartapp command to start the Web Service.

The following is an example of starting the Web Service:

> cd c:\temp\jaxws\works\statelessjava\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver -nameserver
corbaname::testserver:900 -name Sample_application_statelessjava_dynamic_generate

For the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus Application Server
Command Reference Guide.

For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications in
the uCosminexus Application Server Management Portal User Guide.

8. Examples of the Development Starting from SEI (For EJB Web Services)

116

8.5 Examples of Web Service client development
(Starting from SEI and EJB Web Service)

This section describes examples of Web Service clients development starting from SEI.

8.5.1 Generating a service class
If you execute the cjwsimport command, the Java source, such as a service class that is required for Web Service
client development, is generated. For the cjwsimport command, see 14.1 cjwsimport command.

The following is an example of executing the cjwsimport command:

> cd c:\temp\jaxws\works\statelessjava\client\
> mkdir src\
> mkdir classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes http://webhost:8085/
statelessjava_dynamic_generate /AddNumbersImplService?wsdl

On successful termination of the cjwsimport command, the Java source is generated in the c:\temp\jaxws
\works\statelessjava\client\src\com\sample\ directory. Note that the directory path com\sample\
(the directory path corresponding to the package) changes according to the coding of the namespace URI. For
mapping between namespace URIs and packages, see 15.1.1 Mapping a namespace to a package name.

The following table lists the generated products:

Table 8‒4: Products generated when the service class is generated (starting from SEI)

File name Description

Add.java This is a JavaBean class corresponding to the type referenced by the
wrapper element of the request message for "Operation" in the WSDL
definition.

AddResponse.java This is a JavaBean class corresponding to the type referenced by the
wrapper element of the response message for "Operation" in the WSDL
definition.

ObjectFactory.java This is an ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is the package-info.java file.

AddNumbersImpl.java This is the SEI corresponding to the "Service" of the WSDL definition.

AddNumbersImplService.java This is a service class.

AddNumbersFault.java This is a JavaBean class corresponding to AddNumbersFault.

AddNumbersFault_Exception.java This is a wrapper exception class of the fault bean.

The file names Add, AddNumbersImpl, and AddNumbersImplService change according to the coding of the
local name for operation, local name for port type, and local name for services. For the mapping of a local name for
operation, local name for port type, and local name for services see the following sections:

• 15.1.2 Mapping a port type to a SEI name

• 15.1.3 Mapping an operation to a method name

• 15.1.4 Mapping a message part to a parameter and return value (For wrapper style)

• 15.1.5 Mapping a message part to a parameter and return value (For non-wrapper style)

8.5.2 Creating an Implementation Class for the Web Services client
Create an Implementation Class for the Web Service client that uses Web Services.

8. Examples of the Development Starting from SEI (For EJB Web Services)

117

The following is an example of creating Web Service clients that invoke Web Services once:

package com.sample.client;

import com.sample.AddNumbersImpl;
import com.sample.AddNumbersImplService;
import com.sample.AddNumbersFault_Exception;

public class TestClient {
 public static void main(String[] args) {
 try {
 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbersImpl port = service.getAddNumbersImplPort();

 int returnValue = port.add(205, 103);

 System.out.println("[RESULT] " + returnValue);
 }
 catch(AddNumbersFault_Exception e){
 e.printStackTrace();
 }
 }

}

Save the created TestClient.java in the c:\temp\jaxws\works\statelessjava\client\src\com
\sample\client\ directory in UTF-8 format.

Note that com.sample, AddNumbersImpl, AddNumbersImplService, AddNumbersImplPort, and add
change according to the package name, class name, and method name in the class of the generated Java sources. When
you want to develop a Web Service with a different configuration, you must review, and if necessary revise, the
coding of the package name, class name, and the method name in the class.

8.5.3 Compiling the Implementation Class for the Web Services client
Use the javac command to compile the created Web Service client.

The following is an example of compilation:

> cd c:\temp\jaxws\works\statelessjava\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\com\sample\client\TestClient.java

On successful termination of the javac command, the TestClient.class is generated in the c:\temp
\jaxws\works\statelessjava\client\classes\com\sample\client\ directory. For the javac
command, see the JDK documentation.

8. Examples of the Development Starting from SEI (For EJB Web Services)

118

8.6 Examples of executing Web Services (Starting from
SEI and EJB Web Service)

This section describes examples of Web Service client execution starting from SEI.

8.6.1 Creating an option definition file for Java applications
Create an option definition file for Java applications (usrconf.cfg) required for executing the Web Service.

The following is an example of creating the option definition file for Java applications:

add.class.path=Cosminexus-Installation-directory \jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home= Cosminexus-installation-directory
add.jvm.arg=-Dejbserver.server.prf.PRFID=<PRF ID>

For the Cosminexus-installation-directory part, use the absolute path to specify the path where Cosminexus is
installed.

The created option definition file for Java applications is stored in the c:\temp\jaxws\works
\statelessjava\client\ directory. For the option definition file for Java applications, see 14.2
usrconf.cfg(Option definition file for Java applications) in the uCosminexus Application Server Definition Reference
Guide.

8.6.2 Creating a user property file for Java applications
Create a user property file for Java applications required for executing the Web Service.

As the settings are not particularly changed in this example, create a blank file named usrconf.properties in
the c:\temp\jaxws\works\statelessjava\client\ directory. For the user property file for Java
applications, see 15.3 usrconf.properties (User property file for Java applications) in the uCosminexus Application
Server Definition Reference Guide.

8.6.3 Executing the Web Services clients
Use the cjclstartap command to execute the Web Service client.

The following is an example of executing the Web Service client:

> cd c:\temp\jaxws\works\statelessjava\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" com.sample.client.TestClient

On successful termination of the cjclstartap command, the execution results of the Web Service client are
displayed. The following is an example of displaying the execution results:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\statelessjava\client, PID = 2636)
[RESULT] 308
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in italics changes according to the execution timing and environment.

For the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application Server
Command Reference Guide.

8. Examples of the Development Starting from SEI (For EJB Web Services)

119

9 Examples of Development Starting
from a Provider (using SAAJ)
This chapter describes the examples for developing Web Services using SAAJ, with a
provider as the starting point.

121

9.1 Configuration examples for development (Starting
from a provider and SAAJ)

With the development examples described in this chapter, use SAAJ for developing Web Services that send and
receive SOAP Messages, with a dispatch or a provider.

Note that this section describes an example in which the information about an employee number and an employee face
photographs is sent from a Web Service client. A Web Service registers the received information, and returns a
registration confirmation message. The Java data type of the employee number and the registration confirmation
message is java.lang.String, and the Java data type of the face photograph is
javax.activation.DataHandler.

The following table describes the configuration of Web Services to be developed:

Table 9‒1: Web Service configuration (Starting from a provider and SAAJ)

Item No. Item Value

1 Name of the J2EE server to be deployed jaxwsserver

2 Host name and port number of the Web Server webhost:8085

3 URL of the naming server corbaname::testserver:900

4 Context root dispatch_provider

5 Namespace URI http://sample.com

6 Service Number 1

7 Local name UserInfoService

8 Port Number 1

9 Local name UserInfoPort

The following table describes the configuration of the current directory for developing Web Services:

Table 9‒2: Configuration of the current directory (Starting from a provider and SAAJ)

Directory Description

c:\temp\jaxws\works
\dispatch_provider

This is the current directory.

server\ Used for developing a Web Service.

META-INF\ Corresponds to the META-INF directory of EAR files.

application.xml Created in 9.3.4 Creating application.xml.

src\ Saves the source file (*.java) of the Web Service. Used in 9.3.1
Creating Provider Implementation Classes.

WEB-INF\ Corresponds to the WEB-INF directory of WAR files.

web.xml Created in 9.3.3 Creating web.xml.

classes\ Saves the compiled class file (*.class). Used in 9.3.2 Generating Java
sources.

dispatch_provider.ear Created in 9.3.5 Creating EAR files.

dispatch_provider.war

client\ Used for developing a Web Service client.

9. Examples of Development Starting from a Provider (using SAAJ)

122

Directory Description

src\ Saves the source file (*.java) of the Web Service client.Created in 9.5.1
Creating an implementation class for the Web Service client.

classes\ Saves the compiled class file (*.class). Created in 9.5.2 Compiling the
Implementation Class for the Web Service client.

usrconf.cfg Created in 9.6.1 Creating option definition files for Java applications.

usrconf.properties Created in 9.6.2 Creating user property files for Java applications.

Change the current directory path according to the environment to be developed.

Note that the directory and file names listed in the above table will be used in the description hereafter. The parts in
the Bold font of the command execution examples and the Java source indicate the specified values and the generated
values used in the examples. Substitute the values according to the environment you want to build.

Also, in the development examples described in this chapter, a Web Service and a Web Service client are developed in
the same environment. However, you can also develop Web Services and Web Service clients in different
environments. For developing Web Services and Web Service clients in different environments, substitute the current
directory path corresponding to the respective environments.

9. Examples of Development Starting from a Provider (using SAAJ)

123

9.2 Procedure for the development examples (Starting
from a provider and SAAJ)

In the development examples described in this chapter, the procedure for development and execution is as follows:

Developing a Web Service

1. Creating a Provider Implementation Class (9.3.1)

2. Generating Java sources (9.3.2)

3. Creating web.xml (9.3.3)

4. Creating application.xml (9.3.4)

5. Creating an EAR file (9.3.5)

Deploying and starting

1. Deploying the EAR file (9.4.1)

2. Starting the Web Service (9.4.2)

Developing a Web Service client

1. Creating a Implementation Class for a Web Service client (9.5.1)

2. Compiling the Implementation Class for the Web Service client (9.5.2)

Executing the Web Service

1. Creating the option definition file for Java applications (9.6.1)

2. Creating the user property file for Java applications (9.6.2)

3. Executing the Web Service client (9.6.3)

9. Examples of Development Starting from a Provider (using SAAJ)

124

9.3 Examples of developing Web Services (Starting from
a provider and SAAJ)

This section describes the examples for developing Web Services using SAAJ, with a provider as the starting point.

9.3.1 Creating Provider Implementation Classes
The following is an example of creating a provider implementation class com.sample.UserInfoImpl. The
created class com.sample.UserInfoImpl is saved in the c:\temp\jaxws\works\dispatch_provider
\server\src\com\sample\ directory with the UTF-8 format.

package com.sample;

import java.util.Iterator;
import javax.xml.namespace.QName;
import javax.xml.soap.AttachmentPart;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.Provider;
@javax.xml.ws.WebServiceProvider(serviceName="UserInfoService")
@javax.xml.ws.ServiceMode(value=javax.xml.ws.Service.Mode.MESSAGE)
public class UserInfoImpl implements Provider<SOAPMessage>{

 public SOAPMessage invoke(SOAPMessage request){

 // Response message
 SOAPMessage response = null;
 // Attachment (face photograph)
 AttachmentPart attachment = null;

 try {
 // Data acquisition from the request message
 // Acquire the employee number
 SOAPBody soapBody = request.getSOAPBody();
 SOAPBodyElement reqRoot =
 (SOAPBodyElement)soapBody.getChildElements().next();
 Iterator number_iterator = reqRoot.getChildElements();
 String number =

((SOAPElement)number_iterator.next()).getFirstChild().getNodeValue();

 // Acquire the face photograph
 Iterator attachment_iterator = request.getAttachments();
 while(attachment_iterator.hasNext()){
 attachment = (AttachmentPart)attachment_iterator.next();
 }

 // If any other process, such as registering the face photograph, is to
be executed
 // for the acquired attachment, implement the process

 // Generating a response message
 response = MessageFactory.newInstance().createMessage();
 SOAPBody resSoapBody = response.getSOAPBody();
 SOAPBodyElement resRoot = resSoapBody.addBodyElement(
 new QName("http://sample.com", "result"));
 SOAPElement soapElement = resRoot.addChildElement(
 new QName("http://sample.com", "value"));
 // Set up a registration confirmation message
 if(null == attachment){
 soapElement.addTextNode("Failure(no image).");
 } else {
 soapElement.addTextNode("Success.");
 }

 } catch (SOAPException e) {
 e.printStackTrace();
 }

 return response;

9. Examples of Development Starting from a Provider (using SAAJ)

125

 }
}

For SOAP 1.2, add the javax.xml.ws.BindingType annotation to the provider implementation class that you
have created. Specify the value http://www.w3.org/2003/05/soap/bindings/HTTP/ indicating the
SOAP 1.2/HTTP binding. The following is an example of adding the javax.xml.ws.BindingType
annotation:

package com.sample;

import java.util.Iterator;
import javax.xml.namespace.QName;
import javax.xml.soap.AttachmentPart;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.Provider;

@javax.xml.ws.BindingType("http://www.w3.org/2003/05/soap/bindings/HTTP/")
@javax.xml.ws.WebServiceProvider
@javax.xml.ws.ServiceMode(value=javax.xml.ws.Service.Mode.MESSAGE)
public class UserInfoImpl implements Provider<SOAPMessage>{

 public SOAPMessage invoke(SOAPMessage request){

(Hereafter, same as for SOAP1.1)

Note that you can also specify the constant value field
javax.xml.ws.soap.SOAPBinding.SOAP12HTTP_BINDING instead of http://www.w3.org/
2003/05/soap/bindings/HTTP/ in the value of the javax.xml.ws.BindingType annotation. For an
example to specify constant value fields, see the section 5.3.1 Creating a Web Service Implementation Class.

9.3.2 Generating Java sources
The following is an example of compiling the created provider implementation class
com.sample.UserInfoImpl:

• In Windows(x86)

> set HNTRLIB2_HOME=HNTRLib2-installation-direcory
> cd c:\temp\jaxws\works\dispatch_provider\server\
> mkdir WEB-INF\classes\
> apt -factory com.cosminexus.istack.ws.AnnotationProcessorFactoryImpl -J-
Dcosminexus.home="%COSMINEXUS_HOME%" -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;
%COSMINEXUS_HOME%\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmjaxb.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmstax.jar;%HNTRLIB2_HOME%\classes\hntrlib2j.jar;%HNTRLIB2_HOME%\classes
\hntrlibMj.jar" -d WEB-INF\classes\ -s src src\com\sample\UserInfoImpl.java

Specify the execution results of the following command in the HNTRLib2-installation-directory.

• In Windows(x64)

> set HNTRLIB2_HOME=HNTRLib2-installation-direcory
> cd c:\temp\jaxws\works\dispatch_provider\server\
> mkdir WEB-INF\classes\
> apt -factory com.cosminexus.istack.ws.AnnotationProcessorFactoryImpl
com.cosminexus.istack.ws.AnnotationProcessorFactoryImpl -J-
Dcosminexus.home="%COSMINEXUS_HOME%" -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;
%COSMINEXUS_HOME%\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmjaxb.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmstax.jar;%HNTRLIB2_HOME%\classes\hntrlib2j64.jar;%HNTRLIB2_HOME%\classes
\hntrlibMj64.jar" -d WEB-INF\classes\ -s
src src\com\sample\UserInfoImpl.java

Specify the execution results of the following command in the HNTRLib2-installation-directory.

9. Examples of Development Starting from a Provider (using SAAJ)

126

• In Windows(x86)

> "%COSMINEXUS_HOME%\common\bin\gethntr2conf.exe" HNTR2INSTDIR

• In Windows(x64)

> "%COSMINEXUS_HOME%\common\bin\gethntr2conf64.exe" HNTR2INSTDIR

If compilation is successful, UserInfoImpl.class is generated in the c:\temp\jaxws\works
\dispatch_provider\server\WEB-INF\classes\com\sample\ directory.

9.3.3 Creating web.xml
Create the web.xml file that is required as a component to configure WAR files.

The following is an example of creating web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3.0.xsd">
 <description>Sample web service "dispatch_provider"</description>
 <display-name>Sample_web_service_dispatch_provider</display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/UserInfoService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute..

Save the created web.xml in the c:\temp\jaxws\works\dispatch_provider\server\WEB-INF
directory in UTF-8 format. For the web.xml settings, see the section 3.4 Creating web.xml.

9.3.4 Creating application.xml
Create the application.xml file that is required as a component to configure EAR files. The following is an
example of creating application.xml:

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "dispatch_provider"</description>
 <display-name>Sample_application_dispatch_provider</display-name>
 <module>
 <web>
 <web-uri>dispatch_provider.war</web-uri>

9. Examples of Development Starting from a Provider (using SAAJ)

127

 <context-root>dispatch_provider</context-root>
 </web>
 </module>
</application>

When creating web.xml of version 5, specify 5 in the version attribute of the application element and
specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second location
information in the xsd:schemaLocation attribute..

The created application.xml is saved in the c:\temp\jaxws\works\dispatch_provider\server
\META-INF directory with the UTF-8 format. For notes on creating application.xml, see 5.2.2 Notes on
editing application.xml in the uCosminexus Application Server Application Development Guide.

9.3.5 Creating EAR files
Use the jar command to create EAR files containing the files created until now.

The following is an example of creating an EAR file:

> cd c:\temp\jaxws\works\dispatch_provider\server\
> jar cvf dispatch_provider.war .\WEB-INF
> jar cvf dispatch_provider.ear .\dispatch_provider.war .\META-INF\application.xml

If the jar command is terminated successfully, dispatch_provider.ear is created in the c:\temp\jaxws
\works\dispatch_provider\server\ directory.

For the jar command, see the JDK documentation.

9. Examples of Development Starting from a Provider (using SAAJ)

128

9.4 Examples of deployment and startup (Starting from a
provider and SAAJ)

This section describes the examples of deployment and startup using a provider as the starting point.

9.4.1 Deploying EAR files
Use the cjimportapp command to deploy the created EAR files on the J2EE server.

The following is an example of deployment:

> cd c:\temp\jaxws\works\dispatch_provider\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f dispatch_provider.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

9.4.2 Starting Web Services
Use the cjstartapp command to start Web Services.

The following is an example of starting Web Services:

> cd c:\temp\jaxws\works\dispatch_provider\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver -nameserver
corbaname::testserver:900 -name Sample_application_dispatch_provider

For the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus Application Server
Command Reference Guide.

For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications in
the uCosminexus Application Server Management Portal User Guide.

9. Examples of Development Starting from a Provider (using SAAJ)

129

9.5 Examples of Web Services client development
(Starting from a provider and SAAJ)

This section describes an example of developing a Web Service client using SAAJ, with a provider as the starting
point.

9.5.1 Creating Implementation Class for the Web Services client
Create an implementation class for the Web Service client that uses Web Services.

The following is an example of creating a dispatch-based Web Service client
com.sample.client.TestClient that invokes a Web Service once.

Note that with a dispatch-based Web Service client, you must explicitly specify the version of the SOAP binding, so
the SOAP 1.1/HTTP binding is specified in this example. For SOAP 1.2, substitute
SOAPBinding.SOAP11HTTP_BINDING with SOAPBinding.SOAP12HTTP_BINDING.

package com.sample.client;

import java.io.File;
import java.util.Iterator;
import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import javax.xml.namespace.QName;
import javax.xml.soap.MessageFactory;
import javax.xml.ws.soap.SOAPBinding;
import javax.xml.soap.AttachmentPart;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Service;
public class TestClient {
 public static void main(String[] args) {
 // Generate service
 QName port = new QName("http://sample.com", "UserInfoPort");
 Service service = Service.create(
 new QName("http://sample.com", "UserInfoService"));
 String serviceURL = "http://webhost:8085/dispatch_provider/UserInfoService";

 // Add a port to the service
 service.addPort(port, SOAPBinding.SOAP11HTTP_BINDING, serviceURL);

 // Generate Dispatch object
 Dispatch<SOAPMessage> dispatch = service.createDispatch(
 port, SOAPMessage.class, Service.Mode.MESSAGE);

 // Request message
 SOAPMessage request = null;

 try{
 // Generate request message
 request = MessageFactory.newInstance().createMessage();
 SOAPBody reqSoapBody = request.getSOAPBody();
 // Set up employee number
 SOAPBodyElement requestRoot= soapBody.addBodyElement(
 new QName("http://sample.com", "number"));
 SOAPElement soapElement = requestRoot.addChildElement(
 new QName("http://sample.com", "value"));
 soapElement.addTextNode("1234");

 // Set up attachment (face photograph)
 String filePath = "C:\\attachment.jpg";
 FileDataSource fds = new FileDataSource(filePath);
 AttachmentPart apPart =
 request.createAttachmentPart(new DataHandler(fds));
 request.addAttachmentPart(apPart);

 // Sending and receiving SOAP Messages
 SOAPMessage response = dispatch.invoke(request);
 // Acquire data from the response message
 SOAPBody resSoapBody = response.getSOAPBody();

9. Examples of Development Starting from a Provider (using SAAJ)

130

 SOAPBodyElement resRoot =
 (SOAPBodyElement)resSoapBody.getChildElements().next();
 Iterator iterator = resRoot.getChildElements();
 String result =
 ((SOAPElement)iterator.next()).getFirstChild().getNodeValue();

 // Display the registration confirmation message
 System.out.println("[RESULT] " + result);
 } catch(SOAPException e) {
 e.printStackTrace();
 }
 }
}

The created class TestClient.java is saved in the c:\temp\jaxws\works\dispatch_provider
\client\src\com\sample\client\ directory with the UTF-8 format.

9.5.2 Compiling Implementation Class for the Web Services client
Use the javac command to compile the created Web Service client.

The following is an example of compilation:

> cd c:\temp\jaxws\works\dispatch_provider\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\com\sample\client\TestClient.java

If the javac command is terminated successfully, the TestClient.class is generated in the c:\temp\jaxws
\works\dispatch_provider\client\classes\com\sample\client\ directory.

For the javac command, see the JDK documentation.

9. Examples of Development Starting from a Provider (using SAAJ)

131

9.6 Examples for executing Web Services (Starting from
a provider and SAAJ)

This section describes examples for executing Web Services using SAAJ, with a provider as the starting point.

9.6.1 Creating option definition files for Java applications
Create option definition files for Java applications (usrconf.cfg) required for executing Web Services.

The following is an example of creating option definition files for Java applications:

add.class.path=Cosminexus-installation-directory\jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home=Cosminexus-installation-directory
add.jvm.arg=-Dejbserver.server.prf.PRFID=PRF-ID

For Cosminexus-installation-directory, use an absolute path to specify the path where Cosminexus is installed. For
PRF-ID, specify an identifier of the PRF daemon.

The created option definition file for the Java application is saved in the c:\temp\jaxws\works
\dispatch_provider\client\ directory. For the option definition files for Java applications, see 14.2
usrconf.cfg (Option definition file for Java applications) in the uCosminexus Application Server Definition Reference
Guide.

9.6.2 Creating user property files for Java applications
Create user property files for the Java applications required to execute Web Services.

Since the settings are not specially changed, create an empty file usrconf.properties in the c:\temp\jaxws\works
\dispatch_provider\client\ directory. For the user property files for Java applications, see 14.3 usrconf.cfg
(User property file for Java applications) in the uCosminexus Application Server Definition Reference Guide.

9.6.3 Executing Web Services clients
Use the cjclstartap command to execute a Web Service client.

The following is an example of executing a Web Service client:

> cd c:\temp\jaxws\works\dispatch_provider\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" com.sample.client.TestClient

If the cjclstartap command is terminated successfully, the results of the Web Service client execution will be
displayed. The following is an example of displaying the execution results:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\dispatch_provider\client, PID = 2636)
[RESULT] Success.
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in italics changes according to the execution timing and the environment.

For the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application Server
Command Reference Guide.

9. Examples of Development Starting from a Provider (using SAAJ)

132

10 Settings and Operations of the
JAX-WS Functionality
This chapter describes the operations of the JAX-WS engine that you need to
understand for the various settings and operations of the JAX-WS functionality used
when developing or operating SOAP Web Services.

133

10.1 Action definition file
The settings such as the log and timeout settings are coded in the action definition file. There are two types of action
definition files:

• Common definition file
This definition file is used for setting up common system operations. There is only one common definition file.

• Process-wise definition file
This definition file is created for setting up the process-specific operations. You create specific settings for each
required process. For example, you create a process-wise definition file when you want to change the settings for
each J2EE server and when you want to change the settings for the Web Service client.

You can also acquire the message context in the Web Service client for specifying some of the definitions. For the
definitions that can be specified as the message context, see 19.2.5(1) Support range of the message context
properties.

This section describes the coding rules for the action definition file and the settings for the definition files.

10.1.1 Coding rules for the action definition file
This subsection describes the coding format and coding rules for the action definition file. This subsection also
describes the priority for the action definition.

(1) Coding format
In the action definition file, specify the keys as follows:

key-name=value

(2) Coding rules
Code the action definition file according to the following rules:

• The string up to the linefeed is a value.

• A line beginning with a hash mark (#) is a comment.

• You cannot add a comment after the value. If you add such a string, the comment is interpreted as a value.

• Use the ISO 8859-1 character encoding in compliance with Java specifications for the characters to be described.
Characters such as two-byte characters are interpreted as invalid strings, so convert such characters using the
native2ascii command. For the native2ascii command, see the JDK documentation.

• You can also specify a space in the value.

• If you enter a space between the key-name and = (equal sign) and between = (equal sign) and value, the space is
removed to interpret the string.

• If you specify a key-name other than the key-name that can be specified, that key-name is not used (warning and
error are not displayed).

• If you specify a line without a value, the default value is assumed.

• The key name is case sensitive.

(3) Priority of action definition
The priority order for the action definition is as follows:

1. Defining in the Web Service client (message context)

2. Process-wise definition file

3. Common definition file

10. Settings and Operations of the JAX-WS Functionality

134

The following example of specifying a definition in the Web Service client describes the code for setting up the
connection timeout value in the Web Service client:

//setConnectTimeout()
int timeout = 60000;
Map<String, Object> ctxt = ((BindingProvider)port).getRequestContext();
ctxt.put("com.cosminexus.jaxws.connect.timeout", timeout);

10.1.2 Settings for the common definition file
Use the common definition file to set up the action definition common to the system. This subsection describes the file
name, storage directory name, and settings for the common definition file.

(1) File name
The following is the file name for the common definition file:
cjwconf.properties

(2) Storage destination directory
The following is the storage destination directory for the common definition file. The storage destination directory is
fixed.

Cosminexus-installation-directory\jaxws\conf

(3) Settings
The following table lists the key names to be set up and the specified contents:

Table 10‒1: Settings for the common definition file

No. Settings Key name Specified contents Default
value Context

1 Log output level of
operation log

com.cosminexus.ja
xws.logger.runtim
e.message.level

Specifies the log output level of operation
log.

Specify ERROR, WARN, INFO, DEBUG, or
NONE. For the output contents
corresponding to each specified value, see
39.3.4 Importance level and output
conditions of log.

INFO --

2 Number of operation
log files

com.cosminexus.ja
xws.logger.runtim
e.message.file_nu
m

Specifies the number of operation log files.

Specify a number (1 to 16).

2 --

3 Operation file size com.cosminexus.ja
xws.logger.runtim
e.message.file_si
ze

Specifies the operation file size.

Specify a number from 4096 to 16777216
(unit: bytes).

2097152 --

4 Output of
maintenance log

com.cosminexus.ja
xws.logger.runtim
e.maintenance.lev
el

Specifies whether to output the
maintenance log.

If ALL is specified
The maintenance log is output.

If NONE is specified
The maintenance log is not output.

ALL --

5 Number of
maintenance log files

com.cosminexus.ja
xws.logger.runtim

Specifies the number of maintenance log
files.

Specify a number from 1 to 16.

2 --

10. Settings and Operations of the JAX-WS Functionality

135

No. Settings Key name Specified contents Default
value Context

5 Number of
maintenance log files

e.maintenance.fil
e_num

Specifies the number of maintenance log
files.

Specify a number from 1 to 16.

2 --

6 Maintenance log
capacity

com.cosminexus.ja
xws.logger.runtim
e.maintenance.fil
e_size

Specifies the maintenance log capacity.

Specify a number from 4096 to 16777216
(unit: bytes).

16777216 --

7 Log output level of
exception log

com.cosminexus.ja
xws.logger.runtim
e.exception.level

Specifies the log output level of exception
log. Specify ERROR, WARN, INFO,
DEBUG, or NONE. For the output contents
corresponding to each specified value, see
39.3.4 Importance level and output
conditions of log.

INFO --

8 Number of exception
log files

com.cosminexus.ja
xws.logger.runtim
e.exception.file_
num

Specifies the number of exception log
files. Specify a number from 1 to 16.

2 --

9 Exception log
capacity

com.cosminexus.ja
xws.logger.runtim
e.exception.file_
size

Specifies the exception log capacity.
Specify a number from 4096 to 16777216
(unit: bytes).

16777216 --

10 Output level of
communication log

(In the Web Services
client)

com.cosminexus.ja
xws.logger.runtim
e.transport.clien
t_dump

Specifies the output level of the
communication log in the Web Services
client.

If NONE is specified
The communication log is not output
in the Web Service client.

If ALL is specified
The messages sent and received with
the Web Service client are always
output in the communication log.

If HEADER is specified
The HTTP header of the messages
received with the Web Service client is
always output in the communication
log.

If ERROR_HEADER is specified
The HTTP header of the message
received when SOAPFault is received
is output in the communication log.

Notes
When ALL is specified,
java.lang.OutOfMemoryError
exception might occur depending on
the length of the sent and received
message. In such a case, adjust the
JVM heap size.

ERROR_HE
ADER

--

11 Output level of
communication log

(In Web Services)

com.cosminexus.ja
xws.logger.runtim
e.transport.serve
r_dump

Specifies the output level of the
communication log in Web Services.

If NONE is specified
The communication log is not output
in the Web Service.

ERROR_HE
ADER

--

10. Settings and Operations of the JAX-WS Functionality

136

No. Settings Key name Specified contents Default
value Context

11 Output level of
communication log

(In Web Services)

com.cosminexus.ja
xws.logger.runtim
e.transport.serve
r_dump

If ALL is specified
The messages sent and received in the
Web Service are always output in the
communication log.

If HEADER is specified
The HTTP header of the messages
received in the Web Service is always
output in the communication log.

ERROR_HEADER
The HTTP header of the message
received when SOAPFault is sent is
output in the communication log.

Note that when a received message is
output, the HTTP request information is
also output.

Notes
When ALL is specified,
java.lang.OutOfMemoryError
exception might occur depending on
the length of the sent and received
message. In such a case, adjust the
JavaVM heap size.

ERROR_HE
ADER

--

12 Number of
communication log
files

com.cosminexus.ja
xws.logger.runtim
e.transport.file_
num

Specifies the number of communication
log files. Specify a number from 1 to 16.

2 --

13 Communication log
capacity

com.cosminexus.ja
xws.logger.runtim
e.transport.file_
size

Specifies the communication log capacity.
Specify a number from 4096 to 16777216
(unit: bytes).

16777216 --

14 Character encoding
for communication
logs

com.cosminexus.ja
xws.logger.runtim
e.transport.encod
ing

Specifies the character encoding for
communication logs. For the character
encoding supported by J2SE 6.0, see the
J2SE 6.0 documentation.

If you specify DEFAULT, the character
encoding for the communication logs
changes to the default platform encoding.

DEFAULT --

15 Log output level of
operation log
(cjwsimport)

com.cosminexus.ja
xws.logger.cjwsim
port.message.leve
l

Specifies the log output level of operation
log for the cjwsimport command.
Specify ERROR, WARN, INFO, DEBUG, or
NONE. For the output contents
corresponding to each specified value, see
39.3.4Importance level and output
conditions of log.

INFO --

16 Number of operation
log files
(cjwsimport)

com.cosminexus.ja
xws.logger.cjwsim
port.message.file
_num

Specifies the number of operation log files
for the cjwsimport command. Specify a
number from 1 to 16.

2 --

17 Operation file size
(cjwsimport)

com.cosminexus.ja
xws.logger.cjwsim
port.message.file
_size

Specifies the operation file size for the
cjwsimport command. Specify a
number from 4096 to 16777216 (unit:
bytes).

2097152 --

18 Log output level of
exception log
(cjwsimport)

com.cosminexus.ja
xws.logger.cjwsim

Specifies the log output level of exception
log for the cjwsimport command.
Specify ERROR, WARN, INFO, DEBUG, or

INFO --

10. Settings and Operations of the JAX-WS Functionality

137

No. Settings Key name Specified contents Default
value Context

18 Log output level of
exception log
(cjwsimport)

port.exception.le
vel

NONE. For the output contents
corresponding to each specified value, see
39.3.4 Importance level and output
conditions of log.

INFO --

19 Number of exception
log files
(cjwsimport)

com.cosminexus.ja
xws.logger.cjwsim
port.exception.fi
le_num

Specifies the number of exception log files
for the cjwsimport command. Specify a
number from 1 to 16.

2 --

20 Exception log
capacity
(cjwsimport)

com.cosminexus.ja
xws.logger.cjwsim
port.exception.fi
le_size

Specifies the exception log capacity for the
cjwsimport command. Specify a
number from 4096 to 16777216 (unit:
bytes).

16777216 --

21 Output of
maintenance log
(cjwsimport)

com.cosminexus.ja
xws.logger.cjwsim
port.maintenance.
level

Specifies whether to output the
maintenance log for the cjwsimport
command.

If ALL is specified
The maintenance log is output.

If NONE is specified
The maintenance log is not output.

ALL --

22 Number of
maintenance log files
(cjwsimport)

com.cosminexus.ja
xws.logger.cjwsim
port.maintenance.
file_num

Specifies the number of maintenance log
files for the cjwsimport command.
Specify a number from 1 to 16.

2 --

23 Maintenance log
capacity
(cjwsimport)

com.cosminexus.ja
xws.logger.cjwsim
port.maintenance.
file_size

Specifies the maintenance log capacity for
the cjwsimport command. Specify a
number from 4096 to 16777216 (unit:
bytes).

16777216 --

24 Log output level of
operation log (apt)

com.cosminexus.ja
xws.logger.apt.me
ssage.level

Specifies the log output level of operation
log for the apt command. Specify
ERROR, WARN, INFO, DEBUG, or NONE.
For the output contents corresponding to
each specified value, see 39.3.4Importance
level and output conditions of log.

INFO --

25 Number of operation
log files (apt)

com.cosminexus.ja
xws.logger.apt.me
ssage.file_num

Specifies the number of operation log files
for the apt command. Specify a number
from 1 to 16.

2 --

26 Operation file size
(apt)

com.cosminexus.ja
xws.logger.apt.me
ssage.file_size

Specifies the operation file size for the
apt command. Specify a number from
4096 to 16777216 (unit: bytes).

2097152 --

27 Log output level of
exception log (apt)

com.cosminexus.ja
xws.logger.apt.ex
ception.level

Specifies the log output level of exception
log for the apt command. Specify
ERROR, WARN, INFO, DEBUG, or NONE.
For the output contents corresponding to
each specified value, see 39.3.4Importance
level and output conditions of log.

INFO --

28 Number of exception
log files (apt)

com.cosminexus.ja
xws.logger.apt.ex
ception.file_num

Specifies the number of exception log files
for the apt command. Specify a number
from 1 to 16.

2 --

29 Exception log
capacity (apt)

com.cosminexus.ja
xws.logger.apt.ex
ception.file_size

Specifies the exception log capacity for the
apt command. Specify a number from
4096 to 16777216 (unit: bytes).

16777216 --

10. Settings and Operations of the JAX-WS Functionality

138

No. Settings Key name Specified contents Default
value Context

30 Output of
maintenance log
(apt)

com.cosminexus.ja
xws.logger.apt.ma
intenance.level

Specifies whether to output the
maintenance log for the apt command.

If ALL is specified
The maintenance log is output.

If NONE is specified
The maintenance log is not output.

ALL --

31 Number of
maintenance log files
(apt)

com.cosminexus.ja
xws.logger.apt.ma
intenance.file_nu
m

Specifies the number of maintenance log
files for the apt command. Specify a
number from 1 to 16.

2 --

32 Maintenance log
capacity (apt)

com.cosminexus.ja
xws.logger.apt.ma
intenance.file_si
ze

Specifies the maintenance log capacity for
the apt command. Specify a number from
4096 to 16777216 (unit: bytes).

16777216 --

33 Operation option
when SOAPAction is
absent

com.cosminexus.ja
xws.fault_omit_so
apaction

Specifies the operation option when
SOAPAction is absent.

If true is specified
If SOAPAction header is absent,
returns the SOAP Fault message.

If false is specified
If SOAPAction header is absent,
operates the value of SOAPAction
header as a null character.

true --

34 Connection timeout
value of the client
socket

com.cosminexus.ja
xws.connect.timeo
ut

Specifies the connection timeout value of
the client socket.

The timeout value specified in this
property is applied when the Web Service
is invoked and during Meta data (WSDL)
acquisition that occurs in the generation of
the javax.xml.ws.Service class
before the Web Service is invoked.

Specify a number from 0 to 2147483647
(unit: milliseconds). If 0 is specified, a
timeout does not occur.

If you change the settings related to the
TCP connection of the OS, the values of
OS settings will be given the priority.

60000 Y#

35 Read timeout value
of client socket

com.cosminexus.ja
xws.request.timeo
ut

Specifies the read timeout value for the
client socket.

The timeout value specified in this
property is applied when the Web Service
is invoked and during Meta data (WSDL)
acquisition that occurs in the generation of
the javax.xml.ws.Service class
before the Web Service is invoked.

Specify a number from 0 to 2147483647
(unit: milliseconds). If 0 is specified, a
timeout does not occur.

If you change the settings related to the
TCP connection of the OS, the values of
OS settings will be given the priority.

300000 Y#

36 User ID for basic
authentication

javax.xml.ws.secu
rity.auth.usernam
e

Specifies the user ID for basic
authentication used in HTTP connection.

Nill Y#

10. Settings and Operations of the JAX-WS Functionality

139

No. Settings Key name Specified contents Default
value Context

36 User ID for basic
authentication

javax.xml.ws.secu
rity.auth.usernam
e

The user ID specified in this property is
applied when the Web Service is invoked
and during Meta data (WSDL) acquisition
that occurs in the generation of the
javax.xml.ws.Service class before
the Web Service is invoked.

Nill Y#

37 Password for basic
authentication

javax.xml.ws.secu
rity.auth.passwor
d

Specifies the password for basic
authentication used in HTTP connection.

The password specified in this property is
applied when the Web Service is invoked
and during Meta data (WSDL) acquisition
that occurs in the generation of the
javax.xml.ws.Service class before
the Web Service is invoked.

If
javax.xml.ws.security.auth.u
sername is not specified, password is not
enabled.

Nil Y#

38 Presence or absence
of HTTP session
maintenance

javax.xml.ws.sess
ion.maintain

Specifies the presence or absence of HTTP
session maintenance. An HTTP session is
maintained until the same port object is
used.

If true
The session is maintained.

If false
The session is not maintained.

false Y#

39 Strict validation of
handler chain setup
file

com.cosminexus.ja
xws.validation.ha
ndlerchain.strict

Specifies whether to validate the handler
chain setup file strictly. If
javaee:handler-name element is not
coded as the child element of the
javaee:handler element in the
handler chain setup file, an error occurs.

false --

40 Issuing of WSDL for
HTTP request

com.cosminexus.ja
xws.security.publ
ish_wsdl

Specifies whether to issue WSDL for the
Web Service where the HTTP GET
request with a query string ?wsdl or ?
WSDL is sent to the Web Service URL.

If true is specified
WSDL is issued.

If false is specified
WSDL is not issued and 405 Method
Not Allowed is returned.

true --

41 Displaying Web
Service information
for HTTP request

com.cosminexus.ja
xws.security.disp
lay_webservice_in
fo

Specifies whether to display the Web
Service information as the response when
an HTTP request by GET arrives for the
Web Service.

If true is specified
The Web Service information
corresponding to the request URL is
displayed.

If false is specified
405 Method Not Allowed is returned.

false --

42 Propagation of Java
exception occurring
in the Web Service

com.cosminexus.ja
xws.fault.SOAPFau

Specifies whether to propagate the Java
exception occurring in the Web Service to
the Web Service client.

false --

10. Settings and Operations of the JAX-WS Functionality

140

No. Settings Key name Specified contents Default
value Context

42 Propagation of Java
exception occurring
in the Web Service

ltBuilder.capture
StackTrace

If true is specified
The exception is propagated.

If false is specified
The exception is not propagated.

false --

43 Log output
destination directory

com.cosminexus.ja
xws.tool.log.dire
ctory

Specifies the log output destination
directory output by the cjwsimport
command, apt command, and cjwsgen
command.

Cosminexus-
installation-
directory/
jaxws/
logs

--

44 Authenticated user
ID of the proxy
server

com.cosminexus.ja
xws.http.proxyUse
r

Specifies an authenticated user ID of the
proxy server. As and when required,
specify the user ID when the Web Service
client invokes Web Services in an external
network using the proxy server.

The user ID that you specify in this
property is applied during the invocation
of Web Services and during the acquisition
of Meta data (WSDL) that is created while
generating the
javax.xml.ws.Service class before
the invocation of the Web Services.

None --

45 Password
corresponding to the
authenticated user ID
of the proxy server

com.cosminexus.ja
xws.http.proxyPas
sword

Specifies a password corresponding to the
authenticated user ID of the proxy server.
As and when required, specify this
password when the Web Service client
invokes Web Services in an external
network using the proxy server.

The password that you specify in this
property is applied during the invocation
of Web Services and during the acquisition
of Meta data (WSDL) that is created while
generating the
javax.xml.ws.Service class before
the invocation of the Web Services.

None --

46 Authenticated user
ID of the proxy
server used for
establishing a
connection through
the SSL protocol

com.cosminexus.ja
xws.https.proxyUs
er

Specifies an authenticated user ID of the
proxy server used when establishing a
connection through the SSL protocol. As
and when required, specify this user ID
during the establishment of a connection
through the SSL protocol, when the Web
Service client invokes Web Services in an
external network using the proxy server.

The user ID that you specify in this
property is applied during the invocation
of Web Services and during the acquisition
of Meta data (WSDL) that is created while
generating the
javax.xml.ws.Service class before
the invocation of the Web Services.

None --

47 Password
corresponding to the
authenticated user ID
of the proxy server
used for establishing
a connection through
the SSL protocol

com.cosminexus.ja
xws.https.proxyPa
ssword

Specifies a password corresponding to the
authenticated user ID of the proxy server
used when establishing a connection
through the SSL protocol. As and when
required, specify this password during the
establishment of a connection through the
SSL protocol, when the Web Service client
invokes Web Services in an external
network using the proxy server. The user
ID that you specify in this property is

None --

10. Settings and Operations of the JAX-WS Functionality

141

No. Settings Key name Specified contents Default
value Context

47 Password
corresponding to the
authenticated user ID
of the proxy server
used for establishing
a connection through
the SSL protocol

com.cosminexus.ja
xws.https.proxyPa
ssword

applied during the invocation of the Web
Services and during the acquisition of
Meta data (WSDL) that is created while
generating the
javax.xml.ws.Service class before
the invocation of the Web Services.

None --

48 Log output level of
operation logs
(cjwsgen)

com.cosminexus.ja
xws.logger.cjwsge
n.message.level

Specifies the log output level of operation
logs for the cjwsgen command. Specify
ERROR, WARN, INFO, DEBUG, or NONE.
For the output contents corresponding to
each specified value, see 39.3.4
Importance level and output conditions of
log.

INFO --

49 Number of operation
log files (cjwsgen)

com.cosminexus.ja
xws.logger.cjwsge
n.message.file_nu
m

Specifies the number of operation log files
for the cjwsgen command. Specify a
number from 1 to 16.

2 --

50 Operation file size
(cjwsgen)

com.cosminexus.ja
xws.logger.cjwsge
n.message.file_si
ze

Specifies the operation file size for the
cjwsgen command. Specify a number
from 4096 to 16777216 (unit: bytes).

2097152 --

51 Log output level of
exception logs
(cjwsgen)

com.cosminexus.ja
xws.logger.cjwsge
n.exception.level

Specifies the log output level of exception
logs for the cjwsgen command. Specify
ERROR, WARN, INFO, DEBUG, or NONE.
For the output contents corresponding to
each specified value, see 39.3.4
Importance level and output conditions of
log.

INFO --

52 Number of exception
log files (cjwsgen)

com.cosminexus.ja
xws.logger.cjwsge
n.exception.file_
num

Specifies the number of exception log files
for the cjwsgen command. Specify a
number from 1 to 16.

2 --

53 Exception log
capacity (cjwsgen)

com.cosminexus.ja
xws.logger.cjwsge
n.exception.file_
size

Specifies the exception log capacity for the
cjwsgen command. Specify a number
from 4096 to 16777216 (unit: bytes).

16777216 --

54 Output of
maintenance logs
(cjwsgen)

com.cosminexus.ja
xws.logger.cjwsge
n.maintenance.lev
el

Specifies whether to output maintenance
logs for the cjwsgen command.

If you specify ALL
The maintenance log is output.

If you specify NONE
The maintenance log is not output.

ALL --

55 Number of
maintenance log files
(cjwsgen)

com.cosminexus.ja
xws.logger.cjwsge
n.maintenance.fil
e_num

Specifies the number of maintenance log
files for the cjwsgen command. Specify
a number from 1 to 16.

2 --

56 Maintenance log
capacity (cjwsgen)

com.cosminexus.ja
xws.logger.cjwsge
n.maintenance.fil
e_size

Specifies the maintenance log capacity for
the cjwsgen command. Specify a
number from 4096 to 16777216 (unit:
bytes).

16777216 --

57 Specify transport
attribute of the
soap12:binding
element

com.cosminexus.ja
xws.publish_wsdl.
soap12binding

For SOAP1.2 specify whether to set
http://schemas.xmlsoap.org/
soap/http in transport attribute of
soap12:binding element that is a

DEFAULT --

10. Settings and Operations of the JAX-WS Functionality

142

No. Settings Key name Specified contents Default
value Context

57 Specify transport
attribute of the
soap12:binding
element

com.cosminexus.ja
xws.publish_wsdl.
soap12binding

child element of wsdl:binding element
in the WSDL issued by using HTTP GET
request. The query string of the HTTP
GET request must be ?wsdl or ?WSDL.

DEFAULT
Set "http://www.w3.org/
2003/05/ssoa/bindings/
HTTP/" in the soap12:binding/
@transport attribute value.

WSI_BP20_TRANSPORT
Set "http://
schemas.xmlsoap.org/ssoa/
http" in the soap12:binding/
@transport attribute value.

DEFAULT --

58 Application of the
validation of the host
name in an SSL
connection

com.cosminexus.xm
l.ws.client.http.
HostnameVerificat
ionProperty

Specifies whether to omit the following
validation when a Web service client
connects according to the SSL protocol.

Validation content: Whether the host name
to be included in the end point address
matches with the host name given in the
certificate.

true
Omit validation.

false
Do not omit validation.

Validation of the host name in the SSL is
applied when calling the Web Service, and
when acquiring the meta data (WSDL)
generated when creating the
javax.xml.ws.Service class before
calling the Web Service.

false Y#

Legend:
Y: Indicates that this item can be set as a message context.
--: Indicates that this item cannot be set as a message context.

#
The specification to message context is enabled only when the Web Service is invoked and is not applied during Meta data
(WSDL) acquisition that occurs in the generation of the javax.xml.ws.Service class before the Web Service is invoked.
To set up the basic authentication information during Meta data acquisition, or the requirement for validation of the host name in
an SSL connection, either code in the common definition file or the process-wise definition file or separately download WSDL
on the local machine and use it (when using the WSDL that exists on the local machine, connection with the remote machine
does not occur while acquiring the meta data). If WSDL imported separately from WSDL exists, download the imported WSDL
on the local machine.
Also, when setting true or false in the property by using the message context, set with a string having a
java.lang.String type. The operation is not guaranteed if you set true or false by using a string other than the
java.lang.String type. For details, see 19.2.5 (2)(k) How to set the
com.cosminexus.xml.ws.client.http.HostnameVerificationProperty property.

(4) Changing settings

Changing settings at the Web Service machine
Stop all the J2EE servers that are not using a process-wise definition file, and then change the settings of the
common definition file. For the process-wise definition files, see the section 10.1.3 Settings for the process-wise
definition file.
For changing log-related settings, save a log as and when required, and then change the settings.

10. Settings and Operations of the JAX-WS Functionality

143

Changing settings at the Web Service client machine
Stop all the J2EE servers (when assuming a J2EE application as a Web Service client) or all the Java applications,
and then change the settings of the common definition file.
For changing log-related settings, save a log as and when required, and then change the settings.

10.1.3 Settings for the process-wise definition file
Create the process-wise definition file to specify a process-wise specific definition.

The file name and the storage destination directory name of the process-wise definition file are optional. By specifying
the storage destination path using the system properties, the process-wise definition is enabled. The following is an
example of the specification of the process-wise definition file:

com.cosminexus.jaxws.confpath=d:/tmp/example.properties

When changing process-wise definitions, stop the target processes (J2EE applications or Java applications), and then
change the definitions of the process-wise definition file.

For changing log-related definitions, save a log as and when required, and then change the definitions.

10. Settings and Operations of the JAX-WS Functionality

144

10.2 Operations of the JAX-WS engine
This section describes the operations and support range of the Cosminexus JAX-WS engine.

10.2.1 Operations and support range of the JAX-WS engine
The SOAP Messages exchanged between the Web Service and the Web Service client are marshalled or unmarshalled
using the JAX-WS engine operations.

This subsection describes the JAX-WS engine and support range in the Web Service and Web Service client.

(1) Operations and support range of the JAX-WS engine on the Web Service
This point describes operations of the JAX-WS engine on the Web Service and shows the support range of the Web
Service client that uses the Web Service.

(a) JAX-WS engine operations on the Web Service

The JAX-WS engine on the Web Service operates with the following procedure:

• Receives the SOAP request message using the POST HTTP method from the Web Service client, un-marshals the
message, and converts it into a Java object.

• Discovers the target Web Service Implementation Class or the Provider Implementation Class (discovery) and
invokes the method corresponding to the operation (dispatch).

• Receives the Java object expressing the SOAP response message and fault message from the target Web Service
Implementation Class or the Provider Implementation Class, marshals the object, and returns it to the invocation
source as a SOAP response message or fault message.

For discovery and dispatch, see 10.2.2 Discovery and dispatch.

Also, if the JAX-WS engine at the Web Service machine uses the HTTP GET method to request a WSDL that is the
Meta data of the Web Service, and the WSDL does not exist in the WAR file, the WSDL will be automatically
generated and returned. For issuing the Meta data, see 10.6 Issuing the Meta data.

Note that if the JAX-WS engine on the Web Service is invoked using an HTTP method that is neither POST nor GET,
the HTTP status code 405 Method Not Allowed is returned.

(b) Support range of the JAX-WS engine on the Web Service

This section describes the relationship of the JAX-WS engine on the Web Service and the Web Service client.

For a Web Service Implementation Class

The following figure shows the relationship between a JAX-WS engine on the Web Service machine and a Web
Service client, in the case of a Web Service Implementation Class:

10. Settings and Operations of the JAX-WS Functionality

145

Figure 10‒1: Relationship of the JAX-WS engine on the Web Service and the Web Service client (For a
Web Service Implementation Class)

The messages that can be received by the JAX-WS engine on the Web Service and the conditions of the Web Service
client at the connection source are as follows:

• Web Service client operated using the Cosminexus JAX-WS functionality
The Web Service client developed using the commands provided in the Cosminexus JAX-WS functionality and
operated using the Cosminexus JAX-WS functionality can be used. If the Cosminexus JAX-WS functionality at
the connection destination has an earlier version, you can only use the functionality that is supported by that
version.

• RPC-type SOAP application client operated using the SOAP Communication Infrastructure
The RPC-type SOAP application client developed using the SOAP application development support function and
operated using the SOAP Communication Infrastructure can be used.
The version of SOAP application development support function and SOAP Communication Infrastructure used
for development must be 07-10 or a later version. Also, the Web Service in this case must be developed starting
from a document/literal-type WSDL generated using the Java2WSDL command of the SOAP Communication
Infrastructure.

• Other Web Service clients
You can use a Web Service client that supports the Meta data (WSDL) issued by the Web Service operated using
the Cosminexus JAX-WS functionality and can send and receive SOAP Messages of any of the following
specifications# with applied WS-I Basic Profile 1.1 and Attachments Profile 1.0:

• SOAP 1.1 specifications

• SOAP 1.2 specifications

10. Settings and Operations of the JAX-WS Functionality

146

• SwA specifications (when using attachments in wsi:swaRef format)

• MTOM/XOP specifications (when using attachments in the MTOM/XOP specification format).

For the WSDL support range, see 20.1 Support range of the WSDL 1.1 specifications.

#
From the nature of standard specifications, some ambiguous parts still remain even within the SOAP 1.1
specifications, SOAP 1.2 specifications, SwA specifications or MTOM/XOP specifications having the WS-I
Basic Profile 1.1 and the Attachments Profile 1.0. Therefore, perform the operations after studying
interconnectivity properly.

For a Provider Implementation Class

The following figure shows the relationship between a JAX-WS engine at the Web Service machine and a Web
Service client, in the case of a Provider Implementation Class:

Figure 10‒2: Relationship between a JAX-WS engine at the Web service machine and the Web Service
client (For a Provider Implementation Class)

The following are the messages that the JAX-WS engine can receive at the Web Service machine and the conditions
for the Web Service client at the connection source machine:

• A Web Service client operating with the Cosminexus JAX-WS functionality
You can use a Web Service client that is developed using the APIs provided by the Cosminexus JAX-WS
functionality and operated using the Cosminexus JAX-WS functionality. If the Cosminexus JAX-WS
functionality at the connection destination machine has an earlier version, you can only use the functionality that
is supported by that version.

• A dispatch-based Web Service client operating with the Cosminexus JAX-WS functionality

• A SOAP application client using the SAAJ 1.2 specifications
You can use a SOAP application client that is developed using the SOAP application development support
functionality and operated with the SOAP Communication Infrastructure using the SAAJ 1.2 specifications.

10. Settings and Operations of the JAX-WS Functionality

147

The SOAP application development support function used during the development and the SOAP Communication
Infrastructure must have 07-10 or later versions. Also, the SOAP application must send and receive the SOAP
Messages supported by both the SOAP application development support functionality and the Cosminexus JAX-
WS functionality.

• Other Web Service clients
You can use a Web Service client that can send and receive the SOAP Messages of any of the following
specifications# with applied WS-I Basic Profile 1.1 and Attachments Profile 1.0:

• SOAP 1.1 specifications

• SOAP 1.2 specifications

• SwA specifications (when using attachments in wsi:swaRef format)

#
Due to the nature of standard specifications, some ambiguous parts still remain even with SOAP 1.1
specifications, SOAP 1.2 specifications, or SwA specifications having WS-I Basic Profile 1.1 and
Attachments Profile 1.0. Therefore, perform the operations after studying interconnectivity properly. Specially
note that the variance of SOAP Messages that you can send and receive becomes large for Provider
Implementation Classes.

(2) Operations and support range of the JAX-WS engine on the Web Service client
This point describes the operations of the JAX-WS engine on the Web Service client and shows the support range of
the Web Service available from the Web Service client.

(a) JAX-WS engine operations on the Web Service client

The JAX-WS engine on the Web Service client operates with the following procedure:

• Receives the Java object expressing the SOAP request message through the JAX-WS API from the Web Service
client.

• Marshals the received Java object, and sends as a SOAP request message.

• Receives the SOAP response message and fault message from the invocation destination, un-marshals the
message, and returns it to the Web Service client.

The Web Service client accesses the JAX-WS engine through the generated class or JAX-WS API; hence, the JAX-
WS engine need not be considered.

Also, since the generated class and JAX-WS API are based on the JAX-WS 2.2 specifications, the implementer of the
Web Service client need not consider an interface other than the standard specifications. The invocation of the Web
Service (sending of the SOAP request message) and the receipt of the SOAP response message and fault message are
performed within the support range for the interface in standard specifications.

(b) Support range of JAX-WS engine on the Web Service client

This section describes the relationship of the JAX-WS engine on the Web Service client and the Web Service.

For a stub-based Web Service client

The following figure shows the relationship between a JAX-WS engine at the Web Service client machine and a Web
Service, in the case of a stub-based Web Service client:

10. Settings and Operations of the JAX-WS Functionality

148

Figure 10‒3: Relationship of the JAX-WS engine on the Web Service client and the Web Service (For a
stub-based)

The conditions for the Web Service that can be invoked by the JAX-WS engine on the Web Service client are as
follows:

• A Web Service Implementation Class developed using the commands provided in the Cosminexus JAX-WS
functionality
The Web Service Implementation Class developed using the commands provided in the Cosminexus JAX-WS
functionality and deployed on the JAX-WS engine can be invoked. If the Cosminexus JAX-WS functionality at
the connection destination machine has an earlier version, you can only use the functionality that is supported by
that version.

• RPC-type SOAP application operated using the SOAP Communication Infrastructure
The RPC-type SOAP application developed using the SOAP application development support function and
deployed on the SOAP Communication Infrastructure can be invoked.
The version of SOAP application development support function and SOAP Communication Infrastructure used
for development must be 07-10 or a later version. Also, the SOAP application must be of the document/literal-
type generated using the Java2WSDL command of the SOAP Communication Infrastructure.

• Other Web Services

10. Settings and Operations of the JAX-WS Functionality

149

The Web Service that publishes WSDL, coded in the range supported by the Cosminexus JAX-WS functionality,
as Meta data and can send and receive SOAP Messages of any of the following specifications# with applied WS-I
Basic Profile 1.1 and Attachments Profile 1.0 can be used:

• SOAP 1.1 specifications

• SOAP 1.2 specifications

• SwA specifications (when using attachments in wsi:swaRef format)

• MTOM/XOP specifications (when using attachments in the MTOM/XOP specification format).

For the WSDL support range, see 20.1 Support range of the WSDL 1.1 specifications.

#
From the nature of standard specifications, some ambiguous parts still remain even with SOAP 1.1
specifications, SOAP 1.2 specifications, SwA specifications, or MTOM/XOP specifications having WS-I
Basic Profile 1.1 and Attachments Profile 1.0. Therefore, perform the operations after studying
interconnectivity properly.

For a dispatch-based Web Service client

The following figure shows the relationship between a JAX-WS engine at the Web Service client machine and a Web
Service, for a dispatch-based Web Service client:

Figure 10‒4: Relationship between a JAX-WS engine at the Web Service client machine and a Web
Service (For a dispatch-based)

10. Settings and Operations of the JAX-WS Functionality

150

The following are the conditions for a Web Service that the JAX-WS engine can invoke at the Web Service client
machine:

• A Web Service Implementation Class developed using the commands provided by the Cosminexus JAX-WS
functionality
You can invoke a Web Service Implementation Class developed using the commands provided by the
Cosminexus JAX-WS functionality and deployed on the JAX-WS engine. If the Cosminexus JAX-WS
functionality has an earlier version, you can only use the functionality that is supported by that version.

• A Provider Implementation Class developed using the commands provided by the Cosminexus JAX-WS
functionality
You can invoke a Provider Implementation Class developed using the commands provided by the Cosminexus
JAX-WS functionality and deployed on the JAX-WS engine.

• An RPC-type SOAP application running on the SOAP Communication Infrastructure
You can invoke an RPC-type SOAP application developed using the SOAP application development support
functionality and deployed on the SOAP Communication Infrastructure.
The SOAP application development support functionality used during the development and the SOAP
Communication Infrastructure must have 07-10 or later versions. Also, the SOAP application must have the
document/literal format that is generated using the Java2WSDL command of the SOAP Communication
Infrastructure.

• A messaging-type SOAP application running on the SOAP Communication Infrastructure
You can use a messaging-type SOAP application client developed using the SOAP application development
support functionality and deployed on the SOAP Communication Infrastructure of 07-10 or later versions.
The SOAP application must be able to send and receive the SOAP Messages supported by both the SOAP
application development support functionality and the Cosminexus JAX-WS functionality.

• Other Web Services
You can use a Web Service client that can publish the WSDL coded within the support range of the Cosminexus
JAX-WS functionality, as Meta data and can send and receive the SOAP Messages of any of the following
specifications# having WS-I Basic Profile 1.1 and Attachments Profile 1.0:

• SOAP 1.1 specifications

• SOAP 1.2 specifications

• SwA specifications (when using attachments in wsi:swaRef format)

For the WSDL support range, see 20.1 Support range of the WSDL 1.1 specifications.

#
Because of the nature of standard specifications, some ambiguous parts still remain even with the SOAP 1.1
specifications, SOAP 1.2 specifications, or SwA specifications having WS-I Basic Profile 1.1 and
Attachments Profile 1.0. Therefore, perform operations after properly studying the interconnectivity. Specially
note that the variance of the SOAP Messages that you can send and receive becomes large when the WSDL is
not published as the Meta data.

(3) Notes for using arrays and java.util.List
Note that when sending a SOAP Message, the status in which element count of array and the java.util.List
object are 0 indicating the empty status and the null status cannot be differentiated.

The sections 10.2.1(3)(a) Sending SOAP Messages and 10.2.1(3)(b) Receiving SOAP Messages describe the
operations of the JAX-WS engine. Also, for the operations when both the Web Service machine and the Web Service
client machine use the Cosminexus JAX-WS functionality, see the section 10.2.1(3)(c) When both the Web Service
machine and the Web Service client machine use the Cosminexus JAX-WS functionality.

The following methods are used as examples in the description:
@WebMethod
public List<String> test(List<Integer> param)

(a) Sending SOAP Messages

This subsection describes a request message when an implementation class of the Web Service client invokes the
methods with the following procedure:

10. Settings and Operations of the JAX-WS Functionality

151

• Invoking the method by passing null to the first argument

• Invoking the method by passing an object of a concrete class of java.util.List with zero number of
elements to the first argument

The following is an excerpt of request messages sent by the JAX-WS engine at the Web Service client machine:

<test/>

Even if you invoke the method with any condition, the elements corresponding to the param parameter do not appear
in request messages. The same holds true for response messages when the implementation class of the Web Service
returns a return value.

(b) Receiving SOAP Messages

When any of the conditions described in the following table is fulfilled, the implementation class of the Web Service
client and the Web Service that receives the messages of the section 10.2.1(3)(a) Sending SOAP Messages accept
arrays and objects of concrete classes of java.util.List in an empty state without elements:

Table 10‒2: Conditions for accepting an empty array or an object of a concrete class of java.util.List

Item
no. Condition

1 When operating the java.util.List object with an implementation class of the Web Service client

2 When operating the java.util.List object with an implementation class of the Web Service developed with a
WSDL as the starting point

3 When operating an array and java.util.List that appears directly in the arguments of the method corresponding
to the WSDL operation (method annotated with the WebMethod annotation), with an implementation class of the
Web Service developed with SEI as the starting point

Note that with the Web Service Implementation Class developed with SEI as the starting point, the properties of the
arrays and java.util.List, included in the JavaBeans class that appear with the arguments of the method
corresponding to the WSDL operation, depend on the implementation of the JavaBeans class. If an element
corresponding to a property does not exist in the request message, the JavaBeans class accepts the arrays and objects
of concrete classes of java.util.List with the null value.

(c) When both the Web Service machine and the Web Service client machine use the Cosminexus JAX-WS
functionality

The operations of the Cosminexus JAX-WS engine are in accordance with the sections 10.2.1(3)(a) Sending SOAP
Messages and 10.2.1(3)(b) Receiving SOAP Messages. Particularly when both; a Web Service client and a Web
Service exist on the Cosminexus server with the implementation class of the Web Service client and the
implementation class of the Web Service satisfying the conditions shown in Table 10-2, if one of the Web Service
client or the Web Service sends null as an array and the java.util.List object, the other machine receives the
array and the concrete class of java.util.List with zero number of elements.

10.2.2 Discovery and dispatch
On the JAX-WS engine, discovery of Web Service Implementation Classes and dispatch of SOAP Messages is
performed in order to send and receive SOAP Messages.

This subsection describes the discovery of a Web Service Implementation Class, dispatch of SOAP Messages, and the
mapping between fault and exception classes.

This subsection also describes the transparency of interfaces.

(1) Discovery
The requested Web Service Implementation Class or the requested Provider Implementation Class is discovered from
the Web Service client using the JAX-WS engine on the Web Service. This is called discovery.

10. Settings and Operations of the JAX-WS Functionality

152

In discovery, the processing for mapping the appropriate Web Service Implementation Class is performed from the
URL requested in the SOAP request message. This point describes the mapping when the following URL is requested:
http://example.org/fromwsdl/TestJaxWsService
If the context root is assumed to be fromwsdl, /TestJaxWsService after the context root (underlined part)
indicates the path information. The Web Service Implementation Class or the requested Provider Implementation
Class is mapped on the basis of this path information.

The following figure shows an example of mapping between the path information and the Web Service
Implementation Class:

Figure 10‒5: Discovery of the Web Service Implementation Class (POJO Web Service)

10. Settings and Operations of the JAX-WS Functionality

153

Figure 10‒6: Discovery of the Web Service Implementation Class (EJB Web Service)

Among the deployed Web Service Implementation Classes or Provider Implementation Classes, the JAX-WS engine
on the Web Service invokes the class corresponding to the path information. In POJO Web Services, the
serviceName attribute of the javax.jws.WebService or the
javax.xml.ws.WebServiceProvider annotation invokes the string matching the one with / (forward slash)
at the beginning removed from the path information.

In EJB Web Services, the serviceName attribute of the javax.jws.WebService annotation invokes the string
matching the one between the / (forward slash) at the beginning and the second / (forward slash) in the path
information, and the name attribute value of the javax.jws.WebService annotation invokes the string matching
the one after the second / (forward slash) in the path information.

You can omit the serviceName attribute of the javax.jws.WebService annotation and
javax.xml.ws.WebServiceProvider annotation. If you omit the serviceName attribute, based on the
JSR-181 specifications, a string with Service added as a suffix to the class name (simple name) of the Web Service
Implementation Class or the Provider Implementation Class is considered as the value of the serviceName
attribute. Also, you can omit the name attribute of the javax.jws.WebService annotation. If you omit the name
attribute, based on JSR-181 specifications, the class name (simple name) of the Web Service Implementation Class is
considered as the value of the name attribute.

The following is the correspondence between the path information in POJO Web Service example and the invoked
Web Service Implementation Class:

• If the path information is Sample1Service
The Web Service Implementation Class A (org.foo.Test1.java) is invoked.

• If the path information is Sample2Service
The Web Service Implementation Class B (org.foo.Test2.java) is invoked.

• If the path information is Test3Service
The Web Service Implementation Class C (org.foo.Test3.java) is invoked.

The following is the correspondence between the path information in the EJB Web Service example and the invoked
Web Service Implementation Class:

• If the path information is/Sample1Service/Sample1

10. Settings and Operations of the JAX-WS Functionality

154

The EJB 1 (org.foo.Test1.java) is invoked.

• If the path information is /Sample2Service/Test2
The EJB 2 (org.foo.Test2.java) is invoked.

• If the path information is /Test3Service/Test3
The EJB 3 (org.foo.Test3.java) is invoked.

You can customize this mapping by coding cosminexus-jaxws.xml. The following is the customization of
mapping with the coding example of cosminexus-jaxws.xml:

<?xml version="1.0" encoding="UTF-8"?>
<endpoints xmlns='http://java.sun.com/xml/ns/jax-ws/ri/runtime'>
 <endpoint
 name="test1"
 implementation="org.foo.Test1"
 url-pattern="/test1"
 />
 <endpoint
 name="test2"
 implementation="org.foo.Test2"
 url-pattern="/test2"
 />
 <endpoint
 name="test3"
 implementation="org.foo.Test3"
 url-pattern="/test3"
 />
</endpoints>

The following is the correspondence between the path information in this example and the invoked Web Service
Implementation Class:

• If the path information is test1
The Web Service Implementation Class A (org.foo.Test1.java) is invoked.

• If the path information is test2
The Web Service Implementation Class B(org.foo.Test2.java) is invoked.

• If the path information is test3
The Web Service Implementation Class C(org.foo.Test3.java) is invoked.

However, the url-pattern attribute of cosminexus-jaxws.xml and the url-pattern element of
web.xml must have one to one correspondence. Therefore, if you customize the mapping in this example, you must
also change the coding in web.xml. The following is a coding example of web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>
 ...
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/test1</url-pattern>
 <url-pattern>/test2</url-pattern>
 <url-pattern>/test3</url-pattern>
 </servlet-mapping>
 ...
</web-app>

For customizing cosminexus-jaxws.xml, see 10.3 Customization using cosminexus-jaxws.xml.

(2) Dispatch of SOAP Messages
With the JAX-WS engine at the Web Service machine, if the discovered target is a Web Service Implementation
Class, a method corresponding to the operation is invoked and executed in accordance with the contents of the
received SOAP Message. If the discovered target is a Provider Implementation Class, the unmarshalled SOAP
Message is converted to the object specified by the Provider Implementation Class, and the invoke() method is
invoked.

This is called dispatch of SOAP Messages.

10. Settings and Operations of the JAX-WS Functionality

155

A SOAP Message must conform to any of the following specifications# having WS-I Basic Profile 1.1 and
Attachments Profile 1.0:

• SOAP 1.1 specifications

• SOAP 1.2 specifications

• SwA specifications (when using an attachment in wsi:swaRef format)

• MTOM/XOP specifications (when using attachments in the MTOM/XOP specification format).

The following is an example of a SOAP Message for the SOAP 1.1 specifications. Note that this is the example of the
SOAP Message without attachment. For the SOAP Messages with attachments, see the section 28.4 SOAP Messages
with attachments (wsi:swaRef format).

POST http://sample.org/fromjava/AddNumbersImplService HTTP/1.1
SOAPAction: ""
Content-Type: text/xml;charset="utf-8"
Accept: text/xml, multipart/related, text/html, image/gif, image/jpeg, *; q=.2, */*;
q=.2

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:add xmlns:ns2="http://sample.com/">
 <arg0>256</arg0>
 <arg1>103</arg1>
 </ns2:add>
 </S:Body>
</S:Envelope>

At the beginning of the message are the HTTP request line (POST line) followed by the HTTP request header fields
(SOAPAction, Content-Type, and Accept lines). After this, keep a blank line and then enter the SOAP Message.
Based on the contents of this SOAP Message, appropriate SEI is invoked and processed.

In the header field of the HTTP request, a SOAPAction header is required, and the value of the header must be set as a
null character (""). Even if a value is set in the SOAPAction header, the value is ignored by the JAX-WS engine. If a
value of a SOAPAction header is not enclosed within quotation marks ["], an error message (KDJW3022-W) is
displayed. Also, the operations when the SOAPAction header is not included in the HTTP request differ according to
the settings in the action definition file. For the settings in the action definition file, see the section 10.1 Action
definition file.

The following is an example of a SOAP Message for the SOAP 1.2 specifications. Note that this is the example of the
SOAP Message without attachment. For the SOAP Messages with attachments, see the section 28.4 SOAP Messages
with attachments (wsi:swaRef format).

POST http://sample.org/fromjava/AddNumbersImplService HTTP/1.1
Content-Type: application/soap+xml;charset="utf-8";action=""
Accept: application/soap+xml, multipart/related, text/html, image/gif, image/jpeg, *;
q=.2, */*; q=.2

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope">
 <S:Body>
 <ns2:add xmlns:ns2="http://sample.com/">
 <arg0>256</arg0>
 <arg1>103</arg1>
 </ns2:add>
 </S:Body>
</S:Envelope>

In the case of the SOAP 1.2 specifications, the SOAPAction header is ignored even if the SOAPAction header
appears in the header field of the HTTP request. Also, you can omit the action parameter.

10. Settings and Operations of the JAX-WS Functionality

156

10.3 Customization using cosminexus-jaxws.xml
The cosminexus-jaxws.xml is the DD used for customizing the mapping between the POJO Web Service URL
and the Web Service Implementation Class or the Provider Implementation Class. This file is created when you want
to customize the processing for discovering the Web Service Implementation Class or the Provider Implementation
Class (discovery) or when you want to assign a single Web Service Implementation Class and a Provider
Implementation Class for multiple URLs.

If you do not want to customize mapping, cosminexus-jaxws.xml is not required. Note that even if you include
cosminexus-jaxws.xml in the EJB JAR file, the cosminexus-jaxws.xml is not applied in the EJB Web
Service.

For customization of mapping, see the subsection 10.2.2(1) Discovery.

Confirm that cosminexus-jaxws.xml is coded correctly, when you want to customize mapping. The
cosminexus-jaxws.xml is read when the Web Service is initialized. Therefore, if an error occurs while
cosminexus-jaxws.xml is being read, the initialization of the Web Service fails. For Web Service initialization,
see the section 10.9(1) Initializing the Web Service.

This section describes the file name and storage destination of the cosminexus-jaxws.xml and the format:

10.3.1 File name and storage destination of cosminexus-jaxws.xml
The cosminexus-jaxws.xml is included in the WAR file. To include the cosminexus-jaxws.xml, include
the file directly under the WEB-INF directory with the name cosminexus-jaxws.xml. The file name and storage
destination are as follows:

WAR-root/WEB-INF/cosminexus-jaxws.xml

10.3.2 Format of cosminexus-jaxws.xml
The following is the format and encoding of cosminexus-jaxws.xml. The operations might not function
properly if a format and encoding other than the following are coded:

• Format: XML version 1.0

• Encoding: UTF-8

The following table lists the elements that can be specified in cosminexus-jaxws.xml:

Table 10‒3: List of elements in cosminexus-jaxws.xml

Element name Specified
number Description

jaxwsdd:endpoints element 1 This is the root element.

jaxwsdd:endpoint element 1 or more Specifies the mapping of the URL to the Web Service
Implementation Class or the Provider Implementation Class.

The following is a description on each element and attribute:

(1) jaxwsdd:endpoints element (cosminexus-jaxws.xml)
The jaxwsdd:endpoints element is the root element of the cosminexus-jaxws.xml. This element does not
have attributes.

(2) jaxwsdd:endpoint element (cosminexus-jaxws.xml)
The jaxwsdd:endpoint element codes the mapping between the URL and the Web Service Implementation Class
or the Provider Implementation Class. One mapping is coded for one jaxwsdd:endpoint element. If the Web
Service has multiple ports (when one Web Service is provided in multiple URLs) and if multiple Web Services exist

10. Settings and Operations of the JAX-WS Functionality

157

in the same WAR file, you need to code the number of jaxwsdd:endpoint elements corresponding to the port
and Web Service.

The following table lists and describes the attributes for the jaxwsdd:endpoint element:

Table 10‒4: List of attributes for the jaxwsdd:endpoint element

No. Attribute name Required Description

1 name Y Specify the name for distinguishing the jaxwsdd:endpoint element.

2 implementation Y Specify the Web Service Implementation Class or the Provider
Implementation Class.

3 port N Specify the port associated with the Web Service Implementation Class or the
Provider Implementation Class. The settings for this attribute have a higher
priority than the settings for the javax.jws.WebService annotation or
the javax.xml.ws.WebServiceProvider annotation. Specify this
attribute to map one Web Service Implementation Class or a Provider
Implementation Class to multiple URLs.

4 url-pattern Y Specify the URL associated with the Web Service Implementation Class or
the Provider Implementation Class. Corresponds to the url-pattern
element of web.xml.

Legend:
Y: Indicates that the specification is required.
N: Indicates that the specification is not required.

(a) name attribute (cosminexus-jaxws.xml)

Specify the name for distinguishing the jaxwsdd:endpoint element with a string (string that can be handled in
Java) that is not a null character string.

If you specify a null character string, the KDJW20031-E message is displayed during deployment. The value must be
unique in the same cosminexus-jaxws.xml. If there are multiple jaxwsdd:endpoint elements with the
same name attribute value, the KDJW40007-W message is displayed.

(b) implementation attribute (cosminexus-jaxws.xml)

Specify the class name of the class that has the javax.jws.WebService annotation.

If you specify a null character string, the KDJW20031-E message is displayed during deployment. Also, if you specify
a non-existent class, the KDJW20014-E message is displayed during deployment.

When you want to map the same Web Service Implementation Class or the Provider Implementation Class for
multiple URLs, specify the coding such that the port attribute is unique. Particularly for the Web Service
Implementation Class, if the port attribute is not coded or if the port attribute value is not unique, an invalid
WSDL is issued as the Meta data.

(c) port attribute (cosminexus-jaxws.xml)

Specify Qname of the port name (the name attribute value of the wsdl:port element) for WSDL issued as Meta
data. For issuing the Meta data, see the section 10.6 Issuing the Meta data.

This attribute can be omitted. If the attribute is omitted or if a null character string is specified, the value of the
portName attribute of the javax.jws.WebService annotation or the
javax.xml.ws.WebServiceProvider annotation for the class specified in the implementation attribute
is used. If the portName attribute is omitted, a string with Port added as the suffix to the simple name of the Web
Service Implementation Class or the Provider Implementation Class is used according to JSR-181 specifications.

When you want to map the same Web Service Implementation Class for multiple URLs, if the port attribute is not
specified, the Meta data is not issued normally.

10. Settings and Operations of the JAX-WS Functionality

158

(d) url-pattern attribute (cosminexus-jaxws.xml)

Specify the path information associated with the Web Service Implementation Class or the Provider Implementation
Class specified in the implementation attribute. The discovery is performed on the basis of the value specified in
the url-pattern attribute. For the discovery, see the subsection 10.2.2(1) Discovery.

The path information must be a clearly specified value (wild cards such as asterisk cannot be used). Also, the path
information must form a one-to-one correspondence with the value of the url-pattern element of web.xml.

For example, if "/path1" is specified in the url-pattern attribute, the class specified in the implementation
attribute is mapped for the request to "/path1".

The value must be unique in the same cosminexus-jaxws.xml. If there are multiple jaxwsdd:endpoint
elements with the same url-pattern attribute value, the KDJW40009-W message is displayed. In this case,
among the jaxwsdd:endpoint elements with the same url-pattern attribute value, only the mapping coded
in the first jaxwsdd:endpoint element is enabled.

(3) Example of settings when cosminexus-jaxws.xml is used
The following table describes the coding examples for DD corresponding to the below Web Services:

Table 10‒5: Examples of URLs corresponding to the Web Service Implementation Classes

No. Web Service Implementation Classes URL

1 com.sample.AddNumbersImplA /test1

2 com.sample.AddNumbersImplB /test2, /test3

The following is an example of web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3.0.xsd">
 <description>Sample web service "fromwsdl"</description>
 <display-name>Sample_web_service_fromwsdl</display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/test1</url-pattern>
 <url-pattern>/test2</url-pattern>
 <url-pattern>/test3</url-pattern>
 </servlet-mapping>
</web-app>

When creating version 2.5 of web.xml, set the version attribute of the web-app element as 2.5 and the second
location information of the xsd:schemaLocation attribute as http://java.sun.com/xml/ns/javaee/
web-app_2_5.xsd.

The following is an example of cosminexus-jaxws.xml:

<?xml version="1.0" encoding="UTF-8"?>
<endpoints xmlns='http://java.sun.com/xml/ns/jax-ws/ri/runtime'>
 <endpoint
 name="test1"
 implementation="com.sample.AddNumbersImplA"
 url-pattern="/test1"

10. Settings and Operations of the JAX-WS Functionality

159

 />
 <endpoint
 name="test2"
 implementation="com.sample.AddNumbersImplB"
 url-pattern="/test2"
 port="{http://sample.com}port1"
 />
 <endpoint
 name="test3"
 implementation="com.sample.AddNumbersImplB"
 url-pattern="/test3"
 port="{http://sample.com}port2"
 />
</endpoints>

When creating version 2.5 of web.xml, set the version attribute of the web-app element as 2.5 and the second
location information of the xsd:schemaLocation attribute as http://java.sun.com/xml/ns/javaee/
web-app_2_5.xsd.

10. Settings and Operations of the JAX-WS Functionality

160

10.4 Fault and exception processing
The JAX-WS engine binds the faults and exceptions to the Web Service and Web Service client based on the JAX-
WS 2.2 specifications. This is applicable to both, POJO and EJB Web Services.

This section describes the fault and exception processing in the JAX-WS engine.

10.4.1 Fault and exception processing on the Web Service
This subsection describes the fault and exception processing in the JAX-WS engine on the Web Service. Note that if
the Web Services are implemented with the Provider Implementation Class, this processing will not be executed.

(1) Processing of service-specific exceptions
The WSDL faults and Java exceptions are mapped according to the JAX-WS 2.2 specifications. The following figure
shows an example of mapping between the WSDL faults and Java exception classes.

Figure 10‒7: Example of mapping between WSDL faults and Java exception classes

In the mapping example, you learn that the UserDefinedFault fault is mapped to the fault bean
(com.example.sample.UserDefinedFault) and the wrapper exception class
(com.example.sample.UserDefinedException).

For the mapping between the fault and exception classes, see 15.1.7 Mapping the fault to the exception class and
16.1.7 Mapping the Java wrapper exception class to the fault.

Using the JAX-WS engine on the Web Service, the wrapper exception class is bound to the SOAP fault as described
in the following table:

10. Settings and Operations of the JAX-WS Functionality

161

Table 10‒6: Wrapper exception class binding

No.

Child element of the SOAP fault

ContentsSOAP 1.1
specifications

SOAP 1.2
specifications

1 faultcode soapenv12:Code SOAP 1.1 specifications
Fixed to QName soapenv:server.

SOAP 1.2 specifications
Fixed to QName
soapenv 12:Receiver

2 faultstring soapenv12:Reason Results in the execution of the getMessage method for the
wrapper exception class.

3 faultactor soapenv12:Role Does not exist.

4 detail soapenv12:Detail Results in the marshalling of the fault bean.

The following is an example of a wrapper exception class in the Web Service Implementation Class:

//Generate the fault bean and specify the information you want marshlling
UserDefinedFault fault = new UserDefinedFault();
fault.additionalInfo = 257;
fault.detail = "Failed by some reason.";
fault.message = "Contact your administrator.";

//wrapper exception class is thrown
throw new UserDefinedException(
 "Something happens.", fault);

The following is an example of a SOAP fault message of the SOAP 1.1 specifications that will be sent (actually, there
is no linefeed and indent):

<?xml version="1.0" ?>
<S:Envelope xmlns:S= "http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
<faultcode>ns2:Server</faultcode>
 <faultstring>Something happens.</faultstring>
 <detail>
 <ns2:UserDefinedFault xmlns:ns2="http://example.com/sample">
 <additionalInfo>257</additionalInfo>
 <detail>Failed by some reason.</detail>
 <message>Contact your administrator.</message>
 </ns2:UserDefinedFault>
 </detail>
 </ns2:Fault>
 </S:Body>
</S:Envelope>

#
A SOAP fault message always includes the namespace definition of the SOAP 1.1 and SOAP 1.2 specifications.

The following is an example of a SOAP fault message of the SOAP 1.2 specifications that will be sent (actually, there
is no linefeed and indent):

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope">
 <S:Body>
 <ns3:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
 <ns3:Code>
 <ns3:Value>ns3:Receiver</ns3:Value>
 </ns3:Code>
 <ns3:Reason>
 <ns3:Text xml:lang="ja">Something happens.</ns3:Text>
 </ns3:Reason>
 <ns3:Detail>

10. Settings and Operations of the JAX-WS Functionality

162

 <env:UserDefinedFault xmlns:env="http://example.com/sample">
 <additionalInfo>257</additionalInfo>
 <detail>Failed by some reason.</detail>
 <message>Contact your administrator.</message>
 </env:UserDefinedFault>
 </ns3:Detail>
 </ns3:Fault>
 </S:Body>
</S:Envelope>

#
A SOAP fault message always includes the namespace definition of the SOAP 1.1 and SOAP 1.2 specifications.

(2) Runtime exception binding
If a runtime exception other than javax.xml.ws.WebServiceException is thrown in the Web Service
Implementation Class, the runtime exception is bound to the SOAP fault by the JAX-WS engine on the Web Service
(binding based on the JAX-WS 2.2 specifications).

The following table describes an example of runtime exception binding:

Table 10‒7: Runtime exception binding

No.

Child element of the SOAP fault

ContentsSOAP 1.1
specifications

SOAP 1.2
specifications

1 faultcode soapenv12:Code SOAP 1.1 specifications
Fixed to QName soapenv:server.

SOAP 1.2 specifications
. Fixed to QName
soapenv 12:Receiver

2 faultstring soapenv12:Reason Results in the execution of the getMessage method for the
wrapper exception class.

3 faultactor soapenv12:Role Does not exist.

4 detail soapenv12:Detail Results in the marshalling of the fault bean.

The following is an example of a runtime exception:

//runtime exception is thrown
throw new IllegalArgumentException("Something illegal.");

The following is an example of a SOAP fault message of the SOAP 1.1 specifications that will be sent (actually, there
is no linefeed and indent):

<?xml version="1.0" ?>
<S:Envelope xmlns:S= "http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
<faultcode>ns2:Server</faultcode>
 <faultstring>Something illegal.</faultstring>
 </ns2:Fault>
 </S:Body>
</S:Envelope>

#
A SOAP fault message always includes the namespace definition of the SOAP 1.1 and SOAP 1.2 specifications.

The following is an example of a SOAP fault message of the SOAP 1.2 specifications that will be sent (actually, there
is no linefeed and indent):

10. Settings and Operations of the JAX-WS Functionality

163

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope">
 <S:Body>
 <ns3:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
 <ns3:Code>
 <ns3:Value>ns3:Receiver</ns3:Value>
 </ns3:Code>
 <ns3:Reason>
 <ns3:Text xml:lang="ja">Something illegal.</ns3:Text>
 </ns3:Reason>
 </ns3:Fault>
 </S:Body>
</S:Envelope>

#
The SOAP fault message always includes the namespace definition of the SOAP 1.1 and SOAP 1.2 specifications.

(3) javax.xml.ws.WebServiceException binding
If javax.xml.ws.WebServiceException other than javax.xml.ws.soap.SOAPFaultException is
thrown in the Web Service Implementation Class or the Provider Implementation Class,
javax.xml.ws.WebServiceException is bound to the SOAP fault by the JAX-WS engine on the Web
Service (binding based on the JAX-WS 2.2 specifications).

The following table describes an example of javax.xml.ws.WebServiceException binding:

Table 10‒8: javax.xml.ws.WebServiceException binding

No.

Child element of the SOAP fault

ContentsSOAP 1.1
specifications

SOAP 1.2
specifications

1 faultcode soapenv12:Code SOAP 1.1 specifications
Fixed to QName soapenv:server.

SOAP 1.2 specifications
Fixed to QName soapenv12:Receiver.

2 faultstring soapenv12:Reason Results in the execution of the getMessage method for the
wrapper exception class. For SOAP 1.2, the default locale of
JavaVM is set in the xml:lang attribute.

3 faultactor soapenv12:Role Does not exist.

4 detail soapenv12:Detail Results in the marshalling of the fault bean.

The following is an example of the javax.xml.ws.WebServiceException:

//javax.xml.ws.WebServiceException is thrown
throw new javax.xml.ws.WebServiceException("Web Service Exception.");

The following is an example of a SOAP fault message of the SOAP 1.1 specifications that will be sent (actually, there
is no linefeed and indent):

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>ns2:Server</faultcode>
 <faultstring>Web Service Exception.</faultstring>
 </ns2:Fault>
 </S:Body>
</S:Envelope>

#
The SOAP fault message always includes the namespace definition of the SOAP 1.1 and SOAP 1.2 specifications.

10. Settings and Operations of the JAX-WS Functionality

164

The following is an example of a SOAP fault message of the SOAP 1.2 specifications that will be sent (actually, there
is no linefeed and indent):

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope">
 <S:Body>
 <ns3:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/
 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
 <ns3:Code>
 <ns3:Value>ns3:Receiver</ns3:Value>
 </ns3:Code>
 <ns3:Reason>
 <ns3:Text xml:lang="ja">Something illegal.</ns3:Text>
 </ns3:Reason>
 </ns3:Fault>
 </S:Body>
</S:Envelope>

#
The SOAP fault message always includes the namespace definition of the SOAP 1.1 and SOAP 1.2 specifications.

(4) javax.xml.ws.soap.SOAPFaultException binding
If javax.xml.ws.soap.SOAPFaultException is thrown in the Web Service Implementation Class or the
Provider Implementation Class, the javax.xml.ws.soap.SOAPFaultException is bound to the SOAP fault
by the JAX-WS engine on the Web Service (binding based on the JAX-WS 2.2specifications).

The following table describes an example of javax.xml.ws.soap.SOAPFaultException binding:

Table 10‒9: javax.xml.ws.soap.SOAPFaultException binding

No.

Child element of the SOAP fault

ContentsSOAP 1.1
specifications

SOAP 1.2
specifications

1 faultcode soapenv12:Code SOAP 1.1 specifications
Results in the getFault().getFaultCodeAsQName
method.
However, for null, fixed to QName soapenv:server.

SOAP 1.2 specifications
Fixed to QName soapenv12:Sender. The child element
soapenv12:Subcode of soapenv12:Code maintains the
result.

2 faultstring soapenv12:Reason Results in the getFaultReasonText method.

However, for null, results in the execution of the getMessage
method.

3 faultactor soapenv12:Role Results in the getFault().getFaultRole method.

However, for null, does not exist.

4 detail soapenv12:Detail Results in the marshalling of the results of the execution of the
getFault().getDetail method.

However, for null, does not exist.

The following is an example of javax.xml.ws.soap.SOAPFaultException for the SOAP 1.1
specifications:

SOAPFault soapFault = ...;
soapFault.setFaultCode(new QName("http://sample.org", "UserDefined"));
soapFault.setFaultActor("http://example.com/sample");
soapFault.setFaultString("SOAPFaultException happens.");
Detail detail = soapFault.addDetail();
SOAPElement soapElement = detail.addChildElement(new QName("", "detailTest"));
soapElement.addTextNode("TEST.");

10. Settings and Operations of the JAX-WS Functionality

165

//javax.xml.ws.soap.SOAPFaultException is thrown
throw new SOAPFaultException(soapFault);

The following is an example of javax.xml.ws.soap.SOAPFaultException for the SOAP 1.2
specifications:

SOAPFactory soapFactory = SOAPFactory.newInstance(SOAPConstants.SOAP_1_2_PROTOCOL);
SOAPFault soapFault = soapFactory.createFault();
soapFault.appendFaultSubcode(new QName("http://sample.org", "UserDefined"));
soapFault.setFaultRole("http://example.com/sample");
soapFault.addFaultReasonText("SOAPFaultException happens.", Locale.getDefault());
Detail detail = soapFault.addDetail();
SOAPElement soapElement = detail.addChildElement(new QName("", "detailTest"));
soapElement.addTextNode("TEST.");

//javax.xml.ws.soap.SOAPFaultException is thrown
throw new SOAPFaultException(soapFault);

The following is an example of a SOAP fault message of the SOAP 1.1 specifications that will be sent (actually, there
is no linefeed and indent):

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
 <faultcode xmlns:ns0="http://sample.org">ns0:UserDefined</faultcode>
 <faultstring>SOAPFaultException happens.</faultstring>
 <faultactor>http://example.com/sample</faultactor>
 <detail><detailTest>TEST.</detailTest></detail>
 </ns2:Fault>
 </S:Body>
</S:Envelope>

#
The SOAP fault message always includes the namespace definition of the SOAP 1.1 and SOAP 1.2 specifications.

The following is an example of a SOAP fault message of the SOAP 1.2 specifications that will be sent (actually, there
is no linefeed and indent):

<?xml version="1.0" ?>
<S:Envelope xmlns:S= "http://www.w3.org/2003/05/soap-envelope">
 <S:Body>
 <ns3:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
 <ns3:Code>
 <ns3:Value>ns3:Sender</ns3:Value>
 <ns3:Subcode>
 <ns3:Value xmlns:ns0="http://sample.org">ns0:UserDefined</ns3:Value>
 </ns3:Subcode>
 </ns3:Code>
 <ns3:Reason>
 <ns3:Text xml:lang="ja">SOAPFaultException happens.</ns3:Text>
 </ns3:Reason>
 <ns3:Role>http://example.com/sample</ns3:Role>
 <ns3:Detail>
 <env:Detail xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <detailTest>TEST.</detailTest>
 </env:Detail>
 </ns3:Detail>
 </ns3:Fault>
 </S:Body>
</S:Envelope>

#
The SOAP fault message always includes the namespace definition of the SOAP 1.1 and SOAP 1.2 specifications.

10. Settings and Operations of the JAX-WS Functionality

166

10.4.2 Fault processing on the Web Service client
This subsection describes the SOAP faults corresponding to the wsdl:fault element and the SOAP faults not
corresponding to the wsdl:fault element respectively.

• SOAP faults corresponding to the wsdl:fault element
When the JAX-WS engine on the Web Service client receives a SOAP fault message marshalled according to the
section 10.4.1(1) Processing of service-specific exceptions, the SOAP fault message is un-marshalled in the
original fault bean and wrapper exception and thrown to the Web Service client. In other words, the service-
specific exception thrown by the Web Service is sent transparently to the Web Service client (this operation is
according to the JAX-WS 2.2 specifications).

• SOAP faults not corresponding to the wsdl:fault element
When the JAX-WS engine on the Web Service client receives a SOAP fault message not corresponding to the
wsdl:fault element, the SOAP fault message is un-marshalled in
javax.xml.ws.soap.SOAPFaultException and thrown to the Web Service client (this operation is
according to the JAX-WS 2.2 specifications).
For SOAP 1.2, when the SOAP fault has multiple soapenv12:Text elements, only one Reason Text is set in
the SOAPFault object included in the SOAPFaultException object. The value (string) set in the following
location and locale is set:

• Value: value of the last soapenv12:Text element

• Locale: default locale of JavaVM

10.4.3 Propagation of the Java exception
When both the Web Service and Web Service client are deployed on the Cosminexus JAX-WS engine, the Java
exception occurring in the Web Service can be propagated to the Web Service client. This is applicable to both, POJO
and EJB Web Services. This subsection describes the Java exception propagation method and the operations.

Note
The propagation of the Java exception is not a functionality given in the SOAP 1.1 specifications and JAX-WS 2.2
specifications; therefore, when you connect with the basic Web Service products other than the Cosminexus JAX-
WS functionality, unintended operations might occur and communication might fail. The stack trace might also
include internal information about Web Service implementation (if system settings information and individual
information is handled, that information). Therefore, assuming that this functionality is used in real operations, we
recommend that you do not implement the Web Service. Use this functionality as required during development.

(1) Java exception propagation method
To propagate the Java exception that occurred in the Web Service, specify true for the
com.cosminexus.jaxws.fault.SOAPFaultBuilder.captureStackTrace property in the action
definition file.

For the com.cosminexus.jaxws.fault.SOAPFaultBuilder.captureStackTrace property, see the
section 10.1.2 Settings for the common definition file.

(2) Operations for propagating the Java exception (in the Web Service)
When the Java exception is propagated in the Web Service, the {http://jax-
ws.dev.java.net/}exception element specific to the Cosminexus JAX-WS functionality is added as the
child element of the detail element or soapenv12:Detail element, and the information about the occurred
Java exception is marshalled.

The following is an example of a runtime exception:

//runtime exception is thrown
catch(NullPointerException){
 throw new IllegalArgumentException("Something illegal.", e);
}

10. Settings and Operations of the JAX-WS Functionality

167

When the exception is thrown in this manner, an example of the SOAP fault message of SOAP 1.1 specifications that
will be sent is as follows (actually, there is no linefeed and indent):

<?xml version="1.0" ?>
<S:Envelope xmlns:S= "http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>ns2:Server</faultcode>
 <faultstring>Something illegal.</faultstring>
 <detail>
 <ns2:exception xmlns:ns2="http://jax-ws.dev.java.net/"
 class="java.lang.IllegalArgumentException"
 note="To disable this feature, set
com.cosminexus.jaxws.fault.SOAPFaultBuilder.captureStackTrace property to false">
 <message>Something illegal</message>
 <ns2:stackTrace>
 <ns2:frame class="com.example.sample.TestJaxWsImpl" file="TestJaxWsImpl.java"
line="32" method="jaxWsTest1"/>
 <ns2:frame class="sun.reflect.NativeMethodAccessorImpl"
file="NativeMethodAccessorImpl.java" line="native" method="invoke0"/>
 <ns2:frame class="sun.reflect.NativeMethodAccessorImpl"
file="NativeMethodAccessorImpl.java" line="39" method="invoke"/>
 ...
 <ns2:frame class="java.lang.Thread" file="Thread.java" line="595" method="run"/>
 </ns2:stackTrace>
 <ns2:cause class="java.lang.NullPointerException"
 note="To disable this feature, set
com.cosminexus.jaxws.fault.SOAPFaultBuilder.captureStackTrace property to false">
 <message>Something null.</message>
 <ns2:stackTrace>
 <ns2:frame class="com.example.sample.TestJaxWsImpl" file="TestJaxWsImpl.java"
line="32" method="jaxWsTest1"/>
 <ns2:frame class="sun.reflect.NativeMethodAccessorImpl"
file="NativeMethodAccessorImpl.java" line="native" method="invoke0"/>
 ...
 <ns2:frame class="sun.reflect.DelegatingMethodAccessorImpl"
file="DelegatingMethodAccessorImpl.java" line="25" method="invoke"/><ns2:frame
class="java.lang.reflect.Method" file="Method.java" line="585" method="invoke"/>
 <ns2:frame class="org.apache.tomcat.util.threads.ThreadPool$ControlRunnable"
file="ThreadPool.java" line="1510" method="run"/>
 <ns2:frame class="java.lang.Thread" file="Thread.java" line="595" method="run"/>
 </ns2:stackTrace>
 </ns2:cause>
 </ns2:exception>
 </detail>
 </ns2:Fault>
 </S:Body>
</S:Envelope>

The following is an example of a SOAP fault message of the SOAP 1.2 specifications that will be sent (actually, there
is no linefeed and indent):

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope">
 <S:Body>
 <ns3:Fault xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
 <ns3:Code>
 <ns3:Value>ns3:Receiver</ns3:Value>
 </ns3:Code>
 <ns3:Reason>
 <ns3:Text xml:lang="ja">Something illegal.</ns3:Text>
 </ns3:Reason>
 <ns3:Detail>
 <env:Detail xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <detailTest>TEST.</detailTest>
 </env:Detail>
 <ns2:exception xmlns:ns2="http://jax-ws.dev.java.net/"
 class="javax.xml.ws.soap.SOAPFaultException"
 note="To disable this feature, set
com.cosminexus.jaxws.fault.SOAPFaultBuilder.captureStackTrace property to false">
 ...
 (Same as the SOAP fault of SOAP 1.1 specifications)
 ...
 </ns2:exception>
 </ns3:Detail>
 </ns3:Fault>
 </S:Body>
</S:Envelope>

10. Settings and Operations of the JAX-WS Functionality

168

(3) Operations for propagating the Java exception (In the Web Service client)
When the Java exception is propagated in the Web Service client, the exception (exception that occurred in the Web
Service) un-marshalled from the information about the {http://jax-ws.dev.java.net/}exception
element is set up in the cause of the wrapper exception class or javax.xml.ws.soap.SOAPFaultException
thrown in the Web Service client.

The Web Service client can acquire the exception occurring in the Web Service by executing the getCause method.

10.4.4 HTTP status code when binding an exception to a fault
When the JAX-WS engine binds an exception to a fault at the Web Service machine and returns to the Web Service
client, "500 Internal Server Error" is set up in the status code of the HTTP response. This is applicable to both, POJO
and EJB Web Services.

10.4.5 Notes on customizing an error page
For customizing an error page on the J2EE server in which the JAX-WS engine of the Web service machine is
operating or in the WAR file that includes Web Services, do not customize the HTTP status code 500. When the JAX-
WS engine at the Web service machine returns a fault to the Web Service client, the HTTP status code is set up to
"500 Internal Server Error". Therefore, if you customize the HTTP status code 500 instead of the SOAP fault, an
invalid SOAP Message will be sent to the Web Service client.

10. Settings and Operations of the JAX-WS Functionality

169

10.5 Interface transparency
The Web Service and Web Service client have a sparse relationship and their only mutual interface is the defined
contents of WSDL. In the Web Service, the interface information (Meta data) of the Web Service is published through
WSDL and that Meta data is used in the Web Service client to generate and send and receive SOAP Messages.

When both, the Web Service and Web Service client are running using the Cosminexus JAX-WS engine, only the
interface information of the WSDL is exchanged.

Since the Java interface is not permeable, when you develop a Web Service starting from SEI, the method signature in
the Web Service and the Web Service client might differ.

This section describes the differences in the method signature on the basis of examples of Java methods before
generation and Java methods after generation.

(1) When the Java method has an array parameter
The example assumes that a Web Service is to be developed starting from SEI with the following Java method. This
Java method has an array (int type) parameter.

@WebMethod
public void test1(int[] param1);

The following is a part of the WSDL that is mapped in this case:

...
<types>
 <xsd:schema targetNamespace="http://cosminexus.com/jaxws">

 <xs:element name="test1" type="tns:test1"/>

 <xs:element name="test1Response" type="tns:test1Response"/>

 <xs:complexType name="test1">
 <xs:element name="arg0" type="xs:int" nillable="true"
 minOccurs="0" maxOccurs="unbounded" />
 </xs:complexType>

 <xs:complexType name="test1Response">
 <xs:sequence/>
 </xs:complexType>
 </xs:element>
</types>
<message name="test1">
 <part name="parameters" element="tns:test1"/>
</message>

<message name="test1Response">
 <part name="parameters" element="tns:test1Response"/>
</message>

<portType ...>
 <operation name="test1">
 <input message="tns:test1"/>
 <output message="tns:test1Response"/>
 </operation>
 ...
</portType>
...

The parameter is mapped to the wrapper child element of maxOccurs="unbounded".

If you execute the cjwsimport command by specifying this WSDL, the Java method of the generated service class
is as follows:

@WebMethod
public String test1(java.util.List<Integer> arg0);

The wrapper child element of maxOccurs="unbounded" is mapped to the java.util.List class. Also, in
this case, the xsd:int type is mapped to the java.lang.Integer class.

10. Settings and Operations of the JAX-WS Functionality

170

(2) When the Java method has only one OUT parameter
The example assumes that a Web Service is to be developed starting from SEI with the following Java method. This
Java method has only one OUT parameter and does not have a return value.

@WebMethod
public void test1(@WebParam(mode=WebParam.Mode.OUT) Holder<String> param1);

The following is a part of the WSDL that is mapped in this case:

...
<types>
 <xsd:schema targetNamespace="http://cosminexus.com/jaxws">

 <xs:element name="test1" type="tns:test1"/>

 <xs:element name="test1Response" type="tns:test1Response"/>

 <xs:complexType name="test1">
 <xs:sequence/>
 </xs:complexType>

 <xs:complexType name="test1Response">
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</types>
<message name="test1">
 <part name="parameters" element="tns:test1"/>
</message>

<message name="test1Response">
 <part name="parameters" element="tns:test1Response"/>
</message>

<portType ...>
 <operation name="test1">
 <input message="tns:test1"/>
 <output message="tns:test1Response"/>
 </operation>
 ...
</portType>
...

The OUT parameter is mapped to the wrapper child element referenced from the wsdl:output element.

If you execute the cjwsimport command by specifying this WSDL, the Java method of the generated service class
is as follows:

@WebMethod
public String test1();

Since only one wrapper child element is referenced from the wsdl:output element, that wrapper child element is
mapped to the return value.

(3) non-wrapper style arrays
This example assumes the development of a Web Service starting from SEI using the following Java method. This
Java method has the non-wrapper style and array parameters of the java.lang.String class.

@WebMethod
@javax.jws.soap.SOAPBinding(
 parameterStyle=javax.jws.soap.SOAPBinding.ParameterStyle.BARE)
public String test1(String[] param1);

The following is a part of the WSDL that is mapped in this case:

...
<types>

10. Settings and Operations of the JAX-WS Functionality

171

 <xsd:schema targetNamespace="http://jaxb.dev.java.net/array">
 <xsd:complexType name="stringArray" final="#all">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:string" minOccurs="0"
 maxOccurs="unbounded" nillable="true" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>

 <xsd:schema targetNamespace="http://cosminexus.com/jaxws"
 xmlns:ns1="http://jaxb.dev.java.net/array">
 <xsd:element name="test1" nillable="true" type="ns1:stringArray"/>
 <xsd:element name="test1Response" nillable="true" type="xsd:string"/>
 </xsd:schema>
</types>

<message name="test1">
 <part name="test1" element="tns:test1" />
</message>

<message name="test1Response">
 <part name="test1Response" element="tns:test1Response" />
</message>

<portType ...>
 <operation name="test1">
 <input message="tns:test1" />
 <output message="tns:test1Response" />
 </operation>
 ...
</portType>
...

The parameter is mapped to the wrapper child element of the {http://jaxb.dev.java.net/
array}stringArray type.

When you execute the cjwsimport command by specifying the WSDL, the Java method of the generated service
class will change as follows:

@WebMethod
@javax.jws.soap.SOAPBinding(
 parameterStyle=javax.jws.soap.SOAPBinding.ParameterStyle.BARE)
public String test1(net.java.dev.jaxb.array.StringArray test1);

The wrapper child element of the {http://jaxb.dev.java.net/array}stringArray type is mapped
to the net.java.dev.jaxb.array.StringArray class.

10. Settings and Operations of the JAX-WS Functionality

172

10.6 Issuing the Meta data
The JAX-WS engine on the Web Service can issue the WSDL file coding the Meta data of the Web Service (Web
Service Implementation Class or Provider Implementation Class) according to the request. The issued WSDL file can
be used to generate the Java code required for developing the Web Service and the Web Service client by using the
cjwsimport command.

This section describes the points to be noted when Meta data issuing is used.

(1) Conditions for issuing the Meta data
This section describes the respective conditions for issuing POJO and EJB Web Services.

(a) In POJO Web services

The following table lists the conditions for issuing the Meta data for POJO Web services. When the JAX-WS engine
on the Web Service receives an HTTP request that fulfills all the conditions described in the following table, the Meta
data is issued:

Table 10‒10: HTTP request required for issuing the Meta data for POJO Web services

No. Items Conditions

1 HTTP method GET method

2 URL Schema http or https

3 Host name (: port
number)

Host name (and port number) where the Web Service requesting the
issuing of the Meta data exists

4 Context path Context path of the Web application that contains the Web Service that
requests the issuing of the Meta data

5 Web Service name Web Service that requests the issuing of the Meta data (service name of
the Web Service Implementation Class or the Provider Implementation
Class)

6 Query string wsdl or WSDL
(The characters are case sensitive)

The WSDL file associated with the Web Service corresponding to the requested URL is issued in the request source as
HTTP response contents. The following query strings must be added in the request URL:
GET http://sample.com:8085/fromjava/AddNumbersImplService?wsdl HTTP/1.1
GET http://sample.com:8085/fromjava/AddNumbersImplService?WSDL HTTP/1.1

(b) In EJB Web Services

The following table lists the conditions for issuing the Meta data for EJB Web Services. When the JAX-WS engine on
the Web Service receives an HTTP request that satisfies all the conditions described in the following table, the Meta
data is issued:

Table 10‒11: HTTP request required for issuing the Meta data for EJB Web services

No. Item Condition

1 HTTP method GET method

2 URL Schema http or https

3 Host name (: port number) Host name (and port number) where the Web Service requesting the
issuing of the Meta data exists

4 Context path Context path of the Web application that includes the Web Service that
requests the issuing of the Meta data

10. Settings and Operations of the JAX-WS Functionality

173

No. Item Condition

5 URL Web Service name Web Service that requests the issuing of the Meta data (service name
of the Web Service Implementation Class)

6 EJB class name EJB class name of the Web Service that requests the issuing of the
Meta data

7 Query string "wsdl" or "WSDL"

(Case sensitive)

The WSDL file associated with the Web Service corresponding to the requested URL is issued in the request source as
HTTP response contents. The following query strings must be added in the request URL:

GET http://sample.com:8085/statelessjava/AddNumbersImplService/AddNumbersImpl?
wsdl HTTP/1.1
GET http://sample.com:8085/statelessjava/AddNumbersImplService/AddNumbersImpl?
WSDL HTTP/1.1

(2) Issued Meta data
The following table describes the correspondence between the request conditions and the issued Meta data:

Table 10‒12: Correspondence between the request conditions and the issued Meta data

No. Request conditions Issued Meta data

Whether Web
Service is applied

POJO EJB#

1 If the wsdlLocation attribute exists in
the javax.jws.WebService
annotation (for a Web Service
Implementation Class) or in the
javax.xml.ws.WebServiceProvid
er annotation (for a Provider
Implementation Class)

The WSDL file present in the location
specified in the wsdlLocation attribute
is returned.

Y Y

2 If the wsdlLocation attribute is not
specified in the
javax.jws.WebService annotation
(for a Web Service Implementation Class)
or in the
javax.xml.ws.WebServiceProvid
er annotation (for a Provider
Implementation Class), but if the WSDL file
that has the wsdl:service element
exists in the WEB-INF/wsdl directory of
the deployed WAR file

The WSDL file exists in the WEB-INF/
wsdl directory of the deployed Web
application is returned.

Y --

3 If WSDL does not exist in the Web
application

(For other than No.1 and No.2)

A new WSDL is generated and returned, if
the target is a Web Service
Implementation Class.

The Meta data is not issued, if the target is
a Provider Implementation Class.

Y Y

The pre-condition forLLegend:
Y: Applied
--: Not applied

Note:
In EJB Web Service, the Meta data is applicable only for Web Service Implementation Class.

The pre-condition for the issue of Meta data is that the Web Service application does not have an error, is deployed
normally, and the execution is started.

10. Settings and Operations of the JAX-WS Functionality

174

The precautions related to the issuing of the Meta data are as follows:

• In the wsdlLocation attribute, specify the relative path to the WSDL file beginning with 'WEB-INF/wsdl' or
'META-INF/wsdl'. If the WSDL file specified in the wsdlLocation attribute does not exist in the WEB-INF/
wsdl or META-INF/wsdl directory nor has an invalid WSDL syntax, an error occurs during the deployment of
the Web Service.

• If the WSDL file specified in the wsdlLocation attribute does not include the wsdl:service element, an
error occurs during the deployment of the Web Service.

• Even for point 1 and point 2, if the WSDL file that exists under the WEB-INF/wsdl or META-INF/wsdl
directory includes one of the following, an error occurs during the deployment of the Web Service:

• There are multiple files with the wsdl:service element.

• There are multiple files with the wsdl:portType element (in a Web Service Implementation Class).

• Even for point 1 and 2, the requested WSDL of the Web application is returned with the updated contents based
on the WSDL files.

With the Provider Implementation Class, basically you do not need a WSDL. Also, the standard specifications do not
define the mapping rules for the javax.xml.ws.WebServiceProvider annotation and the WSDL. Therefore,
for issuing the Meta data, you must properly include the created WSDL in a WAR file (unlike the Web Service
Implementation Class in which the JAX-WS engine automatically generates a WSDL file). Also, if you do not include
cosminexus-jaxws.xml in the WAR file, the portName and targetNamespace attributes of the
javax.xml.ws.WebServiceProvider annotation will be required. Specify appropriate values according to the
definition contents of the WSDL. For cosminexus-jaxws.xml, see the section 10.3 Customization using
cosminexus-jaxws.xml.

(3) Updating the WSDL
When the Web Service is deployed, the JAX-WS engine at the Web service machine automatically generates the
WSDL file for the Web Service Implementation Class, as and when required. Even when the JAX-WS engine does
not automatically generate a WSDL file, the JAX-WS engine returns a WSDL containing the following information
based on the WSDL that is included in the WAR file:

• Header information
In the WSDL file, add the published version and the date and time as header information. The following is an
example of the added header information:

<!-- Published by Cosminexus JAX-WS 0900 (2012.01.01 00:00). -->

• Location information
Update the location attribute of the soap:address element and the schemaLocation attribute of the
xsd:include element.
For example, even when the value of the location attribute of the soap:address element is a WSDL such
as REPLACE_WITH_ACTUAL_URL, this value is included in the WAR file, and is updated to an appropriate
URL.
The following is an example of the location information after the update:

• Host name: sample.com
• Context root: /fromjava
• Web Service invocation URL: /AddNumbersImplService

In such cases, the URL changes to http://sample.com/fromjava/AddNumbersImplService after
the update.

(4) Enabling and disabling Meta data issue
You can specify the enabling or disabling for issuing the Meta data in the value of the
com.cosminexus.jaxws.security.publish_wsdl property. You can specify in both, POJO and EJB Web
Services.

10. Settings and Operations of the JAX-WS Functionality

175

For the com.cosminexus.jaxws.security.publish_wsdl property, see 10.1.2 Settings for the common
definition file.

(5) Notes when the WAR file contains multiple Web Service Implementation Classes or
Provider Implementation Classes

The Meta data is acquired for each Web Service Implementation Class or Provider Implementation Class. If the WAR
file contains multiple Web Service Implementation Classes or Provider Implementation Classes, the wsdl:binding
element and the wsdl:port element of the WSDL definition generated and returned anew using the JAX-WS
engine on the Web Service are only the wsdl:binding element and the wsdl:port element corresponding to the
Web Service Implementation Class or the Provider Implementation Class of the URL specified in the request. The
wsdl:binding element and the wsdl:port element corresponding to the other Web Service Implementation
Classes or the Provider Implementation Classes that the WAR file contains are not included.

If you want to publish Meta data containing the wsdl:binding element and the wsdl:port element
corresponding to all the Web Service Implementation Classes or the Provider Implementation Classes in the WAR
file, the Web Service (application) developer must first create appropriate Meta data and then include the data in the
WEB-INF/wsdl directory.

(6) Notes for importing and including WSDL definition or XML Schema
When importing or including the WSDL definition or XML Schema, if WSDL definition or XML Schema used for
developing a Web Service is included in the WAR file as is, the Meta data might not be issued normally.

To include a file you want to import or include in the WAR file, you must check the path information included in the
WSDL definition or XML Schema at the import source or include source and use the following methods to modify the
path information appropriately:

• To include a WSDL definition or XML Schema that contains relative path coding in the WAR file
Include the file you want to import or include under the WEB-INF/wsdl directory of the WAR file and modify
the path information specified in the location attribute, schemaLocation attribute of the WSDL definition
or XML Schema at the import source and include source to an appropriate relative path suitable to the
environment.

• To include a WSDL definition or XML Schema that contains remote URL coding in the WAR file
No modification is required for a URL that can be accessed from the Web Service client that acquires the WSDL
definition. For a URL that cannot be accessed, include the file you want to import or include under the WEB-
INF/wsdl directory of the WAR file and modify the path information specified in the location attribute,
schemaLocation attribute of the WSDL definition or XML Schema at the import source and include source to
an appropriate relative path suitable to the environment.

• To include a WSDL definition or XML Schema that contains local URL coding in the WAR file
Include the file you want to import or include under the WEB-INF/wsdl directory of the WAR file and modify
the path information specified in the location attribute and in the schemaLocation attribute of the WSDL
definition at the import source and then include source to an appropriate relative path suitable to the environment.

(7) Notes on the transport attribute of the SOAP 12:binding element of the WSDL
In the SOAP 1.2 compatible WSDL that is automatically generated and issued, the transport attribute of the
soap12:binding element is the following URL by default:

http://www.w3.org/2003/05/soap/bindings/HTTP/
If you want to change the above URL to the following URL, add the definition to the operation definition file.
http://schemas.xmlsoap.org/soap/http

Add the following definition:

com.cosminexus.jaxws.publish_wsdl.soap12binding=WSI_BP20_TRANSPORT

10. Settings and Operations of the JAX-WS Functionality

176

10.7 Displaying Web Service information
Execute the URL that invokes the Web Service Implementation Class or the Provider Implementation Class on the
browser to display the Web Service information.

(1) Web Service information displayed
To display the Web Service information, specify the URL using the GET method. The following table describes the
Web Service information displayed by using the HTTP GET method:

Table 10‒13: Web Service information displayed

EndPoint Information

Service Name:
QName for service

Port Name:
QName for port

Address:
URL for invoking the Web Service

WSDL:
URL for acquiring the WSDL for the Web Service
For issuing the Meta data, see the section 10.6 Issuing the Meta data.

Implementation Class:
Name of the Web Service Implementation Class or the Provider Implementation Class

(2) Method of displaying the Web Service information
To display the Web Service information, send the HTTP request containing a URL, such as the one shown in the
following example, to the JAX-WS engine on the Web Service using the GET method:

http://sample.com/fromjava/AddNumbersImplService
The following information is specified in this URL:

• sample.com: Host name

• /fromjava: Context root

• /AddNumbersImplService: Web Service invocation

You can also enable or disable this functionality using the
com.cosminexus.jaxws.security.display_webservice_info property. For the
com.cosminexus.jaxws.security.display_webservice_info property, see 10.1.2 Settings for the
common definition file.

10. Settings and Operations of the JAX-WS Functionality

177

10.8 HTTP methods that can be used
You can use POST as the HTTP method. You can also use GET for issuing the Meta data and displaying Web Service
information. You can use HTTP method in both the POJO and EJB Web Services.

When the following HTTP request methods arrive at the JAX-WS engine on the Web Service, the HTTP status code
405 Method Not Allowed is returned:

• GET (excluding the issuing of the Meta data and displaying of the Web Service information)

• DELETE
• HEAD
• OPTION
• PUT
• TRACE

10. Settings and Operations of the JAX-WS Functionality

178

10.9 Initializing and destroying the Web Service
This section describes the initialization and destruction of the Web Service. This is applicable to both, POJO and EJB
Web Services.

(1) Initializing the Web Service
In the JAX-WS engine on the Web Service, when the J2EE server starts the J2EE application, the Web Service is
initialized. Specifically, the following processing is executed:

• Generation of mapping the information between the URL and the Web Service Implementation Class or the
Provider Implementation Class for performing Web Service discovery

• If a WAR file does not contain request beans, response beans, or the JavaBeans classes of fault beans required
to start POJO Web Services or if an EAR file does not contain request beans, response beans, or the EAR file does
not contain the JavaBeans classes of fault beans required to start an EJB Web Service, the JAX-WS engine
dynamically generates the JavaBeans classes.

• Checking of WSDL for issuing the Meta data (for a Web Service Implementation Class)

• Reading of the handler chain setup file and initialization of the handler when the handler is associated with the
Web Service Implementation Class or the Provider Implementation Class
(Also, includes the invocation of the method annotated using the javax.annotation.PostConstruct
annotation if such a method exists)

When the initialization of the Web Service starts, the KDJW40001-I message is output in the log and standard output.
If Web Service initialization ends normally, the KDJW40003-I message is output in the log and standard output. If an
error occurs during Web Service initialization and if the initialization fails, the KDJW40002-E message and the error
message that caused the error is output in the log and standard error output.

If an error occurs during Web Service initialization, an error is output in the log, but the startup of the J2EE
application continues and ends normally. However, since the initialization failed, the deployed Web Service does not
work. In this case, check if the KDJW40002-E message is output. If an error is output, correct the problem and deploy
the Web Service again.

When starting a J2EE server, it might be difficult to investigate in a J2EE application why Web Service could not be
initialized, when the deployed J2EE application is started automatically. In such cases, you can identify the J2EE
application name and the context root name by checking logs shown in the section 39.3.1 Types of log, and operation
logs of the J2EE server.

The following is an example of checking the output contents of the message KDJE39103-E including
com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener:

0095 2009/12/18 13:48:36.471 HEJB 0125FEFA 004413EE KDJE39103-
E An exception javax.xml.ws.WebServiceException was raised in notification
of the listener class
com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener. (J2EE
application = Sample_application_fromwsdl, context root = /fromjava)

When a log such as the one shown above is output, an attempt to initialize the Web Service within the WAR file that
is associated with the context root name fromjava and included in the J2EE application
Sample_application_fromwsdl will fail.

If there is a problem with the user program, basically an error corresponding to the message KDJE39103-E occurs.
However, check the following error messages also, as and when required:

• KDJE39100-E
• KDJE39101-E
• KDJE39102-E

For the operation logs of the J2EE server, see 5.2 Log contents of Application Server in the uCosminexus Application
Server Maintenance and Migration Guide. Also for the above messages, see 7.2. Messages from KDJE30000 to
KDJE39999 in the manual uCosminexus Application Server Messages.

10. Settings and Operations of the JAX-WS Functionality

179

(2) Destroying the Web Service
In the JAX-WS engine on the Web Service, when the J2EE server ends the J2EE application, the Web Service is
destroyed. Specifically, the following processing is executed:

• Deletion of mapping information between the URL and the Web Service Implementation Class or the Provider
Implementation Class for performing Web Service discovery

• Destruction of the handler when the handler is associated with the Web Service Implementation Class or the
Provider Implementation Class
(Also includes the invocation of the method annotated using the javax.annotation.PreDestory
annotation if such a method exists)

When the destruction of the Web Service starts, the KDJW40004-I message is output in the log and standard output. If
Web Service destruction ends successfully, the KDJW40006-I message is output in the log and standard output. If an
error occurs during Web Service destruction and if the destruction fails, the KDJW40015-E message and the error
message that caused the error is output in the log and standard error output.

If an error occurs during Web Service destruction, an error is output in the log, but the end processing of the J2EE
application continues and ends normally. In this case, check if the KDJW40015-E message is output and if an error is
output, correct the problem.

10. Settings and Operations of the JAX-WS Functionality

180

10.10 Connecting through a proxy server
You can use a Web Service on an external network from a Web Service client through a proxy server.

This section describes the property settings required for connecting externally through a proxy server.

(1) Specifying the property values
To access a Web Service through a proxy server, specify the JavaVM properties or the properties specific to the
Cosminexus JAX-WS functionality, and set up the proxy server information. The following table describes the
properties and their specified contents, when establishing a connection through a proxy server:

Table 10‒14: Properties used for connecting through a proxy server

No. Properties Specified contents
For
non-
SSL

For SSL

1 http.proxyHost#1 Specify the host name or IP address of the proxy server.

If a null character is specified, connection is not
established with the proxy server.

Y --

2 http.proxyPort#1 Specify the port number of the proxy server.

If a null character is specified in http.proxyPort
when http.proxyHost is set up correctly, the 80th

port of the host specified in http.proxyHost is
accessed.

If http.proxyHost is not specified, connection is not
established with the proxy server even if
http.proxyPort is specified.

O --

3 com.cosminexus.jaxws.
http.proxyUser#2

Specify an authentication user ID of the proxy server.

If the http.proxyHost property and the
http.proxyPort property are specified properly,
connect to the proxy server anonymously when a null
character is specified in the
com.cosminexus.jaxws.http.proxyUser
property.

O --

4 com.cosminexus.jaxws.
http.proxyPassword#2

Specify a password corresponding to the authentication
user ID of the proxy server.

If the following properties are specified properly,
connect to the proxy server without specifying a
password, when a null character is specified in the
com.cosminexus.jaxws.http.proxyPasswor
d property:

• http.proxyHost
• http.proxyPort
• com.cosminexus.jaxws.http.proxyUser

O --

5 https.proxyHost#1 Set up the host name or IP address of the proxy server to
be used for connection by SSL protocol#3.

To use a proxy server for connection by SSL protocol,
make sure that you set up this property. Note that if a
null character is specified, connection is not established
with the proxy server.

-- Y

6 https.proxyPort#1 Set up the port number of the proxy server to be used for
connection by SSL protocol#3. Note that if a null
character is specified in https.proxyPort when
https.proxyHost is set up correctly, the 443rd port

-- O

10. Settings and Operations of the JAX-WS Functionality

181

No. Properties Specified contents
For
non-
SSL

For SSL

6 https.proxyPort#1 of the host specified in https.proxyHost is
accessed.

If https.proxyHost is not specified, connection is
not established with the proxy server even if
https.proxyPort is specified.

-- O

7 com.cosminexus.jaxws.
https.proxyUser#2

Set an authentication user ID of the proxy server to be
used for connecting through the SSL protocol#3.

If the https.proxyHost property and the
https.proxyPort property are set properly, connect
to the proxy server anonymously, when a null character
is specified in the
com.cosminexus.jaxws.https.proxyUser
property.

-- O

8 com.cosminexus.jaxws.
https.proxyPassword#2

Specify a password corresponding to the authentication
user ID of the proxy server to be used for connecting
through the SSL protocol#3.

If the following properties are specified properly,
connect to the proxy server without specifying a
password, when a null character is specified in the
com.cosminexus.jaxws.https.proxyPasswo
rd property:

• https.proxyHost
• https.proxyPort
• com.cosminexus.jaxws.https.proxyUse
r

-- O

9 http.nonProxyHosts#1 Specify the host names that do not use the proxy server
as required.

When connecting to the host specified in this property,
the proxy server specified in http.proxyHost is not
used. To specify multiple hosts, use '|' as a separator. You
cannot specify a character other than '|' (such as a space)
between two host names.

O O

Legend:
Y: Indicates that the specification of the property is required.
O: Indicates that the property is specified as required.
--: Indicates that the property need not be specified.

#1
System properties supported by the JavaVM in the standard manner. For the system properties of JavaVM, see the JavaVM
documentation.

#2
The properties are specific to the Cosminexus JAX-WS functionality, and are simple properties. To execute detailed control, we
recommend that you perform the implementation using the java.net.Authenticator class of the J2SE 6.0 standard in the
Web Service client. For details, see the subsection 10.10(3) When not using properties specific to the JAX-WS functionality.

#3
For connecting through the SSL protocol, see the section 10.11 Connection by SSL protocol.

(2) How to set properties
Set up the properties specific to the Cosminexus JAX-WS functionality in the action definition file. For setting up the
action definition files, see the section 10.1 Action definition file. When using the properties specific to the JAX-WS
functionality, note the contents described in the subsection 10.10(4) Notes on using properties specific to the JAX-WS
functionality.

How to set up the system properties of JavaVM differs depending on the execution of the Web Service client.

10. Settings and Operations of the JAX-WS Functionality

182

• When the Web Service client is executed using commands
When the Web Service client is executed using commands (cjclstartap), set up the JavaVM property in the
user property file for Java application (usrconf.properties) for the cjclstartap command.

• When the Web Service client is executed on the J2EE server
When the Web Service client is executed on the J2EE server, set up the JavaVM property in the user property file
for J2EE server (usrconf.properties).

The following is an example of property settings:

http.proxyHost=10.209.15.79
http.proxyPort=3128
https.proxyHost=10.209.15.79
https.proxyPort=3128
http.nonProxyHosts=10.209.15.80|www.hitachi.co.jp

There are no rules for the positions to add property settings.

(3) When not using properties specific to the JAX-WS functionality
The properties specific to the JAX-WS functionality are the simple properties. Therefore, for executing the detailed
control, we recommend that you perform the implementation using the java.net.Authenticator class of the
J2SE 6.0 standard with the Web Service client. For details, see the J2SE 6 documentation. The following is an
example of the implementation using the java.net.Authenticator class:

java.net.Authenticator.setDefault(new java.net.Authenticator(){

 // Override the getPasswordAuthentication method
 public java.net.PasswordAuthentication getPasswordAuthentication() {

 // Set the user name
 String userName = ...

 // Set the password
 char[] password = ...

 // Generate PasswordAuthentication.
 java.net.PasswordAuthentication auth =
 new java.net.PasswordAuthentication(userName, password);

 return auth;
 }
});

(4) Notes for using properties specific to the JAX-WS functionality
With the Cosminexus server, specify the value of the properties specific to the JAX-WS functionality in JavaVM
using the setDefault() method of the java.net.Authenticator class of the Java SE standard. Therefore,
note the following:

• Valid range
The properties specific to the JAX-WS functionality are enabled in the entire process in which the Web Service
client is operating (or an entire J2EE server if the Web Service client is operating on the J2EE server), and also
affects HTTP connections other than the Cosminexus server. If you do not want to apply proxy settings in HTTP
connections other than Cosminexus through properties specific to the JAX-WS functionality, you must perform
implementation using the setDefault() method of the java.net.Authenticator class in the user
program (Web Service client) instead of the property specific to the JAX-WS functionality. For details, see the
subsection 10.10(3) When not using properties specific to the JAX-WS functionality.

• Conflict
When using a property specific to the JAX-WS functionality, specify the settings in such a way so that no product
other than Cosminexus invokes the setDefault() method of the java.net.Authenticator class, in the
process in which the Web Service client is operating. Take special care when using any other product in the
library. Depending on the timing of invoking the setDefault() method of the
java.net.Authenticator class, the settings might be in conflict and the operation might become invalid.

10. Settings and Operations of the JAX-WS Functionality

183

When any other product such as a user program and the library invoke the setDefault() method of the
java.net.Authenticator class, do not use properties specific to the JAX-WS functionality.

• Security exception
When the setDefault() method of the java.net.Authenticator class throws
java.lang.SecurityException, the message KDJW10025-W is output to a log, and the processing
continues. Check the detailed message and remove the cause of the error, as and when required.

10. Settings and Operations of the JAX-WS Functionality

184

10.11 Connection by SSL protocol
From the Web Service client, you can connect with a Web Service that supports the SSL protocol.

This section describes the property settings required for connection by the SSL protocol.

(1) Specifying the property values
To access the Web Service with SSL protocol, specify the values for the properties supported in JDK and set up the
information about the SSL protocol. The following table describes the properties for connection by SSL protocol and
the specified contents.

Table 10‒15: Properties for connection by SSL protocol

No. Properties Specified contents

1 javax.net.ssl.trustStore Specify trust store.

2 javax.net.ssl.trustStorePassword Specify the password for trust store.

Specify these properties as and when required. If trust store is not specified, the default value such as JDK-
installation-directory/lib/security/jssecacerts is used.

For the JDK properties, see the JDK documentation.

(2) Method of specifying the properties
To enable the value specified for a property, specify the properties in the system property. How to set up a property
differs depending on the execution of the Web Service client.

• When executing the Web Service client using commands
When you execute the Web Service client using the command (cjclstartap), set up the properties of JavaVM
in the user property file for Java applications (usrconf.properties).

• When executing the Web Service client on J2EE servers
When you execute the Web Service client on J2EE servers, set up the properties of JavaVM in the user property
file for J2EE server (usrconf.properties).

The following is an example of setting the properties:

javax.net.ssl.trustStore=trust-store
javax.net.ssl.trustStorePassword=trust-store-password

There is no fixed location for adding the settings of the properties.

(3) Notes on validating the host name
When connecting from a Web Service client to a Web Service supporting the SSL protocol, validate whether the host
name to be included in the end point address matches with the host name in the certificate. The
HostnameVerifier to be used is the default implementation of JDK. For the operation of the default
HostnameVerifier of JDK, see the JDK documentation.

You can skip the host name validation by configuring the settings in the action definition file or message context. The
following table describes the properties and the specified content for skipping the host name validation.

Table 10‒16: Properties for skipping host name validation

No. Property Specified contents Mandat
ory

1 com.cosminexus.xml.ws.client.ht
tp.HostnameVerificationProperty

For skipping the host name validation, specify true.
When the validation is not to be skipped, specify
false.

O

10. Settings and Operations of the JAX-WS Functionality

185

Legend:
O: Indicates that the property is to be specified as and when required.

Notes on skipping the host name validation

• The specification to a message context is enabled only when calling Web Service and the specification is not
enabled when acquiring the meta data (WSDL) generated when creating the javax.xml.ws.Service
class before calling Web Service.
For setting whether to verify a host name when acquiring the meta data, either code in a common definition
file or a process wise definition file, or download and use a separate WSDL on the local machine (If you use a
WSDL existing on the local machine, connection to a remote machine is not established when you acquire the
meta data). If a WSDL to be imported separately from a WSDL already exists, also download the WSDL to be
imported on the local machine.

• If the application of the host name validation differs among the multiple Web Service clients operating in a
process, do not include the properties in a process wise definition file or a common definition file. Include the
properties only in the message context.
Similarly, if the application of the host name validation differs among multiple processes operating on a
system, do not include the properties in a common definition file. Include the properties only in a process wise
definition file or in the message context.

For details on how to set up the properties in an action definition file, see 10.1.2 Settings for a common definition file.
For details on how to set up the properties in the message context, see 19.2.5 Using the message context.

10. Settings and Operations of the JAX-WS Functionality

186

10.12 Connection by basic authentication
From the Web Service client, you can connect with the Web Service that supports basic authentication.

This section describes the property settings required for connection by basic authentication.

(1) Specifying the property values
To access the Web Service with basic authentication, specify the value in the action definition file or message context.
The following table describes the properties for connection by basic authentication and the specified contents:

Table 10‒17: Properties for connection by basic authentication

No. Properties Specified contents Require
d

1 javax.xml.ws.security.auth.username Set up the user ID. Y

2 javax.xml.ws.security.auth.password Set up the password. Y

Legend:
Y: Indicates that the specification of the property is required.

Precautions for connection by basic authentication

• The specification to the message context is enabled only when the Web Service is invoked and is not applied
when the Meta data (WSDL) that occurs during the generation of the javax.xml.ws.Service class
before Web Service invocation, is acquired.
To set up basic authentication information during Meta data acquisition, specify the coding in the common
definition file or process-wise definition file or separately download WSDL on the local machine and use it
(when WSDL exists on the local machine is used, connection is not established with the remote machine when
the Meta data is acquired). If WSDL separately imported from WSDL exists, download the imported WSDL
on to the local machine.

• If performing basic authentication or not depends on multiple Web Service clients running with the same
process, do not include these properties in the process-wise definition file or common definition file and
include the properties only in the message context.
Similarly, if performing basic authentication or not depends on multiple processes running on the same
system, do not include these properties in the common definition file and include the properties only in the
process-wise definition file or the message context.

(2) Method of specifying the properties
For specifying the properties in the action definition file, see 10.1.2 Settings for the common definition file. For
specifying the properties in the message context, see 19.2.5 Using the message context.

10. Settings and Operations of the JAX-WS Functionality

187

10.13 Selecting the SOAP version
This section describes the selection of the SOAP version that is required for developing Web Services and Web
Service applications.

10.13.1 Selecting the SOAP version (when developing Web Services)
This subsection describes how to select the version for developing Web Services starting from a WSDL, SEI, and
provider.

(1) Starting from a WSDL
To send or receive messages of the SOAP 1.1 specifications or the SOAP 1.2 specifications is determined from the
binding coded in the WSDL.

The skeletons of the Web Service Implementation Class generated using the cjwsimport command exists for each
binding, so the skeletons are dedicated to either SOAP 1.1 specifications or the SOAP 1.2 specifications. You cannot
dynamically change the skeletons during the execution.

On the other hand, as you can code multiple bindings in a WSDL, you can mix the ports of the SOAP 1.1 and SOAP
1.2 specifications in a single WSDL.

The following is an example of mixing the ports of the SOAP 1.1 and SOAP 1.2 specifications:

Figure 10‒8: Example of mixing ports

With this example, bind a single port type separately to use with SOAP 1.1 and SOAP 1.2. This enables a single port
type to receive messages of the format conforming to the SOAP 1.1 and SOAP 1.2 specifications.

(2) Starting from SEI
Use annotations to specify whether to bind to the SOAP 1.1 specifications or the SOAP 1.2 specifications. Specify an
annotation for each Web Service Implementation Class. You cannot dynamically change the annotations during the
execution.

You can omit annotations. If omitted, the SOAP 1.1 specifications will be applicable.

(3) Starting from a provider
Use annotations to specify whether to bind with the SOAP 1.1 specifications or the SOAP 1.2 specifications. Specify
an annotation for each Provider Implementation Class. You cannot dynamically change the annotations during the
execution.

10. Settings and Operations of the JAX-WS Functionality

188

10.13.2 Selecting the SOAP version (when developing a Web Service
client)

You develop a Web Service client based on the Meta data of Web Services (such as the WSDL or the information
dependent on the Web Service to which a connection is to be established). Based on the information defined in the
Meta data, implement a Web Service client that communicates using an appropriate version of SOAP.

This subsection describes how to select a SOAP version when developing stub-based, dispatch-based, and API-based
Web Service clients.

(1) Stub-based Web Service clients
When you execute the cjwsimport command, appropriate stubs are generated automatically based on the definition
of the WSDL. Therefore, you need not specify whether to use the SOAP 1.1 specifications or the SOAP 1.2
specifications for communication.

Note that you always bind a port to a single binding. Therefore, the port acquisition method included in the service
class is dedicated to either the SOAP 1.1 specifications or the SOAP 1.2 specifications.

(2) Dispatch-based Web Service clients
Select an appropriate SOAP version based on the Meta data of Web Services, and specify with APIs.

(3) API-based Web Service clients
Select an appropriate SOAP version based on the Meta data of Web Services, and specify with the APIs.

10.13.3 Selecting the SOAP version (during the execution)
This subsection describes how to select a SOAP version during the execution of Web Services and Web Service
clients.

(1) For Web Services
The Web Service Implementation Classes and Provider Implementation Classes are dedicated to either the SOAP 1.1
specifications or the SOAP 1.2 specifications based on what you select during the development. Therefore, you can
receive messages of either the SOAP 1.1 specifications or the SOAP 1.2 specifications. For receiving the messages
corresponding to both the SOAP versions, you must define or implement multiple Web Service Implementation
Classes or Provider Implementation Classes.

(2) For Web Service clients
A stub-based Web Service client sends messages of either the SOAP 1.1 specifications or the SOAP 1.2
specifications. If either of the following conditions becomes applicable due to an error during the development, SOAP
Messages with mismatched SOAP versions will be sent, and an error will occur at the Web Service machine:

• If you generate the stubs for the SOAP 1.1 specifications, when the Web Service binding corresponds to the
SOAP 1.2 specifications

• If you generate the stubs for the SOAP 1.2 specifications, when the Web Service binding corresponds to the
SOAP 1.1 specifications

With a dispatch-based and an API-based Web Service client, specify the SOAP version with the APIs. You can
dynamically make changes regarding the SOAP version of messages to be sent based on the implementation method,
such as by enabling changes to the specified value in the configuration file.

10. Settings and Operations of the JAX-WS Functionality

189

10.14 Executing a client application using the command
line

In a Web Service, a Java application running on the command line can be used as a client application.

This section describes the settings required for using a client application through a command line, examples of
command line specification, and precautions.

10.14.1 Settings for command line usage
This subsection describes the settings required for using a client application through a command line.

(1) Settings for the option definition file for Java application
In the current directory where the client application is executed, create the option definition file for Java application
and add the following keys and values:

• add.class.path=JAR-or-directory-path-where-the-class-file-of-the-client-Web-Service-is-stored

• add.class.path=Cosminexus-installation-directory/jaxws/lib/cjjaxws.jar
• add.jvm.arg=-Dcosminexus.home=Cosminexus-installation-directory

• add.jvm.arg=-Dejbserver.server.prf.PRFID=PRF identifier #

• ejb.client.log.directory= directory-path-to-output-log-file

#
Specify the identifier same as the PRF identifier specified using the cprfstart command. The default value
when the identifier is not specified is PRF_ID.

(2) Settings for the user property file for Java application
In the current directory where the client application is executed, create the user property file for Java application and
specify the settings as required.

(3) Adding a path
Add the following path in the environment variable PATH:

Cosminexus-installation-directory/PRF/bin

10.14.2 Executing a command line
This subsection describes the examples of specification when the Web Service client is executed from a command
line.

(1) Starting the PRF daemon
The following is an example of specification when the default value is used as the PRF identifier:

Cosminexus-installation-directory/PRF/bin/cprfstart
The following is an example of specification when a value that is not a default value is used as the PRF identifier:

Cosminexus-installation-directory/PRF/bin/cprfstart prfid#

#
prfid indicates the PRF identifier. As the PRF identifier, specify the identifier same as the PRF identifier specified
in the option definition file for Java application.

10. Settings and Operations of the JAX-WS Functionality

190

(2) Executing the application client
Executed using the Java application start command (cjclstartap). The following is an example of execution:

cjclstartap localhost.testMain

10.14.3 Precautions on using the command line
This subsection describes the precautions for using the command line.

• The log is output in the file path specified in the ejb.client.log.directory property of the option
definition file for Java application. For log output, see 39.3.3(2) When using the Web Services client in the
command line interface.

• When using the command line and when collecting PRF trace, the PRF daemon must be started before executing
the application. If the PRF daemon is not started, the processing continues without collecting the PRF trace.

10. Settings and Operations of the JAX-WS Functionality

191

10.15 HTTP status codes
The following table lists and describes the HTTP status codes returned by the JAX-WS engine at the service machine:

Table 10‒18: HTTP Status Codes

Item no. HTTP status code Condition under which HTTP status code is returned

1 200 OK When the invocation of the Request-Response operation type Web
Service terminates successfully.

2 202 Accepted When the invocation of Web Service corresponding to an asynchronous
invocation terminates successfully, while you are using the addressing
functionality or invoking Web Services for one-way operations.

3 404 Not Found When the format of requesting is invalid, while the issue of the Meta data
has been enabled. In such cases, the HTTP status code becomes 405
Method Not Allowed.

For issuing the Meta data, see the section 10.6 Issuing the Meta data.

4 405 Method Not Allowed In any of the following cases:

• When an HTTP method that you cannot use arrives
For the HTTP methods that you can use, see the section 10.8 HTTP
methods that can be used.

• When you receive an HTTP request for issuing the Meta data, while
issuing of Meta data has been disabled
For issuing the Meta data, see the section 10.6 Issuing the Meta data.

• When you receive an HTTP request for displaying the information of
Web Services, while the information display of Web Services has
been disabled
For displaying the information of Web Services, see the section 10.7
Displaying Web Service information.

5 415 Unsupported Media Type When the Content-Type HTTP header either does not exist or is invalid.

Such cases result in the HTTP status code 500 Internal Server
Error.

6 500 Internal Server Error When an error other than the errors described above occurs. This HTTP
status code is also returned, when the execution results of a Web Service
result in a SOAP fault.

10. Settings and Operations of the JAX-WS Functionality

192

10.16 HTTP header
This section describes the HTTP header of JAX-WS engine.

(1) action parameter of the Content-Type header
JAX-WS engine encloses the action parameter value of Content-Type header within (") double quotation marks
and sets as the action parameter value of Content-Type header for HTTP request and HTTP response. Value
already enclosed within (") double quotation marks is set as is as the action parameter value of Content-Type
header.

Similar operations are executed in Web Service and Web Service client.

10. Settings and Operations of the JAX-WS Functionality

193

10.17 gzip compression of the HTTP request body
You can reduce the time required for the HTTP request communication between the Web Service client and the Web
container by performing gzip compression of the HTTP request body. To compress the HTTP request body, you must
attach the HTTP header indicating the sending of HTTP request body compressed in gzip format while sending the
request message from the Web Service client. Implement the processing for attaching the HTTP header in the client
application.

The following is an example of implementation in the client application:

 Map<String, List<String>> httpHeaders =
 (Map<String, List<String>>)context.get(MessageContext.HTTP_REQUEST_HEADERS);
 if(null == httpHeaders){
 httpHeaders = new HashMap<String, List<String>>();
 }
 List<String> contentEncondings = httpHeaders.get("Content-Encoding");
 if(null == contentEncondings){
 contentEncondings = new ArrayList<String>();
 }
 contentEncondings.add("gzip");
 httpHeaders.put("Content-Encoding", contentEncondings);
 context.put(MessageContext.HTTP_REQUEST_HEADERS, httpHeaders);

10. Settings and Operations of the JAX-WS Functionality

194

10.18 Linking with the HTTP response compression
functionality

The Cosminexus functionality for reducing the time required for the HTTP response communication between the Web
container and the Web Service client by the gzip compression of the HTTP request body is called as HTTP response
compression functionality.

You can link the JAX-WS engine with the HTTP response compression functionality. To link with the HTTP response
compression functionality, you must attach the HTTP header indicating the receipt of compressed HTTP response in
gzip format while sending the request message from the Web Service client. Implement the processing for attaching
the HTTP header in the client application.

The following is an example of implementation in the client application.

 Map<String, List<String>> httpHeaders =
 (Map<String, List<String>>)context.get(MessageContext.HTTP_REQUEST_HEADERS);
 if(null == httpHeaders){
 httpHeaders = new HashMap<String, List<String>>();
 }
 List<String> acceptEncondings = httpHeaders.get("Accept-Encoding");
 if(null == acceptEncondings){
 acceptEncondings = new ArrayList<String>();
 }
 acceptEncondings.add("gzip");
 httpHeaders.put("Accept-Encoding", acceptEncondings);
 context.put(MessageContext.HTTP_REQUEST_HEADERS, httpHeaders);

10. Settings and Operations of the JAX-WS Functionality

195

10.19 Invoking an EJB Web Service
This section describes the conditions for invoking EJB as a Web Service and available functions.

The EJB conditions are as follows:

• EJB version
You can invoke EJB 3.0 or later versions as a Web Service.

• EJB type
You can invoke EJB of stateless session Bean as a Web Service.

• Interface
Business interface need not be provided in a EJB Web Service. You can share and use the home interface.
When the EJB Web Service includes business interface, home interface, and component interface, you cannot
invoke the method via Web Service through these interfaces.
When EJB Web Service includes business interface, you can locally invoke EJB for the EJB Web Service.
However, when the EJB Web Service does not include a business interface, you can invoke the EJB Web Service
as a Web Service; however, you cannot invoke as an EJB.
You can invoke the home interface as a Web Service only when it is specified by the
javax.ejb.RemoteHome or the javax.ejb.LocalHome annotation. You cannot invoke the home
interface as a Web Service if the home interface is specified by DD.

(1) EJB functions in EJB Web Service invocation
The following are the EJB functions that can be used concurrently when invoking the EJB as a Web Service.
However, you can use these functions only in the EJB Web Service Implementation Class and not in a Handler Chain.

• Using interceptor

• CMT and BMT transaction management

• Access management by the javax.annotation.security.PermitAll and the
javax.annotation.security.DenyAll annotation

• Resource connection

• Injecting a Web Services context by using the javax.annotation.Resource annotation
For details on injecting a Web Services context, see 10.21.2 Injecting a Web Services context.

• Timer Service

The following functions cannot be used concurrently when invoking the EJB as a Web service.

• Inheriting transaction context from client

• Inheriting security context from client

(2) Application Server functions available when invoking EJB Web Service
JAX-WS can concurrently use Application Server functions that can be set by using cosminexus.xml when
invoking EJB as a Web Service. The following are the available Application Server functions:

• Setting the number of concurrently executed threads.

• Setting the pending queue size

• Setting the security role

Set the WAR file name for using these functions. For the WAR file name settings, see 3.5.4(3) Name of the WAR file
for settings. Note that you can use the functions for settings other than the cosminexus.xml settings, in Web
applications other than the EJB Web Services.

10. Settings and Operations of the JAX-WS Functionality

196

10.20 Preventing the resending of a request by
sun.net.www.http.HttpClient

The JAX-WS engine on the Web Service client machine executes communication by using the HTTP client
implementation of JDK. Contrary to RFC 2616, the HTTP client implementation of JDK resends a request only once
when an error occurs in the HTTP communication and an appropriate response is not received from the server. You
can use the system properties of JDK to prevent the resending of requests.

(1) Specifying a property value
For preventing the resending of a request by the HTTP client implementation of JDK, set
sun.net.http.retryPost=false in the system property. This is a standard system property supported by
JDK 6 or later. For details on the system properties, see the JDK documentation.

(2) How to set a property
The method for setting a property is the same method as that for setting a system property for establishing a
connection according to the SSL protocol. For details on how to set a property, see 10.11(2) How to set a property.

10. Settings and Operations of the JAX-WS Functionality

197

10.21 Injection
This section describes the javax.xml.ws.WebServiceRef annotation and injection of service classes and ports,
and the Web Services context injection.

10.21.1 Injecting service classes and ports
When you specify the javax.xml.ws.WebServiceRef annotation in the following fields or methods of the
Web Services clients operating on the J2EE server, the J2EE server generates and injects a service class and port when
generating a Web Services class instance. For the javax.xml.ws.WebServiceRef annotation, see 19.3
Support range of annotations.

• A service class type field or port type field (excluding static and final)

• The setter method that uses a service class type field or port type field as an argument (excluding static and
final)

Using the javax.xml.ws.WebServiceRef annotation for injection has the following advantages:

• Using the javax.xml.ws.WebServiceRef annotation for injection can help reduce the amount of coding
required when developing an application, which in turn, facilitates the Web Services client creation process.

• You can improve the run-time performance of a Web Services client by generating Web Services instances when
developing J2EE applications. You cannot achieve this improved performance when you do not use the port
injection.

For generating the Web Services client instances, see 10.21.1(2) Generating a Web Services client instance.

Notes

• You can specify the javax.xml.ws.WebServiceRef annotation only when implementing a Web
Services client as a servlet or an EJB, and not when implementing a Web Services client as any other
application. For example, you cannot inject a service class or a port in the command line application Web
Services clients.

• Generate a service class or a port instance only once, that is, when starting a J2EE application. Generate only
one instance for each service class or port in which the javax.xml.ws.WebServiceRef annotation is
specified.

• Inject a service class or a port every time you generate an instance of a Web Services client.

• While implementing a Web Services client as an EJB by enabling the pooling in Stateless Session Bean, you
can generate instances of multiple Web Services clients when starting a J2EE application. In such cases,
generate one instance of a service class or a port in which the javax.xml.ws.WebServiceRef
annotation is specified and inject this generated instance in every instance of the Web Services client. For
generating Web Services client instances, see 10.21.1(2) Generating an instance of a Web Services client.

• If the configuration is such that the Web Service A is invoked from the Web Service B, you cannot inject a
service class or a port of the Web Service B to the Web Service A by specifying the
javax.xml.ws.WebServiceRef annotation.

• You cannot specify the javax.xml.ws.WebServiceRef annotation in a class which references a Web
Services client.

• You cannot use the reload functionality to replace a J2EE application that uses the
javax.xml.ws.WebServiceRef annotation to inject a service class or port. To replace a J2EE
application of this type, first stop and delete the application to be replaced and then import and start the new
application. For details on the reload functionality, see uCosminexus Application Server Common Container
Functionality Guide.

(1) Example of specifying the javax.xml.ws.WebServiceRef annotation
Examples of specifying the javax.xml.ws.WebServiceRef annotation are as follows:

• Specifying the annotation in a field

10. Settings and Operations of the JAX-WS Functionality

198

...
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;

import com.sample.AddNumbersImpl;
import com.sample.AddNumbersImplService;

public class TestClient extends HttpServlet {
 // An example of a service class
 // Inject a service class instance in a service class type field
 @WebServiceRef
 private AddNumbersImplService service;

 // An example of a port
 // Inject a port instance in a port type field
 @WebServiceRef(AddNumbersImplService.class)
 private AddNumbersImpl port;

 @Override
 public void init() {
 // You need not execute the following processes because the Application
server injects a service class and a port before
 // starting the Web Service client
 //service = new AddNumbersImplService();
 //port = service.getAddNumbersImplPort();
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException {
 ...

• Specifying the annotation in the setter method

...
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;

import com.sample.AddNumbersImpl;
import com.sample.AddNumbersImplService;

public class TestClient extends HttpServlet {
 private AddNumbersImplService service;
 private AddNumbersImpl port;

 @Override
 public void init() {
 // You need not execute the following process because the application
server injects a service class and a port by using the
 // setter method when starting the application
 //service = new AddNumbersImplService();
 //port = service.getAddNumbersImplPort();
 }

 // An example of a service class
 @WebServiceRef
 public void setAddNumbersImplService(AddNumbersImplService service) {
 // Inject the service class instances into the service argument
 this.service = service;
 }

 // An example of a port
 @WebServiceRef(AddNumbersImplService.class)
 public void setAddNumbersImpl(AddNumbersImpl port) {
 // Inject the port instances into the port argument
 this.port = port;
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException {
 ...

10. Settings and Operations of the JAX-WS Functionality

199

(2) Generating an instance of a Web Services client
When starting a J2EE application, configure the following settings to generate an instance of a Web Services client.

For a servlet
Specify the load-on-startup element in web.xml of the WAR file with a Web Services client. If you do
not want to specify the load-on-startup element, generate the instances when running the first Web
application. For details, see uCosminexus Application Server Web Container Functionality Guide .

For EJB
Set the pooling in Stateless Session Beans to enabled state. Generate the number of instances equivalent to the
minimum pooling in Stateless Session Beans when starting a J2EE application. When not using the pooling in
Stateless Session Beans, generate an instance when running the first J2EE application. For details, see
uCosminexus Application Server EJB Container Functionality Guide.

Notes
In an environment where the Web Services client and Web Service to connect to, are both deployed to the same
J2EE server, an error (KDJW40043-E) occurs while injecting ports or service classes when starting the J2EE
server.
Troubleshooting if injection fails:

• In the wsdlLocation element of the javax.xml.ws.WebServiceRef annotation, specify the WSDL
document stored locally by using the relative path or absolute path.

• Stop the J2EE application that has the Web Services client before you stop the J2EE server. Restart the J2EE
server and then start the Web Services client.

• Deploy Web Service and the Web Services client on different J2EE servers. First, start the J2EE server on
which Web Service is deployed and then start the J2EE server on which the Web Services client is deployed.

• Perform the settings such that you can reference the WSDL document that was locally stored when injecting a
service class or a port, by using the catalog functionality.

(3) Using the handler framework
When using the handler framework in a service class or port injected by specifying the
javax.xml.ws.WebServiceRef annotation, set the handler chain by using the APIs. For the handler chain
settings, see 36.9.2 Setting the handler chain in the Web Services client. We recommend that you configure the
handler chain settings when initializing a Web Services client because you need to perform the settings for ports only
once. You need not perform the handler chain settings for ports every time you invoke Web Service. You can use the
following methods for initializing a Web Services client:

Implementing a Web Services client as a servlet
A method in which the init method or the javax.annotation.PostConstruct annotation is specified

Implementing a Web Services client as an EJB
A method in which the javax.annotation.PostConstruct annotation is specified

(4) Enabling features
By concurrently specifying the javax.xml.ws.WebServiceRef annotation and the annotation for features in
the port type fields or in the setter method for port type fields, you can enable the features of the port to be
injected. The features will be enabled only if you specify the javax.xml.ws.WebServiceRef annotation in the
fields in which the annotation for features is specified or in the setter method for the fields. You, however, cannot
specify the annotation for features in the service class type fields or in the setter method for the fields.

When enabling the features, you can specify the following annotations in the ports. For annotations, see 16.2
Customized mapping from Java to WSDL.

• javax.xml.ws.soap.Addressing
• javax.xml.ws.soap.MTOM
• com.sun.xml.ws.developer.StreamingAttachment

10. Settings and Operations of the JAX-WS Functionality

200

You can use attachments in the MTOM/XOP specification format on the ports to be injected, if you enable the feature
as follows:

• Example of specifying the annotation in a field

...
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;

import com.sample.AddNumbersImpl;
import com.sample.AddNumbersImplService;

public class TestClient extends HttpServlet {
 // Enable the MTOM/XOP specification format attachment in the port to be
injected
 @MTOM
 @WebServiceRef(AddNumberImplService.class)
 private AddNumbersImpl port;

 @Override
 public void init() {
 ...
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException {
 ...

• Example of specifying the annotation in the setter method

...
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;

import com.sample.AddNumbersImpl;
import com.sample.AddNumbersImplService;

public class TestClient extends HttpServlet {
 private AddNumbersImpl port;

 @Override
 public void init() {
 ...
 }

 // Enable the MTOM/XOP specification format attachment in the port to be
injected
 @MTOM
 @WebServiceRef(AddNumberImplService.class)
 public void setAddNumbersImpl(AddNumbersImpl port) {
 this.port = port;
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException {
 ...

(5) Changing the properties of a request context
We recommend that you change the request context properties of ports to be injected when initializing the Web
Services client. You can use the following methods for initializing the Web Services client:

The method of implementing as a servlet
A method in which the init method or the javax.annotation.PostConstruct annotation is specified

The method of implementing as an EJB
A method in which the javax.annotation.PostConstruct annotation is specified

10. Settings and Operations of the JAX-WS Functionality

201

Notes
In the Web Services clients that share a single port across multiple threads, if you change the request context
properties of the port while multiple threads are operating, communication errors might occur or invalid SOAP
messages might be sent. Therefore, you must change the request context properties of the port that is shared across
multiple threads before the shared threads start operating.

You can change the request context properties of a port in the Web Services client that is implemented as a servlet as
follows:

...
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceRef;

import com.sample.AddNumbersImpl;
import com.sample.AddNumbersImplService;

public class TestClient extends HttpServlet {

 @WebServiceRef(AddNumbersImplService.class)
 AddNumbersImpl port;

 @Override
 public void init() {
 // Set the request context during initialization
 Map<String, Object> context = ((BindingProvider)port).getRequestContext();
 context.put("com.cosminexus.jaxws.connect.timeout", 60000);
 }
 ...
}

10.21.2 Injecting a Web Services context
The javax.xml.ws.WebServiceContext interface is one of the service APIs explained in the JAX-WS 2.2
specifications, section 5.3. For using the Web services context, inject a resource by using the
javax.annotation.Resource annotation.

Specify the javax.annotation.Resource annotation in the javax.xml.ws.WebServiceContext type
field or in the setter method of Web Services Implementation Class or Provider Implementation Class. The
setter method uses the javax.xml.ws.WebServiceContext type as an argument. By specifying the
javax.annotation.Resource annotation in the above mentioned field or method, you can inject the
information regarding the request being processed in the field that corresponds to the specified field or the specified
setter method. You can access the message context information by acquiring the message context by using the
getMessageContext method of the javax.xml.ws.WebServiceContext interface. However, you cannot
acquire the message context by using the getMessageContext method when accessing EJB Web Services
Implementation Class as an EJB You can optionally do the following to access the message context information:

• You can reference the user-defined message context properties of the APPLICATION scope added in the service-
side handler when inbounding, from Web Services Implementation Class or Provider Implementation Class.

• You can reference the user-defined message context property added in Web Services Implementation Class or
Provider Implementation Class, from the service-side handler.

For the getMessageContext method, see 19.2.3(2) javax.xml.ws.WebServiceContext interface, and for the
message contexts, see 19.2.5 Using a message context.

(1) Specifying the javax.annotation.Resource annotation
When using the javax.annotation.Resource annotation to inject a Web Services context, specify the
javax.annotation.Resource annotation in the following fields or methods of Web Services Implementation
Class or Provider Implementation Class (including the parent Implementation Class). The operation is not guaranteed
if you specify the javax.annotation.Resource annotation in the following fields or methods. Also, you can
specify the annotation either in the following fields or in the setter method corresponding to these fields.

10. Settings and Operations of the JAX-WS Functionality

202

• javax.xml.ws.WebServiceContext type fields (excluding the static or final fields)

• The setter methods# that use the javax.xml.ws.WebServiceContext type fields as arguments, and
that are not to be published (excluding the static or final fields)

#
A non-public setter method or the javax.jws.WebMethod annotation for which the exclude
element is true.

Further, when using the javax.annotation.Resource annotation to inject a Web Services context, you cannot
specify any elements in the javax.annotation.Resource annotation. If you specify any element, the operation
is not guaranteed.

The specification example of the javax.annotation.Resource annotation is as follows:

• Specifying the annotation in a field

import javax.annotation.Resource;
import javax.jws.WebService;
import javax.servlet.ServletContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.WebServiceContext;

@WebService
public class AddNumbersImpl {
 // Inject the information about the request that is currently being processed
in the wsContext field
 @Resource
 private WebServiceContext wsContext;

 public int add(int number1, int number2) throws AddNumbersFault {
 // Acquire the message context
 MessageContext mContext = wsContext.getMessageContext();
 // Acquire the properties
 ServletContext sContext =
(ServletContext)mContext.get(MessageContext.SERVLET_CONTEXT);
 ...
 }
 ...
}

• Specifying the annotation in the setter method

import javax.annotation.Resource;
import javax.jws.WebService;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.WebServiceContext;

@WebService
public class AddNumbersImpl {
 // Inject the information about the request that is currently being processed
in the wsContext field corresponding to the setter method
 private WebServiceContext wsContext;

 @Resource
 private void setWebServiceContext(WebServiceContext wsContext) {
 this.wsContext = wsContext;
 }
 public int add(int number1, int number2) throws AddNumbersFault {
 // Acquire the message context
 MessageContext mContext = wsContext.getMessageContext();
 // Set the properties
 mContext.put("userPropKey", "userPropValue");
 ...
 }
 ...
}

(2) Notes when adding a user-defined message context property
This subsection describes the notes when adding a user-defined message context property:

10. Settings and Operations of the JAX-WS Functionality

203

(a) Adding a property in the service-side handler when inbounding

You can add the user-defined message context properties by using the service-side handler for inbounding. When
referencing these properties from Web Services Implementation Class or Provider Implementation Class, you must
first set the user- defined message context properties in the service-side handler and then use the
setScope(java.lang.String name, MessageContext.Scope scope)method, which is an API of
the javax.xml.ws.handler.MessageContext interface, for setting the user-defined properties as the
APPLICATION scope.

For referencing the user-defined message context properties (added in the service-side handler) from the service-side
handler when outbounding, set only the user-defined message context properties in the service-side handler. You need
not set the scope by using the setScope(java.lang.String name, MessageContext.Scope
scope)method. For the setScope(java.lang.String name, MessageContext.Scope
scope)method, see 19.2.4(8) javax.xml.ws.handler.MessageContext interface.

The following example shows how to add the user-defined properties in the service-side handler when inbounding:

import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;

public class ServiceSOAPHandlerImpl implements SOAPHandler<SOAPMessageContext> {

 public boolean handleMessage(SOAPMessageContext smContext) {
 // Acquire the message direction
 boolean outbound =
(boolean)smContext.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 if(outbound) {
 // Outbounding processes
 ...
 } else {
 // Inbounding processes

 // Specify the property key in ("userPropKey")
 // and a value in ("userPropValue")
 smContext.put("userPropKey", "userPropValue");
 // Set the property scope as the APPLICATION scope
 smContext.setScope("userPropKey", MessageContext.Scope.APPLICATION);
 ...
 }
 ...
 }
 ...
}

(b) Adding a property in Web Services Implementation Class or Provider Implementation Class

For referencing the user-defined message context properties that are added in Web Services Implementation Class or
Provider Implementation Class from the service-side handler when outbounding, set only the user-defined message
context properties in Web Services Implementation Class or Provider Implementation Class. Do not set the scope by
using the setScope(java.lang.String name, MessageContext.Scope scope)method. The
operation is not guaranteed if you use the setScope(java.lang.String name,
MessageContext.Scope scope)method.

10. Settings and Operations of the JAX-WS Functionality

204

10.22 One-way operations
A one-way operation is a communication in one direction and thus has no corresponding SOAP message responses.
But as the HTTP is used in the transfer protocol of the one-way messages, the Web Services client waits for an HTTP
response, the HTTP body of which does not have a SOAP message. On the other hand, for the one-way operations for
Web Services Implementation Class, the service-side JAX-WS engine returns the HTTP response as an HTTP status
code 202 Accepted before invoking a method belonging to Web Services Implementation Class.

The following figure shows the sequence of a one-way operation

Figure 10‒9: Sequence of a one-way operation

10.22.1 Notes on one-way operations
• For Provider Implementation Class, if null is returned, the HTTP response as an HTTP status code 202
Accepted is returned after the method invocation is complete.

• The one-way operations are not supported when you use the WSS (Web Services-Security), the WS-RM 1.2
functionality, or addressing functionality. The operation is guaranteed only when you individually use the WSS
(Web Services-Security), the WS-RM 1.2 functionality, or addressing functionality.

• The one-way operations have no corresponding SOAP messages. Therefore, you must take care that the
exceptions are not thrown explicitly when implementing a method of the one-way operation of Web Services
Implementation Class.

• If the service-side JAX-WS engine receives an invalid SOAP message and the unmarshalling fails, the engine
sends the SOAP fault, the HTTP status code of which is set as 500 Internal Server Error, to the Web
Services client.

• If the Web Services client that uses a one-way operation receives an HTTP status code other than 200 OK or 202
Accepted, the Web Services client throws the javax.xml.ws.WebServiceException exception.

10. Settings and Operations of the JAX-WS Functionality

205

10.23 A functionality to dynamically generate wrapper
bean

With the functionality to dynamically generate the wrapper bean, the JAX-WS engine dynamically generates the
wrapper bean (the request bean and response bean), and the Javabeans classes of the fault bean. You can use the
functionality in Web Services that are developed starting from SEI. However, the Web Services clients or Web
Services, for which the development started from the WSDL, do not support the functionality to dynamically generate
the wrapper bean.

This section describes the performance and error checks of the functionality to dynamically generate the wrapper
bean.

(1) Using the cjwsgen command for checking errors
When developing Web Services starting from SEI, compile Web Services Implementation Class by using the javac
command. However, when compiling Web Services Implementation Class by using the javac command, the
following mapping errors are not checked:

• Default mapping
For details, see 1.4.2(1)(a) Default mapping.

• Customization of mapping (annotation)
For details, see 1.4.2(1)(b) Customization of mapping.

For this reason, if definitions unsupported in the JAX-WS functionality are included in Web Services Implementation
Class, the process of starting Web Service or acquiring the metadata after Web Service starts successfully, might lead
to errors. To avoid errors, you must execute the cjwsgen command in Web Services Implementation Classes
compiled by using the javac command and check for the errors in advance. If Web Service fails to start, the
following error messages are output to the log or the standard error output.

• KDJW00003-E

• KDJW00005-E

• KDJW00006-E

• KDJW00007-E

• KDJW00008-E

• KDJW20026-E

• KDJW20027-E

• KDJW20041-E

• KDJW20042-E

• KDJW40011-E

• KDJW40013-E

(2) Performance
The JAX-WS engine dynamically generating a JavaBeans class is an on-memory processing. As compared to the
process in which a JavaBeans class is statically generated, the starting performance of Web Service, therefore,
declines when the JAX-WS engine puts a load on the Web Service when dynamically generating a JavaBeans class.
However, the process of dynamically generating a JavaBeans class does not require the process of reading the
WAR file, thereby reducing the load.

Because the JavaBeans class that is statically generated by JAX-WS is the same as the JavaBeans class that is
statically generated by the cjwsgen command, the performance of the SOAP communication after you start Web
Service is the same irrespective of whether the JavaBeans class is generated dynamically or statically.

10. Settings and Operations of the JAX-WS Functionality

206

11 Points on developing RESTful Web
Services
This chapter describes the points and precautions that you must note in advance for
each operation of developing RESTful Web Services (Web resources).

207

11.1 Creating a root resource class
You create a root resource class as a compiled Java class file (*.class). Similarly create a sub resource class or an
exception mapping provider as and when required.

You include the compiled Java class file (*.class) in the directories that configure the WAR file. Add the file to either
or both of the following locations:

• Under the classes directory

• In the JAR files included in the lib directory

A WAR file must contain at least one root resource class. For details on the storage destination, see 11.3.1
Configuring a WAR file.

11. Points on developing RESTful Web Services

208

11.2 Creating web.xml
This section describes the web.xml file included in a WAR file that is used in a Web resource.

You name the file as web.xml and store it under the WEB-INF directory that configures the WAR files. Storing the
web.xml file is mandatory.

The following sections describe both the definitions required for executing a Web Service and an example of a
web.xml file.

(1) Definitions required for executing a Web Service
Create the web.xml file so that the file satisfies the following conditions:

• Version
The version of web.xml must be 2.5 or later.

• Servlet
You must include the following servlet elements in the web-app element:

<servlet>
 <servlet-name>CosminexusJaxrsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.jersey.spi.container.servlet.ServletContainer
 </servlet-class>
</servlet>

• Servlet Initialization Parameter
You include the following init-param element in the servlet element as and when required. Note that the
init-param element is case-sensitive.

<init-param>
 <param-name>
 com.sun.jersey.config.property.packages
 </param-name>
 <param-value>
 A list of package names separated with semicolon, comma, or space
 </param-value>
</init-param>

When you include the init-param element in the servlet element, you must publish the Web resources
included in the package and sub-package specified in the init-param element. When you do not include the
init-param element in the servlet element, publish all the Web resources included in the WAR file.

! Important note

• You cannot use an * (asterisk) in the param-value of com.sun.jersey.config.property.packages.
• The error (KDJJ10020-E) occurs if you use an asterisk or specify an incorrect package name. 500 is returned as the

HTTP error code.

• Servlet Mapping
Code the servlet-mapping element below the web-app element.
The following is an example of how to code a servlet-mapping element.

<servlet-mapping>
 <servlet-name>CosminexusJaxrsServlet</servlet-name>
 <url-pattern>/*</url-pattern>
</servlet-mapping>

(2) Example of web.xml
An example of web.xml is as follows:

<web-app version="3.0"
 xmlns="http://java.sun.com/xml/ns/javaee"

11. Points on developing RESTful Web Services

209

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
 <servlet>
 <servlet-name>CosminexusJaxrsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.jersey.spi.container.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>org.test.resources1;org.test.resources2</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxrsServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

In this example, the following Web resources will be published assuming that org.test.resources1.ResourceA,
org.test.resources1.ResourceB, org.test.resources2.ResourceC, and org.test.resources3.ResourceD are included in the
WAR file:

• ResourceA

• ResourceB

• ResourceC

11. Points on developing RESTful Web Services

210

11.3 Creating an archive
This section describes how to configure a WAR file and create an EAR file.

11.3.1 Configuring a WAR file
You must configure the WAR file to be used in the Web resources as described in the following table.

Table 11‒1: Configuring a WAR file

Directory Remarks

/ --

META-INF/ --

MANIFEST.MF --

WEB-INF/ --

web.xml Indicates the created web.xml file.

classes/ Stores the compiled Java classes.

lib/ Stores the JAR files that include the compiled Java classes.

Legend:
--: Indicates that no explanation or supplementary information is available.

11.3.2 Creating an EAR file
For deploying Web resources to the J2EE server, create an EAR file that includes the already created WAR file. You
need to use application.xml to create an EAR file.

For details on the configuration of an EAR file, see 1.4.2 J2EE applications in an archive format in the uCosminexus
Application Server Application Development Guide.

11. Points on developing RESTful Web Services

211

11.4 Implementing a client by using a client API for
RESTful Web Services

This section describes how to implement a client by using a client API for RESTful Web Services (hereafter, referred
to as a Web resource client). When implementing a client by using the standard Java APIs such as java.net.URL
and java.net.HttpURLConnection, see the JDK documentation.

The Web resource clients have no specific restrictions. This allows you to develop, for example, the following Web
services:

• Java applications (calling Web resources from Java applications)

• JSPs (calling Web resources from JSPs)

• Servlets (calling Web resources from servlets)

• EJBs (calling Web resources from EJBs)

• SOAP Web Services (calling Web resources from SOAP Web Services)

• Web resources (calling an additional Web resource from a root resource class and sub resource class)

A Web resource client differs from a client that calls SOAP Web Services in which you do not need to create Java
sources such as a stub in advance by executing a command before implementing a Web resource client. Implement a
Web resource client according to the specifications of a client API for RESTful Web Services. For details on the
specifications of a client API for RESTful Web Services, see 25. Client API Support Environment for RESTful Web
Services.

11.4.1 Use case of a Web resource client
This subsection describes a basic use case of a client API for RESTful Web Services. You can use any of the
following methods to call a Web resource:

• Sending and receiving HTTP requests and HTTP responses by specifying a Java type

• Sending HTTP requests by specifying a Java type and receiving HTTP responses in a generic type
(ClientResponse)

• Sending and receiving HTTP requests and HTTP responses in generic types (ClientRequest and
ClientResponse).

The description of each method is as follows:

(1) Sending and receiving HTTP requests and HTTP responses by specifying a Java type
The following figure shows a use case describing the sending and receiving of HTTP requests and HTTP responses by
specifying a Java type.

11. Points on developing RESTful Web Services

212

Figure 11‒1: Use case describing the sending and receiving of HTTP requests and HTTP responses by
specifying a Java type

#1
You can reference or change the properties included in a map by various methods. For details, see 11.4.3 Setting
the properties and features.

#2
You can generate a request by using various methods of a client API. For details, see 11.4.3 Setting the properties
and features.

#3
Sends an HTTP request entity body in the character string format by using the HTTP POST method and similarly,
receives an HTTP response entity body in the character string format.
The client API also contains the methods corresponding to each HTTP method such as DELETE, GET, HEAD,
OPTIONS, and PUT. For details, see 11.4.3 Setting the properties and features.

#4
HttpURLConnection establishes the HTTP communication. The JAX-RS engine establishes the
communication until the HTTP message is created and then delegates the communication to
HttpURLConnection of the Java SE.

The coding example corresponding to figure 11-1 is as follows:

Client client = Client.create();
Map<String, Object> properties = client.getProperties();
properties.put(ClientConfig.PROPERTY_READ_TIMEOUT, 10000);
WebResource proxy = client.resource("http://example.org/helloworld");
WebResource.Builder builder = proxy.accept(MediaType.APPLICATION_JSON_TYPE);
builder = builder.type(MediaType.TEXT_PLAIN_TYPE);
String response = builder.post(String.class, "Some Request");

11. Points on developing RESTful Web Services

213

The procedure in the example is as follows:

1. Create a client object by using the create() static method of the Client class.

2. Set a property in the changeable property map acquired with the getProperties() method of the Client
class. You can also set the properties by using different methods. For details on properties and features, see 11.4.3
Setting the properties and features.

3. Create a WebResource object by calling the resource() method of the Client class and generate an
HTTP request by calling a method of the WebResource object. The WebResource class is designed by using
the builder pattern and contains various methods to generate an HTTP request.

4. Establish the HTTP communication by calling the post() method of the WebResource.Builder class. The
WebResource class also contains the methods corresponding to each HTTP method, such as DELETE, GET,
HEAD, OPTIONS, and PUT.

(2) Sending HTTP requests by specifying a Java type and receiving HTTP responses in a
generic type (ClientResponse)

You can also receive an HTTP response in a generic type such as the ClientResponse object. Acquiring an HTTP
response with the ClientResponse object enables a user to obtain various types of information of the received
HTTP response (HTTP header, entity body, and status code).

You can acquire an entity body by using the getEntity() method, thereby specifying the Java type. For details on
the methods supported by the ClientResponse class, see 25.1 The support range of client API interfaces and
classes.

The method to acquire an HTTP response to be received with ClientResponse object is as follows:

To create an HTTP request by using the WebResource object, specify ClientResponse.class in the
parameter that specifies the Java type of the HTTP response. Specify ClientResponse.class instead of
String.class in the coding example described in 11.4.1(1) Sending and receiving HTTP requests and HTTP
responses by specifying a Java type..

The HTTP response is always ClientResponse if you directly send an HTTP request using the Client class.
For details on the Client class, see 11.4.1(3) Sending and receiving HTTP requests and HTTP responses in a
generic type.

(3) Sending and receiving HTTP requests and HTTP responses in generic types
The following figure shows a use case describing sending and receiving HTTP requests and HTTP responses
(ClientRequest and ClientResponse) in generic types.

11. Points on developing RESTful Web Services

214

Figure 11‒2: Use case describing sending and receiving HTTP requests and HTTP responses in generic
types.

#1
You can reference or change the properties included in a map with various methods. For details, see 11.4.3 Setting
the properties and features.

#2
You can create a request by using various methods of a client API. For details, see 11.4.3 Setting the properties
and features.

#3
You can send an HTTP request entity body in the character string format by using the HTTP POST method and
similarly, receive an entity body of an HTTP response in the character string format.
A client API contains the methods corresponding to each HTTP method, such as DELETE, GET, HEAD,
OPTIONS, and PUT. For details, see 11.4.3 Setting properties and features.

#4
HttpURLConnection establishes a connection. The JAX-RS engine establishes the communication until the
HTTP message is created and then delegates the communication to HttpURLConnection of the Java SE.

The coding example corresponding to figure11-2 is as follows.

Client client = Client.create();
Map<String, Object> properties = client.getProperties();
properties.put(ClientConfig.PROPERTY_READ_TIMEOUT, 10000);
ClientRequest ro;

11. Points on developing RESTful Web Services

215

ClientRequest.Builder builder = ClientRequest.create();
builder.accept(MediaType.APPLICATION_JSON_TYPE);
builder.type(MediaType.TEXT_PLAIN_TYPE);
builder.entity("Some Request");
ro = builder.build(new URI("http://example.org/helloworld"), "POST");
ClientResponse clientResponse = client.handle(ro);
//The actual response in the form of String
String response = clientResponse.getEntity(String.class);

The procedure in the example is as follows:

1. Create a client object by using the create() static method of the Client class.

2. Set a property in the changeable property map acquired with the getProperties() method of the Client
class. For details on the properties and features, see 11.4.3 Setting the properties and features.

3. Create a ClientRequest.Builder object by calling the create() method of the ClientRequest class
and generate an HTTP request by calling a method of the ClientRequest.Builder object. The
ClientRequest.Builder class is designed in the builder pattern and contains various methods to generate
HTTP requests.

4. Call a build() method of the ClientRequest.Builder class and create a ClientRequest object.
Then, establish the HTTP communication by using the handle() method of the Client class.

11.4.2 Mechanism of a client API for RESTful Web Services
A client API for RESTful Web Services wraps the HttpURLConnection/HttpsURLConnection class and the
JDK executes the actual HTTP communication. Hereafter, unless clearly specified, HttpURLConnection/
HttpsURLConnection is collectively called HttpURLConnection.

The following figure shows the mechanism.

The following processes are executed in point 1. and point 2. in the figure:

1.

• The properties such as the connection timeout are set.

• An HTTP header is added.

• An entity body of the HTTP request is sent through the output stream acquired from
HttpURLConnection.

11. Points on developing RESTful Web Services

216

2.

• An HTTP header is acquired.

• An entity body of the HTTP response is sent through the input stream acquired from
HttpURLConnection.

(1) Relation between a user program and a client API for RESTful Web Services
A client API for RESTful Web Services mutually marshals and unmarshals a Java object and an HTTP request by
using the entity body reader and entity body writer. A user program, therefore, need not directly use an input stream
and output stream.

(2) Relation between JDK and client API for RESTful Web Services
The client APIs for RESTful Web Services delegate the processing of a transport layer to HttpURLConnection.
The various built-in methods necessary for setting properties and HTTP headers are available; however, set the same
values specified in the built-in methods to HttpURLConnection. For this reason, the JDK executes the processing
that uses values specified in the actual HTTP communication and built-in methods.

11.4.3 Setting properties and features
The Client object contains a changeable property map that stores properties and features.

Hereafter, the term property is used collectively for both, property and features.

(1) Initializing the property map
A changeable property map is initialized when creating a Client object. You can use any of the following methods
to initialize a property:

Method 1
Create a Client object by specifying the DefaultClientConfig object in the parameter and then call the
create (ClientConfig cc) static method of the Client class. Here, the changeable property map
of the Client object is initialized# by the property contained in the DefaultClientConfig object.

#
If the DefaultClientConfig object contains a property, the changeable property map is initialized with
the value of that property. If the DefaultClientConfig object is without a property, the changeable
property map is initialized with the settings mentioned in the action definition file.

Method 2
Create a Client object by using the create() static method of the Client class. Here, a changeable
property map of the client object is initialized by the action definition file.

11. Points on developing RESTful Web Services

217

For details on an action definition file, see 13.1 Action definition file.

(2) Structure of a changeable property map
With the four properties related to the HttpURLConnection class, you can change the property map acquired with
the getProperties() method of the Client class, and set the property map by using the setter method
corresponding to each property.

Only the four properties related to HttpURLConnection have corresponding setter methods. When setting a
property, change the property map acquired with the getProperties() method of the Client class.

The following figure shows the structure of a changeable property map.

For the list of supported properties, see 25.1.1 Supported properties and features.

Figure 11‒3: Structure of a changeable property map

Prior to the HTTP communication, the JAX-RS engine directly copies the values of the four properties related to the
HttpURLConnection class, shown in the figure, to HttpURLConnection (however, does not verify the
values). If the values are invalid, the HttpURLConnection class might throw an exception before or during the
HTTP communication. When the values specified are null, those are not copied and are ignored.

11. Points on developing RESTful Web Services

218

The ClientRequest class also contains a changeable property map of the same format. For this reason, when
establishing an HTTP communication by using the handle() method of the Client class, a user program can also
set the property through the ClientRequest object. The following figure shows the mechanism.

Figure 11‒4: Mechanism of copying the changeable property map

The JAX-RS engine copies the property included in the property map of the ClientRequest object to the property
map of the client object only when the property map of the Client object does not contain the same property.

11.4.4 Setting an HTTP header
A client API provides various methods to set an HTTP header in an HTTP request object. For details on supported
methods, see 25.1 The support range of client API interfaces and classes. This subsection describes one of the
following HTTP request objects:

• WebResource object or ClientRequest object

• WebResource.Builder object or ClientRequest.Builder object

An HTTP request object contains the MultivaluedMap object that stores a value corresponding to the HTTP
header.

The following figure shows the initialization of the MultivaluedMap object that stores the HTTP header.

Figure 11‒5: Mechanism of initializing the MultivaluedMap object

In the figure, a user program creates an HTTP request object by using the resource() method of the Client class
or create() static method of the ClientRequest class.

Here, an empty MultivaluedMap object is initialized.

The following figures show and describe the examples of setting an HTTP header in the MultivaluedMap object.

11. Points on developing RESTful Web Services

219

Example 1

Example 2

11. Points on developing RESTful Web Services

220

Example 3

Example 4

In all the methods shown in example 1 through example 4, a user program can create an HTTP request object that
contains the HTTP Accept headers having the values text/xml and text/plain. This also applies to the HTTP
Accept-Language header and HTTP Cookie header. For HTTP Accept-Language headers and HTTP Cookie headers,
substitute the accept method with the acceptLanguage() method and cookie() method respectively.

The following figures show the operation in example 1 and example 3 for the HTTP Content-Type headers.

11. Points on developing RESTful Web Services

221

Example 1

Example 3

The value of the Content-Type HTTP header set in the HTTP request object in both the examples above is text/
plain. Also, because the HTTP Content-Type header can contain only one value, you cannot use the methods
described in example 2 and example 4.

Prior to the HTTP communication, all the HTTP headers and respective values added in the HTTP request object are
set in the HttpURLConnection object. The following figure shows the mechanism:

11. Points on developing RESTful Web Services

222

The corresponding HTTP header value included in the HTTP request object is set in the respective HTTP header.
Accordingly, a non-null value of the corresponding HTTP header included in the HTTP request object is set to the
value returned by the toString() method. The JAX-RS engine does not verify the value of an HTTP header. Set a
value of an HTTP header in the HTTP request object according to the standard specifications.

Further, until establishing the HTTP communication, the operation when no specific HTTP header is set in the HTTP
request object is same as the operation when no HTTP header is set in the HttpURLConnection object.

11.4.5 Notes
This subsection describes the notes when implementing a Web resource client

(1) Reusing the objects
We recommend that you reuse the already created Client object because creating an object incurs process cost.
When creating a WebResource object more than once, or calling a Web resource more than once by using a method of
the Client class, you need not create more than one Client objects.

Similarly, because creating WebResource also incurs cost, we recommend that you reuse the already created
WebResource object. When creating more than one builders and HTTP requests for the same Web resource (URL),
you need not create more than one WebResource object.

The methods used to set a Client class or methods of a Client class that destroy objects, however, are not thread
safe. To know whether the methods are thread safe, check the following:

• When sharing a Client object across multiple threads, configure the settings for the Client object to be shared
before multiple threads start operating.

• Destroy the Client object after the operation of multiple threads is complete.

If you execute these operations during the operation of multiple threads, the communication might fail and an invalid
HTTP request might be sent.

When implementing a Web resource client with servlets or EJBs, create a Client object by using the initialization
methods of servlets and EJBs and configure the required settings. Similarly, destroy the Client objects by using the
destroy methods.

The following example shows a client API for RESTful Web Services used in servlets:

@WebServlet("/example")
public class ClientServlet extends HttpServlet {

 // A client object to be shared

11. Points on developing RESTful Web Services

223

 private Client client = null;

 // A WebResource object to be shared
 private WebResource proxy = null;

 @PostConstruct
 public void postConstruct() {
 // Create a client object to use
 // a client API for RESTful Web Services
 this.client = Client.create();
 // Setting the client: Obtain the property bag from the Client object
 Map<String, Object> properties = this.client.getProperties();
 // Setting the client: Set the read timeout
 properties.put(ClientConfig.PROPERTY_READ_TIMEOUT, 10000);
 // Create a WebResource object from the Client object
 this.proxy = this.client.resource("http://...");
 }

 @PreDestroy
 public void preDestory() {
 // destroy the Client object
 if(this.client != null){
 this.client.destroy();
 this.client = null;
 }
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException{
 ...
 ClientResponse clientResponse = null;
 // Invoke resource
 try {
 // Set a cookie and obtain an HTTP response from the Web resource
 Cookie cookie = new Cookie("cookie", "cookie%20value");
 clientResponse = this.proxy.cookie(cookie).get(ClientResponse.class);
 }catch (Exception e) {
 printStackTrace(e, out);
 }
 ...
 }
}

For details on the thread safety of a client API for RESTful Web Services, see 25.16 Thread safety of a client API for
RESTful Web Services.

(2) Settings for proxy SSL connection and basic verification
See the following respective sections for the proxy, SSL connection and basic verification settings.

• Settings for proxy
10.10 Connecting through a proxy server

• Settings for SSL connection
10.11 Connection by SSL protocol

• Settings for basic verification
10.12 Connection by basic authentication

(3) Notes for using the Windows environment
The following exception might be logged if you use an environment in which you can send large number of requests
from the Web resource client.

java.net.BindException: Address already in use: connect [errno=10048, syscall=select]

This exception is thrown when a large number of requests are received for a Web resource client implemented as a
servlet.

In such cases, take either or both of the following measures:

• Expand the range of port numbers available on the OS

11. Points on developing RESTful Web Services

224

Example: Changing the settings of MaxUserPort of the registry.

• Decrease the duration of TIME_WAIT
Example: Changing the settings of TcpTimedWaitDelay of the registry.

However, see the documentation of your OS for details, as the specifications differ depending on the version, edition,
and security update program installed on the OS. Note that the above settings are applied to the entire OS.

(4) Controlling the resending of a request
The JAX-RS engine on the Web resource client side communicates by using the HTTP client implemented by the
JDK. The HTTP client implemented by the JDK resends the request only once if, in contradiction to RFC 2616, an
error occurs in the HTTP communication and the client is unable to receive appropriate responses from the server.
Using the system property of the JDK enables you to control the resending of a request. For details, see 10.20
Preventing the resending of a request by sun.net.www.http.HttpClient. Also, when reading, substitute Web Services
client with RESTful Web Services client and substitute JAX-WS engine with JAX-RS engine.

(5) Executing a client application using the command line
For details on the necessary settings when using a Java application running from the command line as a client
application, examples of specifying the command line, and notes, see 10.14 Executing a client application using the
command line. Also, in the RESTful Web Services client, add the following key and value in the option definition file
for Java applications.

add.class.path=installation-directory/jaxws/lib/cjjaxrs.jar

11. Points on developing RESTful Web Services

225

12 Examples of Developing RESTful
Web Services
This chapter describes examples of developing RESTful Web Services (Web
resources).

227

12.1 Configuration of development examples
The examples described in this subsection explain how to develop RESTful Web Services (Web resources). The
development includes implementation of root resource classes, sub-resource classes, and an exception mapping
provider.

The following table describes the configuration of the Web resources to be developed. An example of this
development is available as a sample in the following directory:

Cosminexus-installation-directory\jaxrs\samples\tutorial\

Table 12‒1: Configuration of Web resources

No. Item Value

1 Name of the J2EE server to be deployed Jaxrsserver

2 Host name and port number of the Web server webhost:8085

3 URL of the naming server corbaname::testserver:900

4 Context root Tutorial

5 Context path of the root resource class Root

6 Root resource class com.sample.resources.Resource

7 Sub-resource class com.sample.resources.SubResource

8 Exception mapping provider com.sample.providers.RuntimeExceptionM
apper

The following table describes the configuration of a current directory for the Web resource development.

Table 12‒2: Configuration of a current directory

Directory Explanation

c:\temp\jaxrs\works\tutorial A current directory.

server\ This is to be used in the Web resource development.

META-INF\ This corresponds to the META-INF directory of the EAR file.

application.xml This is created in 12.3.4 Creating application.xml.

src\ This stores source files (*.java) of a Web resource. This is used in 12.3.1
Creating root resource classes.

WEB-INF\ This corresponds to the WEB-INF directory of a WAR file.

web.xml This is created in 12.3.3 Creating web.xml.

classes\ This stores the compiled class files (*.class). This is used in 12.3.2 Compiling
Java sources.

tutorial.ear This is created in 12.3.5 Creating an EAR file.

tutorial.war

client\ This is used in the the Web resource client development.

src\ This stores source files (*.java) of a Web resource client. See 12.5.1 Creating
Implementation Class of a Web resource client (by using client APIs) or 12.5.2
Creating Implementation Class of a Web resource client (by using
java.net.HttpURLConnection) for details on how to create the Implementation
Class of a Web resource.

12. Examples of Developing RESTful Web Services

228

Directory Explanation

classes\ This stores compiled class files (*.class). This is created in 12.3.2 Compiling
Java sources.

usrconf.cfg This is created in 12.6.1 Creating an options definition file for Java applications.

usrconf.properties This is created in 12.6.2 Creating a user property file for Java applications.

Change the current directory path according to the environment to be developed.

Note that the directories and the file names listed in the above table are used in the descriptions hereafter. The parts in
bold in the command execution examples and in Java sources indicate the specified and generated values used in the
examples. Substitue those parts according to the environment to be built.

Furthermore, in the development examples described in this chapter, Web resources and Web resource clients are
developed in the same environment. However, you can also develop them in different environments. For developing
Web resources and HTTP clients in different environments, substitute the current directory path according to the
respective environments.

12. Examples of Developing RESTful Web Services

229

12.2 Procedures in the development example
The following procedures are used for developing and executing RESTful Web Services in the development examples
described in this chapter:

Developing a Web resource

1. Creating root resource classes (12.3.1)

2. Compiling Java sources (12.3.2)

3. Creating web.xml (12.3.3)

4. Creating application.xml (12.3.4)

5. Creating an EAR file (12.3.5)

Deploying and starting

1. Deploying the EAR file (12.4.1)

2. Starting Web Services (12.4.2)

Developing a Web resource client

1. Creating Implementation Class of a Web resource client (12.5.1 or 12.5.2)

2. Compiling Implementation Class of a Web resource client (12.5.3)

Calling a Web resource

1. Creating an option definition file for Java applications (12.6.1)

2. Creating a user property file for Java applications (12.6.2)

3. Starting the Web resource client (12.6.3)

12. Examples of Developing RESTful Web Services

230

12.3 Example of developing Web resources
This section describes an example of developing a Web resource.

12.3.1 Creating root resource classes
You create root resource classes. This subsection describes how to create a root resource class that contains the
following resource methods, sub-resource methods, sub-resource locators and the bean properties, fields, and
constructors that are to be injected.

Table 12‒3: Root resource class to be created

Item
Request
method
identifier

Context path following /
root Remarks

Resource
method

resourceMethod1 @GET -- --

resourceMethod7 @POST -- • Includes parameters
annotated using the
FormParam annotation
that injects form values.

• Receives the HTTP entity
of the MIME type "*/*".

• Returns the HTTP entity of
the MIME type
"application/xml".

Sub-resource
method

subResourceMethod2 @GET /getQueryParam --

subResourceMethod3 @POST /
getUriInfoAndEntit
y

Includes the Entity
parameter.

subResourceMethod4 @GET /getHttpHeaders Includes the parameters
annotated using the Context
annotation that injects
HttpHeaders.

subResourceMethod5 @GET /getMatrixParam Includes the parameters
annotated using the
MatrixParam annotation that
injects Matrix parameters.

subResourceMethod6 @GET /getCookieParam Includes the parameters
annotated using the
CookieParam annotation that
injects Cookies.

subResourceMethod8 @GET /getPathParam Includes the parameters
annotated using the
PathParam annotation that
injects the path parameter.

subResourceMethod
ThrowingException

@GET /{path:[A-Z][a-z]
+}/exception

Throws exceptions. The
exception mapping provider
RuntimeExceptionMappe
r maps the thrown exceptions
to HTTP entities.

pojoJsonMappingMet
hod

@POST /pojoJsonMapping Processes data in the JSON
format.

Sub-resource
locator

subResourceMethod9 -- /
subresourceLocator

Delegates operations to the sub-
resource class SubResource.

12. Examples of Developing RESTful Web Services

231

Item
Request
method
identifier

Context path following /
root Remarks

Constructor -- -- Includes the parameters
annotated using the Context
annotation that injects
UriInfo.

Field -- -- Annotated using the Context
annotation that injects
Request.

bean property -- -- Annotated using the
QueryParam annotation that
injects query parameters.

Legend:
--: Not applicable.

An example of creating a root resource class is as follows:

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.CookieParam;
import javax.ws.rs.FormParam;
import javax.ws.rs.MatrixParam;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.DefaultValue;

import javax.ws.rs.Encoded;

import javax.ws.rs.Consumes;
import javax.ws.rs.Produces;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.HttpHeaders;
import javax.ws.rs.core.Request;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.ResponseBuilder;

//sample:root resource class
//this class is accessed by URI "/root"
@Path("/root")
public class Resource {

 //injecting to the field of
 //the context "javax.ws.rs.core.Request object"
 private @Context
 Request request;

 // injection of a query parameter by using the setter() method
 @QueryParam("queryParam")

public void setQueryParam(String queryParam) {

 this.queryParam = queryParam;
 }
 //The private field that stores the query parameter injected by //the
aforementioned setter()method
 private String queryParam;

 // injection to the constructor parameter of
 //the context "(javax.ws.rs.core.UriInfo object)
 public Resource(@Context UriInfo uriInfo) {
 this.uriInfo = uriInfo;
 }
 //Private field that stores the UriInfo object injected by

// the aforementioned constructor

12. Examples of Developing RESTful Web Services

232

 private UriInfo uriInfo;

 //Sample: Resource Method 1
 // returns the context value
 // injected to the field "javax.ws.rs.core.Request Object"
 // this method processes the HTTP GET request
 @GET
 public String resourceMethod1() {
 String returnString = "RequestMethod: " + request.getMethod();
 return returnString;

}

 //Sample: Sub Resource Method 2
 //returns the value of the query parameter injected to the setter()method

//this method processes the HTTP GET request

 @GET
 //this method is accessed by "/root/getQueryParam" of URI
 @Path("getQueryParam")
 public String subResourceMethod2() {
 String returnString = "QueryParameter: " + queryParam;
 return returnString;

}

 //Sample: Sub Resource Method 3
 // // returns the context value "javax.ws.rs.core.UriInfo object"
 // injected to the constructor parameter,

// and returns the received HTTP Request entity body

 // this method processes the HTTP POST request
 @POST
 //this method is accessed by "/root/getUriInfoAndEntity" of URI
 @Path("getUriInfoAndEntity")
 public String subResourceMethod3(
 // an entity parameter (a parameter that is not annotated) is
 // mapped from the HTTP request entity body
 String entity) {
 String returnString = "UriInfo: " + uriInfo.getPath() + "; Entity: " + entity;
 return returnString;
 }
 //Sample:Sub Resource Method 4
 // returns the context value //(javax.ws.rs.core.HttpHeadersobject)
 // injected to the sub resource method parameter
 // this method processes the HTTP GET request
 @GET
 // this method is accessed by "/root/getHttpHeaders" of URI
 @Path("getHttpHeaders")
 public String subResourceMethod4(
 //injecting to the subresource method parameter of
 //javax.ws.rs.core.HttpHeaders object
 @Context HttpHeaders httpHeaders) {
 String returnString = "HttpHeaders: " +
httpHeaders.getRequestHeader("header").get(0).toString();
 return returnString;
 }
 // sample: Sub Resource Method 5
 // returns the value of the matrix parameter injected to
 // the sub resource method parameter
 // this method processes the HTTP GET request
 @GET
 //this method is accessed by "/root/getMatrixPara" of URI
 @Path("getMatrixParam")
 public String subResourceMethod5(
 // the default value is assigned to the Matrix parameter
 @DefaultValue("defaultValue")
 //injecting the matrix parameter to
 // the subresource method
 @MatrixParam("matrix") String matrixParam) {
 String returnString = "MatrixParam: " + matrixParam;
 return returnString;
 }
 // sample: Sub Resource Method 6
 // returns the value of Cookie injected to the sub resource method parameter
 //this method processes the HTTP GET request
 @GET

12. Examples of Developing RESTful Web Services

233

 //this method is accessed by "/root/getCookieParam"of URI
 @Path("getCookieParam")
 public String subResourceMethod6(
 // disables automatic URI decoding
 @Encoded

// injecting to the sub-resource method parameter of the Cookie

 @CookieParam("cookie") String cookieParam) {
 String returnString = "CookieParam: " + cookieParam;
 return returnString;
 }
 // sample: Resource Method 7
 returns the value injected to the resource method parameter
 // this method uses the content defined in the MIME media type
 Consumes("*/*")
 // this method uses the content defined in the MIME media type
 //"application/xml"
 @Produces("application/xml")
 // this method processes the HTTP POST request
 @POST
 public Response resourceMethod7(
 // injecting the form parameter to the resource method parameter
 @FormParam("form") String formParam) {
 ResponseBuilder rb = Response.status(200)
 .entity("<FormParam>" + formParam + "</FormParam>")
 .type("application/xml");
 return rb.build();

}

 // sample: Sub Resource Method 8
 // returns the value of the path parameter injected to the sub resource method
parameter
 // this method processes the HTTP GET request
 @GET
 //this method is accessed by
 //"/root/getPathParam/{path:[A-Z][a-z]+}" of URI
 //"getPathParam/{path:[A-Z][a-z]+}" is the URI template containing variables
 //"{path:[A-Z][a-z]+}" uses regular expressions
 @Path("getPathParam/{path:[A-Z][a-z]+}")
 public String subResourceMethod8(
 // injecting to the path parameter
 // of the sub resource method parameter
 @PathParam("path") String pathParam) {
 String returnString = "PathParam: " + pathParam;
 return returnString;
 }
 // sample: Sub Resource Locator 9
 // The sub resource class is accessed by "/root/subresourceLocator" URI
 @Path("/subresourceLocator")
 public SubResource subResourceMethod9() {
 // the sub-resource locator returns a resource class instance
 // to process the HTTP request
 return new SubResource();
 }
 // sample:Sub Resource Method 10
 // throws an exception
 // Exception mapping provider maps
 //the thrown exception to the HTTP response
 // this method processes the HTTP GET request
 @Path("/exception")
 //this method is accessed by "/root/exception" URI
 @GET
 public String subResourceMethodThrowingException() {
 throw new RuntimeException();

}

 //Sample: Sub Resource method 11
 // processes data in the JSON format
 //This method processes the HTTP POST request
 @Path("pojoJsonMapping")
 //This method is accessed by "root/PojoJsonMapping" URI
 @POST
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public CustomType pojoJsonMappingMethod(CustomType record) {
 //Confirm the contents of the record object received from //the client
 if(!record.getName().equals("Old Record Name")){
 throw new RuntimeException();

12. Examples of Developing RESTful Web Services

234

 }
 List<Integer> oldGrades = new ArrayList<Integer>();
 oldGrades.add(1);
 oldGrades.add(2);
 oldGrades.add(3);
 if(!record.getGrades().equals(oldGrades)){
 throw new RuntimeException();

}

 // Create a new CustomType object to return to the client
 CustomType newRecord = new CustomType();
 newRecord.setName("New Record Name");
 List<Integer> newGrades = new ArrayList<Integer>();
 newGrades.add(5);
 newGrades.add(6);
 newGrades.add(7);
 newRecord.setGrades(newGrades);

 return newRecord;

}

You save the created root resource class (Resource.java) in the c:\temp\jaxrs\works\tutorial
\server\src\com\sample\resources\ directory in the UTF-8 format.

An example of creating a sub-resource class is as follows. This sub-resource class has a resource method that receives
the HTTP GET request. Note that creating a sub-resource class is optional.

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.HeaderParam;

//Sample: Sub Resource class
public class SubResource {

 //This method processes the HTTP GET request
 @GET
 public String getHandlerForSubResource(
 //Injecting header parameters to
 //the sub resource method parameters
 @HeaderParam("header") String headerParam) {
 return "Header: " + headerParam;
 }

}

You save the created sub-resource class (SubResource.java) in the c:\temp\jaxrs\works\tutorial
\server\src\com\sample\resources\ directory in the UTF-8 format.

An example of creating an exception mapping provider is as follows. The Exception Mapping Provider maps the
runtime exception to the HTTP response that contains the value of "RuntimeException occurs" in the HTTP header
and has the status code 501. Note that creating an Exception Mapping Provider is optional.

package com.sample.providers;

import javax.ws.rs.core.Response;
import javax.ws.rs.ext.Provider;
import javax.ws.rs.ext.ExceptionMapper;

//sample: exception mapping class
//this class maps RuntimeException to HTTP response
@Provider
public class RuntimeExceptionMapper implements
 ExceptionMapper<RuntimeException> {
 //this method is called when the application throws
 //a runtime exception
 public Response toResponse(RuntimeException re) {
 //sets "HTTP/1.1 501 Not Implemented" as the HTTP response //status
 //sets "header: RuntimeException occurs" in the header of //the HTTP response
 return Response.status(501)
 .header("header", "RuntimeException occurs").build();
 }
}

12. Examples of Developing RESTful Web Services

235

You save the created exception mapping provider (RuntimeExceptionMapper.java) in the c:\temp\jaxrs
\works\tutorial\server\src\com\sample\providers\ directory in the UTF-8 format.

An example of creating a POJO to be mapped to the data in the JSON format is as follows. Note that creating a POJO
for mapping to the JSON fornat is an optional operation.

package com.sample.resources;

import java.util.List;

public class CustomType {

 private String name;
 private List<Integer> grade;

 public CustomType() {
 }
 public CustomType (String name, List<Integer> grades){
 this.name = name;
 this.grade = grades;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public List<Integer> getGrades() {
 return grade;
 }
 public void setGrades(List<Integer> grades) {
 this.grade = grades;
 }
 @Override
 public String toString() {
 return "Record [Name=" + name + ", Grades=" + grade.toString() + "]";
 }

}

Save the POJO created (CustomType.java) for mapping to JSON in the c:\temp\jaxrs\works\tutorial
\server\src\com\sample\resources\directory in the UTF-8 format.

12.3.2 Compiling Java sources
You use the javac command to compile the created Java sources. An example of compiling is as follows:

> cd c:\temp\jaxrs\works\tutorial\server\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\jaxrs\lib\cjjaxrs.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;%COSMINEXUS_HOME%\jaxp
\lib\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib\csmstax.jar;.\classes" -d WEB-INF\classes
\ src\com\sample\resources\Resource.java src\com\sample\resources\SubResource.java src
\com\sample\providers\RuntimeExceptionMapper.java src\com\sample\resources
\CustomType.java

When the javac command ends successfully, a class file (*.class) is generated in the subdirectory corresponding
to the package name in the c:\temp\jaxrs\works\tutorial\server\WEB-INF\classes\ directory.

For details on the javac command, see the JDK documentation.

12.3.3 Creating web.xml
You create web.xml that is required as a WAR file component.

The example of creating web.xml is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

12. Examples of Developing RESTful Web Services

236

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">

 <description>Sample web service "tutorial"</description>
 <display-name>Sample_web_service_jaxrs_tutorial</display-name>
 <servlet>
 <servlet-name>CosminexusJaxrsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.jersey.spi.container.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>com.sample.resources;com.sample.providers</param-value>
 </init-param>
 <!-- POJO JSON support web.xml configuration -->
 <init-param>
 <param-name>com.sun.jersey.api.json.POJOMappingFeature</param-name>
 <param-value>true</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxrsServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

Save the created web.xml in the c:\temp\jaxrs\works\tutorial\server\WEB-INF\ directory in the
UTF-8 format. For details on the web.xml settings, see 3.4 Creating web.xml.

12.3.4 Creating application.xml
You create application.xml required as a component of the EAR file.

The following is an example of creating application.xml:

<?xml version="1.0" encoding="UTF-8"?>
<application version="6"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "tutorial"</description>
 <display-name>Sample_application_jaxrs_tutorial</display-name>
 <module>
 <web>
 <web-uri>tutorial.war</web-uri>
 <context-root>tutorial</context-root>
 </web>
 </module>
</application>

When creating application.xml of version 5, specify 5 in the version attribute of the application
element and specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second
location information in the xsd:schemaLocation attribute.

You save the created application.xml in the c:\temp\jaxrs\works\tutorial\server\META-INF\
directory in the UTF-8 format. For notes on creating the application.xml file, see 5.2.2 Points to consider when
editing application.xml in the uCosminexus Application Server Application Development Guide.

12.3.5 Creating an EAR file
You use the jar command to create an EAR file that includes the files created so far.

The following is an example of creating an EAR file:

12. Examples of Developing RESTful Web Services

237

> cd c:\temp\jaxrs\works\tutorial\server\
> jar cvf tutorial.war .\WEB-INF
> jar cvf tutorial.ear .\jaxrs_sample.war .\META-INF\application.xml

When the jar command ends successfully, tutorial.ear is created in the c:\temp\jaxrs\works
\tutorial\server\ directory.

For details on the jar command, see the JDK documentation.

12. Examples of Developing RESTful Web Services

238

12.4 Examples of deploying and starting
This section describes the examples of deploying and starting Web resources.

12.4.1 Deploying EAR files
You use the cjimportapp command to deploy the created EAR file to the J2EE server.

The following example describes how to deploy EAR files:

> cd c:\temp\jaxrs\works\tutorial\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxrsserver -nameserver
corbaname::testserver:900 -f tutorial.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For details on how to deploy (import) J2EE applications using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

12.4.2 Starting Web Services
You use the cjstartapp command to start Web Services.

The following example describes how to start Web Services:

> cd c:\temp\jaxrs\works\tutorial\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxrsserver -nameserver
corbaname::testserver:900 -name Sample_application_jaxrs_tutorial

For details on the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus
Application Server Command Reference Guide.

For details on how to start J2EE applications using the management portal, see 12.3.1 Starting J2EE applications in
the uCosminexus Application Server Management Portal User Guide.

12. Examples of Developing RESTful Web Services

239

12.5 Examples of developing a Web resource client
This section describes an example of developing a Web resource client. Develop a Web resource client by using the
standard Java APIs such as client APIs for RESTful Web Services, java.net.URL, or
java.net.HttpURLConnection.

12.5.1 Creating Implementation Class of a Web resource client (by using
the client APIs)

Create Implementation Class of the client that uses client APIs for RESTful Web Services.

An example is as follows:

package com.sample.client;

import java.net.URI;
import java.net.URLEncoder;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;

import com.cosminexus.jersey.api.client.Client;
import com.cosminexus.jersey.api.client.WebResource;
import com.cosminexus.jersey.api.client.ClientRequest;
import com.cosminexus.jersey.api.client.ClientResponse;
import com.cosminexus.jersey.api.client.config.ClientConfig;
import com.cosminexus.jersey.api.client.config.DefaultClientConfig;
import com.cosminexus.jersey.api.client.ClientHandlerException;
import com.cosminexus.jersey.api.json.JSONConfiguration;
import javax.ws.rs.core.Cookie;

//Sample: Executing the Web resource client
public class SampleClient {

 public static void main(String[] args) {

 final String HOST = args[0];
 final String PORT = args[1];

 SampleClient sampleClient = new SampleClient();

 try{
 sampleClient.demonstration13(HOST, PORT);
 sampleClient.demonstration14(HOST, PORT);
 sampleClient.demonstration15(HOST, PORT);

 System.out.println("\n----- Successfully Ended -----");

 }catch(Exception e){
 //Display a detailed exception message
 System.out.println(e.getMessage());
 }
 }
 private void demonstration13(String HOST, String PORT) {

 System.out.println("\n Demonstration 13 started.");
 System.out.println(" This demonstrates how to use Client API " +
 "to receive a response as a ClientResponse.");
 System.out.println(" This demonstrates usage of @Encoded at " +
 "@CookieParam. \n Automatic URI decoding should be disabled.");

 String url = null;
 Client client = null;
 ClientResponse response = null;

 String responseEntity = "";
 Map<String, List<String>> headers = null;
 int status;

 //Call the Web resource
 try {
 //Set a URI of the Web resource to be called
 url = new String("http://" + HOST + ":" + PORT+
 "/tutorial/root/getCookieParam");
 Cookie cookie = new Cookie("cookie", "cookie%20value");

12. Examples of Developing RESTful Web Services

240

 //Create a client object to use client APIs
 client = Client.create();
 //Create and send an HTTP request and receive an HTTP response
 //- Create a WebResource object from the Client object
 //- Set "cookie=cookie%20value" to the Cookie header
 //- Send an HTTP GET request and
 // receive an HTTP response as ClientResponse
 response = client.resource(url)
 .cookie(cookie)
 .get(ClientResponse.class);
 //Acquire headers of the HTTP response
 headers = response.getHeaders();
 //Acquire the status code of the HTTP response
 status = response.getStatus();
 //Acquire the entity of the HTTP response
 responseEntity = response.getEntity(String.class);
 }catch (Exception e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 //Display stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 13 failed.");
 }
 System.out.println(" The target URL is \"" + url + "\".");
 System.out.println(" The HTTP method is " + "\"GET\"" + ".");
 System.out.println(" Connection and interaction ended successfully.");

 //Set the expected value of the status code and entity
 int statusExpect = 200;
 String responseEntityExpect = "CookieParam: cookie%20value";

 //Check if the status code and the entity have the expected values
 if (status == statusExpect
 & responseEntity.equals(responseEntityExpect)) {
 //Display the header of the HTTP response
 System.out.println(" Response headers are " + headers.toString() + ".");
 //Display the entity of the HTTP response
 System.out.println(" Response entity is " + responseEntity + ",");
 System.out.println(" which means target resource completed " +
 "the process described above without any problem.");

 System.out.println(" Demonstration 13 ended successfully.");
 }else {
 System.out.println(" The response is not as expected.");
 throw new RuntimeException(" Demonstration 13 failed.");
 }

 }

 private void demonstration14(String HOST, String PORT) {

 System.out.println("\n Demonstration 14 started.");
 System.out.println(" This demonstrates how to send a ClientRequest " +
 "and receive a ClientResponse by using " +
 "Client#handle(ClientRequest request).");
 System.out.println(" This demonstrates usage of @Consumes and " +
 "@Produces.");
 URI url = null;
 Client client = null;
 ClientRequest.Builder requestBuilder = null;
 ClientRequest request = null;
 ClientResponse response = null;

 String responseEntity = "";
 Map<String, List<String>> headers = null;
 int status;

 //call the Web resource
 try {
 //Set the URI of the Web resource to be called
 url = new URI("http://" + HOST + ":" + PORT+ "/tutorial/root");
 //Create an entity of the HTTP request
 String data = URLEncoder.encode("form", "UTF-8") + "="
 + URLEncoder.encode("formValue", "UTF-8");
 //crate a Client object to use the client APIs
 client = Client.create();
 //Create a ClientRequest.Builder object
 requestBuilder = ClientRequest.create();
 // Set "application/x-www-form-urlencoded"
 //to the "Content-Type" header of the HTTP request
 //- Set the entity of the HTTP request
 requestBuilder.type("application/x-www-form-urlencoded")
 .entity(data);
 //Create ClientRequest from ClientRequest.Builder

12. Examples of Developing RESTful Web Services

241

 request = requestBuilder.build(url, "POST");
 //Call the Client#handle() method and send the HTTP POST //request
 //Receive an HTTP response as ClientResponse
 response = client.handle(request);
 //Acquire headers of the HTTP response
 headers = response.getHeaders();
 //Acquire the status code of the HTTP response
 status = response.getStatus();
 //Acquire the entity of the HTTP response
 responseEntity = response.getEntity(String.class);
 }catch (ClientHandlerException e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 //Display stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 14 failed.");
 }catch (Exception e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 // Display stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 14 failed.");
 }
 System.out.println(" The target URL is \"" + url + "\".");
 System.out.println(" The HTTP method is " + "\"POST\"" + ".");
 System.out.println(" Connection and interaction ended successfully.");

 //Set the expected values of the status code and the entity
 int statusExpect = 200;
 String responseEntityExpect = "<FormParam>formValue</FormParam>";

 //Check if the status code and the entity have the expected values
 if (status == statusExpect
 & responseEntity.equals(responseEntityExpect)) {
 //Display headers of the HTTP response
 System.out.println(" Response headers are " + headers.toString() + ".");
 //Display the entity of the HTTP response
 System.out.println(" Response entity is " + responseEntity + ",");
 System.out.println(" which means target resource completed " +
 "the process described above without any problem.");

 System.out.println(" Demonstration 14 ended successfully.");
 }else {
 System.out.println(" The response is not as expected.");
 throw new RuntimeException(" Demonstration 14 failed.");
 }

 }
 private void demonstration15(String HOST, String PORT) {

 System.out.println("\n Demonstration 15 started.");
 System.out.println(" This demonstrates JSON support of CJR.");
 System.out.println(" This demonstrates POJO and JSON mapping.");

 String url = null;
 Client client = null;
 CustomType response = null;

 //Call the Web resource
 try {
 //Set the URI of the Web resource to be called
 url = new String("http://" + HOST + ":" + PORT +
 "/tutorial/root/PojoJsonMapping");
 //Specify settings to enable JSON POJO mapping
 ClientConfig cc = new DefaultClientConfig();
 cc.getFeatures()
 .put(JSONConfiguration.FEATURE_POJO_MAPPING, Boolean.TRUE);
 //Create a Client object to use client APIs
 //(Pass the ClientConfig object to enable the settings)
 client = Client.create(cc);
 //Create a CustomType object
 CustomType record = new CustomType();
 record.setName("Old Record Name");
 List<Integer> grades = new ArrayList<Integer>();
 grades.add(1);
 grades.add(2);
 grades.add(3);
 record.setGrades(grades);
 //Create an HTTP request
 //-Create a WebResource object from the Client object
 //-Set "application/json" to the Content-Type header
 //-Set CustomType object to the entity
 //-Send HTTP POST request and
 //receive HTTP response as CustomType
 response = client.resource(url)

12. Examples of Developing RESTful Web Services

242

 .type("application/json")
 .entity(record)
 .post(CustomType.class);
 }catch (Exception e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 //Display the stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 15 failed.");
 }
 System.out.println(" The target URL is \"" + url + "\".");
 System.out.println(" The HTTP method is " + "\"POST\"" + ".");
 System.out.println(" Connection and interaction ended successfully.");

 //Set the expected value of the entity
 String responseNameExpect = "New Record Name";
 List<Integer> responseGradesExpect = new ArrayList<Integer>();
 responseGradesExpect.add(5);
 responseGradesExpect.add(6);
 responseGradesExpect.add(7);

 //Check if the entity has the expected value
 if (response.getName().equals(responseNameExpect)
 & response.getGrades().equals(responseGradesExpect)) {
 //Display the entity of the HTTP response
 System.out.println(" Response is " + response.toString() + ",");
 System.out.println(" which means target resource completed " +
 "the process described above without any problem.");

 System.out.println(" Demonstration 15 ended successfully.");
 }else {
 System.out.println(" The response is not as expected.");
 throw new RuntimeException(" Demonstration 15 failed.");
 }

 }
 private static class CustomType {

 private String name;
 private List<Integer> grade;

 public CustomType() {
 }

 public CustomType (String name, List<Integer> grades){
 this.name = name;
 this.grade = grades;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public List<Integer> getGrades() {
 return grade;
 }

 public void setGrades(List<Integer> grades) {
 this.grade = grades;
 }

 @Override
 public String toString() {
 return "Record [Name=" + name + ", Grades=" + grade.toString() + "]";
 }

 }
}

Save the created SampleClient.java in the c:\temp\jaxrs\works\tutorial\client\src\com
\sample\client\ directory in the UTF-8 format.

12. Examples of Developing RESTful Web Services

243

12.5.2 Creating Implementation Class of a Web resource client (by using
java.net.HttpURLConnection)

Create Implementation Class of the client that uses the HttpURLConnection class.

The following example describes how to create an implementation class of a Web resource client:

package com.sample.client;

import java.net.URL;
import java.net.URLEncoder;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.BufferedReader;
import java.io.IOException;
import java.util.List;
import java.util.Map;

//sample:starting the Web resource client
public class SampleClient {

 public static void main(String[] args) {

 final String HOST = args[0];
 final String PORT = args[1];

 SampleClient sampleClient = new SampleClient();

 try{
 sampleClient.demonstration1(HOST, PORT);
 sampleClient.demonstration2(HOST, PORT);

 System.out.println("\n----- Successfully Ended -----");

 }catch(Exception e){
 //displaying a detailed exception message
 System.out.println(e.getMessage());
 }
 }

 private void demonstration1(String HOST, String PORT) {

 System.out.println("\n Demonstration 1 started.");
 System.out.println(" This demonstrates injection of " +
 "javax.ws.rs.core.Request instance " +
 "onto resource class field by using @Context.");

 URL url = null;
 HttpURLConnection httpConn = null;

 Map<String, List<String>> headers = null;
 List<String> status = null;
 String responseEntity = "";
 //calling the Web resource
 try {
 //setting the URI of the Web resource to be called
 url = new URL("http://" + HOST + ":" + PORT+
 "/tutorial/root");
 //setting up the initial connection
 httpConn = (HttpURLConnection) url.openConnection();
 //setting the HTTP() method as "GET"
 httpConn.setRequestMethod("GET");
 //starting the connection
 httpConn.connect();
 }catch (MalformedURLException e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 //displaying the stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 1 failed.");
 }catch (IOException e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 //displaying the stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 1 failed.");
 }catch (Exception e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 //displaying the stack trace

12. Examples of Developing RESTful Web Services

244

 e.printStackTrace();
 throw new RuntimeException(" Demonstration 1 failed.");
 }

 System.out.println(" The target URL is \"" + url + "\".");
 System.out.println(" The HTTP method is " + "\"GET\"" + ".");

 try {
 //acquiring the HTTP response header
 headers = httpConn.getHeaderFields();
 //acquiring the HTTP status from the header
 status = headers.get(null);
 //acquiring the input stream reader and read HTTP response //entity body
 BufferedReader rd = new BufferedReader(new InputStreamReader(
 httpConn.getInputStream()));
 String line = "";
 while ((line = rd.readLine()) != null) {
 responseEntity += line;
 }
 //closing the input stream reader
 rd.close();
 //closing the connection
 httpConn.disconnect();
 }catch (Exception e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 //displaying the stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 1 failed.");
 }

 System.out.println(" Connection and interaction ended successfully.");

 //sets the expected value of the response status code and entity body
 String statusExpect = "[HTTP/1.1 200 OK]";
 String responseEntityExpect = "RequestMethod: GET";

 //checks whether the value of the status code and entity body is equal to the
expected value
 if (status.toString().equals(statusExpect)
 & responseEntity.equals(responseEntityExpect)) {
 //displaying the HTTP header
 System.out.println(" Response headers are " + headers.toString() + ".");
 //displaying the entity body
 System.out.println(" Response entity is " + responseEntity + ",");
 System.out.println(" which means target resource completed " +
 "the process described above without any problem.");

 System.out.println(" Demonstration 1 ended successfully.");
 }else {
 System.out.println(" The response is not as expected.");
 throw new RuntimeException(" Demonstration 1 failed.");
 }

 private void demonstration2(String HOST, String PORT) {

 System.out.println("\n Demonstration 2 started.");
 System.out.println(" This demonstrates injection of QueryParam " +
 "onto resource bean setter method by using @QueryParam.");

 URL url = null;
 HttpURLConnection httpConn = null;
 String responseEntity = "";
 Map<String, List<String>> headers = null;
 List<String> status = null;

 //calling the Web resource
 try {
 //setting the URI of the Web resource to be called
 //assigning the query parameter to the URI

 url = new URL("http://" + HOST + ":" + PORT+
 "/tutorial/root/getQueryParam?queryParam=queryValue");
 //setting up the initial connection
 httpConn = (HttpURLConnection) url.openConnection();
 //setting the HTTP() method as"GET"
 httpConn.setRequestMethod("GET");
 //starting the connection
 httpConn.connect();
 }catch (MalformedURLException e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");

12. Examples of Developing RESTful Web Services

245

 //displaying the stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 2 failed.");
 }catch (IOException e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 //displaying the stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 2 failed.");
 }catch (Exception e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 //displaying the stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 2 failed.");
 }

 System.out.println(" The target URL is \"" + url + "\".");
 System.out.println(" The HTTP method is " + "\"GET\"" + ".");

 try {
 //acquiring the HTTP header
 headers = httpConn.getHeaderFields();
 //acquiring the HTTP status code from the HTTP header
 status = headers.get(null);
 //acquiring the input stream reader and reading the response //entity
body of the HTTP response
 BufferedReader rd = new BufferedReader(new InputStreamReader(
 httpConn.getInputStream()));
 String line = "";
 while ((line = rd.readLine()) != null) {
 responseEntity += line;
 }
 //closing the input stream reader
 rd.close();
 //closing the connection
 httpConn.disconnect();
 }catch (Exception e) {
 System.out.println(" ERROR: " + e.getClass() + " was thrown. ");
 //displaying the stack trace
 e.printStackTrace();
 throw new RuntimeException(" Demonstration 2 failed.");
 }

 System.out.println(" Connection and interaction ended successfully.");

 //setting the expected value of the response status code and entity body
 String statusExpect = "[HTTP/1.1 200 OK]";
 String responseEntityExpect = "QueryParameter: queryValue";

 //checking whether the status code and entity body are same as the expected
values
 if (status.toString().equals(statusExpect)
 & responseEntity.equals(responseEntityExpect)) {
 //displaying the HTTP header
 System.out.println(" Response headers are " + headers.toString() + ".");
 //displaying the entity body
 System.out.println(" Response entity is " + responseEntity + ",");
 System.out.println(" which means target resource completed " +
 "the process described above without any problem.");

 System.out.println(" Demonstration 2 ended successfully.");
 }else {
 System.out.println(" The response is not as expected.");
 throw new RuntimeException(" Demonstration 2 failed.");
 }

 }
 }

}

You save the created SampleClient.java in the c:\temp\jaxrs\works\tutorial\client\src\com
\sample\client\ directory in the UTF-8 format.

12.5.3 Compiling Implementation Classes of a Web resource client
You use the javac command to compile the created Web resource clients.

The following example describes how to compile HTTP clients:

12. Examples of Developing RESTful Web Services

246

> cd c:\temp\jaxrs\works\tutorial\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\jaxrs\lib\cjjaxrs.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .\classes
src\com\sample\client\SampleClient.java

When the javac command ends successfully, a class file (*.class) is generated in the subdirectory corresponding
to the package name under the c:\temp\jaxrs\works\tutorial\client\classes\ directory.

For details on the javac command, see the JDK documentation.

12. Examples of Developing RESTful Web Services

247

12.6 Examples of invoking Web resources
This section describes an example of invoking Web resources.

12.6.1 Creating an option definition file for Java applications
You create an option definition file (usrconf.cfg) for Java applications required for executing Web Services.

The following example describes how to create an option definition file for Java applications:

add.class.path= Cosminexus-installation-directory\jaxrs\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home=Cosminexus-installation-directory
add.jvm.arg=-Dejbserver.server.prf.PRFID=PRF ID

In the Cosminexus-installation-directory part, you specify the absolute path of the location where you have installed
Cosminexus. In the PRF ID part, specify the identifier of the PRF daemon.

You save the created option definition file for Java applications in the c:\temp\jaxrs\works\tutorial
\client\ directory. For details on the option definition file for Java applications, see 14.2 usrconf.cfg (Option
definition file for Java applications) in the uCosminexus Application Server Definition Reference Guide.

12.6.2 Creating a user property file for Java applications
You create a user property file for Java applications required for executing Web Services.

Because the settings are not specifically changed, you create an empty file called usrconf.properties in the c:\temp
\jaxrs\works\tutorial\client\ directory. For details on the user property file for Java applications, see
14.3 usrconf.properties (User property file for Java applications) in the uCosminexus Application Server Definition
Reference Guide.

12.6.3 Starting a Web resource client
You use the cjclstartap command to start a Web resource client.

An example of starting the Web resource client is as follows:

> cd c:\temp\jaxrs\works\tutorial\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" com.sample.client. SampleClient
webhost 8085

When the cjclstartap command ends successfully, the execution result of the Web resource client is displayed.
The following example describes the execution results of each method for developing a Web resource client:

• When using client APIs

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxrs\works\tutorial\client, PID = 2636)

Demonstration 13 started.
 This demonstrates how to use a Client API to receive a response as a
ClientResponse.
 This demonstrates usage of @Encoded at @CookieParam.
 Automatic URI decoding should be disabled.
 The target URL is "http://webhost:8085/tutorial/root/getCookieParam".
 The HTTP method is "GET".
 Connection and interaction ended successfully.
 Response headers are {Transfer-Encoding=[chunked], Date=[Tue, 27 Dec 2011 0
7:59:41 GMT], Content-Type=[text/html], Server=[CosminexusComponentContainer]}.
 Response entity is CookieParam: cookie%20value,
 which means target resource completed the process described above without any
problem.
 Demonstration 13 ended successfully.

12. Examples of Developing RESTful Web Services

248

 Demonstration 14 started.
 This demonstrates how to send a ClientRequest and receive a ClientResponse by
using Client#handle(ClientRequest request).
 This demonstrates usage of @Consumes and @Produces.
 The target URL is "http://webhost:8085/tutorial/root".
 The HTTP method is "POST".
 Connection and interaction ended successfully.
 Response headers are {Transfer-Encoding=[chunked], Date=[Tue, 27 Dec 2011 0
7:59:41 GMT], Content-Type=[application/xml],
Server=[CosminexusComponentContainer]}.
 Response entity is <FormParam>formValue</FormParam>,
 which means target resource completed the process described above without any
problem.
 Demonstration 14 ended successfully.

 Demonstration 15 started.
 This demonstrates JSON support of CJR.
 This demonstrates POJO and JSON mapping.
 The target URL is "http://webhost:8085/tutorial/root/PojoJsonMapping".
 The HTTP method is "POST".
 Connection and interaction ended successfully.
 Response is Record [Name=New Record Name, Grades=[5, 6, 7]],
 which means target resource completed the process described above without any
problem.
 Demonstration 15 ended successfully.

----- Successfully Ended -----
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

• When using HttpURLConnection
KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxrs\works\tutorial\client, PID = 2636)

Demonstration 1 started.
 This demonstrates injection of the javax.ws.rs.core.Request instance into the
resource class field by using @Context.
 The target URL is "http://webhost:8085/tutorial/root".
 The HTTP method is "GET".
 Connection and interaction ended successfully.
 Response headers are {null=[HTTP/1.1 200 OK], Transfer-Encoding=[chunked],
Date=[Tue, 27 Dec 2011 0
7:59:41 GMT], Content-Type=[text/html], Server=[CosminexusComponentContainer]}.
 Response entity is RequestMethod: GET,
 which means the target resource completed the process described above without any
problem.
 Demonstration 1 ended successfully.

 Demonstration 2 started.
 This demonstrates injection of QueryParam onto the resource bean setter method by
using @QueryParam.
 The target URL is "http://webhost:8085/tutorial/root/getQueryParam?
queryParam=queryValue".
 The HTTP method is "GET".
 Connection and interaction ended successfully.
 Response headers are {null=[HTTP/1.1 200 OK], Transfer-Encoding=[chunked],
Date=[Tue, 27 Dec 2011 0
7:59:41 GMT], Content-Type=[text/html], Server=[CosminexusComponentContainer]}.
 Response entity is QueryParameter: queryValue,
 which means the target resource completed the process described above without any
problem.
 Demonstration 2 ended successfully.

----- Successfully Ended -----
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in Italics changes according to the execution time and environment.

For details on the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus
Application Server Command Reference Guide.

12. Examples of Developing RESTful Web Services

249

13 Settings and Operations of the
JAX-RS Functionality
This chapter describes the various settings of the JAX-RS functionality used when
developing or operating RESTful Web Services (Web Service), gives an overview of
connection from the Web resource clients, and also describes the operations of the
JAX-RS engine that you must understand when operating RESTful Web Services.

251

13.1 Action definition file
Code the items such as log settings in an Action definition file. The Action definition file comprises the following two
types:

• Common definition file
A common definition file is used for setting up the common system operations. Only one common definition file
is available.

• Process-wise definition file
Create a process-wise definition file when you want to set up the process-specific operations. Create one
process-wise definition file for each process that requires specific settings. For example, create process-wise
definition file(s) when you want to change the settings of each J2EE server or Web Service client.

You can overwrite some of the definitions of a Web resource by using the definitions of the web.xml filters or
initialization parameters. For details on web.xml, see 11.2 Creating web.xml. You can also overwrite some of the
definitions of the client through client APIs. For definitions that you can overwrite through the client APIs, see 25.1.1
Supported properties and features.

This sub-section describes the coding standards for an action definition file, and the settings of each definition file.

13.1.1 Coding rules for the action definition file
The action definition file has the same coding format, coding rules and priority definitions as that of the JAX-WS
functionality. For details, see 10.1.1 Coding rules for the action definition file.

13.1.2 Settings of a common definition file
Use a common definition file to define the common system operations. The following points describe various details
such as the file name, storage directory name, and settings of a common definition file:

(1) File name
The file name of a common definition file is as follows.
cjrconf.properties

(2) Storage directory
The storage directory of a common definition file is as follows. The storage destination is fixed.

Cosminexus-installation-directory\jaxrs\conf

(3) Settings
The following table lists and describes the key names to be set up and the corresponding values to be specified.

Table 13‒1: Settings of a common definition file

No. Settings Key name Values to be specified Default value

1 Output level of the
operation log

com.cosminexus.
jaxrs.logger.ru
ntime.message.l
evel

Specify the output level of the operation log.

Specify ERROR, WARN, INFO, DEBUG, or
NONE. For details on the output contents
corresponding to each of the specified values,
see 39.3.4 Log importance and the output
conditions.

INFO

2 Number of
operation log files

com.cosminexus.
jaxrs.logger.ru

Specify the number of the operation log files.

Specify a value in the range of 1 through 16.

2

13. Settings and Operations of the JAX-RS Functionality

252

No. Settings Key name Values to be specified Default value

2 Number of
operation log files

ntime.message.f
ile_num

Specify the number of the operation log files.

Specify a value in the range of 1 through 16.

2

3 Size of the
operation log

com.cosminexus.
jaxrs.logger.ru
ntime.message.f
ile_size

Specify the size of the operation log.

Specify a value in the range of 4096 through
16777216 (unit: bytes).

2097152

4 Output of the
maintenance log

com.cosminexus.
jaxrs.logger.ru
ntime.maintenan
ce.level

Specify whether to output the maintenance log.

When you specify ALL, the maintenance log is
output.

When you specify NONE, the maintenance log
is not output.

ALL

5 Number of
maintenance log
files

com.cosminexus.
jaxrs.logger.ru
ntime.maintenan
ce.file_num

Specify the number of maintenance log files.

Specify a value in the range of 1 through 16.

2

6 Size of the
maintenance log

com.cosminexus.
jaxrs.logger.ru
ntime.maintenan
ce.file_size

Specify the size of the maintenance log.

Specify a value in the range of 4096 through
16777216 (unit: bytes).

16777216

7 Output level of the
exception log

com.cosminexus.
jaxrs.logger.ru
ntime.exception
.level

Specify the output level of the exception log.
Specify ERROR, WARN, INFO, DEBUG, or
NONE. For details on the output contents
corresponding to each specified value, see
39.3.4 Log importance and the output
conditions.

INFO

8 Number of
exception log files

com.cosminexus.
jaxrs.logger.ru
ntime.exception
.file_num

Specify the number of exception log files.

Specify a value in the range of 1 through 16.

2

9 Size of the
exception log

com.cosminexus.
jaxrs.logger.ru
ntime.exception
.file_size

Specify the size of the exception log.

Specify a value in the range of 4096 through
16777216 (unit: Bytes).

16777216

10 Output level of the
communication log
(for Web resource)
#1

com.cosminexus.
jaxrs.logger.ru
ntime.transport
.server.level

Specify the output level of the communication
log for the Web resource.#2

When you specify NONE, the communication
log is not output.

When you specify ALL, the sent and received
HTTP header and the entity body are always
output to the communication log.

When you specify HEADER, the HTTP header
of the sent and received messages is always
output to the communication log.

NONE

11 Output level of the
communication log
(for the client in the
Web resource)

com.cosminexus.
jaxrs.logger.ru
ntime.transport
.client.level

Specify the output level of the communication
log for the client in the Web resource.#2

If you specify NONE, the communication log is
not output.

If you specify ALL, the sent and received
HTTP header and entity body are always
output to the communication log.

When you specify HEADER, the HTTP header
of the sent and received messages is always
output to the communication log.

NONE

13. Settings and Operations of the JAX-RS Functionality

253

No. Settings Key name Values to be specified Default value

12 Number of the
communication log

com.cosminexus.
jaxrs.logger.ru
ntime.transport
.file_num

Specify the number of the communication log.

Specify a value in the range of 1 through 16.

2

13 Size of the
communication log

com.cosminexus.
jaxrs.logger.ru
ntime.transport
.size

Specify the size of the communication log.

Specify a value in the range of 4096 through
1677721 (unit: Bytes).

16777216

14 Character encoding
of the
communication log

com.cosminexus.
jaxrs.logger.ru
ntime.transport
.encoding

Specify the character encoding of the
communication log. For the details on the
encodings supported by J2SE 6.0, see the J2SE
6.0 documentation.

When you specify DEFAULT, the default
platform encoding is used.

DEFAULT

15 Deterring the
WADL publication
#1

com.sun.jersey.
config.feature.
DisableWADL

Specify whether to prevent the WADL
publication. #2

When you specify true, the WADL
publication is deterred.

When you specify false, the WADL
publication is not deterred.

false

16 Enabling the JSON
to POJO mapping#1,

#3

com.sun.jersey.
api.json.POJOMa
ppingFeature

Specify whether to enable the JSON POJO
mapping.#2

If you specify true, the JSON POJO
mapping is enabled.

If you specify false, the JSON POJO
mapping is disabled.

false

17 Automatic
redirect#3

com.sun.jersey.
client.property
.followRedirect
s

Set whether the common definition file must
automatically follow the HTTP redirect (a
request of 300 level HTTP status codes).

If you specify true, the file automatically
follows the HTTP redirect.

If you specify false, the file does not
automatically follow the HTTP redirect.

The operation when you specify the automatic
redirect feature is same as the operation when
you specify the value for automatic redirect in
the argument and call the feature by using the
setInstanceFollowRedirects
method of the HttpURL Connection class
of the Java SE.#2

true

18 The client socket
connection
timeout#3

com.sun.jersey.
client.property
.connectTimeout

Specify the client socket connection timeout.

The timeout specified by using this property is
effective when calling a Web resource.

Specify a value in the range of 0 through
2147483647 (in milliseconds). If you
specify 0, the connection timeout is not
performed.

If the settings of the OS to TCP connection are
changed, the value set in the OS might be
given priority.

0

19 The client socket
read timeout #3

com.sun.jersey.
client.property
.readTimeout

Specify the client socket read timeout.

The timeout specified by using this property is
effective when calling a Web resource.

0

13. Settings and Operations of the JAX-RS Functionality

254

No. Settings Key name Values to be specified Default value

19 The client socket
read timeout #3

com.sun.jersey.
client.property
.readTimeout

Specify a value within the range of 0 through
2147483647 (in milliseconds). If you
specify 0, the connection does not time out.

If the settings of the OS to TCP connection are
changed, the value set in the OS might be
given priority.

0

20 Chunked transfer
encoding#3

com.sun.jersey.
client.property
.chunkedEncodin
gSize

Specify whether to use the chunked transfer
encoding by specifying a value within the
range of 0 through 2147483647 (unit:
milliseconds). If you specify 0, the default
value is applied.

The operation when you specify the chunked
transfer encoding feature is same as that when
you specify the value for chunked transfer
encoding in an argument and call the feature
by using the
setChunkedStreamingMode method of
the HttpURL Connection class of the
Java SE.

4096

21 Buffering of the
response entity
when an exception
is thrown#3

com.sun.jersey.
client.property
.bufferResponse
EntityOnExcepti
on

Specify whether to automatically buffer a
response entity and close the streaming if the
UniformInterfaceException
exception is thrown and the response contains
the entity.#2

If you specify true, the entity of the HTTP
response is automatically buffered and the
streaming closes.

If you specify false, the streaming of the
entity of the HTTP response does not close
automatically.

true

#1
On the Web resource side, the value specified in the servlet initialization parameter is given a priority over the value specified in
the property.

#2
The property value is not case sensitive. If you specify an invalid value, the property value is used as the default value.

#3
The client side gives priority to the value specified in the property over the value specified in the client APIs.

(4) When changing the settings
Stop all the J2EE servers that are not using the process-wise definition file, and then change the settings of the
common definition file. For details on the process-wise definition file, see 10.1.3 Setting up a process-wise definition
file.

To change the log-related settings, save the log as and when required and then make the necessary changes.

13.1.3 Setting up a process-wise definition file (JAX-RS)
Create a process-wise definition file when you want to make a process-specific definition.

You can use any name for the name of the process-wise definition file and the name of the storage destination
directory. Enable the process-wise definitions by specifying the storage destination path in the system property. An
example of specifying a process-wise definition file is as follows:

com.cosminexus.jaxrs.confpath=d:/tmp/example.properties

13. Settings and Operations of the JAX-RS Functionality

255

You must first stop the targeted processes (J2EE applications or Java applications) and then change the definition of
the process-wise definition file.

To change the log related definitions, save the log as and when required and then make the necessary changes.

13. Settings and Operations of the JAX-RS Functionality

256

13.2 Operations of the JAX-RS engine
This section describes the operations and the support range of the Cosminexus JAX-RS engine.

The JAX-RS engine serves as the communication infrastructure of RESTful Web Services (Web resources). The
operations of the engine on aWeb resource client and Web resource are as follows:

• JAX-RS engine on the Web resource client
The JAX-RS engine receives Java objects from the Web resource client through client APIs for RESTful Web
Services and generates an HTTP request. The engine sends the generated HTTP request to the called Web
resource, receives an HTTP response from the Web resource, generates a Java object, and returns the generated
Java object to the Web resource client.

• JAX-RS engine on the Web resource

The JAX-RS engine receives HTTP requests, locates the target resource class (discovery), and calls the method
corresponding to the request (dispatch). When implementing discovery and dispatch, the engine executes the required
injection, based on the annotation of the resource class. Also, the JAX-RS engine generates and returns HTTP
responses from the target resource classes.

13.2.1 Discovery and dispatch
This subsection describes the discovery and dispatch operations of a Web resource, and also the mapping of the faults
and the exception class.

(1) Discovery
In the discovery operation, a request class is mapped based on the URL requested in an HTTP request. The example
here explains the details on the mapping done when the following URL is requested:
http://example.org/sample/rootA
If you consider sample as the context root, "/rootA" (the underlined part) after the context root indicates the path
information. The resource class is mapped based on this path information.

The following is an example of mapping with the path information. Note that the following example uses only the root
resource class and not the sub-resource class as the resource class. Also, each root resource class consists of only a
resource method.

13. Settings and Operations of the JAX-RS Functionality

257

Figure 13‒1: Discovery

Among the deployed root resource classes, the JAX-RS engine calls a root resource class in which the value of the
Path annotation is equal to the path information.

The correspondence between the path information and the called root resource class is as follows:

• When rootA is the path information:
The root resource class A (org.foo.Test1.java) is called.

• When rootB is the path information:
The root resource class B (org.foo.Test2.jav) is called.

• When rootC is the path information:
The root resource class C (org.foo.Test3.java) is called.

Note that if a sub-resource class has been deployed and the Path annotation value of the corresponding sub-resource
locator is equal to the path information, that sub-resource class is called.

(2) Dispatching HTTP messages
The JAX-RS engine calls and executes a resource method depending on the content of the received HTTP message
(HTTP Content-Type header) and the acceptable media type (HTTP Accept header). The dispatch operation is
executed based on the media types specified in the Consumes and Produces annotations.

Note that if the resource class contains the sub-resource method, the discovery and dispatch operations are
concurrently determined.

13. Settings and Operations of the JAX-RS Functionality

258

13.3 Publishing the meta data
The JAX-RS engine automatically publishes WADL (meta data) of RESTful Web Services (Web resource).

This section describes the points to be noted when using the WADL publications.

(1) Conditions for publishing the meta data
The following two methods are used for publishing WADL of a Web resource:

• HTTP GET method

• HTTP OPTIONS method

The following table describes the conditions for publishing WADL of a Web resource by using the HTTP GET
method. WADL is published when the JAX-RS engine receives an HTTP request that fulfills all the conditions
described in the following table.

Table 13‒2: HTTP request (GET) required for publishing the meta data of a Web resource

No. Item Condition

1 HTTP method GET method

2 URL Schema http or https

3 Host name (:Port number) Host name (and port number) having a Web resource that requests
the publication of the meta data

4 Context path Context path of a Web application, which includes a Web resource
that requests the publication of the meta data

5 The path following the context path application.wadl

For example, consider the context root of a Web application (WAR file) containing a Web resource to be a sample,
and the name of the host on which a Web application is published is example.org. In this case the URL will be . Here,
all the Web resources specified in the com.sun.jersey.config.property.packages initialization
parameter (init-param element) of web.xml are included in the WADL to be published. If the
com.sun.jersey.config.property.packages initialization parameter (init-param element) is not
coded in web.xml, all the Web resources in the WAR file are included. For details on the
com.sun.jersey.config.property.packages initialization parameter (init-param element) of
web.xml, see 11.2 Creating web.xml.

An example of WADL of a Web resource is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">
 <doc xmlns:jersey="http://jersey.dev.java.net/" jersey:generatedBy="Cosminexus JAX-
RS 09-00"/>
 <resources base="http://example.org/sample/">
 <resource path="root">
 <method name="GET" id="resourceMethod">
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 <method name="POST" id="postHandler">
 <request>
 <representation mediaType="*/*">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
 style="query" name="form"/>
 </representation>
 </request>
 <response>
 <representation mediaType="text/html"/>
 </response>
 </method>
 <resource path="subresourceMethod">
 <method name="GET" id="subResourceMethod">
 <request>

13. Settings and Operations of the JAX-RS Functionality

259

 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" default="1"
 type="xs:string" style="matrix" name="matrix"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
 name="cookie"/>
 </request>
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 </resource>
 <resource path="exception">
 <method name="GET" id="subResourceMethodThrowingException">
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 </resource>
 <resource path="subresourceLocator/{id}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
 style="template" name="id"/>
 <method name="GET" id="getHandlerForSubResource">
 <request>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
 style="header" name="HeaderKey"/>
 </request>
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 </resource>
 </resource>
 </resources>
</application>

The following table describes the conditions for publishing the meta data of a Web resource by using the HTTP
OPTIONS method. The meta data is published when the JAX-RS engine on the Web Service machine receives an
HTTP request that fulfills all the conditions described in the following table.

Table 13‒3: HTTP request (OPTIONS) required for publishing the meta data of a Web resource

No. Item Condition

1 HTTP method OPTIONS method

2 URL Schema http

3 Host name (: Port number) Host name (and port number) having a Web resource that requests the
publication of the meta data

4 Context path Context path of a Web application which includes a Web resource that
requests the publication of the meta data

5 Web resource path Value of the Path annotation used in a Web resource

For example, consider the value of the Path annotation of the Web resource A to be "/rootA", the host name to be
"example.org", and the context path to be "sample". In this case, the URL to publish the meta data will be: http://
example.org/sample/rootA.

In such a case, only the requested Web resources are included in WADL to be published.

Tip
If a method of the target Web resource contains the OPTIONS annotation and can process the HTTP OPTIONS request,
then the JAX-RS engine does not publish WADL and calls a method that processes the HTTP OPTIONS request of a Web
resource. If the Web resource fails to process the HTTP OPTIONS request, the JAX-RS engine automatically generates
WADL.

An example of WADL in which the HTTP OPTIONS method is used is as follows.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">
 <doc xmlns:jersey="http://jersey.dev.java.net/" jersey:generatedBy="Cosminexus JAX-
RS 09-00"/>

13. Settings and Operations of the JAX-RS Functionality

260

 <resources base="http://example.org/sample/">
 <resource path="/root">
 <method name="GET" id="resourceMethod">
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 <method name="POST" id="postHandler">
 <request>
 <representation mediaType="*/*">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
 style="query" name="form"/>
 </representation>
 </request>
 <response>
 <representation mediaType="text/html"/>
 </response>
 </method>
 <resource path="subresourceMethod">
 <method name="GET" id="subResourceMethod">
 <request>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" default="1"
 type="xs:string" style="matrix" name="matrix"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
 name="cookie"/>
 </request>
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 </resource>
 <resource path="exception">
 <method name="GET" id="subResourceMethodThrowingException">
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 </resource>
 <resource path="subresourceLocator/{id}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
 style="template" name="id"/>
 <method name="GET" id="getHandlerForSubResource">
 <request>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"
 style="header" name="HeaderKey"/>
 </request>
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 </resource>
 </resource>
 </resources>
</application>

You can choose whether to publish WADL by specifying true or false in the
com.sun.jersey.config.feature.DisableWADL property. Specify this property in:

• cjrconf.properties file

• Servlet initialization parameter of web.xml

If the property is specified in both of the above mentioned locations, a priority is given to the servlet initialization
parameter.

The following table describes the existence of the WADL publication.

Table 13‒4: Existence of WADL publication

No. Servlet initialization
parameter Value Operations of the JAX-RS engine

1 com.sun.jersey.config.feat
ure.DisableWADL

true Does not publish WADL.

The value is not case sensitive.

false Publishes WADL. The value is not case sensitive.

13. Settings and Operations of the JAX-RS Functionality

261

No. Servlet initialization
parameter Value Operations of the JAX-RS engine

1 com.sun.jersey.config.feat
ure.DisableWADL

A value other than
true or false

Publishes WADL by using the settings mentioned in the
common definition file (cjrconf.properties) and
ignores the value specified in web.xml. Checks if the default
value false has been specified and then publishes WADL.

13. Settings and Operations of the JAX-RS Functionality

262

13.4 Connecting through a proxy server
You can connect a Web resource client to a Web resource present in an external environment through a proxy server.

This section describes the settings of the properties required for connecting to an external environment through a
proxy server.

(1) Specifying values in a property
To access a Web resource through a proxy server, specify the properties of JavaVM and information of the proxy
server. The following table describes the JavaVM properties and contents to be specified for connecting through a
proxy server. For details on the system properties of JavaVM, see the JavaVM documentation.

Table 13‒5: The JavaVM properties for connecting through a proxy server

No. JavaVM property Specified content Without
SSL

With
SSL

1 http.proxyHost Specify the host name or the IP address of a proxy server.

If you do not specify any value, connection with the proxy
server is not established.

Y N

2 http.proxyPort Specify the port number of a proxy server.

When http.proxyHost is appropriately specified, port
number 80 of the host specified in http.proxyHost is
accessed if you do not specify any value in
http.proxyPort.

When you do not specify any value in http.proxyHost,
connection with the proxy server is not established even if
http.proxyPort is specified.

S N

3 https.proxyHost Specify the host name or the IP address of a proxy server to
be used in connections by the SSL protocol#.

You must specify the host name or the IP address to use a
proxy server in connections by the SSL protocol. Note that
if you do not specify the host name or the IP address,
connection with the proxy server is not established.

N Y

4 https.proxyPort Specify the port number of a proxy server to be used in
connections by the SSL protocol#. Note that when
https.proxyHost is appropriately specified, the port
number 443 of the host specified in https.proxyHost
is accessed, if you do not specify any value in
https.proxyPort.

If you do not specify any value in https.proxyHost,
connection with the proxy server is not established even if
https.proxyPort is specified.

N S

5 http.nonProxyHosts Specify, as and when required, the host names that are not
required for using a proxy server.

When connecting with the host specified by using this
property, connection is not established through the proxy
server specified in http.proxyHost or
https.proxyHost. When specifying multiple hosts, use
the separator (|). You cannot use any character (such as
space) other than (|) for separating the two host names.

S S

Legend:
Y: Specifying the property is mandatory.
S: Specify the property as and when required.
N: Need not specify the property.

#
For connections by the SSL protocol, see 10.11 SSL protocol Connections.

13. Settings and Operations of the JAX-RS Functionality

263

(2) How to set the properties
For details on setting the system properties of JavaVM, see 10.10(2) How to set the properties.

(3) Connecting through a non-anonymous proxy server
When accessing a Web resource through a non-anonymous proxy server, we recommend that you establish a
connection by using the java.net.Authenticator class of the J2SE 6.0 standard in the Web resource client.
For details, see the J2SE 6 documentation.

For examples of establishing a connection by using the java.net.Authenticator class, see 10.10(3) When not
using properties specific to the JAX-WS functionality.

13. Settings and Operations of the JAX-RS Functionality

264

13.5 Connecting with an SSL protocol
You can connect a Web resource client to an SSL protocol compliant Web resource.

To access a Web resource by using the SSL protocol, specify values in the properties supported by the JDK and the
SSL protocol information. The following table lists and describes the properties used in the connection by the SSL
protocol and the contents to be specified.

Table 13‒6: Properties used in connections by the SSL protocol

No. Property Specified content

1 javax.net.ssl.trustStore Specifies a truststore.

2 javax.net.ssl.trustStorePassword Specifies the password of the truststore.

Specify these properties as and when required. Note that if you do not specify the truststore, the default value of JDK-
installation-directory/lib/security/jssecacerts is used.

For details on the JDK properties, see the JDK documentation. For details on setting the properties and notes, see
10.11(2) How to specify the properties and 10.11(3) Notes on validating a host name.

13. Settings and Operations of the JAX-RS Functionality

265

13.6 Connecting by basic authentication
You can connect a Web resource client to a Web resource that is supported in the basic authentication.

This section describes the implementation required to connect by basic authentication.

(1) Implementation required to connect by basic authentication
To access a Web resource by basic authentication, implement a process that adds the required HTTP headers. An
implementation example when using client APIs for RESTful Web Services is as follows.

// The user ID and password for basic authentication
String username = ...
String password = ...
// Generates Client objects
Client client = Client.create();
// Generate an HTTP request having the Authorization HTTP header
// and post to the Web resource
client.resource("http://example.org/helloworld")
.header(HttpHeaders.AUTHORIZATION,
"Basic " + encode(username + ":" + password))
.post(String.class, "Some Request");
...
String encode(String value){
String encoded;
// Encode the value parameter by using the Base64 algorithm value
// and set the result in the encoded parameter
...
return encoded;
}

13. Settings and Operations of the JAX-RS Functionality

266

13.7 Troubleshooting
This section describes the specific points to be noted when troubleshooting the Web resources and Web resource
clients. For details on general precautions, types of errors, troubleshooting, and logs, see 39. Troubleshooting.

For details, see 17. Web Resources and Providers and 25. Support range of client APIs for RESTful Web Services..

13.7.1 Checking the syntax when initializing a Web resource
(KDJJ20003-W and KDJJ10006-E)

The JAX-RS engine initializes the root resource class and the exception mapping provider when a Web resource
included in a Web application (WAR file) is called for the first time. The corresponding sub-resource locator
initializes the sub-resource class.

This sub-section describes the cases of error detection during the syntax check executed at the time of initialization.

(1) If a fatal error occurs
If a fatal syntax error which leads to the non-completion of the initialization process is detected, such as in the case
when no public constructor is declared in a resource class, an error message (KDJJ10006-E#) is output to the log.
An HTTP response with the HTTP status code 500 is returned to the root resource class and the exception mapping
provider, and java.lang.RuntimeException is thrown to the J2EE server. For details on the exceptions
thrown to the J2EE server, see 13.7.4 Throwing exceptions to the J2EE server. In the sub-resource class,
java.lang.RuntimeException is thrown, which can be handled with the exception mapping provider.

#
Other error messages are also output if there is any additional information to report.

The error message KDJJ10006-E includes a list of detailed information (sub messages). Sub messages contain
detailed error information for the respective syntax errors. Eliminate the syntax errors by referencing the sub-
messages. The following are the notes on the error message KDJJ10006-E:

• If multiple syntax errors are detected, you must eliminate all the errors.

• If a Web application (WAR file) contains multiple root resource classes, sub-resource classes, and exception
mapping providers and if KDJJ10006-E is output for any one of these, you cannot use any other root resource
class, sub-resource class, and exception mapping provider. Check all the root resource classes, sub-resource
classes, and exception mapping providers included in a Web application (WAR file) until the error message
KDJJ10006-E ceases to be output.

(2) If a minor error occurs
If a minor syntax error is detected and no critical error is detected, such as in the case when void is the return value
of the resource method that receives the HTTP GET request, the warning message (KDJJ20003-W) is output to the
log. If also a critical error is detected, the error message (KDJJ10006-E) is output to the log.

For details on the cases where the error message KDJJ10006-E is output to the log, see 13.7.1(1). If a fatal error
occurs

If the warning message KDJJ20003-W is output to the log, the process is continued, and initialization is successfully
performed except for the methods for which the minor syntax errors were detected. Revise the syntax of the methods
for which the minor syntax errors were detected until the warning message KDJJ20003-W ceases to be output.

13.7.2 Errors detected in the received HTTP request processing
If an HTTP request cannot be processed, such as in the case when a resource method to dispatch is unavailable,
javax.ws.rs.WebApplicationException or another exception that can be handled with an exception
mapping provider is thrown. An error message is also output if there is additional information to be reported.

13. Settings and Operations of the JAX-RS Functionality

267

13.7.3 Exceptions that can be handled with an exception mapping
provider

If an exception that can be handled with an exception mapping provider is thrown, you can customize the mapping of
the exception with an HTTP response to be sent by creating an exception mapping provider and appropriately
including the provider in a Web application (WAR file). For details on the operations of an exception mapping
provider, see 17.1.8 Exception handling.

13.7.4 Throwing exceptions to the J2EE server
The JAX-RS engine of Web resources supports a servlet-based mechanism laid down in the JAX-RS specifications.
Accordingly, as and when required, the exceptions that are thrown to the JAX-RS engine are also thrown to the J2EE
server to which a Web application (WAR files) that includes a Web resource is deployed.

If an error occurs during the operation of a Web resource, check the log files of the JAX-RS functionality and the
J2EE server.

13.7.5 Exception (KDJJ18888) that occurs when using client APIs
If the ClientHandlerException exception or UniformInterfaceException exception is thrown while
using client APIs, the error message KDJJ18888-E is output to the log.

13. Settings and Operations of the JAX-RS Functionality

268

Part 3: References

14 Commands
You can use the cjwsimport command and the apt command to generate SEI and
JavaBean classes required for SOAP Web Services. Also, if you are using the
cjwsgen command, you can generate WSDL from the already compiled Java
source.

This chapter describes how to use the cjwsimport command, apt command, and
cjwsgen command.

269

14.1 cjwsimport command
The cjwsimport command follows the mapping rules defined in the JAX-WS 2.2 specifications and performs the
mapping of a WSDL file to Java. If you execute the cjwsimport command, the Java source required for
implementing Web Services and Web Service clients will be generated and compiled from WSDL files.

This subsection describes the format and the specified contents when executing the cjwsimport command.

(1) Format
The specification format of the cjwsimport command is as follows:

cjwsimport [Options] URL-or-file-path-of-the-WSDL-file

Example of specification

• Specifying the local WSDL file using the relative path (wsdl/input.wsdl)
cjwsimport -d generated wsdl/input.wsdl

• Specifying the local WSDL file using the absolute path (/tmp/wsdl/input.wsdl)
cjwsimport -d generated /tmp/wsdl/input.wsdl

• Specifying the local WSDL file using a URL (file:///tmp/wsdl/input.wsdl)
cjwsimport -d generated file:///tmp/wsdl/input.wsdl

• Specifying the remote WSDL file using a URL (http://example.com:8080/fromjava/test?
wsdl)
cjwsimport -d generated http://example.com:8080/fromjava/test?wsdl

Notes for executing the cjwsimport command
You cannot assume a current directory with the characters such as %, &, and ^ to execute the cjwsimport
command. If you assume such a current directory, the operations will not be guaranteed.

Notes for specifying a WSDL file

• Specify one file path (relative path or absolute path) for a WSDL file or the URL to WSDL in the argument. If
a file other than the WSDL file is specified, an error message will be output in the standard error output as
well as log and the processing will end (KDJW51200-E).

• When you specify WSDL using the file path, do not use the characters & and ^ in the file path. If such
characters are used, the operations might not function properly. Also, if you are specifying a file path
containing a blank space, enclose the entire file path within double quotation marks (""). If you do not enclose
the entire file path within double quotation marks (""), the operations are not guaranteed.

• When you specify a WSDL using a URL, use the characters defined in the RFC 2396 specifications and the
strings complying with the rules in the RFC 2396 specifications. Additionally, in accordance with the rules of
the RFC 2396 specifications, you must perform the percent encoding for the character strings with the UTF-8
format. If you do not follow the rules of the RFC 2396 specifications or if you specify the characters and
character strings that are not encoded, the operations might not function properly.

• You cannot specify a WSDL by using the jar protocol. If you specify a WSDL by using the jar protocol,
the operation is not guaranteed.

• When you specify the WSDL file using the file path or a URL to WSDL, specify the correct file path or URL.
If you specify a wrong WSDL file path or WSDL URL and if the WSDL file cannot be found, an error
message will be output in the standard error output and log and the processing will end (KDJW51180-E or
KDJW51189-E).

• The extension of the WSDL file specified in the argument is optional (you might specify an extension other
than .wsdl).

• The WSDL file is not case sensitive.

• The length of the string to be specified is not limited. However, an error occurs when you exceed the limit set
for the OS.

• If you specify a WSDL file for which you do not have access permission, a JDK error occurs and the
processing ends.

14. Commands

270

(2) List of options
You can specify the options listed in the following table as the options for the cjwsimport command:

Table 14‒1: List of options for the cjwsimport command

Options Set items Specified contents

-d directory Output destination
directory of the class
file

Specifies the output destination directory of the compiled class file
(*.class).

For details about the values that you can specify, see Notes for specifying the -
d option and the -s option described outside the table.

If this option is not specified, the class file will be output in the current
directory.

-keep None Specified for generating the source file (*.java).

-s directory Output destination
directory of the source
file

Specifies the output destination directory to output the source file (*.java).

For details about the values that you can specify, see Notes for specifying the -
d option and the -s option described outside the table.

The output destination directory changes depending on the specification of the
-d option and the -s option. For details about the specification of options and
the output destination, see Table 14-3.

-verbose None Specified to output the detailed processing passage when the command is
executed.

-b path Path of the external
binding file

Specifies the path of the external binding file when the external binding file is
used.

For details about the values that you can specify, see Notes for specifying the -
b option described outside the table.

-p package Package name of the
Java code

Specifies the package name of the Java source.

When you specify this option, the customization of the package name
specified in the binding declaration and the generation algorithm for the
default package name defined in standard specifications is overwritten.

-
generateServi
ce

Generating the Web
Service
Implementation Class

Specified when the Web Service Implementation Class (skeleton class) is
generated.

For details about the generated files, see 14.1(4) Generated files.

-help None Specified for displaying help.

When you specify this option, the specification of all options except -
version is ignored; help is displayed and terminated.

-version None Specified for displaying the version information.

When you specify this option, the specification of other options is ignored; the
version information is displayed and terminated.

-wsdllocation Values to be specified
in the
wsdlLocation
element of the
javax.xml.ws.We
bServiceClient
annotation

Specifies the values to be specified in the wsdlLocation element of the
javax.xml.ws.WebServiceClient annotation.

-catalog file Catalog file path Specifies the values for using the catalog functionality. For details on the
values you can specify, see Notes for specifying the -catalog optiongiven
below this table.

Creating a directory for generating a file
When you execute the cjwsimport command, a directory corresponding to the package name of the generated
file will be created in the specified output destination directory and the file will be output in that directory.

14. Commands

271

The following is an example of command specification and output destination (for a request bean) when
http://example.com/sample is coded in the namespace URI of Type referenced by the
wrapper element of the request message for the WSDL file (test.wsdl):

• Example of command specification
cjwsimport -d ./output -keep input/test.wsdl

• Output destination (Request bean)
The compiled class file and source file of the request bean will be output in the following directory:
./output/com/example/sample/

Take the following precautions for the specified values of the options such as the values that can be specified for the
option and the operations when the specification is omitted:

Common precautions for options
The following precautions are common to all the options:

• The specification order for the options and arguments is optional. The specification order for each option is
also optional.

• Make sure that you specify the argument for the options with arguments. If the argument is not specified, an
error message will output in the standard error output and log and the processing will end (KDJW51001-E).

• When you specify the same option more than once, except for the -catalog option, the option specified at
the end will be enabled.

• The specification of the option is case sensitive.

• The length of the string to be specified is not limited. However, an error occurs when you exceed the limit set
for the OS.

• Do not use the character strings containing & and ^ in the option specifying the path. If you use such character
strings, the operations are not guaranteed. Also, if you specify a file path containing a blank space, enclose the
entire file path within double quotation marks (""). If you do not enclose the entire file path within double
quotation marks (""), the operations are not guaranteed.

• If you specify an option that cannot be specified, an error message will output in the standard error output and
log and the processing will end (KDJW51001-E).

Notes for specifying the -d option and the -s option
Take the following precautions for the values specified for the -d option and the -s option:

• The specified value is not case sensitive.

• If the specified output destination directory does not exist, an error message will output in the standard error
output and log and the processing will end (KDJW51181-E).

• If the file is specified in the wrong output destination directory, an error message will output in the standard
error output and log and the processing will end (KDJW51182-E).

• If you specify a WSDL file without access permission, a JDK error occurs and the processing ends.

Specification of -d, -s, and -keep options and file output destination
The output destination directory of the compiled class file and source file differs depending on the specification of
the -d option, -s option, and the -keep option.
The following table describes whether the option is specified and the output destination directory of the compiled
class file:

Table 14‒2: Presence or absence of option specification and the output destination directory of the
compiled class file

Presence or absence of option
specification Presence or absence of source file output and output destination directory

-d -s -keep

Y -- -- Output in the directory specified in the -d option.

N -- -- Output in the current directory.

14. Commands

272

Legend:
Y: Indicates that the option is specified.
N: Indicates that the option is not specified.
--: Indicates that the presence or absence of option specification does not affect the output destination directory.

The following table describes the presence or absence of option specification and the output destination directory
of the source file:

Table 14‒3: Presence or absence of option specification and the output destination directory of the
source file

Presence or absence of option
specification Presence or absence of source file output and output destination directory

-d -s -keep

Y Y -- Output in the directory specified in the -s option.

Y N Y Output in the directory specified in the -d option.

Y N N Not output.

N Y -- Output in the directory specified in the -s option.

N N Y Output in the current directory.

N N N Not output.

Legend:
Y: Indicates that the option is specified.
N: Indicates that the option is not specified.
--: Indicates that the presence or absence of the option specification does not affect the output destination directory.

Notes for specifying the -b option
Take the following precautions for the values specified for the -b option:

• The specified value is not case sensitive.

• Specify the external binding file using the file path. The operations might not function properly if the file is
specified using the URL format.

• If the specified external binding file does not exist, an error message is output in the standard error output and
log and the processing ends (KDJW51184-E).

• If a file other than the external binding file is specified, the operations might not function properly.

• If a directory is specified by mistake, an error message is output in the standard error output and log and the
processing ends (KDJW51185-E).

• If you specify a WSDL file without access permission, a JDK error occurs and the processing ends.

• Specify the file same as the WSDL file to be customized by the specified external binding file and the WSDL
file to be customized specified in the argument of the cjwsimport command. If the files are not the same,
an error message is output in the standard error output and log and the processing ends (KDJW51190-E).

• The specification of the extension of the external binding file (.wsdl) is optional.

Notes for specifying the -p option
Take the following precautions for the values specified in the -p option:

• Specify the package name using one-byte alphanumeric characters (0 to 9, A to Z, a to z), underscore (_), and
period (.). If other characters are used, the operations might not function properly.

• For each label (xxx, yyy, zzz) that is separated using periods (.) such as xxx.yyy.zzz, specify strings
that can be used with Java identifiers. If you specify characters that cannot be used, an error message will
output in the standard error output and log and the processing will end.

Notes for specifying the -wsdllocation option

• Specify the -wsdllocation option with the URI format. If you specify this option in any other format, the
operations are not guaranteed.

14. Commands

273

• You cannot specify the jar protocol for the values to be specified in the -wsdllocation option. If you
specify the jar protocol, the operation is not guaranteed. When you specify the jar protocol as a URL for
pointing to the WSDL, use the constructor that acquires the URL in a parameter while generating a service
class.

Notes for specifying the -catalog option
Take the following precautions for specifying the values in the -catalog option:

• If you specify the -catalog option more than once, the operation is not guaranteed.

• The value to be specified is not case-sensitive.

• Specify the file path of the catalog file. Follow the java.io.File class specifications for the specification
format. If you specify the URL of the catalog file, the operation is not guaranteed.

• Specify the file path for the catalog file by using single-byte alphanumeric characters (0 to 9, A to Z and, a to
z), spaces, periods (.), underscores (_), colons (:), slashes (/), and \. If you use any other characters to specify
the file path, the operation is not guaranteed.

• You can specify any name for the catalog file.

• If the specified catalog file does not exist, a warning message (KDJW51219-W) is output to the standard error
output and log. The catalog functionality is disabled and the processing continues.

• If you specify a file other than the catalog file, the operation is not guaranteed.

• If a directory is specified by mistake, a warning message (KDJW51220-W) is output to the standard error
output and log. The catalog functionality is disabled and the processing continues.

• If the specified catalog file is coded in an unsupported syntax, a warning message (KDJW51221-W) is output
to the standard error output and log. The catalog functionality is disabled and the processing continues.

• If a catalog file that does not require access permission is specified, a JDK error occurs, the catalog
functionality is disabled and the processing continues.

Operations, when a value is specified for an ignored value
Among all the values specified for the command, if a value is specified for values that are ignored even if
specified, an error might occur in the processing performed later.

(3) Specifying the WSIMPORT_OPTS environment variable
If you specify an option character string in the WSIMPORT_OPTS environment variable, you can add the option with
the java command that starts the cjwsimport command. By default, nothing is specified in the WSIMPORT_OPTS
environment variable, so specify any character string, as and when required.

For example, by using the WSIMPORT_OPTS environment variable, you can specify the JDK system properties
required for the SSL communication to enable execution of the cjwsimport command for WSDLs that you could
not access before unless you used HTTPS. The following is an example.

> set WSIMPORT_OPTS=-Djavax.net.ssl.trustStore=trust-store -
Djavax.net.ssl.trustStorePassword=trust-store-password
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" https://securehost:443/fromwsdl/
TestJaxWsService?wsdl

(4) Generated files
The following table describes the files generated when the cjwsimport command is executed:

Table 14‒4: List of files generated for the cjwsimport command

No. Java code Contents

Output by the -
generateService option

Specified Not specified

1 Request bean class This is the JavaBean class corresponding to the
type referenced by the wrapper element of the
request message.

Y Y

14. Commands

274

No. Java code Contents

Output by the -
generateService option

Specified Not specified

1 Request bean class If the specified WSDL file does not have a
wrapper style, the request bean class is not
output.

Y Y

2 Response bean class This is the JavaBean class corresponding to the
type referenced by the wrapper element of the
response message.

If the specified WSDL file does not have a
wrapper style, the response bean class is not
output.

Y Y

3 Fault bean class This is the JavaBean class corresponding to the
type referenced by the fault message.

If a fault is not defined in the specified WSDL
file, the fault bean class is not output.

Y Y

4 Wrapper exception class This is the wrapper exception class of the fault
bean class.

Y Y

5 ObjectFactory class This is the factory class of the JAXB 2.2
specifications.

Y Y

6 Other classes in the JAXB
2.2 specifications

These are other classes in the JAXB
2.2specifications. These are the Java interfaces
and Java classes corresponding to the various
elements, types coded in the syntax of the XML
Schema specification.

Y Y

7 package-info class This is the package information. Y Y

8 SEI This is the service end point interface. Y Y

9 Skeleton class This is the skeleton class implementing SEI.
Implementation is added in this class.

Y --

10 Service class This class is used for accessing the Web
Service.

-- Y

Legend:
Y: Indicates that the file is output.
--: Indicates that the file is not output.

Precautions for generating a file
If a file with the same name as the skeleton class exists in the output destination directory of the generated file, a
warning message is output in the standard error output and log (KDJW51203-W). At this time, the processing
continues without the output of the skeleton class.
Also, apart from the Web Service Implementation Class, if a file with the same name exists in the output
destination directory of the generated file, the file will be overwritten.

Output of the Javadoc header information
In the generated file, the Cosminexus-related information is output in the header information as Javadoc.

(5) Operations during processing
When you execute the cjwsimport command, the message (KDJW50001-I) indicating command execution will
output in the standard output and log and the Java source generation and compilation processing will be performed.
The following is a description of the processing:

14. Commands

275

Java source generation processing
When the Java source generation starts, a message indicating the start of generation is output in the standard
output and log (KDJW50004-I). If an attempt to generate the Java source fails, the error message that causes the
error is output in the standard error output and log (KDJW50005-E).

Java source compilation processing
When the Java source compilation starts, a message indicating the start of compilation is output in the standard
output and log (KDJW50006-I). If an attempt to compile the Java source fails, the error message that causes the
error is output in the standard error output and log (KDJW50007-E).

(6) End code
The following is the end code of the cjwsimport command:

0: Normal termination
If an error due to which processing cannot continue is not detected in the middle of the processing, a message
indicating that the processing has finished is displayed in the standard output and log and the processing ends
(KDJW50002-I).

1: Abnormal termination
If even a single error due to which processing cannot continue is detected in the middle of processing, an error
message is displayed in the standard output and log and the processing ends (KDJW50003-E). For details about
the action for abnormal termination, see 14.1(7) Action for abnormal termination.

If a negligible error is detected due to which processing cannot continue is detected in the middle of the processing, a
warning message is output and the processing continues.

Note that sometimes a log is not output depending on the specified output level (importance). For details on the
settings for the output level of a log, see 10.1.2 Settings for the common definition file.

(7) Action for abnormal termination
If an abnormal termination occurs during the execution of the cjwsimport command, an error message will output
and the processing ends. In this case, remove the cause of the error that is output and re-execute the cjwsimport
command.

Even for multiple errors, the error detected first is displayed. In this case, execute the cjwsimport command
repeatedly and remove each of the causes of the displayed errors.

14. Commands

276

14.2 apt command
The apt command is a JDK command that interprets annotations, generates additional Java code, and compiles by
including the basic Java code. You use the apt command for the development of a Web Service starting from SEI.
The apt command interprets the annotation (coded in compliance with the JAX-WS 2.2 specifications) coded in the
Web Service Implementation Class, adds the required JavaBean class and generates the Java code.

For details about the format, argument, and options of the apt command, see JDK documentation. This subsection
describes the contents that are not defined in the JDK documentation and the precautions for executing the command.

(1) Web Service Implementation Class and SEI specified in the argument
In the argument of the apt command, specify a Web Service Implementation Class and SEI (if SEI is referenced)
respectively. If you specify two or more Web Service Implementation Classes, an error message will output in the log
and an error message is returned to the apt command (KDJW61002-E). However, when only SEI is specified and the
Web Service Implementation Class does not exist, a warning message is output in the standard error output and log
and the processing continues (KDJW61001-W). In this case, the JavaBean class is not generated.

For details about the notes related to SEIs and Web Service Implementation Classes other than the above, see the 16.1
Default mapping of Java to WSDL and 16.2 Customized mapping of Java to WSDL sections.

The following warning is displayed in the apt command if EJB Web Service Implementation Class with the
javax.ejb.Stateless annotation is specified in the argument.

Warning: annotation type without processor: javax.ejb.Stateless

(2) Required options
To execute the apt command, specifying the -classpath option, -J-Dcosminexus.home option and -
factory option is mandatory. The values of each option are as follows:

The -classpath option

• Cosminexus-installation-directory/jaxws/lib/cjjaxws.jar
• Cosminexus-installation-directory/jaxp/lib/csmjaxb.jar
• Cosminexus-installation-directory/jaxp/lib/csmjaxp.jar
• Cosminexus-installation-directory/jaxp/lib/csmstax.jar
• Cosminexus-installation-directory/CC/client/lib/j2ee-javax.jar
• Cosminexus-installation-directory/CC/client/lib/HiEJBClientStatic.jar

For Windows x86

• HNTRLib2-installation-directory#1/classes/hntrlib2j.jar
• HNTRLib2-installation-directory#1/classes/hntrlibMj.jar

For Windows x64

• HNTRLib2-installation-directory#1/classes/hntrlib2j64.jar
• HNTRLib2-installation-directory#1/classes/hntrlibMj64.jar

The -J-Dcosminexus.home option
Cosminexus-installation-directory

The -factory option#2

com.cosminexus.istack.ws.AnnotationProcessorFactoryImpl
#1

HNTRLib2-installation-directory specifies the execution results of the following command:

• For Windows x86

14. Commands

277

> "%COSMINEXUS_HOME%\common\bin\gethntr2conf.exe" HNTR2INSTDIR

• For Windows x64

> "%COSMINEXUS_HOME%\common\bin\gethntr2conf64.exe" HNTR2INSTDIR

#2
If you execute the apt command without specifying the -factory option, the JavaBean class is generated by
the JDK and not by the JAX-WS functionality of Cosminexus.

(3) Generated files
The following table describes the files generated when the apt command is executed:

Table 14‒5: List of files generated for the apt command

No. Java code Contents

1 Request bean class This is the JavaBean class for the request message. Output for the wrapper style.

2 Response bean class This is the JavaBean class for the response message. Output for the wrapper style.

3 Fault bean class This is the JavaBean class corresponding to the fault. Output when the wrapper
exception class is defined in the specified Java code and when the fault bean does not
exist.

Creating a directory for generating a file
When you execute the apt command, a directory corresponding to the package name of the generated file is
created in the specified output destination directory and the file is output in that directory.
The following is an example of specification and output destination:

• Example of command specification
apt -d ./output -s ./output/ -sourcepath . com/example/test.java

• Output destination
The source files other than the JavaBean class and the compiled class file are output in the following
directory:
./output/com/example/
However, if the Java code specified in the command has the JavaBean class, the source file of the JavaBean
class and its compiled class file are output in the jaxws sub-package of SEI package (excluding the case
when the package name is customized using annotations).
./output/com/example/jaxws/

In the annotation processor provided by the Cosminexus JAX-WS functionality, if the output destination directory
of the Java code does not exist or is not a directory and is invalid, an error message is output in the log and an
error is notified to the apt command (KDJW61003-E).
The output destination directory of the compiled class file is the value of the -d option specified in the argument
of the apt command. When you do not specify the -d option, the output destination directory is the value
specified in the -s option. When you do not specify both the -d option and -s option, the current directory
serves as the output destination directory.
The output directory of the source file is the value of the -s option specified in the apt command argument.
When the -s option is not specified, the current directory is the output directory.
The apt command processes the generated source file by recursive interpretation, and hence the output
destination directory of a source file might be treated as the input directory of the source file. Therefore, note that
when a source file is scheduled to the output destination directory, the file might be treated as an input of the apt
command. We recommend that you do not schedule a source file to the output destination directory.

Output of the Javadoc header information
In the generated file, the Cosminexus-related information is output in the header information as Javadoc.

14. Commands

278

(4) Operations when a negligible error that allows processing to continue is detected
If a negligible error that allows processing to continue is detected in the middle of the processing, a warning message
is output and the processing continues.

Note that sometimes log is not output depending on the specified output level (importance). For details on the settings
for the output level of a log, see 10.1.2 Settings for the common definition file.

(5) Action for abnormal termination
If an error occurs during the execution of the apt command, an error message is output and the processing ends.

If an error message is output, remove the cause of the error that is output and re-execute the apt command. Remove
the causes of each of the displayed errors and repeatedly execute the apt command until the command terminates
normally. If the file is already generated, delete the files generated before the apt command is executed.

Note that sometimes log is not output depending on the specified output level (importance). For details on the settings
for the output level of a log, see 10.1.2 Settings for the common definition file.

14. Commands

279

14.3 cjwsgen command
The cjwsgen command generates the Java code (JavaBean classes) and resource files (WSDL and XSD) that are
required to deploy Web Services, based on the class files of the Service Implementation Class. Note that a Service
Implementation Class also includes the classes and SEIs that are referenced by the Service Implementation Class.

This section describes the format and specification contents for executing the cjwsgen command.

(1) Format
The following is the specification format of the cjwsgen command:

cjwsgen [Options] Fully qualified name of the Service Implementation Class

Specification examples

• Checking the WSDL before deploying:
cjwsgen -wsdl -cp . com.example.UserInfoImpl

• Generating the Java code and resource files of a Web Service (SOAP 1.2) from an existing Web Service
(SOAP 1.1):
cjwsgen -soap 1.2 -cp . com.example.UserInfoImpl

• Generating the Java code and resource files of a Web Service (with service name MyService) from an
existing Web Service:
cjwsgen -servicename {http://example.com/}MyService -cp .
com.example.UserInfoImpl

• Generating the Java code and resource files of a Web Service (with port name MyServicePort) from an
existing Web Service:
cjwsgen -portname {http://example.com/}MyServicePort -cp .
com.example.UserInfoImpl

Notes for executing the cjwsgen command
You cannot assume a current directory with the characters such as &, and ^ to execute the cjwsgen command. If
you assume such a current directory and execute the command, the operations will not be guaranteed.
Check that source files other than the source files generated by the cjwsgen command do not exist under the
following directories:

• When you output a source file: the output destination directory of the source file

• When you do not output a source file : the work directory used by the cjwsgen command

For details on the output destination and the work directory of a source file, see Combination of the -d, -s, and -
keep options and the output destination directory and the work directory.

Notes for specifying the Service Implementation Class

• Deploy the source files of the Service Implementation Class in a directory different from the class files. If you
deploy the source files in the same directory as the class files, an error might occur.

• Specify the class files of the Service Implementation Class with their fully qualified names in the arguments.

• If you do not specify the arguments, an error message will output to the standard error output and logs, and the
processing will end (KDJW71023-E).

• If you specify other than a class file in the arguments, an error message will output to the standard error output
and logs, and the processing will end (KDJW71026-E).

• If you specify other than the Service Implementation Class in the arguments, an error message will output to
the standard error output and logs, and the processing will end (KDJW71025-E).

• If the specified Service Implementation Class is not found, an error message will output to the standard error
output and logs, and the processing will end (KDJW71026-E).

• If you do not have the access privileges for the specified Service Implementation Class, an error message will
output to the standard error output and logs, and the processing will end (KDJW71026-E).

14. Commands

280

• If you specify a Service Implementation Class in which the javax.jws.WebService annotation is not
specified, an error message will output to the standard error output and logs, and the processing will end
(KDJW71029-E).

• If you specify multiple classes containing the Service Implementation Class in the arguments, a warning
message will output, and the processing will continue (KDJW71027-W). To confirm which Service
Implementation Class was handled effectively, see the warning message.

• Do not specify the Service Implementation Class acting as an inner class in an argument. If you specify, the
operation is not guaranteed.

• For details about the notes related to SEIs and Web Service Implementation Classes other than the above, see
the 16.1 Default mapping of Java to WSDL and 16.2 Customized mapping of Java to WSDL sections.

(2) List of options
You can specify the options listed in the following table for the cjwsgen command:

Table 14‒6: List of options of the cjwsgen command

Option Set item Specification contents

-d directory Path of the output destination
directory of already compiled
class file

Specifies the output destination directory of the already compiled
class file (*.class).

For details about the values that you can specify, see Notes for
specifying the -d, -s, and -r options described outside the table.

If you specify any other option, a file other than the already compiled
class file might be output to the directory specified in this option. For
details, see Combination of the -d, -s, and -keep options and the
output destination directory and the work directory and
Combinations and output destination directory of the -d, -r, -soap, -
servicename, -portname, -soap12binding, and -wsdl options
described outside the table.

-s directory Path of the output destination
directory of the source file

Specifies the output destination directory, when you output the source
file (*.java).

-r directory Path of the output destination
directory of the resource files

Specifies the output destination directory when you output the
resource files (*.wsdl and *.xsd).

-keep None Specifies whether or not to maintain the source file (*.java).

-wsdl None Specifies whether or not to output the resource files (*.wsdl and
*.xsd).

-soap version Version of SOAP binding Specifies the version of SOAP binding used by the Web Service
during communication.

-servicename
service-name

Service name Specifies the service name after making changes.

-portname port-
name

Port name Specifies the port name after making changes.

-soap12binding
soap-spec

Value indicating the URL set
in the transport attribute
of the soap12:binding
element

Specifies the URL to be set in the transport attribute of the
soap12:binding element (child element of the wsdl:binding
element) for SOAP1.2.

-classpath class-
path

Class path that includes the
Service Implementation
Class

Specifies the class path that includes the Service Implementation
Class specified in the argument.

-cp class-path

-verbose None Specify this option to output the detailed processing progress, when
executing a command.

-help None Specify this option to display Help.

14. Commands

281

Option Set item Specification contents

-help None If you specify this option, all options except -version are ignored,
Help is displayed, and the processing terminates.

-version None Specify this option to display the version information.

If you specify this option, the other options are ignored, the version
information is displayed, and the processing terminates.

The following are the notes on the specification values of options, such as the values that you can specify in an option
and the operation executed when you omit an option:

Notes common to options
The notes common to all options are as follows:

• The specification order of options and arguments is optional. The specification order of each option is also
optional.

• Always specify the arguments for options with arguments. If you do not specify the arguments, an error
message will output to the standard error output and logs, and the processing will end (KDJW71001-E).

• If you specify the same option more than once, the option specified last will be valid. However, if you specify
an invalid value for an option, an error will occur.

• The specification of an option is case sensitive.

• The length of the character string to be specified is not limited. However, an error occurs when you exceed the
limit specified for the OS.

• If you specify a file path containing a blank space in the option, enclose the entire path within double
quotation marks (""). If you do not enclose the entire path within double quotation marks (""), the operations
are not guaranteed.

• If you specify an option that you cannot specify, an error message will output to the standard error output and
logs, and the processing will end (KDJW71001-E).

Notes for specifying the -d, -s, and -r options
The following are the notes related to the specification values of the -d option, -s option, and -r option:

• The specification value is not case sensitive.

• If the specified output destination directory does not exist, an error message will output to the standard error
output and logs, and the processing will end (KDJW71002-E).

• If you specify the file in the wrong output destination directory, an error message will output to the standard
error output and logs, while Help will output to the standard output, and the processing will end
(KDJW71003-E).

• Do not use the following characters in the path of the output destination directory to be specified in the -d
option. If you use the following characters, the operations are not guaranteed:
% & ^ ; ` { } []

• Do not use the following characters in the path of the output destination directory to be specified in the -r
option. If you use the following characters, the operations are not guaranteed:
% & ^ ` { } []

• Do not use the following characters in the path of the output destination directory to be specified in the -s
option. If you use the following characters, the operations are not guaranteed:
& ^

• If you specify a directory for which you do not have the access privileges, a JDK error will occur and the
processing will end.

Notes for specifying the -soap option
The following are the notes related to the specified values of the -soap option:

• You can specify only 1.1 or 1.2 as the version of the SOAP binding. If you specify any other value, an error
message will output to the standard error output and logs, while Help is output to the standard output, and the
processing will end (KDJW71004-E).

14. Commands

282

• If you have specified a value in both the -soap option and the javax.xml.ws.BindingType
annotation, priority is given to the value of the -soap option.

• If you omit the -soap option, the specification values of the javax.xml.ws.BindingType annotation
become enabled.

• If you specify 1.1 in the -soap option when the specification value of javax.xml.ws.BindingType is
the SOAP 1.2 over HTTP binding, an error message will output to the standard error output and logs, and
the processing will end (KDJW71007-E).

Notes for specifying the -servicename option
Code the -servicename option in the QName format. The following is a coding example of the -
servicename option:

{Namespace URI}Service name

Namespace

• Enclose the namespace URI within a parentheses ({ }). If you omit the namespace or do not enclose
within the parentheses ({ }), an error message will output to the standard error output and logs, and the
processing will end (KDJW71009-E).

• If you do not close the parentheses, an error message will output to the standard error output and logs, and
the processing will end (KDJW71008-E).

• If you do not enter a value within the parentheses ({ }), an error message will output to the standard error
output and logs, and the processing will end (KDJW71008-E).

• Specify single-byte alphanumeric characters for the namespace URI. If you specify other than the single-
byte alphanumeric characters, the operations are not guaranteed.

Protocol

• Only a domain name beginning with http:// or urn: is valid as the namespace URI to be coded in the
-servicename option. The namespace URIs beginning with https:// and file:// are handled as
invalid. If you specify a namespace URI beginning with other than http:// or urn:, an error message
will output to the standard error output and logs, and the processing will end (KDJW71011-E).

• You cannot specify a relative path for the namespace URI to be coded in the -servicename option. If
you specify a relative path for the namespace URI, an error message will output to the standard error
output and logs, and the processing will end (KDJW71012-E).

Information that you cannot specify
You cannot code query strings, anchors, port numbers, user names, and passwords in the namespace URI to be
coded in the -servicename option. If you specify this information in the namespace URI, an error message
will output to the standard error output and logs, and the processing will end (KDJW71013-E).

Character strings that you can code
In a segment demarcated with the delimiters such as a forward slash (/) or a period (.), you can code a
character string that satisfies all the conditions described in the following table:

Table 14‒7: Conditions for character strings that you can code in a namespace (When you specify
the -servicename option)

No. Condition Examples of invalid character strings
Operation when an

invalid character string is
specified

1 Character strings using only
single-byte alphanumeric
characters (0 to 9, A to Z, and a
to z)

http://hitachi.com/
http://133.145.224.19/
http://
[1080:2C14;D30:BA04:275:806
:270C:418A]/

The operation is not
guaranteed (no error
message is displayed).

2 Character strings containing
other than reserved terminology
of Java

http://hitachi.com/abstract The operation is not
guaranteed.

3 Character strings that do not
begin with a numeric character

http://1hitachi.com

14. Commands

283

Service name

• If you omit the service name, an error message will output to the standard error output and logs, and the
processing will end (KDJW71014-E).

• Specify single-byte alphanumeric characters and underscores for a service name. If you specify other than
the single-byte alphanumeric characters and underscores, the operations are not guaranteed.

• We recommend that you specify a service name in accordance with the identifier naming rules stipulated
in Java. If the specified service name is not in accordance with the identifier naming rules stipulated in
Java, a compilation error occurs when you execute the cjwsimport command to develop the Web
Service client.

Notes for specifying the -portname option
Code the -portname option in QName format. The following is a coding example of the -portname option:

{Namespace URI}Port name

Namespace

• Enclose the namespace URI within a parenthesis ({ }). If you omit the namespace or do not enclose within
parentheses ({ }), an error message will output to the standard error output and logs, and the processing
will end (KDJW71016-E).

• If you do not close the parentheses, an error message will output to the standard error output and logs, and
the processing will end (KDJW71015-E).

• If you do not enter a value within the parentheses ({ }), an error message will output to the standard error
output and logs, and the processing will end (KDJW71015-E).

• Specify a namespace URI same as that of the service element of the WSDL file. If you specify a
namespace URI different from that of the service element of the WSDL file, an error message will
output to the standard error output and logs, and the processing will end (KDJW71022-E).

• Specify single-byte alphanumeric characters for the namespace URI. If you specify other than the single-
byte alphanumeric characters, the operations are not guaranteed.

Protocol

• Only a domain name beginning with http:// or urn: is valid as the namespace URI to be coded in the
-portname option. The namespace URIs beginning with https:// and file:// are handled as
invalid. If you specify a namespace beginning with other than http:// or urn:, an error message will
output to the standard error output and logs, and the processing will end (KDJW71018-E).

• You cannot specify a relative path for the namespace URI to be coded in the -portname option. If you
specify a relative path for the namespace URI, an error message will output to the standard error output
and logs, and the processing will end (KDJW71019-E).

Information that you cannot specify
You cannot code query strings, anchors, port numbers, user names, and passwords in the namespace URI to be
coded in the -portname option. If you specify this information in the namespace URI, an error message will
output to the standard error output and logs, and the processing will end (KDJW71020-E).

Character strings that you can code
In a segment demarcated with delimiters such as a forward slash (/) or a period (.), you can code a character
string that satisfies all the conditions described in the following table:

Table 14‒8: Conditions for character strings that you can code in a namespace (When specifying
the -portname option)

No. Condition Examples of invalid character strings
Operation when an

invalid character string is
specified

1 Character strings using only
single-byte alphanumeric
characters (0 to 9, A to Z, and a
to z)

http://hitachi.com/
http://133.145.224.19/
http://
[1080:2C14;D30:BA04:275:806
:270C:418A]/

The operation is not
guaranteed (no error
message is displayed).

14. Commands

284

No. Condition Examples of invalid character strings
Operation when an

invalid character string is
specified

2 Character strings containing
other than reserved terminology
of Java

http://hitachi.com/abstract The operation is not
guaranteed.

3 Character strings that do not
begin with a numeric character

http://1hitachi.com

Port name

• If you omit the port name, an error message will output to the standard error output and logs, and the
processing will end (KDJW71021-E).

• Specify single-byte alphanumeric characters and underscores for the port name. If you specify other than
the single-byte alphanumeric characters and underscores, the operations are not guaranteed.

Notes for specifying -soap12binding
You can specify only "DEFAULT" or "WSI_BP20_TRANSPORT" for the -soap12binding option. If you
specify any other value, an error message will be output to the standard error output and logs, while Help will be
output to the standard output, and the processing will end (KDJW71030-E).
The following table describes the relationship between the -soap12binding option and the transport
attribute value of the soap12:binding element of WSDL generated by the cjwsgen command.

Table 14‒9: Relationship between the -soap12binding option and transport attribute value

No. Option specification Option specified value Set value of the transport attribute

1 Not specified None http://www.w3.org/2003/05/soap/
bindings/HTTP/

2 Specified DEFAULT

3 WSI_BP20_TRANSPORT http://schemas.xmlsoap.org/soap/
http

Notes for specifying the -classpath and -cp options
The following are the notes related to the specified values of the -classpath option and the -cp option:

• If you omit the options, the environment variable CLASSPATH is used as the class path. If you specify the
options, the environment variable CLASSPATH is ignored.

• The value you specify in the environment variable CLASSPATH is used as it is, and therefore, even if the
value includes a blank space, you need not enclose the value within double quotation marks (""). If you
specify a value in such a format, in which the value is enclosed within double quotation marks (""), the
operations are not guaranteed.

• If you omit the options and also do not specify the environment variable CLASSPATH, the current directory
will be used as the class path.

• You can specify either a relative path or an absolute path for the class path.

• You can also specify a JAR file as the class path.

• When specifying more than one class path, code a semicolon (;) between two class paths.

• Do not use the following characters in the class path to be specified. If you use the characters, the operations
are not guaranteed.
% & ^

• If the specified class path is invalid, an error message will output to the standard error output and logs, and the
processing will end (KDJW71026-E).

Combination of the -d, -s, and -keep options and the output destination directory and the work directory
If the -d option is specified, the already compiled class file (*.class) will output to the directory specified in
the -d option, and if the -d option is not specified, the already compiled class file (*.class) will output in the
current directory.
The following table describes the combination of options and provides the information about whether to output
source file (.java) or if the source file is output, the output destination directory, and the work directory used by

14. Commands

285

the cjwsgen command. Note that if you want to use only the resource file, it is all right if the source file is not
output.

Table 14‒10: Availability of the source file output and the output destination directory

Whether the option is specified Whether to output the source file

The output destination directory and work directory-d -s -keep

Y Y Y The directory specified by the -s option is used as the work directory and the source
file is output.

Y Y N

Y N Y The directory specified by the -d option is used as the work directory and the source
file is output.

Y N N The directory specified by the -d option is used as the work directory. The source file
is not output.

N Y Y The directory specified by the -s option is used as the work directory and the source
file is output.

N Y N

N N Y The current directory is used as the work directory and the source file is output.

N N N The current directory is used as the work directory. The source file is not output.

Legends:
Y: Indicates that the option is specified.
N: Indicates that the option is not specified.

Combinations and output destination directory of the -d, -r, -soap, -servicename, -portname, -soap12binding,
and -wsdl options

The following table describes the combination of options and provides the information about whether to output
resource files (*.wsdl and *.xsd)) or if the resource files are output, the location of the output destination
directory:

Table 14‒11: Availability of resource file output and the output destination directory

Availability of option and specification

Outp
ut or
not

Output destination
-d option -r option

-soap, -
servicename, -
portname, and -
soap12binding

option

-wsdl option

Specified Specified Specified Specified Y Directory specified in the -r
option

Not specified

Not specified Specified

Not specified

Not specified Specified Specified Y Directory specified in the -d
option

Not specified

Not specified Specified Y Directory specified in the -d
option

Not specified N --

Not specified Specified Specified Specified Y Directory specified in the -r
option

Not specified

Not specified Specified

14. Commands

286

Availability of option and specification

Outp
ut or
not

Output destination
-d option -r option

-soap, -
servicename, -
portname, and -
soap12binding

option

-wsdl option

Not specified Specified Not specified Not specified Y Directory specified in the -r
option

Not specified Specified Specified Y Current directory

Not specified

Not specified Specified Y Current directory

Not specified N --

Legend:
--: Not applicable because the resource files are not output.
Y: Indicates that the resource files are output.
N: Indicates that the resource files are not output.

(3) Generated files
The following table lists and describes the files generated when you execute the cjwsgen command:

Table 14‒12: List of files generated when executing the cjwsgen command

No. Generated file Contents

1 Request bean class This is the JavaBeans class for the request message. This file is output when the
generated Service Implementation Class has the wrapper format.

2 Response bean class This is the JavaBeans class for the response message. This file is output when the
generated Service Implementation Class has the wrapper format.

3 Fault bean class This is the JavaBeans class corresponding to the fault. This file is output when the
wrapper exception class is specified in the Java code that you have specified, and the
fault bean does not exist.

4 WSDL This is a WSDL file.

5 XSD This is an XML schema definition file.

Creating a directory for file generation
If you execute the cjwsgen command, a directory corresponding to the package name of the generated files is
created in the specified output destination directory, and files are output to this directory.
The following are the specification example and the output destination:

• Command specification example
cjwsgen -d ./output -s ./output -keep -cp . com.example.UserInfoImpl

• Output destination
If a JavaBean class exists in the class file of the Service Implementation Class specified in the cjwsgen
command, the source file and the already compiled class file of the JavaBean class are output to the following
jaxws sub package (except in cases where the package name is customized using annotations):
./output/com/example/jaxws/

Also, the files generated under the resource file are output to the directory specified in the argument of the
cjwsgen command. The following are the specification example and the output destination:

• Command specification example
cjwsgen -r ./output -cp . com.example.UserInfoImpl

• Output destination

14. Commands

287

./output/
Notes for file generation

If a file with the same name exists in the output destination directory of the generated file, the file is overwritten.

Output of header information of Javadoc
In the generated file, the Cosminexus-related information is output in the header information as Javadoc.

(4) Relationship between the Input Service Implementation Class and output resource files
The following table describes the relationship between the Input Service Implementation Classes and output resource
files:

Table 14‒13: Relationship between the Input Service Implementation Class and output resource files

Input Service
Implementation Class

Output resource

WSDL XSD

Number
of files File name

Number of
files#1 File name

Without SEI 1 name attribute value of the
wsdl:service element

1 to N#2 name attribute value of the
wsdl:service element +
suffix (_schemaN)#2

With SEI (same
namespace as the Service
Implementation Class)

1 name attribute value of the
wsdl:service element

1 to N#2 name attribute value of the
wsdl:service element +
suffix (_schemaN)#2

With SEI (different
namespace from the
Service Implementation
Class)

2 • For an abstract WSDL
file#3

name attribute value of
the wsdl:portType
element

• For an implementation
WSDL file#4

name attribute value of
the wsdl:service
element

1 to N#2 name attribute value of the
wsdl:portType element +
suffix (_schemaN)#2

#1
The file is generated, if the namespace of the schema is different.

#2
N is the number of namespaces of the schema. The upper-limit count of files that you can generate depends on the OS.

#3
Abstract WSDL indicates WSDL of 'wsdl:types element, wsdl:message element, and wsdl:portType element'.

#4
Implementation WSDL indicates WSDL of 'wsdl:binding element and wsdl:service element'.

(5) Operation during processing
If you execute the cjwsgen command, a message (KDJW70001-I) indicating the command execution will output to
the standard output and log, and processes such as the generation and deletion of JavaBeans, and generation of WSDL
and XSD will be executed. The following is the description about each process:

Process for generating JavaBeans
When the generation of JavaBeans starts, a message indicating the start of the generation process will output to the
standard output and the log (KDJW70004-I). If an attempt to generate JavaBeans fails, an error message
indicating the cause of the error will output to the standard error output and the log (KDJW70005-E).

14. Commands

288

Process for generating WSDL and XSD
When the generation of the resource files (WSDL and XSD) corresponding to the contents of the generated
JavaBeans starts, a message indicating the start of the generation process will output to the standard output and log
(KDJW70006-I). If an attempt to generate the resource files fails, an error message reporting the cause of the error
will output to the standard error output and log (KDJW70007-E).

Process for deleting JavaBeans
Delete the source file of the generated JavaBeans. However, in some cases, the source file might not be deleted
depending on the specification contents of the options. For details about the options, see the section 14.3(2) List of
options.

(6) End codes
The following are the end codes of the cjwsgen command:

0: Normal termination
Unless an error that cannot be allowed to continue during the processing is detected, a message indicating the
termination with standard output and logs will be displayed, and the processing will end (KDJW70002-I).

1: Abnormal termination

• If a minor error that allows the continuation of the process is detected midway, a warning message will output,
and the processing will continue.

• If an error that does not allow the continuation of the process is detected midway, a message indicating
termination will be output to the standard output and log, and the processing will end (KDJW70003-E). For
details about the action to be taken for the abnormal termination, see 14.3(7) Action for abnormal termination.

• If multiple errors are detected, the error detected first will be displayed, and a message indicating termination
will output to the standard output and log, and the processing will end.

• If you execute the cjwsgen command, the apt command is invoked. Therefore, error messages of the apt
command might be output.

• The directories and files generated prior to the detection of the error are not deleted and are retained, even
when the command terminates abnormally.

Note that depending on the output level (importance) that you have set, the log might not be output. For details on the
settings of the output level of a log, see 10.1.2 Settings for the common definition file.

(7) Action for abnormal termination
If the cjwsgen command terminates abnormally during the execution, an error message will output and the
processing will end. In such cases, remove the cause of the error that is output and re-execute the cjwsgen
command.

Even when multiple errors occur, the error that is detected first will be displayed. In such cases, repeatedly execute the
cjwsgen command and remove the causes of the displayed error one by one.

Note that if the command terminates abnormally due to inaccuracy of the class file of the Service Implementation
Class, you need to modify the Java sources that are the generated source of the class file, and then revise the
compilation.

14. Commands

289

14.4 Notes on using a command line interface in
Windows with enabled UAC

This section describes the notes on executing the cjwsimport command, apt command, and cjwsgen command
when the OS is Windows and UAC (User Account Control) is enabled.

14.4.1 When the administrator uses a command line interface
When the administrator uses a command line interface, do not take any precaution that is to be taken during the
installation.

If the administrator executes a command line interface after the installation, the administrator must start the Command
Prompt. For details about how to start the Command Prompt by escalating privileges to the administrator, reference
the OS documentation.

14.4.2 When a user other than the administrator uses a command line
interface

This subsection describes the notes for using a command line interface by a user other than the administrator.

(1) Notes for installation
When a user other than the administrator uses a command line interface, install Cosminexus in the default installation
directory. If you install Cosminexus in a directory other than the default installation directory, you must set up the
access privileges in such a way so that even a user other than the administrator who is executing the command line
interface can write in all the log output destination directories of the command line interface. The administrator sets
the access privileges. For details about how to specify the access privileges, reference the OS documentation.

(2) Notes for command execution
The following are the notes for executing a command line interface by a user other than the administrator:

• For the current directory, specify a directory that is not protected by UAC.

• For the output destination of files generated according to the option settings, specify a directory that is not
protected by UAC.

• If you have installed the Cosminexus server in the default installation directory, the log of the command line
interface is redirected to the following directory:
The corresponding directory under the %LoadlAppData%\VirtualStore\Program Files directory
For details on redirecting, reference the OS documentation.

14. Commands

290

15 Mapping from WSDL to Java
When you execute the cjwsimport command, WSDL is mapped to the Java source
in accordance with the JAX-WS 2. 2 specifications.

This chapter describes the default mapping and customized mapping of WSDL to
Java.

291

15.1 Default mapping from WSDL to Java
When the cjwsimport command is executed, WSDL is mapped to the Java source. The following table describes
the correspondence relationship in this case:

Table 15‒1: List of mapping of WSDL to Java source

No. WSDL Java source Reference

1 Namespace Package name 15.1.1

2 Port type SEI name 15.1.2

3 Operation Method name 15.1.3

4 Part Parameter and return value 15.1.4, 15.1.5

5 Type Parameter and return value 15.1.6

6 Fault Exception class 15.1.7

7 Binding javax.jws.soap.SOAPBinding annotation 15.1.8

8 Service The serviceName attribute of the javax.jws.WebService
annotation

15.1.9

15.1.1 Mapping a namespace to a package name
This subsection describes the mapping of a WSDL namespace (targetNamespace attribute of the wsdl:
definitions element) to a package name.

(1) Mapping
The WSDL namespace and package name are mapped in accordance with the JAX-WS 2.2 specifications. For details,
see the JAX-WS 2.2 specifications.

The following figure shows an example of mapping:

Figure 15‒1: Example of mapping the namespace to the package name

(2) Conditions for the namespace
This point describes the conditions for the namespace coded in WSDL.

15. Mapping from WSDL to Java

292

• Protocol
Code the namespace using http:// or urn: protocols. If you code the namespace using a protocol other
than http:// or urn: (such as https://, file ://), an error message is output in the standard error
output and log and the processing ends (KDJW51002-E).
Also, when the relative path is used for coding, an error message is output in the standard error output and log and
the processing ends (KDJW51003-E).

• Namespace coding format
The following formats cannot be coded in the namespace. If namespace is coded in the following formats, an error
message is output in the standard error output and log and the processing ends (KDJW51004-E):

• Null character string

• Query string (example) http://example.com/?a=b
• Anchor (example) http://example.com/index.html#anchor
• Port number (example) http://example.com:8080/
• User name/ password (example) http://user:password@example.com

• Strings that can be coded
In a segment demarcated with delimiters such as a forward slash (/) or period (.), you can code a character string
that satisfies all the conditions described in the following table. However, when customizing with the binding
declaration, you can code the strings in accordance with the rules in the RFC 2396 specifications.

Table 15‒2: Conditions for strings that can be coded in the namespace

No. Conditions Examples of invalid
strings

Operations when invalid strings are
specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A
to Z, a to z)

http://Hitachi.com The operation might not function properly
(error message is not displayed).

2 Strings other than Java reserved
words

http://hitachi.com/
abstract

When mapping to the Java package name,
an underscore (_) is added at the beginning
of the Java reserved word.

Example: com.hitachi._abstract

3 Strings that do not begin with
numeric characters

http://1hitachi.com When mapping to the Java package name,
an underscore (_) is added at the beginning
of the string that begins with a numeric
character.

Example: com._1hitachi

15.1.2 Mapping a port type to a SEI name
This subsection describes the mapping of a WSDL port type name (name attribute of the wsdl:portType element)
to a SEI name.

(1) Mapping
The WSDL port type and SEI name are mapped in accordance with the JAX-WS2.2 specifications. The following
figure shows an example of mapping:

15. Mapping from WSDL to Java

293

Figure 15‒2: Example of mapping the port type to the SEI name

During mapping, the first character of the WSDL port type name is converted into an upper case character. The
following is an example of conversion:

Before conversion: portTypeName
After conversion: PortTypeName

(2) Conditions for the port type name
When specifying a port type name and a namespace for a WSDL, confirm that the SEI name, including the package
name, is not changed to javax.xml.ws.Provider. Therefore, do not specify Provider or provider in the
port type name. Also, do not specify http://ws.xml.javax in the namespace.

In the port type, you can code a string that fulfills all the conditions described in the following table. However, when
customizing with the binding declaration, you can code the strings that can be used as the xsd:NCName type of the
XML Schema specification.

Table 15‒3: Conditions for strings that can be coded in the port type

No. Conditions Examples of invalid strings Operations when invalid strings are
specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A
to Z, a to z) and underscore (_)

Hitachi_portType The operation might not function properly
(error message is not displayed).

2 Strings that do not begin with
numeric characters

1User_portType An error message is output in the standard
error output and log and the processing ends
(KDJW51029-E).

(3) Number of port types coded
You can code 1 to 255 port types in WSDL. The following table describes the relationship between the number of port
types coded and the operations:

Table 15‒4: Relationship between the number of port types coded and the operations

No. Elements Number of coding Operations when invalid strings are specified

1 wsdl:portType 0 An error message is output in the standard error output and
log and the processing ends (KDJW51008-E).

2 1 to 255 Terminates normally.

3 256 or more An error message is output in the standard error output and
log and the processing ends (KDJW51008-E).

15.1.3 Mapping from an operation to a method name
This subsection describes the mapping of WSDL operations (name attribute of the wsdl:operation element) to
Java method names.

15. Mapping from WSDL to Java

294

(1) Mapping
The WSDL operations and Java method names are mapped in accordance with the JAX-WS 2.2 specifications. The
following figure shows an example of mapping:

Figure 15‒3: Example of mapping operations to method names

During the mapping, the first character of the WSDL operation name is converted into a lower case character. The
prefixes get and set are not added. The following is an example of conversion:

Before conversion: OperationName
After conversion: operationName

(2) Conditions for the operation name
In the operation name, you can code a string that fulfills all the conditions described in the following table. However,
when customizing with the binding declaration, you can code the strings that can be used as xsd:NCName type of the
XML Schema specification.

Table 15‒5: Conditions for strings that can be coded in the operation name

No. Conditions Examples of invalid strings Operations when invalid strings
are specified

1 Strings using only one-byte alphanumeric
characters (0 to 9, A to Z, a to z) and
underscore (_)

Hitachi_operation The operation might not function
properly (error message is not
displayed).

2 Strings other than Java reserved words# abstract An error message is output in the
standard error output and log and the
processing ends (KDJW51007-E).

3 Strings that do not begin with numeric
characters

1User_operation An error message is output in the
standard error output and log and the
processing ends (KDJW51029-E).

#
You cannot code strings such as 'Abstract' where the first character of the Java reserved word is in upper case (since the first
character is converted into a lower case character due to mapping).

(3) Number of operations and its child elements coded
You can code 1 to 255 operations for one port type in WSDL. Also, in the child element of the operation, you can
code one wsdl: input element, zero or one wsdl:output element, and 0 to 255 wsdl:fault elements.

The following table describes the relationship between the number of operations coded and the operations:

Table 15‒6: Relationship between the number of operations coded and the operations

No. Elements Number of coding Operations when invalid strings are specified

1 wsdl:operation 0 An error message is output in the standard error output and log and
the processing ends (KDJW51029-E).

2 1 to 255 Terminates normally.

15. Mapping from WSDL to Java

295

No. Elements Number of coding Operations when invalid strings are specified

3 wsdl:operation 256 or more An error message is output in the standard error output and log and
the processing ends (KDJW51029-E).

The following table describes the relationship between the number of child elements coded for the operation and the
operations:

Table 15‒7: Relationship between the number of child elements coded for the operation and the
operations

No. Elements Number of coding Operations when invalid strings are specified

1 wsdl:input 0 An error message is output in the standard error output and log and
the processing ends (KDJW51029-E).

2 1 Terminates normally.

3 2 or more An error message is output in the standard error output and log and
the processing ends (KDJW51029-E).

4 wsdl:output 0 If zero wsdl:fault elements are coded, the wsdl:output
element is mapped to a one-way operation and the process ends
successfully.

If one or more wsdl:fault elements are coded, an error message
is output in the standard error output and log and the processing
ends (KDJW51029-E).

5 1 The wsdl:output element is mapped to the Request-response
operation and the process ends successfully.

6 2 or more An error message is output in the standard error output and log and
the processing ends (KDJW51029-E).

7 wsdl:fault 0 to 255 Terminates normally.

8 256 or more An error message is output in the standard error output and log and
the processing ends (KDJW51029-E).

15.1.4 Mapping a message part to a parameter and return value (For
wrapper style)

This subsection describes the mapping of WSDL message parts (wsdl:part child element of the wsdl:message
element) to parameters and return values of Java methods.

This subsection describes the mapping for the wrapper style.

• Conditions for the wrapper style
A wrapper style that fulfills all the following conditions is handled as a wrapper style. A wrapper style that does
not fulfill the conditions is handled as a non-wrapper style.

• The input message referenced from the soap:body element of the WSDL operation includes only 1 part.
If two or more parts are included, an error message is output in the standard error output and log and the
processing ends (KDJW51019-E).

• The output message (if present) referenced from the WSDL operation includes only one part.
If two or more parts are included, an error message is output in the standard error output and log and the
processing ends (KDJW51020-E).

• The input message part references the global element where the local name is equal to the operation name.

• The output message (if present) part references the global element.

• The element type referenced from the input message and output message (if present) part is
xsd:complexType defined in xsd:sequence.

15. Mapping from WSDL to Java

296

• The wrapper element only includes the child elements and does not include the other components such as the
xsd:any element, the xsd:anyAttribute attribute, the xsd:choise element, the
substitutionGroup attribute, or the attribute element.

• The wrapper element that is not nillable.

(1) Mapping

• For mapping from a WSDL of request-response operations
The wrapper child element to be referenced from the message part of a WSDL (define one wsdl:input element
and one wsdl:output element , and zero or more wsdl:fault elements) of the request-response operations
and the return values and parameters of the Java method are mapped. The following figure shows the example of
mapping.

Figure 15‒4: Example of mapping message parts to parameters and return values (request-response
operation)

• For mapping from a WSDL of one-way operations
The wrapper child element to be referenced from the message part of a WSDL (define only one wsdl:input
element) of the one-way operation and the parameters of the Java method are mapped. The following figure shows
an example of mapping.

15. Mapping from WSDL to Java

297

Figure 15‒5: Example of mapping of message parts and parameters (one-way operations)

During mapping, the first letter of the wrapper child elements names of the WSDL is converted to lower-case letter in
both, the request-response operations and one-way operations.

Before conversion: WrapperName
After conversion: wrapperName

• Relationship between part types and mapping to Java source
The following table describes the relationship between the part types (in, inout, out) and the mapping to Java
source:

Table 15‒8: Mapping of part types to Java sources (Wrapper style)

No. WSDL part types
Mapping to Java

Mapped to Mapping method

1 in Parameter Not mapped using javax.xml.ws.Holder<T> class.
Mapped using classes such as java.lang.String.

2 inout Parameter Mapped using javax.xml.ws.Holder<T> class. #

3 out Parameter Mapped using javax.xml.ws.Holder<T> class. #

4 Return value Not mapped using javax.xml.ws.Holder<T> class.
Mapped using classes such as java.lang.String.

#
If the wrapper child element type is a type that is mapped with JAXB specifications to a Java primitive type such as
xsd:int, since the type corresponds to primitive, set up a non-null value for the Holder instance for sending.

15. Mapping from WSDL to Java

298

(2) Conditions for the wrapper child element name
In the wrapper child element name, you can code a string that fulfills all the conditions described in the following
table. However, when customizing with the binding declaration, you can code the strings that can be used as
xsd:NCName type of the XML Schema specification.

Table 15‒9: Conditions for strings that can be coded in the wrapper child element name (wrapper style)

No. Conditions Examples of invalid
strings

Operations when invalid strings are
specified

1 Strings using only one-byte alphanumeric
characters (0 to 9, A to Z, a to z) and
underscore (_)

Hitachi_wrapper The operation might not function
properly (error message is not displayed).

2 Strings other than Java reserved words # abstract An error message is output in the
standard error output and log and the
processing ends (KDJW51018-E).

3 Strings that do not begin with numeric
characters

1User_wrapper An error message is output in the
standard error output and log and the
processing ends.

#
You cannot code strings such as Abstract where the first character of the Java reserved word is in upper case (since the first
character is converted into a lower case character due to mapping).

(3) Conditions for handling multiple wrapper child elements as the same wrapper child
element

When the wrapper child element that appears in the input message or output message is coded several times in WSDL,
handling of the wrapper child elements differs depending on whether the local name and the XML Schema type of
wrapper child elements are same or different, as described in the following table:

Table 15‒10: Different handling of wrapper child elements depending on local name and XML Schema
type of wrapper child elements

No. Local name of wrapper child
element

XML Schema type of wrapper child
element

Handling of wrapper child
element

1 When the local name is same When the XML Schema type is same Handled as the same wrapper child
element, when each of the wrapper
child elements indirectly reference
to the same global element using the
ref attribute of the
xsd:element element.

2 When the XML Schema type is different Handled as separate wrapper child
elements.

3 When the local name is different When the XML Schema type is the same Handled as separate wrapper child
elements.

4 When the XML Schema type is different

(4) Notes for coding multiple wrapper child elements
When you define same wrapper child elements and different wrapper child elements multiple times in a WSDL file as
the composite-type child elements, and execute the cjwsimport command by specifying this WSDL file, SEI will
be mapped with the non-wrapper style.

The following is an example of the WSDL file where SEI is mapped with the non-wrapper style:

<wsdl:definitions name="TestJaxWsService"
 xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://example.com/example"

15. Mapping from WSDL to Java

299

 targetNamespace="http://example.com/example">

 <xsd:element name="getUserData" type="tns:getUserData"/>
 ...
 <xsd:complexType name="getUserData">
 <xsd:sequence>
 <xsd:element name="in0" type="xsd:string"/>
 <xsd:element name="in0" type="xsd:string"/>
 <xsd:element name="hoge" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 ...
 </xsd:schema>
 </wsdl:types>
...
 <wsdl:message name="getUserDataRequest">
 <wsdl:part name="inputParameters" element="tns:getUserData"/>
 </wsdl:message>
 ...
</wsdl:definitions>

(5) Precautions for mapping to parameters

• When you map the wrapper child element to Java, even if the parameter types of the method are different, if the
parameter names are the same, an error message is output in the standard error output and log and the processing
ends.

• The parameters mapped from the wrapper child elements of in and inout are mapped in the order of appearance
of the corresponding wrapper child elements in the wrapper element. The parameters mapped from the wrapper
child element of out are mapped in the order of appearance of the corresponding wrapper child elements in the
wrapper element.

• If the wrapper child elements of in, inout, and out are mixed, the wrapper child elements of in and inout
are mapped in the order of appearance of the corresponding wrapper child elements in the wrapper element. Then
the wrapper child element of out is mapped in the order of appearance of the corresponding wrapper child
elements in the wrapper element.

• The parameters of out (excluding the parameters mapped to the return value) and inout that are Java primitive
type, Java array type, and user-defined type are mapped to the Holder type (javax.xml.ws.Holder<T>) in
the Java source. The example is as follows:

Example:
Data type of the part of out and inout: java.lang.String
Data type after mapping to Java: javax.xml.ws.Holder<java.lang.String>

• Specify 0 to 254 as the number of parameters after mapping to Java. If you specify 255 or more parameters, an
error message is output in the standard error output and log and the processing ends (KDJW51016-E).

(6) Precautions for mapping to the return values
If there is 1 wrapper child element of out or if the local name of the wrapper child element of out is "return", that
value is mapped to the return value of the method. However, even if the types are different, if you code multiple
wrapper child elements with the local name "return", an error message is output in the standard error output and log
and the processing ends.

15.1.5 Mapping the message part to the parameter and return value (For
non-wrapper style)

This subsection describes the mapping of the WSDL message part (wsdl:part child element of the
wsdl:message element) to the parameters and return values of the Java methods.

This subsection describes the mapping for the non-wrapper style.

15. Mapping from WSDL to Java

300

(1) Mapping

• For mapping from a WSDL of a request-response operation
The following figure shows an example of mapping of parameters and return values of the Java methods and the
message part of a WSDL (define one wsdl:input element and one wsdl:output element , and zero or more
wsdl:fault elements) of a request-response operation.

Figure 15‒6: Example of mapping the message part to the parameters and return values (request-
response operation)

• For mapping from a WSDL of a one-way operation
The following figure shows an example of mapping of parameters of the Java method and the message part of a
WSDL (define only one wsdl:input element) of a one-way operation. Also, annotate javax.jws.Oneway
in the mapped Java method.

15. Mapping from WSDL to Java

301

Figure 15‒7: Example of mapping of message parts and parameter (one-way operation)

During the mapping, the first character of the message part name (name attribute of the wsdl:part element) is
converted into a lower-case character in both, the request-response operations and one-way operations.

Before conversion: PartName
After conversion: partName

• Relationship between the part types and the mapping to Java source
The following table describes the relationship between the part types (in, inout, out) and the mapping to Java
source:

Table 15‒11: Relationship between the part types and the mapping to Java source (Non-wrapper style)

No. WSDL part
types

Mapping to Java

Mapped to Mapping method

1 in Parameter Not mapped using javax.xml.ws.Holder<T> class. Mapped using
classes such as java.lang.String.

2 inout Parameter Mapped using javax.xml.ws.Holder<T> class.

3 out Parameter Mapped using javax.xml.ws.Holder<T> class.

4 Return value Not mapped using javax.xml.ws.Holder<T> class. Mapped using
classes such as java.lang.String.

(2) Conditions for part names
In the part name, you can code a string that fulfills all the conditions described in the following table. However, when
customizing with the binding declaration, you can code the strings that can be used as xsd:NCName type of the XML
Schema specification.

Table 15‒12: Conditions for strings that can be coded in the part name (non-wrapper style)

No. Conditions Examples of invalid
strings

Operations when invalid strings are
specified

1 Strings using only one-byte alphanumeric
characters (0 to 9, A to Z, a to z) and
underscore (_)

Hitachi_part The operation might not function properly
(error message is not displayed).

15. Mapping from WSDL to Java

302

No. Conditions Examples of invalid
strings

Operations when invalid strings are
specified

2 Strings other than Java reserved words # abstract An error message is output in the standard
error output and log and the processing
ends (KDJW51017-E).

3 Strings that do not begin with numeric
characters

1User_part An error message is output in the standard
error output and log and the processing
ends (KDJW51029-E).

#
You cannot code strings such as Abstract where the first character of the Java reserved word is in upper case (since the first
character is converted into a lower case character due to mapping).

(3) Handling when multiple parts reference the same global element
When the part that appears in the input message or output message is coded several times in WSDL, the part is
handled as the same part only when the part name is the same and the global element being referenced is the same.

If either the part name or the global element being referenced is different, the part is handled as a different part.

(4) Precautions for mapping to the parameters

• The part of in and inout is mapped in the order of appearance of the corresponding part in the input message.
The part of out is mapped in the order of appearance of the corresponding part in the output message.

• If the part of in, inout, and out are mixed, the part of in and inout is mapped in the order of appearance of
the corresponding part in the input message and then the part of out is mapped in the order of appearance of the
corresponding part in the output message.

• The part of out (excluding the parameters mapped to the return value) and inout that are Java primitive type
and Java array type, user-defined type are mapped to the Holder type (javax.xml.ws.Holder<T>) in the
Java source. The example is as follows:

Example:
Data type of the part of out and inout: java.lang.String
Data type after mapping to Java: javax.xml.ws.Holder<java.lang.String>

(5) Precautions for mapping to the return values
If there is only 1 part of out in the output message, the part is mapped to the return value of the method. If there are 2
or more parts of out, the parts are mapped to the return value.

15.1.6 Mapping the schema type to the Java type
This subsection describes the mapping of the types defined in the WSDL schema (xsd:schema child element of the
wsdl:types element) to the Java types.

(1) Mapping
The WSDL schema type and Java type are mapped in accordance with the JAXB 2.2 specifications.

The class-based mapping is performed when the schema type is mapped to the Java type. The operations of class-
based mapping are as follows:

• A JavaBeans class corresponding to the user-defined type is generated.

• A class corresponding to the user-defined element is not generated.

• The ObjectFactory class is output. Also, the corresponding JAXBElementJavaBeans-class-for-the-type is
returned using the create method for the user-defined element.

15. Mapping from WSDL to Java

303

The following figure shows an example of mapping:

Figure 15‒8: Example of mapping the schema type to the Java type

Reference note
Class-based mapping

Indicates that the mapping is the same as if the generateValueClass attribute of the globalBindings element of
JAXB is true and the generateElementClass attribute is false (default state of no specification).

15.1.7 Mapping the fault to the exception class
This subsection describes the mapping of the WSDL fault (name attribute of the wsdl:message element
referenced from the wsdl:fault element) to the exception class.

(1) Mapping
When the cjwsimport command is executed, the WSDL fault is mapped to the Java type in accordance with the
JAX-WS 2.2 specifications. The following figure shows an example of mapping:

15. Mapping from WSDL to Java

304

Figure 15‒9: Example of mapping the fault to the exception class

• Mapping to the fault bean
A fault bean is generated in accordance with the JAX-WS 2.2 specifications. The global element declaration
referenced from the fault part is mapped to the fault bean.

• Generated wrapper exception class
The wrapper exception class is generated in accordance with the JAX-WS 2.2 specifications. The generated
wrapper exception class inherits the java.lang.Exception class and has the javax.xml.ws.WebFault
annotation. The generated wrapper exception class also has the following methods:

• Constructor of FaultMessageName(String message, FaultBean faultInfo)#

This method has the message string and fault bean class as the arguments. Also, the constructor of the parent
class javax.xml.ws.WebFault is invoked in this constructor.

• Constructor of FaultMessageName(String message, FaultBean faultInfo, Throwable
cause)#

This method has the message string and fault bean class, and protocol-specific exception information as the
argument. Also, the constructor of the parent class javax.xml.ws.WebFault is invoked in this
constructor.

• getFaultInfo() method
This method does not have arguments. The return value is the fault bean class.

#
"FaultMessageName" indicates the message name (name attribute of the wsdl:message element)
referenced from the fault. Also, the argument "FaultBean" indicates the name of the fault bean class.

(2) Conditions for the fault name
In the fault name, you can code a string that fulfills all the conditions described in the following table. However, when
customizing with the binding declaration, you can code the strings that can be used as xsd:NCName type of the XML
Schema specification.

15. Mapping from WSDL to Java

305

Table 15‒13: Conditions for strings that can be coded in the fault name

No. Conditions Examples of invalid
strings

Operations when invalid strings are
specified

1 Strings using only one-byte alphanumeric
characters (0 to 9, A to Z, a to z) and
underscore (_)

Hitachi_fault The operation might not function properly
(error message is not displayed).

2 Strings that do not begin with numeric
characters

1User_fault An error message is output in the standard
error output and log and the processing
ends (KDJW51029-E).

(3) Number of parts of the messages referenced from the fault
The fault can reference messages with only 1 part coded. The following table describes the number of parts of the
messages referenced from the fault and the operations:

Table 15‒14: Number of parts of the messages referenced from the fault and the operations

No. Number of
coding Operations

1 0 An error message is output in the standard error output and log and the processing ends (KDJW51025-
E).

2 1 Terminates normally.

3 2 or more An error message is output in the standard error output and log and the processing continues
(KDJW51025-E).

(4) Handling when the same operation fault references the same message
When many different operation faults reference the same message, all the faults are handled as the same fault.
Therefore, when mapping to Java, a common wrapper exception class is assumed. The following figure shows an
example:

15. Mapping from WSDL to Java

306

Figure 15‒10: Example of mapping when the same operation fault references the same message

The following table describes the relationship between the operation coding the fault and the messages referenced
from the fault:

Table 15‒15: Relationship between the operation coding the fault and the referenced messages

No. Operation coding the fault Messages referenced
from the fault Handling of the fault

1 Different Same Handled as the same fault.

2 Different Handled as a different fault.

3 Same Same An error message is output in the standard error
output and log and the processing ends
(KDJW51026-E).

4 Different Handled as a different fault.

15.1.8 Mapping the binding extension element to the parameter
This subsection describes the mapping of the binding extension element (wsdl:binding element) of WSDL
binding to the method parameters.

(1) Mapping
The binding extension elements of the WSDL binding and the Java method parameters are mapped in accordance with
the JAX-WS 2.2 specifications. The following figure shows an example of mapping:

15. Mapping from WSDL to Java

307

Figure 15‒11: Example of mapping the binding extension elements to the parameters

• SOAP binding
You can code SOAP binding in the binding extension element.

! Important note
When multiple soap:header elements are coded, make sure that the local name of the global element referenced
from the message corresponding to each soap:header element is unique. If the local name is the same, an error
message is output in the standard error output and log and the processing ends (KDJW51205-E).

Mapping from the transport attribute value of the soap:binding or soap12:binding elements to the
javax.xml.ws.BindingType annotation
The following table describes the mapping from the transport attribute value of the soap:binding element
or the soap12:binding element, which is a child element of the wsdl:binding element of WSDL to the
javax.xml.ws.BindingType annotation.

Table 15‒16: Mapping the transport attribute value to javax.xml.ws.BindingType

Sr.N
o SOAP Version transport attribute value BindingType annotation value

1 SOAP 1.1 http://
schemas.xmlsoap.org/soap/
http

http://schemas.xmlsoap.org/soap/
http#1

2 http://
schemas.xmlsoap.org/wsdl/
soap/http?mtom=true

--#2

3 SOAP 1.2 http://
schemas.xmlsoap.org/soap/
http#3

http://www.w3.org/2003/05/soap/
bindings/HTTP/

15. Mapping from WSDL to Java

308

Sr.N
o SOAP Version transport attribute value BindingType annotation value

4 SOAP 1.2 http://www.w3.org/2003/05/
soap/bindings/HTTP/

http://www.w3.org/2003/05/soap/
bindings/HTTP/

5 http://www.w3.org/2003/05/
soap/bindings/HTTP/?
mtom=true

--#2

Legend:
--: None.

#1
Being the same value as the default value, in reality, the javax.xml.ws.BindingType annotation is omitted.

#2
Error occurs when the cjwsimport command is executed (KDJW51147-E).

#3
Since the general specifications of the transport attribute are ambiguous, you can use the following URL in JAX-WS.

• MIME binding
MIME binding is not supported.

15.1.9 Mapping the service and port to the service class
This subsection describes the mapping of the WSDL service (name attribute of the wsdl:service element) and
port (name attribute of the wsdl:port element) to the service class.

(1) Mapping
The WSDL service and port and the service class are mapped in accordance with the JAX-WS 2.2 specifications. The
following figure shows an example of mapping:

Figure 15‒12: Example of mapping the service and port to the service class

The WSDL service and port are also mapped to the skeleton class. The following figure shows an example of
mapping:

15. Mapping from WSDL to Java

309

Figure 15‒13: Example of mapping the service and port to the skeleton class

• Generated service class
The generated service class inherits the javax.xml.ws.Service class and has the
javax.xml.ws.WebServiceClient annotation. The generated service class also has the following
methods.

Table 15‒17: The methods included in a service class

No. Type of the
return value Method Name or Description Support

1 -- ServiceName()#1 Y

Des
crip
tion

A constructor of the parent class javax.xml.ws.Service#2

(java.net.URL wsdlDocumentLocation,
javax.xml.namespace.QName serviceName) is called in this
constructor.

For wsdlDocumentLocation and serviceName, use the
definitions mapped from a WSDL.

When the catalog functionality is enabled, map the definition to a
different URI specified in the catalog file and then use the definition
mapped from the WSDL as wsdlDocumentLocation.

For details on the catalog functionality, see 27. Catalog Functionality.

Exc
epti
on

javax.xml.ws.WebServiceException

2 -- ServiceName(javax.xml.ws.WebServiceFeature...
features)#1

N

3 -- ServiceName(java.net.URL wsdlLocation)#1 Y

Des
crip
tion

A constructor of the parent class javax.xml.ws.Service#2

(java.net.URL wsdlDocumentLocation,
javax.xml.namespace.QName serviceName) is called in this
constructor.

For ServiceName, use a definition mapped from a WSDL.

If the catalog functionality is enabled, map the URL pointing to the
WSDL location specified in this argument to the URI pointing to a
different WSDL location.

For details on the catalog functionality, see 27. Catalog Functionality.

Arg
um
ent

wsdlLocation:
A URL indicating the WSDL Location.

15. Mapping from WSDL to Java

310

No. Type of the
return value Method Name or Description Support

3 -- Exc
epti
on

Yjavax.xml.ws.WebServiceException

4 -- ServiceName(java.net.URL wsdlLocation,
javax.xml.ws.WebServiceFeature... features)#1

N

5 -- ServiceName(java.net.URL wsdlLocation,
javax.xml.namespace.QName serviceName)#1

Y

Des
crip
tion

A constructor of the parent class javax.xml.ws.Service#2

(java.net.URL wsdlDocumentLocation,
javax.xml.namespace.QName serviceName) is called in this
constructor.

Arg
um
ent

wsdlLocation:

A URL indicating the WSDL Location. If the catalog functionality is
enabled, map the URL pointing to the WSDL location specified in this
argument to the URI pointing to a different WSDL location.

For details on the catalog functionality, see 27.Catalog Functionality.

serviceName:
QName of the service.

Exc
epti
on

javax.xml.ws.WebServiceException

6 -- ServiceName(java.net.URL wsdlLocation,
javax.xml.namespace.QName serviceName,
javax.xml.ws.WebServiceFeature... features)

N

7 Proxy that
implements the
SEI

getPortName()#3 Y

Des
crip
tion

The getPort#2 (javax.xml.namespace.QName portName,
java.lang.Class<T> serviceEndpointInterface) method
of the parent class javax.xml.ws.Service is called.

For portName and serviceEndpointInterface, use the
definitions mapped from a WSDL.

This method is annotated by javax.xml.ws.WebEndpoint.

Exc
epti
on

javax.xml.ws.WebServiceException

8 Proxy that
implements the
SEI

getPortName(javax.xml.ws.WebServiceFeature...
features)#3

Y

Exp
lana
tion

The getPort#2 (javax.xml.namespace.QName portName,
java.lang.Class<T> serviceEndpointInterface,
WebServiceFeature... features) method of the parent class
javax.xml.ws.Service is called.

For portName and serviceEndpointInterface, use the
definitions mapped from a WSDL.

This method is annotated by javax.xml.ws.WebEndpoint.

Arg
um
ent

Features:
The javax.xml.ws.WebServiceFeature type of
variable length.

15. Mapping from WSDL to Java

311

No. Type of the
return value Method Name or Description Support

8 Proxy that
implements the
SEI

Exc
epti
on

Yjavax.xml.ws.WebServiceException

Legend:
--: Indicates that the type of return value is not available.
Y: Supported by the JAX-WS functionality of Cosminexus.
N: Not supported by the JAX-WS functionality of Cosminexus.

#1
ServiceName represents the service class name (the name attribute of the wsdl:service element).

#2
For details on the parent class javax.xml.ws.Service, see 19.2.2(4) javax.xml.ws.Service class.

#3
PortName represents a name with the first letter of the port name in uppercase (the name attribute of the wsdl: port
element).

(2) Conditions for the service name and port name
In the service name and port name, you can code a string that fulfills all the conditions described in the following
table. However, when customizing with the binding declaration, you can code the strings that can be used as
xsd:NCName type of the XML Schema specification.

Table 15‒18: Conditions for strings that can be coded in the service name and port name

No. Conditions Examples of invalid
strings

Operations when invalid strings are
specified

1 Strings using only one-byte alphanumeric
characters (0 to 9, A to Z, a to z) and
underscore (_)

Hitachi_service
Hitachi_port

The operation might not function properly
(error message is not displayed).

2 Strings that do not begin with numeric
characters

1User_service
1User_port

An error message is output in the standard
error output and log and the processing
ends (KDJW51029-E).

15.1.10 Mapping to the skeleton class
This section describes the skeleton class that implements SEI.

(1) Mapping
You can use the cjwsimport command to map the WSDL services and ports to the skeleton class. The following
figure shows an example of mapping the WSDL services and ports to the skeleton class.

15. Mapping from WSDL to Java

312

Figure 15‒14: Example of mapping the WSDL services and ports to the skeleton class

When mapping to the skeleton class, append the suffix Impl to the WSDL port type name (the name attribute of the
wsdl:portType element).

15.1.11 Precautions on mapping from WSDL to Java
This subsection describes the precautions on mapping from WSDL to Java.

(1) Overloading of Java methods
When multiple operations are coded in 1 port type, all the operation names must be unique. Therefore, when mapping
WSDL to Java, you cannot overload the Java methods. If the operation name is duplicated, customize the name and
specify a unique name for each operation.

(2) Mapping for name conflict
When the cjwsimport command is executed, a name conflict might occur in the SEI name, class name, method
name, and parameter name. This point describes the mapping for name conflict.

(a) Mapping for conflict between the SEI name and class name

When mapping WSDL to the Java source, if a name conflict occurs in the SEI name and class name (non-exception
Java class name, exception class name, service class name, and skeleton class name), the name conflict is resolved
according to the priority order.

The following table describes the priority order and solutions for a name conflict. No. indicates the priority order (No.
1 is the highest).

Table 15‒19: Priority order and solutions for name conflict

No. Types Solutions for name conflict

1 SEI name The priority order is highest, so the name is not changed.

2 Non-exception Java class name Suffix _Type is added to the class name.

3 Exception class name Suffix _Exception is added to the class name.

15. Mapping from WSDL to Java

313

No. Types Solutions for name conflict

4 Service class name Suffix _Service is added to the class name.

5 Skeleton class name Suffix _Impl is added to the class name.

The following figure shows an example of name resolution when a conflict occurs between the SEI name and the non-
exception Java class name:

Figure 15‒15: Name resolution when a conflict occurs between the SEI name and the non-exception Java
class name

If a class name with the same name as the class name to which a suffix is added due to name resolution is defined,
name conflict occurs again. In this case, the conflict is resolved by deleting the underscore from the defined class
name.

The following figure shows an example of name resolution when a name conflict occurs after a suffix is added:

15. Mapping from WSDL to Java

314

Figure 15‒16: Example of name resolution when a name conflict occurs after a suffix is added

Moreover, if a class name with the same name as the class name that was changed by the deletion of the underscore is
defined, an error message is output in the standard error output and log and the processing ends (KDJW51030-E#).

#
For a non-exception Java class, a different message is output.

(b) Mapping for conflict between the method name and parameter name

When mapping WSDL to the Java source, if a name conflict occurs in the methods and method parameters, the name
conflict is not resolved and an error occurs.

(3) Supporting JAXB annotations
The cjwsimport command supports Comformance 2.17 of the JAX-WS 2.2 specifications. When you execute the
cjwsimport command, the following JAXB annotations are added to SEI as required:

• javax.xml.bind.annotation.XmlAttachmentRef
• javax.xml.bind.annotation.XmlList
• javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter
• javax.xml.bind.annotation.XmlMimeType

Note that the MIME binding is not supported in the Cosminexus JAX-WS functionality, so the
javax.xml.bind.annotation.XmlMimeType annotation is not added. If MIME binding is specified, an
error message is output in the standard error output and log and the processing ends (KDJW51188-E).

15. Mapping from WSDL to Java

315

15.2 Customized mapping of WSDL to Java
You can customize the mapping of WSDL to the Java source by using the binding declaration. The methods of
customization using the binding declaration are as follows:

• Customizations in the embedded binding declaration

• Customizations with the external binding file

This section describes the customization methods and precautions for each of the above methods.

15.2.1 Customizations in the embedded binding declaration
To customize with the embedded binding declaration, use the jaxws:bindings element, code the binding
declaration directly in the WSDL document, and customize.

The following figure shows an example of using the embedded binding declaration to customize the package name:

Figure 15‒17: Example of package name customization (Embedded binding declaration)

The following points describe the points to remember when you customize with the embedded binding declaration:

(1) Specifying the jaxws:bindings element
The jaxws:bindings element is used as the container of the embedded binding declaration.

However, you cannot code the jaxws:bindings element as the child element of the jaxws:bindings element.
If coded as the child element of the jaxws:bindings element, an error message is output in the standard error
output and log and the processing ends (KDJW51034-E).

The following table describes the attributes of the jaxws:bindings element and the operations depending on
whether the attribute is specified:

15. Mapping from WSDL to Java

316

Table 15‒20: Relationship between the attributes of the jaxws:bindings element and the operations
depending on whether the attribute is specified (Embedded binding declaration)

No. Elements Specification of
attribute Operations

1 wsdlLocation Yes The attribute cannot be specified. Even if the attribute is specified, it is
ignored.

2 No Terminates normally.

3 Node Yes The attribute cannot be specified. Even if the attribute is specified, it is
ignored.

4 No Terminates normally.

5 Version Yes Only 2.0 can be specified in the attribute. If a value other than 2.0 is
specified, it is ignored and 2.0 is assumed.

6 No Terminates normally.

(2) Available binding declarations
The following table lists the binding declarations that can be used in the Cosminexus JAX-WS functionality when you
use the embedded binding declaration. For details about each binding declaration, see JAX-WS 2.2 specifications.

Table 15‒21: Available binding declarations (Embedded binding declaration)

Element name Attribute name Description

wsdl:definitions and jaxws:bindings
elements

version In the version attribute, you code the WSDL
customization version.

Child element of jaxws:bindings element -- This is the child element of the
jaxws:bindings element.

jaxws:package name In the name attribute, you code the Java package
name corresponding to the targetNamespace
attribute of the wsdl:definitions element.

jaxws:javadoc -- This is the Javadoc string that is added to the Java
package.

jaxws:enableWrapperStyle -- Shows the enabling or disabling of wrapper style
for all the WSDL operations.

jaxws:enableAsyncMapping -- Shows the enabling or disabling of asynchronous
mapping for all the WSDL operations.

wsdl:definitions, wsdl:portType, and

child element of the jaxws:bindings element

-- This is the child element of the
jaxws:bindings element included in the
wsdl:definitions and wsdl:portType
element.

jaxws:class name In the name attribute, you code the completely
modified name of SEI corresponding to the
wsdl:portType element.

jaxws:javadoc -- You code the Javadoc string to be added to SEI.

jaxws:enableWrapperStyle -- Shows the enabling or disabling of wrapper style
for the wsdl:portType element.

jaxws:enableAsyncMapping -- Shows the enabling or disabling of asynchronous
mapping for the wsdl:portType element.

wsdl:definitions/ wsdl:portType/
wsdl:operation/ Child element of
jaxws:bindings element

-- This is the child element of the
jaxws:bindings element included in the

15. Mapping from WSDL to Java

317

Element name Attribute name Description

wsdl:definitions/ wsdl:portType/
wsdl:operation/ Child element of
jaxws:bindings element

-- wsdl:definitions, wsdl:portType, and
wsdl:operation elements.

jaxws:method name In the name attribute, you code the Java method
name corresponding to the wsdl:operation
element.

jaxws:javadoc -- This is the Javadoc string that is added to the
method.

jaxws:enableWrapperStyle -- Shows the enabling or disabling of wrapper style
for the wsdl:operation element.

jaxws:enableAsyncMapping -- Shows the enabling or disabling of asynchronous
mapping for the wsdl:operation element.

jaxws:parameter part In the part attribute, you code the XPath
expression that identifies the wsdl:part child
element of the wsdl:message element.

childEleme
ntName

In the childElementName attribute, you code
the child element name of the global type
definition or global element declaration
referenced by the wsdl:part element.

name In the name attribute, you code the parameter
name of the element identified by the part
attribute and childElementName attribute.

wsdl:definitions, wsdl:portType,
wsdl:operation, wsdl:fault, and

child element of the jaxws:bindings element

-- This is the child element of the
jaxws:bindings element included in the
wsdl:definitions, wsdl:portType,
wsdl:operation, and wsdl:fault
elements.

jaxws:class name In the name attribute, you code the completely
modified name of the exception class
corresponding to the wsdl:fault element.

jaxws:javadoc -- This is the Javadoc string that is added to the
exception class.

wsdl:definitions, wsdl:binding,
wsdl:operation element, and

child element of the jaxws:bindings element

-- This is the child element of the
jaxws:bindings element included in the
wsdl:definitions, wsdl:binding,
wsdl:operation elements.

jaxws:parameter part In the part attribute, you code the XPath
expression that identifies the wsdl:part child
element of the wsdl:message element.

childEleme
ntName

In the childElementName attribute, you code
the child element name of the global type
definition or global element declaration
referenced by the wsdl:part element.

name In the name attribute, you code the parameter
name of the element identified by the part
attribute and childElementName attribute.

wsdl:definitions, wsdl:service, child
element of jaxws:bindings element

-- This is the child element of the
jaxws:bindings element included in the
wsdl:definitions, wsdl:service
elements.

15. Mapping from WSDL to Java

318

Element name Attribute name Description

jaxws:class name In the name attribute, you code the completely
modified name of the service class corresponding
to the wsdl:service element.

jaxws:javadoc -- This is the Javadoc string that is added to the
service class name.

wsdl:definitions, wsdl:service,
wsdl:port, child element of jaxws:bindings
element

-- This is the child element of the
jaxws:bindings element included in the
wsdl:definitions, wsdl:service,
wsdl:port elements.

jaxws:method name In the name attribute, you code the getter
method name corresponding to the wsdl:port
element.

jaxws:javadoc -- This is the Javadoc string that is added to the
getter method.

jaxws:provider -- If you specify true, SEI is not generated. The
getter method of the port is omitted in the
service interface that is generated.

For details about the jaxws:provider
element, see the section 15.2.7 Operation when
the jaxws:provider element is coded.

Legend:
--: Indicates that attributes that can be used in the binding declaration do not exist.

As described in the above table, the location where the jaxws:bindings element and its child element can be
coded in a WSDL is defined in the JAX-WS 2.2 specifications. If these elements are coded in locations that are not
defined, an error message is output in the standard error output and log and the processing ends (KDJW51029- E).

If you code elements that cannot be coded as the child element of a jaxws:bindings element, an error message is
output in the standard error output and log and the processing ends (KDJW51040-E).

Furthermore, if you code attributes that cannot be coded in the attributes of the jaxws:bindings element and its
child element, an error message is output in the standard error output and log and the processing ends (KDJW51029-
E).

(3) Repetition of elements and attributes
If an attribute is coded repeatedly in the jaxws:bindings element and its child element, an error message of
Cosminexus XML Processor is output to the standard error output and log and the processing ends.

You cannot specify the customization of the same object by using the embedded binding declaration. Also, you cannot
specify the child element of the jaxws:bindings element repeatedly. If specified, the operation might not function
properly.

(4) Priority order of jaxws:enableWrapperStyle element
You can code the jaxws:enableWrapperStyle element in the following locations in WSDL. The following is
the priority order when the element is coded in multiple locations at the same time:

1. wsdl:portType/wsdl:operation/jaxws:bindings/jaxws:enableWrapperStyle
2. wsdl:portType/jaxws:bindings/jaxws:enableWrapperStyle
3. wsdl:definitions/jaxws:bindings/jaxws:enableWrapperStyle

The number shows the priority order. No.1 is the highest and the element value with a high priority order is enabled.

15. Mapping from WSDL to Java

319

15.2.2 Customizations with the external binding file
To customize with the external binding file, prepare a file that collectively codes the binding declaration separately
from WSDL, read that file at the same time as the WSDL document, and customize. The external binding file can be
read several times.

The following figure shows an example of using the external binding file to customize the package name:

Figure 15‒18: Example of package name customization (external binding file)

The following points describe the points to remember when you customize with the external binding file:

(1) Specifying the jaxws:bindings element
Like the embedded binding declaration, for the external binding file, the jaxws:bindings element is used as a
container.

However, unlike the embedded binding declaration, you can code the jaxws:bindings element as the child
element of the jaxws:bindings element.

The following table describes the attributes of the jaxws:bindings element and the operations depending on
whether the attribute is specified:

Table 15‒22: Relationship between the attributes of the jaxws:bindings element and the operations
depending on whether the attribute is specified (external binding file)

No. Coding location Elements Specification
of attribute Operations

1 Root jaxws:bindings#1 wsdlLocati
on

Yes Make sure you specify the attribute. The WSDL
at the specified location is assumed to be the
WSDL file to be customized. For details on the

15. Mapping from WSDL to Java

320

No. Coding location Elements Specification
of attribute Operations

1 Root jaxws:bindings#1 wsdlLocati
on

Yes method of specification, see 15.2.2(1)(a)
Coding format of the wsdlLocation attribute.

2 No If the attribute is not specified, the external
binding file is ignored (terminates normally
without customization).

3 Node Yes You can specify the attribute in the XPath 1.0
format. The specified element is assumed to be
the target for customization. For details about
the method of specification, see 15.2.2(1)(b)
Coding format of the node attribute.

4 No The element to be customized is assumed a
WSDL root (wsdl:definitions element).

5 Version Yes "2.0" can be specified. For details about the
method of specification, see 15.2.2(1)(c)
Coding format of the version attribute.

6 No 2.0 is assumed to be specified.

7 Non-root
jaxws:bindings#2

wsdlLocati
on

Yes The attribute cannot be specified. Even if the
attribute is specified, it is ignored.

8 No Terminates normally.

9 node Yes Make sure you specify the attribute. The
specified element is assumed to be the target for
customization. For details about the method of
specification, see 15.2.2(1)(b) Coding format of
the node attribute.

10 No There is no target for customization, so
terminates normally without customization.

11 version Yes The attribute cannot be specified. Even if the
attribute is specified, it is ignored.

12 No Terminates normally.

#1
'Root jaxws:bindings' indicates the jaxws:bindings element coded at the top of the external binding file.

#2
'Non-root jaxws:bindings' indicates the jaxws:bindings element coded under the child element of the root
jaxws:bindings.

(a) Coding format of the wsdlLocation attribute

You specify the value to be specified in the wsdlLocation attribute of the jaxws:bindings element with a
URL. The files that you specify using a URL might be either remote files or local files. You can also specify a local
file with a relative path.

If you use the wrong format for coding or if the file does not exist, an error message is output in the standard error
output and log and the processing ends (KDJW51043-E).

For the URL, use a string complying with the rules of the RFC 2396 specifications. Perform percent encoding with
UTF-8 according to the rules of the RFC 2396 specifications, when a character string not complying with rules of the
RFC 2396 specifications is used. However, you cannot use an ampersand (&) even when the percent encoding is
performed. If the rules of the RFC 2396 specifications are not followed and you specify the characters and character
strings that are not encoded, the operation is not guaranteed. Furthermore, the operation might not function properly if
a file other than the WSDL file is specified in the wsdlLocation attribute.

The following is an example of the correct coding of the wsdlLocation attribute:

15. Mapping from WSDL to Java

321

<jaxws:bindings xmlns:jaxws=http://java.sun.com/xml/ns/jaxws
 wsdlLocation="file:///D:/tmp/example.wsdl" version="2.0">
 ...
</jaxws:bindings>

(b) Coding format of the node attribute

You specify the value to be specified in the node attribute of the jaxws:bindings element using the XPath 1.0
format.

If you use the wrong format for coding, an error message is output in the standard error output and log and the
processing ends (KDJW51038-E).

The following is an example of coding of the node attribute. In this example, the name attribute of the
wsdl:definitions/ wsdl:portType elements indicates a binding declaration for the AddNumbersImpl
element.

<jaxws:bindings node="wsdl:definitions/wsdl:portType[@name='AddNumbersImpl']">
 ...
</jaxws:bindings>

In the node attribute of the non-root jaxws:bindings element, you can specify the relative path (XPath 1.0
format) from the elements to be customized, specified in the node attribute of the root jaxws:bindings element.
The following is the coding example in this case:

<jaxws:bindings node="wsdl:definitions/wsdl:portType[@name='UserInfoPortType']"
 ...
 <jaxws:bindings node="../wsdl:service[@name='UserInfoService']">
 ...
 </jaxws:bindings>
</jaxws:bindings>

(c) Coding format of the version attribute

Specify 2.0 as the value of the version attribute of the jaxws:bindings element.

If a value other than 2.0 is coded, an error message is output in the standard error output and log and the processing
ends (KDJW51039-E).

The following is an example of the correct coding of the version attribute:

<jaxws:bindings xmlns:jaxws=http://java.sun.com/xml/ns/jaxws
 wsdlLocation="file:///D:/tmp/example.wsdl" version="2.0">
 ...
</jaxws:bindings>

(2) Available binding declarations
The following table lists the binding declarations that can be used in the Cosminexus JAX-WS functionality when you
use the external binding file. For details about each binding declaration, see JAX-WS 2.2 specifications.

Table 15‒23: Available binding declarations (External binding file)

Element name Attribute name Description

jaxws:bindings element wsdlLocation In the wsdlLocation attribute, you code the file path
(URL) of the external binding file.

node In the node attribute, you code the element to be
customized in WSDL.

version In the version attribute, you code the WSDL
customization version.

The child element of the
jaxws:bindings element

-- This is the child element of the jaxws:bindings
element.

15. Mapping from WSDL to Java

322

Element name Attribute name Description

jaxws:package name In the name attribute, you code the Java package name
corresponding to the targetNamespace attribute of the
wsdl:definitions element.

jaxws:javadoc -- This is the Javadoc string that is added to the Java package.

jaxws:enableWrapperStyl
e

-- Shows the enabling or disabling of wrapper style for each
element.

jaxws:enableAsyncMappin
g

-- Shows the enabling or disabling of asynchronous mapping
for each element.

jaxws:class name In the name attribute, you code the class name
corresponding to each element.

jaxws:javadoc -- This is the Javadoc string that is added to the class.

jaxws:method name In the name attribute, you code the Java method name
corresponding to each element.

jaxws:javadoc -- This is the Javadoc string that is added to the method.

jaxws:parameter part In the part attribute, you code the XPath expression that
identifies the wsdl:part child element of the
wsdl:message element.

childElementNam
e

In the childElementName attribute, you code the child
element name of the global type definition or global
element declaration referenced by the wsdl:part
element.

name In the name attribute, you code the parameter name of the
element identified by the part attribute and
childElementName attribute.

jaxws:provider -- If you specify true, SEI is not generated. The getter
method of the port is omitted in the service interface that is
generated.

For details about the jaxws:provider element, see the
section 15.2.7 Operation when the jaxws:provider element
is coded.

Legend:
--: Indicates that attributes that can be used in the binding declaration do not exist.

As described in the above table, the location where the jaxws:bindings element and its child element can be
coded in a WSDL is defined in the JAX-WS 2.2 specifications. If these elements are coded in locations that are not
defined, an error message is output in the standard error output and log and the processing ends (KDJW51029-E).

If you code elements that cannot be coded as the child element of the jaxws:bindings element, an error message
is output in the standard error output and log and the processing ends (KDJW51040-E).

Furthermore, if you code attributes that cannot be coded in the attributes of the jaxws:bindings element and its
child element, an error message is output in the standard error output and log and the processing ends (KDJW51029-
E).

Note that you cannot code the binding declaration of JAXB specifications. If coded, the operations might not function
properly.

(3) Repetition of elements and attributes
If an attribute is coded repeatedly in the jaxws:bindings element and its child element, an error message of
Cosminexus XML Processor is output in the standard error output and log and the processing ends.

You cannot specify the customization of the same object by using the external binding file. If specified, the operations
might not function properly.

15. Mapping from WSDL to Java

323

(4) Customization of WSDL read in the wsdl:import element
When you want to customize WSDL to be imported with the wsdl:import element using the external binding file,
specify WSDL to be imported with the wsdl:import element using the wsdlLocation attribute of the
jaxws:bindings element.

When customizing WSDL to be imported with the wsdl:import element, if WSDL at the wsdl:import source
is specified by mistake, the target for customization specified in the node attribute of the jaxws:bindings
element is not found. In this case, an error message is output in the standard error output and log and the processing
ends (KDJW51187-E).

15.2.3 Concurrent specification of the embedded binding declaration and
external binding file

When the targets for customization in the embedded binding declaration and external binding file are different, the
respective customization contents are enabled.

If the targets for customization in the embedded binding declaration and external binding file are the same, the
embedded binding declaration is disabled.

15.2.4 Value that can be specified in the jaxws:bindings element
The following table lists the elements and attributes that can be specified in the jaxws:bindings element:

Table 15‒24: Specification of attributes of the jaxws:bindings element

Element name Attribute name Specificatio
n

The child element of the wsdl:definitions/jaxws:bindings element

jaxws:package name Y

jaxws:javadoc -- Y

jaxws:enableWrapperStyle -- Y

jaxws:enableAsyncMapping -- Y

jaxws:enableMIMEContent -- N

The child element of the wsdl:portType/jaxws:bindings element

jaxws:class name Y

jaxws:javadoc -- Y

jaxws:enableWrapperStyle -- Y

jaxws:enableAsyncMapping -- Y

The child element of the wsdl:portType/wsdl:operation/jaxws:bindings element

jaxws:method name Y

jaxws:javadoc -- Y

jaxws:enableWrapperStyle -- Y

jaxws:enableAsyncMapping -- Y

jaxws:parameter part Y

childElementNa
me

Y

15. Mapping from WSDL to Java

324

Element name Attribute name Specificatio
n

jaxws:parameter name Y

The child element of the wsdl:portType/wsdl:operation/wsdl:fault/jaxws:bindings element

jaxws:class name# Y

jaxws:javadoc -- Y

The child element of the wsdl:binding/jaxws:bindings element

jaxws:enableMIMEContent -- N

The child element of the wsdl:binding/wsdl:operation/jaxws:bindings element

jaxws:enableMIMEContent -- N

jaxws:parameter part Y

childElementNa
me

Y

name Y

The child element of the wsdl:service/jaxws:bindings element

jaxws:class name Y

jaxws:javadoc -- Y

The child element of the wsdl:service/wsdl:port/jaxws:bindings element

jaxws:method name Y

jaxws:javadoc -- Y

jaxws:provider -- Y

Legend:
--: Indicates that attributes that can be used in the binding declaration do not exist.
Y: Indicates that the elements and attributes can be specified.
N: Indicates that the elements and attributes cannot be specified (not supported).

#
When you customize the fault name, make sure that the customized fault name is not duplicated with other fault names. If the
name is repeated, the operations might not function properly.

If you specify a binding element that cannot be specified, an error message is output in the standard error output and
log and the processing ends (KDJW51188-E).

The following points describe the value that can be specified in the elements and attributes:

(1) Values that can be specified in the name attribute
In the name attribute, you can only specify the following values. If other value and strings are specified, the
operations might not function properly.

• Value that can be used as Java identifiers

• One-byte alphanumeric characters (0 to 9, A to Z, a to z)

• Underscore (_), dollar mark ($)

• Period (.) #

#
You can use this only when customizing the wsdl: portType element, wsdl:fault element, or
wsdl:service element.

15. Mapping from WSDL to Java

325

When you customize the class name and method name using the name attribute, an error occurs if the customized
name is duplicated with another name, so make sure that the name is not repeated.

When you customize the SEI name corresponding to the Wsdl: portType element, the exception class name
corresponding to the wsdl: fault element or the service name corresponding to the wsdl: service element
with the jaxws: class element, if you specify a class name that includes the package name, the specified class
name serves as a Java class of the specified package name. If you specify a class name that does not include the
package name, the specified class name serves as a Java class with the package name that is mapped from the WSDL
name space (the targetNamespace attribute of the wsdl:definitions element).

(2) Values that can be specified in the jaxws:javadoc element
In the jaxws:javadoc element, you can only specify the following values. If other values are specified, the
operations might not function properly.

• One-byte alphanumeric characters (0 to 9, A to Z, a to z)

• One-byte signs ("/*", "//", "\", "\n\r")#1

• One-byte Katakana

• Two-byte Hiragana, Two-byte Katakana, two-byte alphanumeric characters

• Two-byte level-1 Kanji set

• Java reserved words

• Spaces and null characters#2

#1
The one-byte sign ("*/") is handled as the end of the Javadoc, so this sign cannot be used.

#2
The line with spaces and null characters is deleted during source code generation.

(3) Values that can be specified in the jaxws:enableWrapperStyle element
In the jaxws:enableWrapperStyle element, you can specify the boolean value (true or false). If other
values are specified, the operations might not function properly.

The wrapper style is enabled only when WSDL is coded in the wrapper style and the value of this element is specified
as true.

(4) Values that can be specified in the jaxws:enableAsyncMapping element
In the jaxws:enableAsyncMapping element, you can only specify the boolean value (false). If other values
are specified, the operations might not function properly.

(5) Values that can be specified in the part attribute
In the part attribute, you can only specify the following values. If other values are specified, the operations might
not function properly.

• XPath expression of the wsdl:part child element of the existing wsdl:message element

• XPath expression of the wsdl:part child element of the wsdl:message referenced from the existing
soap:header

• XPath expression of the wsdl:part child element of the wsdl:message element that is not used in the
wsdl:operation element

(6) Values that can be specified in the childElementName attribute
You can only specify QName of the qualified name of an existing type definition. If QName of the qualified name of a
non-existent type definition is specified, the operation terminates normally without resulting in an error. In this case,
the target for customization is ignored.

15. Mapping from WSDL to Java

326

(7) Values that can be specified in the jaxws:provider element
You can specify a boolean value (true or false). If you specify any other values, the operation is not guaranteed.

(8) Un-supported elements
You cannot specify the binding elements that are not supported in the Cosminexus JAX-WS functionality. If un-
supported binding elements are specified, the operations might not function properly.

15.2.5 Values of the elements to be customized
The values of the elements in the WSDL document forming the target of customization by the embedded binding
declaration or external binding file are not mapped to Java. Therefore, if the characters can be coded in the target of
customization as WSDL 1.1 specifications, you might code any character.

15.2.6 Dealing with the name conflict
By customization, a name conflict might occur in the SEI name, class name, method name, and parameter name. The
method of resolving the name conflict (such as priority order) is similar to that in default mapping. For details about
the method of resolving the name conflict, see 15.1.11 (2) Mapping for name conflict.

However, for the SEI name and class name, when you customize the one with a lower priority, the name is resolved
when name conflict occurs, but when you customize the one with a higher priority, the name conflict is not resolved
when the name conflict occurs. In this case, an error message is output in the standard error output and log and the
processing ends (KDJW51030-E#).

#
For a non-exception Java class, a different message is output.

15.2.7 Operations when the jaxws:provider element is coded
When you code the jaxws:provider element in the wsdl:port element, and then execute the cjwsimport
command, the SEI for the wsdl:port element is not generated. A warning message is output and the processing
continues (KDJW51206-W). In such cases, use the javax.xml.ws.Provider interface to generate a Provider
Implementation Class.

Also, the getter method of the wsdl:port element is omitted in the generated service class.

When you specify the -generateService option in the cjwsimport command, and code the
jaxws:provider element in the wsdl:port element, the skeleton class is not generated. A warning message is
output and the processing continues (KDJW51207-W).

15.2.8 Notes on customizing the SEI name
To customize under the following conditions, specify a value other than Provider in the SEI name and a value
other than http://ws.xml.javax in the package name, and then confirm that the SEI name is not changed to
javax.xml.ws.Provider by the including the package name:

• Package name: jaxws:package element

• SEI name: jaxws:class element

Use javax.xml.ws.Provider as a keyword, when coding the jaxws:provider element in the wsdl:port
element, and specify for using the javax.xml.ws.Provider interface in the Service Implementation Class.

15. Mapping from WSDL to Java

327

15.2.9 Notes on customizing inout parameter name in the jaxws:
parameter element

Customize both the input message and output message parameter names when customizing inout parameter
names in the jaxws:parameter element. Behavior is not guaranteed if only one of the parameter names is
customized.

15.2.10 Skeleton class name when the SEI name is customized with the
jaxws:class element

When you customize the SEI name with the jaxws:class element, the skeleton class name is mapped by
assigning the Impl suffix to the customized SEI name.

15. Mapping from WSDL to Java

328

16 Mapping from Java to WSDL
When you execute the apt command or the cjwsgen command, the Java source is
mapped to a WSDL in accordance with the JAX-WS 2.2 specifications.

This chapter describes the default mapping and customized mapping of Java to
WSDL.

329

16.1 Default mapping of Java to WSDL
The following table describes the corresponding relationship, when mapping a Java source with a WSDL:

Table 16‒1: List of mapping of Java source to WSDL

No. Java source WSDL Reference

1 Package name WSDL name space 16.1.1

2 SEI name Port type 16.1.3

3 Name of the method of SEI Operation 16.1.4

4 Parameter and return value of the method of SEI Part 16.1.5, 16.1.6

5 SEI wrapper exception class Fault 16.1.7

6 SEI and Web Service Implementation Class Binding 16.1.8

7 Web Service Implementation Class Service and port 16.1.9

16.1.1 Mapping the package name to the name space
This subsection describes the mapping of the Java package name to the WSDL name space (targetNamespace
attribute of the wsdl:definitions element).

(1) Mapping
The package name of the SEI and Web Service Implementation Class and the WSDL name space are mapped in
accordance with the JAX-WS 2.2 specifications. The following figure shows an example of mapping:

Figure 16‒1: Example of mapping the Java package name to the name space

(2) Conditions for the package name
You can code the strings by fulfilling all the conditions described in the following table in the Java package name
segments separated by period (.). However, when using targetNamespace element of the
javax.jws.WebService annotation, you can code strings complying with the naming rules of the Java identifiers
provided in the Java language specifications.

Table 16‒2: Conditions for strings that can be coded in the Java package name segments

No. Condition Examples of invalid
string

Operation when an invalid string is
specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A to
Z, a to z)

package
com.Hitachi

The operations might not function properly
(error message is not displayed).

2 Strings complying with the naming
rules of the Java identifiers provided in
the Java language specifications

package
com.abstract;

When the apt command is executed, a
compilation error occurs and the processing
ends. For details, see the JDK
documentation.

16. Mapping from Java to WSDL

330

(3) Using the targetNamespace element of the javax.jws.WebService annotation
If the SEI or Web Services Implementation Class that you enter is the default package, code the name space name in
the targetNamespace element of the javax.jws.WebService annotation.

If the name space name is not coded in the targetNamespace element of the javax.jws.WebService
annotation, an error message is output to the standard error output and log (KDJW61004-E).

For details about the targetNamespace element of the javax.jws.WebService annotation, see 16.2.9
javax.jws.WebService annotation.

16.1.2 Mapping the Web Service Implementation Class to SEI
This subsection describes the preconditions and points to remember when you map the Web Service Implementation
Class to SEI.

(1) Conditions for Web Service Implementation Class
The following are the conditions for the Web Service Implementation Class:

• You must implement all the methods of SEI. If all the methods are not implemented, an error message is output to
the standard error output and log (KDJW61011-E).

• As a Web Service operation, you cannot define the finalize method that overrides the finalize method of
the Object class. If such a method is defined, an error message is output to the standard error output and log
(KDJW61012-E).

• You must define a public default constructor. If such a constructor is not defined, an error message is output to the
standard error output and log and the error is notified to the apt command (KDJW61013-E).

• You must code the javax.jws.WebService annotation. If the javax.jws.WebService annotation is
not coded, the class is determined as a non-Web Service Implementation Class. If it is determined that the Web
Service Implementation Class does not exist, a warning message is output (KDJW61001-W).

• The javax.jws.WebService annotation can be defined using a static inner class. If a non-static inner class is
used, an error message is output to the standard error output and log (KDJW61015-E).

• Set the access modifier of the Web Service Implementation Class to public. You cannot specify final and
abstract. If a value other than public is specified, an error message is output to the standard error output and log
(KDJW61016-E).

• The Web Service Implementation Class might perform implements for SEI. If you are writing implements,
and the -sourcepath option is specified when the apt command is executed, you must specify both SEI and
the Web Service Implementation Class in the argument. If implements is not performed and SEI is not
specified in the argument of the apt command, the SEI information is only referenced by the
endpointInterface element of the javax.jws.WebService annotation, but is not included as a target
for compilation, so the SEI class file is not generated.

(2) Using the endpointInterface element of the javax.jws.WebService annotation
In the mapping of the Web Service Implementation Class to SEI, you can use the endpointInterface element of
the javax.jws.WebService annotation to link the Web Service Implementation Class and SEI.

When only the Web Service Implementation Class is defined, the endpointInterface element is not used. In
this case, the abstract information defined in SEI is extracted from the information in the Web Service Implementation
Class and is assumed that a virtual SEI exists (implicit SEI).

For details about the endpointInterface element of the javax.jws.WebService annotation, see 16.2.9
javax.jws.WebService annotation.

16.1.3 Mapping the SEI name to the port type
This subsection describes the mapping of the Java SEI name to the WSDL port type name (name attribute of the
wsdl:portType element).

16. Mapping from Java to WSDL

331

(1) Mapping
The Java SEI name and the WSDL port type are mapped in accordance with the JAX-WS 2. 2 specifications.

If the endpointInterface element is not used in the javax.jws.WebService annotation of the service
implementation class, implicit SEI with the same name as the Web Service Implementation Class name is assumed to
be exist and is mapped to the WSDL port type. The following figure shows an example of mapping:

Figure 16‒2: Example of mapping SEI name to the port type

(2) Conditions for SEI
The following are the conditions for the Web Service Implementation Class:

• The javax.jws.WebService annotation must be coded. If the annotation is not coded, an error message is
output to the standard error output and log (KDJW61020-E).

• The java.rmi.Remote interface might be inherited.

(3) Conditions for SEI name
In the SEI name, you can code strings that fulfill all the conditions described in the following table. However, when
using the name element of the javax.jws.WebService annotation, you can code strings complying with the
naming rules of the Java identifiers provided in the Java language specifications.

Table 16‒3: Conditions for strings that can be coded in the SEI name

No. Condition Example of invalid
string

Operation when an invalid string is
specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A to Z,
a to z) and underscore (_)

Hitachi_sei The operations might not function properly
(error message is not displayed).

2 Strings complying with the naming
rules of the Java identifiers provided in
the Java language specifications

abstract When the apt command is executed, a
compilation error occurs and the processing
ends. For details, see the JDK documentation.

16.1.4 Mapping the name of method of SEI to an operation
This subsection describes the mapping the name of method of SEI and WSDL operation (name attribute of the
wsdl:operation element).

(1) Mapping
The name of the method of SEI and the WSDL operation are mapped in accordance with the JAX-WS 2.2
specifications. The following figure shows an example of mapping:

16. Mapping from Java to WSDL

332

Figure 16‒3: Example of mapping the name of method of SEI to an operation

The following conditions must be fulfilled to make the SEI method public:

• The access modifier is public

• A static modifier or final modifier has not been applied

• If annotated by the javax.jws.WebMethod annotation, the exclude element of the
javax.jws.WebMethod annotation is not true

The following are the rules for mapping the name of method of SEI to the operation:

• Regardless of whether the javax.jws.WebMethod annotation is present, all the public methods of SEI are
mapped to the WSDL operation.

• If the endpointInterface element of the javax.jws.WebService annotation is not used, it is
considered that an implicit SEI has the public method of the Web Service Implementation Class and is mapped to
the WSDL operations. For details about the methods mapped to the implicit SEI, see 16.2.6 javax.jws.WebMethod
annotation.

• When a Web Service Implementation Class inherits another Web Service Implementation Class, all the methods
meeting the following conditions are mapped to WSDL operations:
(Conditions)
The public method in the Web Service Implementation Class and parent Web Service Implementation Class,
wherein the exclude element of the javax.jws.WebMethod annotation is not true.

• If a Web Service Implementation Class inherits another Web Service Implementation Class and overrides the
parent class methods, the public methods overridden in the Web Service Implementation Class are mapped to the
WSDL operations. The methods overridden in the parent class are not mapped.

• In the public methods that can be defined in SEI and the public methods of Web Service Implementation Class,
you can define 255 public methods. If 256 or more public methods are defined, a warning message is output to the
standard error output and log and the processing continues (KDJW61026-W).

• The value of the name attribute of the wsdl:operation element mapped from the name of method of SEI
must be unique in WSDL. If a name conflict occurs, an error message is output to the standard error output and
log (KDJW61060-E).

• If no public method exists, the system outputs an error message to the standard error output and log, and ends the
operation (KDJW61093-E).

(2) Conditions for method name
In the method name, you can code strings that fulfill all the conditions described in the following table:

Table 16‒4: Conditions for strings that can be coded in the method name

No. Condition Example of invalid string Operation when an invalid string is
specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A to
Z, a to z) and underscore (_)

Hitachi_sei The operations might not function properly
(error message is not displayed).

16. Mapping from Java to WSDL

333

No. Condition Example of invalid string Operation when an invalid string is
specified

2 Strings complying with the naming
rules of the Java identifiers provided
in the Java language specifications

Abstract When the apt command is executed, a
compilation error occurs and the processing
ends. For details, see the JDK
documentation.

However, when all the following annotations are used, you can code strings complying with the naming rules of the
Java identifiers provided in the Java language specifications:

• The operationName element of the javax.jws.WebMethod annotation

• The localName element and className element of the javax.xml.ws.RequestWrapper annotation
(for wrapper style)

• The localName element and className element of the javax.xml.ws.ResponseWrapper annotation
(for wrapper style)

• The name element of the javax.jws.WebParam annotation (for non-wrapper style)

• The name element of the javax.jws.WebResult annotation (for non-wrapper style)

(3) Name conflict due to overloading
When using the method overloading, a name conflict occurs in the default mapping; therefore, you must customize the
name using annotation so that the name is unique.

The following table describes the locations where the name conflict occurs due to overloading and their references:

Table 16‒5: Location where the name conflict occurs due to overloading and references

No. Location where the name conflict
occur

Annotation reference

Wrapper style Non-wrapper style

1 Operation name 16.2.6(2)

2 Global element of input# 16.2.16(1), 16.2.16(2) 16.2.7(2), 16.2.7(5)

3 Global element of output# 16.2.17(1), 16.2.17(2) 16.2.8(2), 16.2.8(4)

4 Request bean class name 16.2.16(3)

5 Response bean class name 16.2.17(3)

#
If you customize either the local name or name space, the name conflict will not occur.

16.1.5 Mapping the parameter and return value to the message part (For
wrapper style)

This subsection describes the mapping of parameters of method of SEI to WSDL (name attribute of the wsdl:part
element).

This subsection describes the mapping for the wrapper style.

(1) Mapping
For the wrapper style, the name of the method of SEI and a request bean with the same name as the name of the
method of SEI will be generated. A response bean with the suffix 'Response' added to it will also be generated. The
request and response beans can either be generated automatically by using the apt command or cjwsgen command,
or you can dynamically generate them when starting Web Services. When dynamically generating the request and
response beans, for a preliminary error check, you can execute the cjwsgen command for the compiled Web

16. Mapping from Java to WSDL

334

Services Implementation Class to avoid the occurrence of an error while starting Web Services. For details, see
10.23(1) Using the cjwsgen command for checking errors.

The following figure shows an example of mapping the method parameters to the message parts.

Figure 16‒4: Example of mapping the method parameters to the message parts (Wrapper style)

The following figure shows an example of mapping the method return values to the message parts:

Figure 16‒5: Example of mapping the method return values to the message parts (Wrapper style)

The following are the rules for mapping the method parameters and return values to the message parts:

• The parameters and return values are mapped using an empty name space ("") as the child element of the wrapper
element. The wrapper element is mapped with a name space same as that for SEI.

• The in parameter and the inout parameter are mapped as a request bean property using the name argN#.

• The out parameter and the inout parameter are mapped as a response bean property using the name argN#.

16. Mapping from Java to WSDL

335

Furthermore, the return value is mapped as a response bean property using the name "return". At this time, an
underscore (_) is prefixed to the field name such that the name does not become a reserved word.

• The javax.xml.bind.annotation.XmlElement annotation is annotated in the properties of the mapped
request bean and the response bean.

• In the annotated javax.xml.bind.annotation.XmlElement annotation, in the request bean properties,
a name called argN# is set for the name element and a blank name space ("") is set for the namespace element.
In the response bean properties, a name called return is set for the name element and a blank name space ("") is
set for the namespace element.

• When mapping from a parameter to a WSDL part, the mapping to a part name of the input message is done with
the fixed value parameters.

• When mapping from a return value to a WSDL part, the mapping to a name of the output message is done with
the fixed value parameters.

#
N in argN indicates 0 or a higher integer that depends on the order of the parameters.

For details on the javax.xml.bind.annotation.XmlElement annotation, see 16.2.10
javax.xml.bind.annotation.XmlElement annotation.

(2) Java types that can be specified in the parameters
This point describes the conditions and precautions for specifying a Java type other than the
Holder(javax.xml.ws.Holder) type and Holder type.

(a) Java type other than Holder type

• The Java types other than the Holder type are mapped to the WSDL schema types in accordance with the JAXB
2.2 specifications. The precautions for specifying the Java types other than the Holder type are as follows:

• The Java primitive type cannot be specified in the out and inout parameters. If specified, an error message is
output to the standard error output and log (KDJW61035-E).

• Also, the Java primitive type cannot be specified as the type parameter of the javax.xml.ws.Holder class. If
specified, an error occurs when executing the apt command and the processing ends.

• You can specify a Java type in the out and inout parameter as the type parameter of the
javax.xml.ws.Holder class. If the Java type is specified using any other method, an error message is output
to the standard error output and logs (KDJW61035-E).

(b) javax.xml.ws.Holder type

The precautions for specifying the javax.xml.ws.Holder type are as follows:

• When you specify the javax.jws.WebParam annotation in the type parameter of the
javax.xml.ws.Holder class, you must specify Mode.OUT or Mode.INOUT in the mode element. If the
mode element is not specified or if Mode.IN is specified in the mode element, an error message is output to the
standard error output and logs (KDJW61031-E). Also, if the javax.jws.WebParam annotation is not
specified, the type parameter of javax.xml.ws.Holder is interpreted as the inout parameter.

• The operations might not function properly in the following cases:

• If the javax.xml.ws.Holder class is specified anywhere except in the method argument

• If the array of the javax.xml.ws.Holder class is used

• If the type is not specified in the type parameter of the javax.xml.ws.Holder class

• If the javax.xml.ws.Holder class or a class inheriting is specified in the type parameter of the
javax.xml.ws.Holder class

• If a multi-dimensional array of a type other than the byte type and three or more dimensional array of the
byte type are specified in the type parameter of the javax.xml.ws.Holder class when dynamically
generating the request and response beans during the Web Services startup

16. Mapping from Java to WSDL

336

(c) Java type mapping

The precautions for mapping the Java types are as follows:

• If Java types are not customized in the mode element of the javax.jws.WebParam annotation, the arguments
other than the type parameter of the javax.xml.ws.Holder class are mapped as the in parameter and the
type parameter of the javax.xml.ws.Holder class is mapped as the inout parameter. For details about the
mapping as the out parameter, see 16.2.7(4) mode element (javax.jws.WebParam).

• The input message name is mapped using the operation name. The output message name is mapped using a value
with 'Response' suffixed to the operation name.

• You can define up to 254 parameters of the method of SEI according to the Java language specifications. If 255 or
more parameters are defined, a compilation error occurs during the execution of the apt command and the
processing ends.

(3) Conditions for Java method parameters
The parameter names of the Java methods are not mapped to WSDL; therefore, code the Java method parameters in
accordance with the Java identifier naming rules provided in the Java language specifications.

(4) Combinations of parameters and return values
You can combine and code the in parameter, inout parameter, out parameter, and the return value that you want.

(5) Operations during name conflict
This point describes the rules about the wrapper bean class name and global element name and the operations for a
name conflict.

• Wrapper bean class name
The wrapper bean class name that is generated must be a unique name in the package. However, the differences in
uppercase and lower case are ignored. If the request bean or response bean have a name conflict with another
JavaBean class generated in the package concurrently, an error message is output to the standard error output
and logs (KDJW61083-E).
If the name is duplicated with an existing class, the name is overwritten. However, if that class is included in the
apt command argument, the error is checked when the apt command is executed.

• Global element (local name and name space)
The global element (local name and name space) must be unique in WSDL. If the name is not unique, the
operations might not function properly.

(6) Using the java.util.Map class
When you use the java.util.Map class in the SEI argument or return value, the following operations must be
performed for the argument or return value of the java.util.Map type of SEI:

1. Create a value type.
Create the value type (a JavaBean class that can be marshaled or un-marshalled) for
java.util.Map(bound type) in accordance with the JAXB 2.2 specifications.

2. Create an adapter.
Create an adapter that interconverts the java.util.Map(bound type) that inherits
javax.xml.bind.annotation.adapters.XmlAdapter and the value type, and implement the
unmarshal method and marshal method.

3. Annotate with the javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter annotation.
Annotate the argument or return value of the java.util.Map type with the XmlJavaTypeAdapter
annotation that has the adapter created in 2 as the value.

4. Execute the apt command.
Interpret the annotated SEI with the apt command.

16. Mapping from Java to WSDL

337

The following is an example of the relationship and implementation of the request bean class and response bean
class in which the xmlJavaTypeAdapter annotation is applied through the value type, adapter, and the apt
command:

Figure 16‒6: Example of using java.util.Map

16.1.6 Mapping the parameter and return value to the message part (For
non-wrapper style)

This subsection describes the mapping of the parameters of the method of SEI to WSDL (name attribute of the
wsdl:part element).

This subsection describes the mapping for the non-wrapper style.

(1) Mapping
For the non-wrapper style, the method parameters of SEI are mapped to the WSDL part and global elements using the
same name as the operation name. The return value is mapped to the WSDL part and global element using the name
with "Response" suffixed to the operation name. The non-wrapper style does not require the request and response
beans. Therefore, the apt and cjwsgen commands do not automatically generate the request and response beans.
However, you can check for errors beforehand by executing the cjwsgen command for the compiled Web resource
Implementation Class. For details, see 10.23(1) Using the cjwsgen command for checking errors.

The following figure shows an example of mapping:

16. Mapping from Java to WSDL

338

Figure 16‒7: Example of mapping the method parameters and return values to the message parts (Non-
wrapper style)

(2) Java types that can be specified in the parameters
The Java types that can be specified in the parameters are the same as for the wrapper type. For details, see 16.1.5(2)
Java types that can be specified in the parameters.

(3) Conditions for the parameter names
The parameter names of the Java methods are not mapped to WSDL; therefore, code the Java method parameters in
accordance with the Java identifier naming rules provided in the Java language specifications.

(4) Combinations of parameters and return values
You can specify any number of method parameters that are SOAP Header. However, as far as the method parameters
that are the SOAP Body are concerned, the specifiability and the specified number are determined by the relationship
with the return value. The following table describes the conditions for the return values of the methods and the
specification method of the parameters:

Table 16‒6: Conditions for the return values of the methods and the specification method of the
parameters

No.

Conditions for the return
values

Specification method of the parameters
Presence of
return values

Specified
location

1 No -- • You can specify either one in parameter or one inout parameter. #1

• You can specify either one out parameter or one inout parameter. #2

16. Mapping from Java to WSDL

339

No.

Conditions for the return
values

Specification method of the parameters
Presence of
return values

Specified
location

2 Yes SOAP header • You can specify either one in parameter or one inout parameter. #1

• You can specify either one out parameter or one inout parameter. #2

3 Yes SOAP body • You can specify one in parameter. #1

• You cannot specify the out parameter and inout parameter. #3

#1
If 0 or 2 or more are specified in total, an error message is output to the standard error output and logs (KDJW61056-E).

#2
If 0 or 2 or more are specified in total, an error message is output to the standard error output and logs (KDJW61057-E).

#3
If the out parameter or inout parameter is specified, an error message is output to the standard error output and logs
(KDJW61059-E).

If the out parameter or inout parameter is used in the non-wrapper style, you must specify the name element of the
javax.jws.WebParam annotation. If the name element of the javax.jws.WebParam annotation is not
specified, an error message is output to the standard error output and logs (KDJW61085-E).

(5) Relationship between the specification of the annotation and the mapping to the part
name

The mapping of the method parameter to the WSDL part (name attribute of the wsdl:part element) depends on the
element values of the javax.jws.WebParam annotation and javax.jws.WebMethod annotation.

The following table describes the relationship between the specification of the annotation and the mapping methods:

Table 16‒7: Relationship between the specification of annotations and the mapping to the WSDL part
name

No.

Specification of annotation elements

Method of mapping to the WSDL part
name

javax.jws.Web
Param

@partName

javax.jws.Web
Param
@name

javax.jws.WebMeth
od

@operationName

1 Specified -- -- The element value of the specified
annotation is mapped to the name
attribute of the wsdl:part element.2 Not specified Specified --

3 Not specified Specified The Java method name is mapped to the
name attribute of the wsdl:part
element.4 Not specified

Legend:
--: Indicates that the presence or absence of specification for the element does not affect the mapping (the mapping method is the
same whether the element is specified or not).

(6) Operations during name conflict
This point describes the operations for a name conflict of the part names and global elements.

• Conflict of part names
In the non-wrapper style, the name of the wsdl:part element of WSDL mapped from the Java source must be
unique in WSDL. If the name is not unique, the operations might not function properly.

• Conflict of global elements (local name and name space)

16. Mapping from Java to WSDL

340

The global element (local name and name space) must be unique in WSDL. If the global element is not unique,
the operations might not function properly.

(7) Using the java.util.Map class
For details about using the java.util.Map class, see 16.1.5(6) Using the java.util.Map class.

16.1.7 Mapping the Java wrapper exception class to the fault
This subsection describes the mapping of the Java wrapper exception class to the WSDL fault (wsdl:fault
element, wsdl:message element with one wsdl:part child element, and the global element declaration of the
XML Schema).

(1) Mapping
The Java wrapper exception class and the fault are mapped in accordance with the JAX-WS 2.2 specifications. The
following figure shows an example of mapping:

Figure 16‒8: Example of mapping the exception class to the fault

The following are the rules for mapping the wrapper exception class to the fault:

• If the wrapper exception class has the javax.xml.ws.WebFault annotation and the getFaultInfo
method that returns the fault bean, the fault bean is not generated when you execute the command as the fault bean
already exists.

• If the wrapper exception class does not have the javax.xml.ws.WebFault annotation and the
getFaultInfo method, a fault bean is generated with a name in which "Bean" is added as a suffix to the
wrapper exception class name.

• The generated fault bean has the same type or name properties that the wrapper exception class and its parent class
have and the type or name properties similar to all the getter except the getter named getCause,
getLocalizedMessage, and getStackTrace inherited from Throwable and the getter named
getClass inherited from java.lang.Object.

• The javax.xml.bind.annotation.XmlType annotation is annotated in the generated fault bean.
In the annotated javax.xml.bind.annotation.XmlType annotation, an exception class name is set in the
name element, an SEI name space is set in the namespace element, and all the property names that the wrapper
exception class has are set in the propOrder element. The property name of the propOrder element is set
with the String type array sorted in an ascending order according to the Unicode value of each character.
For details on the javax.xml.bind.annotation.XmlType annotation, see 16.2.12
javax.xml.bind.annotation.XmlType annotation.

16. Mapping from Java to WSDL

341

• The fault message name is mapped with the same name as the wrapper exception class name. Also, the fault
message part name is mapped with the fixed value fault.

• You can define up to 255 exceptions to be thrown in one method. If 256 or more exceptions are defined, a warning
message is output to the standard error output and log and the processing continues (KDJW61027-W).

• If the exception class thrown by the method is not found, a compilation error occurs.

(2) Conditions for the wrapper exception class
The following are the conditions for the wrapper exception class:

• The wrapper exception class might inherit the exception classes of java.lang.Exception,
java.lang.RuntimeException, and java.rmi.RemoteException. However, the
java.lang.RuntimeException and java.rmi.RemoteException, and its sub-classes are not
handled as the wrapper exception class.

• The same wrapper exception class might be thrown by multiple methods in the same SEI.

(3) Conditions for the wrapper exception class name
In the wrapper exception class name, you can code strings that fulfill all the conditions described in the following
table. The wrapper exception class name is used in WSDL even though an annotation is specified, so the name must
comply with the conditions described in the following table:

Table 16‒8: Conditions for strings that can be coded in the wrapper exception class name

No. Condition Example of invalid
string

Operation when an invalid string is
specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A to Z,
a to z) and underscore (_)

Hitachi_exception The operations might not function properly
(error message is not displayed).

2 Strings complying with the naming
rules of the Java identifiers provided in
the Java language specifications

Abstract When the apt command is executed, a
compilation error occurs and the processing
ends. For details, see the JDK documentation.

(4) Operations during name conflict
The fault bean name must be unique in the package. However, the uppercase or lowercase differences are ignored. If a
name conflict occurs between the fault bean and the JavaBean generated concurrently in the package, an error
message is output to the standard error output and logs (KDJW61065-E).

If the name is duplicated with an existing class, the name is overwritten. However, if that class is included in the
argument of the apt command, the error is checked with the apt command.

The global element (local name and name space) mapped from the fault bean must be unique in WSDL. If the global
element is not unique, the operations might not function properly.

16.1.8 Mapping SEI to binding
This subsection describes the mapping of Java SEI to WSDL binding (name attribute of the wsdl:binding
element).

(1) Mapping
The Java SEI and Web Service Implementation Class and WSDL binding are mapped in accordance with the JAX-
WS 2.2 specifications. The following figure shows an example of mapping:

16. Mapping from Java to WSDL

342

Figure 16‒9: Example of mapping SEI to binding

The following are the rules for mapping SEI to binding:

• The Java SEI and Web Service Implementation Class are mapped to one wsdl:binding element and 0 or more
wsdl:port extension elements of WSDL.

• The WSDL binding name is the name with "Binding" prefixed to the port type name. For details about the format
of the port type name, see 16.1.3 Mapping the SEI name to the port type.

(2) SOAP transport and transfer binding
When the javax.xml.ws.BindingType annotation is not used for customization, binding is performed using
SOAP 1.1overHTTP for default mapping.

This means that http://schemas.xmlsoap.org/soap/http is specified in the transport attribute of the
soap:binding element that is the child element of the wsdl:binding element.

16.1.9 Mapping the Web Service implementation class to the service and
port

This subsection describes the mapping of the Web Service Implementation Class to the WSDL service (name
attribute of the wsdl:service element) and port (name attribute of the wsdl:port element).

(1) Mapping
The Web Service Implementation Class and the WSDL service and port are mapped in accordance with the JAX-WS
2.2 specifications. The following figure shows an example of mapping:

Figure 16‒10: Example of mapping the Web Service Implementation Class to the service and port

16. Mapping from Java to WSDL

343

The following are the rules for mapping the Web Service Implementation Class to the service and port:

• If the WSDL service name is not customized using the serviceName element of the
javax.jws.WebService annotation, the value with "Service" suffixed to the name of the Web Service
Implementation Class is assumed as the value of the name attribute of the wsdl:service element.

• If the WSDL port name is not customized using the portName element of the javax.jws.WebService
annotation, the value with "Port" suffixed to the value of the name element of the javax.jws.WebService
annotation is assumed as the value of the name attribute of the wsdl:port element.

• If the portName attribute and name attribute of the javax.jws.WebService annotation are not used for
customization, the value with "Port" suffixed to the name of the Web Service Implementation Class is assumed as
the value of the name attribute of the wsdl:port element.

(2) Conditions for the Web Service Implementation Class name
In the Web Service Implementation Class name, you can code a string that fulfills all the conditions described in the
following table:

Table 16‒9: Conditions for strings that can be coded in the Web Service Implementation Class name

No. Conditions Examples of invalid
strings

Operation when an invalid string is
specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A to Z,
a to z) and underscore (_)

Hitachi_service The operations might not function properly
(error message is not displayed).

2 Strings complying with the naming
rules of the Java identifiers provided in
the Java language specifications

abstract When the apt command is executed, a
compilation error occurs and the processing
ends. For details, see the JDK documentation.

16.1.10 Precautions for mapping from Java to WSDL
This subsection describes the precautions for mapping Java to WSDL.

(1) Deleting the generics type
When you generate a JavaBean (request bean, response bean, and fault bean), the generics type is deleted. The
following table describes an example of deleting the generics type:

Table 16‒10: Example of deleting the generics type

Before type is deleted After type is deleted

T# NumbersData

List<E> List<java.lang.Object>

List<? extends NumbersData> List<NumbersData>

List<? super NumbersData> List< java.lang.Object >

Map<K, V> Map< java.lang.Object,
java.lang.Object >

Map<? extends NumbersKey, ? extends NumbersData> Map<NumbersKey, NumbersData>

Map<? super NumbersKey, ? super NumbersData> Map< java.lang.Object,
java.lang.Object >

Iterator<E> Iterator< java.lang.Object >

Iterator<? extends NumbersData> Iterator<NumbersData>

16. Mapping from Java to WSDL

344

Before type is deleted After type is deleted

Iterator<? super NumbersData> Iterator< java.lang.Object >

List<List<? extends NumbersData>> List<List<NumbersData>

#
The T type definition indicates the case of <T extends NumbersData>.

Even if the method argument and return value is customized using the javax.jws.WebParam and
javax.jws.WebResult annotations, the generics type is deleted (customization is also enabled). Also, regardless
of whether the method argument and return value is the wrapper style or non-wrapper style, the generics type is
deleted. Note that when the method argument and the return value are of the non-wrapper style, the generics type is
not deleted.

(2) Supporting JAXB annotations
The Cosminexus JAX-WS functionality complies with Comformance 3.14 of the JAX-WS 2.2 specifications. During
the execution of the command, the following JAXB annotations are interpreted as and when required:

• javax.xml.bind.annotation.XmlAttachmentRef
• javax.xml.bind.annotation.XmlList
• javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter
• javax.xml.bind.annotation.XmlMimeType

The Cosminexus JAX-WS functionality does not support the MIME binding.

In the annotation processor provided by the JAX-WS functionality of Cosminexus, the
javax.xml.bind.annotation.XmlMimeType annotation is interpreted for the wrapper style, but not for the
non-wrapper style.

If arguments and return values other than the SEI and service implementation class are annotated using these JAXB
annotations, the operations might not function properly.

In the annotation processor provided by the Cosminexus JAX-WS functionality, the
javax.xml.bind.annotation.XmlJavaTypeAdapter annotation and
javax.xml.bind.annotation.XmlMimeType annotation are interpreted when the argument and return value
of the SEI or service implementation class or JavaBean fields are annotated. If a package, interface, or class is
annotated, the operations might not function properly.

When you invoke a developed Web Service, if a sub-class of the Web Service arguments and return values is used, an
error occurs. To invoke a Web Service normally, the sub-class must be linked by the
javax.xml.bind.annotation.XmlSeeAlso annotation when you define the SEI and Web Service
Implementation Class.

(3) Limitation of the generics type
You can use the generics type in the method argument and the return value for the wrapper style, but not for the non-
wrapper style.

16. Mapping from Java to WSDL

345

16.2 Customized mapping from Java to WSDL
You can customize the mapping of Java to WSDL by using annotations.

The following figure shows an example of customization using annotations:

Figure 16‒11: Example of customization using annotations

When you execute the apt command or the cjwsgen command, the javax.xml.ws.WebEndpoint and
javax.xml.ws.WebServiceClient annotation automatically given by the cjwsimport command are
ignored (warning message is not output). Also, if an un-supported annotation is specified, the annotation is ignored. At
this time, if the annotation is not supported even in the annotation processor provided by functionality other than the
Cosminexus JAX-WS functionality, a warning message of the apt command is output.

The annotations include annotations that can be defined in SEI, annotations that can be defined in the Web Service
Implementation Class, and the annotations that can be defined in both. However, if the endpointInterface
element of the javax.jws.WebService annotation is not used, the abstract information is extracted from the
information of the Web Service Implementation Class and it is considered that implicit SEI is present. Only in this
case, the definition of annotations defined in SEI is allowed in the Web Service Implementation Class.

Even if the annotation element is explicitly customized using the same value as the default value, the annotation is
processed as if the element value is not specified.

16. Mapping from Java to WSDL

346

16.2.1 List of annotations
The following table describes the annotations that can be used for customization and the auto-generated annotations.
For details about the annotations, see the JAX-WS 2.2 specifications.

Table 16‒11: List of annotations of JAX-WS used for customization

No.
Annotations

Description Definitio
nAnnotation name Element name

1 com.sun.xml.ws.developer.
StreamingAttachment

dir This is a name of the directory that generates a
temporary file when you want to output the
MIME body that is included in the SOAP
message containing the received attachments
as temporary files.

Y

parseEagerly Sets whether to perform the detailed parsing
for the SOAP message that contains the
received attachments.

Y

memoryThreshol
d

This is the threshold to decide whether to
extract the MIME body that is included in the
SOAP message containing the received
attachments, in the memory.

Y

2 javax.jws.HandlerChain file URL and relative path indicating the location
of the handler chain file.

Y

3 javax.jws.Oneway -- Annotation to be specified when using the one-
way operation in Web Services

Y

4 javax.jws.soap.SOAPBindin
g

parameterStyle The style of the method parameters (Document
wrapped or Document Bare style).

Y

style The encoding style of the message. In the
Cosminexus JAX-WS functionality, only
document can be specified.

Y

use The format style of the message. In the
Cosminexus JAX-WS functionality, only
literal can be specified.

Y

5 javax.jws.WebMethod action String that determines the SOAP action. Y

exclude Specifies whether the Web method can be
made public.

Y

operationName The wsdl:operation element name
matching with the method.

Y

6 javax.jws.WebParam header Indicates whether the parameter is obtained
from the message header.

Y

mode Direction of the flow of parameters (in,
inout, and out).

Y

name Local name of the XML element indicating the
parameter.

Y

partName The wsdl:part element name indicating the
parameter.

Y

targetNamespac
e

XML name space name. Y

7 javax.jws.WebResult header Indicates whether to obtain the return value
from the message header.

Y

16. Mapping from Java to WSDL

347

No.
Annotations

Description Definitio
nAnnotation name Element name

7 javax.jws.WebResult name Local name of the XML element indicating the
return value.

Y

partName The wsdl:part element name indicating the
return value.

Y

targetNamespac
e

XML name space name. Y

8 javax.jws.WebService endpointInterf
ace

The fully qualified name of SEI that defines
the abstract Web Service contract of the Web
Service.

Y

name The wsdl:portType element name
indicating the Web Service name.

Y

portName The wsdl:port element name indicating the
Web Service port name.

Y

serviceName The wsdl:service element name
indicating the service name of the Web
Service.

Y

targetNamespac
e

The name space name of the Web Service. Y

wsdlLocation URL indicating WSDL of the Web Service. Y#1,#3

9 javax.xml.ws.Action fault This is a value of the wsa:Action element
of the addressing header. This element is
required, when the Web Service sends a fault
message

Y

input This is a value of the wsa:Action element
of the addressing header. This element is
required, when the Web Service receives a
request message.

Y

output This is a value of the wsa:Action element
of the addressing header. This element is
required, when the Web Service sends a
response message.

Y

10 javax.xml.ws.BindingType value Binding used for making SEI public. Y

11 javax.xml.ws.FaultAction className This is an exception class name. Y

value This is a value of the wsa:Action element
of the addressing header. This element is
required, when sending the fault message
corresponding to the exception class name that
is specified in className from the Web
Service.

Y

12 javax.xml.ws.RequestWrapper className The request bean class name. Y

localName The local name of the target element. Y

targetNamespac
e

The name space name of the target element. Y

partName The part name of the input message that
references the request wrapper element.

Y

13 javax.xml.ws.ResponseWrapper className The response bean class name. Y

16. Mapping from Java to WSDL

348

No.
Annotations

Description Definitio
nAnnotation name Element name

13 javax.xml.ws.ResponseWrapper localName The local name of the target element. Y

targetNamespac
e

The name space name of the target element. Y

partName The part name of the output message that
references the response wrapper element.

Y

14 javax.xml.ws.ServiceMode value This is the service mode. Y

15 javax.xml.ws.soap.Addressing enabled Specifies whether to enable the addressing
functionality.

Y

required Specifies whether the addressing header is
required, when invoking the Web Service.

response Sets whether to make the anonymous or non-
anonymous response mandatory for the
endpoint.

16 javax.xml.ws.soap.MTOM enabled Sets whether to use the attachments with the
MTOM/XOP specification format.

Y

threshold Sets the threshold for sending the binary data
as attachments with the MTOM/XOP
specification format.

Y

17 javax.xml.ws.WebFault faultBean The fault bean class name. Y

name The local name of the target element. Y

targetNamespac
e

The name space name of the target element. Y

messageName The fault message name. Y

18 javax.xml.ws.WebServiceProvider targetNamespac
e

This is the name space name of the Web
Service.

Y

portName This is the port name of the Web Service. Y

serviceName This is the service name of the Web Service. Y

wsdlLocation This is the URL indicating the WSDL of the
Web Service.

Y#3

19 javax.xml.ws.RespectBinding#1 enabled Indicates whether the contents of the
wsdl:binding element are enabled.

Y#1

20 javax.xml.ws.WebEndpoint#2 name The local name of port. N#1

21 javax.xml.ws.WebServiceClient#2 name The local name of Web Service. N#2

targetNamespac
e

The name space name of the Web Service. N#2

wsdlLocation URL indicating WSDL of the Web Service. N#2,#3

Legend:
--: Indicates that the annotation does not have any element
Y: Indicates that you can specify an annotation and an element.
N: Indicates that you cannot specify an annotation and an element (not supported).

#1
The specified value is ignored (the warning message is not displayed).

16. Mapping from Java to WSDL

349

#2
Cannot be specified since the annotation is automatically given to the class generated from WSDL.

#3
The annotations do not support mapping in the catalog functionality.

The following is the list of the JAXB annotations that can be defined with the Web Services of Cosminexus. For
details on each annotation, see Standard specifications of JAXB.

• javax.xml.bind.annotation.XmlAttachmentRef
• javax.xml.bind.annotation.XmlList
• javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter
• javax.xml.bind.annotation.XmlMimeType
• javax.xml.bind.annotation.XmlSeeAlso
• javax.xml.bind.annotation.XmlElement
• javax.xml.bind.annotation.XmlType

Of the annotations in the JSR-181 specifications and JAX-WS 2.2 specifications, you cannot use the annotations
indicated in the following table. If the following annotations are specified, the operations might not function properly.

Table 16‒12: List of un-supported annotations

No. Annotations Remarks

1 javax.xml.ws.WebServiceRefs The functionality related to JSR109 specifications is not
supported.

2 javax.xml.ws.spi.WebServiceFeat
ureAnnotation

The API (method that takes the features in the parameter) for using
this annotation is not supported.

3 javax.jws.soap.InitParam Not recommended in JSR181 specifications (will be removed).

4 javax.jws.soap.SOAPMessageHandl
er

Not recommended in JSR181 specifications (will be removed).

5 javax.jws.soap.SOAPMessageHandl
ers

Not recommended in JSR181 specifications (will be removed).

16.2.2 com.sun.xml.ws.developer.StreamingAttachment annotation
The description of the com.sun.xml.ws.developer.StreamingAttachment annotation is as follows.

Web Services
This annotation is to be specified in the Web Service using streaming. You can specify the annotation only in the
Web Service Implementation Class. If the annotation is specified in SEI, the specification is ignored. If the
annotation is specified in the Provider Implementation Class, the operation is not guaranteed.

Web Services client
This annotation is to be specified in the setter method or a field that injects the port. For details, see 10.21.1(4)
Enabling features. The annotation will be ignored if you specify the annotation in any other fields or methods.

When creating the Web Service using streaming with the help of the skeleton class of the Web Service
Implementation Class generated by the cjwsimport command, the
com.sun.xml.ws.developer.StreamingAttachment annotation is not mapped in the Web Service
Implementation Class. Therefore, you must specify the
com.sun.xml.ws.developer.StreamingAttachment annotation. Note that even if the
com.sun.xml.ws.developer.StreamingAttachment annotation is specified in the Web Service
Implementation Class, an element or attribute that indicates the usage of streaming does not appear in the WSDL file
issued by the Web Service JAX-WS engine or WSDL file generated by the cjwsgen command.

16. Mapping from Java to WSDL

350

The com.sun.xml.ws.developer.StreamingAttachment annotation is referenced when starting the Web
Services. Therefore, this annotation is not interpreted when executing the apt command and the cjwsgen
command.

The following figure shows an example of using the com.sun.xml.ws.developer.StreamingAttachment
annotation:

Figure 16‒12: Example of using the com.sun.xml.ws.developer.StreamingAttachment
annotation (Web Services)

(1) dir element (com.sun.xml.ws.developer.StreamingAttachment)
The dir element specifies a directory that is used when you want to output the MIME body that is included in the
SOAP message of MIME Multipart/Related structure containing the received attachments when streaming is used in
the Web Service, as a temporary file. The default value is a null character ("").

When a null character ("") or null is specified as a default value of the dir element, the output destination for the
temporary files is the default temporary file directory for Java (the value corresponding to the java.io.tmpdir
key in the system property). Also, if you specify a directory name that does not exist, or a directory name without
access rights, or an existing file name, a message is output when starting the Web Service, and the MIME body that is
included in the SOAP message of MIME Multipart/Related structure containing the received attachments is extracted
to the memory (KDJW10026-W).

(2) parseEagerly element (com.sun.xml.ws.developer.StreamingAttachment)
The parseEagerly element specifies whether to perform the detailed parsing for the SOAP message of MIME
Multipart/Related structure containing the received attachments when streaming is used in the Web Service. The
default value is false.

(3) memoryThreshold element
(com.sun.xml.ws.developer.StreamingAttachment)

The memoryThreshold element specifies the threshold (unit: byte) to decide whether to output the MIME body
that is included in the SOAP message of MIME Multipart/Related structure containing the received attachments, as
temporary files, when streaming is used in the Web Service. In the memoryThreshold element, specify a value
greater than 16KB (16384L) or -1. The operation is not guaranteed if any other value is specified. When -1 is
specified, the MIME body is always extracted to the memory. The default value is 1048576L.

For deciding whether to extract the MIME body that is included in the received SOAP message of the MIME
Multipart/Related structure to the memory, see 32.3 Temporary files (streaming) .

16.2.3 javax.jws.HandlerChain annotation
The javax.jws.HandlerChain annotation is enabled when defined in the class or interface declaration.

If the javax.jws.HandlerChain annotation is specified at the same time as the SEI and Web Service
Implementation Class, the annotation specified in the Web Service Implementation Class gets priority. At this time, a
warning message is output to the standard output and log and the processing continues (KDJW61076-W).

16. Mapping from Java to WSDL

351

(1) file element (javax.jws.HandlerChain)
You specify the handler chain setup file in the file element. Use the relative path from the class annotated with the
javax.jws.HandlerChain annotation or the interface to specify the file. In the Cosminexus JAX-WS
functionality, the specification in the URL format is not supported.

If you specify a path that cannot be referenced and opened, an error message is output to the standard error output and
logs during Web Service initialization (KDJW00010-E).

Note that the file element is a value referred when the Web Service is invoked, so the element is not interpreted
when the apt command or the cjwsgen command is executed. For details about the examples of using the file
elements, see 36.9.1 Setting the handler chain in Web Services.

16.2.4 javax.jws.Oneway annotation
Specify the javax.jws.Oneway annotation when using the one-way operation in Web Services. The method of
Web Services Implementation Class for which the javax.jws.Oneway annotation is annotated, has only input
messages and no output messages.

The following figure shows an example of mapping by using the javax.jws.Oneway annotation.

Figure 16‒13: Example of mapping by using the javax.jws.Oneway annotation

A Web Services Implementation Class method annotated with the javax.jws.Oneway annotation must fulfill the
following conditions:

• Specify void for the type of the return value. An error message (KDJW61108-E) is output to the standard error
output and log if a type other than void is specified.

• Specify only one in parameter other than the SOAP header for Web Services of the BARE style. An error
message (KDJW61111-E) is output to the standard error output and log if zero, or two or more in parameters are
specified.

• Use javax.jws.WebParam.Mode.IN when using the Mode element of the javax.jws.WebParam
annotation. An error message (KDJW61110-E) is output to the standard error output and log if any other
annotation is used.

• Confirm that you declared no exceptions other than java.lang.RuntimeException and
java.rmi.RemoteException and their subclasses in the method of Web Services Implementation Class. An
error (KDJW61109-E) is output to the standard error output and log if one or more exceptions are specified.

16. Mapping from Java to WSDL

352

• Do not use a holder type to specify the type of an argument. An error message is wrapped and output
(KDJW79999-E) to the standard error output and log if a holder type is specified. The message KDJW20041-E is
output.

Notes when using the javax.jws.Oneway annotation are as follows:

• Do not combine the javax.jws.Oneway and javax.xml.ws.soap.Addressing annotations in Web
Services Implementation Class. The response messages do not exist for the one-way operations. The addressing
functionality, however, specifies destinations for the response messages. Therefore, the operation is not
guaranteed when the aforementioned annotations are concurrently used.

• Because the compliant SOAP messages do not exist for the one-way operations, implement the method annotated
with the javax.jws.Oneway annotation of Web Services Implementation Class in such a way that an
exception is not explicitly thrown.

16.2.5 javax.jws.soap.SOAPBinding annotation
The javax.jws.soap.SOAPBinding annotation can be used to customize the mapping of the SOAP Message protocols.

(1) style element (javax.jws.soap.SOAPBinding)
Only the DOCUMENT/LITERAL style can be used in the annotation processor provided in the Cosminexus JAX-WS
functionality. Therefore, if SOAPBinding.Style.RPC is specified in the style element, an error message is
output to the standard error output and logs (KDJW61063-E). Also, if a value other than
SOAPBinding.Style.DOCUMENT and SOAPBinding.Style.RPC is specified, a compilation error occurs
during the execution of the apt command.

If the javax.jws.soap.SOAPBinding annotation is specified in the class or interface declaration and the
method declaration at the same time, the value specified in the method declaration gets priority.

(2) use element (javax.jws.soap.SOAPBinding)
Only the DOCUMENT/LITERAL style can be used in the annotation processor provided in the Cosminexus JAX-WS
functionality. Therefore, if SOAPBinding.Use.ENCODED is specified in the use element, an error message is output
to the log and the error is notified to the apt command (KDJW61063-E). Also, if a value other than
SOAPBinding.Use.LITERAL and SOAPBinding.Use.ENCODED is specified, a compilation error occurs
during the execution of the apt command.

(3) parameterStyle element (javax.jws.soap.SOAPBinding)
For the wrapper style, you specify SOAPBinding.ParameterStyle.WRAPPED in the parameterStyle
element. Also, for the non-wrapper style, you specify SOAPBinding.ParameterStyle.BARE in the
parameterStyle element.

If a value other than SOAPBinding.ParameterStyle.WRAPPED and
SOAPBinding.ParameterStyle.BARE is specified in the parameterStyle element, a compilation error
occurs during the execution of the apt command.

16.2.6 javax.jws.WebMethod annotation
The javax.jws.WebMethod annotation can be used to customize the mapping of operations.

The following figure shows an example of customization with the javax.jws.WebMethod annotation:

16. Mapping from Java to WSDL

353

Figure 16‒14: Example of customization with the javax.jws.WebMethod annotation

(1) exclude element (javax.jws.WebMethod)
Of the public methods in the Web Service Implementation Class, the public methods that you do not want to make
public as an operation can be excluded from the mapped operations by annotating the method with the
javax.jws.WebMethod annotation where the element value of the exclude element is true. For methods in
an inherited parent class, that method is overridden and can be excluded from the mapped operations by annotating the
method with the javax.jws.WebMethod annotation where the element value of the exclude element is true.

The precautions for specifying the exclude element are as follows:

• If public methods do not exist due to exclusion from the mapped operations, an error message is output to the
standard error output and log and the processing ends (KDJW61093-E).

• If true is specified in the element value of this element in the Web Service Implementation Class, other elements
cannot be specified in the javax.jws.WebMethod annotation of the Web Service Implementation Class. If
other elements are specified, an error message is output to the standard error output and logs (KDJW61010-E).

• If this element is specified in SEI, specify false in the element value. If you specify true, an error message is
output to the standard error output and logs (KDJW61021-E).

• If the parent class methods are overridden in the Web Service Implementation Class and if this element is
specified in both the parent class and the Web Service Implementation Class (child class), the element specified in
the Web Service Implementation Class (child class) gets priority.

• If the endpointInterface element of the javax.jws.WebService annotation is not specified in the
Web Service Implementation Class, all the public methods, to which the static modifier or final modifier of the
Web Service Implementation Class is not applied, are mapped to an implicit SEI. Also, even if one
javax.jws.WebMethod annotation where the exclude element is not true is specified in the public
methods, to which the static modifier or final modifier of the Web Service Implementation Class is not applied,
the methods of the Web Service Implementation Class that fulfill the conditions in the following table are mapped
to an implicit SEI.

Table 16‒13: Specification of annotations and mapping to implicit SEI

No.
Methods of the Web Service Implementation

Class

(WebMethod annotation)
Methods in implicit SEI

1 No Not mapped.

2 Yes (without exclude element) Not mapped.

3 exclude=false Not mapped.

4 exclude=true Not mapped.

• If the endpointInterface element of the javax.jws.WebService annotation is not specified in the
Web Service Implementation Class and if the javax.jws.WebMethod annotation where the exclude
element is not true is specified in the public methods, to which the static modifier or final modifier of the Web
Service Implementation Class has been applied, the error message (KDJW61102-E) is output to the standard error
output and log.

16. Mapping from Java to WSDL

354

(2) OperationName element (javax.jws.WebMethod)
The operationName element is specified when you customize the mapping for the operation name. If you specify
the element value in the operationName element, you can customize the message name that has the operation
name in the default mapping value. For the non-wrapper style, you can also customize the global element name and
part name.

The precautions for specifying the operationName element are as follows:

• Specify the operationName element using one-byte alphanumeric characters and underscore (_). If other
characters are specified, the operations might not function properly (error message is not output).

• Specify a value complying with the Java identifier naming rules provided in the Java language specifications. If
the value does not comply with the Java identifier naming rules, a compilation error occurs during the execution of
the cjwsimport command in the Web Service client development.

• For the wrapper style, the localName element of the javax.xml.ws.RequestWrapper annotation must
be the same as the 'operation name'. If the element is not the same, an error message is output to the standard error
output and logs (KDJW61047-E). However, if the javax.xml.ws.RequestWrapper annotation does not
exist or if a blank character ("") is specified in the localName element of the
javax.xml.ws.RequestWrapper annotation, a comparison is not done to check whether the names are the
same and hence no message is output.

(3) action element (javax.jws.WebMethod)
The action element is mapped to the action of the SOAP operation. In the action element, you can specify
characters satisfying xsd:anyURI defined in RFC 2396, but the specified value is ignored at runtime.

16.2.7 javax.jws.WebParam annotation
The javax.jws.WebParam annotation can be used to customize the mapping of arguments.

The following figure shows an example of customization with the javax.jws.WebParam annotation:

Figure 16‒15: Example of customization with the javax.jws.WebParam annotation

(1) header element (javax.jws.WebParam)
To map an argument as a header parameter, specify true in the element value of the header element.

You can specify the header element in the non-wrapper style. If specified in the wrapper style, an error message is
output to the standard error output and logs (KDJW61037-E).

16. Mapping from Java to WSDL

355

(2) name element (javax.jws.WebParam)
The name element is used to customize the child element name of the wrapper element that is mapped from the
argument in the wrapper style. For the non-wrapper style, the name element is used to customize the local name of the
global element that is mapped from the argument. If the partName element is not specified in the non-wrapper style,
you can also customize the part name by specifying the element value of the name element.

The precautions for specifying the name element are as follows:

• Specify the name element using one-byte alphanumeric characters and underscore (_). If other characters are
specified, the operations might not function properly (error message is not output).

• For the wrapper style, specify a value complying with the Java identifier naming rules provided in the Java
language specifications. If the value does not comply with the Java identifier naming rules, a compilation error
occurs during the execution of the cjwsimport command in the Web Service client development.

(3) partName element (javax.jws.WebParam)
You specify the partName element to customize the mapping of the part names.

The precautions for specifying the partName element are as follows:

• The partName element is enabled in the non-wrapper style. If the partName element is specified in the
wrapper style, the element is ignored.

• If the partName element and name element are specified at the same time, the enabled elements are as follows:

• In the wrapper style: The value of the name element is enabled.

• In the non-wrapper style: The value of the partName element is enabled.

• Specify the partName element using one-byte alphanumeric characters and underscore (_). If other characters
are specified, the operations might not function properly (error message is not output).

• For the non-wrapper style, specify a value complying with the Java identifier naming rules provided in the Java
language specifications. If the value does not comply with the Java identifier naming rules, a compilation error
occurs during the execution of the cjwsimport command in the Web Service client development.

(4) mode element (javax.jws.WebParam)
In the mode element, you specify the value indicating the direction of the flow of parameters. The values that can be
specified are as follows:

• WebParam.Mode.IN
• WebParam.Mode.OUT
• WebParam.Mode.INOUT

(5) targetNamespace element (javax.jws.WebParam)
Use the targetNamespace element to customize the name space of the global element that is mapped from the
argument.

In the targetNamespace element, the http:// or urn: protocol is specified as a name space. The following
name space formats and strings can be specified:

• Protocol
Code the name space protocol using the http:// or urn: protocol. If a protocol other than http:// or urn:
(such as https://, file://) is coded, an error message is output to the standard error output and logs
(KDJW61087-E).
Also, if you code the name space using the relative path, an error message is output to the standard error output
and logs (KDJW61088-E).

• Name space coding format
The following formats cannot be coded in the name space. If the following formats are used for coding, an error
message is output to the standard error output and logs (KDJW61089-E):

16. Mapping from Java to WSDL

356

• Query string (example) http://example.com/?a=b
• Anchor (example) http://example.com/index.html#anchor
• Port number (example) http://example.com:8080/
• User name or password (example) http://user:password@example.com

• Strings that can be coded
In the segments separated using the separation characters, forward slash (/) or period (.), you can code a string that
fulfills all the conditions described in the following table:

Table 16‒14: Conditions for strings that can be coded in the name space (javax.jws.WebParam)

No. Conditions Examples of invalid strings Operation when an
invalid string is specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A
to Z, a to z)

http://Hitachi.com
http://133.145.224.19/
http://
[1080:2C14;D30:BA04:275:806:27
0C:418A]/

The operations might not
function properly (error
message is not displayed).

2 Strings other than Java reserved
words

http://hitachi.com/abstract The operations might not
function properly.

3 Strings that do not begin with
numeric characters

http://1hitachi.com

16.2.8 javax.jws.WebResult annotation
Use the javax.jws.WebResult annotation to customize the mapping of the return values.

The following figure shows an example of customization with the javax.jws.WebResult annotation:

Figure 16‒16: Example of customization with the javax.jws.WebResult annotation

(1) header element (javax.jws.WebResult)
To map a return value as a header parameter, specify true in the element value of the header element.

You can specify the header element in the non-wrapper style. In the wrapper style, if true is specified in the
element value of the header element, an error message is output to the standard error output and logs (KDJW61038-
E).

(2) name element (javax.jws.WebResult)
The name element is used to customize the child element name of the wrapper element that is mapped from the return
value in the wrapper style. For the non-wrapper style, the name element is used to customize the local name of the

16. Mapping from Java to WSDL

357

global element that is mapped from the argument. If the partName element is not specified in the non-wrapper style,
you can also customize the part name by specifying the element value of the name element.

The precautions for specifying the name element are as follows:

• Specify the name element using one-byte alphanumeric characters and underscore (_). If other characters are
specified, the operations might not function properly (error message is not output).

• For the wrapper style, specify a value complying with the Java identifier naming rules provided in the Java
language specifications. If the value does not comply with the Java identifier naming rules, a compilation error
might occur during the execution of the cjwsimport command in the Web Service client development.

• In a wrapper style method with 254 arguments, if the name element is customized to a value other than "return",
the number of arguments becomes 255 during the execution of the cjwsimport command and a compilation
error might occur.

(3) partName element (javax.jws.WebResult)
You specify the partName element to customize the mapping of the part names.

The precautions for specifying the partName element are as follows:

• The partName element is enabled in the non-wrapper style. If the partName element is specified in the
wrapper style, the element is ignored.

• If the partName element and name element are specified at the same time, the enabled elements are as follows:

• In the wrapper style: The value of the name element is enabled.

• In the non-wrapper style: The value of the partName element is enabled.

• Specify the partName element using one-byte alphanumeric characters and underscore (_). If other characters
are specified, the operations might not function properly (error message is not output).

• For the non-wrapper style, specify a value complying with the Java identifier naming rules provided in the Java
language specifications. If the value does not comply with the Java identifier naming rules, a compilation error
occurs during the execution of the cjwsimport command in the Web Service client development.

• In a wrapper style method with 254 arguments, if the name element is customized to a value other than "return",
the number of arguments becomes 255 during the execution of the cjwsimport command and a compilation
error might occur.

(4) targetNamespace element (javax.jws.WebResult)
Use the targetNamespace element to customize the name space of the global element that is mapped from the
return value.

In the targetNamespace element, the http:// or urn: protocol is specified as a name space. The following
name space formats and strings can be specified:

• Protocol
Code the name space protocol using the http:// or urn: protocol. If a protocol other than http:// or urn:
(such as https://, file://) is coded, an error message is output to the standard error output and logs
(KDJW61090-E).
Also, if you code the name space using the relative path, an error message is output to the standard error output
and logs (KDJW61091-E).

• Name space coding format
The following formats cannot be coded in the name space. If the following formats are used for coding, an error
message is output to the standard error output and logs (KDJW61092-E):

• Query string (example) http://example.com/?a=b
• Anchor (example) http://example.com/index.html#anchor
• Port number (example) http://example.com:8080/
• User name/ password (example) http://user:password@example.com

• Strings that can be coded

16. Mapping from Java to WSDL

358

In the segments separated using the separation characters, forward slash (/) or period (.), you can code a string that
fulfills all the conditions described in the following table:

Table 16‒15: Conditions for the strings that can be coded in the name space (javax.jws.WebResult)

No. Condition Examples of invalid string Operation when an
invalid string is specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A
to Z, a to z)

http://hitachi.com
http://133.145.224.19/
http://
[1080:2C14;D30:BA04:275:806:
270C:418A]/

The operations might not
function properly (error
message is not displayed).

2 Strings other than Java reserved
words

http://hitachi.com/abstract The operations might not
function properly.

3 Strings that do not begin with
numeric characters

http://1hitachi.com

16.2.9 javax.jws.WebService annotation
The javax.jws.WebService annotation is mandatory in the SEI and Web Service Implementation Class.

The following figure shows an example of customization with the javax.jws.WebService annotation:

Figure 16‒17: Example of customization with the javax.jws.WebService annotation

Note that you can specify only one annotation between the javax.xml.ws.WebServiceProvider and
javax.jws.WebService annotations. If you specify the javax.xml.ws.WebServiceProvider and
javax.jws.WebService annotation annotations together, an error message will output to the standard error
output and logs (KDJW61098-E).

(1) targetNamespace element (javax.jws.WebService)
If the targetNamespace element is specified in SEI, the specified name space is enabled for the types element,
message element, and portType element.

If this element is specified in the Web Service Implementation Class, the specified name space is enabled for the
binding element and service element. If the endpointInterface element of the
javax.jws.WebService annotation is not used in the Web Service Implementation Class, the same name space
is assumed to be specified in both implicit SEI and the Web Service Implementation Class.

In the targetNamespace element, the http:// or urn: protocol is specified as a name space. The following
name space formats and strings can be specified:

• Protocol
Code the name space protocol using the http:// or urn: protocol. If a protocol other than http:// or urn:
(such as https://, file://) is coded, an error message is output to the standard error output and logs
(KDJW61005-E).

16. Mapping from Java to WSDL

359

Also, if you code the name space using the relative path, an error message is output to the standard error output
and logs (KDJW61006-E).

• Name space coding format
The following format cannot be coded in the name space. If the following formats are used for coding, an error
message is output to the standard error output and logs (KDJW61007-E):

• Query string (example) http://example.com/?a=b
• Anchor (example) http://example.com/index.html#anchor
• Port number (example) http://example.com:8080/
• User name/ password (example) http://user:password@example.com

• Strings that can be coded
In the segments separated using the separation characters, forward slash (/) or period (.), you can code a string that
fulfills all the conditions described in the following table:

Table 16‒16: Conditions for the strings that can be coded in the name space (javax.jws.WebService)

No. Conditions Examples of invalid strings Operation when an
invalid string is specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A
to Z, a to z)

http://hitachi.com
http://133.145.224.19/
http://
[1080:2C14;D30:BA04:275:806:27
0C:418A]/

The operations might not
function properly (error
message is not displayed).

2 Strings other than Java reserved
words

http://hitachi.com/abstract The operations might not
function properly.

3 Strings that do not begin with
numeric characters

http://1hitachi.com

(2) endpointInterface element (javax.jws.WebService)
The precautions for specifying the endpointInterface element are as follows:

• The endpointInterface element specifies SEI with the javax.jws.WebService annotation using the
javax.jws.WebService annotation of the Web Service Implementation Class. If the class is specified, an
error message is output to the standard error output and logs (KDJW61009-E). If the specified SEI is not found, an
error message is output to the standard error output and logs (KDJW61028-E).

• If the endpointInterface element is specified in the javax.jws.WebService annotation of the Web
Service Implementation Class, the name element of the javax.jws.WebService annotation cannot be
specified at the same time. If specified at the same time, an error message is output to the standard error output
and logs (KDJW61019-E).

• In SEI, the endpointInterface element of the javax.jws.WebService annotation cannot be specified.
If specified, an error message is output to the standard error output and logs (KDJW61024-E).

• If the endpointInterface element is specified in the javax.jws.WebService annotation of the Web
Service Implementation Class, the following annotations cannot be specified in the Web Service Implementation
Class. If specified, an error message is output to the standard error output and logs (KDJW61075-E).

• javax.jws.WebMethod
• javax.jws.WebParam
• javax.jws.Oneway
• javax.jws.WebResult
• javax.jws.SOAPBinding

16. Mapping from Java to WSDL

360

(3) name element (javax.jws.WebService)
The name element is specified to customize the mapping of the port type names. If the element value is specified in
the name element, you can also customize all the elements that have the port type name in the default mapping value.

The precautions for specifying the name element are as follows:

• When the name element is used in the javax.jws.WebService annotation of SEI, specify the name element
using one-byte alphanumeric characters and underscore (_). If other characters are specified, the operations might
not function properly (error message is not output).

• If the endpointInterface element is specified in the javax.jws.WebService annotation of the Web
Service Implementation Class, the name element of the javax.jws.WebService annotation cannot be
specified at the same time in the Web Service Implementation Class. If specified at the same time, an error
message is output to the standard error output and logs (KDJW61019-E).

(4) serviceName element (javax.jws.WebService)
You specify the serviceName element to customize the mapping of the service names.

The precautions for specifying the serviceName element are as follows:

• The serviceName element of the javax.jws.WebService annotation cannot be specified in SEI. If
specified, an error message is output to the standard error output and logs (KDJW61023-E).

• If the serviceName element is used in the javax.jws.WebService annotation of the Web Service
Implementation Class, specify the serviceName element using one-byte alphanumeric characters and
underscore (_). If other characters are specified, the operations might not function properly.

• Specify a value complying with the Java identifier naming rules provided in the Java language specifications. If
the value does not comply with the Java identifier naming rules, a compilation error occurs during the execution of
the cjwsimport command in the Web Service client development.

(5) portName element (javax.jws.WebService)
You specify the portName element to customize the mapping of the port names.

• You cannot specify the portName element of the javax.jws.WebService annotation in SEI. If specified,
an error message is output to the standard error output and logs (KDJW61022-E).

• If the portName element is used in the javax.jws.WebService annotation of the Web Service
Implementation Class, specify the portName element using the one-byte alphanumeric characters and
underscore (_).If other characters are specified, the operations might not function properly.

(6) wsdlLocation element (javax.jws.WebService)
The wsdlLocation element is the value referenced when the Web Service is invoked, so the element is not
interpreted when the apt command or the cjwsgen command is executed.

16.2.10 javax.xml.bind.annotation.XmlElement annotation
Specify the javax.xml.bind.annotation.XmlElement annotation in an argument or a return value of an
SEI service method. When specified, the annotation is mapped to the
javax.xml.bind.annotation.XmlElement annotation of the property of the generated request bean or
response bean.

Specify the javax.xml.bind.annotation.XmlElement annotation in a wrapper style. The operation is not
guaranteed if you specify the annotation in a non-wrapper style.

The following is an example of the mapping where the javax.xml.bind.annotation.XmlElement
annotation is used.

16. Mapping from Java to WSDL

361

Figure 16‒18: Example of the mapping where javax.xml.bind.annotation.XmlElement annotation is used

(1) name element (elementjavax.xml.bind.annotation.XmlElement)
The name element is mapped to the name element of the javax.xml.bind.annotation.XmlElement
annotation that annotates the properties of the generated request bean or response bean.

The following are the points to be noted if the javax.xml.bind.annotation.XmlElement annotation co-
exists with the javax.jws.WebParam annotation or the javax.jws.WebResult annotation:

• If the javax.xml.bind.annotation.XmlElement annotation co-exists with the
javax.jws.WebParam annotation, you must specify the same value in the name element of both the
annotations. If the value is not the same, an error message (KDJW61103-E) is output to the standard error output
and log. However, if you specify ##default in the name element or a blank character ("") in the name element of
the javax.jws.WebParam annotation, a comparison is not done to check whether the value is the same and
hence no message is output.

• If the javax.xml.bind.annotation.XmlElement annotation co-exists with the
javax.jws.WebResult annotation, you must specify the same value in the name element of both the
annotations. If the value is not the same, an error message (KDJW61104-E) is output to the standard error output
and log. However, if you specify ##default in the name element or a blank character ("") in the name element of
the javax.jws.WebResult annotation, a comparison is not done to check whether the value is the same and
hence no message is output.

(2) namespace element (javax.xml.bind.annotation.XmlElement)
The namespace element is mapped to the namespace element of the
javax.xml.bind.annotation.XmlElement annotation that annotates the properties of the generated request
bean or response bean.

The following are the points to be noted if the javax.xml.bind.annotation.XmlElement annotation co-
exists with the javax.jws.WebParam annotation or the javax.jws.WebResult annotation:

• If the javax.xml.bind.annotation.XmlElement annotation co-exists with the
javax.jws.WebParam annotation, you must specify the same value in the targetNamespace element of
the javax.jws.WebParam annotation and namespace annotation. If the value is not the same, an error
message (KDJW61105-E) is output to the standard error output and log. However, if you specify ##default in the
namespace element or a blank character ("") in the targetNamespace element of the
javax.jws.WebParam annotation, a comparison is not done to check whether the value is the same and hence
no message is output.

• If the javax.xml.bind.annotation.XmlElement annotation co-exists with the
javax.jws.WebResult annotation, you must specify the same value in the targetNamespace element of
the javax.jws.WebResult annotation and namespace annotation. If the value is not the same, an error
message (KDJW61106-E) is output to the standard error output and log. However, if you specify ##default in the
namespace element or a blank character ("") in the targetNamespace element of the
javax.jws.WebResult annotation, a comparison is not done to check whether the value is the same and
hence no message is output.

16. Mapping from Java to WSDL

362

(3) nillable element (javax.xml.bind.annotation.XmlElement)
The nillable element is mapped to the nillable element of the
javax.xml.bind.annotation.XmlElement annotation that annotates the properties of the generated request
bean or response bean.

You can specify true or false in the nillable element. If you specify false, the nillable element is not
mapped to the javax.xml.bind.annotation.XmlElement annotation of the properties of the generated
request bean or response bean.

(4) required element (javax.xml.bind.annotation.XmlElement)
The required element is mapped to the required element of the
javax.xml.bind.annotation.XmlElement annotation that annotates the properties of the generated request
bean or response bean.

You can specify true or false in the required element. If you specify false, the required element is not
mapped to the javax.xml.bind.annotation.XmlElement annotation of the properties of the generated
request bean or response bean.

16.2.11 javax.xml.bind.annotation.XmlMimeType annotation
The javax.xml.bind.annotation.XmlMimeType annotation is a JAXB annotation that is used for
associating Java type and MIME type, and this annotation is used for associating the Java type and MIME type when
using the javax.xml.ws.soap.MTOM annotation.

You can specify the javax.xml.bind.annotation.XmlMimeType annotation in the service method
argument, and the return value possessed by the Web Service Implementation Class containing SEI or implicit SEI, or
the getter method of user definition type. The operation is not guaranteed if specified at any other location (fields
such as service method argument, a return value, user definition exceptions possessed by the Web Service
Implementation Class without implicit SEI).

When the javax.xml.bind.annotation.XmlMimeType annotation is annotated in SEI, the WSDL file
issued by the Web Service JAX-WS engine and the WSDL file generated by the cjwsgen tool is assigned by the
xmime:expectedContentTypes attribute that possesses a value specified in the value element of the
annotation to the schema element that corresponds to the Java type with annotated
javax.xml.bind.annotation.XmlMimeType.

The following figure shows an example using the javax.xml.bind.annotation.XmlMimeType annotation.

Figure 16‒19: Example using the javax.xml.bind.annotation.XmlMimeType annotation

16. Mapping from Java to WSDL

363

When Java type and MIME type are not associated, the javax.xml.bind.annotation.XmlMimeType
annotation need not be annotated. In this case, the initial value that corresponds to the Java type is used as a value in
the Content-Type field in the attachment part of the message that is sent in the attachment of the MTOM/XOP
specification format.

The following figure shows an example where the javax.xml.bind.annotation.XmlMimeType annotation
is not used.

Figure 16‒20: Example where javax.xml.bind.annotation.XmlMimeType annotation is not used

The following table lists the Java type with which the MIME type can be associated and its specification location by
annotating the javax.xml.bind.annotation.XmlMimeType annotation. Note that the operation is not
guaranteed if the javax.xml.bind.annotation.XmlMimeType annotation is annotated with any other type.

Table 16‒17: Java type where MIME type can be associated and its specification location

No Java type

Possibilit
y of

associati
on

Specification location

Method
argument

Method
return
value

User definition
type field

User definition
exception fields

1 java.awt.Image Y#1 Y Y A#2 N#3

2 javax.xml.transform.S
ource

Y Y Y A #2 N #3

3 javax.activation.Data
Handler

Y Y Y A #2 N #3

4 java.awt.Image array type A #4 Y Y A #2 N #3

5 javax.activation.Data
Handler array type

A #4 Y Y A #2 N #3

6 java.util.List<Image> Y Y Y A #2 N #3

7 java.util.List<DataHa
ndler>

Y Y Y A #2 N #3

8 javax.xml.ws.Holder<I
mage>

Y Y N #5 N #5 N #5

9 javax.xml.ws.Holder<S
ource>

Y Y N #5 N #5 N #5

16. Mapping from Java to WSDL

364

No Java type

Possibilit
y of

associati
on

Specification location

Method
argument

Method
return
value

User definition
type field

User definition
exception fields

10 javax.xml.ws.Holder<D
ataHandler>

Y Y N #5 N #5 N #5

Legend:
Y: Can be specified.
A: Can be specified with conditions.
N: Cannot be specified.

#1
This complies with the JAXB specifications. The java.awt.Image class is an abstract class that expresses the
graphical image in the Java SE specifications, where the data format is not prescribed. When the image data is
instantiated by using this relationship, only the decoded information might be retained in a concrete class.
Therefore, when sending an image that can be reduced while decoding such as the images in JPEG format, as an
attachment, the instance at receiving side might differ from the instance at sending side or from the original data.
If you want to handle the image as is in the original format, use the MIME type (such as application/
octet-stream) that is mapped to javax.activation.DataHandler.

#2
While associating the MIME type to the Java property, annotate the
javax.xml.bind.annotation.XmlMimeType annotation in the getter method. If this is annotated in
the field and the setter method, the operation is not guaranteed. The following is an example of associating
MIME type in the Java property.

package com.sample;

import java.awt.Image;

public class UserData {

 private Image image;

 public void setImage(Image image) {
 this.image = image;
 }

 @javax.xml.bind.annotation.XmlMimeType("image/png")
 public Image getImage() {
 return image;
 }
}

#3
If you specify the javax.xml.bind.annotation.XmlMimeType annotation in a user-defined exception
field, the operation is not guaranteed.

#4
You can use only a one-dimensional array. You cannot use multi-dimensional arrays. If you use multi-
dimensional arrays, the operation is not guaranteed.

#5
You can specify the Holder type only as an argument. You cannot specify the Holder type in the return value.

(1) value element (javax.xml.bind.annotation.XmlMimeType)
The value element specifies the text expression of the MIME type that is associated with the Java type where the
javax.xml.bind.annotation.XmlMimeType annotation is annotated.

The MIME type to be specified must be the appropriate MIME type for the Java type where the annotation is
annotated. If the MIME type is inappropriate, or multiple MIME types are mentioned by separating them by using a
comma, the operation is not guaranteed. Also, in the MIME type to be specified, do not mention the parameters other
than the charset parameters of the text/xml and the application/xml. If the parameters other than the

16. Mapping from Java to WSDL

365

charset parameters of the text/xml and the application/xml are mentioned, the operation is not
guaranteed.

The following table describes the MIME types that can be specified in the Java type.

Table 16‒18: MIME types that can be specified in the Java type

No Java type MIME type that can be specified in the
value element

1 java.awt.Image,java.awt.Image array type,
java.util.List<Image>, or
javax.xml.ws.Holder<Image>

image/png#1

2 image/jpeg#1

3 image/*#2

4 javax.xml.transform.Source or
javax.xml.ws.Holder<Source>

text/xml#3

5 application/xml

6 javax.activation.DataHandler,
javax.activation.DataHandler array type,
java.util.List<DataHandler>, or
javax.xml.ws.Holder<DataHandler>

Other than above-mentioned#4

#1
Send the image type that is not mentioned in the table by using the javax.activation.DataHandler class.

#2
When image/* is specified in the MIME type, the Content-Type field value of the MIME header in the attached part of the
SOAP message to be sent, is the initial value (image/png) when the java.awt.Image type is used.

#3
When text/xml is specified in the MIME type, the Content-Type field value of the MIME header in the attached part of
the SOAP message to be sent, is an initial value (application/xml) when the javax.xml.transform.Source type is
used.

#4
When application/* or unknown MIME type is specified in the MIME type, the Content-Type value of the MIME
header in the attached part of the SOAP message to be sent, is an initial value (MIME type of the
javax.activation.DataHandler object) when the javax.activation.DataHandler type is used.

16.2.12 javax.xml.bind.annotation.XmlType annotation
Specify the javax.xml.bind.annotation.XmlType annotation in the exception class. When specified, the
annotation is mapped to the javax.xml.bind.annotation.XmlType annotation of the created fault bean.

If you specify the javax.xml.bind.annotation.XmlType annotation in any location other than the
exception class, the operation is not guaranteed.

The following is an example where mapping is done using the javax.xml.bind.annotation.XmlType
annotation.

16. Mapping from Java to WSDL

366

Figure 16‒21: Example where mapping is done using the javax.xml.bind.annotation.XmlType
annotation

(1) name element (javax.xml.bind.annotation.XmlType)
The name element is mapped to the name element of the javax.xml.bind.annotation.XmlType
annotation of the generated fault bean.

(2) namespace element (javax.xml.bind.annotation.XmlType)
The namespace element is mapped to the namespace element of the
javax.xml.bind.annotation.XmlType annotation of the generated fault bean.

(3) propOrder element (javax.xml.bind.annotation.XmlType)
The propOrder element is mapped to the propOrder element of the
javax.xml.bind.annotation.XmlType annotation of the fault bean and the property order of the generated
fault bean.

In the propOrder element, you can specify only a String type array of the property name of the property in an
exception class.

Note the following points when using the propOrder element:

• If the number of properties is less than 2, the propOrder element of the javax.xml.bind.annotation.
XmlType annotation of the generated fault bean is not mapped.

• If you specify a property name of a non-existing property, an error message (KDJW61107-E) is output to the
standard error output and log.

• If you specify a blank character ("") as the property name, the operation is not guaranteed.

16.2.13 javax.xml.ws.Action annotation
With the javax.xml.ws.Action annotation, you can specify a value of the wsa:Action element of the
addressing header that is used by the Web Service, in each of the input, output, and fault messages of an
operation.

You can specify the javax.xml.ws.Action annotation only in SEI. If you specify this annotation in a Service
Implementation Class, a warning message will output to the standard error output and logs, and the processing will
continue (KDJW61095-W).

16. Mapping from Java to WSDL

367

The following figure shows an example of customization using the javax.xml.ws.Action annotation:

Figure 16‒22: Example of customization using the javax.xml.ws.Action annotation

(1) fault element (javax.xml.ws.Action)
In the fault element, you specify the value of the wsa:Action element (javax.xml.ws.FaultAction
annotation) of the addressing header that is used by the Web Service, when sending a fault message. If you specify
null or {null}, the operation is not guaranteed.

The fault element is referenced only when starting the Web Services. This is not interpreted when executing the
apt command or the cjwsgen command.

(2) input element (javax.xml.ws.Action)
In the input element, you specify the value of the wsa:Action element of the addressing header that is used by
the Web Services, when receiving a request message. In the input element, specify the characters that satisfy
xsd:anyURI stipulated in RFC 2396. If you specify any other character, the operation is not guaranteed.

If you specify a blank space in the input element, the blank space will become the value of the wsa:Action
element of the addressing header. If you specify a blank character, the specification is ignored, and it is assumed that
you have not coded the input element.

The input element is referenced only when starting the Web Services. This is not interpreted when executing the
apt command or the cjwsgen command.

(3) output element (javax.xml.ws.Action)
In the output element, you specify a value of the wsa:Action element of the addressing header that is used by the
Web Service when sending a response message. In the output element, specify the characters that satisfy
xsd:anyURI stipulated in RFC 2396. If you specify any other character, the operation is not guaranteed.

If you specify a blank space in the output element, the blank space will become the value of the wsa:Action
element of the addressing header. If you specify a blank character, the specification is ignored, and it is assumed that
you have not coded the output element.

The output element is referenced only when starting the Web Services. This is not interpreted when you execute the
apt command or the cjwsgen command.

16.2.14 javax.xml.ws.BindingType annotation
The javax.xml.ws.BindingType annotation is specified in the Web Service Implementation Class. If specified
in SEI, this annotation is ignored. When this annotation is specified in SEI, a warning message is output to the
standard error output and log and the processing continues (KDJW61079-W).

16. Mapping from Java to WSDL

368

(1) value element (javax.xml.ws.BindingType)
In the value element, you can specify the following field values of the javax.xml.ws.soap.SOAPBinding
interface.

• "SOAP11HTTP_BINDING" (SOAP1.1 over HTTP)

• "SOAP12HTTP_BINDING" (SOAP1.2 over HTTP)

• "SOAP11HTTP_MTOM_BINDING" (SOAP1.1 over HTTP where attachments of MTOM/XOP specifications
format are enabled by default)

• "SOAP12HTTP_MTOM_BINDING" (SOAP1.2 over HTTP where attachments of MTOM/XOP specifications
format are enabled by default)

If another field value is specified, an error message is output to the standard error output and logs. The following table
describes the error messages output, when you specify an invalid value in the value element:

Table 16‒19: Error messages output when specifying an invalid value in the value element
(javax.xml.ws.BindingType)

No. Value of the value element

Error message ID

When you execute the
apt command

When you execute the
cjwsgen command

1 javax.xml.ws.http.HTTPBinding.HTTP_BI
NDING

KDJW61072-E KDJW71005-E

2 An invalid value other than the binding identifier KDJW61072-E KDJW71005-E

The following table describes the mapping from the javax.xml.ws.BindingType annotation to the
soap:binding element (child element of the wsdl:binding element of WSDL) or the transport attribute
value of the soap12:binding element.

Table 16‒20: Mapping the BindingType annotation to the transport attribute value

No SOAP version BindingType annotation value transport attribute value

1 SOAP 1.1 http://schemas.xmlsoap.org/soap/
http
or
@SOAPBinding.SOAP11HTTP_BINDING

http://
schemas.xmlsoap.org/soap/
http

2 http://schemas.xmlsoap.org/wsdl/
soap/http?mtom=true
or
@SOAPBinding.SOAP11HTTP_MTOM_BINDI
NG

3 SOAP 1.2 http://www.w3.org/2003/05/soap/
bindings/HTTP/
or
@SOAPBinding.SOAP12HTTP_BINDING

The transport attribute value of
WSDL differs depending upon the
specified value of the -
soap12binding option or the
com.cosminexus.jaxws.publi
sh_wsdl.soap12binding
property.4 http://www.w3.org/2003/05/soap/

bindings/HTTP/?mtom=true
or
@SOAPBinding.SOAP12HTTP_MTOM_BINDI
NG

#
For the relationship between the specified value of the -soap12binding option, and the transport attribute value of a
WSDL, see 14.3 cjwsgen command.

16. Mapping from Java to WSDL

369

The following table describes the relationship between the specified value of the
com.cosminexus.jaxws.publish_wsdl.soap12binding property and the transport attribute value of WSDL.

Table 16‒21: Relationship between specified value of the property and the transport attribute value of
WSDL

No Property specification Specified property value transport attribute value

1 Not specified None http://www.w3.org/2003/05/soap/
bindings/HTTP/

2 Specified DEFAULT

3 WSI_BP20_TRANSPORT http://schemas.xmlsoap.org/soap/
http#

#
As the transport attribute value is not clear in the standard specifications, you can use this URL in JAX-WS.

16.2.15 javax.xml.ws.FaultAction annotation
With the javax.xml.ws.FaultAction annotation, specify a value of the wsa:Action element of the
addressing header used by the Web Service, when sending a fault message.

You can specify the javax.xml.ws.FaultAction annotation only in the fault element of the
javax.xml.ws.Action annotation. This annotation is disabled even when specified in the SEI and a Service
Implementation Class.

(1) className element (javax.xml.ws.FaultAction)
The className element is a required element of the javax.xml.ws.FaultAction annotation. Specify the
class name of the exception class sent by the Web Service. If you do not specify the className element, an
exception occurs in the JAX-WS engine at the Web Service machine, and the Web Services cannot be started
(KDJW40013-E).

Note that the operation is not guaranteed if any class other than the exception class that is sent by the Web Services is
specified in the className element.

The className element is referenced only when starting the Web Services. This is not interpreted when executing
the apt command or the cjwsgen command.

(2) value element (javax.xml.ws.FaultAction)
In the value element, specify the value of the wsa:Action element of the addressing header that is used by the
Web Service, when sending the fault message of the exception class specified in the className element. In the
value element, specify the characters that satisfy xsd:anyURI stipulated in RFC 2396. If you specify any other
character, the operation is not guaranteed.

If you specify a blank space in the output element, the blank space will become the value of the wsa:Action
element of the addressing header. If you specify a blank character, the specification is ignored, and it will be assumed
that you have not coded the value element.

The value element is referenced when starting the Web Services. This is not interpreted when executing the apt
command or the cjwsgen command.

16.2.16 javax.xml.ws.RequestWrapper annotation
The javax.xml.ws.RequestWrapper annotation can be specified in the wrapper style. If specified in the
non-wrapper style, a warning message is output to the standard error output and log and the processing continues
(KDJW61061-W).

The javax.xml.ws.RequestWrapper annotation is specified in SEI. If specified in the Web Service
Implementation Class, this annotation is ignored. When this annotation is specified in the Web Service

16. Mapping from Java to WSDL

370

Implementation Class, a warning message is output to the standard error output and log and the processing continues
(KDJW61077-W).

The following figure shows an example of customization with the javax.xml.ws.RequestWrapper annotation:

Figure 16‒23: Example of customization with the javax.xml.ws.RequestWrapper annotation

(1) localName element (javax.xml.ws.RequestWrapper)
You specify the localName element to customize the mapping of the local names of the request wrapper element.
If the element value is specified in the localName element, you can also customize the type name of the wrapper
element.

The precautions for specifying the localName element are as follows:

• Specify the localName element using one-byte alphanumeric characters and underscore (_). If other characters
are specified, the operations might not function properly (error message is not output).

• Specify the same name for the localName element and the operation name. If the names vary, an error message
is output to the standard error output and logs (KDJW61047-E). However, if the
javax.xml.ws.RequestWrapper annotation does not exist, or if you specify a blank character ("") in the
localName element of the javax.xml.ws.RequestWrapper annotation, a comparison is not done to
check whether the names are the same and hence a message is not output.

(2) targetNamespace element (javax.xml.ws.RequestWrapper)
You specify the targetNamespace element to customize the mapping of the name spaces of the request wrapper
element.

In the targetNamespace element, the http:// or urn: protocol is specified as a name space. The following
name space formats and strings can be specified:

• Protocol
Code the name space protocol using the http:// or urn: protocol. If a protocol other than http:// or urn:
(such as https://, file://) is coded, an error message is output to the standard error output and log
(KDJW61042-E).
Also, if you code the name space using the relative path, an error message is output to the standard error output
and logs (KDJW61043-E).

• Name space coding format
The following formats cannot be coded in the name space. If the following formats are used for coding, an error
message is output to the standard error output and logs (KDJW61044-E):

• Query string (example) http://example.com/?a=b
• Anchor (example) http://example.com/index.html#anchor
• Port number (example) http://example.com:8080/

16. Mapping from Java to WSDL

371

• User name/ password (example) http://user:password@example.com
• Strings that can be coded

In the segments separated using the separation characters, forward slash (/) or period (.), you can code a string that
fulfills all the conditions described in the following table. However, when customizing with the binding
declaration, you can code the strings that can be used as the xsd:NCName type of the XML Schema
specification.

Table 16‒22: Conditions for the strings that can be coded in the name space
(javax.xml.ws.RequestWrapper)

No. Condition Example of invalid string Operation when an
invalid string is specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A
to Z, a to z)

http://Hitachi.com
http://133.145.224.19/
http://
[1080:2C14;D30:BA04:275:806:
270C:418A]/

The operations might not
function properly (error
message is not displayed).

2 Strings other than Java reserved
words

http://hitachi.com/abstract The operations might not
function properly.

3 Strings that do not begin with
numeric characters

http://1hitachi.com

(3) className element (javax.xml.ws.RequestWrapper)
The className element specifies the class name of the generated request bean using a fully qualified name.

The precautions for specifying the className element are as follows:

• Specify the className element using one-byte alphanumeric characters, underscore (_), and dollar mark ($). If
other characters are specified, the operations might not function properly (error message is not output).

• Specify a value complying with the Java identifier naming rules provided in the Java language specifications. If
the value does not comply with the Java identifier naming rules, an error message is output to the standard error
output and logs (KDJW61040-E).

(4) partName element (javax.xml.ws.RequestWrapper)
Specify the partName element when customizing the mapping of the part name of the input message that references
the request wrapper element.

Specify the partName with one-byte alphanumeric characters and underscore (_). The operation is not guaranteed if
any other character is specified (no error message is output).

16.2.17 javax.xml.ws.ResponseWrapper annotation
The javax.xml.ws.ResponseWrapper annotation can be specified in the wrapper style. If specified in the
non-wrapper style, a warning message is output to the standard error output and log and the processing continues
(KDJW61062-W).

The javax.xml.ws.ResponseWrapper annotation is specified in SEI. If specified in the Web Service
Implementation Class, this annotation is ignored. When this annotation is specified in the Web Service
Implementation Class, a warning message is output to the standard error output and log and the processing continues
(KDJW61078-W).

The following figure shows an example of customization with the javax.xml.ws.ResponseWrapper
annotation:

16. Mapping from Java to WSDL

372

Figure 16‒24: Example of customization with the javax.xml.ws.ResponseWrapper annotation

(1) localName element (javax.xml.ws.ResponseWrapper)
You specify the localName element to customize the mapping of the local names of the response wrapper
element. If the element value is specified in the localName element, you can also customize the type name of the
wrapper element.

Specify the localName element using one-byte alphanumeric characters and underscore (_). If other characters are
specified, the operations might not function properly (error message is not output).

(2) targetNamespace element (javax.xml.ws.ResponseWrapper)
You specify the targetNamespace element to customize the mapping of the name spaces of the response
wrapper element.

In the targetNamespace element, the http:// or urn: protocol is specified as a name space. The following
name space formats and strings can be specified:

• Protocol
Code the name space protocol using the http:// or urn: protocol. If a protocol other than http:// or urn:
(such as https://, file://) is coded, an error message is output to the standard error output and logs
(KDJW61049-E).
Also, if you code a name space using the relative path, an error message is output to the standard error output and
logs (KDJW61050-E).

• Name space coding format
The following formats cannot be coded in the name space. If the following formats are used for coding, an error
message is output to the standard error output and log (KDJW61051-E):

• Query string (example) http://example.com/?a=b
• Anchor (example) http://example.com/index.html#anchor
• Port number (example) http://example.com:8080/
• User name/ password (example) http://user:password@example.com

• Strings that can be coded
In the segments separated using the separation characters, forward slash (/) or period (.), you can code a string that
fulfills all the conditions described in the following table:

16. Mapping from Java to WSDL

373

Table 16‒23: Conditions for the strings that can be coded in the name space
(javax.xml.ws.ResponseWrapper)

No. Condition Example of invalid string Operation when an
invalid string is specified

1 Strings using only one-byte
alphanumeric characters (0 to 9, A
to Z, a to z)

http://Hitachi.com
http://133.145.224.19/
http://
[1080:2C14;D30:BA04:275:806:
270C:418A]/

The operations might not
function properly (error
message is not displayed).

2 Strings other than Java reserved
words

http://hitachi.com/abstract The operations might not
function properly.

3 Strings that do not begin with
numeric characters

http://1hitachi.com

(3) className element (javax.xml.ws.ResponseWrapper)
The className element specifies the class name of the generated response bean using a fully qualified name.

The precautions for specifying the className element are as follows:

• Specify the className element using a period (.) that is the delimiter of the package, one-byte alphanumeric
characters, underscores (_), and dollar mark ($). If other characters are specified, the operations might not function
properly (error message is not output).

• Specify a value complying with the Java identifier naming rules provided in the Java language specifications. If
the value does not comply with the Java identifier naming rules, an error message is output to the standard error
output and logs (KDJW61041-E).

(4) partName element (javax.xml.ws.ResponseWrapper)
Specify the partName element when customizing the part name of the output message that references the request
wrapper element.

Specify the partName with one-byte alphanumeric characters and underscore (_). If you specify partName with
any other character, the operation is not guaranteed. (no error message is output).

16.2.18 javax.xml.ws.ServiceMode annotation
In the javax.xml.ws.ServiceMode annotation, specify whether the target to be accessed by the provider is only
the payload (SOAP Body) of the protocol message or is the entire protocol message (SOAP Envelop).

The javax.xml.ws.ServiceMode annotation is referenced only when starting the Web Services. This is not
interpreted when executing the apt command or the cjwsgen command.

(1) value element (javax.xml.ws.ServiceMode)
With the value element, specify either javax.xml.ws.Service.Mode.MESSAGE or
javax.xml.ws.Service.Mode.PAYLOAD. The default value is
javax.xml.ws.Service.Mode.PAYLOAD.

If you specify javax.xml.ws.Service.Mode.MESSAGE, the entire protocol message is passed to the provider
instance, and if you specify javax.xml.ws.Service.Mode.PAYLOAD, only the payload of the protocol
message is passed to the provider instance.

16.2.19 javax.xml.ws.soap.Addressing annotation
You must have the javax.xml.ws.soap.Addressing annotation for using the addressing functionality.

16. Mapping from Java to WSDL

374

The description of the javax.xml.ws.soap.Addressing annotation is as follows:

Web Services
You can specify the javax.xml.ws.soap.Addressing annotation only in a Service Implementation Class.
If you specify the javax.xml.ws.soap.Addressing annotation in SEI, a warning message will output to
the standard error output and logs, and the processing will continue (KDJW61094-W).

Web Services client
You can specify this annotation in the setter method or a field that injects the port. For details, see 10.21.1(4)
Enabling features. The annotation will be ignored if you specify the annotation in any other fields or methods.

The following figure shows an example of the customization using the javax.xml.ws.soap.Addressing
annotation:

Figure 16‒25: Example of customization using the javax.xml.ws.soap.Addressing annotation (Web
Service)

(1) enabled element (javax.xml.ws.soap.Addressing)
In the enabled element, specify whether to enable the addressing functionality in the Web Service. If you specify
true, the addressing functionality is enabled, and if you specify false, the addressing functionality is disabled. The
default value is true.

The enabled element is referenced only when starting the Web Services. This is not interpreted when executing the
apt command or the cjwsgen command.

(2) required element (javax.xml.ws.soap.Addressing)
In the required element, specify whether the addressing header is required in the request message, when you
invoke Web Services. If you specify true, the addressing header will be required, and if you specify false, the
addressing header becomes optional. The default value is false.

The required element is referenced only when starting the Web Services. This is not interpreted when executing
the apt command or the cjwsgen command.

16. Mapping from Java to WSDL

375

(3) responses element (javax.xml.ws.soap.Addressing)
In the responses element, specify the type of the response end point requested by the end point when WS-
Addressing is enabled. The following table describes the values that can be specified in the responses element.

Table 16‒24: Values that can be specified in the responses element

No. Values of responses element Explanation

1 javax.xml.ws.soap.AddressingFeature.Responses.ALL The default value.

You can specify all the URIs.

2 javax.xml.ws.soap.AddressingFeature.Responses.ANONY
MOUS

You can specify only an anonymous
URI.

3 javax.xml.ws.soap.AddressingFeature.Responses.NON_A
NONYMOUS

You can specify only a non-
anonymous URI.

If you specify javax.xml.ws.soap.AddressingFeatures.Responses.ANONYMOUS in the element
value of the responses element, you must specify an anonymous URI in the wsa:ReplyTo element and
wsa:FaultTo element of the addressing header of the message to be sent to the end point. If you specify a non-
anonymous URI, javax.xml.ws.WebServiceException is returned.

If you specify javax.xml.ws.soap.AddressingFeatures.Responses.NON_ANONYMOUS in the
element value of the responses element, you must specify a non-anonymous URI. If an anonymous URI is
specified, javax.xml.ws.WebServiceException is returned.

By default, you can specify all the same URIs as that in the case when
javax.xml.ws.soap.AddressingFeatures.Responses.ALL is specified.

The responses element is referenced only when starting the Web Services and is not interpreted when executing
the apt or cjwsgen command.

16.2.20 javax.xml.ws.soap.MTOM annotation
Specify the javax.xml.ws.soap.MTOM annotation in the Web Service that uses the attachments of MTOM/XOP
specification format.

The description of the javax.xml.ws.soap.MTOM annotation is as follows.

Web Services
You can specify the javax.xml.ws.soap.MTOM annotation only in the Web Service Implementation Class.
The annotation is ignored if specified in SEI. Also, the operation is not guaranteed if the annotation is specified in
the Provider Implementation Class (class that implements the javax.xml.ws.provider interface).

Web Services client
You can specify this annotation in the setter method or a field that injects the port. For details, see 10.21.1(4)
Enabling features. The annotation will be ignored if you specify the annotation in any other fields or methods.

When creating the Web Service that uses attachments of MTOM/XOP specification format with the help of the
skeleton class of the Web Service Implementation Class generated by the cjwsimport command, the
javax.xml.ws.soap.MTOM annotation is not mapped in the skeleton class of the Web Service Implementation
Class. Therefore, you must specify the javax.xml.ws.soap.MTOM annotation. Note that even if the
javax.xml.ws.soap.MTOM annotation is specified in the Web Service Implementation Class, an element or
attribute indicating the usage of attachments of MTOM/XOP specification format does not appear in the WSDL file
issued by the Web Service JAX-WS engine or WSDL file generated by the cjwsgen command.

The javax.xml.ws.soap.MTOM annotation is referenced only when starting the Web Services. Therefore, this
annotation is not interpreted when executing the apt command and the cjwsgen command.

The following is an example using the javax.xml.ws.soap.MTOM annotation in Web Service:

.......
@MTOM
@WebService(endpointInterface = "jaxwstp.example.service.ExamplePortType",

16. Mapping from Java to WSDL

376

targetNamespace = "http://service.example.jaxwstp/", serviceName = "ExampleService",
portName = "ExamplePort")
public class ExampleBinding implements ExamplePortType {

(1) enabled element (javax.xml.ws.soap.MTOM)
The enabled element specifies whether to use the attachments of MTOM/XOP specifications format in the Web
Service. When true is specified, attachments of MTOM/XOP specifications format can be used, and when false is
specified, attachments of MTOM/XOP specification format cannot be used. The default value is true.

(2) threshold element (javax.xml.ws.soap.MTOM)
The threshold element is the threshold for sending the binary data as attachments of MTOM / XOP specifications
format when you can use attachments of MTOM / XOP specifications format in the Web Service. In classes other than
the javax.activation.DataHandler class, for the binary data exceeding the specified value (threshold
element value size of the data to be sent), binary data is sent as attachments of MTOM/XOP specifications format.
The default value is 0.

16.2.21 javax.xml.ws.WebFault annotation
You can use the javax.xml.ws.WebFault annotation to customize the mapping of the return values.

The following figure shows an example of customization with the javax.xml.ws.WebFault annotation:

Figure 16‒26: Example of customization with the javax.xml.ws.WebFault annotation

(1) name element (javax.xml.ws.WebFault)
You use the name element to customize the local name of the global element mapped from the fault bean.

Specify the name element using one-byte alphanumeric characters and underscore (_). If other characters are
specified, the operations might not function properly (error message is not output).

(2) targetNamespace element (javax.xml.ws.WebFault)
You specify the targetNamespace element to customize the name space of the global element mapped from the
fault bean.

In the targetNamespace element, the http:// or urn: protocol is specified as a name space. The following
name space formats and strings can be specified:

• Protocol
Code the name space protocol using the http:// or urn: protocol. If a protocol other than http:// or urn:
(such as https://, file://) is coded, an error message is output to the standard error output and logs
(KDJW61067-E).

16. Mapping from Java to WSDL

377

Also, if you code the name space using the relative path, an error message is output to the standard error output
and logs (KDJW61068-E).

• Name space coding format
The following formats cannot be coded in the name space. If the following formats are used for coding, an error
message is output to the standard error output and log (KDJW61069-E):

• Query string (example) http://example.com/?a=b
• Anchor (example) http://example.com/index.html#anchor
• Port number (example) http://example.com:8080/
• User name/ password (example) http://user:password@example.com

• Strings that can be coded
In the segments separated using the separation characters, forward slash (/) or period (.), you can code a string that
fulfills all the conditions described in the following table. However, when you perform the customization using
the binding declaration, you can code character strings that can be used as the xsd:NCName type of XML
Schema specifications.

Table 16‒25: Conditions for the strings that can be coded in the name space (javax.xml.ws.WebFault)

No. Conditions Examples of invalid strings Operation when an
invalid string is specified

1 Strings using only one-byte
alphanumeric characters (0 to 9,
A to Z, a to z)

http://Hitachi.com
http://133.145.224.19/
http://
[1080:2C14;D30:BA04:275:806:27
0C:418A]/

The operations might not
function properly (error
message is not displayed).

2 Strings other than Java reserved
words

http://hitachi.com/abstract The operations might not
function properly.

3 Strings that do not begin with
numeric characters

http://1hitachi.com

(3) faultBean element (javax.xml.ws.WebFault)
The faultBean element specifies the class name of the generated fault bean using a fully qualified name. If the
wrapper exception class has the getFaultInfo method that returns the javax.xml.ws.WebFault annotation
and the fault bean, the fault bean is not generated even if the faultBean element is specified.

The precautions for specifying the faultBean element are as follows:

• Specify the faultBean element using one-byte alphanumeric characters and underscore (_). If other characters
are specified, the operations might not function properly (error message is not output).

• Specify a value complying with the Java identifier naming rules provided in the Java language specifications. If
the value does not comply with the Java identifier naming rules, an error message is output to the standard error
output and logs (KDJW61039-E).

(4) messageName element (javax.xml.ws.WebFault)
Specify the messageName element when customizing the fault message name (the name attribute of the
wsdl:message element referenced from the wsdl:fault element) corresponding to the wrapper exception class.

Specify the messageName element with one- byte alphanumeric characters and underscore (_). If you specify the
messageName element with any other character, the operation is not guaranteed (no error message is output).

16.2.22 javax.xml.ws.WebServiceProvider annotation
Specify the javax.xml.ws.WebServiceProvider annotation in the class that implements the
javax.xml.ws.provider interface, and this annotation declares that the class that satisfies the requirements of
the provider defines the endpoint of the Web Service.

16. Mapping from Java to WSDL

378

You can specify only one annotation from the javax.xml.ws.WebServiceProvider and
javax.jws.WebService annotations. If you specify the javax.xml.ws.WebServiceProvider and
javax.jws.WebService annotations together, an error message will output to the standard error output and logs
(KDJW61098-E).

The javax.xml.ws.WebServiceProvider annotation is referenced only when starting the Web Services. This
is not interpreted when executing the apt command or the cjwsgen command.

(1) targetNamespace element (javax.xml.ws.WebServiceProvider)
In the targetNamespace element, specify the http:// protocol or the urn: protocol as a name space. You can
specify the following formats and character strings for the name space:

• Protocol
Code the name space protocol using the http:// protocol or the urn: protocol. If you code a protocol other
than http:// or urn: (such as https:// and file://), an error message will output to the standard error
output and logs (KDJW61099-E).
Also, if you code the name space using the relative path, an error message will output to the standard error output
and logs (KDJW61100-E).

• Name space coding format
You cannot code the following formats in the name space. If you use the following formats for coding, an error
message will output to the standard error output and logs (KDJW61101-E):

• Query string (example) http://example.com/?a=b
• Anchor (example) http://example.com/index.html#anchor
• Port number (example) http://example.com:8080/
• User name/ password (example) http://user:password@example.com

• Character strings that you can code
In a segment demarcated with delimiters such as a forward slash (/) or period (.), you can code a character string
that satisfies all the conditions described in the following table:

Table 16‒26: Conditions for character strings that you can code in a name space
(javax.xml.ws.WebServiceProvider)

No. Condition Examples of invalid character strings
Operation when an

invalid character string
is specified

1 Character strings using only
single-byte alphanumeric
characters (0 to 9, A to Z, and a to
z)

http://Hitachi.com/
http://133.145.224.19/
http://
[1080:2C14;D30:BA04:275:806:2
70C:418A]/

The operation is not
guaranteed (no error
message is displayed).

2 Character strings containing
anything than reserved
terminology of Java

http://hitachi.com/abstract The operation is not
guaranteed.

3 Character strings that do not begin
with a numeric character

http://1hitachi.com

(2) serviceName element (javax.xml.ws.WebServiceProvider)
Specify the serviceName element with single-byte alphanumeric characters and underscores (_). If you specify any
other character, the operation is not guaranteed (no error message is displayed).

(3) portName element (javax.xml.ws.WebServiceProvider)
Specify the portName element with single-byte alphanumeric characters and underscores (_). If you specify any
other character, the operation is not guaranteed (no error message is displayed).

16. Mapping from Java to WSDL

379

(4) wsdlLocation element (javax.xml.ws.WebServiceProvider)
For details about the wsdlLocation element, see the section 10.6 Issuing the Meta data.

16. Mapping from Java to WSDL

380

17 Web Resources and Providers
This chapter describes the support range of the resource classes and providers of
RESTful Web Services (Web resources).

381

17.1 Resource classes
This section describes the difference between the resource methods, sub-resource methods, and the sub-resource
locators of a resource class. This chapter also describes the difference between the root resource and sub-resource
classes.

The resource methods, sub-resource methods, and the sub-resource locators of a resource class are defined depending
on the availability of Path annotations and request method identifiers. The following table describes the respective
definitions.

Table 17‒1: Definition of resource and sub-resource methods, and sub-resource locator

No. Method or locator Path annotation Request method designator

1 Resource method N Y

2 Sub-resource method Y Y

3 Sub-resource locator Y N

Legends:
Y: Indicates availability
N: Indicates non-availability

Use a JAX-RS engine for generating the instances of root resource classes. When generating an instance, an injection
is performed to constructor parameters, fields, and bean properties according to the JAX-RS specifications.

On the other hand, the JAX-RS engine is not used for generating an instance of a sub-resource class. A sub-resource
class must be instantiated by a corresponding sub-resource locator. Therefore, you are required to use a sub-resource
locator or a sub-resource class to initialize constructor parameters, fields, and bean properties.

17.1.1 Root resource classes
A root resource class is a public class of Java that is set up as an annotation using the Path annotation at a class
level, and contains at least one of the resource methods, sub-resource methods, or sub-resource locators.

The following example describes a root resource class containing a resource method and a sub-resource locator.

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

//root resource class
@Path("/root")
public class Resource2 {

 //subresource locator corresponding to the request to context root+ "/root/sub1"
 @Path("/sub1")
 public SubResource1 subResourceLocator1() {
 //returns an instance of the subresource class to be processed
 return new SubResource1();
 }

 //subresource locator corresponding to the request to context root+ "/root/sub2"
 @Path("/sub2")
 public SubResource2 subResourceLocator2() {
 //returns an instance of the subresource class to be processed

 return new SubResource2();
}
 //resource method
 @GET
 public String getValue() {
 String returnValue = "";
 //sets a return value
 return returnValue;
 }

}

17. Web Resources and Providers

382

com.sample.resources.Resource2 is a root resource class. Note that the annotation is performed with the
Path annotation at a class level. This root resource class contains two sub-resource locators;
subResourceLocator1() and subResourceLocator2(), and the resource method getValue() for
processing HTTP GET requests. Note that the Path annotation is used for the annotation of a sub-resource locator
and the request method designator is used for the annotation of a resource method. Both SubResource1 and
SubResource2 are sub-resource classes. For details, see the following subsections:

• 17.1.1(4) Resource method

• 17.1.1(5) Sub-resource method

• 17.1.1(6) Sub-resource locator

• 17.1.7 Sub-resource classes

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

//root resource class
@Path("/root")
public class Resource3 {

 //sub-resource method corresponding to the request to context root+ "root/sub1"
 @Path("/sub1")
 @GET
 public String subResourceMethod1() {
 String value = "";
 // Execute the process and then return the result.
 return value;
 }

 //sub-resource method corresponding to the request to context root+ "root/sub2"
 @Path("/sub2")
 @GET
 public String subResourceMethod2() {
 String value = "";
 // Execute the process and then return the result.
 return value;
 }
}

com.sample.resources.Resource3 is a root resource class. This root resource class contains two sub-
resource methods; subResourceMethod1() and subResourceMethod2(). Both the Path annotation and
the request method are used for the annotation of a sub-resource method.

If an asterisk (*) is specified in the URL of the Path annotation, you can invoke only a resource method. If you
invoke a sub-resource method or a sub-resource locator, the system throws
java.lang.StringIndexOutOfBoundsException exception, which can be handled by the exception
mapping provider.

(1) Life cycle
The JAX-RS engine instantiates a root resource class for each request corresponding to a Web resource. The life cycle
of a root resource class is as follows:

1. A constructor is invoked

2. The required injection is performed

3. An appropriate method is invoked

4. Considered as a target for a Garbage Collection (GC)

(2) Constructor
A root resource class must contain at least one public constructor including the default public constructor (constructors
that are not explicitly declared).

The following example describes a public constructor containing parameters.

17. Web Resources and Providers

383

package com.sample.resources;

import javax.ws.rs.DefaultValue;
import javax.ws.rs.Encoded;
import javax.ws.rs.QueryParam;
import javax.ws.rs.Path;
import javax.ws.rs.GET;

//root resource class
@Path("/root")
public class Resource1 {
 private String query1;

 //public constructor containing parameters
 public Resource1(@Encoded @DefaultValue("abc") @QueryParam("query") String query){
 this.query1 = query;
 }

 //resource method
 @GET
 public String getValue() {
 return "Your requested query parameter \"query\" is: " + this.query1;
 }
}

In this example, the root resource class com.sample.resources.Resource1 is instantiated depending on the
public constructor Resource1() containing the parameter query that is annotated using the QueryParam
annotation.

The Encoded annotation allows you to disable the automatic URL decoding of the parameter query. Furthermore,
the DefaultValue annotation is also included and used to specify the default value if the value to be injected into
the parameter query does not exist in the request sent by a client.

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

//root resource class
@Path("/root")
public class Resource2 {
 //public constructor without parameters
 public Resource2() {
 // Execute the process
 }

 //resource method
 @GET
 public String getValue(){
 return "Your request was accepted.";
 }
}

In this example, the public constructor Resource2() that does not contain parameters instantiates the root resource
class com.sample.resources.Resource2.

The following example describes multiple public constructors with parameters.

package com.sample.resources;

import javax.ws.rs.Encoded;
import javax.ws.rs.MatrixParam;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.QueryParam;

//root resource class
@Path("/root/")
public class Resource3 {
 private String matrix1;
 private String query1;

 //public constructor without parameters
 public Resource3() {
 // Execute the process
 }

17. Web Resources and Providers

384

 //public constructor with parameters(1st)
 @Encoded
 public Resource3(@MatrixParam("matrix1") String matrix1) {
 this.matrix1 = matrix1;
 }

 //public constructor with parameters(2nd)
 @Encoded
 public Resource3(@FormParam("form1") String form1,
 @QueryParam("query1") String query1) {
 this.form1 = form1;
 this.query1 = query1;
 }

 //resource method
 @GET
 public String getValue() {
 return "Your requested matrix parameter \"matrix1\" is: " + this.matrix1 + "\n" +
 "Your requested query parameter \"query1\" is: " + this.query1;
 }
}

In this example, the second public constructor that contains the parameters matrix1 and query1, annotated
respectively by the MatrixParam and QueryParam annotations, instantiates the root resource class
com.sample.resources.Resource3.

The Encoded annotation used at the constructor level allows you to disable the automatic URL decoding of the
parameters matrix1 and query1.

The following example describes the default constructor.

package com.sample.resources;

import javax.ws.rs.FormParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;

//root resource class
@Path("/root")
public class Resource4 {

 //resource method
 @POST
 public String getValue(@FormParam("form1") String form1) {
 return "Your requested form parameter \"form1\" is: " + form1;
 }
}

In this example, the implicitly declared default constructor Resource4() instantiates the root resource class
com.sample.resources.Resource4.

If a default constructor throws the java.oi.IOException exception, an error (KDJJ10039-E) occurs, and the
route resource class is not instantiated. 500 is returned as the HTTP status code.

If no public constructor is declared, an error (KDJJ10006-E) occurs, and the root resource class is not instantiated. The
system returns 500 as the HTTP status code.

Note that the following constructors are not public constructors:

• private constructors

• protected constructors

• Constructors without access identifiers

The following table describes the combinations of optional and injection annotations that you can use as constructor
parameters.

17. Web Resources and Providers

385

Table 17‒2: Annotations that can be used as constructor parameters

No. Annotation for injection
Option annotation

Encoded DefaultValue

1 MatrixParam Y Y

2 QueryParam Y Y

3 PathParam Y N

4 CookieParam N Y

5 HeaderParam N Y

6 FormParam N Y

7 Context N N

Legends:
Y: Indicates the annotations that you can use in combination with injection annotations.
N: Indicates the annotations that you cannot use with injection annotations.

The optional Encoded annotation allows you to disable the automatic URL decoding of the parameters of the
constructors to be injected.

The optional DefaultValue annotation allows you to specify an assumed default value, if a value is not available
for injecting into the parameters of a constructor targeted for injection.

If a root resource class contains more than one public constructor with parameters, the JAX-RS engine instantiates a
root resource class using the constructor with the maximum parameters. If a root resource class contains two or more
constructors with the maximum parameters, the JAX-RS engine instantiates a root resource class using the constructor
defined first. At this time, the warning message (KDJJ20010-W) is output to a log.

For all the conditions described below, the HTTP request will not be processed. The system returns 500 as the HTTP
status code. Note that when confirming logs, you must confirm the J2EE server log file instead of the JAX-RS
functionality log file.

• From among the parameters of the root resource class constructor, if a parameter that uses the Injection
and DefaultValue annotations throws a runtime exception while the JAX-RS engine executes the injection
operation

• If a default constructor of a root resource class throws a checked exception (excluding runtime exceptions) other
than the java.lang.InstantiationException, java.lang.IllegalAccessException,
java.lang.reflect.InvocationTargetException, or the java.io.IOException exception

(3) Fields and Bean properties
The following table describes the combinations of injection and option annotations that you can use in the fields and
bean properties of a root resource class. When instantiating a root resource class, the JAX-RS engine injects values in
the annotated fields and bean properties based on annotations. The bean properties are not necessarily read-only.

Table 17‒3: Annotations that can be used in fields and bean properties

No. Annotation for injection
Option annotation

Encoded DefaultValue

1 MatrixParam Y Y

2 QueryParam Y Y

3 PathParam Y N

4 CookieParam N Y

5 HeaderParam N Y

17. Web Resources and Providers

386

No. Annotation for injection
Option annotation

Encoded DefaultValue

6 FormParam N Y

7 Context N N

Legends:
Y: Indicates the annotations that you can use in combination with injection annotations.
N: Indicates the annotations that you cannot use with injection annotations.

The optional Encoded annotation allows you to disable the automatic URL decoding of the fields or bean properties
to be injected.

The optional DefaultValue annotation allows you to specify an assumed default value, if a value is not available
for injecting into the bean properties or the fields targeted for injection.

The following example describes the usage of the DefaultValue annotation in the root resource class fields.

private @DefaultValue("value1") @QueryParam("id") String id;

In this example, if the query parameter id is not specified in the URL, the field id is "value1".

The following example describes the usage of the DefaultValue annotation in the bean properties of a root
resource class.

private String property1;

@DefaultValue("10") @QueryParam("prop1")
public void setProperty1(String property1) {
 this.property1 = property1;
}

In this example, if the query parameter prop1 is not specified in the URI, the value of the bean property
property1 is "10".

The following example describes the usage of the Encoded annotation in the fields of a root resource class:

 private @Encoded @QueryParam("id") String id;

In this example, the field id is not automatically URL decoded.

The following example describes the usage of the Encoded annotation in the bean property of a root resource class.

private String property1;

@Encoded @QueryParam("prop1")
public void setProperty1(String property1) {
 this.property1 = property1;
}

In this example, the value of the bean property property1 is not automatically URL decoded.

From among the bean properties or the fields of the root resource class, if a parameter that uses the Injection and
DefaultValue annotation throws a runtime exception while the JAX-RS engine executes the injection operation,
the HTTP request is not processed. The system returns 500 as the HTTP status code. Note that when confirming logs,
you must confirm the J2EE server log file instead of the JAX-RS functionality log file.

(4) Resource method
The resource method is a method of a root resource class, annotated by one of the request method designators
defined in the JAX-RS specifications. A root resource class can contain one or more resource methods.

The request method designators defined in JAX-RS specifications are as follows:

• GET annotation

17. Web Resources and Providers

387

• POST annotation

• PUT annotation

• DELETE annotation

• HEAD annotation

• OPTIONS annotation

An error (KDJJ10006-E) occurs when you use two or more request method designators for one resource method, and
consequently the root resource class is not instantiated. 500 is returned as the HTTP status code.

An error (KDJJ10006-E) occurs when you use the same request method designator for two or more resource methods,
and consequently the root resource class is not instantiated. The system returns. 500 as the HTTP status code.

If there is no resource method to dispatch a HTTP request, system specifies 405 as the HTTP status code, and the
exception mapping provider throws the exception javax.ws.rs.WebApplicationException.

The following example describes how a request method designator is used with a resource method.

@GET
@Encoded
@Produces("text/plain")
public String echo(@QueryParam("id") String id){
 return "ID is: " + id;
}

In this example, the echo() method is annotated by the GET request method designator. Furthermore, the echo()
method is annotated by the Produces annotation having "text/plain" in the value to return the HTTP response
where the content type is "text/plain". Note that the parameter id is annotated by the QueryParam annotation
that receives the query parameter id, and is additionally annotated by the Encoded annotation to disable the
automatic URL decoding of query parameters.

(a) Visibility

The resource method must be a public method to which a request method designator is applied. Although the
request method designators annotate the following methods, these methods are not the resource methods:

• Private methods

• Protected methods

• Methods without access identifiers

When you apply the request method designator to any of the above-mentioned methods, the warning message or the
error message (KDJJ20003-W or KDJJ10006-E) is output to the log.

For details on KDJJ20003-W and KDJJ10006-E, see 13.7.1 Checking the syntax when initializing Web resources
(KDJJ20003-W and KDJJ10006-E).

(b) Parameter annotations

The following table describes the combinations of the injection and optional annotations that can be used in the
resource method parameters.

Table 17‒4: Annotations that can be used in the resource method parameters

No. Annotation for injection
Option annotation

Encoded DefaultValue

1 MatrixParam Y Y

2 QueryParam Y Y

3 PathParam Y N

4 CookieParam N Y

5 HeaderParam N Y

17. Web Resources and Providers

388

No. Annotation for injection
Option annotation

Encoded DefaultValue

6 FormParam N Y

7 Context N N

Legends:
Y: Indicates the annotations that you can use in combination with injection annotations.
N: Indicates the annotations that you cannot use with injection annotations.

The optional Encoded annotation allows you to disable the automatic URL decoding of the parameters of the
resource method to be injected.

The optional DefaultValue annotation allows you to specify the default value of the annotations, which are
annotated in the parameters of the resource method to be injected.

The following example describes how to use an annotation in the parameter of a resource method.

@GET
@Produces("text/plain")
public String echo(@Encoded @DefaultValue("10") @QueryParam("id") String id, @Encoded
@MatrixParam("matrix1") String matrix1){
 return "ID is: " + id + "\nMatrix1 is: " + matrix1;
}

In this example, the resource method echo() contains the parameter id annotated by the QueryParam annotation
and the parameter matrix1 annotated by the MatrixParam annotation. The parameter id is additionally annotated
by the Encoded and DefaultValue annotations to disable the automatic URL decoding and to specify the default
value respectively. The matrix parameter is additionally annotated by the Encoded annotation to disable the
automatic URL decoding.

From among the parameters of a resource method or sub-resource method, if a parameter that uses DefaultValue
and the injection annotation throws a runtime exception while the JAX-RS engine executes the injection operation, an
error (KDJJ10009-E or KDJJ10006-E) occurs, and consequently the HTTP request is not processed. The system
returns 500 as the HTTP status code.

(c) Entity parameters

For details on entity parameters, see 17.1.2 Entity parameter.

(d) Return values

For details on return values, see 17.1.3 Return values.

(5) Sub-resource method
The resource methods annotated by the Path annotation are specifically referred to as sub-resource methods. The
only difference between a sub-resource method and resource method is whether the Path annotation is used.

An example of a sub-resource method is as follows.

package com.sample.resources;

import javax.ws.rs.POST;
import javax.ws.rs.Path;

//root resource class
@Path("/root/")
public class Resource1 {

 //sub-resource method
 @Path("sub1")
 @POST
 public String doSomething(String entityBody) {
 return "By Sub-Resource Method.";
 }

17. Web Resources and Providers

389

 //resource method
 @POST
 public String doOthers(String entityBody){
 return "By Resource Method.";
 }
}

In this example, the doSomething() method is a sub-resource method. Consider the context root of the Web
application (WAR file) containing the root resource class com.sample.resources.Resource1 to be
"example" and that the Web application is considered to be published on a host named "sample.com". In this case, the
HTTP POST request corresponding to the URL "http://sample.com/example/root/sub1" is dispatched
to the sub-resource method doSomething().

On the other hand, the HTTP POST request corresponding to the URL "http://sample.com/example/root"
is dispatched to the resource method doOthers().

(6) Sub-resource locators
A method of the root resource class that is annotated only by the Path annotation and where the request method
designators are not applied is called a sub-resource locator.

The sub-resource locators return sub-resource classes that execute the remaining processing of the HTTP request. For
details on sub-resource classes, see 17.1.7 Sub-resource classes.

An example of a sub-resource locator of a root resource class is as follows.

package com.sample.resources;

import javax.ws.rs.Encoded;
import javax.ws.rs.QueryParam;
import javax.ws.rs.PathParam;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

//root resource class
@Path("/root/")
public class Resource {

 //subresource locator corresponding to the request to context root+ "/root/sub1"
 @Path("sub1")
 public SubResource getRequestHandler(@PathParam("id") String id,
 @Encoded @QueryParam("query1") String query1) {
 return new SubResource(id, query1);
 }
}

An example of the corresponding sub-resource class is as follows.

//subresource class
public class SubResource {
 private String id;
 private String query;

 public SubResource(String id, String query){
 this.id = id;
 this.query = query;
 }
 @GET
 public String getRequestParameter(){
 return "ID is: " + this.id + "\nQuery is: " + this.query;
 }
}

In this example, the root resource class com.sample.resources.Resource does not process the HTTP request
directly. com.sample.resources.SubResource processes the sub-resource class returned by the sub-resource
locator getRequestHandler.

You consider the context root of the Web application (WAR file) containing the resource class
com.sample.resources.Resource to be "example" and that the Web application is assumed to be published
on a host named "sample.com". In this case, the HTTP GET request corresponding to the URL "http://

17. Web Resources and Providers

390

sample.com/example/root/sub1?query1=10" is dispatched to the method getRequestHandler() of
the root resource class com.sample.resources.Resource.

The resource method getRequestParameter() of the sub-resource class
com.sample.resources.SubResource executes the remaining processing of the HTTP GET request.

If you use an entity parameter as the parameter of a sub-resource locator, the (KDJJ10006-E) error occurs, and
consequently the HTTP request sent by the client is not processed. The system returns 500 as the HTTP status code.

The operation when a sub-resource locator is not public, the sub-resource class performs the same operations as the
operations of resource method.

If the type of the return value of a sub-resource locator is void, the (KDJJ10006-E) error occurs, and consequently
the HTTP request sent by the client is not processed. The system returns 500 as the HTTP status code.

From among the parameters of sub-resource locators, if a parameter that uses the Injection and DefaultValue
annotation throws a runtime exception when the JAX-RS engine executes the injection operation, the HTTP request is
not processed. The system returns 500 as the HTTP status code. Note that when confirming the log, you must confirm
the J2EE server log file instead of the JAX-RS functionality log file.

17.1.2 Entity parameters
From among the parameters of a resource method, a parameter that is not annotated by an annotation is called an
entity parameter. The value of the entity parameter is an entity body.

The following example describes an entity parameter used in the resource method.

@POST
public String getRequestParameters(@MatrixParam("matrix") String matrix,
 String entity) {
 return "Matrix is:" + matrix + "\mEntity Body is: " + entity;
}

In this example, the resource method getRequestParameters() contains the parameter matrix annotated by the
MatrixParam annotation and the un-annotated parameter entity (entity parameter). When an HTTP request with the
entity body content of Entity Content is received, the value of the entity parameter entity is Entity Content.

(1) Combination of Java types and MIME media types available for entity parameters
The following table describes the combinations of the Java types and the MIME media types that can be used as entity
parameters. Do not use the annotations of the JAXB specifications for a POJO. If you use the annotations, the actual
operations might differ from the described operations.

Table 17‒5: Combinations of Java types and MIME media types that can be used as entity parameters

No. Java type Charset#1 MIME media type

1 byte[] N Any(*/*)

2 java.lang.String Y Any(*/*)

3 java.io.InputStream N Any (*/*)

4 java.io.Reader Y Any (*/*)

5 java.io.File#2 Y Any (*/*)

6 javax.activation.DataSource Y Any (*/*)

7 javax.xml.transform.Source#3 N text/xml,

application/xml,

application/*+xml

8 javax.xml.bind.JAXBElement<String>#4 N text/xml,

application/xml,

17. Web Resources and Providers

391

No. Java type Charset#1 MIME media type

8 javax.xml.bind.JAXBElement<String>#4 N application/*+xml

9 The JAXB class annotated by the XmlRootElement annotation and/or
the XmlType annotation#4

N text/xml,

application/xml,

application/*+xml

10 javax.ws.rs.core.MultivaluedMap<String,String> Y application/x-www-form-
urlencoded

11 org.w3c.dom.Document N text/xml,

application/xml,

application/*+xml

12 java.util.List<T>#5 N text/xml,

application/xml,

application/*+xml

13 java.awt.image.RenderedImage N application/octet-stream, image/
jpeg

14 com.cosminexus.jersey.core.provider.EntityHolder<T>#6 D The same MIME media type as
the type specified in T.

15 POJO#7 Y application/json

Legend:
Any (*/*): Indicates that all MIME media types are supported

#1
Indicates whether the content of the charset parameter included in the HTTP Content-Type header is considered when the
parameter is injected into an entity parameter.
Y: Considered. UTF-8 is considered as the charset if the charset parameter is not included in the HTTP Content-Type
header.
D: Depends on the type specified in T
N: Not considered
Note that the charset parameter is ignored, if included in the value of the Consumes annotation.

#2
The JAX-RS engine creates a temp directory in the J2EE server environment to save a temporary file. Use the cjsetup command
to configure the J2EE server environment. For details on the cjsetup command, see cjsetup (Set up and unset up of a J2EE
server) in the Cosminexus Application Server Command Reference Guide.

#3
You can use the following implementation classes:
- javax.xml.transform.stream.StreamSource
- javax.xml.transform.sax.SAXSource
- javax.xml.transform.dom.DOMSource

#4
When the MIME media type is application/fastinfoset or application/json , the operation completes
successfully without occurrence of an error.

#5
With T, you can specify the JAXB class annotated by the XmlRootElement annotation and XmlType annotation.

#6
You can specify the types from No. 2 through No.13, and No. 15 of this table in T.

#7
Enable the JSON POJO mapping. The operation when the JSON POJO mapping is disabled is the same as the operation when an
unsupported Java type is specified in an entity parameter. For details on how to enable the JSON POJO mapping, see 18.
Mapping JSON and POJO.

17. Web Resources and Providers

392

(2) Notes on entity parameters
Further notes on the entity parameters are as follows:

Operation if an exception is thrown when converting to an entity parameter
If an exception is thrown when converting to an entity parameter, an error occurs. For details on how to handle
the exceptions, see 17.1.8 Exception handling.

Operation when a Java type does not support an entity parameter type or when the entity body of an HTTP
request cannot use the MIME media type

The (KDJJ10024-E) error occurs when the following Java type entity parameters contain a MIME media type that
cannot be used by the entity body of an HTTP request, and the system, throws
javax.ws.rs.WebApplicationException, which can be handled by the exception mapping provider and has 415 as
the HTTP status code.

1. javax.xml.bind.JAXBElement<String>

2. The JAXB class annotated by the XmlRootElement annotation and/or the XmlType annotation

3. javax.ws.rs.core.MultivaluedMap<String,String>

4. java.util.List<T>

5. POJO

The operation, however, ends successfully without any errors when the MIME media type of the entity body of an
HTTP request is application/fastinfoset or application/json in the step No.1 or No.2 mentioned
above.
In the entity parameter of java.awt.image.RenderedImage, if the MIME media type of the entity body of an HTTP
request is image/*, the system throws java.io.IOException, which can be handled by the exception mapping
provider.

• If the HTTP request contains an entity body in the entity parameter of
com.cosminexus.jersey.core.provider.EntityHolder<T>, in either of the following cases, the error
(KDJJ10003-E) occurs and the system throws javax.ws.rs.WebApplicationException, which can be handled
by the exception mapping provider and has 500 as the HTTP status code.
- If the type does not support T (No. 1 and No. 14 of the table)
- If the type supports T (From No. 2 to No. 13 of the table) but the MIME media type does not support the
entity body of the HTTP request

• If you use a Java type that does not support the entity parameter type (excluding the cases where the MIME
media types of the entity body of the HTTP request is application/xml, text/xml, or application/*+xml and
java.lang.Object is being used), the (KDJJ10024-E) error occurs and the system throws an exception
javax.ws.rs.WebApplicationException, which can be handled by the exception mapping provider and has one
of the following values as the HTTP status code.
400: When the entity parameter type is java.lang.Object and the MIME media type of the entity body of the
HTTP request is application/xml, text/xml or application/*+xml
415: When the entity parameter type is other than java.lang.Object, or when the entity parameter type is
java.lang.Object and the MIME media type of the entity body of an HTTP request is other than
application/xml, text/xml, or application/*+xml
The process, however, completes successfully without occurrence of an error when the entity parameter type
is javax.mail.internet.MimeMultipart and the MIME media type of the entity body of the HTTP request is
multipart/*.

The number of entity parameters available for a resource method
You can use only one entity parameter in a resource method. If a resource method contains multiple entity
parameters, the warning message (KDJJ20012-W) is output to the log. The entity body of the HTTP request is
injected only into the initial entity parameter and the state of the second parameter and that of those thereafter is
not guaranteed.

Resource methods that contain a GET request method identifier
When a resource method with a GET request method designator contains an entity parameter, a warning message
or an error message (KDJJ20003-W or KDJJ10006-E) is output to the log. For details on KDJJ20003-W and
KDJJ10006-E, see 13.7.1 Checking the syntax when initializing a Web resource (KDJJ20003-W and KDJJ10006-
E).

17. Web Resources and Providers

393

! Important note

The Encoded annotation or the DefaultValue annotation is ignored, if annotated in the entity parameter.

Messages that are output when the type parameters of the entity parameters cannot be resolved
When the type parameter of an entity parameter cannot be resolved, a warning message or an error message
(KDJJ10006-E or KDJJ20003-W) is output to the log. For details on KDJJ20003-W and KDJJ10006-E, see 13.7.1
Checking the syntax when initializing a Web resource (KDJJ20003-W and KDJJ10006-E).

Notes when a specific type is specified in an entity parameter
When the entity parameter type is javax.ws.rs.core.MultivaluedMap<String,String> or
com.cosminexus.jersey.core.provider.EntityHolder<javax.ws.rs.core.MultivaluedMap<Strin
g,String>>, note the following points:

• If an entity body is accessed by a component other than a servlet or a servlet filter of the JAX-RS
functionality, a warning message (KDJJ20007) is output to the log.
Here, the entity parameters are in an undetermined state when being accessed. Reference the form
parameters included in the entity body from the parameters annotated by the FormParam annotation.

• An entity body can contain a maximum of 10,000 form parameters by default.
If the number of parameters of a request exceed the specified number, an error (KDJJ10042-E) occurs and the
system throws the javax.ws.rs.WebApplicationException exception, for which 413 is set in the
HTTP status code and which can be processed by the exception mapping provider. Change the
webserver.connector.limit.max_parameter_count property of the user property file
(usrconf.properties) for the J2EE server, as and when required.
For details on the user property file for the J2EE server, see 2.4 usrconf.properties (User property file for the
J2EE server in the uCosminexus Application Server Definition Reference Guide.

When the entity parameter type is a POJO, note the following points:

• If the JSON POJO mapping is disabled, an error (KDJJ10024-E) occurs and the system throws the
javax.ws.rs.WebApplicationException exception, for which 415 is set as the status code and
which can be processed by the exception mapping provider. For details on how to enable the JSON POJO
mapping, see 18. Mapping JSON and POJO.

17.1.3 Return values
The following table describes the combinations of the Java types and MIME media types, which can be used in the
return value of a resource method. The return value is converted to the entity body of an HTTP response. Do not use
the annotations in the JAXB specifications for POJO. If you use the annotation, the actual operations might differ
from the described operations.

Table 17‒6: Combinations of Java types and MIME media types, which can be used in the return value of
a resource method

No Java type Charset#1 MIME media type

1 byte[] N Any (*/*)

2 java.lang.String Y Any (*/*)

3 java.io.InputStream N Any (*/*)

4 java.io.Reader Y Any (*/*)

5 java.io.File N Any (*/*)

6 javax.activation.DataSource N Any (*/*)

7 javax.xml.transform.Source#2 N text/xml,

application/xml,

application/*+xml

8 javax.xml.bind.JAXBElement<String>#3 Y text/xml,

17. Web Resources and Providers

394

No Java type Charset#1 MIME media type

8 javax.xml.bind.JAXBElement<String>#3 Y application/xml,

application/*+xml

9 The JAXB class annotated by the XmlRootElement annotation#3 Y text/xml,

application/xml,

application/*+xml

10 javax.ws.rs.core.MultivaluedMap<String, String> Y application/x-www-form-urlencoded

11 javax.ws.rs.core.StreamingOutput N Any (*/*)

12 org.w3c.dom.Document N text/xml,

application/xml,

application/*+xml

13 java.util.List<T>#4 Y text/xml,

application/xml,

application/*+xml

14 java.awt.image.RenderedImage N image/jpeg

15 Void -- Any(*/*)

16 javax.ws.rs.core.Response Y Any (*/*)

17 javax.ws.rs.core.GenericEntity<T>#5 D Same MIME media type as specified in
T.

18 POJO#6 N#7 application/json

Legend:

--: Indicates a non-applicable item

Any (*/*): Indicates that all MIME media types are supported

#1

When a charset parameter is to be included in the Produces annotation or return value, indicate whether that
information will be reflected in the charset parameter of the Content-type HTTP header for converting to an HTTP
response.

Y: Reflected. UTF-8 is considered as the charset if the charset parameter is not included in the Produces annotation
and the return value

D: Depends on the Java type specified in T

N: Not reflected

#2

The following implementation classes can be used:

- javax.xml.transform.stream.StreamSource

- javax.xml.transform.sax.SAXSource

- javax.xml.transform.dom.DOMSource

#3

When the MIME media type is application/fastinfoset or application/json, the operation completes
successfully without occurrence of an error.

#4

You can specify the JAXB class annotated by the XmlRootElement annotation in T.

#5

You can specify all the types except No.17 of the table in T.

17. Web Resources and Providers

395

#6

Enable the JSON POJO mapping. The operations when the JSON POJO mapping is disabled are the same as the
operations when you specify an unsupported Java type in an entity parameter. For details on how to enable the JSON
POJO mapping, see 18. Mapping JSON and POJO.

#7

Do not add the charset parameter in the HTTP Content-Type header.

The following table describes the mapping of the return value and the HTTP response.

Table 17‒7: Mapping of return value and HTTP response

No.
Return value HTTP response

Type Value HTTP status code Entity body

1 void -- 204 Void entity body

2 Response A non-null instance 200 Response entity properties

3 Null 204 Void entity body

4 String A non-null instance 200 String value

5 Null 204 Void entity body

6 Supported Java
types except
void, Response,
String

A non-null instance 200 A converted entity body based on
the return value class

7 Null 204 Void entity body

Legend:

--: Indicates that the return value is unavailable

For the Java types where the return value types are not supported, the error (KDJJ10026-E) occurs, and consequently
the system throws the exception javax.ws.rs.WebApplicationException, which can be handled by the exception
mapping provider and has 500 as the HTTP status code. The process, however, successfully completes without
occurrence of an error when the return value type is javax.mail.internet.MimeMultipart and the MIME
media type is multipart/*.

If an exception is thrown when converting to entity body of an HTTP response, an error occurs. For details on how to
handle the exceptions, see 17.1.8 Exception handling.

If the type of a return value is in the following Java type and the MIME media type that cannot be used by the entity
body of the HTTP response, an error (KDJJ10026-E) occurs, and consequently the system throws
javax.ws.rs.WebApplicationException, which can be handled by the exception mapping provider and has 500 as the
HTTP status code.

1. javax.xml.bind.JAXBElement<String>
2. The JAXB class annotated by the XmlRootElement annotation

3. javax.ws.rs.core.MultivaluedMap<String, String>
4. java.util.List<T>
5. java.awt.image.RenderedImage

The operation, however, successfully completes without occurrence of an error when the MIME media type of the
entity body of the HTTP request is application/fastinfoset or application/json in No.1 or No.2.

For the following return values, a warning message or an error message (KDJJ20003-W or KDJJ10006-E) is output to
the log. For details on KDJJ20003-W and KDJJ10006-E, see 13.7.1 Checking the syntax when initializing a Web
resource (KDJJ20003-W and KDJJ10006-E).

• When the type of the return value of a resource method containing the GET request method designator is void

• When the type parameter of the return value cannot be resolved

17. Web Resources and Providers

396

17.1.4 Parameter types
The following table lists and describes the parameter types for which you can specify the Injection annotation.
The table also describes whether you can use the types in combination with the DefaultValue annotation.

Table 17‒8: Type of parameters supporting each annotation

No. Data type

annotation

Path
Para

m

Query
Param

Matrix
Param

Cookie
Param

Heade
rPara

m

FormP
aram

Con
text

1 Primitive int C Y#1 Y#1 Y#2 Y#1 Y#1 N

2 short C Y#1 Y#1 Y#2 Y#1 Y#1 N

3 long C Y#1 Y#1 Y#2 Y#1 Y#1 N

4 float C Y#1 Y#1 Y#2 Y#1 Y#1 N

5 double C Y#1 Y#1 Y#2 Y#1 Y#1 N

6 char C Y#1 Y#1 Y#2 Y#1 Y#1 N

7 byte C Y#1 Y#1 Y#2 Y#1 Y#1 N

8 boolean C Y#1 Y#1 Y#2 Y#1 Y#1 N

9 Wrapper class Integer C Y#1 Y#1 Y#2 Y#1 Y#1 N

10 Short C Y#1 Y#1 Y#2 Y#1 Y#1 N

11 Long C Y#1 Y#1 Y#2 Y#1 Y#1 N

12 Float C Y#1 Y#1 Y#2 Y#1 Y#1 N

13 Double C Y#1 Y#1 Y#2 Y#1 Y#1 N

14 Character N N N N N N N

15 Byte C Y#1 Y#1 Y#2 Y#1 Y#1 N

16 Boolean C Y#1 Y#1 Y#2 Y#1 Y#1 N

17 Type that contains a constructor with one String
type argument

C#7 Y#1,#7 Y#1,#7 Y#2,#7 Y#1,#7 Y#1,#7 N

18 Type that contains one String type argument and
a static valueOf method that returns an
instance of that type

C#7 Y#1,#7 Y#1,#7 Y#2,#7 Y#1,#7 Y#1,#7 N

19 Type that contains one String type argument and
a static fromString method that returns an
instance of that type

C#7 Y#1,#7 Y#1,#7 Y#2,#7 Y#1,#7 Y#1,#7 N

20 enum type that contains one String type
argument and a static fromString method
that returns an

instance of that type

C#3,#7 Y#1,#3,#

7
Y#1,#3,#

7
Y#2,#3,#

7
Y#1,#3,#

7
Y#1,#3,#

7
N

21 Type other than the enum type that contains one
String type argument and both the static
valueOf and fromString methods that
returns an instance of that type

C#4,#7 Y#1,#4,#

7
Y#1,#4,#

7
Y#2,#4,#

7
Y#1,#4,#

7
Y#1,#4,#

7
N

22 Other than the aforementioned N N N N N N N

17. Web Resources and Providers

397

No. Data type

annotation

Path
Para

m

Query
Param

Matrix
Param

Cookie
Param

Heade
rPara

m

FormP
aram

Con
text

23 List<T> When T is Integer C Y Y N Y Y N

24 When T is Short C Y Y N Y Y N

25 WhenC T is Long C Y Y N Y Y N

26 When T is Float C Y Y N Y Y N

27 When T is Double C Y Y N Y Y N

28 When T is Character N N N N N N N

29 When T is Byte C Y Y N Y Y N

30 When T is Boolean C Y Y N Y Y N

31 When T is a type that
contains a constructor
having one String type
argument

C#7 Y#7 Y#7 N Y#7 Y#7 N

32 When T is a type that
contains one String type
argument and a static
valueOf method that
returns an instance of that
type

C#7 Y#7 Y#7 N Y#7 Y#7 N

33 When T contains one String
type argument and a static
fromstring method that
returns an instance of that
type

C#7 Y#7 Y#7 N Y#7 Y#7 N

34 When T is an enum type
that contains one String type
argument and a static
fromString method that
returns an instance of that
type

C#3,#7 Y#3,#7 Y#3,#7 N Y#3,#7 Y#3,#7 N

35 List<T> When T is a type other than
the enum type that contains
one String type argument
and both the static
valueOf and
fromString methods that
return an instance of that
type

C#4,#7 Y#4,#7 Y#4,#7 N Y#4,#7 Y#4,#7 N

36 Other than the
aforementioned

N N N N N N N

37 Set<T>#5 When T is Integer C Y Y N Y Y N

38 When T is Short C Y Y N Y Y N

39 When T is Long C Y Y N Y Y N

40 When T is Float C Y Y N Y Y N

41 When T is Double C Y Y N Y Y N

42 When T is Character N N N N N N N

17. Web Resources and Providers

398

No. Data type

annotation

Path
Para

m

Query
Param

Matrix
Param

Cookie
Param

Heade
rPara

m

FormP
aram

Con
text

43 Set<T>#5 When T is Byte C Y Y N Y Y N

44 When T is Boolean C Y Y N Y Y N

45 When T is a type that
contains a constructor
having one String type
argument

C#7 Y#7 Y#7 N Y#7 Y#7 N

46 When T contains one String
type argument and a static
valueOf method that
returns an instance of that
type

C#7 Y#7 Y#7 N Y#7 Y#7 N

47 When T contains one String
type argument and a static
fromString method that
returns an instance of that
String type

C#7 Y#7 Y#7 N Y#7 Y#7 N

48 Set<T>#3 When T is an enum type
that contains one String type
argument and both the static
valueOf and
fromString methods that
return an instance of that
type

C#3,#7 Y#3,#7 Y#3,#7 N Y#3,#7 Y#3,#7 N

49 When T is a type other than
the enum type that contains
one String type argument
and both the valueOf and
formString methods that
return an instance of that
type

C#4,#7 Y#4,#7 Y#4,#7 N Y#4,#7 Y#4,#7 N

50 When T is other than the
beforementioned types

N N N N N N N

51 Sorted

Set<T>#5, #6

When T is Integer C Y Y N Y Y N

52 When T is Short C Y Y N Y Y N

53 When T is Long C Y Y N Y Y N

54 When T is Float C Y Y N Y Y N

55 When T is Double C Y Y N Y Y N

56 When T is Character N N N N N N N

57 When T is Byte C Y Y N Y Y N

58 When T is Boolean C Y Y N Y Y N

59 When T is a type that
contains a constructor
having one String type
argument

C#7 Y#7 Y#7 N Y#7 Y#7 N

60 When T contains one String
type argument and a static
valueOf method that

C#7 Y#7 Y#7 N Y#7 Y#7 N

17. Web Resources and Providers

399

No. Data type

annotation

Path
Para

m

Query
Param

Matrix
Param

Cookie
Param

Heade
rPara

m

FormP
aram

Con
text

60 Sorted

Set<T>#5, #6

returns an instance of that
type

C#7 Y#7 Y#7 N Y#7 Y#7 N

61 Sorted

Set<T>#3, #4

When T contains one String
type argument and a static
fromString method that
returns an instance of that
type

C#7 Y#7 Y#7 N Y#7 Y#7 N

62 When T is enum type that
contains one String type
argument and both the static
valueOf and
formString methods
returning instance of that
type

C#3,#7 Y#3,#7 Y#3,#7 N Y#3,#7 Y#3,#7 N

63 When T is a type other than
the enum type that contains
one string argument and
both the static valueOf
and fromString methods
that return an instance of
that type

C#4,#7 Y#4,#7 Y#4,#7 N Y#4,#7 Y#4,#7 N

64 When T is other than the
before-mentioned types

N N N N N N N

65 PathSegment C N N N N N N

66 Context type UriInfo N N N N N N C

67 HttpHeaders N N N N N N C

68 Request N N N N N N C

69 SecurityContext N N N N N N C

70 Providers N N N N N N C

71 ServletConfig N N N N N N C

72 ServletContext N N N N N N C

73 HttpServletRequest N N N N N N C

74 HttpServletResponse N N N N N N C

Legends:
Y: Indicates that you can use the injection annotation
N: Indicates that you cannot use the injection annotation
C : Indicates that you can use the injection annotation, but not in combination with the DefaultValue annotation.

#1
On receiving multiple parameters with the same name, the JAX-RS engine uses the value of only the first parameter.

#2
On receiving multiple parameters with the same name, the JAX-RS engine injects the value of only the last parameter.

#3
When a type contains one String type argument and both the static valueOf and static fromString methods returning
instance of that type, the JAX-RS engine uses the value fromString method.

17. Web Resources and Providers

400

#4
When a type contains one String type argument and both the static valueOf and static fromString methods returning
instance of that type, the JAX-RS engine uses the static valueOf method.

#5
For a type other than the enum type, the equals() method and hashCode() method of java.lang.Object must be
appropriately implemented in the class or in the respective parent class to be specified in T in accordance with the rules of the
Java language.

#6
For the type other than enum, the java.lang.Comparable interface must be implemented in the class or the respective
parent class to be specified in T.

#7
In some cases, the valueOf method, fromString method, and constructors are invoked multiple times when initializing for
validating the injection.

The error (KDJJ10006-E) occurs when you use any of the annotations for the types described in No. 22, No. 36, No.
50, No. 64, and No. 65 of the aforementioned table. The system returns t HTTP response with the HTTP status code
500 in the root resource class and throws java.lang.RuntimeException, which can be handled by the
exception mapping provider.

However, if you use any of the annotations for the types described in No. 14, No. 28, No. 42, and No. 56 of the table,
the system throws java.lang.RuntimeException, which can be handled by the exception mapping provider.

17.1.5 Exception mapping
If system throws an exception while executing injections into the parameters of the resource method of a root resource
class, the parameters of constructor, fields, and bean properties as well as the parameters of the resource method of a
sub-resource class, the JAX-RS engine handles those exceptions as described in the following table. For details on the
supported Java types and annotations, see 17.1.4 Parameter types.

Table 17‒9: Support provided by the JAX-RS engine for the exceptions thrown at injection

No. Annotation
Exceptions thrown at injection.

WebApplicationException Other

1 MatrixParam Handles
WebApplicationException as
explained in 17.1.8 Exception
handling

Wraps the thrown exception with a non-entity
WebApplicationException having the HTTP status
code 404. Furthermore, the handling is done as explained
in 17.1.8 Exception handling

2 QueryParam

3 PathParam

4 CookieParam Wraps the thrown exception with a non-entity
WebApplicationException having the HTTP status
code 400 . Furthermore, the handling is done as explained
in 17.1. 8 Exception handling

5 FormParam

6 HeaderParam

! Important note

System throws WebApplicationException only for No. 17 through 21, No. 31 through 36, No. 45 through 50, and
No. 59 through 64 from among the parameter types listed in the table describing the types of parameters supporting each
annotation in 17.1.4 Parameter types.

17.1.6 URI template
Use the Path annotation to specify for which URL the root resource class, the sub-resource method, or the sub-
resource locator will execute the HTTP request. The value of the Path annotation is called URI template.

When the URI template is to be specified in a root resource at the class level, describe a relative URI for the context
root of the Web application (WAR file) containing the Web resources. However, for sub-resource methods or sub-
resource locators, describe a relative URI corresponding to the URI template of a root resource class.

The value of annotation is automatically encoded. For example, the following annotations have the same meaning:

17. Web Resources and Providers

401

• @Path ("widget list/{id}")
• @Path ("widget%20list/{id}")

If the Path annotation of two or more root resource classes contain the same URI template or contain a URI template
that is resolved by the same regular expression, the error (KDJJ10006-E) occurs, and consequently the root resource
class is not instantiated. The system returns 500 as the HTTP status code.

If the path annotations of two or more sub-resource methods contain the same URI template or contain a URI template
that is resolved by the same regular expression, and if other information such as the media type declaration and the
request method designator match, the (KDJJ10006-E) error occurs. In the root resource class, the system returns an
HTTP response with the HTTP status code 500. In the sub-resource class, the system throws
java.lang.RuntimeException, which can be handled by the exception mapping provider.

When the path annotation of two or more sub-resource locators contain the same URI template or contain a URI
template that is resolved by the same regular expression, the (KDJJ10006-E) error occurs. The system returns an
HTTP response with the HTTP status code of 500 in the root resource class, and throws
java.lang.RuntimeException, which can be handled by the exception mapping provider, in the sub-resource
class.

If the Path annotation is annotated in an interface or in an abstract class, the (KDJJ10006-E) error occurs and the
request sent by the client is not processed. The system returns 500 as the HTTP status code.

(1) Template parameters
A URI template can contain zero or more embedded parameters called template parameters. Start coding the template
parameters with an opening curly bracket ({), and continue coding one or more alphanumeric characters and symbols
other than a forward slash (/) and code a closing bracket (}) at the end. You can acquire the actual values of the
template parameters by injecting to the parameters, fields, or bean properties annotated by the PathParam
annotation. For details on how to code the template parameters, check the standard specifications.

An example of a template parameter is as follows.

package com.someshop;

import javax.ws.rs.PathParam;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

//root resource class
@Path("/customers")
public class CustomerResource {
 //subresource method
 @GET
 @Path("{id}")
 public String getCustomer(@PathParam("id") int id) {
 //execute to return the assigned value
 }
}

In this example, the expression {id} included in the Path annotation is the template parameter. Consider the context
root of the Web application containing the root resource class com.someshop.CustomerResource to be
"resource" and that the Web application is published on a host named "someshop.com". In this case, the HTTP GET
request corresponding to the URL "http://someshop.com/resource/customers/333" is dispatched to
the sub-resource method getCustomer() and the actual value of the template parameter id is injected to the
parameter id annotated by the PathParam annotation.

However, the HTTP GET request corresponding to the URL "http://someshop.com/resource/
customers/333/444" is not dispatched by any method. 404 is returned as the HTTP status code.

The template parameters can be embedded anywhere in the value of the Path annotation (URI template). The
following example describes the usage of multiple template parameters.

package com.someshop;

import javax.ws.rs.PathParam;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

17. Web Resources and Providers

402

//root resource class
@Path("/")
public class CustomerResource {
 //subresource class
 @GET
 @Path("customers/{firstname}-{lastname}")
 public String getCustomer(@PathParam("firstname") String firstname,
 @PathParam("lastname") String lastname) {
 //execute to return the assigned value
 }
}

In this example, the expressions {firstname} and {lastname} to be included in the Path annotation are the two
template parameters separated by a hyphen.

The HTTP GET request corresponding to the URL "http://someshop.com/resource/customers/John-
Smith" is dispatched to the sub-resource method getCustomer() and the actual values of the template parameters
firstname and lastname are respectively injected to the parameters firstname and lastname annotated by the
PathParam annotation.

(a) Regular expressions

The regular expressions other than wild cards can be used in the Path annotation. The following example describes
the usage of regular expressions in template parameters.

package com.someshop;

import javax.ws.rs.PathParam;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

//root resource class
@Path("/customers")
public class CustomerResource {
 //subresource method1
 @GET
 @Path("{id : \\d+}")
 public String getCustomer(@PathParam("id") int id) {
 // Implementation to return appropriate value
 }
//subresource method2
@GET
 @Path("{path : .+}")
 public String getCustomerIdAndName(@PathParam("path") String path) {
 //execution to return the assigned value
 }
}

In this example, the expression {id : \\d+} to be included in the Path annotation is a template parameter that uses a
regular expression. The identifier id and the regular expression "\\d+" are used together. A colon (:) separates the
identifier and the regular expression.

The regular expression "\\d+" matches with one or more digits. The HTTP request corresponding to the URL
"http://someshop.com/resource/customers/333" is dispatched to the sub-resource method
getCustomer().

The regular expression " +" matches with any character. The HTTP GET request corresponding to the URL
"http://someshop.com/resource/customers/33/John/Smith" is dispatched to the sub-resource
method getCustomerIdAndName().

(b) Notes when using template parameters

The system returns an error (KDJJ10006-E) in the following cases:

• If invalid characters are used in template parameters

• If invalid syntactical regular expressions are written in template parameters

The system returns an HTTP response with the HTTP status code 500 in the root resource class and throws
java.lang.RuntimeException, which can be handled by the exception mapping provider, in the sub-resource
class (KDJJ10006-E).

17. Web Resources and Providers

403

17.1.7 Sub-resource class
A sub-resource class is a Java class that contains any one of the resource methods, sub-resource methods, or sub-
resource locators, and is not annotated by the Path annotation at the class level.

An example of a sub-resource class is as follows.

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

public class Resource {
 @Path("/subresourcemethod1")
 @GET
 public String subResourceMethod1() {
 return "from sub resource method1";
 }
 @GET
 public String resourceMethod() {
 return "from resource method";
 }
}

The JAX-RS engine does not generate an instance of a sub-resource class. The sub-resource class must be instantiated
with a corresponding sub-resource locator.

(1) Mechanism
A sub-resource class is generated in the following way. The generated sub-resource class processes an HTTP request
as follows:

1. The HTTP request is dispatched to the sub-resource locator.

2. The sub-resource locator generates a sub-resource class and delegates the processing of the HTTP request to the
generated sub-resource class.

3. The sub-resource class directly processes the HTTP request, or the request is further delegated to a sub-resource
class in the same way.

For details on sub-resource locators, see 17.1.1(6) Sub-resource locators.

The JAX-RS engine treats the instance returned by the sub-resource locator at runtime as a sub-resource class and not
the return value type declared in the method signature of the sub-resource locator.

For example, assume that there are three sub-resource classes - M, N and O. N inherits M and O inherits N. In the
same way, assume a sub-resource locator named R that contains the return value M. When a sub-resource locator
returns an instance of M, the sub-resource class M executes the HTTP request. Similarly, when the sub-resource
locator returns an instance of N, the sub-resource class N executes the HTTP request. When the system returns an
instance of O, the sub-resource class O executes the HTTP request.

(2) Life cycle
A JAX-RS engine does not generate an instance of a sub-resource class. The sub-resource class must be instantiated
with the corresponding sub-resource locator. Accordingly, the bean properties, fields, and parameters of the
constructor must be initialized with a sub-resource locator or a sub-resource class.

(3) Constructor
Do not use annotations of the JAX-RS specifications in the parameters of the constructor of a sub-resource class. All
such annotations are ignored, if used.

(4) Fields and bean properties
Do not use annotations of the JAX-RS specifications in the fields and the bean properties of a sub-resource class. All
such annotations are ignored, if used.

17. Web Resources and Providers

404

(5) Resource methods, sub-resource methods, and sub-resource locators
A resource method of a sub-resource class, a sub-resource method, and a sub-resource locator match with the resource
methods of the root resource class except for the differences explained hereafter. For details on root resource classes,
see the following sub-sections:

• 17.1.1(4) Resource method

• 17.1.1(5) Sub-resource method

• 17.1.1(6) Sub-resource locator

If the return value type of a sub-resource locator is void, an error occurs and the HTTP request sent by the client is
not processed. 500 is returned as the HTTP status code. Note that you must confirm the J2EE server log file instead of
the JAX-RS functionality log file.

When the following conditions hold true, the (KDJJ10006-E) error occurs, and consequently the system throws
java.lang.RuntimeException, which can be handled by the exception mapping provider.

• When two or more request method designators are used for one resource method

• When the same request method designator is used for two or more resource methods

• When a sub-resource locator contains an entity parameter

17.1.8 Exception handling
The JAX-RS engine handles the exceptions thrown from the following locations as explained in this sub-section:

• Resource method

• Sub-resource method

• Sub-resource locator

• Sub-resource class and constructor of the root resource class

(1) WebApplicationException (When no exception mapping provider exists)
If the system throws WebApplicationException and no exception mapping provider corresponding to
WebApplicationException or the respective parent exists, the JAX-RS engine handles
WebApplicationException as described in the following table.

Table 17‒10: Handling WebApplicationException (When no exception mapping provider exists)

No.

Condition Handling result

Response
property

HTTP status code of the
response property

HTTP status code of the HTTP
response Message ID

1 Set • 499 or less

• The values of the enumerated
type Response.Status

The value held by the response
property of
WebApplicationException is
used.

KDJJ30021-
I

2 Set • 499 or less

• Values that do not exist in
the enumerated type
Response.Status

The value held by the response
property of
WebApplicationException is
used.

KDJJ30022-
I

3 Set • 500 or more

• The values of the enumerated
type Response.Status

The value held by the response
property of
WebApplicationException is
used.

KDJJ10018-
E

4 Set • 500 or more The value held by the response
property of

KDJJ10019-
E

17. Web Resources and Providers

405

No.

Condition Handling result

Response
property

HTTP status code of the
response property

HTTP status code of the HTTP
response Message ID

4 Set • Values that do not existing in
the enumerated type
Response.Status

WebApplicationException is
used.

KDJJ10019-
E

5 Not set -- 500 KDJJ10018-
E

Legends:
--: Not applicable

An example of generating WebApplicationException and setting the response property is as follows.

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.ResponseBuilder;

//root resource class
@Path("/root")
public class Resource {

 //subresource method
 @Path("/subresourcemethod")
 @GET
 public String subResourceMethod() {
 //Use the ResponseBuilder to generate the Response instance
 ResponseBuilder rb = Response.status(208).
 entity("entity for WebApplicationException");

 //set the Response instance to the WebApplicationException
 throw new WebApplicationException(rb.build());
}
}

You consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be "resource" and that the Web application is published on a host called
"example.com". In this case, the HTTP GET request corresponding to the URL "http://example.com/
resource/root/subresourcemethod" is dispatched to the method subResourceMethod(). The HTTP
response is converted from the response property of WebApplicationException.

(2) Other exceptions (When no exception mapping provider exists)
If system throws an exception other than WebApplicationException and if the exception mapping provider
corresponding to the WebApplicationException exception or the respective parent does not exist, the JAX-RS
engine handles WebApplicationException as described in the following table:

Table 17‒11: Other exceptions (When no exception mapping provider exists)

No.

Conditions Handling result

Exception type Operation by the JAX-RS engine HTTP status code of the
HTTP response Message ID

1 Runtime exception Throws a runtime exception again. 500 KDJJ10010-
E,
KDJJ10039-E

2 Other than the
aforementioned

Wraps the exception in RuntimeException
and then throws the exception.

500 KDJJ10017-
E,
KDJJ10039-E

17. Web Resources and Providers

406

(3) If the exception mapping provider exists
If the exception mapping provider corresponding to the thrown exception or respective parent exists, the exception
handling depends on the operations of the exception mapping provider. Note that if multiple exception mapping
providers corresponding to the thrown exception or respective parent exist, the exception mapping provider that can
handle the exception closest to the exceptions (including the thrown exceptions) handles the exception.

17.1.9 Media type declaration
You can respectively use the Consumes annotation and Produces annotation to specify the MIME media types
supported by the Web resource. When these annotations are not used, all the media types are considered to be
supported.

The Consumes annotation and Produces annotation can be used in:

• A root resource class (class level)

• A sub-resource class (class level)

• A resource method (method level)

• A sub-resource method (method level)

The annotations used at the method level take precedence over the annotations used at the class level.

When two or more resource methods or sub-resource methods can process the same MIME media type, and if the
request method designators, paths, or other information matches, the error (KDJJ10006-E) occurs. The system returns
an HTTP response with 500 as the HTTP status code, in the root resource class and throws
java.lang.RuntimeException, which can be handled by the exception mapping provider in the sub-resource
class.

When the Content-Type header of an HTTP request does not match with any of the Consumes annotations, the
(KDJJ10040-E) error occurs and the system throws javax.ws.rs.WebApplicationException, which has
415 as the HTTP status code and can be handled by the exception mapping provider.

If the HTTP Accept header of an HTTP response does not match with any of the Produces annotations, the
(KDJJ10041-E) error occurs and the system throws javax.ws.rs.WebApplicationException, which has
406 as the HTTP status code and can be handled by the exception mapping provider.

An example of a media type declaration is as follows.

package com.sample.resources;

java.awt.image.RenderedImage
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.Consumes;

@Path("sample")
@Produces("image/jpeg")
public class ImageBasedResource {

@GET
 public RenderedImage getAsImage() {
 //implementation
 }

 @GET
 @Produces("text/html")
 public String getAsHtml() {
 //implementation
 }

 @POST
 @Consumes("image/jpeg")
 public void addWidget(RenderedImage image) {
 //implementation
 }
}

17. Web Resources and Providers

407

In this example, the resource method getAsImage() is called to process the HTTP GET request that requests the
HTTP response of the MIME media type image/jpeg.

Furthermore, the resource method getAsHtml is called to process the HTTP GET request that requests the HTTP
response of the MIME media type text/html.

Additionally, the resource method addImage is called to process the HTTPPOST request containing the entity body
of the MIME media type image/jpeg.

17.1.10 Disabling URL decoding
• By default, the JAX-RS engine automatically decodes the URL encoded values when injecting the values to the

parameters, fields, and bean properties annotated by the following annotations. Use the Encoded annotation in
combination with each of the following annotations if you want to use the original non-decoded values.

• MatrixParam annotation

• QueryParam annotation

• PathParam annotation

17.1.11 Inheriting annotations
The child classes or implementation classes inherit the annotations of the JAX-RS specifications used in the methods
of an interface or a parent class.

The conditions for inheriting the annotations are as follows:

• When the annotations of the JAX-RS specifications are not used in the methods of child class and respective
parameters

• When the annotations of the JAX-RS specifications are not used in methods of the implementation class and
respective parameters

When a parent class is inherited and an interface has been implemented, if both of the above conditions for inheriting
annotations are fulfilled, the annotations of the parent class take precedence.

When multiple parent classes are inherited and multiple interfaces have been implemented, the annotation of the
parent class that was inherited first or that of the interface that was implemented first should get precedence.

An example of inheriting annotations is as follows.

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.QueryParam;

//interface
public interface A {

 //method that uses the annotation of JAX-RS specifications
 @GET
 public String getValue(@QueryParam("query") String query);

}

package com.sample.resources;

import javax.ws.rs.Path;

//root resource class that implements the interface
@Path("/root/")
public class Resource implements A {

 //implementation of method
 public String getValue(String query) {
 //implementation

 }
}

package com.sample.resources;

17. Web Resources and Providers

408

import javax.ws.rs.Path;
import javax.ws.rs.Produces;

//root resource class that implements the interface
@Path("/root1/")
public class Resource1 implements A {

 //implementation of method
 @Produces("text/xml")
 public String getValue(String query) {
 //implementation
 }
}

In this example, consider the context root of the Web application (WAR file) containing the interface
com.sample.resources.A and the root resource classes com.sample.resources.Resource and
com.sample.resources.Resource1 to be "resource" and that the Web application is published on a host
named "example.com".

The HTTP GET request corresponding to the URL "http://example.com/resource/root?query=10" is
dispatched to the resource method getValue(). This is because the resource method getValue() inherits the
GET annotation of the interface.

However, the HTTP GET request corresponding to the URL "http://example.com/resource/root1?
query=10" is not dispatched to the resource method getValue() and the system returns 500 as the HTTP status
code. This is because the resource method getValue() does not inherit the GET annotation of the interface.

17. Web Resources and Providers

409

17.2 Provider
Provider is a class that implements the interface defined as per the standard specifications and is annotated by a
Provider annotation.

Provider is instantiated for each Web application (WAR file). The life cycle of a provider is as follows:

1. The constructor is called

2. The required injection is performed

3. An appropriate method is called

4. Subjected to GC (Garbage collection)

17.2.1 Entity provider
Built-in entity providers are provided in the JAX-RS functionality.

17.2.2 Exception mapping provider
Implement an exception mapping provider when customizing mapping between the exceptions that can be processed
by the exception mapping provider and the HTTP responses.

Implements the ExceptionMapper<T> interface for the exception mapping provider and annotate the interface
with the Provider annotation.

An example of the exception mapping provider is as follows.

package com.sample.providers;

import javax.ws.rs.core.Response;
import javax.ws.rs.ext.ExceptionMapper;
import javax.ws.rs.ext.Provider;

//exception mapping provider to customize the mapping of the RuntimeException to the
HTTP response
@Provider
public class RuntimeExceptionMapper implements
 ExceptionMapper<RuntimeException> {

 public Response toResponse(RuntimeException runtimeException) {
 int httpStatus = 0;
 String entity = "";

 //Use the ResponseBuilder class to create the HTTP response
 return Response.status(httpStatus).entity(entity).build();
 }
}

In this example, the provider com.sample.providers.RuntimeExceptionMapper is the exception
mapping provider. The ExceptionMapper interface with RuntimeException specified in the type parameter
is implemented. Here, the HTTP response is created by calling the toResponse method of the
ResponseBuilder class.

Note that only one exception mapping provider can be created for one exception. If two or more exception mapping
providers are created for one exception, the (KDJJ10028-E, KDJJ10039-E) errors occur and the exception mapping
provider is not instantiated. The system returns 500 as the HTTP status code.

(1) Constructor
The exception mapping provider must contain at least one public constructor including the default public constructor
(a constructor that is not explicitly declared).

If no public constructor is declared, the (KDJJ10002-E, KDJJ10006-E) errors occur and the exception mapping
provider is not instantiated. The system returns 500 as the HTTP status code.

The following constructors are not public constructors:

17. Web Resources and Providers

410

• private constructor

• protected constructor

• A constructor without an access identifier

For constructor parameters, you can use the Context annotation as an injection annotation. If an injection annotation
other than the Context annotation is used, the (KDJJ10006-E) error occurs and the exception mapping provider is
not instantiated. The system returns 500 as the HTTP status code. The following injection annotations cannot be used:

• MatrixParam
• QueryParam
• PathParam
• CookieParam
• HeaderParam
• FormParam

If you specify an annotation other than an injection annotation for these parameters, the (KDJJ10006-E) error message
is output and the system returns 500 as the HTTP status code.

If the exception mapping provider contains one or more public constructors with parameters, the JAX-RS engine uses
the constructor with maximum parameters to instantiate the exception mapping provider. When there are two or more
constructors with maximum parameters, the JAX-RS engine uses the initially defined constructor to instantiate the
exception mapping provider. In such cases, the warning message (KDJJ20011-W) is output to the log.

If a system throws a runtime exception when the exception mapping provider is instantiated, the (KDJJ10028-E,
KDJJ10039-E) errors occur and 500 is returned as the HTTP status code.

(2) Fields and bean properties
You can use Context annotation as the injection annotation for the fields and bean properties of the exception
mapping provider.

If you use an injection annotation other than the Context annotation, that annotation is ignored. You cannot use the
following annotations.

• MatrixParam
• QueryParam
• PathParam
• CookieParam
• HeaderParam
• FormParam

17. Web Resources and Providers

411

18 Mapping JSON and POJO
This chapter describes how the built-in entity providers, which the JAX-RS
functionality provides, map the JSON and POJO.

Do not use the annotation of the JAXB specifications for a POJO. If you use the
annotation, the actual operations might differ from the following description.

413

18.1 Settings for mapping JSON and POJO
The JSON and POJO mapping enables data conversion from POJO to JSON and vice versa.

This section describes how to map the JSON and POJO on a server and client.

18.1.1 Mapping on a server
To enable or to disable the JSON and POJO mapping:

• Common definition file (cjrconf.properties)
Specify true or false for the com.sun.jersey.api.json.POJOMappingFeature feature. This
value is not case-sensitive.

• Initialization parameter of a web.xml servlet
You can set the following values for the servlet initialization parameter
(com.sun.jersey.api.json.POJOMappingFeature). This value is not case-sensitive.

Table 18‒1: Values available for the servlet initialization parameter
(com.sun.jersey.api.json.POJOMappingFeature)

Value Explanation

true Enables the JSON and POJO mapping.

false Disables the JSON and POJO mapping.

Values other than true
and false

The value specified as the initialization parameter of a web.xml servlet is ignored and the value specified
in the common definition file is used.

If a value is specified in both the common definition file and as the servlet initialization parameter, the value specified
in the servlet initialization parameter is preferred.

18.1.2 Mapping on a client
Specify true or false for the com.sun.jersey.api.json.POJOMappingFeature feature of the
common definition file (cjrconf.properties) or add the
com.sun.jersey.api.json.POJOMappingFeature feature to the property map of the client object.

The following example shows how to add the com.sun.jersey.api.json.POJOMappingFeature feature:

// Generate a ClientConfig object
ClientConfig cc = new DefaultClientConfig();
// Add features to the ClientConfig object
// to enable the JSON POJO mapping
cc.getFeatures().put(JSONConfiguration.FEATURE_POJO_MAPPING, true);
// Specify the generated ClientConfig object
// to generate a Client object
Client client = Client.create(cc);

In the above example, a Client object is generated by specifying ClientConfig to which
JSONConfiguration.FEATURE_POJO_MAPPING is already added.

If a value is specified in the common definition file and the Client object, the value specified in the Client object
is given preference.

18. Mapping JSON and POJO

414

18.2 POJO to JSON mapping
For details on the JSON format, see RFC 4627. This section describes the requirements for the POJO to JSON
mapping and the available data types.

18.2.1 Requirements for mapping
Requirements for the POJO to JSON mapping:

(1) POJO

• Define the POJO class as a public or package scope. You can also specify the final modifier.

• You can include any constructors.

• If you map multiple fields or properties to the same JSON element, the JsonMappingException exception is
thrown. For details on exception handling, see 18.3.3 Exception handling.

• If a field name is same as that of a Bean property name, the Bean property name is preferred.

(2) Field

• Define the field with a public scope. Otherwise, mapping will not proceed.

• Do not specify a static or transient modifier in the field. Otherwise, mapping will not proceed.

• You can also specify the final modifier.

(3) Bean property

• Define the getter method of Bean property as public scope. Otherwise, mapping will not proceed.

• If you define multiple getter methods with the same name in upper and lower cases for the same property, the
JsonMappingException exception is thrown. For details on exception handling, see 18.3.3 Exception
handling.

• Do not specify static in Bean property. Otherwise, mapping will not proceed.

• You can also specify the final modifier.

• The Bean property does not need to be writable. For details on the Bean property, see the JavaBeans
specifications.

18.2.2 Available data types
You can specify the following data types for the POJO fields and Bean properties.

Table 18‒2: Available data types for the POJO fields and Bean properties (POJO to JSON mapping)

No. Data

1 Primitive int

2 short

3 long

4 float

5 double

6 char

7 byte

18. Mapping JSON and POJO

415

No. Data

8 Primitive boolean

9 Wrapper class Integer

10 Short

11 Long

12 Float

13 Double

14 Character

15 Byte

16 Boolean

17 java.lang.String

18 java.math.BigInteger

19 java.math.BigDecimal

20 java.util.Date

21 java.util.Calendar

22 java.lang.Enum

23 POJO#1

24 java.util.List<T>#2

25 java.util.Set<T>#2

26 java.util.Map<T,T>#2

27 An Array containing any item from No.1 through 26#2

#1
You can recursively have a POJO as a field or aBean property. For conditions of a supported POJO, see 18.2 POJO to JSON
mapping.

#2
The type of T is any one item listed in No. 1 through 26 in the above table.

Notes:

• If a field or a Bean property is not initialized, the default value of the respective data types (the respective default
value for the primitive types, null for object type) is mapped to the generated JSON.

• If the value of the types in No. 9 through 27 in the above table is null, null is mapped to the corresponding
value of the generated JSON.

• If the value of the types in No.24 through 27 in the above table includes null, null is mapped to the
corresponding value of the generated JSON.

• If the value of the types in No.20 or 21 in the table is other than null, the corresponding value of the generated
JSON is mapped to a value same as the value expressed in milliseconds. For example, if you are using Date as a
data type, the value acquired on calling the getTime() method of the Date class is mapped. If you are using
the Calendar type, the value acquired on calling the getTime() method of the Date class is mapped to the
Date object acquired on calling the getTime() method of the Calendar class.

• If the value of the type in No.26 in the above table is null, the JsonMappingException exception is
thrown. For details on exception handling, see 18.3.3 Exception handling.

18. Mapping JSON and POJO

416

• If No. 27 of the table is the char array or byte array, the corresponding value of the generated JSON is mapped
with the next respective value, and not with the array.

• The char array: character string generated from an array

• The byte array: Base64 encoded character string generated from an array

The following are the examples:

• The Bean property of char[] type having value {a,b} and name "bean" is mapped to {"bean":
["ab"]} and not {"bean":["a","b"]}.

• The Bean property of byte[] type having value {1,2} and name "bean" is mapped to {"bean":
["AQ=="]} and not {"bean":[1,2]}.

18.2.3 Exception handling
The POJO to JSON mapping uses a mechanism of the entity provider of the JAX-RS specifications. The exceptions
thrown during the POJO to JSON mapping, therefore, is handled in the same way as the exceptions thrown during any
other mapping. For details on how exceptions are handled during mapping, see 17.1.3 Return value and for mapping
on servers and for mapping on clients, see 25.15.1 Combination of Java types and MIME media types available for an
HTTP request entity.

18. Mapping JSON and POJO

417

18.3 JSON to POJO mapping
For details on the JSON format, see RFC 4627. This section describes the requirements for the JSON to POJO
mapping and the available data types.

18.3.1 Requirements for mapping

(1) POJO

• Define the POJO class as a public or package scope. You can also specify the final modifier.

• The POJO class must have a default constructor. Declaring a default constructor explicitly is optional. You can
also use any of the public, private, protected, or package scopes. If the POJO class does not have a default
constructor, the JsonMappingException exception is thrown. As per the Java language specifications, you
must declare the default constructor explicitly if you declare a constructor with a parameter. For details on
exception handling, see 18.3.3 Exception handling.

• The POJO class might have a Bean property or a field of the types declared as an inner class. Do not use an inner
class as an interface or a non-static class. For a Bean property or a field of a type declared as an inner class that is
an interface or a non-static class, the JsonMappingException exception is thrown. For details on exception
handling, see 18.3.3 Exception handling.

• If a value that cannot be mapped to a POJO is in the JSON format, the JsonMappingException exception is
thrown. For exception handling, see 18.3.3 Exception handling.

• If a field name is same as that of a Bean property name, the Bean property is preferred.

• Only when the JSON format is blank, error does not occur even if the JSON format has no fields or Bean
properties to be mapped to the POJO.

(2) Field

• Define the field as public scope. Otherwise the JsonMappingException exception is thrown. For details on
exception handling, see 18.3.3 Exception handling.

• Do not specify a static, transient, or final modifier in the field. These modifiers will not be mapped.

• The fields that do not have a value corresponding to the JSON format will not be initialized (exception will not be
thrown).

(3) Bean property

• We recommend that you define the setter method of the Bean property as a public scope. You can also use
private, protected, or package scope to declare the setter method of the Bean property.

• Do not declare multiple setter methods with the same name in upper and lower case. If you declare, the
JsonMappingException exception is thrown. For details on exception handling, see 18.3.3 Exception
handling.

• Do not specify static for the Bean property. static will not be mapped.

• Specifying the final modifier is optional.

• The Bean property need not be readable. For details on the Bean property, see the JavaBeans specifications.

• The setter method of a Bean property that does not have a value corresponding to the JSON format will not be
called (exception will not be thrown).

18.3.2 Available data types
You can specify the following data types for the POJO fields and the Bean property.

18. Mapping JSON and POJO

418

Table 18‒3: Available data types for the POJO fields and the Bean property (JSON to POJO mapping)

No. Data

1 Primitive int

2 short

3 long

4 float

5 double

6 char

7 byte

8 boolean

9 Wrapper class Integer

10 Short

11 Long

12 Float

13 Double

14 Character

15 Byte

16 Boolean

17 java.lang.String

18 java.math.BigInteger

19 java.math.BigDecimal

20 java.util.Date

21 java.util.Calendar

22 java.lang.Enum

23 POJO#1

24 java.util.List<T>#2

25 java.util.Set<T>#2

26 java.util.Map<K,V>#2

27 Any array in 1 through 26#2,#3

#1
You can recursively have the POJO as a field or a Bean property. For conditions of a supported POJO, see 18.3 JSON to POJO
mapping.

#2
The type of T, K, and V can be any item listed in No.1 through 26 in the above table.

#3
The value of the corresponding JSON format must conform to the array structure.

Points to note when setting elements:

• If the JSON format has any of the following errors, the JsonParseException exception is thrown. For details
on exception handling, see 18.3.3 Exception handling.

18. Mapping JSON and POJO

419

• If the JSON format contains a value other than a numeric value, character string, array, object, true, false,
or null

• If two objects are not separated with a comma

• If a character that is not allowed is used among tokens (spaces, linefeeds, carriage returns, and horizontal tabs
are allowed)

• If the format of a numeric value is incorrect (such as 12, 1.2eE8, 0X3F7A)

• If the data type is not a numerical field (1-5, 7, 9-13, 15 of the table) or the JSON format value corresponding to
the Bean property is not a numerical value, the JsonMappingException exception is thrown. For details on
exception handling, see 18.3.3 Exception handling.

(1) int type(primitive)

• If the value of the corresponding JSON format is a blank character string, the JsonMappingException
exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

• If the value of the corresponding JSON format is null, the field or the Bean property is initialized with the
default value of the int type.

• The value of the corresponding JSON format must be a number within the range of the int type. If you specify a
value outside the range, the operation is not guaranteed.

(2) short type (primitive)

• If the corresponding value of the JSON format is null or a blank character string, the field or the Bean property
is initialized with the default value of the short type.

• The value of the corresponding JSON format must be a number within the range of the short type. If you
specify a value outside the range, the operation is not guaranteed.

(3) long type (primitive)

• If the value of the corresponding JSON format is a blank character string, the JsonMappingException
exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

• If the value of the corresponding JSON format is null, the field or the Bean property is initialized with the
default value of the long type.

• The value of the corresponding JSON format must be a number within the range of the long type. If you specify
a value outside the range, the operation is not guaranteed.

(4) float type (primitive)

• If the value of the corresponding JSON format is a blank character string, the JsonMappingException
exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

• If the value of the corresponding JSON format is null, the field or the Bean property is initialized with the
default value of the float type.

• The value of the corresponding JSON format must be a number within the range of the float type. If you
specify a value outside the range, the operation is not guaranteed.

(5) double type (primitive)

• If the value of the corresponding JSON format is a blank character string, the JsonMappingException
exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

• If the value of the corresponding JSON format is null, the field or the Bean property is initialized with the
default value of the double type.

• The value of the corresponding JSON format must be a number within the range of the double type. If you
specify a value outside the range, the operation is not guaranteed.

18. Mapping JSON and POJO

420

(6) char type (primitive)

• If the value of the corresponding JSON format is a blank character string, the JsonMappingException
exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

• If the value of the corresponding JSON format is null, the field or the Bean property is initialized with the
default value of the char type.

• The value of the corresponding JSON format must be a number within the range of the char type. If you specify
a value outside the range, the operation is not guaranteed.

(7) byte type (primitive)

• If the value of the corresponding JSON format is null or a blank string expression, the field or the Bean property
is initialized with the default value of the byte type.

• The value of the corresponding JSON format must be a number within the range of the byte type. If you specify
a value outside the range, the operation is not guaranteed.

(8) boolean type (primitive)

• If the value of the corresponding JSON format is null or a blank character string expression, the field or the
Bean property is initialized with the default value of the boolean type.

• If a value other than true or false (case-sensitive) is set to the corresponding JSON format, operations of the
JAX-RS engine will not be defined.

(9) Integer type (wrapper class)

• If the value of the corresponding JSON format is null or a blank character string expression, null is mapped.

• The value of the corresponding JSON format must be a number within the range of the Integer type. If you
specify a value outside the range, the operation is not guaranteed.

(10) Short type (wrapper class)

• If the value of the corresponding JSON format is a blank character string expression, the field or the Bean
property is initialized with the default value of the Short type.

• If the value of the corresponding JSON format is null, null is mapped.

• The value of the corresponding JSON format must be a number within the range of the Short type. If you
specify a value outside the range, the operation is not guaranteed.

(11) Long type (wrapper class)

• If the value of the corresponding JSON format is null or a blank character string expression, null is mapped.

• The value of the corresponding JSON format must be a number within the range of the Long type. If you specify
a value outside the range, the operation is not guaranteed.

(12) Float type (wrapper class)

• If the value of the corresponding JSON format is null or a blank character string expression, null is mapped.

• The value of the corresponding JSON format must be a number within the range of the Float type. If you
specify a value outside the range, the operation is not guaranteed.

(13) Double type (wrapper class)

• If the value of the corresponding JSON format is null or a blank character string expression, null is mapped.

18. Mapping JSON and POJO

421

• The value of the corresponding JSON format must be a number within the range of the Double type. If you
specify a value outside the range, the operation is not guaranteed.

(14) Character type (wrapper class)

• If the value of the corresponding JSON format is a blank character string, the JsonMappingException
exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

• If the value of the corresponding JSON format is null, the field or the Bean property is initialized with the
default value of the Char type.

• The value of the corresponding JSON format must be a number within the range of the Char type. If you specify
a value outside the range, the operation is not guaranteed.

(15) Byte type (wrapper class)

• If the value of the corresponding JSON format is a blank character string expression, the field or the Bean
property is initialized with the default value of the Short type.

• If the value of the corresponding JSON format is null, null is mapped.

• The value of the corresponding JSON format must be a number within the range of the Short type. If you
specify a value outside the range, the operation is not guaranteed.

(16) Boolean type (wrapper class)

• If the value of the corresponding JSON format is a blank character string expression, the field or the Bean
property is initialized with the default value of the Boolean type.

• If the value of the corresponding JSON format is null, null is mapped.

• If a value other than true, false (case-sensitive) is set to the corresponding JSON format, operations of the
JAX-RS engine will not be defined.

(17) java.lang.String type

• If the value of the corresponding JSON format is a blank character string expression, a blank character string
expression is mapped.

• If the value of the corresponding JSON format is null, null is mapped.

• The program must be designed in such a way that quotation marks ("), if any, in the value of the corresponding
JSON format must escape. If the quotation marks do not escape, the JsonParseException exception is
thrown. For details on exception handling, see 18.3.3 Exception handling.

• The program must be designed in such a way that control characters such as \n,\r,\t,and \b, if any, in the value
of the corresponding JSON format must escape. If the control characters do not escape, the
JsonParseException exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

• The program must be designed in such a way that the control character \u in the value of the corresponding JSON
format, if existing, must escape. Furthermore, a character string or a hexadecimal value must follow this \u. If the
above conditions are not met, the JsonParseException exception is thrown. For details on exception
handling, see 18.3.3 Exception handling.

(18) java.math.BigInteger type, java.math.BigDecimal type

• If the value of the corresponding JSON format is null or a blank character string expression, null is mapped.

• If the value of the corresponding JSON format is that other than a number, the JsonMappingException
exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

(19) java.util.Datetype, java.util.Calendar type

• If the value of the corresponding JSON format is null or a blank character string expression, null is mapped.

18. Mapping JSON and POJO

422

• The standard supported formats are as follows:

• yyyy-MM-dd'T'HH:mm:ss.SSSZ
• yyyy-MM-dd'T'HH:mm:ss.SSS'Z'
• EEE, dd MMM yyyy HH:mm:ss zzz
• yyyy-MM-dd

The following table lists pattern characters, describes their meaning, and gives an example wherever applicable:

Element Meaning Example

yyyy Represents years with a four-digit number. 2013

MM Represents months with a two-digit number. 04

MMM Represents months with a string of three characters. Apr

dd Represents dates of month with a two-digit number. 30

EEE Represents days of a week with a string of three characters. Sun

'T' Is a fixed character. --

HH Represents hours of a day with a two-digit number. 23

mm Represents minutes with a two-digit number. 30

ss Represents seconds with a two-digit number. 10

SSS Represents milliseconds with a three-digit number. 978

'Z' Is a fixed character. --

Z Represents a time zone defined in RFC 822. -0530

zzz Represents standard time. IST

Legend:
--: No example is available for fixed characters.

For details on patterns of the Date or Calendar formats, especially E and M depending on the locale, see the
information related to the SimpleDateFormat class in the Java SE specifications.

• If the value of the corresponding JSON format has an unsupported format, the JsonMappingException
exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

• If the value of the corresponding JSON format is a number within the range of the long type, i.e. if the value
corresponding to the Date or Calendar type is expressed in milliseconds, the objects of the Date or
Calendar type initialized with their respective values in milliseconds are mapped. If the value is outside the
range of the long type, the operation is not guaranteed.

• For example, if the value of the corresponding JSON format is 1346850421185, the result (Date object) of
calling the Date(long date) constructor of the Date class by specifying 1346850421185 in the date
parameter is mapped to a field or a Bean property of the Date type. Similarly, if you create a Date object,
specify that Date object in date parameter and call the setTime(Date date) method of the Calendar
class, the result (Calendar object) is mapped to the field or the Bean property of the Calendar type.

(20) java.lang.Enum type

• If the value of the corresponding JSON format is a blank character string, the JsonMappingException
exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

• If the value of the corresponding JSON format is null, null is mapped.

• If the value of the corresponding JSON format is not included in the Enum type, the JsonMappingException
exception is thrown. For details on exception handling, see 18.3.3 Exception handling.

18. Mapping JSON and POJO

423

(21) java.util.List<T> type

• If the value of the corresponding JSON format is an empty list ([]), an empty list is mapped.

• If the value of the corresponding JSON format is null, null is mapped.

• If the list of the corresponding JSON format contains null, null is set to the corresponding element in the field
of the List<T> type or the Bean property to be mapped.

• The value included in the list of the corresponding JSON format must conform to the conditions of the type set to
T. For conditions, see notes for the respective types in 18.3.2 Available data types. These notes also describe the
operations carried out if the conditions are not fulfilled.

(22) java.util.Set<T> type

• If the value of the corresponding JSON format is an empty list ([]), an empty set is mapped.

• If the value of the corresponding JSON format is null, null is mapped.

• If the list of the corresponding JSON format contains null, null is set to the corresponding element in the field
of the Set<T> type or the Bean property type to be mapped.

• The value included in the corresponding JSON format set must conform to the conditions of the type set to T. For
conditions, see notes for the respective types in 18.3.2 Available data types. These notes also describe the
operations carried out if the conditions are not fulfilled.

(23) java.util.Map<K,V> type

• If the value of the corresponding JSON format is a blank map ({}), an empty map is mapped.

• If the value of the corresponding JSON format is null, null is mapped.

• If the map of the corresponding JSON format includes null as a key, the JsonParseException exception is
thrown. For details on exception handling, see 18.3.3 Exception handling.

• If the map of the corresponding JSON format includes null as the value, null is set to the corresponding values
of the fields of the Map<K,V> type to be mapped or in the Bean property.

• For a key or a value to be included in the map of the corresponding JSON format, the key or the value must
conform to the conditions of the type to be set to K, V respectively. For conditions, see notes for the respective
types in 18.3.2 Available data types. These notes describe the operations carried out if the conditions are not
fulfilled.

18.3.3 Exception handling
The JSON to POJO mapping uses a mechanism of the entity provider of the JAX-RS specifications. Therefore,
exceptions thrown during the JSON to POJO mapping is handled in the same way as the exceptions thrown during any
other mapping. For details on how exceptions are handled during mapping, see 17.1.3 Return value, and for mapping
on servers and clients, see 25.15.2 Combination of Java types and MIME media types available for an HTTP response
entity.

18. Mapping JSON and POJO

424

18.4 Exceptions that occur during mapping
The following table lists the exceptions that occur during mapping.

Table 18‒4: Exceptions that occur during the JSON POJO mapping

No. Interface or class

com.cosminexus.org.codehaus.jackson.map package

1 JsonMappingException

com.cosminexus.org.codehaus.jackson package

2 JsonParseException

3 JsonGenerationException

18. Mapping JSON and POJO

425

19 Support Range of the JAX-WS
Specifications
This chapter describes the support range of the JAX-WS Specifications that you must
consider when you develop a Web Service.

427

19.1 Support range of the JAX-WS 2.2 specifications
This section describes the support range of the functionality in the JAX-WS 2.2 specifications, and the support for
Conformance.

19.1.1 Support range of the functionality in the JAX-WS 2.2
specifications

The following table describes the support range of the functionality in the JAX-WS 2.2 specifications.

For details on the preconditions, see 1.4.2 Preconditions related to the functionality and specifications.

Table 19‒1: Support range of the functionality in the JAX-WS 2.2 specifications

Division

Support RemarksMajor
division #1 Subdivision #2

2 Mapping Java from WSDL 1.1 Y

2 Customized mapping with an embedded binding declaration
or an external binding file

Y For details on the support range of the
binding declarations, see 15.2
Customized mapping of WSDL to
Java.

2 Assigning annotations to the generated Java codes Y For details on the support range of the
annotations, see 16.2.1 List of
annotations.

2.1 Mapping a Namespace to a package Y For details on mapping, see 15.1.1
Mapping a namespace to a package
name.

2.2 Mapping a port type to an SEI Y For details on mapping, see 15.1.2
Mapping a port type to an SEI name.

2.3 Mapping an operation to an SEI method Y For details on mapping, see 15.1.3
Mapping an operation to a method
name.

2.3 Overloading of methods Y For details on the overloading of
methods, see 15.1.11(1) Overloading
of Java methods.

2.3 MEP: Supporting a request-response operation Y

2.3 MEP: Supporting a one-way operation Y

2.3.1.1 Supporting the Non-wrapper style operations Y

2.3.1.2 Supporting the Wrapper style operations Y

2.3.2 Order and return value types of
parameters

parameterOrder
attribute

N

Attributes other than the
parameterOrder
attribute

Y

2.3.3 javax.xml.ws.Holder<T> class Y For details on the support range of the
javax.xml.ws.Holder<T> class,
see 19.2.4(12)
javax.xml.ws.Holder<T> class.

2.3.4 Asynchronous mapping N

19. Support Range of the JAX-WS Specifications

428

Division

Support RemarksMajor
division #1 Subdivision #2

2.4.1 W3CEndpointReference class Y

2.5 Mapping a fault to a service-specific exception Y For details on mapping, see 15.1.7
Mapping a fault to an exception class.

2.6 SOAP binding SOAP 1.1/HTTP Y

SOAP 1.2/HTTP Y

2.6 MIME binding N

2.6.2.1 soap: header element Y For details on the support range of the
soap: header element (codeable
syntax), see 20.1.22 soap: header
element.

2.7 Mapping a service and port to a service class Y For details on mapping, see 15.1.9
Mapping a service and port to a
service class.

2.8 Mapping an XML name to a Java identifier Y

2.8.1 Processing to be executed for a name conflict Y For details on the processing to be
executed for a name conflict, see
15.1.11(2) Mapping for name conflict.

3 Mapping Java to WSDL 1.1 Y

3 Customized mapping using annotations Y For details on the support range of the
annotations, see 16.2.1 List of
annotations.

3.1 Mapping a Java identifier to an XML name Y

3.2 Mapping a package to a Namespace Y

3.3 Mapping an implicit SEI to a port type Y

3.4 Mapping an SEI to a port type Y For details on mapping, see 16.1.3
Mapping the SEI name to the port
type.

3.5 Mapping an SEI method to an operation Y For details on mapping, see 16.1.4
Mapping the SEI method name to an
operation.

3.5.1 One-way operations Y

3.6 Mapping the parameters and return values Y For details on mapping, see 16.1.5
Mapping the parameter and return
value to the message part (For
wrapper style) and 16.1.6 Mapping the
parameter and return value to the
message part (For non-wrapper style).

3.6 soap: header element Y

3.6.2.1 Mapping the Document Wrapped styles Y

3.6.2.2 Mapping the Document Bare styles Y

3.6.2.3 Mapping the RPC styles N

3.7 Mapping a service-specific exception to a fault Y For details on mapping, see 16.1.7
Mapping the Java wrapper exception
class to a fault.

19. Support Range of the JAX-WS Specifications

429

Division

Support RemarksMajor
division #1 Subdivision #2

3.8 Mapping a service class to a binding Y For details on mapping, see 16.1.8
Mapping SEI to binding.

3.9 Processing of generics Y For details on the processing of
generics, see 16.1.10(1) Deleting the
generics type and 16.1.10(3)
Limitation of the generics type.

3.10 SOAP/HTTP binding SOAP 1.1/ HTTP Y

SOAP 1.2/ HTTP Y

3.11 Mapping a service class to a service and port Y For details on mapping, see 16.1.9
Mapping a Web Service
implementation class to a service and
port.

4 Client APIs Y For details on the support range of
APIs, see 19.2 Support range of APIs.

5 Service APIs Y For details on the support range of
APIs, see 19.2 Support range of APIs.

6 Core APIs Y For details on the support range of
APIs, see 19.2 Support range of APIs.

7 Annotations Y For details on the support range of
annotations, see 16.2.1 List of
annotations.

8 Binding declarations Y For details on the support range of the
binding declarations, see 15.2
Customized mapping of WSDL to
Java.

9.1.1 Logical handlers Y For details on the logical handlers, see
36.4 Types of handlers.

9.1.1 Protocol handlers Y For details on the protocol handlers,
see 36.4 Types of handlers.

9.2.1.1 Handler settings in the Web
Service client

Dynamic settings using
APIs

Y For details on the handler settings, see
36.9 Setting the handler chain.

Other settings N

9.2.1.2 Sequencing the handlers Y For details on the execution order of
the handlers, see 36.5 Execution
sequence and organization of the
handler chain.

9.2.1.3 Handler settings in the Web
Services

Settings using the
javax.jws.Handler
Chain annotation

Y For details on the handler settings, see
36.9 Setting the handler chain.

Other settings N

9.2.2 Deploying a handler based on the WSEE specifications
(JSR-109)

N

9.3 Handler processing model Y For details on the handler processing,
see 36.5 Execution sequence and
organization of the handler chain.

9.4 Message context Y For details on the support range of the
message context properties, see

19. Support Range of the JAX-WS Specifications

430

Division

Support RemarksMajor
division #1 Subdivision #2

9.4 Message context Y 19.2.5(1) Support range of the
message context properties.

10.1.1 Dynamic (programmed) settings for SOAP binding Y

10.1.2 Static (deployment-based) settings for SOAP binding N

10.2 Processing model for SOAP binding Y

10.3 SOAP message context Y For details on the support range of the
message context, see 19.2.5 Using a
message context.

10.4.1 SOAP 1.1/ HTTP binding Y

10.4.1 SOAP 1.2/ HTTP binding Y

10.4.1.1 MTOM specifications Y

10.4.1.2 one-way operations Y

10.4.1.3 HTTP basic authentication Y

10.4.1.4 Session management Y

10.4.1.5 WS-Addressing specifications Y

11 XML/ HTTP binding N

Legend:
Y: Supported inthe Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.
Blank column: Indicates that there is no supplemented content.

#1
Indicates the relevant location (chapter, section, or subsection) in the JAX-WS 2.2 specifications.

#2
Indicates the contents described at the relevant location in the JAX-WS 2.2 specifications.

19.1.2 Supporting Conformance
The following table describes whether Conformance is supported. Note that the Conformance number applies to
"Appendix A Conformance Requirements" in the JAX-WS 2.2 specifications.

Table 19‒2: Supporting Conformance

Division
Support Remarks

Number#1 Title #2

2.1 WSDL 1.1 support Y

2.2 Customization required Y For details on the support range of the
binding declarations, see 15.2 Customized
mapping of WSDL to Java.

2.3 Annotations on generated classes Y For details on the support range of
annotations, see 16.2.1 List of annotations.

2.4 Definitions mapping Y For details on the values specifiable in the
targetNamespace attribute of the

19. Support Range of the JAX-WS Specifications

431

Division
Support Remarks

Number#1 Title #2

2.4 Definitions mapping Y wsdl:definitions element, see
15.1.1(2) Conditions for namespace.

2.5 WSDL and XML Schema import directives Y For details on the wsdl:import element,
see 26.3 Format of the wsdl:import
element.

2.6 Optional WSDL extensions Y Conformance is supported, but the WSDL
extended elements and attributes that are
not provided in the JAX-WS 2.2
specifications are not supported.

2.7 SEI naming Y For details on the values specifiable in the
name attribute of the wsdl:portType
element, see 15.1.2(2) Conditions for the
port type name.

2.8 javax.jws.WebService required Y

2.9 javax.xml.bind.XmlSeeAlso required Y

2.10 Method naming Y For details on the values specifiable in the
name attribute of the wsdl:operation
element, see 15.1.3(2) Conditions for the
operation name.

2.11 javax.jws.WebMethod required Y

2.12 Transmission primitive support one-way Y

request-response Y

2.13 Using javax.jws.OneWay Y

2.14 Using javax.jws.SOAPBinding Y

2.15 Using javax.jws.WebParam Y For details on the values specifiable in the
name attribute of the wsdl:part
element, see 15.1.5(2) Conditions for part
names.

2.16 Using javax.jws.WebResult Y

2.17 Generating @Action Y

2.18 Generating @Action input Y

2.19 Generating @Action output Y

2.20 Generating @Action fault Y

2.21 Use of JAXB annotations Y For details on the support range of
annotations, see 16.2.1 List of annotations.

2.22 Non-wrapped parameter naming Y For details on the values specifiable in the
name attribute of the wsdl:part
element, see 15.1.5(2) Conditions for part
names.

2.23 Default mapping mode Y

2.24 Disabling wrapper style Y

2.25 Wrapped parameter naming Y For details on the values specifiable in the
name attribute of the wrapper child
element, see 15.1.4(2) Conditions for the
wrapper child element name.

19. Support Range of the JAX-WS Specifications

432

Division
Support Remarks

Number#1 Title #2

2.26 Parameter name clash Y

2.27 Using javax.xml.ws.RequestWrapper Y

2.28 Using javax.xml.ws.ResponseWrapper Y

2.29 Use of Holder Y

2.30 Asynchronous mapping required N

2.31 Asynchronous mapping option N

2.32 Asynchronous method naming -- Asynchronous-related functionality is not
supported.

2.33 Asynchronous parameter naming -- Asynchronous-related functionality is not
supported.

2.34 Failed method invocation -- Asynchronous-related functionality is not
supported.

2.35 Response bean naming -- Asynchronous-related functionality is not
supported.

2.36 Asynchronous fault reporting -- Asynchronous-related functionality is not
supported.

2.37 Asynchronous fault cause -- Asynchronous-related functionality is not
supported.

2.38 JAXB class mapping Y

2.39 JAXB customization use Y

2.40 JAXB customization clash Y

2.41 javax.xml.ws.wsaddressing.W3CEndpointReference Y

2.42 javax.xml.ws.WebFault required Y

2.43 Exception naming Y For details on the values specifiable in the
name attributes of the wsdl:fault and
wsdl:message elements, see 15.1.7(2)
Conditions for the fault name.

2.44 Fault equivalence Y

2.45 Fault equivalence Y

2.46 Required WSDL extensions SOAP Y

MIME N

2.47 Unbound message parts Y

2.48 Duplicate headers in binding Y

2.49 Duplicate headers in message Y

2.50 Use of the MIME type information -- MIME binding is not supported.

2.51 MIME type mismatch -- MIME binding is not supported.

2.52 MIME part identification -- MIME binding is not supported.

2.53 Service superclass required Y

19. Support Range of the JAX-WS Specifications

433

Division
Support Remarks

Number#1 Title #2

2.54 Service class naming Y For details on the values specifiable in the
name attribute of the wsdl:service
element, see 15.1.9(2) Conditions for the
service name and port name.

2.55 javax.xml.ws.WebServiceClient required Y

2.56 Generated service default constructor Y

2.57 Generated service(WebServiceFeature ...) constructor Y

2.58 Generated service(URL) constructor Y

2.59 Generated service(URL,WebServiceFeature...) constructor Y

2.60 Generated service(URL,QName) constructor Y

2.61 Generated service(URL,QName,WebServiceFeature...)
constructor

Y

2.62 Failed getPort Method Y

2.63 javax.xml.ws.WebEndpoint required Y

3.1 WSDL 1.1 support Y For details on the support range of the
WSDL 1.1 specifications, see 20.1 Support
range of the WSDL 1.1 specifications.

3.2 Standard annotations Y For details on the support range of
annotations, see 16.2.1 List of annotations.

3.3 Java identifier mapping Y

3.4 Method name disambiguation Y

3.5 Package name mapping Y For details on the values specifiable in the
Java identifiers and annotations, see 16.
Mapping Java to WSDL.

3.6 WSDL and XML Schema import directives Y

3.7 Class mapping Y

3.8 portType naming Y For details on the values specifiable in the
Java identifiers and annotations, see 16.
Mapping Java to WSDL.

3.9 Inheritance flattening Y

3.10 Inherited interface mapping Y Conformance is supported, but the mapping
such as that described for Conformance is
not performed with the Cosminexus JAX-
WS functionality.

3.11 Operation naming Y For details on the values specifiable in the
Java identifiers and annotations, see 16.
Mapping Java to WSDL.

3.12 Generating wsam:Action Y

3.13 One-way mapping Y

3.14 One-way mapping errors Y The one-way pattern is not supported.

3.15 Use of JAXB annotations Y

3.16 Overriding JAXB types empty namespace Y

19. Support Range of the JAX-WS Specifications

434

Division
Support Remarks

Number#1 Title #2

3.17 Parameter classification Y

3.18 Parameter naming Y For details on the values specifiable in the
Java identifiers and annotations, see 16.
Mapping Java to WSDL.

3.19 Result naming Y For details on the values specifiable in the
Java identifiers and annotations, see 16.
Mapping Java to WSDL.

3.20 Header mapping of parameters and results Y

3.21 Dynamically generating wrapper beans Y

3.22 Default wrapper bean names Y For details on the values specifiable in the
Java identifiers and annotations, see 16.
Mapping Java to WSDL.

3.23 Default wrapper bean package Y For details on the values specifiable in the
Java identifiers and annotations, see 16.
Mapping Java to WSDL.

3.24 Wrapper element names Y For details on the values specifiable in the
Java identifiers and annotations, see 16.
Mapping Java to WSDL.

3.25 Wrapper bean name clash Y

3.26 Default Wrapper wsdl:part names Y

3.27 Customizing Wrapper wsdl:part names Y

3.28 Wrapper property Y

3.29 Null Values in rpc/literal -- The rpc/literal style is not supported.

3.30 Exception naming Y For details on the values specifiable in the
Java identifiers and annotations, see 16.
Mapping Java to WSDL.

3.31 wsdl:message naming Y

3.32 wsdl:message naming using WebFault Y

3.33 java.lang.RuntimeExceptions and java.rmi.RemoteExceptions Y

3.34 Fault bean's @XmlType Y

3.35 Fault bean name clash Y

3.36 Dynamically generating exception beans Y

3.37 Binding selection Y

3.38 SOAP binding support Y

3.39 SOAP binding style required Y

3.40 Service creation Y

3.41 Port selection Y For details on the values specifiable in the
Java identifiers and annotations, see 16.
Mapping Java to WSDL.

3.42 Port binding Y

3.43 Use of Addressing Y

19. Support Range of the JAX-WS Specifications

435

Division
Support Remarks

Number#1 Title #2

4.1 Service completeness N Contains unsupported APIs.

4.2 Service Creation Failure Y

4.3 Service creation using features Y

4.4 Use of Executor -- Asynchronous-related functionality is not
supported.

4.5 Default Executor -- Asynchronous-related functionality is not
supported.

4.6 javax.xml.ws.BindingProvider.getEndpointReference Y

4.7 BindingProvider's W3CEndpointReference Y

4.8 Message context decoupling Y

4.9 Required BindingProvider properties Y

4.10 Optional BindingProvider properties Y

4.11 Additional context properties Y

4.12 Asynchronous response context -- Asynchronous-related functionality is not
supported.

4.13 Proxy support Y

4.14 Implementing BindingProvider Y

4.15 Service.getPort failure Y

4.16 Proxy's Addressing use Y

4.17 Remote Exceptions Y

4.18 Exceptions During Handler Processing Y

4.19 Other Exceptions Y

4.20 Dispatch support Y

4.21 Failed Dispatch.invoke Y

4.22 Failed Dispatch.invokeAsync -- Asynchronous-related functionality is not
supported.

4.23 Failed Dispatch.invokeOneWay Y Asynchronous-related functionality is not
supported.

4.24 Reporting asynchronous errors -- The javax.xml.ws.Response
interface is not supported.

4.25 Marshalling failure Y

4.26 Use of the Catalog Y

5.1 Provider support required Y

5.2 Provider default constructor Y

5.3 Provider implementation Y

5.4 WebServiceProvider annotation Y

5.5 Endpoint publish(String address, Object implementor)
Method

-- The javax.xml.ws.Endpoint class is
not supported.

19. Support Range of the JAX-WS Specifications

436

Division
Support Remarks

Number#1 Title #2

5.6 Default Endpoint Binding -- The javax.xml.ws.Endpoint class is
not supported.

5.7 Other Bindings -- The javax.xml.ws.Endpoint class is
not supported.

5.8 Publishing over HTTP -- The javax.xml.ws.Endpoint class is
not supported.

5.9 WSDL Publishing -- The javax.xml.ws.Endpoint class is
not supported.

5.10 Checking publishEndpoint Permission -- The javax.xml.ws.Endpoint class is
not supported.

5.11 Required Metadata Types -- The javax.xml.ws.Endpoint class is
not supported.

5.12 Unknown Metadata -- The javax.xml.ws.Endpoint class is
not supported.

5.13 Use of Executor -- The javax.xml.ws.Endpoint class is
not supported.

5.14 Default Executor -- The javax.xml.ws.Endpoint class is
not supported.

5.15 Endpoint's W3CEndpointReference Y

5.16 Building W3CEndpointReference Y

6.1 Read--only handler chains Y The setHandlerChain method of the
javax.xml.ws.Binding interface is
not supported.

6.2 Concrete javax.xml.ws.spi.Provider required Y

6.3 Provider createAndPublishEndpoint Method -- The javax.xml.ws.Provider
interface is not supported.

6.4 Concrete javax.xml.ws.spi.ServiceDelegate required Y

6.5 Protocol specific fault generation Y

6.6 Protocol specific fault consumption Y

6.7 One-way operations Y The one-way pattern is not supported.

6.8 javax.xml.ws.WebServiceFeatures -- The
javax.xml.ws.WebServiceFeatur
e class is not supported.

6.9 enabled property -- The
javax.xml.ws.WebServiceFeatur
e class is not supported.

6.10 javax.xml.ws.soap.MTOMFeature Y

6.11 javax.xml.ws.RespectBindingFeature -- The
javax.xml.ws.RespectBindingFe
ature class is not supported.

6.12 HTTP SPI in SE platform N The development and operations in the
stand-alone Java SE are not supported with
JAX-WS.

19. Support Range of the JAX-WS Specifications

437

Division
Support Remarks

Number#1 Title #2

7.1 Correctness of annotations Y For details on the support range of
annotations, see 16.2.1 List of annotations.

7.2 Handling incorrect annotations Y For details on the support range of
annotations, see 16.2.1 List of annotations.

7.3 Unsupported WebServiceFeatureAnnotation Y

7.4 WebServiceProvider and WebService Y

7.5 JSR-181 conformance Y For details on the support range of
annotations, see 16.2.1 List of annotations.

8.1 Standard binding declarations Y

8.2 Binding language extensibility Y

8.3 Multiple binding files Y

9.1 Handler framework support Y

9.2 Logical handler support Y

9.3 Other handler support Y For details on the support range of APIs,
see 19.2 Support range of APIs.

9.4 Incompatible handlers Y

9.5 Incompatible handlers Y

9.6 Handler chain snapshot Y

9.7 HandlerChain annotation Y

9.8 Handler resolver for a HandlerChain annotation Y

9.9 Binding handler manipulation Y

9.10 Handler initialization Y

9.11 Handler destruction Y

9.12 Invoking close Y

9.13 Order of close invocations Y

9.14 Message context property scope Y

10.1 SOAP required roles Y

10.2 SOAP required roles Y

10.3 Default role visibility Y

10.4 Default role persistence Y

10.5 None role error Y

10.6 Incompatible handlers Y

10.7 Incompatible handlers Y

10.8 Logical handler access Y

10.9 SOAP 1.1 HTTP Binding Support Y

10.10 SOAP 1.2 HTTP Binding Support Y

19. Support Range of the JAX-WS Specifications

438

Division
Support Remarks

Number#1 Title #2

10.11 SOAP MTOM Support Y

10.12 Semantics of MTOM enabled Y

10.13 MTOM support Y

10.14 SOAP bindings with MTOM disabled Y

10.15 SOAP bindings with MTOM enabled Y

10.16 MTOM on Other SOAP Bindings -- Not applicable to this Conformance
because the implementation of the other
javax.xml.ws.soap.SOAPBinding
interfaces is not supported.

10.17 One-way operations Y The one-way pattern is not supported.

10.18 HTTP basic authentication support Y

10.19 Authentication properties Y

10.21 URL rewriting support N

10.22 Cookie support Y

10.22 SSL session support Y Conformance is supported, but SSL
session-based status management is not
supported with the Cosminexus JAX-WS
functionality.

10.23 SOAP Addressing Support Y

11.1 XML/HTTP Binding Support N

11.2 Incompatible handlers N

11.3 Incompatible handlers N

11.4 Logical handler access N

11.5 One-way operations N

11.6 HTTP basic authentication support N

11.7 Authentication properties N

11.8 URL rewriting support N

11.9 Cookie support N

11.10 SSL session support N

Legend:
Y: Supported.
N: Not supported.
--: Not applicable.
Blank column: Indicates that there is no supplemented content.

#1
Indicates the numbers in "Appendix A Conformance Requirements" in the JAX-WS 2.2 specifications.

#2
Title mentioned in Conformance.

19. Support Range of the JAX-WS Specifications

439

19.2 Support range of APIs

19.2.1 List of interfaces and classes (JAX-WS)
This subsection describes the types of JAX-WS API interfaces and classes. This subsection also describes the support
range of interfaces and classes.

(1) Types of interfaces and classes
The JAX-WS API interfaces and classes are classified into the following APIs:

• Client API
The client API is used with the dispatch-based or API-based Web Service client. The stub-based Web Service
client uses the service classes and stubs generated with commands to access the Web Services, so the client API is
not used.

• Service API
The service API is used for coding the advanced implementation in a Web Service. You use a service API to
prepare a complex functionality, such as the Web Services and handlers that use the provider implementation
class.

• Core API
The core API is available with both, Web Services and Web Service client. The core API contains the Holder
class for storing the inout and out parameters or exceptions.

(2) List of interfaces and classes
The following table describes a list of JAX-WS API interfaces and classes. The operations are not guaranteed if you
use interfaces and classes that are not supported by the Cosminexus JAX-WS functionality to develop a Web Service.

Table 19‒3: List of JAX-WS API interfaces and classes

No. Interface or class name Explanation Support

javax.xml.ws package

1 AsyncHandler<T> -- N

2 Binding -- N

3 BindingProvider Interface that provides access to the context object
associated with the protocol binding.

Y

4 Dispatch<T> Interface for sending XML messages. Y

5 LogicalMessage Interface that expresses the XML message that is not
captured in the protocol and includes the method that
provides the method of accessing the message
payload.

Y

6 Provider<T> Interface for receiving XML messages. Y

7 Response<T> -- N

8 WebServiceContext Interface that provides an access to the information
associated with the current in-processing request for
Web Services Implementation Class or Provider
Implementation Class.

Specify the javax.annotation.Resource
annotation and then inject and use the information
associated with the current in-processing requests.

Y

9 Endpoint -- N

19. Support Range of the JAX-WS Specifications

440

No. Interface or class name Explanation Support

10 EndpointReference Abstract class indicating the WS-Addressing
EndpointReference of the remote reference for a Web
Service endpoint.

Y

11 Holder<T> Class that stores the value of type T. Y

12 RespectBindingFeature -- N

13 Service Class that expresses the Web Service to be used by the
Web Service client.

Y

14 WebServiceFeature The user does not use this interface directly. Y

15 WebServicePermission -- N

16 ProtocolException Class used to report the protocol level fault
information to the client.

Y

17 WebServiceException Exception class indicating a JAX-WS API runtime
exception.

Y

javax.xml.ws.handler package

18 Handler<C extends
MessageContext>

Base interface of the handler. Y

19 HandlerResolver Interface implemented by the implementer of the Web
Service client in order to control the handler chain set
by proxy.

Y

20 LogicalHandler<C extends
LogicalMessageContext>

Logical handler. Implement this interface when you
want to implement the logical handler.

This interface does not have methods.

Y

21 LogicalMessageContext Message context for the logical handler. Y

22 MessageContext Interface that provides the methods for managing the
property set.

Y

23 PortInfo Information used to query the port for which the
generation of the handler chain was requested by the
handler resolver.

Y

javax.xml.handler.soap package

24 SOAPHandler<T extends
SOAPMessageContext>

SOAP handler. Implement this interface when you
want to implement the SOAP handler.

Y

25 SOAPMessageContext Message context for the SOAP handler. Y

javax.xml.ws.http package

26 HTTPBinding -- N

27 HTTPException -- N

javax.xml.ws.soap package

28 SOAPBinding Abstract class for SOAP binding. Y

29 AddressingFeature Feature class indicating that WS-Addressing is used. Y

30 MTOMFeature Feature class indicating that an attachment in the
MTOM/XOP specification format is used.

Y

31 SOAPFaultException Class indicating the SOAP fault exception. Y

javax.xml.ws.spi package

19. Support Range of the JAX-WS Specifications

441

No. Interface or class name Explanation Support

32 Provider Abstract class that creates the ServiceDelegate
and Endpoint objects.

The user does not use this class directly.

Y

33 ServiceDelegate Abstract class used internally by a Service object.

The user does not use this class directly.

Y

javax.xml.ws.wsaddressing package

34 W3CEndpointReference Implementation class of the EndpointReference
abstract class.

Y

35 W3CEndpointReferenceBuilder Builder class used to create the
W3CEndpointReference class.

Y

com.sun.xml.ws.developer package

36 StreamingAttachmentFeature Feature class indicating that streaming is used. Y

37 StreamingDataHandler Abstract class indicating an attachment that uses
streaming.

Y

org.jvnet.mimepull package

38 MIMEConfig Class used to specify settings related to the parsing and
output of MIME messages.

Y

Legend:
--: Indicates that there is no description (not-supported).
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

19.2.2 Client API
This subsection describes the support range of the client APIs.

(1) javax.xml.ws.BindingProvider interface
The following table describes the support range of the javax.xml.ws.BindingProvider interface. For details,
see the JAX-WS 2.2 specifications.

Table 19‒4: Support range of the javax.xml.ws.BindingProvider interface

No. Return value type Method name/ Explanation Support

1 Binding getBinding() Y

Desc
riptio
n

Acquires binding of this binding provider.

2 EndpointReference getEndpointReference() N

3 <T extends
EndpointReference> T

getEndpointReference (java.lang.Class<T>
clazz)

N

4 java.util.Map
<java.lang.String,
java.lang.Object>

getRequestContext() Y

Expl
anati
on

Obtains the context used for initializing the message
context of the request message.

19. Support Range of the JAX-WS Specifications

442

No. Return value type Method name/ Explanation Support

5 java.util.Map
<java.lang.String,
java.lang.Object>

getResponseContext() Y

Expl
anati
on

Obtains the context acquired by the processing of
the response message. If this method is invoked
before the response message is processed, null is
returned.Do not call this method for one-way
operations as response messages are not available.
Operation is not guerenteed if you use this method
in the one-way operations.

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

(2) javax.xml.ws.Dispatch interface
The following table describes the support range of the javax.xml.ws.Dispatch interface. For details, see the
JAX-WS 2.2 specifications.

Table 19‒5: Support range of the javax.xml.ws.Dispatch interface

No. Return value type Method name Support

1 T invoke(T msg) Y

2 Response<T> invokeAsync(T msg) N

3 java.util.concurrent.Future
<?>

invokeAsync(T msg, AsyncHandler<T>
handler)

N

4 void invokeOneWay(T msg) Y

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

(3) javax.xml.ws.EndpointReference class
The following table describes the support range of the javax.xml.ws.EndpointReference class. For details,
see the JAX-WS 2.2 specifications.

Table 19‒6: Support range of the javax.xml.ws.EndpointReference class

No. Return value type Method name Support

1 -- EndpointReference() Y

2 <T> T getPort (java.lang.Class<T>
serviceEndpointInterface,
WebServiceFeature... features)

N

3 static
EndpointReference

readFrom (javax.xml.transform.Source
eprInfoset)

Y

4 java.lang.String toString() N

5 abstract void writeTo(javax.xml.transform.Result result) N

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

19. Support Range of the JAX-WS Specifications

443

(4) javax.xml.ws.Service class
The following table describes the support range of the javax.xml.ws.Service class. For details, see the JAX-
WS 2.2 specifications.

Table 19‒7: Support range of the javax.xml.ws.Service class

No. Return value type Method name/ Explanation Support

1 -- Service(java.net.URL wsdlDocumentLocation,
javax.xml.namespace.QName serviceName)

Y

Expl
anati
on

Constructor that generates the Service instance.

Argu
ment

wsdlDocumentLocation:
This is the location of the WSDL document. If null is
specified, the value of the wsdlLocation attribute of the
javax.xml.ws.WebServiceClient annotation,
specified in the class that invokes the Service constructor, is
set up. For details on the URL format to be specified, follow the
specifications for the java.net.URL class. If the catalog
functionality is active, this method maps the value specified in
this argument to the URI that points to a different WSDL
location specified in the catalog file.

serviceName:
This is the name of the service.

Exce
ption

javax.xml.ws.WebServiceException:
This exception occurs in the following cases:

• When a non-existent local path name is specified in
wsdlDocumentLocation

• When a non-existent HTTP URL with ?wsdl is specified
in wsdlDocumentLocation

• When a non-existent HTTP URL without ?wsdl is
specified in wsdlDocumentLocation

• When null is specified in serviceName
• When QName other than WSDL service name (name

attribute value of the wsdl:service element) is
specified in serviceName

• When null is specified in wsdlDocumentLocation
and the javax.xml.ws.WebServiceClient
annotation is not used in the class that invokes the
Service constructor

• When null is specified in wsdlDocumentLocation
and the wsdlLocation attribute is not set in the
javax.jws.WebService annotation of the class that
invokes the Service constructor

2 void addPort(javax.xml.namespace.QName portName,
java.lang.String bindingId, java.lang.String
endpointAddress)

Y

Note You must specify the same QName for portName when you
invoke createDispatch(). You cannot specify null.

If you specify null in bindingId, the SOAP1.1/HTTP binding
ID is set up.

3 static Service create(javax.xml.namespace.QName serviceName) Y

4 static Service create(javax.xml.namespace.QName serviceName,
javax.xml.ws.WebServiceFeature ... features)

N

19. Support Range of the JAX-WS Specifications

444

No. Return value type Method name/ Explanation Support

5 static Service create(java.net.URL wsdlDocumentLocation,
javax.xml.namespace.QName serviceName)

Y

Expl
anati
on

Generates the Service instance.

Argu
ment

wsdlDocumentLocation:
This is the location of the WSDL document. For details on the
URL format to be specified, follow the specifications for the
java.net.URL class.

serviceName:
This is the WSDL service name (name attribute value of the
wsdl:service element).

Exce
ption

javax.xml.ws.WebServiceException:
This exception occurs in the following cases:

• When a non-existent local path name is specified in
wsdlDocumentLocation

• When a non-existent HTTP URL with ?wsdl is specified
in wsdlDocumentLocation

• When a non-existent HTTP URL without ?wsdl is
specified in wsdlDocumentLocation

• When a name other than the WSDL service name (name
attribute value of the wsdl:service element) is
specified in serviceName (however, except when null
is specified in wsdlDocumentLocation)

6 static Service create(java.net.URL wsdlDocumentLocation,
javax.xml.namespace.QName serviceName,
javax.xml.ws.WebServiceFeature ... features)

N

7 <T> Dispatch<T> createDispatch (EndpointReference
endpointReference, java.lang.Class<T> type,
Service.Mode mode, WebServiceFeature... features)

N

8 Dispatch
<java.lang.Obje
ct>

createDispatch (EndpointReference
endpointReference, javax.xml.bind.JAXBContext
context, Service.Mode mode, WebServiceFeature...
features)

N

9 <T> Dispatch<T> createDispatch (javax.xml.namespace.QName portName,
java.lang.Class<T> type, Service.Mode mode)

Y

Note In portName, you must specify the same port name as the name
specified in the arguments of addPort(). You cannot specify
null.

10 <T> Dispatch<T> createDispatch (javax.xml.namespace.QName portName,
java.lang.Class<T> type, Service.Mode mode,
WebServiceFeature... features)

N

11 Dispatch
<java.lang.Obje
ct>

createDispatch (javax.xml.namespace.QName portName,
javax.xml.bind.JAXBContext context, Service.Mode
mode)

Y

Note In portName, you must specify the same port name as the name
specified in the arguments of addPort(). You cannot specify
null.

12 Dispatch
<java.lang.Obje
ct>

createDispatch (javax.xml.namespace.QName portName,
javax.xml.bind.JAXBContext context, Service.Mode
mode, WebServiceFeature... features)

N

19. Support Range of the JAX-WS Specifications

445

No. Return value type Method name/ Explanation Support

13 java.util.concu
rrent.Executor

getExecutor() N

14 HandlerResolver getHandlerResolver() Y

Expl
anati
on

Returns the HandlerResolver instance used by this Service
instance. If the HandlerResolver instance does not exist,
returns null.

15 <T> T getPort (java.lang.Class<T>
serviceEndpointInterface)

Y

Expl
anati
on

Returns port (proxy for accessing the service).

Argu
ment

serviceEndpointInterface:
This is the SEI Class class.

Exce
ption

javax.xml.ws.WebServiceException:
This exception occurs in the following cases:

• When serviceEndpointInterface is null
• When invoked from the Service instance generated with
Service.create() where null is specified in
wsdlDocumentLocation

• When SEI that does not use the
javax.jws.WebService annotation is specified in the
argument

• When the HandlerResolver object implementing
getHandlerChain() that returns null is set up with
setHandlerResolver() before this method is invoked

• When the HandlerResolver object implementing
getHandlerChain() that returns a handler chain
containing a handler, which is neither a logical handler nor
a SOAP handler, is set up using
setHandlerResolver() before this method is invoked

16 <T> T getPort (java.lang.Class<T>
serviceEndpointInterface, WebServiceFeature...
features)

N

17 <T> T getPort(EndpointReference endpointReference,
java.lang.Class<T> serviceEndpointInterface,
WebServiceFeature... features)

Y#

Expl
anati
on

Returns port (proxy for accessing the service).

Argu
ment

endpointReference:
This is the service endpoint invoked by the port.

serviceEndpointInterface:
This is the SEI Class class.

features:
This is the list of WebServiceFeature configured on the
port.

Exce
ption

javax.xml.ws.WebServiceException:
This exception occurs in the following cases:

• When an exception occurs while the port is being generated

• When the WSDL required for processing this method does
not exist

19. Support Range of the JAX-WS Specifications

446

No. Return value type Method name/ Explanation Support

17 <T> T Exce
ption

• When the endpointReference Meta data does not
match serviceName of the Service instance

• When portName cannot be extracted from the WSDL or
endpointReference Meta data

• When an invalid endpointReference is specified

• When an invalid serviceEndpointInterface is
specified

• When there is no compatibility with the port, or when an
unsupported WebServiceFeature is specified

Y#

18 <T> T getPort(javax.xml.namespace.QName portName,
java.lang.Class<T> serviceEndpointInterface)

Y

Expl
anati
on

Returns port (proxy for accessing the service).

Argu
ment

portName:
This is the WSDL port name (name attribute value of the
wsdl:port element).

serviceEndpointInterface:
This is the SEI Class class.

Exce
ption

javax.xml.ws.WebServiceException:
This exception occurs in the following cases:

• When QName other than the WSDL port name (name
attribute value of the wsdl:port element) is specified in
portName

• When portName is null
• When serviceEndpointInterface is null

19 <T> T getPort(javax.xml.namespace.QName portName,
java.lang.Class<T> serviceEndpointInterface,
WebServiceFeature... features)

N

20 java.util.Itera
tor
<javax.xml.name
space.QName>

getPorts() Y

Expl
anati
on

Returns the Iterator of the QName list indicating the service
end point (port included in WSDL (wsdl:port element)).

Exce
ption

javax.xml.ws.WebServiceException:
This exception occurs when the Service.create()
method is invoked for the Service instance generated by
specifying null in wsdlDocumentLocation.

21 javax.xml.names
pace.QName

getServiceName() Y

Expl
anati
on

Returns this service name (WSDL service name (name attribute
value of the wsdl:service element)).

22 java.net.URL getWSDLDocumentLocation() Y

Expl
anati
on

Returns the location of the WSDL file for this service. Returns
null when the Service.create() method is invoked for the
Service instance generated by specifying null in the argument
wsdlDocumentLocation.

23 void setExecutor (java.util.concurrent.Executor
executor)

N

19. Support Range of the JAX-WS Specifications

447

No. Return value type Method name/ Explanation Support

24 void setHandlerResolver (HandlerResolver
handlerResolver)

Y

Expl
anati
on

Set the HandlerResolver instance of this Service instance.

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

#
The following table describes the operations when variable length arguments are specified in the getPort method.

Table 19‒8: Specification methods and operations for the variable length arguments

No. Specification method Specification example Operation

1 Argument is omitted getPort(epr, sei) Operation is performed considering that no
variable length argument is specified.

2 One argument is specified getPort(epr, sei, new
FooFeatures())

Operation is performed considering that one
variable length argument is specified.

3 Two arguments are
specified

getPort(epr, sei,
new FooFeatures(),
new BarFeatures())

Operation is performed considering that two
variable length arguments are specified.

4 null is specified in the
argument

getPort(epr, sei,
null)

Operation is performed considering that no
variable length argument is specified.

5 null is specified in the
argument and cast in the
WebServiceFeature
type array

getPort(epr, sei,
(WebServiceFeature)
null)

Operation is performed considering that a
variable length argument with null is specified,
and the exception NullPointerException
occurs.

6 null is specified in the
argument and cast in the
WebServiceFeature
type array

getPort(epr, sei,
(WebServiceFeature[])
null)

Operation is performed considering that no
variable length argument is specified.

(5) javax.xml.ws.wsaddressing.W3CEndpointReference class
The following table describes the support range of the
javax.xml.ws.wsaddressing.W3CEndpointReference class. For details, see the JAX-WS 2.2
specifications.

Table 19‒9: Support range of the javax.xml.ws.wsaddressing.W3CEndpointReference class

No. Return value type Method name Support

1 -- W3CEndpointReference() Y

2 -- W3CEndpointReference (javax.xml.transform.Source
source)

Y

3 void writeTo(javax.xml.transform.Result result) N

Legend:
--: Indicates that there is no return value type.
Y: Supported in the JAX-WS functionality of Application Server.
N: Not supported in the JAX-WS functionality of Application Server.
.

19. Support Range of the JAX-WS Specifications

448

19.2.3 Service API
This subsection describes the support range of the service APIs.

(1) javax.xml.ws.Provider interface
The following table describes the support range of the javax.xml.ws.Provider interface. For details, see the
JAX-WS 2.2 specifications.

Table 19‒10: Support range of the javax.xml.ws.Provider interface

No. Return value type Method name Support

1 T invoke(T request) Y

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.

(2) javax.xml.ws.WebServiceContext interface
The following table describes the support range of the javax.xml.ws.WebServiceContext interface. For
details, see the JAX-WS 2.2 specifications.

Table 19‒11: Support range of the javax.xml.ws.WebServiceContext interface

No. Return value type Method name and Description Support

1 <T extends
EndpointReference>
T

getEndpointReference (java.lang.Class<T>
clazz, org.w3c.dom.Element...
referenceParameters)

N

2 EndpointReference getEndpointReference
(org.w3c.dom.Element...
referenceParameters)

N

3 MessageContext getMessageContext() Y

Desc
riptio
n

Acquires the message context of an in-processing
request when this method is called.

Exce
ption

java.lang.IllegalStateException:
This exception is thrown if the request is
unprocessed and the method is called.

4 java.security.Principal getUserPrincipal() N

5 boolean isUserInRole(java.lang.String role) N

Legend:
Y: Supported in the JAX-WS functionality of Application Server.
N: Not supported in the JAX-WS functionality of Application Server.

(3) javax.xml.ws.wsaddressing.W3CEndpointReferenceBuilder class
The following table describes the support range of the
javax.xml.ws.wsaddressing.W3CEndpointReferenceBuilder class. For details, see the JAX-WS 2.2
specifications.

Table 19‒12: Support range of the javax.xml.ws.wsaddressing.W3CEndpointReferenceBuilder class

No. Return value type Method name Support

1 -- W3CEndpointReferenceBuilder() Y

19. Support Range of the JAX-WS Specifications

449

No. Return value type Method name Support

2 W3CEndpointReferenceBuild
er

address(java.lang.String address) Y

3 W3CEndpointReferenceBuild
er

attribute(javax.xml.namespace.QName name,
java.lang.String value)

Y

4 W3CEndpointReference build() Y

5 W3CEndpointReferenceBuild
er

element(org.w3c.dom.Element element) Y

6 W3CEndpointReferenceBuild
er

endpointName (javax.xml.namespace.QName
endpointName)

Y

7 W3CEndpointReferenceBuild
er

interfaceName(javax.xml.namespace.QName
interfaceName)

Y

8 W3CEndpointReferenceBuild
er

metadata (org.w3c.dom.Element
metadataElement)

Y

9 W3CEndpointReferenceBuild
er

referenceParameter (org.w3c.dom.Element
referenceParameter)

Y

10 W3CEndpointReferenceBuild
er

serviceName (javax.xml.namespace.QName
serviceName)

Y

11 W3CEndpointReferenceBuild
er

wsdlDocumentLocation (java.lang.String
wsdlDocumentLocation)

Y#

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.

#
Mapping of the argument wsdlDocumentLocation by using the catalog file is not supported.

19.2.4 Core API
This subsection describes the support range of the core APIs.

(1) com.sun.xml.ws.developer.StreamingAttachmentFeature class
The following table describes the support range of the
com.sun.xml.ws.developer.StreamingAttachmentFeature class.

Table 19‒13: Support range of the com.sun.xml.ws.developer.StreamingAttachmentFeature class

No. Return value
type Method name Support

1 -- StreamingAttachmentFeature() N

2 -- StreamingAttachmentFeature(String dir,boolean
parseEagerly,long memoryThreshold)

Y

Explanatio
n

Creates StreamingAttachmentFeature.

Argument dir:
This is the path of the output destination directory for the
temporary file. If a non-existent directory, a directory
without access permissions, or an existing file name is
specified, a message is displayed, and the MIME body
included in the SOAP message containing the received
attachment is expanded in the memory (KDJW10026-W).

19. Support Range of the JAX-WS Specifications

450

No. Return value
type Method name Support

2 -- Argument parseEagerly:
Specifies whether the SOAP message containing the
received attachment will be parsed in detail. If true, the
SOAP message containing an attachment is parsed in detail.

memoryThreshold:
This is the threshold value (unit: byte) for determining
whether the MIME body included in the SOAP message will
be expanded in the memory when a SOAP message
containing an attachment is received. Specify a value greater
than 16 KB (16384 L) or -1. If any other value is specified,
the operation is not guaranteed. If you specify -1, the MIME
body is always expanded in the memory.

Y

3 java.lang.St
ring

getID() Y

Explanatio
n

Obtains a unique identifier for
StreamingAttachmentFeature.

4 org.jvnet.mi
mepull.MIMEC
onfig

getConfig() Y

Explanatio
n

Obtains the MIMEConfig instance indicating the streaming
settings. If you invoke this method once, you cannot change the
streaming settings by using the following setter methods:

• setDir(String dir)
• setParseEagerly(boolean parseEagerly)
• setMemoryThreshold(int memoryThreshold)

5 void setDir(String dir) Y

Explanatio
n

Specifies the directory to be used to output the MIME body,
which is included in the SOAP message containing the received
attachment, as a temporary file, when streaming is enabled. If
this method is invoked multiple times, the value specified last is
valid. If you invoke the getConfig() method, you cannot
reset the values using this method.

Argument dir:
This is the path of the output destination directory for the
temporary file. If a non-existent directory, a directory
without access permissions, or an existing file name is
specified, a message is displayed, and the MIME body
included in the SOAP message containing the received
attachment is expanded in the memory (KDJW10026-W).

6 void setParseEagerly(boolean parseEagerly) Y

Explanatio
n

Specifies whether the SOAP message containing the received
attachment will be parsed in detail, when streaming is enabled. If
this method is invoked multiple times, the value specified last is
valid. If you invoke the getConfig() method, you cannot
reset the values using this method.

Argument parseEagerly:
Specifies whether the SOAP message containing the
received attachment will be parsed in detail. If true, the
SOAP message containing an attachment is parsed in detail.

7 void setMemoryThreshold(int memoryThreshold) Y

Explanatio
n

Specifies the threshold value for determining whether the MIME
body included in the SOAP message will be expanded in the
memory when a SOAP message containing an attachment is
received, when streaming is enabled. If this method is invoked

19. Support Range of the JAX-WS Specifications

451

No. Return value
type Method name Support

7 void Explanatio
n

multiple times, the value specified last is valid. If you invoke the
getConfig() method, you cannot reset the values using this
method.

Y

Argument memoryThreshold:
This is the threshold value (unit: byte) for determining
whether the MIME body included in the SOAP message will
be expanded in the memory when a SOAP message
containing an attachment is received. Specify a value greater
than 16 KB (16384 L) or -1. If any other value is specified,
the operation is not guaranteed. If you specify -1, the MIME
body is always expanded in the memory.

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

(2) com.sun.xml.ws.developer.StreamingDataHandler class
The following table describes the support range of the
com.sun.xml.ws.developer.StreamingDataHandler class.

Table 19‒14: Support range of the com.sun.xml.ws.developer.StreamingDataHandler class

No. Return value type Method name Support

1 -- StreamingDataHandler(Object o, String s) N

2 -- StreamingDataHandler(URL url) N

3 -- StreamingDataHandler(DataSource dataSource) N

4 java.io.InputSt
ream

readOnce() Y

Explanatio
n

Obtains java.io.InputStream of this object.

Exception IOException:
This exception occurs when InputStream
corresponding to this object cannot be obtained.

5 void moveTo(File file) Y

Explanatio
n

Moves the attachment indicated by this object to the
specified file.

• If null is specified in the argument file,
java.io.IOException occurs (KDJW10023-E).

• If the file or directory path existing in the argument
file, or a file path containing a non-existent parent
directory is specified, IOException occurs
(KDJW10027-E).

Argument file:
This is the output destination file path.

Exception IOException:
This exception occurs in the following cases:

• null is specified in the file.

19. Support Range of the JAX-WS Specifications

452

No. Return value type Method name Support

5 void Exception • An existing file or directory path, or a file path
containing a non-existent parent directory is specified in
the file.

• An I/O error occurs.

Y

6 void close() Y

Explanatio
n

Releases the resources of the attachment indicated by this
object.

Exception IOException:
This exception is thrown when an I/O error occurs.

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

(3) org.jvnet.mimepull.MIMEConfig class
The following table describes the support range of the org.jvnet.mimepull.MIMEConfig class.

Table 19‒15: Support range of the org.jvnet.mimepull.MIMEConfig class

No. Return
value type Method name Support

1 -- MIMEConfig() N

2 void setParseEagerly(boolean parseEagerly) Y

Explanatio
n

Specifies whether the SOAP message containing the received
attachment will be parsed in detail, when streaming is enabled. If this
method is invoked multiple times, the value specified last is valid.

Argument parseEagerly:
Specifies whether the SOAP message containing the received
attachment will be parsed in detail. If true, the SOAP message
containing an attachment is parsed in detail.

3 void setMemoryThreshold(long memoryThreshold) Y

Explanatio
n

Specifies the threshold value for determining whether the MIME
body included in the SOAP message will be expanded in the memory
when a SOAP message containing an attachment is received, when
streaming is enabled. If this method is invoked multiple times, the
value specified last is valid.

Argument memoryThreshold:
This is the threshold value (unit: byte) for determining whether
the MIME body included in the SOAP message will be expanded
in the memory when a SOAP message containing an attachment
is received. Specify a value greater than 16 KB (16384 L) or -1.
If any other value is specified, the operation is not guaranteed. If
you specify -1, the MIME body is always expanded in the
memory.

4 void setDir(String dir) Y

Explanatio
n

Specifies the directory to be used to output the MIME body, which is
included in the SOAP message containing the received attachment, as
a temporary file, when streaming is enabled. If this method is invoked
multiple times, the value other than null or null character ("") and
the one specified first is valid.

19. Support Range of the JAX-WS Specifications

453

No. Return
value type Method name Support

4 void Argument Ydir:
This is the path of the output destination directory for the
temporary file.

5 void validate() Y

Explanatio
n

Validates whether a temporary file can be created. If the temporary
file cannot be created, specify settings to expand the attachment in the
memory.

If a non-existent directory, a directory without access permissions, or
an existing file name is specified using the setDir(String dir)
method and not validated using this method,
org.jvnet.mimepull.MIMEParsingException occurs
when a temporary file is output by streaming.

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

(4) javax.xml.ws.Binding interface
The following table describes the support range of the javax.xml.ws.Binding interface. For details, see the
JAX-WS 2.2 specifications.

Table 19‒16: Support range of the javax.xml.ws.Binding interface

No. Return value type Method name and Description Support

1 java.lang.String getBindingID() N

2 java.util.List<Han
dler>

getHandlerChain() Y

Desc
ripti
on

Acquires a copy of the handler chain of the protocol binding
instance.

3 void setHandlerChain (java.util.List<Handler> chain) Y

Desc
ripti
on

Specifies the handler chain of the protocol binding instance.

Argu
ment

chain:
List of handlers that configure the handler chain.

Exce
ption

javax.xml.ws.WebServiceException:
The exception is thrown if an error occurs when setting the
handler chain or when null is specified in chain.

Legend:
Y: Supported in the JAX-WS functionality of Application Server.
N: Not supported in the JAX-WS functionality of Application Server

(5) javax.xml.ws.handler.Handler<C extends MessageContext> interface
The following table describes the support range of the javax.xml.ws.handler.Handler<C extends
MessageContext> interface. For details, see the JAX-WS 2.2 specifications.

19. Support Range of the JAX-WS Specifications

454

Table 19‒17: Support range of the javax.xml.ws.handler.Handler<C extends MessageContext> interface

No. Return
value type Method name/ Explanation Support

1 MessageCo
ntext.Sco
pe

close(MessageContext context) Y

Explanation This method is invoked just before the JAX-WS runtime
dispatches a message, fault, or exception, when the message
exchange is completed.

2 boolean handleFault(C context) Y

Explanation This method is invoked to process a fault message.

3 boolean handleMessage(C context) Y

Explanation This method is invoked to perform normal processing for the
inbound and outbound messages.

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.

(6) javax.xml.ws.handler.HandlerResolver interface
The following table describes the support range of the javax.xml.ws.handler.HandlerResolver interface.
For details, see the JAX-WS 2.2 specifications.

Table 19‒18: Support range of the javax.xml.ws.handler.HandlerResolver interface

No. Return
value type Method name/ Explanation Support

1 java.util
.List<Han
dler>

getHandlerChain(PortInfo portInfo) Y

Explanatio
n

Obtains the handler chain of the specified port. This method must not
return null.

Argument portInfo:
This is the information of the port you want to access.

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.

(7) javax.xml.ws.handler.LogicalMessageContext interface
The following table describes the support range of the javax.xml.ws.handler.LogicalMessageContext
interface. For details, see the JAX-WS 2.2 specifications.

Table 19‒19: Support range of the javax.xml.ws.handler.LogicalMessageContext interface

No. Return
value type Method name/ Explanation Support

1 LogicalMe
ssage

getMessage() Y

Explanatio
n

Obtains the messages from this message context.

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.

(8) javax.xml.ws.handler.MessageContext interface
The following table describes the support range of the javax.xml.ws.handler.MessageContext interface.
For details, see the JAX-WS 2.2 specifications.

19. Support Range of the JAX-WS Specifications

455

Table 19‒20: Support range of the javax.xml.ws.handler.MessageContext interface

No. Return value type Method name/ Explanation Support

1 MessageContex
t.Scope

getScope(java.lang.String name) Y#1

Explanation Obtains the scope of the property.

Exception java.lang.IllegalArgumentException:
This exception occurs when null, an empty string, and a
property name not associated with this message context is
specified in name.
The standard message context properties and user-defined
message context properties are assumed to be associated
with the message context.
For details on the message context properties, see
19.2.5(1) Support range of the message context properties.

2 void setScope(java.lang.String name, MessageContext.Scope
scope)

Y#2

Description Specifies scope of the property.

Exception java.lang.IllegalArgumentException
This exception is thrown if null, a blank character string,
or a property name not associated with the message
context is specified in the name.The standard message
context properties and user-defined message context
properties are regarded as the property names associated
with the message context.
For details on the message context properties, see
19.2.5(1) Support range of the message context properties.

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.

#1
Supported only when used in a handler.

#2
This is a service side handler for inbounding and supports the addition of the user-defined message context property only. For
details on the notes when adding the user-defined message context property, see 10.21.2(2) Notes when adding a user-defined
message context property.

(9) javax.xml.ws.handler.PortInfo interface
The following table describes the support range of the javax.xml.ws.handler.PortInfo interface. For
details, see the JAX-WS 2.2 specifications.

Table 19‒21: Support range of the javax.xml.ws.handler.PortInfo interface

No. Return value type Method name/ Explanation Support

1 java.lang.Str
ing

getBindingID() Y

Explanation Obtains the URI that identifies the binding, used by the port to
be accessed.

2 javax.xml.nam
espace.QName

getPortName() Y

Explanation Obtains QName from the WSDL port to be accessed.

3 javax.xml.nam
espace.QName

getServiceName() Y

Explanation Obtains QName of the WSDL service that includes the port to
be accessed.

19. Support Range of the JAX-WS Specifications

456

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.

(10) javax.xml.ws.handler.soap.SOAPHandler<T extends SOAPMessageContext> interface
The following table describes the support range of the javax.xml.ws.handler.soap.SOAPHandler<T
extends SOAPMessageContext> interface. For details, see the JAX-WS 2.2 specifications.

Table 19‒22: Support range of the javax.xml.ws.handler.soap.SOAPHandler<T extends
SOAPMessageContext> interface

No. Return value type Method name/ Explanation Support

1 java.util.Set
<javax.xml.na
mespace.QName
>

getHeaders() Y

Explanation Obtains the headers that can be processed with this handler
instance.

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.

(11) javax.xml.ws.handler.soap.SOAPMessageContext interface
The following table describes the support range of the
javax.xml.ws.handler.soap.SOAPMessageContext interface. For details, see the JAX-WS 2.2
specifications.

Table 19‒23: Support range of the javax.xml.ws.handler.soap.SOAPMessageContext interface

No. Return value type Method name/ Explanation Support

1 java.lang.Obj
ect[]

getHeaders(javax.xml.namespace.QName header,
javax.xml.bind.JAXBContext context, boolean
allRoles)

Y

Explanation Obtains a header with a specific QName from the messages of
this message context. If this message context does not have
messages or if a header that matches with QName specified in
header does not exist, this method returns an empty array.

Exception javax.xml.ws.WebServiceException:
This exception occurs in the following cases:

• When null is specified in the header
• When null is specified in the context

2 javax.xml.soa
p.SOAPMessage

getMessage() Y

Explanation Obtains the SOAP message from this message context.

3 java.util.Set
<java.lang.St
ring>

getRoles() Y

Explanation Obtains the SOAP actor and role associated with the execution
of the handler chain.

4 void setMessage(javax.xml.soap.SOAPMessage message) N

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

(12) javax.xml.ws.Holder<T> class
The following table describes the support range of the javax.xml.ws.Holder<T> class. For details, see the JAX-
WS 2.2 specifications.

19. Support Range of the JAX-WS Specifications

457

Table 19‒24: Support range of the javax.xml.ws.Holder<T> class

No. Return value type Method name/ Explanation Support

1 -- Holder() Y

Explanation Creates a new holder containing a null value.

2 -- Holder(T value) Y

Explanation Creates a new holder containing the specified value.

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.

(13) javax.xml.ws.LogicalMessage interface
The following table describes the support range of the javax.xml.ws.LogicalMessage interface.

Table 19‒25: Support range of the javax.xml.ws.LogicalMessage interface

No. Return value type Method name/ Explanation Support

1 javax.xml.tra
nsform.Source

getPayload() Y

Explanation Obtains the message payload as an XML source.

2 java.lang.Obj
ect

getPayload(javax.xml.bind.JAXBContext context) Y

Explanation Obtains the message payload as a JAXB object.

3 void setPayload(java.lang.Object payload,
javax.xml.bind.JAXBContext context)

N

4 void setPayload(javax.xml.transform.Source payload) N

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

(14) javax.xml.ws.ProtocolException class
The following table describes the support range of the javax.xml.ws.ProtocolException class. For details,
see the JAX-WS 2.2 specifications.

Table 19‒26: Support range of the javax.xml.ws.ProtocolException class

No. Return value type Method name/ Explanation Support

1 -- ProtocolException() Y

Explanation Sets up a new exception where the detailed message is null.

2 -- ProtocolException(java.lang.String message) Y

Explanation Sets up a new exception containing the specified detailed
message.

3 -- ProtocolException(java.lang.String message,
java.lang.Throwable cause)

Y

Explanation Sets up a new exception using the specified detailed message
and cause.

4 -- ProtocolException(java.lang.Throwable cause) Y

19. Support Range of the JAX-WS Specifications

458

No. Return value type Method name/ Explanation Support

4 -- Explanation Sets up a new exception containing the specified cause and
detailed message.

Y

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.

(15) javax.xml.ws.soap.AddressingFeature class
The following table describes the support range of the javax.xml.ws.soap.AddressingFeature class. For
details, see the JAX-WS 2.2 specifications.

Table 19‒27: Support range of the javax.xml.ws.soap.AddressingFeature class

No. Return value type Method name Support

1 -- AddressingFeature() Y

Explanation Creates AddressingFeature.

2 -- AddressingFeature(boolean enabled) Y

Explanation Creates AddressingFeature.

Argument enabled:
Specifies whether to enable or disable WS-Addressing.

3 -- AddressingFeature(boolean enabled, boolean required) Y

Explanation Creates AddressingFeature.

Argument enabled:
Specifies whether to enable or disable WS-Addressing.

required:
Specify this argument when you want to use WS-
Addressing.

4 -- AddressingFeature(boolean enabled, boolean required,
AddressingFeature.Responses responses)

Y

Explanation Creates AddressingFeature.

Argument enabled:
Specifies whether to enable or disable WS-Addressing.

required:
Specify this argument to request the use of WS-
Addressing.

responses:
Specifies the type of response endpoint to be requested.
You can specify one of the following response endpoint
types: #

• All URIs
javax.xml.ws.soap.AddressingFeature.
Responses.ALL

• Only anonymous URIs
javax.xml.ws.soap.AddressingFeature.
Responses.ANONYMOUS

• Only non-anonymous URIs
javax.xml.ws.soap.AddressingFeature.
Responses.NON_ANONYMOUS

19. Support Range of the JAX-WS Specifications

459

No. Return value type Method name Support

5 java.lang.Str
ing

getID() Y

Explanation Obtains a unique identifier for AddressingFeature.

6 AddressingFea
ture.Response
s

getResponses() Y

Explanation Obtains the type of response endpoint to be requested.

7 Boolean isRequired() Y

Explanation Obtains information about whether the use of
AddressingFeature will be requested.

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.

#
The specification of responses does not affect the operations of the client-side JAX-WS engine.

(16) javax.xml.ws.soap.MTOMFeature class
The following table describes the support range of the javax.xml.ws.soap.MTOMFeature class. For details,
see the JAX-WS 2.2 specifications.

Table 19‒28: Support range of the javax.xml.ws.soap.MTOMFeature class

No. Return value type Method name Support

1 -- MTOMFeature() Y

Explanation Creates MTOMFeature.

2 -- MTOMFeature(boolean enabled) Y

Explanation Creates MTOMFeature.

Argument enabled:
Specifies whether to use attachments in the MTOM/XOP
specification format.

3 -- MTOMFeature(boolean enabled, int threshold) Y

Explanation Creates MTOMFeature.

Argument enabled:
Specifies whether to use attachments in the MTOM/XOP
specification format.

threshold:
This is the size (unit: byte) of the binary data to be sent as
an attachment in the MTOM/XOP specification format. If
the value specified for the threshold <= binary data size,
the binary data is sent as an attachment in the
MTOM/XOP specification format.

4 -- MTOMFeature(int threshold) Y

Explanation Creates MTOMFeature.

Argument threshold:
This is the size (unit: byte) of the binary data to be sent as
an attachment in the MTOM/XOP specification format. If
the value specified for the threshold <= binary data size,
the binary data is sent as an attachment in the
MTOM/XOP specification format.

19. Support Range of the JAX-WS Specifications

460

No. Return value type Method name Support

5 java.lang.Str
ing

getID() Y

Explanation Obtains the unique identifier of MTOMFeature.

6 int getThreshold() Y

Explanation Obtains the threshold value to determine whether to send the
binary data as an attachment in the MTOM/XOP specification
format.

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.

(17) javax.xml.ws.soap.SOAPBinding interface
The following table describes the support range of the javax.xml.ws.soap.SOAPBinding interface. For
details, see the JAX-WS 2.2 specifications.

Table 19‒29: Support range of the javax.xml.ws.soap.SOAPBinding interface

No. Return value type Method name Support

1 javax.xml.soa
p.MessageFact
ory

getMessageFactory() N

2 java.util.Set
<java.lang.St
ring>

getRoles() N

3 javax.xml.soa
p.SOAPFactory

getSOAPFactory() N

4 boolean isMTOMEnabled() Y

Explanation Returns true if attachments in the MTOM/XOP specification
format are enabled.

5 void setMTOMEnabled(boolean flag) Y

Explanation Enables or disables attachments in the MTOM/XOP
specification format.

If the enabling or disabling of attachments in the MTOM/XOP
specification format is not set up by using MTOMFeature or
this method, you can specify the settings with this method. If
the enabling or disabling of attachments in the MTOM/XOP
specification format is already set up, you cannot respecify the
settings using this method.

Argument flag:
Specifies whether to enable or disable attachments in the
MTOM/XOP specification format.

6 void setRoles(java.util.Set<java.lang.String> roles) N

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

(18) javax.xml.ws.soap.SOAPFaultException class
The following table describes the support range of the javax.xml.ws.soap.SOAPFaultException class. For
details, see the JAX-WS 2.2 specifications.

19. Support Range of the JAX-WS Specifications

461

Table 19‒30: Support range of the javax.xml.ws.soap.SOAPFaultException class

No. Return value type Method name/ Explanation Support

1 -- SOAPFaultException (javax.xml.soap.SOAPFault fault) Y

Explanation Sets up a new exception of SOAPFaultException.

2 javax.xml.soa
p.SOAPFault

getFault() Y

Explanation Obtains the embedded SOAPFault instance.

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WS functionality.

(19) javax.xml.ws.WebServiceException class
The following table describes the support range of the javax.xml.ws.WebServiceException class. For
details, see the JAX-WS 2.2 specifications.

Table 19‒31: Support range of the javax.xml.ws.WebServiceException class

No. Return value type Method name/ Explanation Support

1 -- WebServiceException() Y

Explanation Sets up a new exception where the detailed message is null.

2 -- WebServiceException (java.lang.String message) Y

Explanation Sets up a new exception containing the specified detailed
message.

3 -- WebServiceException(java.lang.String message,
java.lang.Throwable cause)

Y

Explanation Sets up a new exception containing the specified detailed
message and cause.

4 -- WebServiceException (java.lang.Throwable cause) Y

Explanation Sets up a new exception containing the specified cause and
detailed message.

Legend:
--: Indicates that there is no return value type.
Y: Supported in the Cosminexus JAX-WSfunctionality.

19.2.5 Using a message context
Within the support range of the JAX-WS APIs, you can access the message context from the handler, Web Services
client, and Web Service.The details are as follows.

In the case of a handler
The message context is passed by the parameters of the called back method (such as the handleMessage
method).

In the case of a Web Services client
You can access a copy of the message context using the getRequestContext method of the
javax.xml.ws.BindingProvider interface and the getResponseContext method.

For Web Services
You can access the message context by using the getMessageContext method of the
javax.xml.ws.WebServiceContext interface.

19. Support Range of the JAX-WS Specifications

462

For details on the JAX-WS APIs, see the JAX-WS 2.2 specifications. Also, for details on the support range of the JAX-
WS APIs in the Cosminexus JAX-WS functionality, see 19.2.1 List of interfaces and classes (JAX-WS). The
Cosminexus JAX-WS functionality supports the standard properties defined in the JAX-WS 2.2 specifications and the
vendor-specific properties.

The standard properties mentioned in Chapter 9 of the JAX-WS 2.2 specifications can only be referenced. The
operations are not supported if the standard properties are changed.

(1) Support range of the message context properties
The following table describes the support range of the message context properties.

Table 19‒32: List of message context properties

No
. Property name

Descripti
on

location
#1

M
an
da
tor
y#

2

Support

Web Service
client

Web
Services

#5

Handler

Web Service
client Web Service

Out#3 In#4 Out#6 In#7 In#8 Out#9

javax.xml.ws.handler.message

1 .outbound#10 9.4.1.1 Y N#10 N#10 N R R R R

javax.xml.ws.binding.attachments

2 .inbound#10 9.4.1.1 Y N#10 N#10 R R R R R

3 .outbound#10 9.4.1.1 Y N#10 N#10 N R R R R

javax.xml.ws.reference

4 .parameters#10 9.4.1.1 Y N#10 N#10 R R R R R

javax.xml.ws.wsdl

5 .description#10, #12 9.4.1.1 -- N#10 N#10 N#11 N#11 N#11 N#11 N#11

6 .service#10, #12 9.4.1.1 -- N#10 N#10 R R R R R

7 .port#10, #12 9.4.1.1 -- N#10 N#10 R R R R R

8 .interface#10, #12 9.4.1.1 -- N#10 N#10 R R R R R

9 .operation#10, #12, #13 9.4.1.1 -- N#10 R#13 R R R R R

javax.xml.ws.http.request

10 .headers 9.4.1.1 Y R/C#14 N#10 R R/C#14 R#15 R R

11 .method#10, #11 9.4.1.1 Y N#10 N#10 R R#15 R#15 R R

12 .querystring#10, #11 9.4.1.1 Y N#10 N#10 R R#15 R#15 R R

13 .headers 9.4.1.1 Y N#10 N#10 R#16 R#15 R#15 R#16 R#16

javax.xml.ws.http.response

14 .headers#10 9.4.1.1 Y N#10 N#10 N R#17 R R#17 R#17

15 .code#10 9.4.1.1 Y N#10 N#10 N R#18 R R R

javax.xml.ws.servlet

16 .context#10, #11 9.4.1.1 Y N#10 N#10 R R#15 R#15 R R

19. Support Range of the JAX-WS Specifications

463

No
. Property name

Descripti
on

location
#1

M
an
da
tor
y#

2

Support

Web Service
client

Web
Services

#5

Handler

Web Service
client Web Service

Out#3 In#4 Out#6 In#7 In#8 Out#9

17 .request#10 9.4.1.1 Y N#10 N#10 R R#15 R#15 R R

18 .response#10 9.4.1.1 Y N#10 N#10 R R#15 R#15 R R

javax.xml.ws.service.endpoint

19 .address#19 4.2.1.1 Y R/C R N R/C R R R

javax.xml.ws.security.auth

20 .username 4.2.1.1 Y R/C R N R/C R R R

21 .password 4.2.1.1 Y R/C R N R/C R R R

javax.xml.ws.session

22 .maintain 4.2.1.1 Y R/C R N R/C R R R

javax.xml.ws.soap.http.soapaction

23 .use 4.2.1.1 -- N#20 N#20 N#20 N#20 N#20 N#20 N#20

24 .uri 4.2.1.1 -- N#20 N#20 N#20 N#20 N#20 N#20 N#20

com.cosminexus.jaxws

25 .connect.timeout R/C R N R/C R R R

26 .request.timeout R/C R N R/C R R R

com.cosminexus.xml.ws.client.http

27 .HostnameVerification
Property

R/C#21 N N N N N N

Legend:
Y: Indicates that the property is mandatory.
--: Indicates that the property is not mandatory.
R/C: Can be referenced and changed.
R: Can only be referenced. The operations are not guaranteed if the property is changed.
N: Cannot be referenced and changed.
Blank column: Indicates not applicable because this property is provided by the Cosminexus JAX-WS functionality.

#1
Indicates the locations defined in the JAX-WS 2.2 specifications.

#2
Indicates whether the property is mandatory in the JAX-WS 2.2 specifications.

#3
Indicates whether the property can be referenced or changed in the request context that can be obtained with
javax.xml.ws.BindingProvider#getRequestContext.

#4
Indicates whether the property can be referenced or changed in the request context that can be obtained with
javax.xml.ws.BindingProvider#getResponseContext.

#5
For details on injection of the Web Services context, see 10.21.2 Injecting aWeb Services context, and for details on the message
context property in Web Services, see 19.2.5(2)(l) Message context property on Web Services.

19. Support Range of the JAX-WS Specifications

464

#6
Indicates that the handler is associated with the Web Service client and whether the property can be referenced or changed for the
outbound processing (when the request message is sent).

#7
Indicates that the handler is associated with the Web Service client and whether the property can be referenced or changed for the
inbound processing (when the response message is received).

#8
Indicates that the handler is associated with the Web Service implementation class or provider implementation class and whether
the property can be referenced or changed for the inbound processing (when the request message is received). For details on
notes when adding the message context property, see 10.21.2(2) Notes when adding a user-defined message context property.

#9
Indicates that the handler is associated with the Web Service implementation class or provider implementation class and whether
the property can be referenced or changed for the outbound processing (when the response message is sent). For details on notes
when adding the message context property, see 10.21.2(2) Notes when adding a user-defined message context property.

#10
See 19.2.5(2)(e) Message context properties with HANDLER scope in the Web Service client.

#11
Always returns null.

#12
See 19.2.5(2)(h) Message context properties related to the WSDL.

#13
See 19.2.5(2)(i) Message context properties related to the WSDL operation name.

#14
You can only add and reference the HTTP header Accept-Encoding that is used for linking with the HTTP response
compression functionality, and the HTTP header Content-Encoding that is used for gzip compression of the HTTP request
body. For details on Accept-Encoding, see 10.18 Linking with the HTTP response compression functionality. For details on
Content-Encoding, see 10.17 gzip compression of the HTTP request body.

#15
See 19.2.5(2)(a) Message context properties that are irrelevant even when operated with the handler in the Web Services client.

#16
See 19.2.5(2)(b) Path information.

#17
See 19.2.5(2)(c) HTTP header.

#18
See 19.2.5(2)(d) HTTP status code.

#19
See 19.2.5(2)(g) Message context properties specified in the service endpoint address.

#20
See 19.2.5(2)(f) Message context properties related to the SOAPAction header.

#21
See 19.2.5(2)(k) How to set up the com.cosminexus.xml.ws.client.http.HostnameVerificationProperty property.

(2) Notes on using a message context
This point describes the notes on using a message context.

(a) Message context properties that are irrelevant even when operated with the handler in the Web Service
client

The property that stores the HTTP method map for the request message (such as the
javax.xml.ws.http.request.method property) is obtained using the handler in the Web Service and is a
relevant property. Therefore, when this property is referenced with the handler in the Web Service client, null is
always returned.

(b) Path information

null is always stored for the javax.xml.ws.http.request.pathinfo property.

19. Support Range of the JAX-WS Specifications

465

(c) HTTP header

• The javax.xml.ws.http.response.headers property that stores the HTTP header map for the response
message is obtained using the handler in the Web Service client for inbound processing and is a relevant property.
Therefore, when this property is referenced with the handler in the Web Service or the outbound handler in the
Web Service client, null is always returned.

• When referencing the javax.xml.ws.http.request.headers property and
javax.xml.ws.http.response.headers property of the message context by using a handler, the HTTP
header name that is a key value of the obtained map (Map<String,List<String>>object) always has
the first letter in capital regardless of the actual HTTP message sent and received (HTTP message that includes the
SOAP message).
Example: Content-type

(d) HTTP status code

The outbound handler in the Web Service client is processed before the HTTP communication is performed.
Therefore, if the javax.xml.ws.http.response.code property storing the HTTP status code is referenced
from the handler, null is always returned.

(e) Message context properties with HANDLER scope in the Web Service client

The standard message context properties include an APPLICATION scope and HANDLER scope, but only the
message context properties with the APPLICATION scope can be referenced from the Web Service client. Therefore,
with the Cosminexus JAX-WS functionality, the properties assigned #9 in the table in 19.2.5(1) Support range of the
message context properties cannot be used with the Web Services client. The operations are not guaranteed if these
properties are referenced.

(f) Message context properties related to the SOAPAction header

The Cosminexus JAX-WS functionality does not support the SOAPAction header, so the
javax.xml.ws.soap.http.soapaction.use and javax.xml.ws.soap.http.soapaction.uri
properties cannot be used. The operations are not guaranteed if these properties are referenced.

(g) Message context properties specified in the service endpoint address

You cannot set up spaces and null in the javax.xml.ws.service.endpoint.address property that
specifies the service endpoint address. The operations are not guaranteed if a space or null is set up. For details on the
other values specified in the javax.xml.ws.service.endpoint.address property, see 20.2(3) Values
specifiable in the location attribute of the soap: address element or soap12: address element.

(h) Message context properties related to the WSDL

The dispatch-based Web Service client and provider-based Web Service do not contain the WSDL file, so null is
always returned when the message context properties related to the WSDL are referenced.

(i) Message context properties related to the WSDL operation name

The javax.xml.ws.wsdl.operation property in the stub-based Web Service client can only be referenced
with the request context that can be obtained with
javax.xml.ws.BindingProvider#getResponseContext. If the property is referenced with the request
context that can be obtained with javax.xml.ws.BindingProvider#getRequestContext, null is
always returned. Also, even if a value is set in the javax.xml.ws.wsdl.operation property, the value does
not affect the SOAP message to be sent.

(j) Specifying the service endpoint address for using the WS-RM 1.2 functionality

With the Web Service client that uses the WS-RM 1.2 functionality, specify the service endpoint address before you
invoke the first Web Service. If the service endpoint is changed subsequent to the first communication, the WS-RM
communication fails.

19. Support Range of the JAX-WS Specifications

466

(k) How to set up the com.cosminexus.xml.ws.client.http.HostnameVerificationProperty property

Specify true or false in the message context for the
com.cosminexus.xml.ws.client.http.HostnameVerificationProperty property using a
java.lang.String type string, as shown in the following figure. The operations are not guaranteed if a string
other than a java.lang.String type string is used to set up the value.

context.put("com.cosminexus.xml.ws.client.http.HostnameVerificationProperty", "true");

(l) Message context property in Web Services

The description of referencing and changing the message context property in Web Services is as follows:

• You can reference some message context properties from among the standard message context properties defined
in the section 9.4.1.1 of the HANDLER-scoped JAX-WS 2.2 specifications. For details on referencable message
context properties, see Table 19-32 List of the message context properties of the 19.2.5(1) Support range of the
message context properties.

• You cannot reference or change the CJW specific message context properties and standard message context
properties defined in section 4.2.1.1 of the APPLICATION-scoped JAX-WS 2.2 specifications.

• You can reference and change the APPLICATION-scoped user-defined message context properties.

19. Support Range of the JAX-WS Specifications

467

19.3 Support range of annotations
Specify the javax.xml.ws.WebServiceRef annotation when injecting ports and service classes.The operation
is not gurenteed if you specify any other annotation.You cannot concurrently specify the
javax.xml.ws.WebServiceRef annotation in the setter method compliant to the fields.

You can specify the javax.xml.ws.WebServiceRef annotation in the fields and the setter method of the
Web Services clients executed on the J2EE server. If you specify any other annotation, the annotation is ignored.

19.3.1 javax.xml.ws.WebServiceRef annotation
The following table lists the support range and elements of the javax.xml.ws.WebServiceRef annotation.

Table 19‒33: List of elements of the annotations of the JAX-WS

No.
Annotation

Support
Annotation name Element name

1 javax.xml.ws.WebServiceRef lookup N

2 mappedName N

3 name N

4 type N

5 value Y

6 wsdlLocation Y

Legend:
Y: Indicates the annotations and elements that you can specify.
N: Indicates the annotations and elements that you cannot specify (not supported).

The support range for each element is as follows:

(1) value elements(javax.xml.ws.WebServiceRef)
The value element specifies the service class that inherits javax.xml.ws.Service.

If the javax.xml.ws.WebServiceRef annotation is specified for methods or fields of the service class type,
you cannot specify the value element. If you specify the value element, the operation is not gurenteed.

You must specify the value element when specifying the javax.xml.ws.WebServiceRef annotation for the
fields or methods of the port type. If you do not specify the value element, the operation is not guerenteed.

(2) wsdlLocation element (javax.xml.ws.WebServiceRef)
The wsdlLocation element specifies the location of aWSDL document of Web Services.

You can specify the element in the following formats:

• URL
Specify a URL of a WSDL document. The specification format is according to the java.net.URL class
specifications. You can specify only http and https protocols.You cannot specify other protocols.

• Relative path
Specify the WSDL document in the WAR file or EJB JAR file in the form of a relative path as described below.
Note that the path must be a character string conforming to the rules of the RFC 2396 specifications.

• When storing a Web Services client where the javax.xml.ws.WebServiceRef annotation is specified,
in the WAR file, specify a relative path starting with WEB-INF. Store the WSDL document under the path
that is specified in the WAR file.

19. Support Range of the JAX-WS Specifications

468

• When storing a Web Services client where the javax.xml.ws.WebServiceRef annotation is specified, in the
EJB JAR file, specify a relative path starting with META-INF. Store the EJB JARfile under the path that is
specified in the WAR file.

• Absolute path
Specify the absolute path of aWSDL document. The path must be in the form of a system dependant absolute
path .The specification format is according to the java.io.File class.

Notes when specifying the wsdlLocation element are as follows:

• When creating an instance of the Web Services client, create a service class by using a value specified in the
wsdlLocation element and inject service classes and ports. To do so, you must specify a location of a valid
WSDL document in the wsdlLocation element when creating an instance. If you specify a non-existing
WSDL location or the location of WSDL containing incorrect contents, service classes and ports are not injected,
and, the value of fields and the return value of the setter method remain null.

• If you do not specify the wsdlLocation element in the similar way as the default constructor of the service
class, create an instance of a port or a service class by using the value of the wsdlLocation element of the
javax.xml.ws.WebServiceClient annotation specified in a service class.

19. Support Range of the JAX-WS Specifications

469

19.4 Support range of the handler chain configuration
file

This section describes the support range of the syntax in the handler chain configuration file for each of the following
elements:

• javaee:handler-chains element

• javaee:handler-chain element

• javaee:handler element

• javaee:handler-name element

• javaee:handler-class element

• javaee:soap-header element

• javaee:soap-role element

The support range of the contents not described in this section conforms to the "Java EE Web Services Metadata
Handler Chain Schema" (standard schema) in the Java EE 5 specifications.

19.4.1 javaee:handler-chains element
This subsection describes the support range of the javaee:handler-chains element.

• You can only code one javaee:handler-chains element as the root element of the handler chain
configuration file. You cannot omit this element.

• You can specify the javaee:handler-chain element as the child element. If you code a child element other
than the javaee:handler-chain element, an error message (KDJW30019-E) is output to the standard error
output and the log.

• You can only specify the standard attributes of the XML specifications and XML Schema specifications (such as
the xmlns attribute). If you specify attributes other than the standard attributes of the XML specifications and
XML Schema specifications, an error message (KDJW30019-E) is output to the standard error output and the log.

19.4.2 javaee:handler-chain element
This subsection describes the support range of the javaee:handler-chain element.

• You can only code one javaee:handler-chain element as the child element of the javaee:handler-
chains element. You cannot omit this element. If omitted, an error message (KDJW30019-E) is output to the
standard error output and the log.

• You can specify the javaee:handler element as the child element. If you code a child element other than the
javaee:handler element, an error message (KDJW30019-E) is output to the standard error output and the
log.

• You can only specify the standard attributes of the XML specifications and XML Schema specifications (such as
the xmlns attribute). If you specify attributes other than the standard attributes of the XML specifications and
XML Schema specifications, an error message (KDJW30019-E) is output to the standard error output and the log.

19.4.3 javaee:handler element
This subsection describes the support range of the javaee:handler element.

• You can code 1 to 64 javaee:handler elements as the child elements of the javaee:handler-chain
element. If you omit this element or code 65 or more elements, an error message (KDJW30019-E) is output to the
standard error output and the log.

19. Support Range of the JAX-WS Specifications

470

• You can specify the following elements as the child elements. If you code elements other than the following
elements, an error message (KDJW30019-E) is output to the standard error output and the log:

• javaee:handler-name element

• javaee:handler-class element

• javaee:soap-header element

• javaee:soap-role element

• Specify the javaee:handler-name, javaee:handler-class, javaee:soap-header, and
javaee:soap-role elements in the above order.

• You can only specify the standard attributes of the XML specifications and XML Schema specifications (such as
the xmlns attribute). If you specify attributes other than the standard attributes of the XML specifications and
XML Schema specifications, an error message (KDJW30019-E) is output to the standard error output and the log.

19.4.4 javaee:handler-name element
This subsection describes the support range of the javaee:handler-name element.

• You can code 0 or 1 javaee:handler-name element as the child element of the javaee:handler
element. If you code 2 or more javaee:handler-name elements, an error message (KDJW30019-E) is output
to the standard error output and the log#.

• You code the handler name in the value. However, this value is ignored with the JAX-WS engine, so you can code
a value in the range that does not violate the restrictions of the xsd:token type in the XML Schema
specifications#.

• You cannot code child elements. If you code a child element, an error message (KDJW30019-E) is output to the
standard error output and the log.

• You can only specify the standard attributes of the XML specifications and XML Schema specifications (such as
the xmlns attribute). If you specify attributes other than the standard attributes of the XML specifications and
XML Schema specifications, an error message (KDJW30019-E) is output to the standard error output and the log.

#
With the standard schema, the javaee:handler-name element is mandatory. If you specify true in the
com.cosminexus.jaxws.validation.handlerchain.strict property in the action definition file,
the JAX-WS engine checks whether this element is specified. If true is specified in the
com.cosminexus.jaxws.validation.handlerchain.strict property, and if the
javaee:handler element is omitted, an error message (KDJW30019-E) is output to the standard error output
and the log.

19.4.5 javaee:handler-class element
This subsection describes the support range of the javaee:handler-class element.

• You can code only 1 javaee:handler-class element as the child element of the javaee:handler
element. You cannot omit this element. If omitted, an error message (KDJW30019-E) is output to the standard
error output and the log.

• You code the fully qualified name of the class implementing the handler in the value. If you code a non-existent
class name, an error message is output to the standard error output and the log (KDJW00011-E).

• You cannot code child elements. If a child element is coded, an error message (KDJW30019-E) is output to the
standard error output and the log.

• You can only specify the standard attributes of the XML specifications and XML Schema specifications (such as
the xmlns attribute). If you specify attributes other than the standard attributes of the XML specifications and
XML Schema specifications, an error message (KDJW30019-E) is output to the standard error output and the log.

19. Support Range of the JAX-WS Specifications

471

19.4.6 javaee:soap-header element
This subsection describes the support range of the javaee:soap-header element.

• You can code the javaee:soap-header element as the child element of the javaee:handler element.
You can omit this element.

• You code the name of the SOAP header processed by this handler in the value. However, this value is ignored
with the JAX-WS engine, so you can code a value in the range that does not violate the restrictions of the
xsd:QName type in the XML Schema specifications.

• You cannot code child elements. If a child element is coded, an error message (KDJW30019-E) is output to the
standard error output and the log.

• You can only specify the standard attributes of the XML specifications and XML Schema specifications (such as
the xmlns attribute). If you specify attributes other than the standard attributes of the XML specifications and
XML Schema specifications, an error message (KDJW30019-E) is output to the standard error output and the log.

19.4.7 javaee:soap-role element
This subsection describes the support range of the javaee:soap-role element.

• You can code the javaee:soap-role element as the child element of the javaee:handler element. You
can omit this element.

• You code the SOAP actor or role played by this handler in the value. However, you cannot code http://
www.w3.org/2003/05/soap-envelope/role/none. If this value is coded, an error message
(KDJW10007-E) is output to the standard error output and the log.

• You cannot code child elements. If a child element is coded, an error message (KDJW30019-E) is output to the
standard error output and the log.

• You can only specify the standard attributes of the XML specifications and XML Schema specifications (such as
the xmlns attribute). If you specify attributes other than the standard attributes of the XML specifications and
XML Schema specifications, an error message (KDJW30019-E) is output to the standard error output and the log.

19. Support Range of the JAX-WS Specifications

472

20 Support Range of WSDL
Specification
This chapter describes the support range of the WSDL specifications that you must
keep in mind when you develop a Web Service.

473

20.1 Support range of the WSDL 1.1 specifications
This section describes the support range of the WSDL 1.1 specifications for each WSDL element.

Notes

• For syntactic errors of the WSDL specifications supported with the Cosminexus JAX-WS functionality, such
as when elements and attributes not mentioned in this chapter are specified, an error message (KDJW51029-
E) is output to the standard error output and the log, and the processing of the cjwsimport command ends.

• This section describes the constraints in the WSDL syntax. Even if there is no problem in the WSDL syntax,
another error might occur if there is a problem in the mapping to Java. If the elements and attributes that are
not referenced on WSDL are incorrect, an error might occur.

Furthermore, the notes on the WSDL extension elements and extension attributes are as follows:

• The extension elements for MIME binding (such as mime:content, mime:mimeXml) are not supported.
Therefore, if you specify the MIME-related WSDL elements, an error message (KDJW51188-E) is output to
the standard error output and the log, and the processing of the cjwsimport command ends.

• The following specifications are supported:
- The extension elements for SOAP binding in the SOAP 1.1 specifications (such as soap:header,
soap:body)
- The extension elements for SOAP binding in the SOAP 1.2 specifications
- The extension elements (such as wsaw:UsingAddressing) and extension attributes (such as
wsaw:Action) in the WS-Addressing 1.0 specifications

• The binding declaration in the JAX-WS 2.2 specifications (such as jaxws:bindings)

• If you specify unsupported extension elements or extension attributes, such elements are ignored.

20.1.1 wsdl:definitions element
This subsection describes the support range of the wsdl:definitions element.

• You can code only one wsdl:definitions element as the root element of the WSDL file. This element
cannot be omitted. If this element is omitted or if 2 or more elements are coded, a Cosminexus XML Processor
error occurs.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following elements, an error message
(KDJW51053-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• wsdl:documentation element

• jaxws:bindings element (binding declaration in the JAX-WS 2.2 specifications)

• wsdl:import element

• wsdl:types element

• wsdl:message element

• wsdl:portType element

• wsdl:binding element

• wsdl:service element

• The wsdl:documentation element and jaxws:bindings element must be specified in the above order.
However, the other elements do not have a specified order.
If the specification order of the wsdl:documentation element and jaxws:bindings element is incorrect,
an error message (KDJW51029-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends.

20. Support Range of WSDL Specification

474

• You can specify the following attributes. If you specify attributes other than those listed below, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• name attribute

• targetNamespace attribute

(1) name attribute (wsdl:definitions element)
This point describes the support range of the name attribute included in the wsdl:definitions element.

• You can code 0 or 1 name attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type.

(2) targetNamespace attribute (wsdl:definitions element)
This point describes the support range of the targetNamespace attribute included in the wsdl:definitions
element.

• You can code only one targetNamespace attribute. This attribute cannot be omitted. If omitted, an error
message (KDJW51029-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 15.1.1(2) Conditions for the namespace.

20.1.2 wsdl:import element
This subsection describes the support range of the wsdl:import element.

• You can code 0 to 255 wsdl:import elements as the child elements of the wsdl:definitions element. If
256 or more elements are coded, an error message (KDJW51052-E) is output to the standard error output and the
log, and the processing of the cjwsimport command ends.

• You can specify the wsdl:documentation element as the child element. If an element other than the
wsdl:documentation element is specified, an error message (KDJW51029-E) is output to the standard error
output and the log, and the processing of the cjwsimport command ends. If you specify an extension element
that is not ignored by the cjwsimport command, an error message (KDJW51054-E) is output to the standard
error output and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If you specify attributes other than those listed below, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends.

• namespace attribute

• location attribute

(1) namespace attribute (wsdl:import element)
This point describes the support range of the namespace attribute included in the wsdl:import element.

• You can code only one namespace attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 26.3(1) namespace attribute (wsdl:import element).

(2) location attribute (wsdl:import element)
This point describes the support range of the location attribute included in the wsdl:import element.

20. Support Range of WSDL Specification

475

• You can code only one location attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• You can specify any string that satisfies xsd:anyURI.

• For details on the values that can be specified, see 26.3(2) location attribute (wsdl:import element).

20.1.3 wsdl:types element
This subsection describes the support range of the wsdl:types element.

• You can code only one wsdl:types element as the child element of the wsdl:definitions element. This
element cannot be omitted #. If this element is omitted or if 2 or more elements are coded, an error message
(KDJW51049-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends.

#
When you use the WSDL import functionality, one wsdl:types element is enough for all the WSDLs with
an import relationship, so the element can be omitted in this case. Also, the total of the WSDLs with an import
relationship forms the upper limit.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. If you specify an extension element that is not ignored by the
cjwsimport command, an error message (KDJW51059-E) is output to the standard error output and the log,
and the processing of the cjwsimport command ends.

• wsdl:documentation element

• xsd:schema element

• The wsdl:documentation element and xsd:schema element must be specified in the above order. If the
specification order is incorrect, an error message (KDJW51029-E) is output to the standard error output and the
log, and the processing of the cjwsimport command ends.

• You cannot specify attributes. If you specify attributes, an error message (KDJW51029-E) is output to the
standard error output and the log, and the processing of the cjwsimport command ends.

20.1.4 wsdl:message element
This subsection describes the support range of the wsdl:message element.

• You can code one or more wsdl:message elements as the child element of the wsdl:definitions
element. This element cannot be omitted #. If omitted, an error message (KDJW51050-E) is output to the standard
error output and the log, and the processing of the cjwsimport command ends.

#
When you use the WSDL import functionality, one wsdl:message element is enough for all the WSDLs
with an import relationship. So the element can be omitted in this case. Also, the total of the WSDLs with an
import relationship forms the upper limit.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. If you specify extension elements that are not ignored by the
cjwsimport command, an error message (KDJW51055-E) is output to the standard error output and the log,
and the processing of the cjwsimport command ends.

• wsdl:documentation element

• wsdl:part element

• The wsdl:documentation element and wsdl:part element must be specified in the above order. If the
specification order is incorrect, an error message (KDJW51029-E) is output to the standard error output and the
log, and the processing of the cjwsimport command ends.

20. Support Range of WSDL Specification

476

• You can specify the name attribute. You cannot specify attributes other than the name attribute. If attributes other
than the name attribute are specified, an error message (KDJW51029-E) is output to the standard error output and
the log, and the processing of the cjwsimport command ends.

(1) name attribute (wsdl:message element)
This point describes the support range of the name attribute included in the wsdl:message element.

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type. However, you
cannot specify the same value as the name attribute of the other wsdl:message elements existing under the
same wsdl:definitions element. If the same value is specified, an error message (KDJW51029-E) is output
to the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.5 wsdl:part element
This subsection describes the support range of the wsdl:part element.

• You can code 0 to 255 wsdl:part elements as the child elements of the wsdl:message element. If 256 or
more elements are coded, an error message (KDJW51029-E) is output to the standard error output and the log, and
the processing of the cjwsimport command ends.

• For details on the values that can be specified, see 20.2 Notes on creating the WSDL.

• You can specify the wsdl:documentation element as the child element. If you specify an element other than
the wsdl:documentation element, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends. If you specify extension elements that are
not ignored by the cjwsimport command, an error message (KDJW51056-E) is output to the standard error
output and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If you specify attributes other than those listed below, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends.

• name attribute

• element attribute

(1) name attribute (wsdl:part element)
This point describes the support range of the name attribute included in the wsdl:part element.

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 15.1.5(2) Conditions for part names.

(2) element attribute (wsdl:part element)
This point describes the support range of the element attribute included in the wsdl:part element.

• You can code only one element attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Use QName to specify the element declaration declared beneath the referable wsdl:types element.

20. Support Range of WSDL Specification

477

20.1.6 wsdl:portType element
This subsection describes the support range of the wsdl:portType element.

• You can code 1 to 255 wsdl:portType elements as the child element of the wsdl:portType element. This
element cannot be omitted #. For details on the cases where the element is omitted or if 256 or more elements are
coded, see 15.1.2(3) Number of port types coded.

#
When you use the WSDL import functionality, one wsdl:portType element is enough for all the WSDLs
with an import relationship. So the element can be omitted in this case. Also, the total for all the WSDLs with
an import relationship forms the upper limit.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following elements, an error message
(KDJW51074-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• wsdl:documentation element

• jaxws:bindings element (binding declaration in the JAX-WS 2.2 specifications)

• wsdl:operation element

• The wsdl:documentation element, jaxws:bindings element, and wsdl:operation element must be
specified in the above order. If the specification order is incorrect, an error message (KDJW51029-E) is output to
the standard error output and the log, and the processing of the cjwsimport command ends.

• You can specify the name attribute. You cannot specify attributes other than the name attribute. If you specify
attributes other than the name attribute, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

(1) name attribute (portType element)
This point describes the support range of the name attribute included in the wsdl:portType element.

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 15.1.2(2) Conditions for the port type name. However, you
cannot specify the same value as the name attribute of the other wsdl:portType elements existing beneath the
same wsdl:definitions element. If the same value is specified, an error message (KDJW51029-E) is output
to the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.7 wsdl:operation element (For the child element of the
wsdl:portType element)

This subsection describes the support range of the wsdl:operation element.

• You can code 1 to 255 wsdl:operation elements as the child elements of the wsdl:portType element.
This element cannot be omitted. For details on the cases where this element is omitted or where 256 or more
elements are coded, see 15.1.3(3) Number of operations and its child elements coded.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following elements, an error message
(KDJW51080-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• wsdl:documentation element

20. Support Range of WSDL Specification

478

• jaxws:bindings element (binding declaration in the JAX-WS 2.2 specifications)

• wsdl:input element

• wsdl:output element

• wsdl:fault element

• The wsdl:documentation element, jaxws:bindings element, wsdl:input element, wsdl:output
element, and wsdl:fault element must be specified in the above order. If the specification order is incorrect,
an error message (KDJW51029-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends.

• You can specify the name attribute. You cannot specify attributes other than the name attribute. If you specify
attributes other than the name attribute, the operations are not guaranteed.

(1) name attribute (wsdl:operation element)
This point describes the support range of the name attribute included in the wsdl:operation element.

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 15.1.3(2) Conditions for the operation name. However, you
cannot specify the same value as the name attribute of the other wsdl:portType elements existing beneath the
same wsdl:operation element. If the same value is specified, an error message (KDJW51083-E) is output to
the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.8 wsdl:input element (For the grandchild element of the
wsdl:portType element)

This subsection describes the support range of the wsdl:input element.

• You can code only one wsdl:input element as the child element of the wsdl:operation element. This
element cannot be omitted. For details on the case where the element is omitted or if 2 or more elements are
coded, see 15.1.3(3) Number of operations and its child elements coded.

• You can specify the wsdl:documentation element as the child element. If you specify an element other than
the wsdl:documentation element, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends. If you specify extension elements that are
not ignored by the cjwsimport command, an error message (KDJW51057-E) is output to the standard error
output and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• name attribute

• message attribute

• wsaw:Action attribute

For details on the wsaw:Action attribute, see 37.5.6 Operations when the wsa:Action element is specified.

(1) name attribute (wsdl:input element)
This point describes the support range of the name attribute included in the wsdl:input element.

• You can code 0 or 1 name attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type.

20. Support Range of WSDL Specification

479

(2) message attribute (wsdl:input element)
This point describes the support range of the message attribute included in the wsdl:input element.

• You can code only one message attribute as the child element of the wsdl:input element. This attribute
cannot be omitted. If omitted, an error message (KDJW51029-E) is output to the standard error output and the log,
and the processing of the cjwsimport command ends. If 2 or more attributes are coded, a Cosminexus XML
Processor error occurs.

• Use QName to specify wsdl:message declared beneath the referable wsdl:definitions element.

20.1.9 wsdl:output element (For the grandchild element of the
wsdl:portType element)

This subsection describes the support range of the wsdl:output element.

• You can code only one wsdl:output element as the child element of the wsdl:operation element. For
details on the case where the element is omitted or if 2 or more elements are coded, see 15.1.3(3) Number of
operations and its child elements coded.

• You can specify the wsdl:documentation element as the child element. If you specify an element other than
the wsdl:documentation element, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends. If you specify extension elements that are
not ignored by the cjwsimport command, an error message (KDJW51058-E) is output to the standard error
output and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• name attribute

• message attribute

• wsaw:Action attribute

For details on the wsaw:Action attribute, see 37.5.6 Operations when the wsa:Action element is specified.

(1) name attribute (wsdl:output element)
This point describes the support range of the name attribute included in the wsdl:output element.

• You can code 0 or 1 name attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type.

(2) message attribute (wsdl:output element)
This point describes the support range of the message attribute included in the wsdl:output element.

• You can code only one message attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Use QName to specify wsdl:message declared beneath the referable wsdl:definitions element.

20.1.10 wsdl:fault element (For the grandchild element of the
wsdl:portType element)

This subsection describes the support range of the wsdl:fault element.

20. Support Range of WSDL Specification

480

• You can code 0 to 255 wsdl:fault elements as the child element of the wsdl:operation element. For
details on the case where the element is omitted or if 256 or more elements are coded, see 15.1.3(3) Number of
operations and its child elements coded.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following extension elements, an error
message (KDJW51096-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends:

• wsdl:documentation element

• jaxws:bindings element (binding declaration in the JAX-WS 2.2 specifications)

• The wsdl:documentation element and jaxws:bindings element must be specified in the above order. If
the specification order is incorrect, an error message (KDJW51029-E) is output to the standard error output and
the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• name attribute

• message attribute

• wsaw:Action attribute

For details on the wsaw:Action attribute, see 37.5.6 Operations when the wsa:Action element is specified.

(1) name attribute (wsdl:fault element)
This point describes the support range of the name attribute included in the wsdl:fault element.

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type.

(2) message attribute (wsdl:fault element)
This point describes the support range of the message attribute included in the wsdl:fault element.

• You can code only one message attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Use QName to specify wsdl:message declared beneath the referable wsdl:definitions element.

20.1.11 wsdl:binding element
This subsection describes the support range of the wsdl:binding element.

• You can code 1 to 255 wsdl:binding elements as the child elements of the wsdl:definitions element.
This element cannot be omitted #. If omitted or if 256 or more elements are coded, an error message
(KDJW51100-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends.

#
When you use the WSDL import functionality, one wsdl:binding element is enough for all the WSDLs
with an import relationship. So the element can be omitted in this case. Also, the total wsdl:binding
elements in all the WSDLs with an import relationship forms the upper limit.

20. Support Range of WSDL Specification

481

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following elements, an error message
is output to the standard error output and the log, and the processing of the cjwsimport command ends
(KDJW51102-E):

• wsdl:documentation element

• soap:binding element (extension element for SOAP binding in the SOAP 1.1 specifications)#

• soap12:binding element (extension element for SOAP binding in the SOAP 1.2 specifications)#

• jaxws:bindings element (binding declaration in the JAX-WS 2.2 specifications)

• wsaw:UsingAddressing element (extension element in the WS-Addressing 1.0 specifications)

• wsdl:operation element

#
Select and specify either the soap:binding element or the soap12:binding element. You cannot
specify both the elements.

• Specify the child elements of the wsdl:binding element in the above order. If the specification order is
incorrect, an error message (KDJW51029-E) is output to the standard error output and the log, and the processing
of the cjwsimport command ends. However, you might switch the order of the following elements:

• soap:binding element or soap12:binding element

• jaxws:bindings element

• wsaw:UsingAddressing element

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• name attribute

• type attribute

(1) name attribute (wsdl:binding element)
This point describes the support range of the name attribute included in the wsdl:binding element.

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type.

(2) type attribute (wsdl:binding element)
This point describes the support range of the type attribute included in the wsdl:binding element.

• You can code only one type attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Use QName to specify wsdl:message declared beneath the referable wsdl:definitions element.

20.1.12 wsdl:operation element (For the child element of the
wsdl:binding element)

This subsection describes the support range of the wsdl:operation element.

20. Support Range of WSDL Specification

482

• You can code 1 to 255 wsdl:operation elements as the child elements of the wsdl:binding element. This
element cannot be omitted. If omitted or if 256 or more elements are coded, an error message (KDJW51029-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following elements, an error message
(KDJW51108-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• wsdl:documentation element

• soap:operation element (extension element for SOAP binding in the SOAP 1.1 specifications)#

• soap12:operation element (extension element for SOAP binding in the SOAP 1.2 specifications)#

• jaxws:bindings element (binding declaration in the JAX-WS 2.2 specifications)

• wsaw:Anonymous element (extension element in the WS-Addressing 1.0 specifications)

• wsdl:input element

• wsdl:output element

• wsdl:fault element

#
Select and specify either the soap:operation element or the soap12:operation element. You cannot
specify both the elements.

• Specify the child elements of the wsdl:operation element (for the child element of the wsdl:binding
element) in the above order. If the specification order is incorrect, an error message (KDJW51029-E) is output to
the standard error output and the log, and the processing of the cjwsimport command ends. However, you
might switch the order of the following elements:

• soap:operation element or soap12:operation element

• jaxws:bindings element

• wsaw:Anonymous element

• You can specify the name attribute. You cannot specify attributes other than the name attribute. If you specify
attributes other than the name attribute, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• Define the wsdl:operation element of the wsdl:binding element so that it corresponds to the
wsdl:operation element defined in the wsdl:portType element. If the element is not defined in this
manner, an error message (KDJW51112-E) is output to the standard error output and the log, and the processing
of the cjwsimport command ends.

• When you specify the wsdl:output element as a child element, define the wsdl:output element so that it
corresponds to the wsdl:output element defined in the wsdl:operation element of the
wsdl:portType element.

• If you code one wsdl:output element in the wsdl:operation element of the wsdl:portType
element and omit the wsdl:output element from the wsdl:operation element of the
wsdl:binding element, an error message is output in the standard error output and log and then the
processing of the cjwsimport command ends (KDJW51222-E).

• When you omit the wsdl:output element from the wsdl:operation element of the wsdl:portType
element and code one wsdl:output element in the wsdl:operation element of the wsdl:binding
element, the wsdl:output element is ignored and, the processing of the cjwsimport command
continues.

(1) name attribute (wsdl:operation element)
This point describes the support range of the name attribute included in the wsdl:operation element.

20. Support Range of WSDL Specification

483

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type.

20.1.13 wsdl:input element (For the grandchild element of the
wsdl:binding element)

This subsection describes the support range of the wsdl:input element.

• You can code only one wsdl:input element as the child element of the wsdl:operation element. This
element cannot be omitted. If omitted or if 2 or more elements are coded, an error message (KDJW51029-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following elements, an error message
(KDJW51114-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends.

• wsdl:documentation element

• soap:header element (extension element for SOAP binding in the SOAP 1.1 specifications)#

• soap:body element (extension element for SOAP binding in the SOAP 1.1 specifications)#

• soap12:header element (extension element for SOAP binding in the SOAP 1.2 specifications)#

• soap12:body element (extension element for SOAP binding in the SOAP 1.2 specifications)#

#
Select and specify either the soap:header element or the soap12:header element, and the
soap:body element or the soap12:header element. You cannot specify both or mix the elements of the
SOAP 1.1 specifications and the SOAP 1.2 specifications.

• Specify the child elements of the wsdl:input element (for the grandchild element of the wsdl:binding
element) in the above order. If the specification order is incorrect, an error message (KDJW51029-E) is output to
the standard error output and the log, and the processing of the cjwsimport command ends. However, you
might switch the order of the following elements:

• soap:header element or soap12:header element

• soap:body element or soap12:body element

• You can specify the name attribute. You cannot specify attributes other than the name attribute. If you specify
attributes other than the name attribute, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

(1) name attribute (wsdl:input element)
This point describes the support range of the name attribute included in the wsdl:input element.

• You can code 0 or 1 name attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type.

20.1.14 wsdl:output element (For the grandchild element of the
wsdl:binding element)

This subsection describes the support range of the wsdl:output element.

20. Support Range of WSDL Specification

484

• You can code only one wsdl:output element as the child element of the wsdl:operation element. If
omitted or if 2 or more elements are coded, an error message (KDJW51029-E) is output to the standard error
output and the log, and the processing of the cjwsimport command ends.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following extension elements, an error
message (KDJW51119-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends:

• wsdl:documentation element

• soap:header element (extension element for SOAP binding in the SOAP 1.1
specifications)#

• soap:body element (extension element for SOAP binding in the SOAP 1.1
specifications)#

• soap12:header element (extension element for SOAP binding in the SOAP 1.2
specifications)#

• soap12:body element (extension element for SOAP binding in the SOAP 1.2
specifications)#

#
Select and specify either the soap:header element or the soap12:header element, and the
soap:body element or the soap12:header element. You cannot specify both or mix the elements of the
SOAP 1.1 specifications and the SOAP 1.2 specifications.

• Specify the child elements of the wsdl:output element (for the grandchild element of the wsdl:binding
element) in the above order. If the specification order is incorrect, an error message (KDJW51029-E) is output to
the standard error output and the log, and the processing of the cjwsimport command ends. However, you
might switch the order of the following elements:

• soap:header element or soap12:header element

• soap:body element or soap12:body element

• You can specify the name attribute. You cannot specify attributes other than the name attribute. If you specify
attributes other than the name attribute, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

(1) name attribute (wsdl:output element)
This point describes the support range of the name attribute included in the wsdl:output element.

• You can code 0 or 1 name attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type.

20.1.15 wsdl:fault element (For the grandchild element of the
wsdl:binding element)

This subsection describes the support range of the wsdl:fault element.

• You can code 0 to 255 wsdl:fault elements as the child elements of the wsdl:operation element. If 256
or more elements are coded, an error message (KDJW51029-E) is output to the standard error output and the log,
and the processing of the cjwsimport command ends.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following extension elements, an error

20. Support Range of WSDL Specification

485

message (KDJW51123-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends:

• wsdl:documentation element

• soap:fault element (extension element for SOAP binding in the SOAP 1.1
specifications)#

• soap12:fault element (extension element for SOAP binding in the SOAP 1.2 specifications)#

#
Select and specify either the soap:fault element or the soap12:fault element. You cannot specify
both the elements.

• Specify the child elements of the wsdl:fault element (for the grandchild element of the wsdl:binding
element) in the above order. If the specification order is incorrect, an error message (KDJW51029-E) is output to
the standard error output and the log, and the processing of the cjwsimport command ends.

• You can specify the name attribute. You cannot specify attributes other than the name attribute. If you specify
attributes other than the name attribute, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

(1) name attribute (wsdl:fault element)
This point describes the support range of the name attribute included in the wsdl:fault element.

• You can code only one name attribute. If omitted, an error message (KDJW51029-E) is output to the standard
error output and the log, and the processing of the cjwsimport command ends. If 2 or more attributes are
coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type. However, you
cannot specify the same value as the name attribute of the other wsdl:fault elements existing beneath the
same wsdl:operation element. If you specify the same value, an error message (KDJW51029-E) is output to
the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.16 wsdl:service element
This subsection describes the support range of the wsdl:service element.

• You can code 1 to 255 wsdl:service elements as the child elements of the wsdl:definitions element.
This element cannot be omitted #. If omitted or if 256 or more elements are coded, an error message
(KDJW51127-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends.

#
When you use the WSDL import functionality, one wsdl:service element is enough for all the WSDLs
with an import relationship. So the element can be omitted in this case. Also, the total wsdl:service
elements in all the WSDLs with an import relationship forms the upper limit.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following extension elements, an error
message (KDJW51129-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends:

• wsdl:documentation element
• jaxws:bindings element (binding declaration in the JAX-WS 2.2
specifications)

• wsdl:port element
• Specify the child elements of the wsdl:service element in the above order. If the specification order is

incorrect, an error message (KDJW51029-E) is output to the standard error output and the log, and the processing
of the cjwsimport command ends.

20. Support Range of WSDL Specification

486

• You can specify the name attribute. You cannot specify attributes other than the name attribute. If you specify
attributes other than the name attribute, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

(1) name attribute (wsdl:service element)
This point describes the support range of the name attribute included in the wsdl:service element.

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 15.1.9(2) Conditions for the service name and port name.
However, you cannot specify the same value as the name attribute of the other wsdl:service elements
existing beneath the same wsdl:definitions element. If the same value is specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends.

20.1.17 wsdl:port element
This subsection describes the support range of the wsdl:port element.

• You can code 1 to 255 wsdl:port elements as the child elements of the wsdl:service element. This
element cannot be omitted. If omitted or if 256 or more elements are coded, an error message (KDJW51029-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

• You can specify the following elements as the child element. If you specify elements other than the following
WSDL elements, an error message (KDJW51029-E) is output to the standard error output and the log, and the
processing of the cjwsimport command ends. From among the extension elements that are not ignored by the
cjwsimport command, if you specify extension elements other than the following elements, an error message
(KDJW51135-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends.

• wsdl:documentation element
• soap:address element (extension element for SOAP binding in the SOAP 1.1
specifications)#

• soap12:address element (extension element for SOAP binding in the SOAP
1.2 specifications)#

• jaxws:bindings element (binding declaration in the JAX-WS 2.2
specifications)

• wsaw:UsingAddressing element (extension element in the WS-Addressing 1.0 specifications)

#
Select and specify either the soap:address element or the soap12:address element. You cannot
specify both the elements.

• Specify the child elements of the wsdl:port element in the above order. If the specification order is incorrect,
an error message (KDJW51029-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends. However, you might switch the order of the following elements:

• soap:address element or soap12:address element
• jaxws:bindings element
• wsaw:UsingAddressing element

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• name attribute
• binding attribute

20. Support Range of WSDL Specification

487

(1) name attribute (wsdl:port element)
This point describes the support range of the name attribute included in the wsdl:port element:

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 15.1.9(2) Conditions for the service name and port name.
However, you cannot specify the same value as the name attribute of the other wsdl:port elements existing
beneath the same wsdl:service element. If the same value is specified, an error message (KDJW51029-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

(2) binding attribute (wsdl:port element)
This point describes the support range of the binding attribute included in the wsdl:port element.

• You can code only one binding attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Use QName to specify wsdl:binding declared beneath the referable wsdl:definitions element.

20.1.18 wsdl:documentation element
This subsection describes the support range of the wsdl:documentation element.

• You can code 0 or 1 wsdl:documentation element as the child element of the following elements. If 2 or
more elements are coded, an error message (KDJW51029-E) is output to the standard error output and the log, and
the processing of the cjwsimport command ends. From among the WSDL elements and the extension elements
that are not ignored by the cjwsimport command, if the wsdl:documentation element is coded as the
child element of the following elements, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends:

• wsdl:definitions element
• wsdl:import element
• wsdl:types element
• wsdl:message element
• wsdl:part element
• wsdl:portType element
• wsdl:operation element
• wsdl:input element
• wsdl:output element
• wsdl:fault element
• wsdl:binding element
• wsdl:service element
• wsdl:port element

• You can specify any element as the child element.

• You cannot specify attributes. If attributes are specified, an error message (KDJW51029-E) is output to the
standard error output and the log, and the processing of the cjwsimport command ends.

20.1.19 soap:binding element
This subsection describes the support range of the soap:binding element.

20. Support Range of WSDL Specification

488

• You can code only one soap:binding element as the wsdl:binding element. This element cannot be
omitted. If omitted or if 2 or more elements are coded, an error message (KDJW51143-E) is output to the standard
error output and the log, and the processing of the cjwsimport command ends.

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are coded, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• transport attribute
• style attribute

(1) transport attribute (soap:binding element)
This point describes the support range of the transport attribute included in the soap:binding element.

• You can code only one transport attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• You code http://schemas.xmlsoap.org/soap/http as the value. If a value other than http://
schemas.xmlsoap.org/soap/http is coded, an error message (KDJW51147-E) is output to the standard
error output and the log, and the processing of the cjwsimport command ends.

(2) style attribute (soap:binding element)
This point describes the support range of the style attribute included in the soap:binding element.

• You can code 0 or 1 style attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error
occurs.

• You code document as the value. If a value other than document is coded, an error message (KDJW51029-E)
is output to the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.20 soap:operation element
This subsection describes the support range of the soap:operation element.

• You can code only one soap:operation element as the child element of the wsdl:operation element.
This element cannot be omitted. If omitted or if 2 or more elements are coded, an error message (KDJW51150-E)
is output to the standard error output and the log, and the processing of the cjwsimport command ends.

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are coded, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• soapAction attribute

• style attribute

(1) soapAction attribute (soap:operation element)
This point describes the support range of the soapAction attribute included in the soap:operation element.

• You can code 0 or 1 soapAction attribute. If 2 or more attributes are coded, a Cosminexus XML Processor
error occurs.

• You can specify any string that satisfies xsd:anyURI.

• The value specified in this attribute is ignored.

20. Support Range of WSDL Specification

489

(2) style attribute (soap:operation element)
This point describes the support range of the style attribute included in the soap:operation element.

• You can code 0 or 1 style attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error
occurs.

• You code document as the value. If a value other than document is coded, an error message (KDJW51029-E)
is output to the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.21 soap:body element
This subsection describes the support range of the soap:body element.

• You can code only one soap:body element as the child element of the wsdl:input and wsdl:output
elements that are the grandchild elements of the wsdl:binding element. This element cannot be omitted. If
omitted or if 2 or more elements are coded, an error message (KDJW51156-E) is output to the standard error
output and the log, and the processing of the cjwsimport command ends.

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. However, if you specify the namespace attribute, a different error message (KDJW51208-E) is
output to the standard error output and the log (KDJW51208-E).

• use attribute
• parts attribute

(1) use attribute (soap:body element)
This point describes the support range of the use attribute included in the soap:body element.

• You can code 0 or 1 use attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• You code literal as the value. If a value other than literal is coded, an error message (KDJW51029-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

(2) parts attribute (soap:body element)
This point describes the support range of the parts attribute included in the soap:body element.

• You can code 0 or 1 parts attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error
occurs.

• Specify 0 or 1 wsdl:part element that is declared beneath the wsdl:message element referenced in the
soap:body element. If 2 or more attributes are coded, an error message (KDJW51029-E) is output to the
standard error output and the log, and the processing of the cjwsimport command ends.

• For details on the notes on specifying the parts attribute, see 20.2(2) Coding the SOAP body and SOAP header
and the referenced wsdl:part element.

20.1.22 soap:header element
This subsection describes the support range of the soap:header element.

• You can code the soap:header element as the child element of the wsdl:input and wsdl:output
elements that are the grandchild elements of the wsdl:binding element. You can also omit the
soap:header element.

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

20. Support Range of WSDL Specification

490

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. However, if you specify the namespace attribute, a warning message is output to the standard
error output and the log, and the processing of the cjwsimport command continues (KDJW51009-W).

• message attribute
• part attribute
• use attribute

• For details on the notes on specifying the soap:header element, see 20.2(2) Coding the SOAP body and SOAP
header and the referenced wsdl:part element.

(1) message attribute (soap:header element)
This point describes the support range of the message attribute included in the soap:header element.

• You can code only one message attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Use QName to specify wsdl:message declared beneath the referable wsdl:definitions element.

• For details on the notes on specifying the message attribute, see 20.2(2) Coding the SOAP body and SOAP
header and the referenced wsdl:part element.

(2) part attribute (soap:header element)
This point describes the support range of the part attribute included in the soap:header element.

• You can code only one part attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Specify the wsdl:part element declared beneath the wsdl:message element specified in the message
attribute.

• For details on the notes on specifying the part attribute, see 20.2(2) Coding the SOAP body and SOAP header
and the referenced wsdl:part element.

(3) use attribute (soap:header element)
This point describes the support range of the use attribute included in the soap:header element.

• You can code only one use attribute. If omitted, an error message (KDJW51029-E) is output to the standard error
output and the log, and the processing of the cjwsimport command ends. If 2 or more attributes are coded, a
Cosminexus XML Processor error occurs.

• You code literal as the value. If a value other than literal is coded, an error message (KDJW51029-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.23 soap:fault element
This subsection describes the support range of the soap:fault element.

• You can code only one soap:fault element as the child element of the wsdl:fault element that forms the
grandchild element of the wsdl:binding element. If this element is omitted or if 2 or more elements are coded,
an error message is output to the standard error output and the log, and the processing of the cjwsimport
command ends (KDJW51051-E).

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

20. Support Range of WSDL Specification

491

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. However, if you specify the namespace attribute, a different error message (KDJW51210-E) is
output to the standard error output and the log.

• name attribute
• use attribute

(1) name attribute (soap:fault element)
This point describes the support range of the name attribute included in the soap:fault element.

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Code the same value as the name attribute of the wsdl:fault element that is the parent element. If a different
value is coded, a warning message (KDJW51027-W) is output to the standard error output and the log, and the
processing of the cjwsimport command continues.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type.

(2) use attribute (soap:fault element)
This point describes the support range of the use attribute included in the soap:fault element.

• You can code 0 or 1 use attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• You code literal as the value. If a value other than literal is coded, an error message (KDJW51029-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.24 soap:address element
This subsection describes the support range of the soap:address element.

• You can code only one soap:address element as the child element of the wsdl:port element. This element
cannot be omitted. If omitted or if 2 or more elements are coded, an error message (KDJW51175-E) is output to
the standard error output and the log, and the processing of the cjwsimport command ends.

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• You can specify the location attribute. If you specify an attribute other than the location attribute, an error
message (KDJW51029-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends.

(1) location attribute (soap:address element)
This point describes the support range of the location attribute included in the soap:address element.

• You can code only one location attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(3) Values specifiable in the location attribute of the
soap:address element or soap12:address element.

20.1.25 soap12:operation element
This subsection describes the support range of the soap12:operation element.

20. Support Range of WSDL Specification

492

• You can code only one soap12:operation element as the child element of the wsdl:operation element.
This element cannot be omitted. If omitted or if 2 or more elements are coded, an error message (KDJW51150-E)
is output to the standard error output and the log, and the processing of the cjwsimport command ends.

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. However, if you specify the soapActionRequired attribute, the processing of the
cjwsimport command continues.

• soapAction attribute
• style attribute

(1) soapAction attribute (soap12:operation element)
This point describes the support range of the soapAction attribute included in the soap12:operation element.

• You can code 0 or 1 soapAction attribute. If 2 or more attributes are coded, a Cosminexus XML Processor
error occurs.

• You can specify any string that satisfies xsd:anyURI.

• The specified soapAction attribute is ignored with the JAX-WS engine.

(2) style attribute (soap12:operation element)
This point describes the support range of the style attribute included in the soap12:operation element.

• You can code 0 or 1 style attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error
occurs.

• You code document as the value. If a value other than document is coded, an error message (KDJW51029-E)
is output to the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.26 soap12:binding element
This subsection describes the support range of the soap12:binding element.

• You can code only one soap12:binding element as the child element of the wsdl:binding element. This
element cannot be omitted. If omitted or if 2 or more elements are coded, an error message (KDJW51143-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• transport attribute
• style attribute

(1) transport attribute (soap12:binding element)
This point describes the support range of the transport attribute included in the soap12:binding element.

• You can code only one transport attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• You code http://schemas.xmlsoap.org/soap/http or http://www.w3.org/2003/05/soap/
bindings/HTTP/ as the value. If a value other than http://schemas.xmlsoap.org/soap/http or

20. Support Range of WSDL Specification

493

http://www.w3.org/2003/05/soap/bindings/HTTP/ is coded, an error message (KDJW51147-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

(2) style attribute (soap12:binding element)
This point describes the support range of the style attribute included in the soap12:binding element.

• You can code 0 or 1 style attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error
occurs.

• You code document as the value. If a value other than document is coded, an error message (KDJW51029-E)
is output to the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.27 soap12:body element
This subsection describes the support range of the soap12:body element.

• You can code only one soap12:body element as the child element of the wsdl:input and wsdl:output
elements that are the grandchild elements of the wsdl:binding element. This element cannot be omitted. If
omitted or if 2 or more elements are coded, an error message (KDJW51156-E) is output to the standard error
output and the log, and the processing of the cjwsimport command ends.

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. However, if you specify the namespace attribute, a different error message (KDJW51208-E) is
output to the standard error output and the log.

• use attribute
• parts attribute

(1) use attribute (soap12:body element)
This point describes the support range of the use attribute included in the soap12:body element.

• You can code 0 or 1 use attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• You code literal as the value. If a value other than literal is coded, an error message (KDJW51029-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

(2) parts attribute (soap12:body element)
This point describes the support range of the parts attribute included in the soap12:body element.

• You can code 0 or 1 parts attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error
occurs.

• You can code 0 or 1 wsdl:part element that is declared beneath the wsdl:message element referenced by
the soap12:body element. If 2 or more elements are coded, an error message (KDJW51029-E) is output to the
standard error output and the log, and the processing of the cjwsimport command ends.

• For details on the notes on specifying the parts attribute, see 20.2(2) Coding the SOAP body and SOAP header
and the referenced wsdl:part element.

20.1.28 soap12:header element
This subsection describes the support range of the soap12:header element.

• You can code the soap12:header element as the child element of the wsdl:input and wsdl:output
elements that are the grandchild elements of the wsdl:binding element. You can also omit this element.

20. Support Range of WSDL Specification

494

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. However, if you specify the namespace attribute, a warning message (KDJW51009-W) is
output to the standard error output and the log, and the processing of the cjwsimport command continues.

• message attribute
• part attribute
• use attribute

• For details on the notes on specifying the soap12:header element, see 20.2(2) Coding the SOAP body and
SOAP header and the referenced wsdl:part element.

(1) message attribute (soap12:header element)
This point describes the support range of the message attribute included in the soap12:header element.

• You can code only one message attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Use Qname to specify wsdl:message declared beneath the referable wsdl:definitions element.

• For details on the notes on specifying the message attribute, see 20.2(2) Coding the SOAP body and SOAP
header and the referenced wsdl:part element.

(2) part attribute (soap12:header element)
This point describes the support range of the part attribute included in the soap12:header element.

• You can code only one part attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Specify the wsdl:part element declared beneath the wsdl:message element specified in the message
attribute.

• For details on the notes on specifying the part attribute, see 20.2(2) Coding the SOAP body and SOAP header
and the referenced wsdl:part element.

(3) use attribute (soap12:header element)
This point describes the support range of the use attribute included in the soap12:header element.

• You can code only one use attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• You code literal as the value. If a value other than literal is coded, an error message (KDJW51029-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.29 soap12:fault element
This subsection describes the support range of the soap12:fault element.

• You can code only one soap12:fault element as the child element of the wsdl:fault element that is the
grandchild element of the wsdl:binding element. If this element is omitted or if 2 or more elements are coded,
an error message (KDJW51051-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends.

20. Support Range of WSDL Specification

495

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• You can specify the following attributes. If attributes other than those listed below are specified, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends:

• name attribute
• use attribute

(1) name attribute (soap12:fault element)
This point describes the support range of the name attribute included in the soap12:fault element.

• You can code only one name attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• Code the same value as the name attribute of the wsdl:fault element that is the parent element. If a different
value is coded, a warning message (KDJW51027-W) is output to the standard error output and the log, and the
processing of the cjwsimport command continues.

• For details on the values that can be specified, see 20.2(1) Values specifiable in the NCName type.

(2) use attribute (soap12:fault element)
This point describes the support range of the use attribute included in the soap12:fault element.

• You can code 0 or 1 use attribute. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• You code literal as the value. If a value other than literal is coded, an error message (KDJW51029-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

20.1.30 soap12:address element
This subsection describes the support range of the soap12:address element.

• You can code only one soap12:address element as the child element of the wsdl:port element. This
element cannot be omitted. If omitted or if 2 or more elements are coded, an error message (KDJW51175-E) is
output to the standard error output and the log, and the processing of the cjwsimport command ends.

• You cannot code child elements. If coded, an error message (KDJW51029-E) is output to the standard error output
and the log, and the processing of the cjwsimport command ends.

• You can specify the location attribute. If you specify an attribute other than the location attribute, an error
message (KDJW51029-E) is output to the standard error output and the log, and the processing of the
cjwsimport command ends.

(1) location attribute (soap12:address element)
This point describes the support range of the location attribute included in the soap12:address element.

• You can code only one location attribute. This attribute cannot be omitted. If omitted, an error message
(KDJW51029-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. If 2 or more attributes are coded, a Cosminexus XML Processor error occurs.

• For details on the values that can be specified, see 20.2(3) Values specifiable in the location attribute of the
soap:address element or soap12:address element.

20.1.31 xsd:schema element
This subsection describes the support range of the xsd:schema element.

20. Support Range of WSDL Specification

496

• Mapping to a Java type is performed according to the JAXB 2.2 specifications, but the entire mapping is delegated
to Cosminexus XML Processor.

(1) xmime:expectedContentTypes attribute (xsd:schema element)
When xsd:base64Binary is specified in the type attribute of the xsd:element element, which is a WSDL
schema declaration, you can explicitly specify the MIME type by using the xmime:expectedContentTypes
attribute to associate the Base64 format data with a Java type corresponding to the MIME type. The following table
describes whether you can code the xmime:expectedContentTypes attribute for the xsd:element element,
which is a WSDL schema declaration.

Table 20‒1: Codability of the xmime:expectedContentTypes attribute

No. Parameters of wsdl:message that reference
the xsd:element element

Codability of the xmime:expectedContentTypes attribute for
the xsd:element element

1 wsdl:input Y#1

2 wsdl:output Y#1

3 wsdl:fault N#2

Legend:
Y: Can be coded.
N: Cannot be coded.

#1
When the type of WSDL part is inout, specify the same MIME type as the value of the xmime:expectedContentTypes
attribute of the xsd:element element referenced from the wsdl:input element, and as the value of the
xmime:expectedContentTypes attribute of the xsd:element element referenced from the wsdl:output element. If
a different MIME type is specified, the operations are not guaranteed.

#2
The operations are not guaranteed if you specify the xsd:element element in which the
xmime:expectedContentTypes attribute is coded in the fault message.

To map WSDL to the Java type when the xmime:expectedContentTypes attribute is specified in the
xsd:element element, map the xsd:base64Binary type with the xmime:expectedContentTypes
attribute of the WSDL to the Java type. The following figure shows an example of mapping the WSDL to a Java type.

Figure 20‒1: Example of mapping the WSDL to a Java type

20. Support Range of WSDL Specification

497

Do not code parameters other than the charset parameter of text/xml and application/xml in the MIME
type to be specified in the xmime:expectedContentTypes attribute. If a parameter other than the charset
parameter of text/xml and application/xml are coded, the operations are not guaranteed.

The Java type to be mapped from WSDL changes depending on the MIME type specified in the
xmime:expectedContentTypes attribute. The following table describes the relationship between the MIME
types coded in the xmime:expectedContentTypes attribute and the associated Java types.

Table 20‒2: Value of the xmime:expectedContentTypes attribute and the associated Java types

No. Value of the xmime:expectedContentTypes attribute (MIME
type) Associated Java type

1 application/xml javax.xml.transform.Source

2 image/png#1 java.awt.Image#2

3 image/jpeg#1

4 Code the above MIME types delimited with commas (Example:
image/png, image/jpeg)#3

5 image/*#3

6 text/plain java.lang.String

7 text/*#4 javax.activation.DataHandler

8 text/xml#5 javax.xml.transform.Source

9 Other than above mentioned #4, #6 javax.activation.DataHandler

#1
To associate the image type that is not mentioned in the table with a Java type, specify application/octet-stream in
the xmime:expectedContentTypes attribute and associate with the javax.activation.DataHandler class.

#2
Complies with the JAXB specifications. The java.awt.Image class is an abstract class that expresses the graphical image in
the Java SE specifications and for which the data format is not defined. When the image data is instantiated by using this
association, you can only store the decoded information in a concrete class instance. Therefore, when you send an image for
which information can be reduced during encoding, such as the JPEG format, as an attachment, the instance at the receiving side
might differ from the instance at the sending side and from the original data.
If you want to handle the image as is in the original format, use the MIME type (such as application/octet-stream)
that is mapped to javax.activation.DataHandler.

#3
When similar types such as "image/png, image/jpeg" or "image/*" are specified as the MIME type, the Content-
Type field value of the MIME header in the attachment part of the SOAP message to be sent is the initial value (image/png)
when the java.awt.Image type is used.

#4
When text/* or a MIME type that is not mentioned in the table is specified as the MIME type, the Content-Type field
value of the MIME header in the attachment part of the SOAP message to be sent is the initial value (MIME type of the
javax.activation.DataHandler object) when the javax.activation.DataHandler type is used.

#5
When text/xml is specified as the MIME type, the Content-Type field value of the MIME header in the attachment part of
the SOAP message to be sent is the initial value (application/xml) when the javax.xml.transform.Source type is
used.

#6
This includes cases when a MIME type of a different type name is coded using commas as delimiters (example: image/png,
text/plain).

The MIME type specified in the xmime:expectedContentTypes attribute is mapped to the value of the
javax.xml.bind.annotation.XmlMimeType annotation that is annotated in the JavaBean class
corresponding to the element coding the xmime:expectedContentTypes attribute, from among the JavaBean

20. Support Range of WSDL Specification

498

classes that are automatically generated by the cjwsimport command. The following figure shows an example of
mapping the automatically generated JavaBean class from the WSDL.

Figure 20‒2: Mapping the automatically generated JavaBean class from the WSDL

(a) Importing the Namespace "xmime"

To map the WSDL to a Java type, you use the attribute xmime:expectedContentTypes existing in the
Namespace xmime, but the Namespace xmime need not be imported using the xsd:import element with the JAX-
WS.

When you use the WSDL created with the cjwsgen command, you must import the Namespace xmime as and when
required. The following is an example of importing the Namespace xmime:

<wsdl:definitions targetNamespace="http://localhost"
 xmlns:intf="http://localhost"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <wsdl:types>
 <xsd:schema targetNamespace="http://localhost">
 <xsd:import namespace="http://www.w3.org/2005/05/xmlmime"/>
 <xsd:element name="setPhotoData" type="intf:setPhotoData"/>
 <xsd:complexType name="setPhotoData">
 <xsd:sequence>
 <xsd:element name="in0" type="xsd:base64Binary" xmime:expectedContentTypes="image/
jpeg"/>
 </xsd:sequence>
 </xsd:complexType>

 </xsd:schema>
 </wsdl:types>

20. Support Range of WSDL Specification

499

20.2 Notes on creating WSDL
This section describes the notes on creating WSDL.

(1) Values specifiable in the NCName type
With the Cosminexus JAX-WS functionality, as long as you do not violate the limitations for the xsd:NCName type
in the XML Schema specifications, you can use one-byte alphanumeric characters (0 to 9, A to Z, a to z) and
underscore (_). If you use characters other than one-byte alphanumeric characters and underscore, the operations are
not guaranteed.

(2) Coding the SOAP body and SOAP header and the referenced wsdl:part element
This point describes the coding of the SOAP Body and SOAP Header that are coded as the child elements of the
wsdl:input element and wsdl:output element, and the coding of the wsdl:part element referenced from the
SOAP Body and SOAP Header.

The description hereafter uses the SOAP 1.1 specifications for the examples. For the SOAP 1.2 specifications,
substitute and read the Namespace and the element names, and the attribute values.

(a) When the SOAP Header is not defined

Whether you code the parts attribute in the soap:body element or not, code only one wsdl:part element in the
child element of the wsdl:message element referenced from the wsdl:input element or wsdl:output
element that are the parent elements.

The following figure shows an example of coding when the soap:header element is not coded.

Figure 20‒3: Example of coding when the soap:header element is not coded

20. Support Range of WSDL Specification

500

(b) When the SOAP Header is defined

To code the soap:header element, define the coding according to the following contents:

• In the message attribute of the soap:header element, specify the wsdl:message element referenced from
the wsdl:input element or wsdl:output element that are the parent elements.

• In the part attribute of the soap:header element, specify the wsdl:part element declared beneath the
wsdl:message element specified in the message attribute. If an undeclared wsdl:part element is
specified, an error message (KDJW51022-E) is output to the standard error output and the log, and the processing
of the cjwsimport command ends (KDJW51022-E).

• The parts attribute of the soap:body element cannot be omitted. Specify which of the multiple wsdl:part
child elements of the wsdl:message element referenced from the wsdl:input element or wsdl:output
element, which are the parent elements, will be bound to the soap:body element. If you do not want to bind the
elements, specify an empty string.
If the wsdl:part element of the wsdl:message elements that are not referenced or a non-existent
wsdl:part element is specified in the parts attribute of the soap:body element, an error message
(KDJW51021-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends. Also, if the parts attribute of the soap:body element is not specified, an error message
(KDJW51179-E) is output to the standard error output and the log, and the processing of the cjwsimport
command ends.

The following figure shows an example of coding when the soap:header element is coded.

20. Support Range of WSDL Specification

501

Figure 20‒4: Example of coding when the soap:header element is coded

(3) Values specifiable in the location attribute of the soap:address element or
soap12:address element

You can specify a URL with the following format in the location attribute of the soap:address element or the
soap12:address element:

• Protocol#1://host-name#2/path-part#3

(Example) http://hitachi.com/jaxws/service/UserInfoPort
• Protocol #1://host-name #2:port-number#4/path-part#3

(Example) http://hitachi.com:80/jaxws/service/UserInfoPort

20. Support Range of WSDL Specification

502

#1
You can only specify http:// or https:// as the Namespace. You cannot specify other protocols. If you specify a
protocol other than http:// and https:// is specified, the operations are not guaranteed.

#2
You can specify a string complying with the RFC2396 specifications. You can specify the string in the IPv4 and
IPv6 format.
However, you cannot specify the following formats. If the following formats are specified, the operations are not
guaranteed:

• Query string (Example) http://example.com/?a=b
• Anchor (Example) http://example.com/index.html#anchor
• Port number (Example) http://example.com:8080/
• User name/ Password (Example) http://user:password@example.com
• Percent-encoded characters (Example) http://%E4%BD%BF%E7%94%A8

#3
You can specify a string using only the numeric characters 0 to 9. If other characters are specified, the operations
are not guaranteed.

#4
You can specify a string complying with the RFC2396 specifications. You can also specify percent-encoded
characters ((Example) http://%E4%BD%BF%E7%94%A8).

20. Support Range of WSDL Specification

503

21 Support Range of XML Catalogs
1.1
This chapter describes the support range of the XML Catalogs 1.1 specifications.

505

21.1 Support range list of the XML Catalogs 1.1
specifications

The following table describes the support range of the catalog file syntax, defined in the XML Catalogs 1.1
specifications. For the codes created by using the syntax that is not supported by the JAX-WS functionality of
Application Server, the operation is not guaranteed.

Table 21‒1: List of syntax (elements) supported in the catalog file

Item no. Element Supported

1 er:catalog Y

2 er:group N

3 er:public Y

4 er:system Y

5 er:rewriteSystem N

6 er:systemSuffix N

7 er:delegatePublic N

8 er:delegateSystem N

9 er:uri N

10 er:rewriteURI N

11 er:uriSuffix N

12 er:delegateURI N

13 er:nextCatalog N

Legend:
Y: Supported in the JAX-WS functionality of Application Server.
N: Not supported in the JAX-WS functionality of Application Server.

Table 21‒2: List of syntax (attributes) supported in the catalog file

Item no. Element Attribute Support
ed

1 er:catalog prefer Y

id N

xml:base N

2 er:public publicId Y

uri Y

id N

xml:base N

3 er:system systemId Y

uri Y

id N

xml:base N

21. Support Range of XML Catalogs 1.1

506

Legend:
Y: Supported in the JAX-WS functionality of Application Server.
N: Not supported in the JAX-WS functionality of Application Server.

21. Support Range of XML Catalogs 1.1

507

21.2 Details of the Support Range of the XML Catalogs
1.1 Specifications

This section describes the support range of each syntax (element) in the catalog file, defined in the XML Catalogs 1.1
specifications.

21.2.1 er:catalog element
• You can code only one er:catalog element as the root element of a catalog file. You cannot omit this element.

If omitted or coded two or more times, a warning message# is displayed, the catalog functionality is disabled, and
the processing continues.

• You can specify the following elements as the child elements. If you code elements other than the following
elements, a warning message# is displayed.

• er:public element

• er:system element

#
Depending on where you use the catalog functionality, the warning message and the output destination vary as
follows:

• When starting a Web Services client: log file (KDJW30023-W)

• When developing a Web Services client: standard error output (KDJW51221-W)

(1) prefer attribute

• You can omit the prefer attribute or code one prefer attribute for the er:catalog element. If you omit this
attribute, operation is the same as when the public attribute is specified.

• You can specify the following values as the attribute values. If a value other than the following values is specified,
a warning message# is displayed.

• public
• system

• If the WSDL or the xsd:import element of the XML schema contains the namespace and
schemalocation attributes; you cannot map the namespace attribute of the xsd:import element by using
the er:public element, even if you specify the prefer attribute as public.

#
Depending on where you use the catalog functionality, the warning message and the output destination vary as
follows:

• When starting a Web Services client: log file (KDJW30023-W)

• When developing a Web Services client: standard error output (KDJW51221-W)

21.2.2 er:public element
• This element maps the name space URI of an XML Schema specified in the publicId attribute to the URI

pointing to the location of XML Schema specified in the uri attribute.

• You can omit a child element or code a maximum of 255 elements as the child elements of the er:catalog
element. If more than 255 elements are specified, the operation is not guaranteed.

21. Support Range of XML Catalogs 1.1

508

(1) publicId attribute

• You can code only one publicId as the attribute of the er:public element. You cannot omit this attribute. If
omitted, a warning message# is displayed, the catalog functionality is disabled, and the processing continues.

• Specify the same namespace URI as that of the namespace attribute of the xsd:import element to the
publicId attribute.

#
Depending on where you use the catalog functionality, the warning message and the output destination vary as
follows:

• When starting a Web Services client: log file (KDJW30023-W)

• When developing a Web Services client: standard error output (KDJW51221-W)

(2) uri attribute

• You can code only one uri as the attribute of the er:public element. You cannot omit this attribute. If
omitted, a warning message#1 is displayed, the catalog functionality is disabled, and the processing continues.

• The conditions for the attribute values that you can specify are as follows:

• Specify the relative path#2 or the URL of the XML Schema to be mapped. When you specify the value, match
the target namespace of the XML Schema to be mapped with the namespace of the namespace attribute of
the xsd:import element. If the namespaces do not match, the operation is not guaranteed.

• Specify the attribute by using the characters complying with xsd:anyURI stated in RFC 2396. Note that you
cannot use RFC 2732 (IPv6).

• The value is not case sensitive.

• You can specify a character string of any length. Note that an error occurs if the length exceeds the limit of the
OS.

Note:
If you specify a WSDL or an XML schema that does not exist or requires no access permission, a warning
message (KDJW30024-W) is displayed, the catalog functionality is disabled, and the processing continues.

#1
Depending on where you use the catalog functionality, the warning message and the output destination vary as
follows:

• When starting a Web Services client: log file (KDJW30023-W)

• When developing a Web Services client: standard error output (KDJW51221-W)

#2
Indicates a relative path from the directory that stores the catalog file.

21.2.3 er:system element
• This element maps the URI that is pointing to the location of a WSDL or an XML Schema specified in the
systemId attribute to a different URI that is pointing to the location of a WSDL or an XML Schema.

• You can omit a child element or code up to 255 elements as the child elements of the er:catalog element. If
more than 255 elements are specified, the operation is not guaranteed.

(1) systemId attribute

• You can code only one systemId attribute as the attribute of the er:system element. You cannot omit this
attribute. If omitted, a warning message# is displayed, the catalog functionality is disabled, and the processing
continues.

• The conditions for the attribute values that can be specified are as follows:

21. Support Range of XML Catalogs 1.1

509

• Specify the absolute URL of the WSDL or the XML schema to be mapped. You cannot specify a relative
URL or a relative path. Convert a relative URL or a relative path to an absolute URL to specify the attribute
value.

• Specify the attribute by using the characters complying with xsd:anyURI specified in RFC 2396. Note that
you cannot use RFC 2732 (IPv6).

• The value is not case sensitive.

• You can specify a character string of any length. Note that an error occurs if the length exceeds the limit of the
OS.

#
Depending on where you use the catalog functionality, the warning message and the output destination vary as
follows:

• When executing a Web Services client: log file (KDJW30023-W)

• When developing a Web Services client: standard error output (KDJW51221-W)

(2) uri attribute

• You can code only one uri attribute as the attribute of the er:public element. You cannot omit this attribute.
If you omit, a warning message#1 is displayed, the catalog functionality is disabled, and the processing continues.

• The conditions for the attribute values that you can specify are as follows:

• Specify the relative path#2 or URL of the WSDL or the XML schema to be mapped.

• Specify the attribute by using the characters complying with xsd:anyURI specified in RFC 2396. Note that
you cannot use RFC 2732 (IPv6).

• The value is not case sensitive.

• You can specify a character string of any length. Note that an error occurs if the length exceeds the limit of the
OS.

Note:

• If you specify a WSDL or an XML Schema that does not exist or requires no access permission, a warning
message (KDJW30024-W) is displayed, the catalog functionality is disabled, and the processing continues.

#1
Depending on where you use the catalog functionality, the warning message and the output destination vary as
follows:

• When executing a Web Services client: log file (KDJW30023-W)

• When developing a Web Services client: standard error output (KDJW51221-W)

#2
Indicates a relative path from the directory that stores the catalog file.

21. Support Range of XML Catalogs 1.1

510

22 Support Range of the SAAJ
Specifications
This chapter describes the support range for the SAAJ specifications that you must
keep in mind when you develop a Web Service.

511

22.1 Support range of the SAAJ 1.3 specifications
This section describes the support range of the interfaces and classes in the SAAJ 1.3 specifications. This section also
describes the notes on using the interfaces and classes in the dispatch-based Web Service client.

The following table describes the support range of the interfaces in the SAAJ 1.3 specifications. For details on the
interfaces, see the JDK documentation.

Table 22‒1: Support range of the interfaces in the SAAJ 1.3 specifications

No. Interface name Method name/ Field name Support

1 Detail addDetailEntry(Name name) Y

2 addDetailEntry(QName qname) Y

3 Other methods Y

4 DetailEntry No method Y

5 Name All methods Y

6 Node getValue() Y

7 recycleNode() Y

8 setParentElement(SOAPElement parent) Y

9 setValue(String value) Y

10 Other methods Y

11 SOAPBody addBodyElement(Name name) Y

12 addBodyElement(QName qname) Y

13 addDocument(Document document) Y

14 addFault(Name faultCode, String faultString,
Locale locale)

Y

15 addFault(Name faultCode, String faultString) Y

16 addFault(QName faultCode, String faultString,
Locale locale)

Y

17 addFault(QName faultCode, String faultString) Y

18 Other methods Y

19 SOAPBodyElement No method Y

20 SOAPConstants All fields Y

21 SOAPElement addAttribute(Name name, String value) Y

22 addAttribute(QName qname, String value) Y

23 addChildElement(Name name) Y

24 addChildElement(SOAPElement element) Y

25 addChildElement(String localName) Y

26 addChildElement(String localName, String
prefix)

Y

27 addChildElement(String localName, String
prefix, String uri)

Y

28 addChildElement(QName qname) Y

22. Support Range of the SAAJ Specifications

512

No. Interface name Method name/ Field name Support

29 SOAPElement addNamespaceDeclaration(String prefix, String
uri)

Y

30 addTextNode(String text) Y

31 createQName(String localName, String prefix) Y

32 getAttributeValue(Name name) Y

33 getAttributeValue(QName qname) Y

34 getChildElements(Name name) Y

35 getChildElements(QName qname) Y

36 getEncodingStyle() Y

37 getNamespacePrefixes() Y

38 getNamespaceURI(String prefix) Y

39 removeAttribute(Name name) Y

40 removeAttribute(QName qname) Y

41 setElementQName(QName newName) Y

42 Other methods Y

43 SOAPEnvelope createName(String localName) Y

44 createName(String localName, String prefix,
String uri)

Y

45 Other methods Y

46 SOAPFault getFaultCode() Y

47 getFaultCodeAsName() Y

48 getFaultCodeAsQName() Y

49 getFaultString() Y

50 setFaultCode(Name faultCodeQName) Y

51 setFaultCode(QName faultCodeQName) Y

52 setFaultCode(String faultCode) Y

53 setFaultString(String faultString) Y

54 setFaultString(String faultString, Locale
locale)

Y

55 addFaultReasonText(String text, Locale
locale)

Y

56 getFaultReasonLocales() Y

57 getFaultReasonText(Locale locale) Y

58 getFaultReasonTexts() Y

59 getFaultStringLocale() Y

60 setFaultRole(String uri) Y

61 Other methods Y

62 SOAPFaultElement No method Y

22. Support Range of the SAAJ Specifications

513

No. Interface name Method name/ Field name Support

63 SOAPHeader addHeaderElement(Name name) Y

64 addHeaderElement(QName qname) Y

65 addUpgradeHeaderElement(String
supportedSoapUri)

Y

66 examineHeaderElements(String actor) Y

67 examineMustUnderstandHeaderElements(String
actor)

Y

68 extractHeaderElements(String actor) Y

69 Other methods Y

70 SOAPHeaderElement setActor(String actorURI) Y

71 setRole(String uri) Y

72 Other methods Y

73 Text All methods Y

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.

The following table describes the support range of the classes in the SAAJ 1.3 specifications. For details on the
classes, see the JDK documentation.

Table 22‒2: Support range of the classes in the SAAJ 1.3 specifications

No. Class name Method name/ Field name Support

1 AttachmentPart addMimeHeader(String name, String value) Y

2 getAllMimeHeaders() Y

3 getContentLocation() N

4 setContentLocation(String contentLocation) N

5 setBase64Content(InputStream content, String
contentType)

Y

6 setContent(Object object, String contentType) Y

7 setContentId(String contentId) Y

8 setContentType(String contentType) Y

9 setMimeHeader(String name, String value) Y

10 setRawContent(InputStream content, String
contentType)

Y

11 setRawContentBytes(byte[] content, int
offset, int len, String contentType)

Y

12 Other methods Y

13 MessageFactory newInstance(String protocol) Y

14 Other methods Y

15 MimeHeader MimeHeader(String name, String value) constructor Y

16 Other methods Y

22. Support Range of the SAAJ Specifications

514

No. Class name Method name/ Field name Support

17 MimeHeaders addHeader(String name, String value) Y

18 setHeader(String name, String value) Y

19 Other methods Y

20 SAAJMetaFactory All methods Y

21 SAAJResult SAAJResult(SOAPMessage message) constructor Y

22 SAAJResult(SOAPElement rootNode) constructor Y

23 Other methods Y

24 SOAPConnection All methods Y

25 SOAPConnectionFactory All methods Y

26 SOAPElementFactory# All methods N

27 SOAPFactory newInstance(String protocol) Y

28 createElement(Element domElement) Y

29 createElement(String localName, String
prefix, String uri)

Y

30 createFault(String reasonText, QName
faultCode)

Y

31 createName(String localName) Y

32 createName(String localName, String prefix,
String uri)

Y

33 Other methods Y

34 SOAPMessage addAttachmentPart(AttachmentPart
AttachmentPart)

Y

35 createAttachmentPart(Object content, String
contentType)

Y

36 getAttachment(SOAPElement element) Y

37 getAttachments(MimeHeaders headers) N

38 getProperty(String property) Y

39 removeAttachments(MimeHeaders headers) Y

40 setContentDescription(String description) Y

41 setProperty(String property, Object value) Y

42 writeTo(OutputStream out) Y

43 Other methods Y

44 SOAPPart addMimeHeader(String name, String value) Y

45 getContentId() N

46 getContentLocation() N

47 getMimeHeader(String name) Y

48 setContent(Source source) Y

49 setContentId(String contentId) N

22. Support Range of the SAAJ Specifications

515

No. Class name Method name/ Field name Support

50 SOAPPart setContentLocation(String contentLocation) N

51 setMimeHeader(String name, String value) Y

52 Other methods Y

Legend:
Y: Supported in the Cosminexus JAX-WS functionality.
N: Not supported in the Cosminexus JAX-WS functionality.

#
This class is not recommended, and therefore, if you use this class, the operations are not guaranteed.

22.1.1 Detail interface
This subsection describes the notes on using the methods of the Detail interface.

• Do not specify null in the arguments of the addDetailEntry(Name name) and
addDetailEntry(QName qname) methods. If null is specified, the operations are not guaranteed.

22.1.2 Node interface
This subsection describes the notes on using the methods of the Node interface.

• You cannot obtain the child node value of the target node of the getValue() method. To obtain the child node
value of the target node, issue the method for the child node.

• You can invoke the recycleNode() method although detachNode() is not invoked for the target node. If
you invoke the method, the executed operations are the same as those for detachNode().

• With the setParentElement(SOAPElement parent) method, you cannot set the nodes belonging to
different DOM Documents in a parent-child relationship.

• If you specify null in the arguments of the setValue(String value) method, null is set up as the value
of the target node.

22.1.3 SOAPBody interface
This subsection describes the notes on using the methods of the SOAPBody interface.

• Do not specify null in the arguments of the following methods. If null is specified, the operations are not
guaranteed.

• addBodyElement(Name name)
• addBodyElement(QName qname)
• addDocument(Document document)
• addFault(Name faultCode, String faultString, Locale locale)
• addFault(Name faultCode, String faultString)
• addFault(QName faultCode, String faultString, Locale locale)
• addFault(QName faultCode, String faultString)

• Do not specify null in the locale argument of the addFault(Name faultCode, String
faultString, Locale locale) and addFault(QName faultCode, String faultString,
Locale locale) methods. If specified, the operations are not guaranteed.

• Specify the fault code defined in the standard specifications in the arguments of the addFault(QName
faultCode, String faultString, Locale locale) and addFault(QName faultCode,

22. Support Range of the SAAJ Specifications

516

String faultString) methods. If you specify a fault code that is not defined in the standard specifications,
the operations are not guaranteed.

• If a null character is set up in the faultString argument of the addFault(QName faultCode,
String faultString, Locale locale) or addFault(QName faultCode, String
faultString) methods and a SOAP fault is sent, null is obtained when the getFaultString() and
getFaultReasonTexts().next() methods are issued for the received SOAP fault.

22.1.4 SOAPElement interface
This subsection describes the notes on using the methods of the SOAPElement interface.

• Do not specify null in the name argument of the addAttribute(Name name, String value)
method. If specified, the operations are not guaranteed.

• Do not specify null in the qname argument of the addAttribute(QName qname, String value)
method. If specified, the operations are not guaranteed.

• Do not specify null in the arguments of the following methods. If null is specified, the operations are not
guaranteed.

• addChildElement(Name name)
• addChildElement(SOAPElement element)
• addChildElement(QName qname)
• addTextNode(String text)
• getAttributeValue(Name name)
• getAttributeValue(QName qname)
• getChildElements(Name name)
• getChildElements(QName qname)
• removeAttribute(Name name)
• removeAttribute(QName qname)
• setElementQName(QName newName)

• Do not specify null or null characters in the localName argument of the following methods. If null or null
characters are specified, the operations are not guaranteed.

• addChildElement(String localName)
• addChildElement(String localName, String prefix)
• addChildElement(String localName, String prefix, String uri)

• Do not specify null or null characters in the uri argument of the addChildElement(String
localName, String prefix, String uri) method. If specified, the operations are not guaranteed.

• Do not specify null in the prefix argument of the addNamespaceDeclaration(String prefix,
String uri) method. If specified, the operations are not guaranteed.

• If null or null characters are specified in the uri argument of the addNamespaceDeclaration(String
prefix, String uri) method, a Namespace declaration is added with a null Namespace URI.

• Do not specify null in the localName argument of the createQName(String localName, String
prefix) method. If specified, the operations are not guaranteed.

• If the getEncodingStyle() method is issued when the encoding style is not specified, null is returned.

• If the getNamespacePrefixes() method is issued for the target SOAPElement belonging to the default
Namespace (xmlns=""), the return value does not include the default Namespace prefix.

• If the prefix specified in the argument for the getNamespaceURI(String prefix) method is not declared
in the target SOAPElement, or if null or null characters are specified in the argument, null is returned.

22. Support Range of the SAAJ Specifications

517

22.1.5 SOAPEnvelope interface
This subsection describes the notes on using the methods of the SOAPEnvelope interface.

• Do not specify null or null characters in the localName argument of the createName(String
localName) and createName(String localName, String prefix, String uri) methods. If
specified, the operations are not guaranteed.

• If null or null characters are specified in the uri argument of the createName(String localName,
String prefix, String uri) method, a Name object is generated with a null Namespace URI.

22.1.6 SOAPFault interface
This subsection describes the notes on using the methods of the SOAPFault interface.

• If the following methods are issued for the SOAPFault objects for which the fault codes are not explicitly
specified, the value that is automatically set up by the Cosminexus JAX-WS functionality is returned:

• getFaultCode()
• getFaultCodeAsName()
• getFaultCodeAsQName()

• If the following methods are issued for the SOAPFault objects for which the fault codes are not explicitly
specified, the fault string "Fault string, and possibly fault code, not set" that is automatically set up by the
Cosminexus JAX-WS functionality is returned:

• getFaultString()
• getFaultReasonTexts()

• In the SOAP 1.1 format, if the getFaultStringLocale() method is issued for the SOAPFault objects for
which the fault codes are not explicitly specified, null is returned.

• In the SOAP 1.2 format, if the getFaultReasonLocales() method or the getFaultStringLocale()
method is issued for the SOAPFault objects for which the fault codes are not explicitly specified, the value that
is automatically set up by the Cosminexus JAX-WS functionality is returned.

• Do not specify null in the arguments of the following methods. If null is specified, the operations are not
guaranteed.

• setFaultCode(Name faultCodeQName)
• setFaultCode(QName faultCodeQName)
• setFaultCode(String faultCode)
• setFaultString(String faultString)
• setFaultString(String faultString, Locale locale)
• setFaultRole(String uri)

• Specify a Namespace-qualified fault code in the arguments of the following methods. If a Namespace-unqualified
fault code is specified with the local name only, the operations are not guaranteed.

• setFaultCode(Name faultCodeQName)
• setFaultCode(QName faultCodeQName)
• setFaultCode(String faultCode)

• Do not specify null in the locale argument of the setFaultString(String faultString,
Locale locale) method. If specified, the operations are not guaranteed.

• Do not specify null in the text argument of the addFaultReasonText(String text, Locale
locale) method. If specified, the operations are not guaranteed.

• If null is specified in the arguments of the getFaultReasonText(Locale locale) method, null is
returned.

22. Support Range of the SAAJ Specifications

518

• The locale obtained by the getFaultReasonLocales() method or the getFaultStringLocale()
method might differ from the locale set up in the xml:lang attribute of the received SOAP fault.

• Specify a string with the URI format in the uri argument of the setFaultRole(String uri) method. If a
string with a non-URI format is specified, the operations are not guaranteed.

22.1.7 SOAPHeader interface
This subsection describes the notes on using the methods of the SOAPHeader interface.

• Do not specify null in the arguments of the addHeaderElement(Name name) and
addHeaderElement(QName qname) methods. If null is specified, the operations are not guaranteed.

• Do not specify null in the supportedSoapUri argument of the addUpgradeHeaderElement(String
supportedSoapUri) method. If specified, the operations are not guaranteed.

• Do not specify null in the actor argument of the examineHeaderElements(String actor) and
extractHeaderElements(String actor) methods. If specified, the operations are not guaranteed.

• If null is specified in the actor argument of the examineMustUnderstandHeaderElements(String
actor) method, Iterator containing all the set up SOAPHeaderElement is returned.

22.1.8 SOAPHeaderElement interface
This subsection describes the notes on using the methods of the SOAPHeaderElement interface.

• If null is specified in the actorURI argument of the setActor(String actorURI) method, a null
actor attribute is set up as the value in the SOAP 1.1 format, and a null role attribute is set up as the value in
the SOAP 1.2 format.

• In the SOAP 1.2 format, if null is specified in the uri argument of the setRole(String uri) method, a
role attribute is set up with a null value.

22.1.9 AttachmentPart class
This subsection describes the notes on using the methods of the AttachmentPart class.

• Even if the MIME header is set up using the addMimeHeader(String name, String value) or
setMimeHeader(String name, String value) methods, the MIME header does not appear on the
sent or received SOAP messages.

• The value specified in the value argument of the addMimeHeader(String name, String value) or
setMimeHeader(String name, String value) methods is set up as the MIME header value.

• The Content-Transfer-Encoding header cannot be obtained with the getAllMimeHeaders()
method. With the Cosminexus JAX-WS functionality, an attachment is always sent in the binary format, and
therefore, the Content-Transfer-Encoding header value of AttachmentPart becomes binary.

• When the getContentLocation() method is used, the operations are not guaranteed.

• When the setContentLocation(String contentLocation) method is used, the operations are not
guaranteed. The Content-Id header set up with the AttachmentPart#setContentId method must be
used instead of the Content-Location header.

• The value specified in the contentType argument of the following methods is set up in the Content-Type
header value. Therefore, you must specify the MIME type suitable to the attachment type. If an invalid MIME
type is specified, the operations are not guaranteed.

• setBase64Content(InputStream content, String contentType)
• setContentType(String contentType)
• setRawContent(InputStream content, String contentType)

22. Support Range of the SAAJ Specifications

519

• setRawContentBytes(byte[] content, int offset, int len, String
contentType)

• Do not specify null or a MIME type that is not defined in the standard specifications in the contentType
argument of the setContent(Object object, String contentType) method. If specified, the
operations are not guaranteed.

• In the first argument of the setContent(Object object, String contentType) method, specify an
object suitable to the MIME type specified in the second argument. If an unsuitable object is specified, the
operations are not guaranteed. Also, if null is specified, the operations are not guaranteed.

• If null or null characters are specified in the contentId argument of the setContentId(String
contentId) method that value is set up in the Content-Id header value.

• Specify the correct offset in the offset argument and the correct size in the len argument of the
setRawContentBytes(byte[] content, int offset, int len, String contentType)
method. If an invalid value is specified, the operations are not guaranteed.

22.1.10 MessageFactory class
This subsection describes the notes on using the methods of the MessageFactory class.

• Do not specify DYNAMIC_SOAP_PROTOCOL in the newInstance(String protocol) method. If
specified, the operations are not guaranteed.

22.1.11 MimeHeader class
This subsection describes the notes on using the methods of the MimeHeader class.

• Do not specify characters defined as unavailable with the MIME headers, such as RFC 822 and RFC 2045, in the
arguments of the MimeHeader(String name, String value) constructor. If specified, the operations
are not guaranteed.

22.1.12 MimeHeaders class
This subsection describes the notes on using the methods of the MimeHeaders class.

• Do not specify null in the value argument of the addHeader(String name, String value) and
setHeader(String name, String value) methods. If specified, the operations are not guaranteed.

• Even if a value is set up in the Content-Length header or Content-Type header using the
addHeader(String name, String value) or setHeader(String name, String value)
methods, the value is overwritten when the message is sent or received.

22.1.13 SAAJResult class
This subsection describes the notes on using the methods of the SAAJResult class.

• Do not specify null in the arguments of the SAAJResult(SOAPMessage message) constructor. If null
is specified, the operations are not guaranteed.

• Do not specify null in the rootNode argument of the SAAJResult(SOAPElement rootNode)
constructor. If specified, the operations are not guaranteed.

22.1.14 SOAPFactory class
This subsection describes the notes on using the methods of the SOAPFactory class.

22. Support Range of the SAAJ Specifications

520

• Do not specify DYNAMIC_SOAP_PROTOCOL in the newInstance(String protocol) method. If
specified, the operations are not guaranteed.

• If null is specified in the arguments of the createElement(Element domElement) method, null is
returned.

• Do not specify a null character in the localName argument of the createElement(String localName,
String prefix, String uri) method. If specified, the operations are not guaranteed.

• If null or a null character is specified in the prefix argument of the createElement(String
localName, String prefix, String uri) method, a SOAPElement object is generated with a
null prefix.

• Do not specify null in the uri argument of the createElement(String localName, String
prefix, String uri) method. If specified, the operations are not guaranteed. Also, if null is specified in
the uri argument, a SOAPElement object is generated with a null Namespace URI.

• Do not specify null in the arguments of the createFault(String reasonText, QName
faultCode) method. If null is specified, the operations are not guaranteed.

• Do not specify a fault code that is not defined in the standard specifications in the faultCode argument of the
createFault(String reasonText, QName faultCode) method. If specified, the operations are not
guaranteed.

• Do not specify null in the localName argument of the createName(String localName) or
createName(String localName, String prefix, String uri) methods. If specified, the
operations are not guaranteed.

• If null or null characters are specified in the uri argument of the createName(String localName,
String prefix, String uri) method, a Name object is generated with a null Namespace URI.

22.1.15 SOAPMessage class
This subsection describes the notes on using the methods of the SOAPMessage class.

• Do not specify null in the arguments of the following methods. If null is specified, the operations are not
guaranteed.

• addAttachmentPart(AttachmentPart AttachmentPart)
• getAttachment(SOAPElement element)
• writeTo(OutputStream out)

• Do not specify a blank AttachmentPart object in the AttachmentPart argument of the
addAttachmentPart(AttachmentPart AttachmentPart) method. If specified, the operations are
not guaranteed.

• In the first argument of the createAttachmentPart(Object content, String contentType)
method, specify an object suitable to the MIME type specified in the second argument. If an unsuitable object is
specified, the operations are not guaranteed. Also, if null is specified, the operations are not guaranteed.

• To reference AttachmentPart from the element value and the href attribute specified in the arguments of the
getAttachment(SOAPElement element) method, code the CID URL schema (RFC 2392 rule)
indicating the existing AttachmentPart. If the CID URL schema indicating a non-existent
AttachmentPart is coded, the operations are not guaranteed.

• When the getAttachments(MimeHeaders headers) method is used, the operations are not guaranteed.
You must obtain AttachmentPart with the SOAPMessage#getAttachments() or
getAttachment(SOAPElement) methods.

• If null is specified in the arguments of the getProperty(String property) method, null is returned.

• The Cosminexus JAX-WS functionality only supports utf-8 as the character encoding for the SOAP messages.
However, if the property value is acquired by specifying SOAPMessage.CHARACTER_SET_ENCODING in the
arguments of the getProperty(String property) method, null might be returned.

• If the target property is not set up with the SOAPMessage#setProperty method, null is returned in the
getProperty(String property) method.

22. Support Range of the SAAJ Specifications

521

• If null is specified in the arguments of the removeAttachments(MimeHeaders headers) method, all
AttachmentPart are deleted.

• If null is specified in the arguments of the setContentDescription(String description) method,
the value is not set up in the Content-Description header. If null is specified, null is set up in the
Content-Description header.

• Specify SOAPMessage.CHARACTER_SET_ENCODING or SOAPMessage.WRITE_XML_DECLARATION in
the property argument of the setProperty(String property, Object value) method. Other
properties, even if specified, are ignored.

• When you specify SOAPMessage.CHARACTER_SET_ENCODING in the property argument of the
setProperty(String property, Object value) method, specify utf-8 in the value argument. If a
value other than utf-8 is specified, the operations are not guaranteed.

• When you specify SOAPMessage.WRITE_XML_DECLARATION in the property argument of the
setProperty(String property, Object value) method, specify "true" or "false". If a value other
than "true" or "false" is specified, the operations are not guaranteed.

• Do not specify null in the property argument of the setProperty(String property, Object
value) method. If specified, the operations are not guaranteed.

• When a SOAP message is sent and received using Dispatch/ Provider, the properties cannot be set with the
setProperty(String property, Object value) method. If you want to set up the properties, send
and receive the SOAP message with SOAPConnection.

22.1.16 SOAPPart class
This subsection describes the notes on using the methods of the SOAPPart class.

• The value specified in the value argument of the addMimeHeader(String name, String value) or
setMimeHeader(String name, String value) methods is set up in the MIME header value.

• Even if the MIME header is set up in SOAPPart using the addMimeHeader(String name, String
value) or setMimeHeader(String name, String value) methods, the MIME header does not
appear on the sent and received SOAP message.

• If a MIME header name that is not specified in the SOAPPart object or null is specified in the arguments of the
getMimeHeader(String name) method, null is returned.

• In the arguments of the setContent(Source source) method, specify a Source object with contents
suitable for both XML and SOAP. If a Source object with invalid contents is specified, the operations are not
guaranteed. Also, if null is specified, the operations are not guaranteed.

• If the following methods are used, the operations are not guaranteed:

• getContentId()
• getContentLocation()
• setContentId(String contentId)
• setContentLocation(String contentLocation)

22.1.17 Support range for using attachments
With a Web Service developed by using Provider Implementation Class or a dispatch-based Web Service client, you
can generate and send or receive SOAP messages with attachments according to the SAAJ specifications. The size and
number of attachments that can be sent and received at a time changes according to the amount of memory of the
execution environment, but there are no restrictions. If you increase the amount of memory, you can also send and
receive large attachments or a large number of attachments at a time.

For details on the memory usage when an attachment is sent and received, see the appendix C.3 Memory usage per
request when attachments are used.

22. Support Range of the SAAJ Specifications

522

(1) MIME type
The MIME types corresponding to the attachments are determined according to the attachment extensions. If the
MIME type of the attachment is not clearly specified, an appropriate MIME type is automatically set up according to
the attachment extension. When the MIME type is clearly specified using methods such as the
AttachmentPart#setContentType() method, you must specify an appropriate MIME type corresponding to
the attachment extension. If an invalid MIME type is specified, the operations are not guaranteed.

The following table lists the appropriate combinations of the attachment extensions and the MIME types. For
extensions other than those listed in the following table, the MIME type used is application/octet-stream.

Table 22‒3: Attachment extensions and MIME types

No. Attachment extensions Corresponding MIME types

1 html, htm text/html

2 txt, text text/plain

3 gif, GIF image/gif

4 ief image/ief

5 jpeg, jpg, jpe, JPG image/jpeg

6 tiff, tif image/tiff

7 xwd image/x-xwindowdump

8 ai, eps, ps application/postscript

9 rtf application/rtf

10 tex application/x-tex

11 texinfo, texi application/x-texinfo

12 t, tr, roff application/x-troff

13 au audio/basic

14 midi, mid audio/midi

15 aifc audio/x-aifc

16 aif, aiff audio/x-aiff

17 wav audio/x-wav

18 mpeg, mpg, mpe video/mpeg

19 qt, mov video/quicktime

20 avi video/x-msvideo

(2) Notes on reading attachments
To read a file and then send or receive the file as an attachment, you must specify the object read using
javax.activation.FileDataSource in the attachment instead of the object read using
java.io.FileInputStream. An example is as follows:

AttachmentPart apPart = request.createAttachmentPart();
FileDataSource source = new FileDataSource("D:\\attachment.txt");
apPart.setDataHandler(new DataHandler(source));
request.addAttachmentPart(apPart);

The operations are not guaranteed if an object read using java.io.FileInputStream is specified.

22. Support Range of the SAAJ Specifications

523

(3) Notes on using DOM APIs
When you use the DOM APIs to create the SOAP messages, do not use the following methods. If used, the operations
are not guaranteed.

• org.w3c.dom.createEntityReference(String name)
• org.w3c.dom.createProcessingInstruction(String target, String data)

(4) Notes on attaching multiple files
To send multiple attachments at one time, you must set up a unique Content-ID for every AttachmentPart
object. If you attempt to send multiple attachments without specifying Content-ID or by specifying duplicated
Content-IDs, only the attachment specified last is sent.

The following is an example of setting up a unique Content-ID for multiple AttachmentPart objects:

AttachmentPart apPart1 = request.createAttachmentPart();
FileDataSource source1 = new FileDataSource("D:\\attachment1.txt");
apPart1.setDataHandler(new DataHandler(source1));
apPart1.setContentId("001");
request.addAttachmentPart(apPart1);

AttachmentPart apPart2 = request.createAttachmentPart();
FileDataSource source2 = new FileDataSource("D:\\attachment2.txt");
apPart2.setDataHandler(new DataHandler(source2));
apPart2.setContentId("002");
request.addAttachmentPart(apPart2);

AttachmentPart apPart3 = request.createAttachmentPart();
FileDataSource source3 = new FileDataSource("D:\\attachment3.txt");
apPart3.setDataHandler(new DataHandler(source3));
apPart3.setContentId("003");
request.addAttachmentPart(apPart3);

22. Support Range of the SAAJ Specifications

524

23 Support Range of the WS-RM
Specifications
This chapter describes the support range of the WS-RM specifications. For details on
the WS-RM 1.2 functionality, see 34. WS-RM 1.2 Functionality.

525

23.1 Support range of the WS-RM 1.2 specifications
The following table describes the support range of the WS-RM 1.2 specifications. Note that the major division in the
table indicates the corresponding location (chapter, section, or subsection) in the WS-RM 1.2 specifications, and the
subdivision indicates the contents of the corresponding location in the WS-RM 1.2 specifications.

Table 23‒1: Support range of the WS-RM 1.2 specifications

Division

SupportMajor
division Subdivision

2.4 Delivery guarantee AtLeastOnce N

AtMostOnce N

ExactlyOnce Y

InOrder N

3 RM element Y

3.1 Extended element/ extended attribute consideration #1 Y

3.2 Piggy-Backing Y

3.3 WS-Addressing usage Y

3.4 Sequence generating Y

3.4 Sequence-generating request wsrm:CreateSequence Y

wsrm:AcksTo#2 A

wsrm:Expires#3 N

wsrm:Offer Y

Extended element/ extended attribute #1 Y

3.4 Sequence-generating response wsrm:CreateSequenceResponse Y

wsrm:Identifier Y

wsrm:Expires#3 N

wsrm:IncompleteSe
quenceBehavior

DiscardEntireSequenc
e

N

DiscardFollowingFirs
tGap

N

NoDiscard Y

wsrm:Accept Y

Extended element/ extended attribute #1 Y

3.5 Sequence closing Y

3.5 Sequence closing request wsrm:CloseSequence Y

wsrm:Identifier Y

wsrm:LastMsgNumber Y

Extended element/ extended attribute #1 Y

23. Support Range of the WS-RM Specifications

526

Division

SupportMajor
division Subdivision

3.5 Sequence closing response wsrm:CloseSequenceResponse Y

wsrm:Identifier Y

Extended element/ extended attribute #1 Y

3.6 Sequence ending Y

3.6 Sequence ending request wsrm:TerminateSequence Y

wsrm:Identifier Y

wsrm:LastMsgNumber Y

Extended element/ extended attribute #1 Y

3.6 Sequence ending response wsrm:TerminateSequenceResponse Y

wsrm:Identifier Y

Extended element/ extended attribute #1 Y

3.7 Sequence Y

Sequence element wsrm:Sequence Y

wsrm:Identifier Y

wsrm:MessageNumber Y

3.8 Ack request Y

3.8 Ack request element wsrm:AckRequested Y

wsrm:Identifier Y

Extended element/ extended attribute #1 Y

3.9 Ack Y

3.9 Ack element wsrm:SequenceAcknowledgement Y

wsrm:Identifier Y

wsrm:AcknowledgementRange Y

wsrm:None#4 A

wsrm:Final Y

wsrm:Nack N

Extended element/ extended attribute #1 Y

4 Fault Y

4 SOAP 1.1 support Y

4 SOAP 1.2 support Y

4.1 wsrm:SequenceFault fault Y

4.2 wsrm:SequenceTerminated fault Y

4.3 wsrm:UnknownSequence fault Y

23. Support Range of the WS-RM Specifications

527

Division

SupportMajor
division Subdivision

4.4 wsrm:InvalidAcknowledgement fault Y

4.5 wsrm:MessageNumberRollover fault Y

4.6 wsrm:CreateSequenceRefused fault Y

4.7 wsrm:SequenceClosed fault Y

4.8 wsrm:WSRMRequired fault N

5 Security threats and countermeasures N

6 Secured sequence N

Legend:
Y: Supported in the Cosminexus WS-RM 1.2 functionality.
N: Not supported in the Cosminexus WS-RM 1.2 functionality.
A: Supported in the Cosminexus WS-RM 1.2 functionality, but with some restrictions.

#1
The extended elements and extended attributes are not added with the Cosminexus WS-RM 1.2 functionality. The extended
elements and extended attributes included in the received messages are ignored.

#2
The only element value that is available is an anonymous URI.

#3
The sequence validity period settings using the wsrm:Expires element is not supported. Set the sequence validity period by
specifying net35rmpInactivityTimeout in the WSDL.

#4
The wsrm:None element is not sent with the Cosminexus WS-RM 1.2 functionality. When there is no Ack to be returned, the
HTTP status code 202 is returned. If Ack is included in a received message, the message is processed normally.

23. Support Range of the WS-RM Specifications

528

23.2 Support range of the WS-RM Policy 1.2
specifications

The following table describes the support range of the WS-RM Policy 1.2 specifications. Note that the major division
in the table indicates the corresponding location (chapter, section, or subsection) in the WS-RM Policy 1.2
specifications, and the subdivision indicates the contents of the corresponding location in the WS-RM Policy 1.2
specifications.

Table 23‒2: Support range of the WS-RM Policy 1.2 specifications

Division

SupportMajor
division Subdivision

2.2 Assertion element /wsrmp:RMAssertion Y

/wsrmp:RMAssertion/@wsp:Optional N

/wsrmp:RMAssertion/wsp:Policy Y

/wsrmp:RMAssertion/wsp:Policy/
wsrmp:SequenceSTR

N

/wsrmp:RMAssertion/wsp:Policy/
wsrmp:SequenceTransportSecurity

N

/wsrmp:RMAssertion/wsp:Policy/
wsrmp:DeliveryAssurance

Y

/wsrmp:RMAssertion/wsp:Policy/
wsrmp:DeliveryAssurance/wsp:Policy

Y

/wsrmp:RMAssertion/wsp:Policy/
wsrmp:DeliveryAssurance/wsp:Policy/
wsrmp:ExactlyOnce

Y

/wsrmp:RMAssertion/wsp:Policy/
wsrmp:DeliveryAssurance/wsp:Policy/
wsrmp:AtLeastOnce

N

/wsrmp:RMAssertion/wsp:Policy/
wsrmp:DeliveryAssurance/wsp:Policy/
wsrmp:AtMostOnce

N

/wsrmp:RMAssertion/wsp:Policy/
wsrmp:DeliveryAssurance/wsp:Policy/
wsrmp:InOrder

N

Extended element/ extended attribute # Y

2.3 Assertion
attachment

/wsdl:definitions/wsdl:service/wsdl:port N

/wsdl:definitions/wsdl:binding Y

/wsdl:definitions/wsdl:binding/wsdl:operation/
wsdl:input

N

/wsdl:definitions/wsdl:binding/wsdl:operation/
wsdl:output

N

/wsdl:definitions/wsdl:binding/wsdl:operation/
wsdl:fault

N

2.5 Sequence security policy N

Legend:
Y: Supported in the Cosminexus WS-RM Policy 1.2 functionality.

23. Support Range of the WS-RM Specifications

529

N: Not supported in the Cosminexus WS-RM Policy 1.2 functionality.

#
The extended elements and extended attributes are not added with the Cosminexus WS-RM Policy 1.2 functionality. The
extended elements and extended attributes included in the received messages are ignored.

23. Support Range of the WS-RM Specifications

530

23.3 com.sun.xml.ws.Closeable class
The following table describes the support range of the com.sun.xml.ws.Closeable class.

Table 23‒3: List of methods of the com.sun.xml.ws.Closeable class

No. Return value
type Method name/Explanation

1 void close()

Explan
ation

To close the sequence and exit, you must invoke the close() method by casting
the port object to the com.sun.xml.ws.Closeable type on the client machine.
You cannot invoke a Web Service method after invoking the close() method. To
communicate again you need to re-acquire the port object.

Except
ion

javax.xml.ws.WebServiceException:
This exception occurs when you use a Web Service method after invoking the
close() method.

23. Support Range of the WS-RM Specifications

531

23.4 Settings using WS-Policy
In the WS-RM 1.2 functionality, unique settings are coded in the WSDL as WS-Policy in addition to the WS-RM
Policy settings. This section describes the properties to be added in the WSDL.

For details on how to add the WS-RM Policy, see 34.4 How to add the WS-RM Policy.

Table 23‒4: Properties to be added in the WSDL

No. Property Explanation Unit Range Default value

1 <net35rmp:Inacti
vityTimeout
Milliseconds =
"set-value"/>

Specifies the sequence validity period. To set
up the re-transmission interval for the
application messages, specify a value that is
equal to or more than the re-transmission
interval for the application messages.

If there is no communication during the set
period

The validity period of the sequence expires
and the sequence closes automatically.

If a message is sent after the validity period
expires

The
SequenceTerminatedException or
UnknownSequenceException
exceptions, which are the child classes of
WebServiceException, occur.

If a message is received after the validity
period expires

The SequenceTerminated fault or
UnknownSequence fault is sent back.

If the communication continues
You must re-acquire the port object and re-
generate the sequence.

If the specified value is out of range
A warning message is output and the
operation is executed with the default value
(KDJR16017-W).

millise
conds

1 to
9,223,372,036,85
4,775,807

600,000

2 <cwsrm:MaxMessag
eNumber
value="set-value"/>

Specifies the maximum number of messages
that can be handled in 1 sequence.

If sent messages exceed the set number of
messages

The
MessageNumberRolloverExceptio
n exception, which is a child class of
WebServiceException, occurs.

If received messages exceed the set number of
messages

The MessageNumberRollover fault is
sent back.

If the communication continues
To terminate the existing sequence, invoke
the close method by casting the port
object to
com.sun.xml.ws.Closeable. Then
you must re-acquire the port object and re-
generate the sequence.

-- 1 to 100,000 10,000

23. Support Range of the WS-RM Specifications

532

No. Property Explanation Unit Range Default value

2 <cwsrm:MaxMessag
eNumber
value="set-value"/>

If the specified value is out of range
A warning message is output and the
operation is executed with the default value
(KDJR16017-W).

-- 1 to 100,000 10,000

3 <metro:AckReques
tInterval
Milliseconds="set-
value"/>

Specifies the interval for sending the Ack
messages that are automatically sent by the
WS-RM 1.2 functionality in the background.
Depending on the timing, an interval that is
about twice the set value might be opened.

If the specified value is out of range, a warning
message is output and the operation is executed
with the default value (KDJR16017-W).

millise
conds

1 to
9,223,372,036,85
4,775,807

2,000

4 <metro:Retransmi
ssionConfig>
<metro:Interval
Milliseconds="set-
value"/>
</
metro:Retransmis
sionConfig>

Specifies the re-transmission interval for the
application messages.

If the specified value is out of range, a warning
message is output and the operation is executed
with the default value (KDJR16017-W).

millise
conds

1 to
9,223,372,036,85
4,775,807

2,000

5 <metro:Retransmi
ssionConfig>
<metro:MaxRetrie
s>set-value</
metro:MaxRetries
>
</
metro:Retransmis
sionConfig>

Specifies the number of re-transmitted
application messages. If the specified re-
transmission count is exceeded, the re-
transmission process is stopped, and the error
that occurred is returned to the application.

If 0 is specified
The re-transmission count becomes
infinite.

If the specified value is out of range
A warning message is output and the
operation is executed with the default value
(KDJR16017-W).

-- 0 to
9,223,372,036,85
4,775,807

3

Legend:
--: None

The following is an example of WS-RM Policy in which the sequence validity period is set at 300,000 milliseconds (5
min) and the maximum number of messages in the sequence is set at 1,000:

 <wsp:Policy wsu:Id="WSRM_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsrmp:RMAssertion>
 <wsp:Policy>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsp:Policy>
 </wsrmp:RMAssertion>
 <wsaw:UsingAddressing/>
 <net35rmp:InactivityTimeout Milliseconds="300000"/>
 <cwsrm:MaxMessageNumber value="1000"/>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

23. Support Range of the WS-RM Specifications

533

24 Support Range of JAX-RS
Specifications
This chapter describes the support range of the JAX-RS specifications that you must
consider when developing RESTful Web services (Web resources).

535

24.1 Support range of JAX-RS 1.1 specifications
This section describes the support range of the JAX-RS 1.1 specifications.

The following table describes the support range of the JAX-RS 1.1 specifications:

Table 24‒1: Support range of the JAX-RS 1.1 specifications

Classification

Support RemarksMajor
classificati

on#
Minor classification

2 Application Built-in
implementation

Y The JAX-RS functionality of Cosminexus supports the
servlet-based mechanism (described in the last paragraph
of section 2.3.2 of the JAX-RS 1.1 specifications). Also,
you do not need to implement the Application when
implementing RESTful Web Services, because the JAX-
RS functionality provides a default built-in Application
implementation (customized implementation of the
Application is not supported). For details on the built-in
Application implementation and deployment, see 3.5.1
Configuring WAR files.

Customized
implementation

N

3.1, 3.3 Request method
identifier

Built-in
implementation

Y The JAX-RS functionality of Cosminexus supports the
following standard request method identifiers defined in
the JAX-RS 1.1 specifications:

• GET annotation
• POST annotation
• PUT annotation
• DELETE annotation
• HEAD annotation

The JAX-RS functionality of Cosminexus does not
support a customized implementation of the request
method identifiers, which are optional in the JAX-RS 1.1
specifications.

Customized
implementation

N

3.1 Root resource class Y For details on the root resource class, see 17.1.1 Root
resource class.

3.1 Life cycle of a root resource class Y For details on the life cycle of a root resource class, see
17.1.1(1) Life cycle.

3.1.2 Injection to the constructor
parameter of a root resource class

Y For details on injection to the constructor parameter
of a root resource class, see

17.1.1(2) Constructors.

For details on the injectable types, or combination with
the DefaultValue annotation, see 17.1.4 Parameter
types.

3.2 Injection to the field and bean
property

Y For details on injection to the field and bean
property, see 17.1.1(3) Field and bean property. For
details on injectable types, or combination with the
DefaultValue annotation, see 17.1.4 Parameter
types.

3.3 Resource method Y For details on the resource method, see 17.1.1(4)
Resource method.

3.3.2 Injection to the parameters of the
resource method

Y For details on injection to the parameter of a resource
method, see 17.1.1(4) (b) Annotation of the parameter.
For details on injectable types, or combination with the

24. Support Range of JAX-RS Specifications

536

Classification

Support RemarksMajor
classificati

on#
Minor classification

3.3.2 Injection to the parameters of the
resource method

Y DefaultValue annotation, see 17.1.4 Parameter
types.

3.3.2(1) Mapping from an entity body of an
HTTP request to entity
parameter

Y For details on entity parameters, see 17.1.1(4) (c)
Entity parameter.

3.3.3 Mapping from a return value to the
HTTP response entity body

Y For details on return value, see 17.1.1(4) (d) Return
value.

3.2, 3.3.4 Exception handling Y For details on exceptions, see 17.1.5 Exception mapping.

3.3.5 Processing of HEAD HTTP and
OPTIONS HTTP requests

Y For details on processing of HEAD HTTP requests, see
24.3.2(3) javax.ws.rs.HEAD annotations. For details on
processing of OPTIONS HTTP requests, see 24.3.2(4)
javax.ws.rs.OPTIONS annotations.

3.4, 3.7.3 URI template and regular
expressions

Y For details on a URI template, see 17.1.6 URI template.

3.4.1 Sub-resource method Y For details on a sub-resource method, see 17.1.1 (5) Sub-
resource method.

3.4.1 Sub-resource locator and Sub-
resource

Y For details on a sub-resource locator, see 17.1.1 (6) Sub-
resource locator. For details on sub-resource class, see
17.1.7 Sub-resource class.

3.5 Media type declaration Y For details on a media type declaration, see 17.1.9 Media
type declaration.

3.6 Annotation inheritance Y For details on an annotation inheritance, see 17.1.11
Annotation inheritance.

3.7 Mapping from an HTTP request to
a resource method

Y --

3.8 Determining a media type of an
HTTP response

Y --

4.2 Entity provider
(Message body
reader and
writer)

Built-in
implementation

Y You do not need to implement an entity provider when
implementing RESTful Web Services, because the JAX-
RS functionality of Cosminexus provides a built-in entity
provider (customized implementation of the entity
provider is not supported).

Built-in entity providers include entity providers that are
supported additionally by the JAX-RS functionality,
besides the entity providers for which support is
mandatory according to the JAX-RS 1.1 specifications.

For details on the built-in entity providers and supported
types, see 17.1.1(4)(c) Entity parameters.

Customized
implementation

N

4.3 Context provider N The JAX-RS functionality of Cosminexus processes the
standard context of the JAX-RS 1.1 specifications
appropriately, even without having to implement a
context provider.

4.4 Exception mapping provider Y For details on the exception mapping provider, see 17.2.2
Exception mapping provider.

5 Context Y The JAX-RS functionality of Cosminexus supports the
standard context type. For details on context, see 24.4
Context.

24. Support Range of JAX-RS Specifications

537

Classification

Support RemarksMajor
classificati

on#
Minor classification

5.2.1 javax.ws.rs.core.Applica
tion

N --

5.2.2 javax.ws.rs.core.UriInfo Y For details on javax.ws.rs.core.UriInfo, see
24.4.1 javax.ws.rs.core.UriInfo.

5.2.3 javax.ws.rs.core.HttpHea
ders

Y For details on javax.ws.rs.core.HttpHeaders,
see 24.4.2 javax.ws.rs.core.HttpHeaders.

5.2.4 javax.ws.rs.core.Request Y For details on javax.ws.rs.core.Request, see
24.4.3 javax.ws.rs.core.Request.

5.2.5 javax.ws.rs.core.Securit
yContext

Y For details on
javax.ws.rs.core.SecurityContext, see
24.4.4 javax.ws.rs.core.SecurityContext.

5.2.6 javax.ws.rs.ext.Provider
s

Y For details on javax.ws.rs.ext.Providers, see
24.4.5 javax.ws.rs.core.ext.Providers.

6.1 javax.servlet.ServletCon
fig

Y For details on javax.servlet.ServletConfig,
see 24.4.6 javax.servlet.ServletConfig.

6.1 javax.servlet.ServletCon
text

Y For details on javax.servlet.ServletContext,
see 24.4.7 javax.servlet.ServletContext.

6.1 javax.servlet.http.HttpS
ervletRequest

Y For details on
javax.servlet.http.HttpServletRequest,
see 24.4.8 javax.servlet.http.HttpServletRequest.

6.1 javax.servlet.http.HttpS
ervletResponse

Y For details on
javax.servlet.http.HttpServletResponse,
see 24.4.9 javax.servlet.http.HttpServletResponse.

6.1 Execution environment based on a
Servlet container (Web container)

Y The JAX-RS functionality provides an execution
environment for RESTful Web Services based on the
servlet container. For details, see also 1.4.2(2) (c)
Application.

6.1 Injection of the types defined in the
servlet specifications

Y See the following additional items:

• javax.servlet.ServletConfig

• javax.servlet.ServletContext

• javax.servlet.http.HttpServletRequest

• javax.servlet.http.HttpServletResponse

6.1 Processing the request entity
streaming and committing a
response within a method

N The JAX-RS functionality of Cosminexus does not
support the operations described in the latter half of the
sub-section 6.1 of the JAX-RS 1.1 specifications.

6.2 Execution environment based on a
Java EE container (EJB container)

N --

7 Runtime delegate Y The JAX-RS functionality of Cosminexus is
implemented according to the runtime delegate
mechanism of the JAX-RS 1.1 specifications.

Apx.A Annotation Y For details on API, see 24.2 Support range of API.

Apx.B HTTP header Y --

JavaDoc API Y For details on API, see 24.2 Support range of API.

24. Support Range of JAX-RS Specifications

538

Legend:
Y: Supported
N: Not supported
--: Not applicable

#:
Indicates the corresponding places (chapters, sections, sub-sections) in the JAX-RS 1.1 specifications.

24. Support Range of JAX-RS Specifications

539

24.2 Support range of API
This section describes the support range of the interfaces and classes of the JAX-RS API and the points you must
consider when using the classes and interfaces of the JAX-RS 1.1 specifications.

The following table describes the support range of the interfaces and classes of the JAX-RS API specifications. For
details on the interfaces and classes, see JAX-RS API documentation.

Table 24‒2: Support range of classes and interfaces of the JAX-RS 1.1 specifications

No. Interfaces or Classes Constructors/Methods/Fields Support

javax.ws.rs package

1 WebApplicationException All methods Y

2 ApplicationPath -- N

3 Consumes -- Y

4 CookieParam -- Y

5 DefaultValue -- Y

6 DELETE -- Y

7 Encoded -- Y

8 FormParam -- Y

9 GET -- Y

10 HEAD -- Y

11 HeaderParam -- Y

12 HttpMethod -- N

13 MatrixParam -- Y

14 OPTIONS -- Y

15 Path -- Y

16 PathParam -- Y

17 POST -- Y

18 Produces -- Y

19 PUT -- Y

20 QueryParam -- Y

javax.ws.rs.core package

21 HttpHeaders getAcceptableMediaTypes() Y

22 getCookies() Y

23 getLanguages() Y

24 getRequestHeader(String name) Y

25 Other than the aforementioned methods Y

26 MultivaluedMap<K,V> All methods Y

27 PathSegment getPath() Y

28 Other than the aforementioned methods Y

24. Support Range of JAX-RS Specifications

540

No. Interfaces or Classes Constructors/Methods/Fields Support

29 Request evaluatePreconditions(java.util.Date
lastModified)

Y

30 evaluatePreconditions(EntityTag eTag) Y

31 evaluatePreconditions(java.util.Date
lastModified, EntityTag eTag)

Y

32 getMethod() Y

33 selectVariant(java.util.List<Variant> variants) Y

34 Other than the aforementioned methods Y

35 Response.StatusType All methods Y

36 SecurityContext isUserInRole(String role) Y

37 Other than the aforementioned methods Y

38 StreamingOutput All methods Y

39 UriInfo getMatchedResources() N

40 getMatchedURIs() N

41 getMatchedURIs(boolean decode) N

42 getPath() Y

43 getPath(boolean decode) Y

44 getPathParameters() Y

45 getPathParameters(boolean decode) Y

46 getPathSegments() Y

47 getPathSegments(boolean decode) Y

48 getQueryParameters() Y

49 getQueryParameters(boolean decode) Y

50 getRequestUri() Y

51 getRequestUriBuilder() Y

52 Other than the aforementioned methods Y

53 Application All methods N

54 CacheControl All methods Y

55 Cookie valueOf(String value) Y

56 Other than the aforementioned methods Y

57 EntityTag Entity(String value) Y

58 valueOf(String value) Y

59 Other than the aforementioned methods Y

60 GenericEntity<T> All methods Y

61 MediaType MediaType(String type, String subtype,
java.util.Map
< String,String> parameters)

Y

24. Support Range of JAX-RS Specifications

541

No. Interfaces or Classes Constructors/Methods/Fields Support

62 MediaType equals(Object obj) Y

63 getParameters() Y

64 isCompatible(MediaType other) Y

65 valueOf(String type) Y

66 Other methods Y

67 NewCookie valueOf(String value) Y

68 Other than the aforementioned methods Y

69 Response created(URI location) Y

70 fromResponse(Response response) Y

71 notModified(EntityTag tag) Y

72 notModified(String tag) Y

73 ok(Object entity, String type) Y

74 seeOther(URI location) Y

75 status(int status) Y

76 temporaryRedirect(URI location) Y

77 Other than the aforementioned methods Y

78 Response.ResponseBuilder build() Y

79 status(int status) Y

80 Other method Y

81 UriBuilder build(Object... values) Y

82 clone() Y

83 fragment(String fragment) Y

84 fromPath(String path) Y

85 fromUri(String uri) Y

86 fromUri(java.net.URI uri) Y

87 host(String host) Y

88 newInstance() Y

89 path(String path) Y

90 port(int port) Y

91 queryParam(String name, Object... values) Y

92 replacePath(String path) Y

93 replaceQuery(String query) Y

94 replaceQueryParam(String name, Object...
values)

Y

95 scheme(String scheme) Y

96 schemeSpecificPart(String ssp) Y

24. Support Range of JAX-RS Specifications

542

No. Interfaces or Classes Constructors/Methods/Fields Support

97 UriBuilder segment(String... segments) Y

98 uri(java.net.URI uri) Y

99 userInfo(String ui) Y

100 Other than the aforementioned methods N

101 Variant All methods Y

102 Variant.VariantListBuild
er

All methods N

103 Response.Status All methods Y

104 Response.Status.Family All methods Y

105 UriBuilderException All methods Y

106 Context -- Y

javax.ws.rs.ext package

107 ContextResolver<T> All methods N

108 ExceptionMapper<E extends
Throwable>

All methods Y

109 MessageBodyReader<T> All methods N

110 MessageBodyWriter<T> All methods N

111 Providers All methods Y

112 RuntimeDelegate.HeaderDe
legate<T>

All methods Y#

113 RuntimeDelegate All methods Y#

114 Provider -- Y

Legend:
Y: Supported by the JAX-RS functionality of Cosminexus
N: Not supported by the JAX-RS functionality of Cosminexus
--: No applicable methods or fields exist

#:
The user never uses directly

24.2.1 HttpHeaders interface
You must note the following points when using the methods of the HttpHeaders interface:

• A return value of the getCookies() method includes the version information of Cookie (Example:
"cookieName=$Version=0;cookieName=cookieValue").

• If you specify a language code other than those laid down in the ISO 639 standards, in the Content-Language
header of a received HTTP message, the operation of the getLanguages() method is not guaranteed.

• When using the getRequestHeader(String name) method, null is returned when you try to acquire a
value of a header that does not exist in the Http request.

24.2.2 PathSegment interface
You must note the following points when using the methods of the PathSegment interface:

24. Support Range of JAX-RS Specifications

543

• When you use the getPath() method, a character code (Example: "%20") in the target path is returned in a
decoded format.

24.2.3 Request interface
You must note the following points when using the methods of the Request interface:

• Do not specify null in the arguments of the following methods. If you specify null, the operation is not
guaranteed.

• evaluatePreconditions(java.util.Date lastModified)
• evaluatePreconditions(EntityTag eTag)
• evaluatePreconditions(java.util.Date lastModified, EntityTag eTag)

• Do not specify the EntityTag of weak in the argument EntityTag eTag of the following methods. If you
specify EntityTag of weak, a ResponseBuilder instance with the HTTP status 412 (Precondition Failed) is
returned.

• evaluatePreconditions(EntityTag eTag)
• evaluatePreconditions(java.util.Date lastModified, EntityTag eTag)

• If the If-None-Match header is set and no matching resource exists, the If-Modified-Since header will
be ingored even if set.

• Do not call the getMethod() method from outside the scope of a request. If you call the getMethod()
method from outside the scope of a request, the operation is not guaranteed.

• Even if you call the selectVariant(java.util.List<Variant> variants) method before calling
either of the four evaluatePreconditions() methods with different arguments, the Vary HTTP header is
not included in the Response.ResponseBuilder object, unlike the explanations in the API documentation
of the JAX-RS 1.1 standard specifications.

24.2.4 SecurityContext interface
You must note the following points when using the methods of the SecurityContext interface:

• Do not specify null in the arguments of the isUserInRole(String role) method. If you specify null,
the operation is not guaranteed.

24.2.5 UriInfo interface
You must note the following points when using the methods of the UriInfo interface:

• The getAbsolutePath() method, unlike the description in the API documentation of the JAX-RS 1.1
standard specifications, is not a shortcut of UriInfo#getBase().resolve(uriInfo.getPath()) but a
shortcut of UriInfo#getBaseUri().resolve(uriInfo.getPath()). No such method as
getBase() exists.

• The operation is not guaranteed if you use the following methods:

• getMatchedResources()
• getMatchedURIs()
• getMatchedURIs(boolean decode)

• The return values of the getPath() and getPath(boolean decode) methods include the matrix
parameter information, and not the query parameter information.

• MultivaluedMap< String, String> acquired by the getPathParameters() and
getPathParameters(boolean decode) methods differs from the description in the API documentation
of the JAX-RS 1.1 standard specifications, and you can change the same.

24. Support Range of JAX-RS Specifications

544

• java.util.List<PathSegment> acquired by the getPathSegments() and
getPathSegments(boolean decode) methods differs from the description in the API documentation of
the JAX-RS 1.1 standard specifications, and you can change the same.

• MultivaluedMap< String, String> acquired by the getQueryParameters() and
getQueryParameters(boolean decode) methods differs from the description in the API documentation
of the JAX-RS 1.1 standard specifications, and you can change the same.

24.2.6 Cookie class
You must note the following points when using the methods of the Cookie class:

• Specify the arguments of the valueOf(String value) method in the following formats. The operation is
not guaranteed if the arguments are specified in a format different from the following formats:

• Cookie.valueOf("$Version=xxxx;name=xxxx;$Path=xxxx;$Domain=xxxx;");#

• Cookie.valueOf("name=xxxx;$Domain=xxxx;$Path=xxxx");#

• Cookie.valueOf("$Version=xxxx;name=xxxx;");#

• Cookie.valueOf("name=xxxx");#

#:
Enter a value of the propertyin xxxx.

24.2.7 EntityTag class
You must note the following points when using the methods of the EntityTag class:

• You cannot generate the EntityTag instance of weak with the EntityTag(String value) constructor.
Do not specify strings such as "W/"tagValue"" in arguments of the EntityTag(String value) constructor.

• When you use the valueOf(String value) method, quote the tag that you want to specify in the method
argument. The operation is not guaranteed if you do not use quotation marks. Note the following specification
example:
String value = "\"entityTag\"";
EntityTag entityTag = EntityTag.valueOf(value);

• When generating the EntityTag instance of weak by using the valueOf(String value) method, add the
capital letter W before the tag to be specified in the argument. Note the following example:
String value = "W/\"weakEntityTag\"";
EntityTag entityTag = EntityTag.valueOf(value);

24.2.8 MediaType class
You must note the following points when using the methods of the MediaType class:

• Use the values that are compliant with the standard specifications. The operation is not guaranteed if you specify
other non-compliant values.

• Do not register multiple identical keys (including strings that differ only in terms of upper case and lower case) in
the map to be specified in the parameters argument of the MediaType(String type, String
subtype, java.util.Map<String, String> parameters) constructor. The operation is not
guaranteed if you register multiple identical keys.

• The keys type, subtype, and parameters, which are the attributes of the MediaType object to be
compared, are not case sensitive when you use the equals(Object obj) method. The value of
parameters is case-sensitive.

• The type and subtype, which are attributes of the MediaType object of an argument are not case sensitive
when you use the isCompatible(MediaType other) method.

24. Support Range of JAX-RS Specifications

545

• Do not use the following characters in arguments of the valueOf(String type) method. If you use the
following characters, the operation is not guaranteed.
: () < > @ , ; : / " [] ? = { }
space, linefeed, carriage return, and horizontal tabulation

24.2.9 NewCookie class
You must note the following points when using the methods of the NewCookie class:

• Specify the arguments of the valueOf(String value) method in the following format. The operation is not
guaranteed if you specify the arguments in a format different from the following formats:

• NewCookie.valueOf("name=xxxx;Version=xxxx;Comment=xxxx;Domain=xxxx;Path=x
xxx;Max-Age=xxxx;Secure");#

• NewCookie.valueOf("name=xxxx;Path=xxxx;Domain=xxxx;Comment=xxxx;Max-
Age=xxxx;Secure");#

• NewCookie.valueOf("name=xxxx;Comment=xxxx;Max-Age=xxxx;Secure");#

• NewCookie.valueOf("name=xxxx;Path=xxxx;Domain=xxxx;Version=xxxx;");#

• NewCookie.valueOf("name=xxxx;Path=xxxx;Domain=xxxx;"); #

• NewCookie.valueOf("name=xxxx;"); #

#:
Enter a value of the property xxxx.

24.2.10 Response class
You must note the following points when using the methods of the Response class:

• Do not specify null in the argument of the fromResponse(Response response) method. If you specify
null, the operation is not guaranteed.

• Do not specify null in the arguments of the following methods. If you specify null, the
IllegalArgumentException is not thrown unlike the description in the API documentation of the JAX-RS
1.1 standard specifications.

• created(URI location)
• notModified(EntityTag tag)
• notModified(String tag)
• seeOther(URI location)
• temporaryRedirect(URI location)

• Specify the values that are compliant with the standard specifications, in the argument type of ok(Object
entity, String type). If you specify other non-compliant values, the operation is not guaranteed.

• Do not specify a number less than 100 or greater than 599 in the arguments of the status(int status)
method. If you specify a number less than 100 or greater than 599, IllegalArgumentException will not
be thrown unlike the description in the API document of the JAX-RS 1.1 standard specifications.

24.2.11 Response.ResponsBuilder class
You must note the following points when using the methods of the Response.ResponsBuilder class:

• After you call build(), unlike the description of the API documentation of the JAX-RS 1.1 standard
specifications, the ResponseBuilder interface will not be set to the ok status but will be reset to the no
content status.

24. Support Range of JAX-RS Specifications

546

• Do not specify a number less than 100 or greater than 599 in the argument of the status(int
status)method. If you specify a number less than 100 or greater than 599,
IllegalArgumentException will not be thrown unlike the description in the API documentation of the
JAX-RS 1.1 standard specifications.

24.2.12 The UriBuilder class
Notes on using the methods of the UriBuilder class are as follows.

Note that the URI of the UriBuilder object in the description is, when calling any method, the URI that is already
built in the UriBuilder object when any of the previous methods were called.

• When using the methods of the UriBuilder class, see the JAX-RS API documentation or RFC 2396, 2732 and
then use the characters and formats that can be used in the arguments of each method. If the characters in an
argument or format of an argument is invalid, an exception might be thrown when calling methods of the
UriBuilder class or the build(Object... values) method. Note that any invalid characters are
automatically percent encoded in the following methods (already percent encoded characters are not further
percent encoded).

• fragment(java.lang.String fragment)
• host(String host)
• path(String path)
• queryParam(java.lang.String name, java.lang.Object... values)
• replacePath(String path)
• replaceQuery(java.lang.String query)
• replaceQueryParam(java.lang.String name, java.lang.Object... values)
• segment(String... segments)
• userInfo(String ui)

• Unknown URIs are not supported. Use the methods of the URI Builder claass only for the hierarchical URIs.

• The template parameters are not supported. The operation is not guaranteed if arguments of the methods contain
template parameters.

• Do not specify arguments in the build(Object... values) method. The operation is not guaranteed if
arguments are specified and then called.

• The order of query parameters is not maintained.

• When using the port(int port) method, no exception is thrown even if you specify a variable value greater
than 65535. The IllegalArgumentException exception, however, is thrown if you specify a variable
value smaller than -1.

• When using the replaceQuery(String query) method, the operation is not guaranteed if nothing is
available to replace with the URI of the UriBuilder object.

• If you specify the query parameter that is not included in the URI of the UriBuilder object in the arguments of
the replaceQueryParam(String name, Object... values) method, the specified parameter is
added to the URI.

• If you specify null in the value arguments of the replaceQueryParam(String name, Object...
values) method, the IllegalArgumentException exception is thrown without eliminating the existing
query parameter, which differs from the description in the API documentation of the JAX-RS 1.1 standard
specifications.

• If you specify null in the arguments of the replacePath(String path) method, the
IllegalArgumentException exception is thrown without eliminating the existing query parameter,
which differs from the description in the API documentation of the JAX-RS 1.1 standard specifications.

24. Support Range of JAX-RS Specifications

547

24.2.13 Provider annotation
You must note the following points when using the Provider annotation:

• You can use the Provider annotation only in a class wherein the ExceptionMapper interface is
implemented.

24. Support Range of JAX-RS Specifications

548

24.3 Annotations
This section describes the details on the annotations of the JAX-RS 1.1 specifications supported by Cosminexus.

24.3.1 Injectable annotation
This subsection describes the Injectable annotations supported by the JAX-RS engine.

(1) Precautions:

(a) When using multiple annotations

You can use only one injectable annotation for a parameter, a field, or a bean property. If you specify multiple
annotations for a parameter, a field, or a bean property, only the annotation on the extreme right side is enabled. If
the annotation on the extreme right does not comply with the JAX-RS 1.1 specifications, all other annotations are
ignored and injection is not performed.

(b) When using for the bean property

When using an injection purpose annotation for a bean property, annotate at the method level for the setter method.

(c) When using for field

In a root resource class or an exception mapping provider, do not reference or change the field annotated by an
injectable annotation from the constructor and the setter method of the bean property.

The injection to a constructor, a field, or a bean property is concurrently performed when the JAX-RS engine
instantiates the root resource class and the exception mapping provider. Therefore, if you reference the field annotated
by an injectable annotation from the constructor and the setter method of bean property, the value acquired is
undetermined. Also, if you change the field annotated by an injectiable annotation, either the injection to the field
fails, or even if the injection succeeds, the value is undetermined.

(2) javax.ws.rs.HeaderParam annotation
Use the javax.ws.rs.HeaderParam annotation to acquire the value of an HTTP header. As the annotation
value, specify the HTTP header name included in the HTTP request.

The following table lists the items for which you can specify the javax.ws.rs.HeaderParam annotation:

Table 24‒3: Items for which you can specify the javax.ws.rs.HeaderParam annotation

Web resource or provider Parameter of
constructor Field bean property Parameter

of method

Root resource class Y Y Y Y

Sub-resource class N N N Y

Exception mapping provider N N N --

Legend:
Y: Can be specified
N: Cannot be specified
--: No applicable parameter exists

For details on the Web resources or providers, see the respective sections in 17. Web Resources and Providers.

(3) javax.ws.rs.CookieParam annotation
Use the javax.ws.rs.CookieParam annotation to acquire the value of HTTP Cookie. As the annotation
value, specify the Cookie name included in the HTTP request.

24. Support Range of JAX-RS Specifications

549

The following table lists the items for which you can specify the javax.ws.rs.CookieParam annotation:

Table 24‒4: Items for which you can specify the javax.ws.rs.CookieParam annotation

Web resource or provider Parameter of
constructor Field bean property Parameter

of method

Application subclass N N N --

Root resource class Y Y Y Y

Sub-resource class N N N Y

Entity provider N N N --

Context provider N N N --

Exception mapping provider N N N --

Legend:
Y: Can be specified
N: Cannot be specified
--: No applicable parameter exists

For details on the Web resources or providers, see the respective sections in 17. Web Resources and Providers.

(4) javax.ws.rs.MatrixParam annotation
Use the javax.ws.rs.MatrixParam annotation to acquire the value of a URI matrix parameter. As the
annotation value, specify the matrix parameter name included in the HTTP request.

The following table lists the items for which you can specify the javax.ws.rs.MatrixParam annotation:

Table 24‒5: Items for which you can specify the javax.ws.rs.Matrix parameter annotation

Web resource or provider Parameter of
constructor Field bean property Parameter

of method

Application sub-class N N N --

Root resource class Y Y Y Y

Sub-resource class N N N Y

Entity provider N N N --

Context provider N N N --

Exception mapping provider N N N --

Legend:
Y: Can be specified
N: Cannot be specified
--: No applicable parameter exists

For details on the Web resources or providers, see the respective sections in 17. Web Resources and Providers.

(5) javax.ws.rs.QueryParam annotation
Use the javax.ws.rs.QueryParam annotation to acquire the value of a URI query parameter. As the
annotation value, specify the query parameter name included in the HTTP request.

The following table lists the items for which you can specify the javax.ws.rs.QueryParam annotation:

24. Support Range of JAX-RS Specifications

550

Table 24‒6: Items for which you can specify the javax.ws.rs.QueryParam annotation

Web resource or provider Parameter of
constructor Field bean property Parameter

of method

Application sub-class N N N --

Root resource class Y Y Y Y

Sub-resource class N N N Y

Entity provider N N N --

Context provider N N N --

Exception mapping provider N N N --

Legend:
Y: Can be specified
N: Cannot be specified
--: No applicable parameter exists

For details on the Web resources or providers, see the respective sections in 17. Web Resources and Providers.

(6) javax.ws.rs.PathParam annotation
Use the javax.ws.rs.PathParam annotation to acquire the value of a URI path. Specify a template parameter as
the annotation value.

The following table lists the items for which you can specify the javax.ws.rs.PathParam annotation:

Table 24‒7: Items for which you can specify the javax.ws.rs.PathParam annotation

Web resource or provider Parameter of
constructor Field bean property Parameter

of method

Application sub-class N N N --

Root resource class Y Y Y Y

Sub-resource class N N N Y

Entity provider N N N --

Context provider N N N --

Exception mapping provider N N N --

Legend:
Y: Can be specified
N: Cannot be specified
--: No applicable parameter exists

For details on the Web resources or providers, see the respective sections in 17. Web Resources and Providers.

(7) javax.ws.rs.FormParam annotation
Use the javax.ws.rs.FormParam annotation to acquire the value of the form parameter included in the entity
body of the HTTP request. Specify the form parameter name as the annotation value.

The following table lists the items for which you can specify the javax.ws.rs.FormParam annotation:

24. Support Range of JAX-RS Specifications

551

Table 24‒8: Items for which you can specify the javax.ws.rs.FormParam annotation

Web resource or provider Parameter of
constructor Field bean property Parameter

of method

Root resource class Y Y Y Y

Sub-resource class N N N Y

Exception mapping provider N N N --

Legend:
Y: Can be specified
N: Cannot be specified
--: No applicable parameter exists

For details on the Web resources or providers, see the respective sections in 17. Web Resources and Providers.

The default upper limit of the count of the form parameters that are included in the entity body is 10000. If the
number of parameters specified in a request exceeds a specific value, an error (KDJJ10042-E) occurs and the
javax.ws.rs.WebApplicationException exception that has 413 set as the HTTP status code is thrown.
The javax.ws.rs.WebApplicationException exception can be handled by an exception mapping
provider. Change the parameter count as and when required by editing the
webserver.connector.limit.max_parameter_count property in the User Property file
(usrconf.properties) of the J2EE server. For details on the User Property file of the J2EE server, see 2.4
usrconf.properties (User Property file of the J2EE server) in the uCosminexus Application Server Definition
Reference Guide.

(8) javax.ws.rs.core.Context annotation
Use the javax.ws.rs.Context annotation to inject the value of a context. The following table lists the items for
which you can specify the javax.ws.rs.Context annotation:

Table 24‒9: Items for which you can specify the javax.ws.rs.Context annotation (1)

Web resource or provider
Context

Application
type

Context
UriInfo
type

Context
HttpHea

ders
type

Context
Request

type

Context
Security
Context

type

Context
Providers

type

Root
resource
class

Parameter of constructor N Y Y Y Y Y

Field N Y Y Y Y Y

bean property N Y Y Y Y Y

Parameter of method N Y Y Y Y Y

Sub-
resource
class

Parameter of constructor N N N N N N

Field N N N N N N

bean property N N N N N N

Parameter of method N Y Y Y Y Y

Exception
mapping
provider

Parameter of constructor N N N N N Y

Field N Y Y Y Y Y

bean property N Y Y Y Y Y

Legend:
Y: Can be specified
N: Cannot be specified

24. Support Range of JAX-RS Specifications

552

Table 24‒10: Items for which you can specify the javax.ws.rs.Context annotation (2)

Web resource or provider
Context

HttpServletRequest
type

HttpServlet
Response

type

ServletContext
type

ServletConfig
type

Root
resource
class

Parameter of constructor Y# Y Y Y

Field Y# Y Y Y

bean property Y# Y Y Y

Parameter of method Y# Y Y Y

Sub-
resource
class

Parameter of constructor N N N N

Field N N N N

bean property N N N N

Parameter of method Y# Y Y Y

Exception
mapping
provider

Parameter of constructor Y# Y Y Y

Field Y# Y Y Y

bean property Y# Y Y Y

Legend:
Y: Can be specified
N: Cannot be specified

#: An entity body or a query parameter cannot be acquired.
When you call the getReader() method of an HttpServletRequest instance injected by the Context annotation,
with the resource method that contains an entity parameter, the java.lang.IllegalStateException that can be
processed by an exception mapping provider is thrown.

(9) javax.ws.rs.DefaultValue annotation
You can use the javax.ws.rs.DefaultValue annotation in combination with the following annotations. When
you use the javax.ws.rs.DefaultValue annotation, you can specify a default value if a value to be injected in
the parameter annotated by the respective annotations does not exist in the HTTP request.

• MatrixParam annotation

• QueryParam annotation

• CookieParam annotation

• HeaderParam annotation

• FormParam annotation

For instance, if a query or a matrix parameter corresponding to an instance does not exist in a URI request, or if a
target form parameter does not exist in the entity body of a request, then the default value that you specified in the
DefaultValue annotation is used.

(10) javax.ws.rs.Encoded annotation
Use the javax.ws.rs.Encoded annotation to disable the automatic URL decoding of a URL encoded value. The
URL encoded values of the parameters, fields, and bean properties annotated by the following injection annotations
are automatically decoded:

• javax.ws.rs.MatrixParam annotation

• javax.ws.rs.QueryParam annotation

• javax.ws.rs.PathParam annotation

24. Support Range of JAX-RS Specifications

553

You can use the javax.ws.rs.Encoded annotation in:

• Root resource class (class level)

• Sub-resource class (class level)

• A constructor of a root resource class (constructor level)

• A constructor parameter of a root resource class (parameter level)

• A resource method, sub-resource method, or a sub-resource locator of a resource class (method level)

• Respective parameters of resource methods and sub-resource methods of a resource class, and of sub-resource
locators (parameter level)

• Field and bean property of a root resource class (field level, property level)

When using at the parameter level, field level, or property level, use the javax.ws.rs.Encoded annotation in
combination with the previously described injectable annotations (javax.ws.rs.MatrixParam,
javax.ws.rs.QueryParam, javax.ws.rs.PathParam).

When using the javax.ws.rs.Encoded annotation at the class level, you can disable the automatic URL
decoding of all the URL encoded values for all the parameters, fields, and bean properties of the concerned class.

When using the javax.ws.rs.Encoded annotation at the constructor level, you can disable the automatic URL
decoding of the URL encoded values for all the parameters of the concerned constructor.

When using the javax.ws.rs.Encoded annotation at the method level, you can disable the automatic URL
decoding of the URL encoded values for all the parameters of the respective resource methods, sub-resource methods,
or sub-resource locators.

24.3.2 Built-in request method identifier
This subsection describes the request method identifiers supported by the JAX-RS engine.

(1) javax.ws.rs.DELETE annotation
The javax.ws.rs.DELETE annotation indicates that an annotated method processes an HTTP DELETE request.
You can use the javax.ws.rs.DELETE annotation in:

• A public method of a root resource class

• A public method of a sub-resource class

(2) javax.ws.rs.GET annotation
The javax.ws.rs.GET annotation indicates that an annotated method processes an HTTP GET request. You can
use the javax.ws.rs.GET annotation in:

• A public method of a root resource class

• A public method of a sub-resource class

(3) javax.ws.rs.HEAD annotation
The javax.ws.rs.HEAD annotation indicates that an annotated method processes an HTTP HEAD request. You
can use the javax.ws.rs.HEAD annotation in:

• A public method of a root resource class

• A public method of a sub-resource class

When an HTTP HEAD request is received, the JAX-RS engine operates in the following priority sequence:

1. Calls a method annotated by the HEAD annotation, if such a method exists.

24. Support Range of JAX-RS Specifications

554

2. Calls a method annotated by the GET annotation, if no method annotated by the HEAD annotation exists. Note that
if the method annotated by the GET annotation returns a value, the return value is ignored.

The following is an example of the root resource class that processes the HTTP HEAD request .

package com.sample.resources;

import javax.ws.rs.HEAD;
import javax.ws.rs.Path;
import javax.ws.rs.core.Response;

//Root resource class
@Path("/root")
public class Resource {

 //Resource method
 @HEAD
 public Response getValue() {

 String customHeader = "foo";
 String customHeaderValue = "bar";
 int httpStatus = 200;

 //Build the Response object by using ResponseBuilder

 return Response.status(httpStatus).header(customHeader,
 customHeaderValue).build();
 }
}

Consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be example, and that the Web application is published on a host named
sample.com. In this example, the HTTP HEAD request corresponding to the URL http://sample.com/
example/root is dispatched to the getValue() method. Even if the Response object returned by the
getValue() method contains an entity body, the object is ignored.

(4) javax.ws.rs.OPTIONS annotation
The javax.ws.rs.OPTIONS annotation indicates that an annotated method processes an HTTP OPTIONS
request. You can use the javax.ws.rs.OPTIONS annotation in:

• A public method of a root resource class

• A public method of a sub-resource class

The JAX-RS engine handles the HTTP OPTIONS request as follows:

1. Calls a method annotated by the javax.ws.rs.OPTIONS annotation.

2. If a method annotated by the javax.ws.rs.OPTIONS annotation does not exist, the JAX-RS engine responds
automatically by using the annotation information of the Web resource.

The following is an example of the root resource class that processes the HTTP OPTIONS request:

package com.sample.resources;

import javax.ws.rs.OPTIONS;
import javax.ws.rs.Path;
import javax.ws.rs.core.Response;

//Root resource class
@Path("/root")
public class Resource {

 //Resource method
 @OPTIONS
 public Response getValue() {
 String entity = "Some Contents";
 String customHeader = "foo";
 String customHeaderValue = "bar";
 int httpStatus = 200;

 //Build the Response object by using ResponseBuilder

24. Support Range of JAX-RS Specifications

555

 return Response.status(httpStatus).header(customHeader,
 customHeaderValue).entity(entity).build();

 }
}

Consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be example, and that the Web application is published on a host named
sample.com. In this example, the HTTP OPTIONS request corresponding to the URL http://sample.com/
example/root is dispatched to the getValue() method.

(5) javax.ws.rs.POST annotation
The javax.ws.rs.POST annotation indicates that an annotated method processes an HTTP POST request. You
can use the javax.ws.rs.POST annotation in:

• A public method of a root resource class

• A public method of a sub-resource class

(6) javax.ws.rs.PUT annotation
The javax.ws.rs.PUT annotation indicates that an annotated method processes an HTTP PUT request. You can
use the javax.ws.rs.PUT annotation in:

• A public method of a root resource class

• A public method of a sub-resource class

24.3.3 Path specifying an annotation
This subsection describes a path specifying an annotation supported by the JAX-RS engine.

(1) javax.ws.rs.Path annotation
The javax.ws.rs.Path annotation specifies the path of a resource. The annotated class is considered as a root
resource class when you use the javax.ws.rs.Path annotation at the class level. The annotated method is
considered as a sub-resource method or a sub-resource locator when you use the javax.ws.rs.Path annotation at
the method level. You can use the javax.ws.rs.Path annotation in:

• A root resource class (class level)

• A public method (method level) annotated by the request method identifier of a resource class (root resource class
or sub-resource class): This is a sub-resource method.

• A public method (method level) that is not annotated by the request method identifier of a resource class (root
resource class or sub-resource class): This method is a sub-resource locator.

24.3.4 Annotation for declaring the media type
This subsection describes the annotations for declaring the media types, supported by the JAX-RS engine.

(1) javax.ws.rs.Consumes annotation
The javax.ws.rs.Consumes annotation specifies a list of MIME media types supported by a Web resource in an
HTTP request. You can use the javax.ws.rs.Consumes annotation in:

• A root resource class (class level)

• A resource method (method level)

24. Support Range of JAX-RS Specifications

556

• A sub-resource method (method level)

• A sub-resource class (class level)

The javax.ws.rs.Consumes annotation is ignored if used in the exception mapping provider.

(2) javax.ws.rs.Produces annotation
The javax.ws.rs.Produces annotation specifies a list of MIME media types supported by a Web resource in an
HTTP response. You can use the javax.ws.rs.Produces annotation in:

• A root resource class (class level)

• A resource method (method level)

• A sub-resource method (method level)

• A sub-resource class (class level)

The javax.ws.rs.Produces annotation is ignored if used in the exception mapping provider.

24. Support Range of JAX-RS Specifications

557

24.4 Context
With the root resource class, sub-resource class, or an exception mapping provider, you can use the Context
annotation to acquire the context defined according to the JAX-RS 1.1 specifications. The JAX-RS engine supports
the following types of context:

• javax.ws.rs.core.UriInfo
• javax.ws.rs.core.HttpHeaders
• javax.ws.rs.core.Request
• javax.ws.rs.core.SecurityContext
• javax.ws.rs.core.ext.Providers
• javax.servlet.ServletConfig
• javax.servlet.ServletContext
• javax.servlet.http.HttpServletRequest
• javax.servlet.http.HttpServletResponse

Although the information included in the context differs for each HTTP request, because the provider instances are
singleton, the information included in javax.ws.rs.core.ext.Providers is always the same for each WAR
file.

The following subsection describes the types of context supported by the JAX-RS engine.

24.4.1 javax.ws.rs.core.UriInfo
The javax.ws.rs.core.UriInfo contains each component (query parameter or matrix parameter) that
configures a URI and provides information about each HTTP request. Note that you can acquire the post-
normalization information by using each method of the javax.ws.rs.core.UriInfo context.

The following example shows the usage of javax.ws.rs.core.UriInfo that is injected in the fields of a root
resource class:

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;

//Root resource class
@Path("/root")
public class Resource {
 //A field in which the UriInfo is injected by using the Context annotation
 private @Context UriInfo uriInfo;

 //Resource method
 @GET
 public String getValue() {
 String value = this.uriInfo.getQueryParameters().getFirst("query");
 return value;
 }
}

Consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be example, and that the Web application is published on a host named
sample.com. In this example, with the HTTP GET request corresponding to the URL , first, the
javax.ws.rs.core.UriInfo context is injected into the uriInfo field and then the getValue() method
that can process the HTTP GET request is called. Therefore, if you acquire the query parameter query from the
uriInfo field by using the getValue() method, the value 10 is acquired.

24. Support Range of JAX-RS Specifications

558

24.4.2 javax.ws.rs.core.HttpHeaders
The javax.ws.rs.core.HttpHeaders contains the HTTP header of an HTTP request.

The following example shows the usage of javax.ws.rs.core.HttpHeaders that is injected into the field of a
root resource class:

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.HttpHeaders;

//Root resource class
@Path("/root")
public class Resource {
 //A field in which the HttpHeaders is injected by using the Context annotation
 private @Context HttpHeaders httpHeaders;

//Resource method
 @GET
 public String getValue () {
 String value = this.httpHeaders.getRequestHeader("Accept").get(0);
 return value;
 }
}

Consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be example, and that the Web application is published on a host
named sample.com. In the above example, with the HTTP GET request corresponding to the URL http://
sample.com/example/root wherein application/xml is specified in the HTTP Accept header, first, the
javax.ws.rs.core.HttpHeaders context is injected into the httpHeaders field and then the
getValue() method that can process the HTTP GET request is called. Therefore, if you acquire the Accept-
HTTP header value from the httpHeaders field by using the getValue() method, the application/xml
value is acquired.

24.4.3 javax.ws.rs.core.Request
The javax.ws.rs.core.Request provides the functionality required for the Content Negotiation laid down in
RFC 2616.

The following example describes the usage of javax.ws.rs.core.Request that is injected into the field of a
root resource class:

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.EntityTag;
import javax.ws.rs.core.Request;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.ResponseBuilder;

//Root resource class
@Path("/root")
public class Resource {
 //field in which the Request is injected by using the Context annotation
 private @Context Request request;
 //HTTP Entity Tag to be used in the content negotiation
 private EntityTag eTag = new EntityTag("a-resource-status-specific-tag");

 //Resource method
 @GET
 public Response getData() {
ResponseBuilder rb = null;
 //perform the content negotiation (evaluation of preconditions)
 // null if matched with the precondition, if not matched,
 // the ResponseBuilder object is acquired in which
 // a suitable ETag HTTP header or a status code (412: Precondition Failed) is set
 rb = request.evaluatePreconditions(this.eTag);

24. Support Range of JAX-RS Specifications

559

 if (rb != null) {
 //if not matched with the precondition, generate an HTTP response
 // from the ResponseBuilder object and return the response as it is
 return rb.build();
 } else {
 //if matched with the precondition, return the request data
 String data = "Some Information";
 return Response.ok().entity(data).build();
 }
 }
}

Consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be example, and that the Web application is published on a host named
sample.com. In the above example, with the HTTP GET request corresponding to the URL http://sample.com/
example/root in which a-resource-status-specific-tag is specified in the If-Match HTTP
header, first, the javax.ws.rs.core.Request context is injected into the request field and then the
getData() method that can process the HTTP GET request is called. For this, content negotiation (in the above
example, comparison between HTTP EntityTag of the resource and the If-Match HTTP header of the HTTP
request) is performed with the getData() method and the value Some Information is acquired.

24.4.4 javax.ws.rs.core.SecurityContext
The javax.ws.rs.core.SecurityContext context saves the security information related to the HTTP
request being processed.

The following example shows the usage of javax.ws.rs.core.SecurityContext that is injected into the
field of a root resource class:

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.SecurityContext;

//Root resource class
@Path("/root")
public class Resource {
 //A field in which the SecurityContext is injected by using the Context annotation
 private @Context SecurityContext securityContext;

 //Resource method
 @GET
 public String getValue () {
 String value = "Authentication Scheme: "
 + this.securityContext.getAuthenticationScheme()
 + ", User Principal: " + this.securityContext.getUserPrincipal()
 + ", Is secure: " + this.securityContext.isSecure()
 + ", Is user in role: " + this.securityContext.isUserInRole("admin");

 return value;
 }
}

The following is an example of web.xml containing the security information:

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>
 ...
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Test Resource</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>

24. Support Range of JAX-RS Specifications

560

 <realm-name>jaxrs_server</realm-name>
 </login-config>
 <security-role>
 <role-name>admin</role-name>
 </security-role>
</web-app>

Consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be example, and that the Web application is published on a host named
sample.com. In the above example, with the HTTP GET request corresponding to the URL http://sample.com/
example/root in which an appropriate authentication information is specified, first, the
javax.ws.rs.core.SecurityContext context is injected into the securityContext field and then the
getValue() method that can process the HTTP GET request is called. With the getValue() method, the
security information is acquired based on the web.xml settings and the actual authentication information.

24.4.5 javax.ws.rs.core.ext.Providers
The javax.ws.rs.core.ext.Providers saves the providers that operate in a deployed Web resource.

The following example describes the usage of javax.ws.rs.core.ext.Providers that is injected into the
field of a root resource class:

package com.sample.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;
import javax.ws.rs.ext.Providers;

//Root resource class
@Path("root")
public class Resource{

 //A field in which the Providers is injected by using the Context annotation
 private @Context Providers providers;

 //resource method
 @GET
 public String getValue() {
 //acquire the exception mapping provider from the providers field
 return this.providers.getExceptionMapper(RuntimeException.class);
 }
}

Consider the context root of the Web application (WAR file) containing the exception mapping provider
com.sample.providers.EntityProviderReader that can process the root resource class
com.sample.resources.Resource and the java.lang.RuntimeException to be example and that the
Web application is published on a host named sample.com. In the above example, with the HTTP GET request
corresponding to the URL http://sample.com/example/root, first, the
javax.ws.rs.core.ext.Providers context is injected into the providers field and then the
getValue() method that can process the HTTP GET request is called. Therefore, if you use the getValue()
method and acquire the exception mapping provider that can process the java.lang.RuntimeException from
the providers field, the com.sample.providers.EntityProviderReader instance is acquired.

24.4.6 javax.servlet.ServletConfig
The javax.servlet.ServletConfig class is defined based on the Servlet 3.0 specifications.

The following example shows the usage of javax.servlet.ServletConfig that is injected to the field of a
root resource class:

package com.sample.resources;

import javax.servlet.ServletConfig;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

24. Support Range of JAX-RS Specifications

561

import javax.ws.rs.core.Context;

//Root resource class
@Path("/root")
public class Resource {
 //A field in which the ServletConfig is injected by using the Context annotation
 private @Context ServletConfig config;

 //Resource method
 @GET
 public String getValue() {
 return this.config.getInitParameter("TestParam");
 }
}

The following is an example of web.xml that contains an additional initialization parameter (init-param
element):

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>
 <servlet>
 <servlet-name>CosminexusJaxrsServlet</servlet-name>
 <servlet-class>com.cosminexus.jersey.spi.container.servlet.ServletContainer</
servlet-class>
 <init-param>
 <param-name>com.cosminexus.jersey.config.property.packages</param-name>
 <param-value>com.sample.resources</param-value>
 </init-param>
 <init-param>
 <param-name>TestParam</param-name>
 <param-value>TestValue</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxrsServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be example, and that the Web application is published on a host named
sample.com. In the above example, with the HTTP GET request corresponding to the URL http://sample.com/
example/root, first, the javax.servlet.ServletConfig context is injected in the config field and then
the getValue() method that can process the HTTP GET request is called. Therefore, if you use the getValue()
method and acquire the initialization parameter TestParam from the config field, the value TestValue is
acquired.

24.4.7 javax.servlet.ServletContext
The javax.servlet.ServletContext class is defined based on the Servlet 3.0 specifications.

The following example shows the usage of javax.servlet.ServletContext that is injected in the field of a
root resource class:

package com.sample.resources;

import javax.servlet.ServletContext;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;

//Root resource class
@Path("/root")
public class Resource {

 //A field in which the ServletContext is injected by using the Context annotation
 private @Context ServletContext context;

 //Resource method
 @GET
 public String getValue() {
 return this.context.getInitParameter("Hitachi");

24. Support Range of JAX-RS Specifications

562

 }
}

The following is an example of web.xml that contains the initialization parameter (context-param element) of
the context scope:

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>
 ...
 <context-param>
 <param-name>TestParam</param-name>
 <param-value>TestValue</param-value>
 </context-param>
</web-app>

Consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be example, and that the Web application is published on a host named
sample.com. In the above example, with the HTTP GET request corresponding to the URL http://sample.com/
example/root, first, the javax.servlet.ServletContext context is injected in the context field and then
the getValue() method that can process the HTTP GET request is called. Therefore, if you use the getValue()
method and acquire the initialization parameter TestParam of the context scope from the context field, the value
TestValue is acquired.

24.4.8 javax.servlet.http.HttpServletRequest
The javax.servlet.http.HttpServletRequest class is defined based on the Servlet 3.0 specifications.

The following example shows the usage of javax.servlet.http.HttpServletRequest that is injected into
the field of a root resource class:

package com.sample.resources;

import javax.servlet.http.HttpServletRequest;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;

//Root resource class
@Path("/root")
public class Resource {

 //A field in which the HttpServletRequest is injected by using the Context annotation
 private @Context HttpServletRequest httpRequest;

 //Resource method
 @GET
 public String getValue() {
 return this.httpRequest.getParameter("Hitachi");

 }
}

Consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be example, and that the Web application is published on a host named
sample.com. In the above example, with the HTTP GET request corresponding to the URL http://sample.com/
example/root?TestParam=TestValue, first, the javax.servlet.http.HttpServletRequest
context is injected in the HttpRequest field and then the getValue() method that can process the HTTP GET
request is called. Therefore, if you acquire the request parameter TestParam from the httpRequest field by
using the getValue() method, the value TestValue is acquired.

24.4.9 javax.servlet.http.HttpServletResponse
The javax.servlet.http.HttpServletResponse class is defined based on the Servlet 3.0 specifications.

The following example shows the usage of javax.servlet.http.HttpServletResponse that is injected
into the field of a root resource class:

24. Support Range of JAX-RS Specifications

563

package com.sample.resources;

import java.io.IOException;
import javax.servlet.http.HttpServletResponse;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;

//Root resource class
@Path("/root")
public class Resource {

 //A field in which the HttpServletResponse is injected by using the Context
annotation
 private @Context HttpServletResponse httpResponse;

 //Resource method
 @GET
 public void getValue() throws IOException {

 String entity = "Response mentioned using HttpServletResponse";

 httpResponse.setHeader("abc","xyz");
 httpResponse.getOutputStream().write(entity.getBytes());
 httpResponse.getOutputStream().flush();
 httpResponse.getOutputStream().close();

 return ;
 }
}

Consider the context root of the Web application (WAR file) containing the root resource class
com.sample.resources.Resource to be example, and that the Web application is published on a host named
sample.com. In the above example, with the HTTP GET request corresponding to the URL http://
sample.com/example/root, first, javax.servlet.http.HttpServletResponse is injected in the
HttpResponse field and then the getValue() method that can process the HTTP GET request is called.
Therefore, the location where the HttpResponse class is used for building a response, and the getValue()
method of the root resource class com.sample.resources.Resource is the same.

24. Support Range of JAX-RS Specifications

564

25 Support Range of the Client APIs
for RESTful Web Services
This chapter describes the specifications and the support range of the client APIs for
RESTful Web Services.

Note that in this chapter, the client APIs for RESTful Web Services are referred to as
client APIs.

565

25.1 Support range of the client API interfaces and
classes

This section describes the support range of the interfaces and classes of the client APIs. The following table lists the
support range of the client API interfaces and classes.

Table 25‒1: Support range of the client API interfaces and classes

No. Interface or class Constructor/method/field

com.cosminexus.jersey.api.client package

1 Client create()

2 create(ClientConfig cc)

3 destroy()

4 getProperties()

5 handle(ClientRequest request)

6 resource(String u)

7 resource(URI u)

8 setChunkedEncodingSize(Integer chunkSize)

9 setConnectTimeout(Integer interval)

10 setFollowRedirects(Boolean redirect)

11 setReadTimeout(Integer interval)

12 ClientHandlerException Method of the parent class#1

13 ClientRequest clone()

14 create()

15 getEntity()

16 getHeaders()

17 getHeaderValue(Object headerValue)

18 getMethod()

19 getProperties()

20 getPropertyAsFeature(String name)

21 getPropertyAsFeature(String name, boolean defaultValue)

22 getURI()

23 setEntity(Object entity)

24 setMethod(String method)

25 setURI(java.net.URI uri)

26 ClientRequest.Builder accept(MediaType... types)

27 accept(String... types)

28 acceptLanguage(Locale... locales)

29 acceptLanguage(String... locales)

25. Support Range of the Client APIs for RESTful Web Services

566

No. Interface or class Constructor/method/field

30 ClientRequest.Builder build(URI uri, String method)

31 cookie(Cookie cookie)

32 entity(Object entity)

33 entity(Object entity, MediaType type)

34 entity(Object entity, String type)

35 header(String name, Object value)

36 type(MediaType type)

37 type(String type)

38 ClientResponse bufferEntity()

39 close()

40 getAllow()

41 getClient()

42 getClientResponseStatus()

43 getCookies()

44 getEntity(Class<T> c)

45 getEntity(GenericType<T> gt)

46 getEntityInputStream()

47 getEntityTag()

48 getHeaders()

49 getLanguage()

50 getLastModified()

51 getLength()

52 getLocation()

54 getResponseDate()

55 getStatus()

56 getType()

57 hasEntity()

58 ClientResponse.Status ACCEPTED

59 BAD_GATEWAY

60 BAD_REQUEST

61 CONFLICT

62 CREATED

63 EXPECTATION_FAILED

64 FORBIDDEN

65 FOUND

66 GATEWAY_TIMEOUT

25. Support Range of the Client APIs for RESTful Web Services

567

No. Interface or class Constructor/method/field

67 ClientResponse.Status GONE

68 HTTP_VERSION_NOT_SUPPORTED

69 INTERNAL_SERVER_ERROR

70 LENGTH_REQUIRED

71 METHOD_NOT_ALLOWED

72 MOVED_PERMANENTLY

73 NO_CONTENT

74 NON_AUTHORITIVE_INFORMATION

75 NOT_ACCEPTABLE

76 NOT_FOUND

77 NOT_IMPLEMENTED

78 NOT_MODIFIED

79 OK

80 PARTIAL_CONTENT

81 PAYMENT_REQUIRED

82 PRECONDITION_FAILED

83 PROXY_AUTHENTICATION_REQUIRED

84 REQUEST_ENTITY_TOO_LARGE

85 REQUEST_TIMEOUT

86 REQUEST_URI_TOO_LONG

87 REQUESTED_RANGE_NOT_SATIFIABLE

88 RESET_CONTENT

89 SEE_OTHER

90 SERVICE_UNAVAILABLE

91 TEMPORARY_REDIRECT

92 UNAUTHORIZED

93 UNSUPPORTED_MEDIA_TYPE

94 USE_PROXY

95 fromStatusCode(int statusCode)

96 getFamily()

97 getReasonPhrase()

98 getStatusCode()

99 toString()

100 valueOf(String name)

101 values()

102 GenericType GenericType()

25. Support Range of the Client APIs for RESTful Web Services

568

No. Interface or class Constructor/method/field

103 GenericType GenericType(Type genericType)

104 getRawClass()

105 getType()

106 UniformInterfaceException getResponse()

107 WebResource accept(MediaType... types)

108 accept(String... types)

109 acceptLanguage(Locale... locales)

110 acceptLanguage(String... locales)

111 cookie(Cookie cookie)

112 delete()

113 delete(Class<T> c)

114 delete(Class<T> c, Object requestEntity)

115 delete(GenericType<T> gt)

116 delete(GenericType<T> gt, Object requestEntity)

117 delete(Object requestEntity)

118 entity(Object entity)

119 entity(Object entity, MediaType type)

120 entity(Object entity, String type)

121 get(Class<T> c)

122 get(GenericType<T> gt)

123 getRequestBuilder()

124 getURI()

125 getUriBuilder()

126 head()

127 header(String name, Object value)

128 method(String method)

129 method(String method, Class<T> c)

130 method(String method, Class<T> c, Object requestEntity)

131 method(String method, GenericType<T> gt)

132 method(String method, GenericType<T> gt, Object requestEntity)

133 method(String method, Object requestEntity)

134 options(Class<T> c)

135 options(GenericType<T> gt)

136 path(String path)

137 post()

138 post(Class<T> c)

25. Support Range of the Client APIs for RESTful Web Services

569

No. Interface or class Constructor/method/field

139 WebResource post(Class<T> c, Object requestEntity)

140 post(GenericType<T> gt)

141 post(GenericType<T> gt, Object requestEntity)

142 post(Object requestEntity)

143 put()

144 put(Class<T> c)

145 put(Class<T> c, Object requestEntity)

146 put(GenericType<T> gt)

147 put(GenericType<T> gt, Object requestEntity)

148 put(Object requestEntity)

149 queryParam(String key, String value)

150 queryParams(MultivaluedMap<String, String> params)

151 type(MediaType type)

152 type(String type)

153 uri(java.net.URI uri)

154 WebResource.Builder accept(MediaType... types)

155 accept(String... types)

156 acceptLanguage(Locale... locales)

157 acceptLanguage(String... locales)

158 cookie(Cookie cookie)

159 delete()

160 delete(Class<T> c)

161 delete(Class<T> c, Object requestEntity)

162 delete(GenericType<T> gt)

163 delete(GenericType<T> gt, Object requestEntity)

164 delete(Object requestEntity)

165 entity(Object entity)

166 entity(Object entity, MediaType type)

167 entity(Object entity, String type)

168 get(Class<T> c)

169 get(GenericType<T> gt)

170 head()

171 header(String name, Object value)

172 method(String method)

173 method(String method, Class<T> c)

174 method(String method, Class<T> c, Object requestEntity)

25. Support Range of the Client APIs for RESTful Web Services

570

No. Interface or class Constructor/method/field

175 WebResource.Builder method(String method, GenericType<T> gt)

176 method(String method, GenericType<T> gt, Object requestEntity)

177 method(String method, Object requestEntity)

178 options(Class<T> c)

179 options(GenericType<T> gt)

180 post()

181 post(Class<T> c)

182 post(Class<T> c, Object requestEntity)

183 post(GenericType<T> gt)

184 post(GenericType<T> gt, Object requestEntity)

185 post(Object requestEntity)

186 put()

187 put(Class<T> c)

188 put(Class<T> c, Object requestEntity)

189 put(GenericType<T> gt)

190 put(GenericType<T> gt, Object requestEntity)

191 put(Object requestEntity)

192 type(MediaType type)

193 type(String type)

com.cosminexus.jersey.api.client.config package

194 DefaultClientConfig PROPERTY_BUFFER_RESPONSE_ENTITY_ON_EXCEPTION

195 PROPERTY_CHUNKED_ENCODING_SIZE

196 PROPERTY_CONNECT_TIMEOUT

197 PROPERTY_FOLLOW_REDIRECTS

198 PROPERTY_READ_TIMEOUT

199 getPropertyAsFeature(String featureName)

200 getFeatures()

201 getFeature(String featureName)

202 getProperties()

203 getProperty(String propertyName)

com.cosminexus.jersey.client.urlconnection package

204 HTTPSProperties PROPERTY_HTTPS_PROPERTIES

205 HTTPSProperties()

206 HTTPSProperties(HostnameVerifier hv)

207 HTTPSProperties(HostnameVerifier hv, SSLContext c)

208 getHostnameVerifier()

25. Support Range of the Client APIs for RESTful Web Services

571

No. Interface or class Constructor/method/field

209 HTTPSProperties getSSLContext()

com.cosminexus.jersey.core.util package

210 MultivaluedMapImpl#2 MultivaluedMapImpl()

211 add(String key, String value)

212 getFirst(String key)

213 putSingle(String key, String value)

#1
The ClientHandlerException class is a derived class of the RuntimeException class. Use the
ClientHandlerException class within the scope of the methods of the RuntimeException class.

#2
For details on the constructor and method specifications of the MultivaluedMapImpl class, see the documentation for the
JAX-RS APIs. For details on the notes, see 25.14 Specifications for the constructors and methods of the MultivaluedMapImpl
class and notes.

25.1.1 Supported properties and features
This subsection describes the properties and features supported by the client APIs.

(1) Features
The following table lists the features and data types supported by the JAX-RS engine.

Table 25‒2: Features and data types supported by the JAX-RS engine

No. Feature Data type

1 com.sun.jersey.api.json.POJOMappingFeature
(JSONConfiguration.FEATURE_POJO_MAPPING)

Boolean

You can use this feature by adding the same to a changeable feature map. For details on how to use this feature, see
getFeatures() method.

(2) Properties
The following table lists the properties and data types supported by the JAX-RS engine.

Table 25‒3: Properties and data types supported by the JAX-RS engine

No. Property Data type

1 com.sun.jersey.client.property.followRedirects
(ClientConfig.PROPERTY_FOLLOW_REDIRECTS)

Boolean

2 com.sun.jersey.client.property.readTimeout
(ClientConfig.PROPERTY_READ_TIMEOUT)

Integer

3 com.sun.jersey.client.property.connectTimeout
(ClientConfig.PROPERTY_CONNECT_TIMEOUT)

Integer

4 com.sun.jersey.client.property.chunkedEncodingSize
(ClientConfig.PROPERTY_CHUNKED_ENCODING_SIZE)

Integer

5 com.sun.jersey.client.property
.bufferResponseEntityOnException

Boolean

25. Support Range of the Client APIs for RESTful Web Services

572

No. Property Data type

5 (ClientConfig.PROPERTY_BUFFER_RESPONSE_ENTITY_ON_EXCEPTION) Boolean

6 com.sun.jersey.client.impl.urlconnection
.httpsProperties
(HTTPSProperties.PROPERTY_HTTPS_PROPERTIES)

HTTPSProperties

You can use these properties by adding the same to a changeable property map. For details on how to use these
properties, see the following methods:

• Client class
getProperties() method

• ClientRequest class
getProperties() method

• DefaultClientConfig class
getProperties() method

25.1.2 Information included in the ClientRequest class and the Web
resource class

The following table describes the information included in the ClientRequest class and the Web resource class.

Table 25‒4: Information included in the ClientRequest class and the Web resource class

Class Included information

ClientRequest class Web resource URI

Name of an HTTP method

Entity body of an HTTP request

HTTP header

Property map

Web resource class Web resource URI

Entity body of an HTTP request

HTTP header

25. Support Range of the Client APIs for RESTful Web Services

573

25.2 Method specifications and notes for the Client class
This section describes the specifications for the methods of the Client class and the notes on using the methods.

create() method

Description
This method generates a client (Client object).

Syntax
public static Client create()

Parameter
None.

Return value
The method returns the generated client.

Notes

• The execution result of this method is the same as when you specify only the generated
DefaultClientConfig object in the cc parameter and invoke the create(ClientConfig cc)
method.

create(ClientConfig cc) method

Description
This method generates a client (Client object) with the specified settings.

Syntax
public static Client create(ClientConfig cc)

Parameter

cc
This parameter sets up the client.

Return value
The method returns the generated client.

Notes

• Use this method when you want to initialize the Client object with specific properties or features. For details on
the properties and features, see 25.1.1 Supported properties and features. For details on how to set up the
properties and features, see getFeatures() methodand getProperties() method.

• Specify only the DefaultClientConfig object in the cc parameter.

25. Support Range of the Client APIs for RESTful Web Services

574

destroy() method

Description
This method destroys the client. Consequently, all the system resources associated with the client are destroyed.

Invoke this method if there is no response during reception. If the method is invoked in other cases, the operation is
not guaranteed.

After you invoke this method, do not reuse the Client object. If reused, the operation is not guaranteed.

Syntax
public void destroy()

Parameter
None.

Return value
None.

Notes
None.

getProperties() method

Description
This method acquires a changeable property map.

Syntax
public Map<String,Object> getProperties()

Parameter
None.

Return value
The method returns a property map.

Notes

• You can add or change properties in the returned property map. For details on the properties that you can add or
change, see 25.1.1 Supported properties and features. For details on the properties, see 11.4.3 Setting the
properties and features.

An example of using the getProperties() method is as follows:

// Generate the Client object
Client client = Client.create();
// Set the property read timeout value
client.getProperties().put(ClientConfig.PROPERTY_READ_TIMEOUT, 10000);

// Generate an HTTP request

25. Support Range of the Client APIs for RESTful Web Services

575

ClientRequest cRequest = ClientRequest.create().build(new URI("http://test.com/"), "GET");
try{
 // Receive an HTTP response as the ClientResponse object
 ClientResponse cResponse = client.handle(cRequest);
} catch(ClientHandlerException e){
 // Execute the appropriate processing
}

In this example, initially the changeable property map is acquired with the getProperties method and the
property read timeout is set to 10,000 milliseconds. Then, the ClientRequest object is created and the HTTP
communication is performed by using the handle method of the Client class. The HTTP response is received as
the ClientResponse object. If the read timeout occurs before the HTTP response is completely read, an error
(KDJJ18888-E) occurs and the ClientHandlerException exception that wraps the
SocketTimeoutException exception is thrown.

handle(ClientRequest request) method

Description
This method processes an HTTP request with the contents of the specified ClientRequest object and returns an
HTTP response as the ClientResponse object.

Syntax
public ClientResponse handle(ClientRequest request)
throws ClientHandlerException

Parameter

request
This is an HTTP request.

Return value
The method returns an HTTP response.

Exception

ClientHandlerException
This exception is thrown if a problem occurs during the processing. The error message KDJJ18888-E is output to
the log.

Notes

• If an exception is thrown during the processing of the HTTP request and HTTP response, an error (KDJJ18888-E)
occurs and the ClientHandlerException exception that wraps this exception is thrown. Exceptions are
thrown under different conditions in different environments. Therefore, also see the notes for each of the
following methods:

Client class
getProperties() method
resource(String u) method
resource(URI u) method
setChunkedEncodingSize(Integer chunkSize) method
setConnectTimeout(Integer interval) method
setFollowRedirects(Boolean redirect) method
setReadTimeout(Integer interval) method

25. Support Range of the Client APIs for RESTful Web Services

576

ClientRequest class
getProperties() method
setEntity(Object entity) method
setMethod(String method) method
setURI(java.net.URI uri) method

ClientRequest.Builder class
accept(MediaType... types) method
accept(String... types) method
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
build(URI uri, String method) method
cookie(Cookie cookie) method
entity(Object entity) method
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• For an example of using the handle(ClientRequest request) method, see getProperties() method.

resource(String u) method

Description
This method generates the WebResource object from a client (Client object).

Syntax
public WebResource resource(String u)

Parameter

u
This parameter is the Web resource URI.

Return value
The method returns a WebResource object.

Notes

• Specify a valid non-null URI in the u parameter. If null is specified, the NullPointerException exception
is thrown. If any other invalid value is specified, the operation is the same as that for the create() method of
the java.net.URI class of Java SE. For details, see the JDK documentation.

resource(URI u) method

Description
This method generates a Web resource from a client (Client object).

25. Support Range of the Client APIs for RESTful Web Services

577

Syntax
public WebResource resource(URI u)

Parameter

u
This parameter is the Web resource URI.

Return value
The method returns the WebResource object.

Notes

• Specify a valid URI in the u parameter. Also, use the characters defined in RFC 2396 in the URI. The u parameter
is not automatically URI encoded. Specify a URI-encoded value in the u parameter as and when required.

setChunkedEncodingSize(Integer chunkSize) method

Description
This method specifies the settings to send an HTTP request entity by chunked transfer encoding in the specified chunk
size.

This method functions in the same manner as when you set the
ClientConfig.PROPERTY_CHUNKED_ENCODING_SIZE property in the property map acquired with the
getProperties() method.

Syntax
public void setChunkedEncodingSize(Integer chunkSize)

Parameter

chunkSize
This parameter specifies the chunk size. If you specify 0 or less, the default value is applied.

Return value
None.

Notes

• The client operation based on the value specified in the chunkSize parameter is the same as that for the
setChunkedStreamingMode() method of the HttpURLConnection class. For details, see the JDK
documentation.

• The JAX-RS engine does not validate the value specified in the chunkSize parameter. Prior to the HTTP
communication, the value will be copied as is to HttpURLConnection. To specify a value in the chunkSize
parameter, follow the description of the setChunkedStreamingMode() method of the
HttpURLConnection class of Java SE.

• If the client property map already contains the value specified in
ClientConfig.PROPERTY_CHUNKED_ENCODING_SIZE, the value specified in the chunkSize
parameter is overwritten.

25. Support Range of the Client APIs for RESTful Web Services

578

• If an exception is thrown during the processing of an HTTP request or an HTTP response due to the value
specified in the chunkSize parameter, an error (KDJJ18888-E) occurs and the ClientHandlerException
exception that wraps this exception is thrown.

setConnectTimeout(Integer interval) method

Description
This method sets the connection timeout in milliseconds.

This method functions in the same manner as when you set the
ClientConfig.PROPERTY_CONNECT_TIMEOUT property in the property map acquired with the
getProperties() method.

Syntax
public void setConnectTimeout(Integer interval)

Parameter

interval
This is the connection timeout value. If you specify null or 0, the connection does not time out.

Return value
None.

Notes

• The client operation based on the value specified in the interval parameter is the same as that for the
setConnectTimeout() method of the HttpURLConnection class. For details, see the JDK
documentation.

• The JAX-RS engine does not validate the value specified in the interval parameter. Prior to the HTTP
communication, the value will be copied as is to HttpURLConnection. To specify a value in the interval
parameter, follow the description of the setConnectTimeout() method of the HttpURLConnection class
of Java SE.

• If the client property map already contains the value specified in
ClientConfig.PROPERTY_CONNECT_TIMEOUT, the value specified in the interval parameter is
overwritten.

• If an exception is thrown during the processing of an HTTP request or an HTTP response due to the value
specified in the interval parameter, an error (KDJJ18888-E) occurs and the ClientHandlerException
exception that wraps this exception is thrown.

setFollowRedirects(Boolean redirect) method

Description
This method specifies whether to automatically follow the HTTP redirector.

This method functions in the same manner as when you set the
ClientConfig.PROPERTY_FOLLOW_REDIRECTS property in the property map acquired by using the
getProperties() method.

25. Support Range of the Client APIs for RESTful Web Services

579

Syntax
public void setFollowRedirects(Boolean redirect)

Parameter

redirect
If true, the client is automatically redirected to the coded URI of the HTTP response with the status code 300.

Return value
None.

Notes

• The client operation based on the value specified in the redirect parameter is the same as that for the
setInstanceFollowRedirects() method of the HttpURLConnection class. For details, see the JDK
documentation.

• The JAX-RS engine does not validate the value specified in the redirect parameter. Prior to the HTTP
communication, the value will be copied as is to HttpURLConnection. To specify a value in the redirect
parameter, follow the description of the setInstanceFollowRedirects() method of the
HttpURLConnection class of Java SE.

• If the client property map already contains the value specified in
ClientConfig.PROPERTY_FOLLOW_REDIRECTS, the value specified in the redirect parameter is
overwritten.

• If an exception is thrown during the processing of an HTTP request or an HTTP response due to the value
specified in the redirect parameter, an error (KDJJ18888-E) occurs and the ClientHandlerException
exception that wraps this exception is thrown.

setReadTimeout(Integer interval) method

Description
This method sets the read timeout in milliseconds.

This method functions in the same manner as when you set the ClientConfig.PROPERTY_READ_TIMEOUT
property in the property map acquired by using the getProperties() method.

Syntax
public void setReadTimeout(Integer interval)

Parameter

interval
This is the timeout value for reading the property. If you specify null or 0, the operation does not time out.

Return value
None.

Notes

• The client operation based on the value specified in the interval parameter is the same as that for the
setReadTimeout() method of the HttpURLConnection class. For details, see the JDK documentation.

25. Support Range of the Client APIs for RESTful Web Services

580

• The JAX-RS engine does not validate the value specified in the interval parameter. Prior to the HTTP
communication, the value will be copied as is to HttpURLConnection. To specify a value in the interval
parameter, follow the description of the setReadTimeout() method of the HttpURLConnection class of
Java SE.

• If the client property map already contains the value specified in
ClientConfig.PROPERTY_READ_TIMEOUT, the value specified in the interval parameter is
overwritten.

• If an exception is thrown during the processing of an HTTP request or an HTTP response due to the value
specified in the interval parameter, an error (KDJJ18888-E) occurs and the ClientHandlerException
exception that wraps this exception is thrown.

25. Support Range of the Client APIs for RESTful Web Services

581

25.3 Method specifications and notes for the
ClientHandlerException class

The ClientHandlerException class is a derived class of the RuntimeException class. Use the
ClientHandlerException class within the scope of the RuntimeException class methods.

25. Support Range of the Client APIs for RESTful Web Services

582

25.4 Method specifications and notes for the
ClientRequest class

This section describes the specifications for the methods of the ClientRequest class and the notes on using the
methods.

clone() method

Description
This method clones an HTTP request (ClientRequest object).

Syntax
public abstract ClientRequest clone()

Parameter
None.

Return value
The method returns the cloned HTTP request (ClientRequest object).

Notes

• This method clones the following entities of the ClientRequest object:

• Web resource URI

• Name of an HTTP method

• HTTP request

• HTTP header

• The property map of the ClientRequest object is not cloned. Add the property map to the cloned
ClientRequest object as and when required.

create() method

Description
This method generates a builder (ClientRequest.Builder object) to set up the ClientRequest object.

Syntax
public static final ClientRequest.Builder create()

Parameter
None.

Return value
The method returns a builder (ClientRequest.Builder object).

25. Support Range of the Client APIs for RESTful Web Services

583

Notes

• For an example of how to use the method, see getProperties() method.

getEntity() method

Description
This method acquires an HTTP request entity.

Syntax
public abstract Object getEntity()

Parameter
None.

Return value
The method returns an HTTP request entity.

Notes

• The value of the entity set with the setEntity() method of the ClientRequest class is returned.

• If no entity is set with the setEntity() method of the ClientRequest class or if you specify null, the
method returns null.

getHeaders() method

Description
This method acquires an HTTP header map.

Syntax
public abstract MultivaluedMap<String,Object> getHeaders()

Parameter
None.

Return value
The method returns an HTTP header.map.

Notes

• The HTTP header set in the ClientRequest object is returned in the
MultivaluedMap<java.lang.String,java.lang.Object> format. You can also set the HTTP
header with the following methods of the ClientRequest object:accept(MediaType... types)
method

• accept(String... types) method

• acceptLanguage(Locale... locales) method

25. Support Range of the Client APIs for RESTful Web Services

584

• acceptLanguage(String... locales) method

• cookie(Cookie cookie) method

• entity(Object entity, MediaType type) method

• entity(Object entity, String type) method

• header(String name, Object value) method

• type(MediaType type) method

• type(String type) method

• If no HTTP header is set, a blank map is returned.

getHeaderValue(Object headerValue) method

Description
This method converts the specified value of an HTTP header to a character string.

Syntax
public static String getHeaderValue(Object headerValue)

Parameter

headerValue
This is the value of an HTTP header.

Return value
The method returns the converted character string.

Notes

• The return value is the value returned by the toString() method of the object specified in the parameter.

getMethod() method

Description
This method acquires an HTTP method.

Syntax
public abstract String getMethod()

Parameter
None.

Return value
The method returns an HTTP method.

25. Support Range of the Client APIs for RESTful Web Services

585

Notes

• The name of the HTTP method set in the ClientRequest object is returned in the form of a character string.
You can set an HTTP method with the following methods:

• setMethod(String method) method of the ClientRequest class

• build(URI uri, String method) method of the ClientRequest.Builder class

• If null is set in the HTTP method, the method returns null.

getProperties() method

Description
This method acquires a changeable property map.

Syntax
public abstract Map<String,Object> getProperties()

Parameter
None.

Return value
The method returns a property map.

Notes

• You can add or change the properties in the returned property map. For details on the properties that you can add
or change, see 25.1.1 Supported properties and features. For details on the properties, see 11.4.3 Setting the
properties and features.

An example of using the getProperties() method is as follows:

// Generate the Client object
Client client = Client.create();
// Generate an HTTP request
ClientRequest cRequest = ClientRequest.create().build(new URI("http://test.com/"), "GET");
// Set the property read time out value
cRequest.getProperties().put(ClientConfig.PROPERTY_READ_TIMEOUT, 10000);
try{
 // Receive an HTTP response as the ClientResponse object
 ClientResponse cResponse = client.handle(cRequest);
} catch(ClientHandlerException e){
 // Execute the appropriate processing
}

In this example, after the ClientRequest object is generated, the changeable property map is acquired with the
getProperties method of the ClientRequest object and the property read timeout is set to 10,000
milliseconds. Then, the handle method of the Client class is invoked by specifying the ClientRequest object.
The properties of the ClientRequest object are copied to the Client object. When an HTTP response is
received as a ClientResponse object, if the read timeout occurs before the HTTP response is completely read, an
error (KDJJ18888-E) occurs and the ClientHandlerException exception that wraps the
SocketTimeoutException exception is thrown.

25. Support Range of the Client APIs for RESTful Web Services

586

getPropertyAsFeature(String name) method

Description
This method acquires the Boolean property as a feature from the property map.

Syntax
public boolean getPropertyAsFeature(String name)

Parameter

name
This is the name of the property.

Return value
If the specified property is Boolean with the value true, true is returned, and in all other cases, false is returned.

Notes
None.

getPropertyAsFeature(String name, boolean defaultValue) method

Description
This method acquires a Boolean property as a feature from the property map.

Syntax
public boolean getPropertyAsFeature(String name,
boolean defaultValue)

Parameters

name
This is the name of the property.

defaultValue
This is the default value assumed when the specified property does not exist.

Return value
If the specified property is Boolean with the value true, true is returned, and in all other cases, the specified
default value is returned.

Notes
None.

25. Support Range of the Client APIs for RESTful Web Services

587

getURI() method

Description
This method acquires a URI of an HTTP request. A URI contains information that identifies the target resource of a
request.

Syntax
public abstract URI getURI()

Parameter
None.

Return value
The method returns a URI of an HTTP request.

Notes

• The URI set in the ClientRequest object is returned. You can set a URI with the following methods:

• setURI(java.net.URI uri) method of the ClientRequest class

• build(URI uri, String method) method of the ClientRequest.Builder class

• If null is set in the URI, the method returns null.

setEntity(Object entity) method

Description
This method sets an entity.

Syntax
public abstract void setEntity(Object entity)

Parameter

entity
This is an entity.

Return value
None.

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

25. Support Range of the Client APIs for RESTful Web Services

588

setMethod(String method) method

Description
This method sets an HTTP method.

Syntax
public abstract void setMethod(String method)

Parameter

method
This is the name of an HTTP method.

Return value
None.

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

setURI(java.net.URI uri) method

Description
This method sets a URI of an HTTP request. Correctly specify the information that identifies the target resource of a
request in a URI.

Syntax
public abstract void setURI(URI uri)

Parameter

uri
This is the URI of an HTTP request.

Return value
None.

Notes

• Specify a valid URI in the uri parameter. Use the characters defined in RFC 2396 in the URI. A uri parameter
is not automatically URI encoded. Specify a URI-encoded value in the uri parameter as and when required.

25. Support Range of the Client APIs for RESTful Web Services

589

25.5 Method specifications and notes for the
ClientRequest.Builder class

This section describes the specifications for the methods of the ClientRequest.Builder class and the notes on
using the methods.

accept(MediaType... types) method

Description
This method adds a receivable MIME media type.

Syntax
public T accept(MediaType... types)

Parameter

types
This is an array of the receivable MIME media types.

Return value
The method returns a builder (WebResource.Builder object) to set up a WebResource object.

Notes

• A non-null value included in the types parameter is added in the Accept HTTP header. A null value is ignored
and is not added in the Accept HTTP header.

• The value returned by the toString() method of the MediaType object is set in the Accept HTTP header.
The JAX-RS engine does not validate the values returned by the toString() method. Specify a value
according to the standard specifications.

• You can also use the following methods to add the value of the Accept HTTP header:

• ClientRequest.Builder class
accept(String... types) method
header(String name, Object value) method

• WebResource class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

• WebResource.Builder class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

The operation when no receivable MIME media type is added with these methods and the
accept(MediaType... types) method is the same as the operation when the Accept HTTP header is
not added in the HttpURLConnection object before performing HTTP communication.

25. Support Range of the Client APIs for RESTful Web Services

590

accept(String... types) method

Description
This method adds a receivable MIME media type.

Syntax
public T accept(String... types)

Parameter

types
This is an array of the receivable MIME media types.

Return value
The method returns a builder (WebResource.Builder object) to set up a WebResource object.

Notes

• The non-null value included in the types parameter is added in the Accept HTTP header. A null value is
ignored and is not added in the Accept HTTP header.

• The specified values are set in the Accept HTTP header as are. The JAX-RS engine does not validate the
specified value. Specify a value according to the standard specifications.

• You can also use the following methods to add the value of the Accept HTTP header:

• ClientRequest.Builder class
accept(MediaType... types) method
header(String name, Object value) method

• WebResource class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

• WebResource.Builder class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

The operation when no receivable MIME media type is added with these methods and the accept(String...
types) method is the same as the operation when the Accept HTTP header is not added in the
HttpURLConnection object before performing HTTP communication.

acceptLanguage(Locale... locales) method

Description
This method adds a receivable language.

Syntax
public T acceptLanguage(Locale... locales)

25. Support Range of the Client APIs for RESTful Web Services

591

Parameter

locales
This is an array of the receivable languages.

Return value
This method returns a builder (WebResource.Builder object) to set up a WebResource object.

Notes

• The non-null value in the locales parameter is added in the Accept-Language HTTP header. A null value
is ignored and is not added in the Accept-Language HTTP header.

• The value returned by the toString() method of the Locale object is set in the Accept-Language HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify a value
according to the standard specifications.

• You can also use the following methods to add the value of the Accept-Language HTTP header:

• ClientRequest.Builder class
header(String name, Object value) method
acceptLanguage(String... locales) method

• WebResource class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

• WebResource.Builder class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

The operation when no receivable language is added with these methods and the
acceptLanguage(Locale... locales) method is the same as the operation when the Accept-
Language HTTP header is not added in the HttpURLConnection object before performing HTTP
communication.

acceptLanguage(String... locales) method

Description
This method adds a receivable language.

Syntax
public T acceptLanguage(String... locales)

Parameter

locales
This is an array of the receivable languages.

Return value
The method returns a builder (WebResource.Builder object) to set up a WebResource object.

25. Support Range of the Client APIs for RESTful Web Services

592

Notes

• The non-null value in the locales parameter is added in the Accept-Language HTTP header. A null value
is ignored and is not added in the Accept-Language HTTP header.

• The specified value is set in the Accept-Language HTTP header as is. The JAX-RS engine does not validate
the specified value. Specify the value according to the standard specifications.

• You can also use the following methods to add the value of the Accept-Language HTTP header:

• ClientRequest.Builder class
acceptLanguage(Locale... locales) method
header(String name, Object value) method

• WebResource class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

• WebResource.Builder class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

The operation when no receivable language is added with these methods and the
acceptLanguage(String... locales) method is the same as the operation when the Accept-
Language HTTP header is not added in the HttpURLConnection object before performing HTTP
communication.

build(URI uri, String method) method

Description
The method sets up the ClientRequest object.

Syntax
public ClientRequest build(URI uri,
String method)

Parameter

uri
This is the URI of an HTTP request.

method
This is the name of an HTTP method.

Return value
The method returns the ClientRequest object.

Notes

• Specify a valid URI in the uri parameter. Use the characters defined in RFC 2396 in the URI. A uri parameter
is not automatically URI encoded. Specify a URI-encoded value in the uri parameter as and when required.

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

25. Support Range of the Client APIs for RESTful Web Services

593

cookie(Cookie cookie) method

Description
This method sets a Cookie.

Syntax
public T cookie(Cookie cookie)

Parameter

cookie
This is the Cookie to be set.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

Notes

• A non-null value is added to Cookie HTTP header. A null value is ignored and is not added in the Cookie
HTTP header.

• The value returned by the toString() method of the Cookie object is set in the Cookie HTTP header. The
JAX-RS engine does not validate the values returned by the toString() method. Specify the value according
to the standard specifications.

• You can also use the following methods to add the value of the Cookie HTTP header:

• ClientRequest.Builder class
header(String name, Object value) method

• WebResource class
cookie(Cookie cookie) method
header(String name, Object value) method

• WebResource.Builder class
cookie(Cookie cookie) method
header(String name, Object value) method

The operation when no Cookie is added with these methods and the cookie(Cookie cookie) method is
the same as the operation when the Cookie HTTP header is not added in the HttpURLConnection object
before performing HTTP communication.

entity(Object entity) method

Description
This method sets an HTTP request entity.

For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity. You can use the GenericEntity object to specify generics in the
entity.

Syntax
public T entity(Object entity)

25. Support Range of the Client APIs for RESTful Web Services

594

Parameter

entity
This is an HTTP request entity.

Return value
The method returns a builder (ClientRequest.Builder object).

Notes
None.

entity(Object entity, MediaType type) method

Description
This method sets an HTTP request entity and the respective MIME media type.

For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity. You can use the GenericEntity object to specify generics in the
entity.

Syntax
public T entity(Object entity,
MediaType type)

Parameters

entity
This is an HTTP request entity.

type
This is a MIME media type.

Return value
The method returns a builder (ClientRequest.Builder object).

Notes

• If null is specified in the type parameter, the value is ignored and is not set in the Content-Type HTTP
header.

• The value returned by the toString() method of the MediaType object is set in the Content-Type HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• If the value of the Content-Type HTTP header is already set by using the following methods, the value is
overwritten by the value of the type parameter:

• ClientRequest.Builder class
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class

25. Support Range of the Client APIs for RESTful Web Services

595

entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

The operation when the MIME media type is not set with these methods and the entity(Object entity,
MediaType type) method is the same as the operation when the Content-Type HTTP header is not set in
the HttpURLConnection object before performing HTTP communication.

entity(Object entity, String type) method

Description
This method sets an HTTP request entity and the respective MIME media type.

For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity. You can use the GenericEntity object to specify generics in the
entity.

Syntax
public T entity(Object entity,
String type)

Parameters

entity
This is an HTTP request entity.

type
This is a MIME media type.

Return value
The method returns a builder (ClientRequest.Builder object).

Notes

• If null or an empty string is set in the type parameter, the IllegalArgumentException exception is
thrown.

• The value returned by the toString() method of the MediaType object set up by specifying the type
parameter in the parameter of the valueOf(String) static method of the MediaType class is set in the
Content-Type HTTP header. The JAX-RS engine does not validate the specified parameter value. Specify the
value according to the standard specifications.

• If the value of the Content-Type HTTP header is already set by using the following methods, the value is
overwritten by the value of the type parameter:

• ClientRequest.Builder class

25. Support Range of the Client APIs for RESTful Web Services

596

entity(Object entity, MediaType type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

The operation when the MIME media type is not set with these methods and the entity(Object entity,
String type) method is the same as the operation when the Content-Type HTTP header is not set in the
HttpURLConnection object before performing HTTP communication.

header(String name, Object value) method

Description
This method adds an HTTP header.

Syntax
public T header(String name,
Object value)

Parameters

name
This is the name of an HTTP header.

value
This is the value of an HTTP header.

Return value
The method returns a builder (ClientRequest.Builder object).

Notes

• If the value of both name and value parameters is null, the method is not invoked.

• Even if the value of the name parameter is not null, but if the value of the value parameter is null, the method
is not invoked.

• If the value of the name parameter is null and the value of the value parameter is not null, an error
(KDJJ18888-E) occurs and the ClientHandlerException exception that wraps the
NullPointerException exception is thrown.

25. Support Range of the Client APIs for RESTful Web Services

597

• You cannot set the HTTP headers Content-Length, Connection, or Host with this method. If you specify
these headers in the name parameter, the method is not invoked even if the value of the value parameter is not
null. Note that HttpURLConnection sets each of the HTTP headers.

• The value returned by the toString() method of a non-null object specified with the value parameter is set
as the value of the HTTP header specified with the name parameter. The JAX-RS engine does not validate the
values returned by the toString() method. Specify the value in the value parameter according to the
standard specifications.

• You can also use the following methods to add the HTTP headers accept, acceptLanguage, and cookie:

• ClientRequest.Builder class
accept(MediaType... types) method
accept(String... types) method
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
cookie(Cookie cookie) method

• WebResource class
accept(MediaType... types) method
accept(String... types) method
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
cookie(Cookie cookie) method

• WebResource.Builder class
accept(MediaType... types) method
accept(String... types) method
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
cookie(Cookie cookie) method

The operation when none of the HTTP headers is added with these methods and the header(String name,
Object value) method is the same as the operation when none of the HTTP headers is added in the
HttpURLConnection object.

• If the Content-Type HTTP header is already set by using the following methods, the value is overwritten by
the value of the value parameter:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

25. Support Range of the Client APIs for RESTful Web Services

598

The operation when the MIME media type is not set with these methods and the header(String name,
Object value) method is the same as the operation when the Content-Type HTTP header is not set in the
HttpURLConnection object before performing HTTP communication.

type(MediaType type) method

Description
This method sets a MIME media type.

Syntax
public T type(MediaType type)

Parameter

type
This is a MIME media type.

Return value
The method returns a builder (ClientRequest.Builder object).

Notes

• The non-null value specified in the type parameter is set in the Content-Type HTTP header. A null value is
ignored and is not set in the Content-Type HTTP header.

• The value returned by the toString() method of the MediaType object is set in the Content-Type HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• If the Content-Type HTTP header is already set by using the following methods, the value is overwritten:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

The operation when the MIME media type is not set with these methods and the type(MediaType type)
method is the same as the operation when the Content-Type HTTP header is not set in the
HttpURLConnection object before performing HTTP communication.

25. Support Range of the Client APIs for RESTful Web Services

599

type(String type) method

Description
This method sets a MIME media type.

Syntax
public T type(String type)

Parameter

type
This is a MIME media type.

Return value
The method returns a builder (ClientRequest.Builder object).

Notes

• If null or an empty string is set in the type parameter, the IllegalArgumentException exception is
thrown.

• The value returned by the toString() method of the MediaType object set up by specifying the type
parameter in the parameter of the valueOf(String) static method of the MediaType class is set in the
Content-Type HTTP header. The JAX-RS engine does not validate the values specified in the type
parameter. Specify the value according to the standard specifications.

• If the Content-Type HTTP header is already set by using the following methods, the value is overwritten by
the value of the type parameter:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

The operation when the MIME media type is not set with these methods and the type(String type) method
is the same as the operation when the Content-Type HTTP header is not set in the HttpURLConnection
object before performing HTTP communication.

25. Support Range of the Client APIs for RESTful Web Services

600

25.6 Method specifications and notes for the
ClientResponse class

This section describes the specifications for the methods of the ClientResponse class and the notes on using the
methods.

bufferEntity() method

Description
This method buffers an entity. The entire data is read from the stream input in an HTTP response entity and stored in
the memory. The input stream is closed after buffering.

Syntax
public void bufferEntity()
throws ClientHandlerException

Parameter
None.

Return value

ClientHandlerException
This exception is thrown if a problem occurs during processing. The error message KDJJ18888-E is output to the
log.

Notes
None.

close() method

Description
This method ends an HTTP response. The input stream of an entity is closed.

Syntax
public void close()
throws ClientHandlerException

Parameter
None.

Return value

ClientHandlerException
This exception is thrown if a problem occurs during processing. The error message KDJJ18888-E is output to the
log.

25. Support Range of the Client APIs for RESTful Web Services

601

Notes
None.

getAllow() method

Description
This method acquires a set of HTTP methods supported by resources from the Allow HTTP header. Note that you
can acquire the Allow HTTP header for an HTTP OPTIONS request.

Syntax
public Set<String> getAllow()

Parameter
None.

Return value
The method returns a set of HTTP methods supported by resources. All the methods are output in the upper case.

Notes

• This method returns an empty set if no Allow HTTP header exists in the HTTP response.

getClient() method

Description
This method acquires a client (Client object).

Syntax
public Client getClient()

Parameter
None.

Return value
The method returns a client (Client object).

Notes

• The Client object returned by the method is the Client object that generated the ClientResponse object.

25. Support Range of the Client APIs for RESTful Web Services

602

getClientResponseStatus() method

Description
This method acquires a status code.

Syntax
public ClientResponse.Status getClientResponseStatus()

Parameter
None.

Return value
The method returns a status code.

If the status code of an HTTP response is compliant with the constant value defined in the Response.Status
enumerated type, the method returns that Response.Status enumerated type constant value. If the status code is
not compliant, the method returns null.

Notes
None.

getCookies() method

Description
This method acquires a list of Cookies. The method returns a list of the NewCookie objects when a value is set in the
Set-Cookie HTTP header of an HTTP response.

Syntax
public List<NewCookie> getCookies()

Parameter
None.

Return value
The method returns a list of Cookies (NewCookie object).

Notes

• The method returns a blank list if no Set-Cookie HTTP header exists in the HTTP response.

getEntity(Class<T> c) method

Description
This method acquires an entity of an HTTP response. If the acquired entity is not an instance of the class that
implemented the Closeable interface, the input stream is closed.

25. Support Range of the Client APIs for RESTful Web Services

603

Syntax
public <T> T getEntity(Class<T> c)
throws ClientHandlerException,
UniformInterfaceException

Parameter

c
This is an entity type.

Return value
The method returns the object of the specified type.

Exception

ClientHandlerException
This exception is thrown if a problem occurs during processing. The error message KDJJ18888-E is output to the
log.

UniformInterfaceException
This exception is thrown if the HTTP status code is 204 No Content. The error message KDJJ18888-E is output to
the log.

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• You can invoke the method only once. The operation is not guaranteed if the method is invoked two or more
times.

getEntity(GenericType<T> gt) method

Description
This method acquires an entity of an HTTP response. If the acquired entity is not an instance of the class that
implemented the Closeable interface, the input stream is closed.

Syntax
public <T> T getEntity(GenericType<T> gt)
throws ClientHandlerException,
UniformInterfaceException

Parameter

gt
This is a GenericType object that represents the entity type.

Return value
The method returns the object of the type expressed by the specified GenericType object.

25. Support Range of the Client APIs for RESTful Web Services

604

Exception

ClientHandlerException
This exception is thrown if a problem occurs during processing. The error message KDJJ18888-E is output to the
log.

UniformInterfaceException
This exception is thrown if the HTTP status code is 204 No Content. The error message KDJJ18888-E is output to
the log.

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• You can invoke the method only once. The operation is not guaranteed if the method is invoked two or more
times.

getEntityInputStream() method

Description
This method acquires an input stream of an HTTP response.

Syntax
public InputStream getEntityInputStream()

Parameter
None.

Return value
The method returns an input stream of an HTTP response.

Notes
None.

getEntityTag() method

Description
This method acquires the value of an ETag HTTP header.

Syntax
public EntityTag getEntityTag()

Parameter
None.

25. Support Range of the Client APIs for RESTful Web Services

605

Return value
The method returns the value of the ETag HTTP header.

Notes

• The method returns null if the HTTP response does not contain the ETag HTTP header or if
HttpURLConnection returns null as the value of the ETag HTTP header.

• If the value of the ETag HTTP header is an empty string or if the value does not comply with the standard
specifications, the IllegalArgumentException exception is thrown.

getHeaders() method

Description
This method acquires the HTTP headers map of an HTTP response.

Syntax
public MultivaluedMap<String,String> getHeaders()

Parameter
None.

Return value
The method returns the HTTP headers map of an HTTP response.

Notes

• The method returns a blank map if the HTTP response does not contain HTTP headers.

getLanguage() method

Description
This method acquires the value of the Content-Language HTTP header.

Syntax
public String getLanguage()

Parameter
None.

Return value
The method returns the value of the Content-Language HTTP header.

25. Support Range of the Client APIs for RESTful Web Services

606

Notes

• The method returns null if the HTTP response does not contain the Content-Language HTTP header or if
HttpURLConnection returns null as the value of the Content-Language HTTP header.

getLastModified() method

Description
This method acquires the value of the Last-Modified HTTP header.

Syntax
public Date getLastModified()

Parameter
None.

Return value
The method returns the value of the Last-Modified HTTP header.

Notes

• The method returns null if the HTTP response does not contain the Last-Modified HTTP header or if
HttpURLConnection returns null as the value of the Last-Modified HTTP header.

• If the value of the Last-Modified HTTP header is an empty string or if the value does not comply with the
following formats, the IllegalArgumentException exception is thrown.

• EEE, dd MMM yyyy HH:mm:ss zzz

• EEEE, dd-MMM-yy HH:mm:ss zzz

• EEE MMM d HH:mm:ss yyyy

For each pattern character in the Date format, especially the locale-dependant 'E' and 'M', see the information on
the SimpleDateFormat class of the Java SE specifications.

getLength() method

Description
This method acquires the value of the Content-Length HTTP header.

Syntax
public int getLength()

Parameter
None.

Return value
The method returns an integer value when the value of the Content-Length HTTP header is a valid number.

25. Support Range of the Client APIs for RESTful Web Services

607

Notes

• If the HTTP response does not contain the Content-Length HTTP header, if HttpURLConnection
returns null as the value of the Content-Length HTTP header, or if the value of the Content-Length
HTTP header is an invalid integer, the method returns -1.

getLocation() method

Description
This method acquires the value of the Location HTTP header.

Syntax
public URI getLocation()

Parameter
None.

Return value
The method returns the value of the Location HTTP header.

Notes

• The method returns null if the HTTP response does not contain the Location HTTP header or if
HttpURLConnection returns null as the value of the Location HTTP header.

• If the value of the Location HTTP header is an invalid URI, the IllegalArgumentException exception
is thrown.

getResponseDate() method

Description
This method acquires the value of the Date HTTP header.

Syntax
public Date getResponseDate()

Parameter
None.

Return value
The method returns the value of the Date HTTP header.

Notes

• The method returns null if the HTTP response does not contain the Date HTTP header or if
HttpURLConnection returns null as the value of the Date HTTP header.

25. Support Range of the Client APIs for RESTful Web Services

608

• If the value of the Date HTTP header is an empty string or if the value is not compliant with the following date
formats, the IllegalArgumentException exception is thrown:

• EEE, dd MMM yyyy HH:mm:ss zzz

• EEEE, dd-MMM-yy HH:mm:ss zzz

• EEE MMM d HH:mm:ss yyyy

For each pattern character in the Date format, especially the locale-dependant 'E' and 'M', see the information on
the SimpleDateFormat class of the Java SE specifications.

getStatus() method

Description
This method acquires the HTTP status code.

Syntax
public int getStatus()

Parameter
None.

Return value
This method returns an integer as the HTTP status code.

Notes
None.

getType() method

Description
This method acquires the value of the Content-Type HTTP header.

Syntax
public MediaType getType()

Parameter
None.

Return value
The method returns the value of the Content-Type HTTP header.

Notes

• The method returns null if the HTTP response does not contain the Content-Type HTTP header or if
HttpURLConnection returns null as the value of the Content-Type HTTP header.

25. Support Range of the Client APIs for RESTful Web Services

609

• If the MediaType object cannot be set up from the value of the Content-Type HTTP header, the
IllegalArgumentException exception is thrown.

hasEntity() method

Description
This method checks whether an entity exists.

Syntax
public boolean hasEntity()

Parameter
None.

Return value
The method returns true if an entity exists in the HTTP response.

Notes

• The method returns false if an HTTP response is acquired with an HTTP HEAD request.

• The method returns true if HttpURLConnection returns a number greater than 0 or -1 as the value of the
Content-Length HTTP header. The method returns false if HttpURLConnection returns any other
value.

• Generally, HttpURLConnection returns an integer greater than 0 if the encoding is not a chunked transfer
encoding and an entity exists in the HTTP response, and -1 if the encoding is a chunked transfer encoding. For
details on chunked transfer encoding, see RFC 2616.

• In the following cases, the operations are not guaranteed because the HTTP response is invalid:

• If the encoding is a chunked transfer encoding and the HTTP response contains the Content-Length
HTTP header

• If the encoding is not a chunked transfer encoding and the value of the Content-Length HTTP header is
not an appropriate value based on the HTTP response entity.

25. Support Range of the Client APIs for RESTful Web Services

610

25.7 Enumerated constants of the
ClientResponse.Status class and specifications for
the methods

This section describes the enumerated constants of the ClientResponse.Status class and specifications for the
class methods.

Enumerated constants of the ClientResponse.Status class
The ClientResponse.Status class defines the following enumerated constants as the HTTP status codes. The
following table lists and describes the syntax and HTTP status code of each constant.

Table 25‒5: Enumerated constants defined with the ClientResponse.Status class

No
. Constant name Syntax HTTP status code

1 OK public static final ClientResponse.Status OK 200 OK

2 CREATED public static final ClientResponse.Status
CREATED

201 Created

3 ACCEPTED public static final ClientResponse.Status
ACCEPTED

202 Accepted

4 NON_AUTHORI
TIVE_INFORM
ATION

public static final ClientResponse.Status
NON_AUTHORITIVE_INFORMATION

203 Non-Authoritative Information

5 NO_CONTENT public static final ClientResponse.Status
NO_CONTENT

204 No Content

6 RESET_CONTE
NT

public static final ClientResponse.Status
RESET_CONTENT

205 Reset Content

7 PARTIAL_CON
TENT

public static final ClientResponse.Status
PARTIAL_CONTENT

206 Partial Content

8 MOVED_PERMA
NENTLY

public static final ClientResponse.Status
MOVED_PERMANENTLY

301 Moved Permantly

9 FOUND public static final ClientResponse.Status
FOUND

302 Found

10 SEE_OTHER public static final ClientResponse.Status
SEE_OTHER

303 See Other

11 NOT_MODIFIE
D

public static final ClientResponse.Status
NOT_MODIFIED

304 Not Modified

12 USE_PROXY public static final ClientResponse.Status
USE_PROXY

305 Use Proxy

13 TEMPORARY_R
EDIRECT

public static final ClientResponse.Status
TEMPORARY_REDIRECT

307 Temporary Redirect

14 BAD_REQUEST public static final ClientResponse.Status
BAD_REQUEST

400 Bad Request

15 UNAUTHORIZE
D

public static final ClientResponse.Status
UNAUTHORIZED

401 Unauthorized

16 PAYMENT_REQ
UIRED

public static final ClientResponse.Status
PAYMENT_REQUIRED

402 Payment Required

25. Support Range of the Client APIs for RESTful Web Services

611

No
. Constant name Syntax HTTP status code

17 FORBIDDEN public static final ClientResponse.Status
FORBIDDEN

403 Forbidden

18 NOT_FOUND public static final ClientResponse.Status
NOT_FOUND

404 Not Found

19 METHOD_NOT_
ALLOWED

public static final ClientResponse.Status
METHOD_NOT_ALLOWED

405 Method Not Allowed

20 NOT_ACCEPTA
BLE

public static final ClientResponse.Status
NOT_ACCEPTABLE

406 Not Acceptable

21 PROXY_AUTHE
NTICATION_R
EQUIRED

public static final ClientResponse.Status
PROXY_AUTHENTICATION_REQUIRED

407 Proxy Authentication Required

22 REQUEST_TIM
EOUT

public static final ClientResponse.Status
REQUEST_TIMEOUT

408 Request Timeout

23 CONFLICT public static final ClientResponse.Status
CONFLICT

409 Conflict

24 GONE public static final ClientResponse.Status
GONE

410 Gone

25 LENGTH_REQU
IRED

public static final ClientResponse.Status
LENGTH_REQUIRED

411 Length Required

26 PRECONDITIO
N_FAILED

public static final ClientResponse.Status
PRECONDITION_FAILED

412 Precondition Failed

27 REQUEST_ENT
ITY_TOO_LAR
GE

public static final ClientResponse.Status
REQUEST_ENTITY_TOO_LARGE

413 Request Entity Too Large

28 REQUEST_URI
_TOO_LONG

public static final ClientResponse.Status
REQUEST_URI_TOO_LONG

414 Request-URI Too Long

29 UNSUPPORTED
_MEDIA_TYPE

public static final ClientResponse.Status
UNSUPPORTED_MEDIA_TYPE

415 Unsupported Media Type

30 REQUESTED_R
ANGE_NOT_SA
TIFIABLE

public static final ClientResponse.Status
REQUESTED_RANGE_NOT_SATIFIABLE

416 Requested Range Not Satisfiable

31 EXPECTATION
_FAILED

public static final ClientResponse.Status
EXPECTATION_FAILED

417 Expectation Failed

32 INTERNAL_SE
RVER_ERROR

public static final ClientResponse.Status
INTERNAL_SERVER_ERROR

500 Internal Server Error

33 NOT_IMPLEME
NTED

public static final ClientResponse.Status
NOT_IMPLEMENTED

501 Not Implemented

34 BAD_GATEWAY public static final ClientResponse.Status
BAD_GATEWAY

502 Bad Gateway

35 SERVICE_UNA
VAILABLE

public static final ClientResponse.Status
SERVICE_UNAVAILABLE

503 Service Unavailable

36 GATEWAY_TIM
EOUT

public static final ClientResponse.Status
GATEWAY_TIMEOUT

504 Gateway Timeout

37 HTTP_VERSIO
N_NOT_SUPPO
RTED

public static final ClientResponse.Status
HTTP_VERSION_NOT_SUPPORTED

505 HTTP Version Not Supported

25. Support Range of the Client APIs for RESTful Web Services

612

StatusCode(int statusCode) method

Description
This method converts the status codes expressed in numbers into the corresponding ClientResponse.Status
object.

Syntax
public static ClientResponse.Status fromStatusCode(int statusCode)

Parameter

statusCode
This is the status code expressed with a numeric value.

Return value
The method returns a ClientResponse.Status object corresponding to the status code and returns null if the
corresponding object does not exist.

Notes
None.

getFamily() method

Description
This method acquires a category of the status code.

Syntax
public Response.Status.Family getFamily()

Parameter
None.

Return value
This method returns the category of the status code.

Notes
None.

getReasonPhrase() method

Description
This method acquires a description string (Reason Phrase).

25. Support Range of the Client APIs for RESTful Web Services

613

Syntax
public String getReasonPhrase()

Parameter
None.

Return value
The method returns the description string (Reason Phrase).

Notes
None.

getStatusCode() method

Description
This method acquires the corresponding status code.

Syntax
public int getStatusCode()

Parameter
None.

Return value
The method returns the status code.

Notes
None.

toString() method

Description
This method acquires a description string (Reason Phrase).

Syntax
public String toString()

Parameter
None.

Return value
The method returns the description string (Reason Phrase).

25. Support Range of the Client APIs for RESTful Web Services

614

Notes
None.

valueOf(String name) method

Description
This method acquires the enumerated constant of the specified name.

Accurately specify an identifier for the constant declared with the enumerated type. Note that extra white spaces are
not allowed.

Syntax
public static ClientResponse.Status valueOf(String name)

Parameter

name
This is the name of the enumerated constant to be acquired.

Return value
The method returns the enumerated constant of the specified name.

Exception

IllegalArgumentException
This exception is thrown if the enumerated constant of the specified name does not exist.

NullPointerException
This exception is thrown if null is specified in the name parameter.

Notes
None.

values() method

Description
This method returns an array of enumerated constants in the order in which they are declared with the enumerated
type. You can use this method for the following type of repeated processing:

for (ClientResponse.Status c : ClientResponse.Status.values())
 System.out.println(c);

Syntax
public static ClientResponse.Status[] values()

Parameter
None.

25. Support Range of the Client APIs for RESTful Web Services

615

Return value
The method returns an array of enumerated constants in the order in which they are declared with the enumerated
type.

Notes
None.

25. Support Range of the Client APIs for RESTful Web Services

616

25.8 Constructor and method specifications and notes
for the GenericType class

This section describes the specifications for the constructors and methods of the GenericType class and the notes
on using the constructors and methods. The GenericType class stores the type information of generics in which the
type parameter is resolved.

GenericType() constructor

Description
This constructor sets up a new GenericType object. The type information of generics in which the target type
parameter is resolved and the class declaring the generics are acquired from the type parameter T. The user must
create a subclass (in most cases, an anonymous subclass is created) because the scope of the constructor is protected.

Syntax
protected GenericType()

Parameter
None.

Return value
None.

Notes
None.

GenericType(Type genericType) constructor

Description
This constructor sets up a new GenericType object. The types of generics in which the target type parameter is
resolved and the class declaring the generics are acquired from the genericType parameter.

Syntax
public GenericType(Type genericType)

Parameter

genericType
This is the java.lang.Type object that expresses the generics in which the type parameter is resolved.

Return value
None.

25. Support Range of the Client APIs for RESTful Web Services

617

Exception

IllegalArgumentException
This exception is thrown if the genericType parameter is null, or if the genericType parameter is neither
the java.lang.Class object nor the java.lang.reflect.ParameterizedType object where the
type declaring the parameter type is a class.

Notes
None.

getRawClass() method

Description
This method acquires the class that declares the generics in which the type parameter to be stored is resolved.

Syntax
public final Class<T> getRawClass()

Parameter
None.

Return value
The method returns the class declaring the generics in which the type parameter to be stored is resolved.

Notes
None.

getType() method

Description
This method acquires the generics type in which the type parameter to be stored is resolved.

Syntax
public final Type getType()

Parameter
None.

Return value
The method returns the generics type in which the type parameter to be stored is resolved.

Notes
None.

25. Support Range of the Client APIs for RESTful Web Services

618

25.9 Method specifications and notes for the
UniformInterfaceException class

This section describes the specifications for the methods of the UniformInterfaceException class and the
notes on using the methods. Use the UniformInterfaceException class within the scope of the methods
described in this section and the parent class methods.

getResponse() method

Description
This method acquires the ClientResponse object related to exceptions.

Syntax
public ClientResponse getResponse()

Parameter
None.

Return value
The method returns the ClientResponse object.

Notes
None.

25. Support Range of the Client APIs for RESTful Web Services

619

25.10 Method specifications and notes for the
WebResource class

This section describes the specifications for the methods of the WebResource class and the notes on using the
methods.

accept(MediaType... types) method

Description
This method adds a receivable MIME media type.

Syntax
public WebResource.Builder accept(MediaType... types)

Parameter

types
This is an array of the receivable MIME media types.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

Notes

• The non-null value included in the types parameter is added in the Accept HTTP header. A null value is
ignored and is not added in the Accept HTTP header.

• The value returned by the toString() method of the MediaType object is set in the Accept HTTP header
The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• You can also use the following methods to add the value of the Accept HTTP header:

• ClientRequest.Builder class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

• WebResource class
accept(String... types) method
header(String name, Object value) method

• WebResource.Builder class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

The operation when no receivable MIME media type is added with these methods and the
accept(MediaType... types) method is the same as the operation when the Accept HTTP header is
not added in the HttpURLConnection object before performing HTTP communication.

25. Support Range of the Client APIs for RESTful Web Services

620

accept(String... types) method

Description
This method adds a receivable MIME media type.

Syntax
public WebResource.Builder accept(String... types)

Parameter

types
This is an array of the receivable MIME media types.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

Notes

• The non-null value included in the types parameter is added in the Accept HTTP header. A null value is
ignored and is not added in the Accept HTTP header.

• The specified value is set as is in the Accept HTTP header. The JAX-RS engine does not validate the specified
value. Specify the value according to the standard specifications.

• You can also use the following methods to add the value of the Accept HTTP header:

• ClientRequest.Builder class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

• WebResource class
accept(MediaType... types) method
header(String name, Object value) method

• WebResource.Builder class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

The operation when no receivable MIME media type is added with these methods and the accept(String...
types) method is the same as the operation when the Accept HTTP header is not added in the
HttpURLConnection object before performing HTTP communication.

acceptLanguage(Locale... locales) method

Description
This method adds a receivable language.

Syntax
public WebResource.Builder acceptLanguage(Locale... locales)

25. Support Range of the Client APIs for RESTful Web Services

621

Parameter

locales
This is an array of the receivable languages.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

Notes

• The non-null value in the locales parameter is added in the Accept-Language HTTP header. A null value
is ignored and is not added in the Accept-Language HTTP header.

• The value returned by the toString() method of the Locale object is set in the Accept-Language HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• You can also use the following methods to change the value of the Accept-Language HTTP header:

• ClientRequest.Builder class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

• WebResource class
acceptLanguage(String... locales) method
header(String name, Object value) method

• WebResource.Builder class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

The operation when no receivable language is added with these methods and the
acceptLanguage(Locale... locales) method is the same as the operation when the Accept-
Language HTTP header is not set in the HttpURLConnection object before performing HTTP
communication.

acceptLanguage(String... locales) method

Description
This method adds a receivable language.

Syntax
public WebResource.Builder acceptLanguage(String... locales)

Parameter

locales
This is an array of the receivable languages.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

25. Support Range of the Client APIs for RESTful Web Services

622

Notes

• The non-null value in the locales parameter is added in the Accept-Language HTTP header. A null value
is ignored and is not added in the Accept-Language HTTP header.

• The specified value is set as is in the Accept-Language HTTP header. The JAX-RS engine does not validate
the specified value. Specify the value according to the standard specifications.

• You can also use the following methods to add the value of the Accept-Language HTTP header:

• ClientRequest.Builder class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

• WebResource class
acceptLanguage(Locale... locales) method
header(String name, Object value) method

• WebResource.Builder class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

The operation when no receivable language is added with these methods and the
acceptLanguage(String... locales) method is the same as the operation when the Accept-
Language HTTP header is not added in the HttpURLConnection object before performing HTTP
communication.

cookie(Cookie cookie) method

Description
This method sets a Cookie.

Syntax
public WebResource.Builder cookie(Cookie cookie)

Parameter

cookie
This is the Cookie to be specified.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

Notes

• A non-null value is added in the Cookie HTTP header. A null value is ignored and is not added in the Cookie
HTTP header.

• The value returned by the toString() method of the Cookie object is set in the Cookie HTTP header. The
JAX-RS engine does not validate the values returned by the toString() method. Specify the value according
to the standard specifications.

• You can also use the following methods to add the value of the Cookie HTTP header:

• ClientRequest.Builder class

25. Support Range of the Client APIs for RESTful Web Services

623

cookie(Cookie cookie) method
header(String name, Object value) method

• WebResource class
header(String name, Object value) method

• WebResource.Builder class
cookie(Cookie cookie) method
header(String name, Object value) method

The operation when no Cookie is added with these methods and the cookie(Cookie cookie) method is the
same as the operation when the Cookie HTTP header is not added in the HttpURLConnection object before
performing HTTP communication.

delete() method

Description
This method invokes the HTTP DELETE method. The delete() method does not include any entities in the
request and does not receive any response entities.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void delete()
throws UniformInterfaceException

Parameter
None.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

delete(Class<T> c) method

Description
This method invokes the HTTP DELETE method. The delete(Class<T> c) method does not include any
entities in the request. The delete(Class<T> c) method, however, receives response entities.

25. Support Range of the Client APIs for RESTful Web Services

624

Syntax
public <T> T delete(Class<T> c)
throws UniformInterfaceException

Parameter

c
This is the type of an HTTP response entity.

Return value
The delete(Class<T> c) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

delete(Class<T> c, Object requestEntity) method

Description
This method invokes the HTTP DELETE method. The delete(Class<T> c, Object requestEntity)
method includes an entity in the request and also receives a response entity.

Syntax
public <T> T delete(Class<T> c,
Object requestEntity)
throws UniformInterfaceException

Parameters

c
This is the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The delete(Class<T> c, Object requestEntity) method returns the object of the specified type.

25. Support Range of the Client APIs for RESTful Web Services

625

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

delete(GenericType<T> gt) method

Description
This method invokes the HTTP DELETE method. The delete(GenericType<T> gt) method does not include
any entities in the request. The delete(GenericType<T> gt) method, however, receives a response entity.

Syntax
public <T> T delete(GenericType<T> gt)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The delete(GenericType<T> gt) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

25. Support Range of the Client APIs for RESTful Web Services

626

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

delete(GenericType<T> gt, Object requestEntity) method

Description
This method invokes the HTTP DELETE method. The delete(GenericType<T> gt, Object
requestEntity) method includes an entity in the request and also receives a response entity.

Syntax
public <T> T delete(GenericType<T> gt,
Object requestEntity)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

requestEntity
This is the HTTP request entity.

Return value
The delete(GenericType<T> gt, Object requestEntity) method returns the object of the type
expressed by the specified GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

delete(Object requestEntity) method

Description
This method invokes the HTTP DELETE method. The delete(Object requestEntity) method includes an
entity in the request, but does not receive a response entity.

25. Support Range of the Client APIs for RESTful Web Services

627

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void delete(Object requestEntity)
throws UniformInterfaceException

Parameter

requestEntity
This is an HTTP request entity.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

entity(Object entity) method

Description
This method sets an HTTP request entity.

Syntax
public WebResource.Builder entity(Object entity)

Parameter

entity
This is an HTTP request entity.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

25. Support Range of the Client APIs for RESTful Web Services

628

entity(Object entity, MediaType type) method

Description
This method sets the MIME media type of an HTTP request entity.

For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity. You can use the GenericEntity object to specify generics in the
entity.

Syntax
public WebResource.Builder entity(Object entity,
MediaType type)

Parameters

entity
This is an HTTP request entity.

type
This is a MIME media type.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• The non-null value specified in the type parameter is set in the Content-Type HTTP header. A null value is
ignored and is not set in the Content-Type HTTP header.

• The value returned by the toString() method of the MediaType object is set in the Content-Type HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• You can also use the following methods to change the value of the Content-Type HTTP header:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

25. Support Range of the Client APIs for RESTful Web Services

629

The operation when the MIME media type is not set with these methods and the entity(Object entity,
MediaType type) method is the same as the operation when the Content-Type HTTP header is not set in
the HttpURLConnection object before performing HTTP communication.

entity(Object entity, String type) method

Description
This method sets the MIME media type of an HTTP request entity.

For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity. You can use the GenericEntity object to specify generics in the
entity.

Syntax
public WebResource.Builder entity(Object entity,
String type)

Parameters

entity
This is an HTTP request entity.

type
This is a MIME media type.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• If null or an empty string is set in the type parameter, the IllegalArgumentException exception is
thrown.

• The non-null value specified in the type parameter is set in the Content-Type HTTP header.

• The value returned by the toString() method of the MediaType object is set in the Content-Type HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• You can also use the following methods to change the value of the Content-Type HTTP header:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method

25. Support Range of the Client APIs for RESTful Web Services

630

entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

The operation when the MIME media type is not set with these methods and the entity(Object entity,
String type) method is the same as the operation when the Content-Type HTTP header is not set in the
HttpURLConnection object before performing HTTP communication.

get(Class<T> c) method

Description
This method invokes the HTTP GET method.

Syntax
public <T> T get(Class<T> c)
throws UniformInterfaceException

Parameter

c
This is the type of an HTTP response entity.

Return value
The get(Class<T> c) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

get(GenericType<T> gt) method

Description
This method invokes the HTTP GET method.

25. Support Range of the Client APIs for RESTful Web Services

631

Syntax
public <T> T get(GenericType<T> gt)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The get(GenericType<T> gt) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

getRequestBuilder() method

Description
This method acquires a builder (WebResource.Builder object).

Syntax
public WebResource.Builder getRequestBuilder()

Parameter
None.

Return value
The method returns the builder (WebResource.Builder object).

Notes
None.

25. Support Range of the Client APIs for RESTful Web Services

632

getURI() method

Description
This method acquires a Web resource URI. A URI contains information that identifies the target resource of a request.

Syntax
public URI getURI()

Parameter
None.

Return value
This method returns a Web resource URI.

Notes
None.

getUriBuilder() method

Description
This method acquires a URI builder (URIBuilder object).

Syntax
public UriBuilder getUriBuilder()

Parameter
None.

Return value
This method returns the URI builder (URIBuilder object).

Notes

• The URI builder (URIBuilder object) created from the Web resource URI stored by this WebResource object
is returned.

head() method

Description
This method invokes the HTTP HEAD method.

Syntax
public ClientResponse head()

25. Support Range of the Client APIs for RESTful Web Services

633

Parameter
None.

Return value
The head() method returns an HTTP response.

Notes

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

header(String name, Object value) method

Description
This method adds an HTTP header.

Syntax
public WebResource.Builder header(String name,
Object value)

Parameters

name
This is the name of an HTTP header.

value
This is the value of an HTTP header.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• If the value of both name and value parameters is null, the method is not invoked.

• Even if the value of the name parameter is not null, but if the value of the value parameter is null, the method
is not invoked.

• If the value of the name parameter is null and the value of the value parameter is not null, an error
(KDJJ18888-E) occurs and the ClientHandlerException exception that wraps the
NullPointerException exception is thrown.

• You cannot set the HTTP headers Content-Length, Connection, or Host with this method. If you specify
these headers in the name parameter, the method is not invoked even if the value of the value parameter is not
null. Note that HttpURLConnection sets each of the HTTP headers.

• The value returned by the toString() method of a non-null object specified with the value parameter is set
as the value of the HTTP header specified with the name parameter. The JAX-RS engine does not validate the
values returned by the toString() method. Specify the value in the value parameter according to the
standard specifications.

• You can also use the following methods to add the HTTP headers accept, acceptLanguage, and cookie:

• ClientRequest.Builder class
accept(MediaType... types) method

25. Support Range of the Client APIs for RESTful Web Services

634

accept(String... types) method
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
cookie(Cookie cookie) method

• WebResource class
accept(MediaType... types) method
accept(String... types) method
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
cookie(Cookie cookie) method

• WebResource.Builder class
accept(MediaType... types) method
accept(String... types) method
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
cookie(Cookie cookie) method

The operation when none of the HTTP headers is added with these methods and the header(String name,
Object value) method is the same as the operation when none of the HTTP headers is added in the
HttpURLConnection object.

• If the Content-Type HTTP header is already set by using the following methods, the value is overwritten by
the value of the value parameter:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

The operation when the MIME media type is not set with these methods and the header(String name,
Object value) method is the same as the operation when the Content-Type HTTP header is not set in the
HttpURLConnection object before performing HTTP communication.

method(String method) method

Description
This method invokes an HTTP method. The method(String method) method does not include any entity in the
request and does not receive any response entity.

25. Support Range of the Client APIs for RESTful Web Services

635

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void method(String method)
throws UniformInterfaceException

Parameter

method
This is the name of an HTTP method.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

method(String method, Class<T> c) method

Description
This method invokes an HTTP method. The method(String method, Class<T> c) method does not
include any entity in the request, but receives a response entity.

Syntax
public <T> T method(String method,
Class<T> c)
throws UniformInterfaceException

Parameters

method
This is an HTTP method.

c
This is the type of an HTTP response entity.

Return value
The method returns the object of the specified type.

25. Support Range of the Client APIs for RESTful Web Services

636

Exception
UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output to
the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse type

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

method(String method, Class<T> c, Object requestEntity) method

Description
This method invokes an HTTP method. The method(String method, Class<T> c, Object
requestEntity) method does not include any entity in the request, but receives a response entity.

Syntax
public <T> T method(String method,
Class<T> c,
Object requestEntity)
throws UniformInterfaceException

Parameters

method
This is an HTTP method.

c
This is the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

25. Support Range of the Client APIs for RESTful Web Services

637

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

method(String method, GenericType<T> gt) method

Description
This method invokes an HTTP method. The method (String method, GenericType<T> gt) method
does not include any entity in the request, but receives a response entity.

Syntax
public <T> T method(String method,
GenericType<T> gt)
throws UniformInterfaceException

Parameters

method
This is an HTTP method.

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The method returns the object of the type expressed by the specified GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

25. Support Range of the Client APIs for RESTful Web Services

638

method(String method, GenericType<T> gt, Object requestEntity) method

Description
This method invokes an HTTP method. The method(String method, GenericType<T>gt, Object
requestEntity) method does not include any entity in the request, but receives a response entity.

Syntax
public <T> T method(String method,
GenericType<T> gt,
Object requestEntity)
throws UniformInterfaceException

Parameters

method
This is an HTTP method.

gt
This is the GenericType object that expresses the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The method returns the object of the type expressed by the specified GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

25. Support Range of the Client APIs for RESTful Web Services

639

method(String method, Object requestEntity) method

Description
This method invokes an HTTP method. The method(String method, Object request Entity) method
does not include any entity in the request, but receives a response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void method(String method,
Object requestEntity)
throws UniformInterfaceException

Parameters

method
This is an HTTP method.

requestEntity
This is an HTTP request entity.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

options(Class<T> c) method

Description
This method invokes the HTTP OPTIONS method.

Syntax
public <T> T options(Class<T> c)
throws UniformInterfaceException

25. Support Range of the Client APIs for RESTful Web Services

640

Parameter

c
This is the type of an HTTP response entity.

Return value
The options(Class<T> c) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

options(GenericType<T> gt) method

Description
This method invokes the HTTP OPTIONS method.

Syntax
public <T> T options(GenericType<T> gt)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The options(GenericType<T> gt) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

25. Support Range of the Client APIs for RESTful Web Services

641

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

path(String path) method

Description
This method generates a new WebResource object from this object (WebResource object). The Web resource
URI that is stored in the generated object is the URI for which the path specified by the parameter is added to the Web
resource URI stored in this object.

Syntax
public WebResource path(String path)

Parameter

path
This is the path to be added.

Return value
The method returns the generated WebResource object.

Notes

• If null is set in the path parameter, the IllegalArgumentException exception is thrown.

• Specify a non-null and correct path in the path parameter. The invalid characters are automatically URL encoded
according to the standard specifications.

• Note that a query string is not a part of the path; therefore, considering that a question mark is an invalid character,
the question mark (?) is automatically URL encoded. The following characters are not encoded:
! $ & ' () * + - / ; = @ _ ~ . ,
Single-byte alphanumeric characters (0 to 9, A to Z, and a to z)
The already URL-encoded tokens are correctly recognized and hence are not URL-encoded again.

• As and when required, a forward slash (/) is automatically inserted between the Web resource URI that is stored in
this object (WebResource object) and the path specified with the path parameter. Also, if more than one
forward slash (/) is inserted, the extra ones are automatically corrected.

• The entity of this object (WebResource object) is not copied to the WebResource object that is generated
with this method.

25. Support Range of the Client APIs for RESTful Web Services

642

post() method

Description
This method invokes the HTTP POST method. The post() method does not include any entity in the request and
does not receive any response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void post()
throws UniformInterfaceException

Parameter
None.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

post(Class<T> c) method

Description
This method invokes the HTTP POST method. The post(Class<T> c) method does not include any entity in the
request, but receives a response entity.

Syntax
public <T> T post(Class<T> c)
throws UniformInterfaceException

Parameter

c
This is the type of an HTTP response entity.

Return value
The post(Class<T> c) method returns the object of the specified type.

25. Support Range of the Client APIs for RESTful Web Services

643

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

post(Class<T> c, Object requestEntity) method

Description
This method invokes the HTTP POST method. The post(Class<T> c, Object requestEntity) method
includes an entity in the request and also receives a response entity.

Syntax
public <T> T post(Class<T> c,
Object requestEntity)
throws UniformInterfaceException

Parameters

c
This is the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The post(Class<T> c, Object requestEntity) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

25. Support Range of the Client APIs for RESTful Web Services

644

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

post(GenericType<T> gt) method

Description
This method invokes the HTTP POST method. The post(GenericType<T> gt) method includes an entity in
the request and also receives a response entity.

Syntax
public <T> T post(GenericType<T> gt)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The post(GenericType<T> gt) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

post(GenericType<T> gt, Object requestEntity) method

Description
This method invokes the HTTP POST method. The post(GenericType<T> gt, Object
requestEntity) method includes an entity in the request and also receives a response entity.

Syntax
public <T> T post(GenericType<T> gt,

25. Support Range of the Client APIs for RESTful Web Services

645

Object requestEntity)
throws UniformInterfaceException

Parameters

gt
This is the GenericType object that expresses the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The post(GenericType<T> gt, Object requestEntity) method returns the object of the type
expressed by the specified GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

post(Object requestEntity) method

Description
This method invokes the HTTP POST method. The post(Object requestEntity) method includes an entity
in the request, but does not receive a response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void post(Object requestEntity)
throws UniformInterfaceException

Parameter

requestEntity
This is an HTTP request entity.

25. Support Range of the Client APIs for RESTful Web Services

646

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

put() method

Description
This method invokes the HTTP PUT method. The put() method does not include any entity in the request and does
not receive any response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void put()
throws UniformInterfaceException

Parameter
None.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

25. Support Range of the Client APIs for RESTful Web Services

647

put(Class<T> c) method

Description
This method invokes the HTTP PUT method. The put(Class<T> c) method includes an entity in the request and
also receives a response entity.

Syntax
public <T> T put(Class<T> c)
throws UniformInterfaceException

Parameter

c
This is the type of an HTTP response entity.

Return value
The put(Class<T> c) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

put(Class<T> c, Object requestEntity) method

Description
This method invokes the HTTP PUT method. The put(Class<T> c, Object requestEntity) method
includes an entity in the request and also receives a response entity.

Syntax
public <T> T put(Class<T> c,
Object requestEntity)
throws UniformInterfaceException

25. Support Range of the Client APIs for RESTful Web Services

648

Parameters

c
This is the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The put(Class<T> c, Object requestEntity) method returns the object of the specified type.

Exception
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output to
the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

put(GenericType<T> gt) method

Description
This method invokes the HTTP PUT method. The put(GenericType<T> gt) method includes an entity in the
request and also receives a response entity.

Syntax
public <T> T put(GenericType<T> gt)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The put(GenericType<T> gt) method returns the object of the type expressed by the specified
GenericType object.

25. Support Range of the Client APIs for RESTful Web Services

649

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

put(GenericType<T> gt, Object requestEntity) method

Description
This method invokes the HTTP PUT method. The put(GenericType<T> gt, Object requestEntity)
method includes an entity in the request and also receives a response entity.

Syntax
public <T> T put(GenericType<T> gt,
Object requestEntity)
throws UniformInterfaceException

Parameters

gt
This is the GenericType object that expresses the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The put(GenericType<T> gt, Object requestEntity) method returns the object of the type expressed
by the specified GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

25. Support Range of the Client APIs for RESTful Web Services

650

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

put(Object requestEntity) method

Description
This method invokes the HTTP PUT method. The put(Object requestEntity) method includes an entity in
the request and also receives a response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void put(Object requestEntity)
throws UniformInterfaceException

Parameter

requestEntity
This is an HTTP request entity.

Return value
The put(Object requestEntity) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

queryParam(String key, String value) method

Description
This method generates a new WebResource object from this object (WebResource object). The Web resource
URI that is stored in the generated object is the URI for which the query parameter specified in the parameter is added
to the Web resource URI stored in this object.

25. Support Range of the Client APIs for RESTful Web Services

651

Syntax
public WebResource queryParam(String key,
String value)

Parameters

key
This is the name of a query parameter.

value
This is the value of a query parameter.

Return value
The method returns the generated WebResource object.

Notes

• If null is specified in the key parameter or the value parameter, the IllegalArgumentException
exception is thrown.

• Specify the correct query parameter name and value in the key and value parameter. The invalid characters are
automatically URL encoded according to the standard specifications.

• The following characters are not encoded:
! $ ' () * - / ; ? @ _ ~ . ,
Single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

• The already URL-encoded tokens are correctly recognized and hence are not URL-encoded again.

• Spaces are encoded as +.

• The query parameter of the generated WebResource object is the one for which the query parameter
specified in the parameter is added in the query parameter of this object (WebResource object).

• The entity of this object (WebResource object) is not copied to the WebResource object generated with this
method.

queryParams(MultivaluedMap<String, String> params) method

Description
This method generates a new WebResource object from this object (WebResource object). The Web resource
URI that is stored in the generated object is the URI for which the query parameter specified in the parameter is added
to the Web resource URI stored in this object.

Syntax
public WebResource queryParams(MultivaluedMap<String,String> params)

Parameter

params
This is the map of query parameters.

Return value
The method returns the generated WebResource object.

25. Support Range of the Client APIs for RESTful Web Services

652

Notes

• The NullPointerException exception is thrown if null is specified in the params parameter.

• If a null key is included in the query parameter map specified in the params parameter, the
IllegalArgumentException exception is thrown.

• From the combination of keys and values in the query parameter map specified in the params parameter, if the
key is non-null and the value is null, only the key is added as a query parameter of the generated
WebResource object.

• Specify the correct query parameter in the params parameter. The invalid characters are automatically URL
encoded according to the standard specifications.

• The following characters are not encoded:
! $ ' () * - / ; ? @ _ ~ . ,
Single-byte alphanumeric characters (0 to 9, A to Z, and a to z)

• The already URL-encoded tokens are correctly recognized and hence are not URL-encoded again.

• Spaces are encoded as +.

• The query parameter of the generated WebResource object is the one for which the query parameter
specified in the parameter is added in the query parameter of this object (WebResource object). Note that
this is applicable even when a query parameter of the same name exists in this object.

• The entity of this object (WebResource object) is not copied to the WebResource object generated with this
method.

type(MediaType type) method

Description
This method sets a MIME media type.

Syntax
public WebResource.Builder type(MediaType type)

Parameter

type
This is a MIME media type.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• The non-null value specified in the type parameter is set in the Content-Type HTTP header. A null value
is ignored and is not set to the Content-Type HTTP header.

• The value returned by the toString() method of the MediaType object is set in the Content-Type HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• If the Content-Type HTTP header is already set by using the following methods, the value is overwritten:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method

25. Support Range of the Client APIs for RESTful Web Services

653

header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

The operation when the MIME media type is not set with these methods and the type(MediaType type)
method is the same as the operation when the Content-Type HTTP header is not set in the
HttpURLConnection object before performing HTTP communication.

type(String type) method

Description
This method sets a MIME media type.

Syntax
public WebResource.Builder type(String type)

Parameter

type
This is a MIME media type.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• If null or an empty string is set in the type parameter, the IllegalArgumentException exception is
thrown.

• The value returned by the toString() method of the MediaType object set up by specifying the type
parameter in the parameter of the valueOf(String) static method of the MediaType class is set in the
Content-Type HTTP header. The JAX-RS engine does not validate the values specified in the type
parameter. Specify the value according to the standard specifications.

• If the Content-Type HTTP header is already set by using the following methods, the value is overwritten by
the value of the type parameter:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method

25. Support Range of the Client APIs for RESTful Web Services

654

type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

The operation when the MIME media type is not set with these methods and the type(String type) method
is the same as the operation when the Content-Type HTTP header is not set in the HttpURLConnection
object before performing HTTP communication.

uri(java.net.URI uri) method

Description
This method generates a new WebResource object from this object (WebResource object).

If the URI specified in the parameter contains a path component beginning with a forward slash (/), the path of the
Web resource URI stored in the generated WebResource object is replaced. If a path component beginning with a
forward slash (/) does not exist, the path of the Web resource URI stored in the generated WebResource object is
the path where that path component is added in the path of this object (WebResource object).

If the URI specified in the parameter contains a query parameter, this query parameter becomes the query parameter
for the Web resource URI stored in the generated WebResource object. If the Web resource URI stored in this
object contains a query parameter, the query parameter is replaced.

Syntax
public WebResource uri(URI uri)

Parameter

uri
This is the Web resource URI.

Return value
The method returns the generated WebResource object.

Notes

• Specify the correct URI in the uri parameter. The uri parameter is not automatically URL encoded. Specify the
URL-encoded value in the uri parameter as and when required.

• The entity of this object (WebResource object) is not copied to the WebResource object generated with this
method.

• The NullPointerException exception is thrown if null is specified in the uri parameter.

25. Support Range of the Client APIs for RESTful Web Services

655

25.11 Method specifications and notes for the
WebResource.Builder class

This section describes the specifications for the methods of the WebResource.Builder class and the notes on
using the methods.

accept(MediaType... types) method

Description
This method adds a receivable MIME media type.

Syntax
public T accept(MediaType... types)

Parameter

types
This is an array of the receivable MIME media types.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

Notes

• The non-null value included in the types parameter is added in the Accept HTTP header. A null value is
ignored and is not added in the Accept HTTP header.

• The value returned by the toString() method of the MediaType object is set in the Accept HTTP header.
The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• You can also use the following methods to add the value of the Accept HTTP header:

• ClientRequest.Builder class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

• WebResource class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

• WebResource.Builder class
accept(String... types) method
header(String name, Object value) method

The operation when no receivable MIME media type is added with these methods and the
accept(MediaType... types) method is the same as the operation when the Accept HTTP header is
not added in the HttpURLConnection object before performing HTTP communication.

25. Support Range of the Client APIs for RESTful Web Services

656

accept(String... types) method

Description
This method adds a receivable MIME media type.

Syntax
public T accept(String... types)

Parameter

types
This is an array of the receivable MIME media types.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

Notes

• The non-null value included in the types parameter is added in the Accept HTTP header. A null value is
ignored and is not added in the Accept HTTP header.

• The specified value is set as is in the Accept HTTP header. The JAX-RS engine does not validate the specified
value. Specify the value according to the standard specifications.

• You can also use the following methods to add a value of the Accept HTTP header:

• ClientRequest.Builder class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

• WebResource class
accept(MediaType... types) method
accept(String... types) method
header(String name, Object value) method

• WebResource.Builder class
accept(MediaType... types) method
header(String name, Object value) method

The operation when no receivable MIME media type is added with these methods and the accept(String...
types) method is the same as the operation when the Accept HTTP header is not added in the
HttpURLConnection object before performing HTTP communication.

acceptLanguage(Locale... locales) method

Description
This method adds a receivable language.

Syntax
public T acceptLanguage(Locale... locales)

25. Support Range of the Client APIs for RESTful Web Services

657

Parameter

locales
This is an array of the receivable languages.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

Notes

• The non-null value in the locales parameter is added in the Accept-Language HTTP header. A null value
is ignored and is not added in the Accept-Language HTTP header.

• The value returned by the toString() method of the Locale object is set in the Accept-Language HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• You can also use the following methods to change the value of the Accept-Language HTTP header:

• ClientRequest.Builder class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

• WebResource class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

• WebResource.Builder class
acceptLanguage(String... locales) method
header(String name, Object value) method

The operation when no receivable language is added with these methods and the
acceptLanguage(Locale... locales) method is the same as the operation when the Accept-
Language HTTP header is not set in the HttpURLConnection object before performing HTTP
communication.

acceptLanguage(String... locales) method

Description
This method adds a receivable language.

Syntax
public T acceptLanguage(String... locales)

Parameter

locales
This is an array of the receivable languages.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

25. Support Range of the Client APIs for RESTful Web Services

658

Notes

• The non-null value in the locales parameter is added in the Accept-Language HTTP header. A null
value is ignored and is not added in the Accept-Language HTTP header.

• The specified value is set as is in the Accept-Language HTTP header. The JAX-RS engine does not validate
the specified value. Specify the value according to the standard specifications.

• You can also use the following methods to add the value of the Accept-Language HTTP header:

• ClientRequest.Builder class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

• WebResource class
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
header(String name, Object value) method

• WebResource.Builder class
acceptLanguage(Locale... locales) method
header(String name, Object value) method

The operation when no receivable language is added with these methods and the
acceptLanguage(String... locales) method is the same as the operation when the Accept-
Language HTTP header is not added in the HttpURLConnection object before performing HTTP
communication.

cookie(Cookie cookie) method

Description
This method sets a Cookie.

Syntax
public T cookie(Cookie cookie)

Parameter

cookie
This is the Cookie to be set up.

Return value
The method returns a builder (WebResource.Builder object) to set up the WebResource object.

Notes

• A non-null value is added to Cookie HTTP header. A null value is ignored and is not added in the Cookie
HTTP header.

• The value returned by the toString() method of the Cookie object is set in the Cookie HTTP header. The
JAX-RS engine does not validate the values returned by the toString() method. Specify the value according
to the standard specifications.

• You can also use the following methods to add the value of the Cookie HTTP header:

• ClientRequest.Builder class

25. Support Range of the Client APIs for RESTful Web Services

659

cookie(Cookie cookie) method
header(String name, Object value) method

• WebResource class
cookie(Cookie cookie) method
header(String name, Object value) method

• WebResource.Builder class
header(String name, Object value) method

The operation when no Cookie is added with these methods and the cookie(Cookie cookie) method is the
same as the operation when the Cookie HTTP header is not added in the HttpURLConnection object before
performing HTTP communication.

delete() method

Description
This method invokes the HTTP DELETE method. The delete() method does not include any entity in the request
and does not receive any response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void delete()
throws UniformInterfaceException

Parameter
None.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

delete(Class<T> c) method

Description
This method invokes the HTTP DELETE method. The delete(Class<T> c) method does not include any entity
in the request, but receives a response entity.

25. Support Range of the Client APIs for RESTful Web Services

660

Syntax
public <T> T delete(Class<T> c)
throws UniformInterfaceException

Parameter

c
This is the type of an HTTP response entity.

Return value
The delete(Class<T> c) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

delete(Class<T> c, Object requestEntity) method

Description
This method invokes the HTTP DELETE method. The delete(Class<T>c, Object requestEntity)
method includes an entity in the request and also receives a response entity.

Syntax
public <T> T delete(Class<T> c,
Object requestEntity)
throws UniformInterfaceException

Parameter

c
This is the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The delete(Class<T>c, Object requestEntity) method returns the object of the specified type.

25. Support Range of the Client APIs for RESTful Web Services

661

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

delete(GenericType<T> gt) method

Description
This method invokes the HTTP DELETE method. The delete(GenericType<T> gt) method does not include
any entity in the request, but receives a response entity.

Syntax
public <T> T delete(GenericType<T> gt)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The delete(GenericType<T> gt) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

25. Support Range of the Client APIs for RESTful Web Services

662

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

delete(GenericType<T> gt, Object requestEntity) method

Description
This method invokes the HTTP DELETE method. The delete(GenericType<T> gt, Object
requestEntity) method includes an entity in the request and also receives a response entity.

Syntax
public <T> T delete(GenericType<T> gt,
Object requestEntity)
throws UniformInterfaceException

Parameters

gt
This is the GenericType object that expresses the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The delete(GenericType<T> gt, Object requestEntity) method returns the object of the type
expressed by the specified GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

delete(Object requestEntity) method

Description
This method invokes the HTTP DELETE method. The delete(Object requestEntity) method includes an
entity in the request, but does not receive a response entity.

25. Support Range of the Client APIs for RESTful Web Services

663

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void delete(Object requestEntity)
throws UniformInterfaceException

Parameter

requestEntity
This is an HTTP request entity.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

entity(Object entity) method

Description
This method sets an HTTP request entity.

Syntax
public T entity(Object entity)

Parameter

entity
This is an HTTP request entity.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• For the Java types available for an entity parameter, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

25. Support Range of the Client APIs for RESTful Web Services

664

entity(Object entity, MediaType type) method

Description
This method sets the MIME media type of an HTTP request entity.

For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity. You can use the GenericEntity object to specify generics in the
entity.

Syntax
public T entity(Object entity,
MediaType type)

Parameters

entity
This is an HTTP request entity.

type
This is a MIME media type.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• A non-null value specified in the type parameter is set in the Content-Type HTTP header. A null value is
ignored and is not set in the Content-Type HTTP header.

• The value returned by the toString() method of the MediaType object is set in the Content-Type HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• You can also use the following methods to change the value of the Content-Type HTTP header:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

25. Support Range of the Client APIs for RESTful Web Services

665

The operation when the MIME media type is not set with these methods and the entity(Object entity,
MediaType type) method is the same as the operation when the Content-Type HTTP header is not set in
the HttpURLConnection object before performing HTTP communication.

entity(Object entity, String type) method

Description
This method sets the MIME media type of an HTTP request entity.

For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity. You can use the GenericEntity object to specify generics in the
entity.

Syntax
public T entity(Object entity,
String type)

Parameters

entity
This is an HTTP request entity.

type
This is a MIME media type.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• If null or an empty string is specified in the type parameter, the IllegalArgumentException exception
is thrown.

• The non-null value specified in the type parameter is set in the Content-Type HTTP header.

• The value returned by the toString() method of the MediaType object is set in the Content-Type HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• You can also use the following methods to change the value of the Content-Type HTTP header:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class

25. Support Range of the Client APIs for RESTful Web Services

666

entity(Object entity, MediaType type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

The operation when the MIME media type is not set with these methods and the entity(Object entity,
StringType) method is the same as the operation when the Content-Type HTTP header is not set in the
HttpURLConnection object before performing HTTP communication.

get(Class<T> c) method

Description
This method invokes the HTTP GET method.

Syntax
public <T> T get(Class<T> c)
throws UniformInterfaceException

Parameter

c
This is the type of an HTTP response entity.

Return value
The get(Class<T> c) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

get(GenericType<T> gt) method

Description
This method invokes the HTTP GET method.

25. Support Range of the Client APIs for RESTful Web Services

667

Syntax
public <T> T get(GenericType<T> gt)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The get(GenericType<T> gt) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

head() method

Description
This method invokes the HTTP HEAD method.

Syntax
public ClientResponse head()

Parameter
None.

Return value
The head() method returns an HTTP response.

Notes

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

25. Support Range of the Client APIs for RESTful Web Services

668

header(String name, Object value) method

Description
This method adds an HTTP header.

Syntax
public T header(String name,
Object value)

Parameters

name
This is the name of an HTTP header.

value
This is the value of an HTTP header.

Return value
The method returns the builder (WebResource.Builder object).

Notes

• If the value of both name and value parameters is null, the method is not invoked.

• Even if the value of the name parameter is not null, but if the value of the value parameter is null, the method
is not invoked.

• If the value of the name parameter is null and the value of the value parameter is not null, an error
(KDJJ18888-E) occurs and the ClientHandlerException exception that wraps the
NullPointerException exception is thrown.

• You cannot set the HTTP headers Content-Length, Connection, or Host with this method. If you specify
these headers in the name parameter, the method is not invoked even if the value of the value parameter is not
null. Note that HttpURLConnection sets each of the HTTP headers.

• The value returned by the toString() method of a non-null object specified with the value parameter is set
as the value of the HTTP header specified with the name parameter. The JAX-RS engine does not validate the
values returned by the toString() method. Specify the value in the value parameter according to the
standard specifications.

• You can also use the following methods to add the HTTP headers accept, acceptLanguage, and cookie:

• ClientRequest.Builder class
accept(MediaType... types) method
accept(String... types) method
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
cookie(Cookie cookie) method

• WebResource class
accept(MediaType... types) method
accept(String... types) method
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
cookie(Cookie cookie) method

• WebResource.Builder class

25. Support Range of the Client APIs for RESTful Web Services

669

accept(MediaType... types) method
accept(String... types) method
acceptLanguage(Locale... locales) method
acceptLanguage(String... locales) method
cookie(Cookie cookie) method

The operation when none of the HTTP headers is added with these methods and the header(String name,
Object value) method is the same as the operation when none of the HTTP headers is added in the
HttpURLConnection object.

• If the Content-Type HTTP header is already set by using the following methods, the value is overwritten by
the value of the value parameter:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
type(MediaType type) method
type(String type) method

The operation when the MIME media type is not set with these methods and the header(String name,
Object value) method is the same as the operation when the Content-Type HTTP header is not set in the
HttpURLConnection object before performing HTTP communication.

method(String method) method

Description
This method invokes the HTTP method. The method(String method) method does not include any entity in the
request and does not receive any response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void method(String method)
throws UniformInterfaceException

Parameter

method
This is the name of an HTTP method.

25. Support Range of the Client APIs for RESTful Web Services

670

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

method(String method, Class<T> c) method

Description
This method invokes the HTTP method. The method(String method, Class<T> c) method does not
include any entity in the request, but receives a response entity.

Syntax
public <T> T method(String method,
Class<T> c)
throws UniformInterfaceException

Parameters

method
This is an HTTP method.

c
This is the type of an HTTP response entity.

Return value
The method(String method, Class<T> c) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

25. Support Range of the Client APIs for RESTful Web Services

671

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

method(String method, Class<T> c, Object requestEntity) method

Description
This method invokes the HTTP method. The method(String method, Class<T> c, Object
requestEntity) method does not include any entities in the request, but receives a response entity.

Syntax
public <T> T method(String method,
Class<T> c,
Object requestEntity)
throws UniformInterfaceException

Parameters

method
This is an HTTP method.

c
This is the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The method(String method, Class<T> c, Object requestEntity) method returns the object of
the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

25. Support Range of the Client APIs for RESTful Web Services

672

method(String method, GenericType<T> gt) method

Description
This method invokes an HTTP method. The method(String method, GenericType<T> gt) method does
not include any entity in the request, but receives a response entity.

Syntax
public <T> T method(String method,
GenericType<T> gt)
throws UniformInterfaceException

Parameters

method
This is an HTTP method.

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The method(String method, GenericType<T> gt) method returns the object of the type expressed by
the specified GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

method(String method, GenericType<T> gt, Object requestEntity) method

Description
This method invokes an HTTP method. The method(String method, GenericType<T> gt, Object
requestEntity) method does not include any entity in the request, but receives a response entity.

Syntax
public <T> T method(String method,

25. Support Range of the Client APIs for RESTful Web Services

673

GenericType<T> gt,
Object requestEntity)
throws UniformInterfaceException

Parameters

method
This is an HTTP method.

gt
This is the GenericType object that expresses the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The method(String method, GenericType<T> gt, Object requestEntity) method returns the
object of the type expressed by the specified GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

method(String method, Object requestEntity) method

Description
This method invokes the HTTP method. The method(String method, Object requestEntity) method
does not include any entities in the request, but receives a response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void method(String method,
Object requestEntity)
throws UniformInterfaceException

25. Support Range of the Client APIs for RESTful Web Services

674

Parameters

method
This is an HTTP method.

requestEntity
This is an HTTP request entity.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• Specify uppercase GET, HEAD, POST, OPTIONS, PUT, or DELETE in the method parameter.

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

options(Class<T> c) method

Description
This method invokes the HTTP OPTIONS method.

Syntax
public <T> T options(Class<T> c)
throws UniformInterfaceException

Parameter

c
This is the type of an HTTP response entity.

Return value
The options(Class<T> c) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

25. Support Range of the Client APIs for RESTful Web Services

675

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

options(GenericType<T> gt) method

Description
This method invokes the HTTP OPTIONS method.

Syntax
public <T> T options(GenericType<T> gt)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The options(GenericType<T> gt) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

post() method

Description
This method invokes the HTTP POST method. The post() method does not include any entity in the request and
does not receive any response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

25. Support Range of the Client APIs for RESTful Web Services

676

Syntax
public void post()
throws UniformInterfaceException

Parameter
None.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

post(Class<T> c) method

Description
This method invokes the HTTP POST method. The post(Class<T> c) method does not include any entity in the
request, but receives a response entity.

Syntax
public <T> T post(Class<T> c)
throws UniformInterfaceException

Parameter

c
This is the type of an HTTP response entity.

Return value
The post(Class<T> c) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

25. Support Range of the Client APIs for RESTful Web Services

677

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and ClientHandlerException exception that wraps this exception is thrown.

post(Class<T> c, Object requestEntity) method

Description
This method invokes the HTTP POST method. The post(Class<T> c, Object requestEntity) method
includes an entity in the request and also receives a response entity.

Syntax
public <T> T post(Class<T> c,
Object requestEntity)
throws UniformInterfaceException

Parameters

c
This is the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The post(Class<T> c, Object requestEntity) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

25. Support Range of the Client APIs for RESTful Web Services

678

post(GenericType<T> gt) method

Description
This method calls the HTTP POST method. The post(GenericType<T> gt) method includes an entity in the
request and also receives a response entity.

Syntax
public <T> T post(GenericType<T> gt)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The post(GenericType<T> gt) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

post(GenericType<T> gt, Object requestEntity) method

Description
This method invokes the HTTP POST method. The post(GenericType<T> gt,Object
requestEntity) method includes an entity in the request and also receives a response entity.

Syntax
public <T> T post(GenericType<T> gt,
Object requestEntity)
throws UniformInterfaceException

25. Support Range of the Client APIs for RESTful Web Services

679

Parameters

gt
This is the GenericType object that expresses the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The post(GenericType<T> gt,Object requestEntity) method returns the object of the type expressed
by the specified GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and ClientHandlerException exception that wraps this exception is thrown.

post(Object requestEntity) method

Description
This method invokes the HTTP POST method. The post(Object requestEntity) method includes an entity
in the request, but does not receive a response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void post(Object requestEntity)
throws UniformInterfaceException

Parameter

requestEntity
This is an HTTP request entity.

Return value
None.

25. Support Range of the Client APIs for RESTful Web Services

680

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and ClientHandlerException exception that wraps this exception is thrown.

put() method

Description
This method invokes the HTTP PUT method. The put() method does not include any entity in the request and does
not receive any response entity.

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void put()
throws UniformInterfaceException

Parameter
None.

Return value
None.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

put(Class<T> c) method

Description
This method invokes the HTTP PUT method. The put(Class<T> c) method includes an entity in the request and
also receives a response entity.

25. Support Range of the Client APIs for RESTful Web Services

681

Syntax
public <T> T put(Class<T> c)
throws UniformInterfaceException

Parameter

c
This is the type of an HTTP response entity.

Return value
The put(Class<T> c) method returns the object of the specified type.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and ClientHandlerException exception that wraps this exception is thrown.

put(Class<T> c, Object requestEntity) method

Description
This method invokes the HTTP PUT method. The put(Class<T> c, Object requestEntity) method
includes an entity in the request and also receives a response entity.

Syntax
public <T> T put(Class<T> c,
Object requestEntity)
throws UniformInterfaceException

Parameters

c
This is the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The put(Class<T> c, Object requestEntity) method returns the object of the specified type.

25. Support Range of the Client APIs for RESTful Web Services

682

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the c parameter is not of the ClientResponse
type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and ClientHandlerException exception that wraps this exception is thrown.

put(GenericType<T> gt) method

Description
This method invokes the HTTP PUT method. The put(GenericType<T> gt) method includes an entity in the
request and also receives a response entity.

Syntax
public <T> T put(GenericType<T> gt)
throws UniformInterfaceException

Parameter

gt
This is the GenericType object that expresses the type of an HTTP response entity.

Return value
The put(GenericType<T> gt) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

25. Support Range of the Client APIs for RESTful Web Services

683

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and ClientHandlerException exception that wraps this exception is thrown.

put(GenericType<T> gt, Object requestEntity) method

Description
This method invokes the HTTP PUT method. The put(GenericType<T> gt, Object requestEntity)
method includes an entity in the request and also receives a response entity.

Syntax
public <T> T put(GenericType<T> gt,
Object requestEntity)
throws UniformInterfaceException

Parameters

gt
This is a GenericType object that expresses the type of an HTTP response entity.

requestEntity
This is an HTTP request entity.

Return value
The put(GenericType<T> gt, Object requestEntity) method returns the object of the type expressed
by the specified GenericType object.

Exception

UniformInterfaceException
This exception is thrown if any of the following conditions is fulfilled. The error message KDJJ18888-E is output
to the log.

• If the status code of the HTTP response is 204

• If the status code of the HTTP response is 300 or more and the gt parameter does not express the
ClientResponse type

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• For the Java types available for an HTTP response entity, see 25.15.2 Combination of Java types and MIME
media types available for an HTTP response entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and ClientHandlerException exception that wraps this exception is thrown.

put(Object requestEntity) method

Description
This method invokes the HTTP PUT method. The put(Object requestEntity) method includes an entity in
a request and also receives a response entity.

25. Support Range of the Client APIs for RESTful Web Services

684

An entity is ignored if the status code is below 300 and the entity is included in a response.

Syntax
public void put(Object requestEntity)
throws UniformInterfaceException

Parameter

requestEntity
This is an HTTP request entity.

Return value
The put(Object requestEntity) method returns the object of the type expressed by the specified
GenericType object.

Exception

UniformInterfaceException
This exception is thrown if the HTTP response status code is 300 or more. The error message KDJJ18888-E is
output to the log.

Notes

• For the Java types available for an HTTP request entity, see 25.15.1 Combination of Java types and MIME media
types available for an HTTP request entity.

• If an exception is thrown during the processing of an HTTP request or an HTTP response, an error (KDJJ18888-
E) occurs and the ClientHandlerException exception that wraps this exception is thrown.

type(MediaType type) method

Description
This method sets a MIME media type.

Syntax
public T type(MediaType type)

Parameter

type
This is a MIME media type.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• The non-null value specified in the type parameter is set in the Content-Type HTTP header. A null value is
ignored and is not set in the Content-Type HTTP header.

25. Support Range of the Client APIs for RESTful Web Services

685

• The value returned by the toString() method of the MediaType object is set in the Content-Type HTTP
header. The JAX-RS engine does not validate the values returned by the toString() method. Specify the value
according to the standard specifications.

• If the Content-Type HTTP header is already set by using the following methods, the value is overwritten:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(String type) method

The operation when the MIME media type is not set with these methods and the type(MediaType type)
method is the same as the operation when the Content-Type HTTP header is not set in the
HttpURLConnection object before performing HTTP communication.

type(String type) method

Description
This method sets a MIME media type.

Syntax
public T type(String type)

Parameter

type
This is a MIME media type.

Return value
The method returns a builder (WebResource.Builder object).

Notes

• If null or an empty string is set in the type parameter, the IllegalArgumentException exception is
thrown.

• The value returned by the toString() method of the MediaType object set up by specifying the type
parameter in the parameter of the valueOf(String) static method of the MediaType class is set in the

25. Support Range of the Client APIs for RESTful Web Services

686

Content-Type HTTP header. The JAX-RS engine does not validate the values specified in the type
parameter. Specify the value according to the standard specifications.

• If the Content-Type HTTP header is already set by using the following methods, the value is overwritten by
the value of the type parameter:

• ClientRequest.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method
type(String type) method

• WebResource.Builder class
entity(Object entity, MediaType type) method
entity(Object entity, String type) method
header(String name, Object value) method
type(MediaType type) method

The operation when the MIME media type is not set with these methods and the type(String type) method
is the same as the operation when the Content-Type HTTP header is not set in the HttpURLConnection
object before performing HTTP communication.

25. Support Range of the Client APIs for RESTful Web Services

687

25.12 Constant and method specifications and notes for
the DefaultClientConfig class

This section describes the specifications for the constants and methods of the DefaultClientConfig class and
the notes on using the constants and methods.

PROPERTY_BUFFER_RESPONSE_ENTITY_ON_EXCEPTION
constant

Description
This property is used to set the buffering of the response entity for an exception.

Syntax
static final java.lang.String PROPERTY_BUFFER_RESPONSE_ENTITY_ON_EXCEPTION

Notes

• For details on the settings for the buffering of a response entity when an exception is thrown, see 13.1.2 Settings of
a common definition file. For details on the properties, see 25.1.1 Supported properties and features.

PROPERTY_CHUNKED_ENCODING_SIZEconstant

Description
This property is used to set the chunked transfer encoding.

Syntax
static final java.lang.String PROPERTY_CHUNKED_ENCODING_SIZE

Notes

• For details on the chunked transfer encoding, see 13.1.2 Settings of a common definition file. For details on the
properties, see 25.1.1 Supported properties and features.

PROPERTY_CONNECT_TIMEOUT constant

Description
This property is used to set the timeout value of a client socket connection.

Syntax
static final java.lang.String PROPERTY_CONNECT_TIMEOUT

Notes

• For details on the settings for the client socket connection timeout, see 13.1.2 Settings of a common definition file.
For details on the properties, see 25.1.1 Supported properties and features.

25. Support Range of the Client APIs for RESTful Web Services

688

PROPERTY_FOLLOW_REDIRECTS constant

Description
This property is used to specify the automatic redirect settings.

Syntax
static final java.lang.String PROPERTY_FOLLOW_REDIRECTS

Notes

• For details on the automatic redirect settings, see 13.1.2 Settings of a common definition file. For details on the
properties, see 25.1.1 Supported properties and features.

PROPERTY_READ_TIMEOUT constant

Description
This property is used to set the read timeout value of the client socket.

Syntax
static final java.lang.String PROPERTY_READ_TIMEOUT

Notes

• For details on the settings for the client socket connection timeout, see 13.1.2 Settings of a common definition file.
For details on the properties, see 25.1.1 Supported properties and features.

getPropertyAsFeature(String featureName) method

Description
This method acquires the Boolean type property as a feature from the property map.

Syntax
public boolean getPropertyAsFeature(String name)

Parameter

featurename
This is the property name (feature name) to be acquired.

Return value
The method returns true when a Boolean type property of the name specified in the property map exists and is
true, and in other cases, the method returns false.

Notes
None.

25. Support Range of the Client APIs for RESTful Web Services

689

getFeatures() method

Description
This method acquires a map containing all the features.

Syntax
public Map<String,Boolean> getFeatures()

Parameter
None.

Return value
The method returns a feature map. The method does not return null.

Notes
An example of using the getFeatures() method is as follows:

// Generate a ClientConfig object
ClientConfig cc = new DefaultClientConfig();
// Add a feature to enable JSON POJO mapping
// in the ClientConfig object
cc.getFeatures().put(JSONConfiguration.FEATURE_POJO_MAPPING, true);
// Specify the ClientConfig object generated above and
// create the Client object
Client client = Client.create(cc);
// Set the property read timeout
client.getProperties().put(ClientConfig.PROPERTY_READ_TIMEOUT, 10000);

// Generate a POJO object that maps to the JSON format
Pojo pojo = new Pojo();

// Generate an HTTP request and send the mapped POJO object
ClientRequest cRequest = ClientRequest.create().entity(pojo).type("application/
json").build(new URI("http://example.com/example"), "POST");
try{
 // Receive the HTTP response as the ClientResponse object
 ClientResponse cResponse = client.handle(cRequest);
} catch(ClientHandlerException e){
 // Execute the appropriate processing
}

In this example, initially a changeable property map is acquired with the getFeatures method and then, the feature
to enable the JSON POJO mapping is added. Then, the ClientRequest object is created, the handle() method
of the Client class is used to perform the HTTP communication, and the HTTP response is received as the
ClientResponse object. The POJO object that was sent as the HTTP request entity is mapped in the JSON format
according to the JSON POJO mapping. This is achieved with the features added for enabling the JSON POJO
mapping.

getFeature(String featureName) method

Description
This method acquires the value of a feature.

Syntax
public boolean getFeature(String featureName)

25. Support Range of the Client APIs for RESTful Web Services

690

Parameter

featureName
This is the name of a feature.

Return value
If the specified feature name exists and the value is true, the method returns true, and in the other cases, the
method returns false.

Notes

• The method returns false if null or empty string is set in the featureName parameter.

getProperties() method

Description
This method acquires all the feature maps related to the client.

Syntax
public Map<String,Object> getProperties()

Parameter
None.

Return value
The method returns the feature map. The method does not return null.

Notes
An example of using the getProperties() method is as follows:

// Set up the client
ClientConfig cc = new DefaultClientConfig();

// Set the property read timeout value
cc.getProperties().put(ClientConfig.PROPERTY_READ_TIMEOUT, 10000);

// Generate the Client object by using client settings
Client client = Client.create(cc);

// Generate an HTTP request
ClientRequest cRequest= ClientRequest.create().build(new URI ("http://example.com/
example"), "GET");
try{
 //Receive the HTTP response as the ClientResponse object
 ClientResponse cResponse = client.handle(cRequest);
} catch(ClientHandlerException e){
 // Execute the appropriate processing
}

In this example, initially a changeable property map is acquired with the getProperties method and the read
timeout value is set to 10,000 milliseconds. A client instance is created by using these client settings with the
create(ClientConfig cc) method of the Client class. Then, the ClientRequest object is created, the
HTTP communication is performed by using the handle method of the Client class, and the HTTP response is
received as the ClientResponse object. If the read timeout occurs before an HTTP response is completely read,

25. Support Range of the Client APIs for RESTful Web Services

691

an error (KDJJ18888-E) occurs and the ClientHandlerException exception that wraps the
SocketTimeoutException exception is thrown.

getProperty(String propertyName) method

Description
This method acquires the value of the property.

Syntax
public Object getProperty(String propertyName)

Parameter

propertyName
This is a property name.

Return value
The method returns the value of the property. The method returns null if the parameter of the name specified in the
propertyName parameter does not exist.

Notes

• The method returns null if null or an empty string is specified in the propertyName parameter.

25. Support Range of the Client APIs for RESTful Web Services

692

25.13 Specifications for the constant, constructors, and
methods and the notes for the HTTPSProperties
class

This section describes the specifications for the constants, constructors, and methods of the HTTPSProperties
class and the notes on using the constants, constructors, and methods.

PROPERTY_HTTPS_PROPERTIES constant

Description
This property is used to set the HTTPSProperties object. Use this property to add the HTTPSProperties
object in the changeable property map. For details on the properties, see 25.1.1 Supported properties and features.

Syntax
public static final java.lang.String PROPERTY_HTTPS_PROPERTIES

HTTPSProperties() constructor

Description
This method sets up the HTTPSProperties object from the SSLContext object that is generated by specifying
SSL in the argument of the getInstance() method of the javax.net.ssl.SSLContext class. The set up
HTTPSProperties object does not include the javax.net.ssl.HostnameVerifier object.

Syntax
public HTTPSProperties()
throws java.security.NoSuchAlgorithmException

Parameter
None.

Return value
None.

Exception

NoSuchAlgorithmException
This exception is thrown if the SSLContext object cannot be generated.

Notes
None.

25. Support Range of the Client APIs for RESTful Web Services

693

HTTPSProperties(Hostname Verifier hv) constructor

Description
This method sets up an HTTPSProperties object from the javax.net.ssl.HostnameVerifier object
specified in the argument and the SSLContext object that is generated by specifying SSL in the argument of the
getInstance() method of the javax.net.ssl.SSLContext class.

Syntax
public HTTPSProperties(HostnameVerifier hv)
throws NoSuchAlgorithmException

Parameter

hv
This is the HostnameVerifier object to be specified in the HTTPSProperties object to be set up.

Return value
None.

Exception

NoSuchAlgorithmException
This exception is thrown if the SSLContext object cannot be generated.

Notes

• The operation when a null value is set in the hv parameter is the same as the operation when the
HostnameVerifier object is not set in the HttpsURLConnection class before generating an HTTP
request.

• The operation when a non-null value is specified in the hv parameter is the same as the operation when the same
value is specified in the setHostnameVerifier() method of the HttpsURLConnection class. Note that
the JAX-RS engine does not validate the value specified in the parameter. Specify the parameter value according
to the standard specifications.

HTTPSProperties(Hostname Verifier hv, SSLContext c) constructor

Description
This method sets up the HTTPSProperties object from the javax.net.ssl.HostnameVerifier and
javax.net.ssl.SSLContext objects specified in the argument.

Syntax
public HTTPSProperties(HostnameVerifier hv,
SSLContext c)

Parameters

hv
This is the HostnameVerifier object to be specified in the HTTPSProperties object to be set up.

25. Support Range of the Client APIs for RESTful Web Services

694

c
This is SSLContext to be specified in the HTTPSProperties object to be set up. You cannot specify null.

Return value
None.

Notes

• If null is set in the c parameter, the IllegalArgumentException exception is thrown.

• The operation when null is set in the hv parameter is the same as the operation when a HostnameVerifier
object is not set in the HttpsURLConnection class before generating an HTTP request.

• The operation when a non-null value is specified in the hv parameter is the same as the operation when the same
value is specified in the setHostnameVerifier() method of the HttpsURLConnection class.

• The operation when a non-null value is specified in the c parameter is the same as the operation when the value
acquired by invoking the getSocketFactory() method for the c parameter is specified in the
setSSLSocketFactory() method of the HttpsURLConnection class.

• The JAX-RS engine does not validate the value specified in the parameter. Specify the parameter value according
to the standard specifications.

getHostnameVerifier() method

Description
This method acquires the HostnameVerifier object.

Syntax
public HostnameVerifier getHostnameVerifier()

Parameter
None.

Return value
The method returns the HostnameVerifier object. The method returns null if the HostnameVerifier
object is not set in this object (HTTPSProperties object).

Notes

• You can set the HostnameVerifier object with the HTTPSProperties (HostnameVerifier hv)
constructor and the HTTPSProperties (HostnameVerifier hv, SSLContext c) constructor.

getSSLContext() method

Description
This method acquires the SSLContext object.

Syntax
public SSLContext getSSLContext()

25. Support Range of the Client APIs for RESTful Web Services

695

Parameter
None.

Return value
The method returns the SSLContext object. The method returns null when the SSLContext object is not set in
this object (HTTPSProperties object).

Notes

• You can set the SSLContext object with the HTTPSProperties (HostnameVerifier hv,
SSLContext) constructor.

25. Support Range of the Client APIs for RESTful Web Services

696

25.14 Constructor and method specifications and notes
for the MultivaluedMapImpl class

The MultivaluedMapImpl class is an implementation class of the javax.ws.rs.core.MultivaluedMap
interface. For details on the specifications for the methods of the MultivaluedMapImpl class, see the JAX-RS
API documentation.

This section describes the notes on using the constructors and methods of the MultivaluedMapImpl class.

• The MultivaluedMapImpl class is not thread safe.

• The MultivaluedMapImpl class is a simple implementation class and only provides minimum functions. You
can only use the add method, getFirst method, and putSingle method of the
javax.ws.rs.core.MultivaluedMap interface.
You cannot invoke the other methods of the java.util.Map interface (such as the put method and remove
method). If the methods other than the add method, getFirst method, and putSingle method are used, the
operations of the JAX-RS engine are not guaranteed.

• If the functionality of the MultivaluedMapImpl class is not available, separately create a class where the
javax.ws.rs.core.MultivaluedMap interface is implemented.

• If null is specified in the value parameter for the add(String key, String value) method and
putSingle(String key, String value) method, an empty string ("") is added as a value instead of
null.

25. Support Range of the Client APIs for RESTful Web Services

697

25.15 Combinations of available Java types and MIME
media types

This section describes the combinations of Java types and MIME Media types that can be used as entity parameters
and return values of the client APIs for RESTful Web Services. Do not use the annotations compliant with the JAXB
specifications in POJO. If such annotations are used, the actual operation might differ from the description.

25.15.1 Combination of Java types and MIME media types available for
an HTTP request entity

The following table lists the combination of Java types and MIME media types available for the entity body of an
HTTP request. Note that the operation of the JAX-RS engine is not guaranteed for other combinations.

Table 25‒6: Combination of Java types and MIME media types available for the entity body

No. Java Type charset#1 Content-Type HTTP
header

Content-Type HTTP header#2

(JAX-RS engine)

1 byte[] N Any (*/*) application/octet-
stream

2 java.lang.String Y Any (*/*) text/plain

3 java.io.InputStream N Any (*/*) application/octet-
stream

4 java.io.Reader Y Any (*/*) text/plain

5 java.io.File N Any (*/*) application/octet-
stream

6 javax.activation.Data
Source

N Any (*/*) application/octet-
stream

7 javax.xml.transform.S
ource#3

N Any (*/*) application/xml

8 javax.xml.bind.JAXBEl
ement<String>#4

Y ext/xml,

application/xml,

application/*+xml

application/xml

9 JAXB class#4 annotated with the
XmlRootElement annotation

Y text/xml,

application/xml,

application/*+xml

application/xml

10 javax.ws.rs.core.Mult
ivaluedMap<String,Str
ing>

Y application/x-www-
form-urlencoded

application/x-www-form-
urlencoded

11 javax.ws.rs.core.Stre
amingOutput

N Any (*/*) application/octet-
stream

12 org.w3c.dom.Document N Any (*/*) application/xml

13 java.awt.image.Render
edImage

N image/jpeg application/octet-
stream

14 javax.ws.rs.core.Gene
ricEntity<T>#5

D MIME media type similar to
the Type specified in T.

MIME media type similar to the
Type specified in T.

15 POJO#6 N#7 application/json application/octet-
stream

25. Support Range of the Client APIs for RESTful Web Services

698

Legend:
Any (*/*): Indicates that all the MIME media types are supported.

#1
Indicates whether the charset parameter information, if included in the Content-Type HTTP header, is considered during
conversion to an HTTP request.
Y: Considered. When the Content-Type HTTP header does not include the charset parameter, UTF-8 is assumed.
D: Depends on the type specified in T.
N: Not considered.

#2
If the Content-Type HTTP header is not specified in the ClientRequest object or the WebResource object and when
the entity is non-null, specify the Content-Type HTTP header of an HTTP request by considering the Content-Type
specified in this column.
The operation when the entity is null is the same as the operation when the Content-Type HTTP header is not set in the
HttpURLConnection object before making an HTTP request.

#3
You can use the following implementation classes:
- javax.xml.transform.stream.StreamSource
- javax.xml.transform.sax.SAXSource
- javax.xml.transform.dom.DOMSource

#4
When the MIME Media type is application/fastinfoset or application/json, the operation ends normally
without any error.

#5
In T, you can specify the types described in No.1 to No.13, and No. 15 in the table.

#6
Enable JSON POJO mapping. The operation when JSON POJO mapping is disabled is the same as the operation when an
unsupported Java type is specified in the entity parameter. For details on how to enable JSON POJO mapping, see 18. Mapping
JSON and POJO.

#7
Do not add the charset parameter in the Content-Type HTTP header.

If the specified Java type is an unsupported type and if the value is not null, an error occurs (KDJJ10032-E and
KDJJ18888-E) and the ClientHandlerException exception is thrown. However, if the specified Java type is
javax.mail.internet.MimeMultipart and the MIME media type is multipart/*, the operation ends
normally without any error.

With the following Java types, if there is a MIME media type that an HTTP request entity body cannot use, an error
occurs (KDJJ10032-E and KDJJ18888-E) and the ClientHandlerException exception is thrown:

1. javax.xml.bind.JAXBElement <String>
2. JAXB class annotated with the XmlRootElement annotation

3. javax.ws.rs.core.MultivaluedMap<String, String>
4. java.awt.image.RenderedImage
5. POJO

However, if the MIME media type of an HTTP request entity body in 1 or 2 is application/fastinfoset or
application/json, the operation ends normally without any errors.

If an exception is thrown during the processing of an HTTP request and HTTP response, an error (KDJJ18888-E)
occurs and the ClientHandlerException exception that wraps this exception is thrown.

Notes for the types of HTTP methods are as follows:

• If the HTTP method is DELETE, HEAD, or OPTIONS, do not specify a non-null value in the entity body of an
HTTP request. If you specify a non-null value, an error occurs (KDJJ18888-E) and the
ClientHandlerException exception is thrown.

• If the HTTP method is GET, do not specify a non-null value in the entity body of an HTTP request. If specified,
the non-null value is ignored.

25. Support Range of the Client APIs for RESTful Web Services

699

• If the HTTP method is POST or PUT, and null is specified in the entity body of an HTTP request, the entity
body is not included in the sent HTTP request.

25.15.2 Combination of Java types and MIME media types available for
an HTTP response entity

The following table lists the combination of Java types and MIME media types that can be used in the return values.

Table 25‒7: Combination of Java types and MIME media types that can be used in the return value of an
entity body

No. Java Type charset#1 MIME Media Type

1 byte[] N Any (*/*)

2 java.lang.String Y Any (*/*)

3 java.io.InputStream N Any (*/*)

4 java.io.Reader Y Any (*/*)

5 java.io.File#2 N Any (*/*)

6 javax.activation.DataSource N Any (*/*)

7 javax.xml.transform.Source#3 N Any (*/*)

8 javax.xml.bind.JAXBElement<String>#4, #5 N text/xml,

application/xml,

application/*+xml

9 JAXB class annotated with the XmlRootElement
annotation and/or the XmlType annotation#5

N text/xml,

application/xml,

application/*+xml

10 javax.ws.rs.core.MultivaluedMap<String
,String>

Y application/x-www-form-
urlencoded

11 org.w3c.dom.Document N Any (*/*)

12 java.awt.image.RenderedImage N application/octet-stream,

image/jpeg

13 com.cosminexus.jersey.api.client.Gener
icType<T>#6

D MIME media type similar to the type
specified in T.

14 com.cosminexus.jersey.api.client.Gener
icType<T>#7

D MIME media type similar to the type
specified in T.

15 POJO #8 Y application/json

Legend:
Any (*/*): Indicates that all the MIME media types are supported.

#1
Indicates whether the charset parameter information, if included in the Content-Type HTTP header, is considered during
injection to an HTTP response.
Y: Considered. When the Content-Type HTTP header does not include the charset parameter, UTF-8 is assumed.
D: Depends on the type specified in T.
N: Not considered.

#2
The JAX-RS engine creates a temp directory on the local computer and saves the temporary file.

25. Support Range of the Client APIs for RESTful Web Services

700

#3
You can use the following implementation classes:
- javax.xml.transform.stream.StreamSource
- javax.xml.transform.sax.SAXSource
- javax.xml.transform.dom.DOMSource
Note that when you use javax.xml.transform.stream.StreamSource or
javax.xml.transform.sax.SAXSource, receive the HTTP response with the generic type (ClientResponse) and
obtain the entity object by using the getEntity() method of the ClientResponse class. At this time, make sure you
invoke the bufferEntity() method before invoking the getEntity() method. For details on how to receive an HTTP
response by using a generic type (ClientResponse), see 11.4.1 Use case of a Web resource client.

#4
Used as T in No. 14 in the table. Operation is not guaranteed for any other usage.

#5
If the MIME media type is application/fastinfoset or application/json, the operation ends normally without
any errors.

#6
Used as T in No.14 in this table. In T, you can specify the types described in No.2 to No.12, and No.15 in the table. Operation is
not guaranteed for any other usage.

#7
In T, you can specify the types described from No. 2 to No. 13, and No. 15 in the table.

#8
Enable the JSON POJO mapping. The operation when the JSON POJO mapping is disabled is the same as the operation when an
unsupported Java type is specified in the entity parameter. For details on how to enable the JSON POJO mapping, see 18.
Mapping JSON and POJO.

If the specified Java type is an unsupported type, an error occurs (KDJJ10031-E and KDJJ18888-E) and the
ClientHandlerException exception is thrown.

If the return value is the following Java type and the MIME media type is a type that cannot be used by the entity body
of an HTTP response, an error occurs (KDJJ10031-E or KDJJ18888-E) and the ClientHandlerException
exception is thrown.

• javax.xml.bind.JAXBElement <String>
• JAXB class annotated with the XmlRootElement annotation and/or the XmlType annotation

• javax.ws.rs.core.MultivaluedMap<String,String>
• java.awt.image.RenderedImage
• POJO

If the IOException exception is thrown during conversion from the HTTP response entity body, an error occurs
(KDJJ18888-E) and the ClientHandlerException exception is thrown.

If an exception other than the IOException exception is thrown during conversion from the HTTP response entity
body, the corresponding exception is thrown. To check the log, use the J2EE server log files instead of the JAX-RS
functionality log files.

With the entity parameter java.awt.image.RenderedImage, if the Content-Type HTTP header is
image/*, an error occurs (KDJJ18888-E) and the ClientHandlerException exception that wraps the
java.io.IOException exception is thrown.

With the entity parameter com.cosminexus.jersey.api.client.GenericType<T>, if an HTTP response
contains an entity body, and if T is of the type described in No.1 in the table, an error occurs (KDJJ10031-E and
KDJJ18888-E) and the ClientHandlerException exception is thrown.

With the entity parameter com.cosminexus.jersey.core.provider.EntityHolder<T>, if an HTTP
response contains an entity body, an error (KDJJ10003-E) occurs and the
javax.ws.rs.WebApplicationException exception is thrown in one of the following cases:

• When T is an unsupported type (No. 1, No.13, and No.14 of the table)

• When T is a supported type (from No. 2 to No.12, and No. 15 of the table), but the MIME media type is a type
that the HTTP response entity body cannot use.

25. Support Range of the Client APIs for RESTful Web Services

701

If the client APIs operate on the J2EE server, the entity body contains maximum 10,000 form parameters by default. If
the entity parameter type is javax.ws.rs.core.MultivaluedMap<String, String>, or
com.cosminexus.jersey.core.provider.GenericType<EntityHolder<javax.ws.rs.core.M
ultivaluedMap<String, String>>> and if the number of response parameters exceed the specified value,
the RuntimeException exception is thrown. Change the value in the
webserver.connector.limit.max_parameter_count property of the user property file for J2EE servers
(usrconf.properties) as and when required. To check the log, use the J2EE server log files instead of the JAX-
RS functionality log files.

If the Content-Type HTTP header does not exist in the HTTP response, the MIME media type is considered to be
the application/octet-stream.

25. Support Range of the Client APIs for RESTful Web Services

702

25.16 Thread safety of the client APIs for RESTful Web
Services

The following table describes the thread safety of the client APIs for RESTful Web Services.

Table 25‒8: Thread safety of the client APIs for RESTful Web Services

No. Interface or class Constructor/ Method/ Field
Thread
Safety#1

com.cosminexus.jersey.api.client package

1 Client create() Y

2 ApplicationPath create(ClientConfig cc) Y#2

3 Consumes destroy() N

4 CookieParam getProperties() N

5 DefaultValue handle(ClientRequest request) Y#2

6 resource(String u) Y

7 resource(URI u) Y

8 setChunkedEncodingSize(Integer
chunkSize)

N

9 setConnectTimeout(Integer interval) N

10 setFollowRedirects(Boolean
redirect)

N

11 setReadTimeout(Integer interval) N

12 ClientRequest All methods N

13 ClientRequest.Builder All methods N

14 ClientResponse All methods N

15 GenericType All methods Y

16 WebResource accept(MediaType... types) Y

17 accept(String... types) Y

18 acceptLanguage(Locale... locales) Y

19 acceptLanguage(String... locales) Y

20 cookie(Cookie cookie) Y

21 delete() Y

22 delete(Class<T> c) Y

23 delete(Class<T> c, Object
requestEntity)

C

24 delete(GenericType<T> gt) Y

25 delete(GenericType<T> gt, Object
requestEntity)

C

26 delete(Object requestEntity) C

27 entity(Object entity) Y

25. Support Range of the Client APIs for RESTful Web Services

703

No. Interface or class Constructor/ Method/ Field
Thread
Safety#1

28 WebResource entity(Object entity, MediaType
type)

Y

29 entity(Object entity, String type) Y

30 get(Class<T> c) Y

31 get(GenericType<T> gt) Y

32 getRequestBuilder() Y

33 getURI() Y

34 getUriBuilder() Y

35 head() Y

36 header(String name, Object value) Y

37 method(String method) Y

38 method(String method, Class<T> c) Y

39 method(String method, Class<T> c,
Object requestEntity)

C

40 method(String method,
GenericType<T> gt)

Y

41 method(String method,
GenericType<T> gt, Object
requestEntity)

C

42 method(String method, Object
requestEntity)

C

43 options(Class<T> c) Y

44 options(GenericType<T> gt) Y

45 path(String path) Y

46 post() Y

47 post(Class<T> c) Y

48 post(Class<T> c, Object
requestEntity)

C

49 post(GenericType<T> gt) Y

50 post(GenericType<T> gt, Object
requestEntity)

C

51 post(Object requestEntity) C

52 put() Y

53 put(Class<T> c) Y

54 put(Class<T> c, Object
requestEntity)

C

55 put(GenericType<T> gt) Y

56 put(GenericType<T> gt, Object
requestEntity)

C

57 put(Object requestEntity) C

25. Support Range of the Client APIs for RESTful Web Services

704

No. Interface or class Constructor/ Method/ Field
Thread
Safety#1

58 WebResource queryParam(String key, String
value)

Y

59 queryParams(MultivaluedMap<String,S
tring>params)

Y

60 type(MediaType type) Y

61 type(String type) Y

62 uri(URI uri) Y

63 WebResource.Builder All methods N

com.cosminexus.jersey.api.client.config package

64 DefaultClientConfig All methods N

65 Provider -- Y

Legend:
Y: Thread safe.
C: Thread safe when the instance specified in the request entity (requestEntity parameter) is thread safe.
N: Not thread safe.
--: No method available.

#1
If the operation is not thread safe, do not invoke this method of the same object from multiple threads.

#2
The class specified in the argument is not thread-safe. Generate the instances of the classes to be specified in the argument with
the respective threads.

25. Support Range of the Client APIs for RESTful Web Services

705

Part 4: Extension Functionality

26 WSDL Import Functionality
This chapter describes the WSDL import functionality.

707

26.1 What is the WSDL import functionality
The WSDL import functionality is the functionality that uses the wsdl:import element to read WSDL definitions in
another file as a common component.

The following figure shows the image of the WSDL import functionality:

Figure 26‒1: Image of the WSDL import functionality

26. WSDL Import Functionality

708

26.2 WSDL definitions that can be imported
This section describes the conditions for the WSDL definitions to be imported and the points to remember when you
import the WSDL definition.

(1) Conditions for the WSDL definitions to be imported
The WSDL definitions to be imported must fulfill the following conditions:

• wsdl:definitions is specified in the root element.
If a file with a format other than wsdl:definitions is specified in the root element, an error message is
output in the standard error output and log and the processing ends (KDJW51200-E).

• The user has access permission to the WSDL definition.
If you specify a WSDL definition without the access permission, a JDK error occurs and the processing ends.

The extension of the WSDL definition to be imported is optional.

(2) Importing multiple WSDL definitions
You can combine and import multiple WSDL definitions. However, the wsdl:service element must be defined in
the import source WSDL definition that configures the initial starting point. In the subsequent layers, you can import
the WSDL definition by combining elements other than the wsdl:service element. For details about operations
when the wsdl:service element is not defined, see 20.1.16 wsdl:service element.

The following figures separately show the examples when the method of hierarchical importing of WSDL definitions
is correct and when the method is wrong:

Figure 26‒2: Hierarchical importing of WSDL definitions (Example of a correct method)

Figure 26‒3: Hierarchical importing of WSDL definitions (Example of a wrong method)

(3) Recursive importing of WSDL definitions
In the WSDL import functionality, you cannot import the WSDL definition recursively. Even if you attempt to import
the definition recursively, the WSDL definition will not be read, and therefore, the wsdl:import element will be
ignored.

The following figure shows an example of the recursive importing of WSDL definitions:

26. WSDL Import Functionality

709

Figure 26‒4: Example of the recursive importing of WSDL definitions

26. WSDL Import Functionality

710

26.3 Format of the wsdl:import element
The following is an example of the format of the wsdl:import element:

<wsdl:import namespace="namespace-name-of-the-WSDL-definition-to-be-imported"
location="location-of-the-WSDL-definition-to-be-imported"/>

The following points describe the attributes of the wsdl:import element:

(1) namespace attribute (wsdl:import element)
Specifies the namespace name of the Import target WSDL definition.

In the namespace attribute of the wsdl:import element coded in the import source WSDL definition, specify the
same namespace name as the namespace name of the Import target WSDL definition (targetNamespace attribute
of the wsdl:definitions element).

The following table describes the relationship between the namespace of the import source WSDL definition and the
namespace of the import target WSDL definition:

Table 26‒1: Relationship of the namespaces for the WSDL definition (Import source/ import target)

No. Import source WSDL
definition

Import target WSDL
definition

Conditio
ns Runtime operations

1 namespace attribute of
the wsdl:import
element

targetNamespace
attribute of the
wsdl:definitions
element

Matching Terminates normally.

2 Not
matching

A warning message is output in the standard
error output and log and the processing
continues (KDJW51191-W).

The elements of the import target WSDL
definition and import source WSDL definition
belong to the respective namespaces.

3 targetNamespace
attribute of the
wsdl:definitions
element

Matching A warning message is output in the standard
error output and log and the processing
continues (KDJW51192-W). The elements of
the import target WSDL definition and import
source WSDL definition belong to the same
namespace.

4 Not
matching

Terminates normally.

(2) location attribute (wsdl:import element)
Specifies the location of the WSDL definition to be imported.

The conditions for the strings specified in the location attribute are as follows:

• You can specify the WSDL file available in the relative path, remote, or local using the URL format.

• The WSDL file included in the WAR file is issued as the meta data (except when a new WSDL file is generated).
However, you need to take precautions when issuing the meta data. For details about the precautions for issuing
the meta data, see 10.6(6) Notes for importing/including WSDL definition or XML Schema.

• Use characters defined in RFC 2396 and characters fulfilling xsd:anyURI. However, you cannot use RFC 2732
(IPv6).

• The strings are not case sensitive.

• The maximum length of the specifiable sting is not limited. However, an error occurs when you exceed the limit
set for the OS.

The following table describes an example of coding of the location attribute:

26. WSDL Import Functionality

711

Table 26‒2: Example of specification of the location attribute (WSDL import functionality)

No. Specified contents Example of specification

1 Specifying the local WSDL file using the relative path#1 ./wsdl/input.wsdl

2 Specifying the local WSDL file using the absolute path
expressed with a URL (file://~) #1, 2

file:///C:/tmp/wsdl/input.wsdl

3 Specifying the remote WSDL file using a URL (http:~)#3 http://example.com:8080/fromjava/
test?wsdl

#1
When you specify the WSDL file using the relative path or absolute path, specify the correct path. If the path is wrong and the
WSDL file is not found, an error message is output in the standard error output and log and the processing ends (KDJW51197-E
or KDJW51198-E).

#2
You cannot specify an absolute path string beginning with a drive such as "C:/~". If such a string is specified, an error message
will be output in the standard error output and log and the processing will end (KDJW51199-E).

#3
When you specify a remote WSDL file using a URL, specify the correct URL. If the path is wrong and the WSDL file is not
found, an error message will be output in the standard error output and log and the processing will end (KDJW51197-E or
KDJW51198-E).

26. WSDL Import Functionality

712

27 Catalog Functionality
This chapter describes the catalog functionality.

713

27.1 What is the catalog functionality
The catalog functionality, based on the XML Catalogs 1.1 specifications, executes mapping. You can execute
mapping in the following two ways:

• Mapping the namespace URIs of XML schemas specified by using the namespace attribute of the
xsd:import element and URI references that point to the XML schema locations

• Mapping URI references that point to the location of the WSDL or XML schemas and URI references that point to
the different location of the WSDL or XML schemas

To map by using the catalog functionality, you must allocate a catalog file that defines the mapping information. You
can use the catalog functionality when developing and starting a Web Services client. However, using the catalog
functionality, when publishing metadata, is not supported.

For details on catalog files, see 27.6 Catalog file.

27. Catalog Functionality

714

27.2 Using the catalog functionality (when developing a
Web Services client)

Specify a catalog file by using the -catalog option of the cjwsimport command to use the catalog functionality
when developing a stub based Web Services client. For details on the -catalog option, see 14.1(2) List of options.

According to the mapping information of a catalog file, the cjwsimport command maps the WSDL specified in an
argument and the namespace or the location of an XML schema that this WSDL references, to a different WSDL or
XML schema location. The cjwsimport command also scans the WSDL and XML schema in the mapped location
and generates a Java code.

(1) Mapping targets
Table 27-1 lists mapping targets of the catalog functionality in the cjwsimport command and Table 27-2 lists
mapping targets in the code generated by a WSDL specified in the arguments of the cjwsimport command.

Table 27‒1: Mapping targets in the cjwsimport command

No. Mapping target Supported

1 Location of the WSDL specified in the arguments of the cjwsimport command N

Legend:
N: Not supported.

Table 27‒2: Mapping targets in the code generated by a WSDL specified in the arguments of the
cjwsimport command

No. Element Attribute Support

1 wsdl:import namespace N

2 location Y

3 xsd:import namespace Y#

4 schemaLocation Y

5 xsd:include schemaLocation Y

Legend:
Y: Supported.
N: Not supported.

#
The namespace attribute is mapped only when the xsd:import element has only the namespace attribute. If the
xsd:import element contains both the namespace and schemaLocation attributes, the namespace attribute is not
considered a mapping target.

(2) Notes
Do not change the values of the following locations and elements when using the catalog functionality when
developing a Web Services client.

• The default WSDL location of the service class that the cjwsimport command generates (WSDL location that
the constructor that does not have a WSDL location specified as an argument uses)

• The wsdlLocation element in the javax.xml.ws.WebServiceClient annotation to be assigned to a
service class

Use the -wsdllocation option of the cjwsimport command to change the values of the aforementioned
locations or elements. For details, see 14.1 cjwsimport command.

27. Catalog Functionality

715

(3) Example of mapping
The following figure shows an example of mapping an XML schema location that a WSDL refers by using the catalog
functionality when developing a Web Services client.

Figure 27‒1: Example of mapping an XML schema location that a WSDL refers

27. Catalog Functionality

716

In this figure, a remote XML schema location is specified in the schemaLocation attribute of the xsd:include
element of the WSDL. The figure also shows procedures when the catalog functionality is disabled and enabled.

When the catalog functionality is disabled
The cjwsimport command generates a Java code by reading the remote XML schema.

When the catalog functionality is enabled
As per the information on mapping the catalog file, map the remote XML schema location specified in the
schemaLocation attribute of the xsd:include element to a local XML schema location. The
cjwsimport command reads the local XML schema and generates a Java code.

27. Catalog Functionality

717

27.3 Using the catalog functionality (when starting a
Web Services client)

When starting a Web Services client, you can use the catalog functionality just by storing the catalog file. You need
not change the WSDL, specify the -catalog option by using the cjwsimport command, and recreate a
developed Web Services client. For details on allocating the catalog file, see 27.6.2 Storing the catalog file.

As per the information on mapping the catalog file, map the WSDL location from the service class of WSDL and the
WSDL location specified in the argument of the constructor of the service class to different WSDL locations and
generate a service class.

(1) Mapping targets
Table 27-3 lists the mapping targets of the catalog functionality when starting a Web Services client and Table
27-4lists the mapping targets in a WSDL code to be used when starting a Web Services client.

Table 27‒3: Mapping targets of the catalog functionality when executing a Web Services client

No. Mapping target Supported

1 Default WSDL location of a service class#1 Y

2 The WSDL location specified in the arguments of the constructor of a service class#1 Y

3 The WSDL location specified in the arguments of the API of the
javax.xml.ws.Service class#2

Y

4 The WSDL location specified in the wsdlLocation element of the
javax.xml.ws.WebServiceRef annotation#3

Y

Legend:
Y: Supported

#1
For details on the WSDL location of a service class, see Table 15-17The methods included in a service class in 15.1.9 Mapping
the service and port to the service class.

#2
For details on the javax.xml.ws.Service class WSDL location, see 19.2.2(4) javax.xml.ws.Service class.

#3
For details on the javax.xml.ws.WebServiceRef annotation, see 19.3 Support range of annotations.

Table 27‒4: 4Mapping targets in a WSDL code to be used when executing a Web Services client

No. Element Attribute Supported

1 wsdl:import namespace N

2 location Y

Legend:
Y: Supported.
N: Not supported.

(2) Notes
The catalog functionality, when starting the Web Services client, does not execute the following mappings because the
functionality does not need XML schemas when generating a service class.

• Mapping of namespace URIs of XML schemas

• Mapping related to schema location

In the catalog file, therefore, describe the mapping information of the WSDL location only.

27. Catalog Functionality

718

(3) Example of mapping
The following figure shows an example of mapping a WSDL location by using the catalog functionality, when
generating a service class in a Web Services client.

Figure 27‒2: Example of mapping a WSDL location

In the example in this figure, a remote WSDL location is specified in the argument of the constructor of the service
class. The figure also shows the processes when the catalog functionality is disabled and enabled.

When the catalog functionality is disabled
The Web Services client on the local machine reads the remote WSDL and generates a service class.

When the catalog functionality is enabled
As per the information on mapping the catalog file, the Web Services client on the local machine maps the remote
WSDL location specified in the arguments to a local WSDL location, reads the local WSDL and generates a Java
code.

27. Catalog Functionality

719

27.4 Performance of the catalog functionality
Increase in the overhead when using the catalog functionality

The catalog functionality operates when calling an API of the javax.xml.ws.Service class or service class
constructor when starting the Web Services client. Generating a service class or executing the
javax.xml.ws.Service class APIs, therefore, increase overhead that follows reading the catalog file, as
compared to mapping without using the catalog functionality.

Decrease in the overhead when using the catalog functionality
We recommend that you use the following method to decrease overhead of the catalog functionality when
executing the Web Services client:

• Reusing the generated services
For details, see 3.6.1(3) Generating service classes and acquiring ports.

• Annotating the javax.xml.ws.WebServiceRef annotation to fields and injecting service classes
For details, see 19.3 Support range of annotations.

27. Catalog Functionality

720

27.5 Notes when using the catalog functionality
• You cannot use the catalog and addressing functionalities at the same time, otherwise the operation is not

guaranteed.

• When executing the Web services client, if the URI reference pointing to the WSDL location to be mapped to the
URI reference pointing to the remote WSDL location by using the catalog functionality, the following properties
will not be applied:

• com.cosminexus.jaxws.connect.timeout
• com.cosminexus.jaxws.request.timeout
• com.cosminexus.xml.ws.client.http.HostnameVerificationProperty
• javax.xml.ws.security.auth.username
• javax.xml.ws.security.auth.password

• If you are using the catalog functionality when starting a Web Service, store the catalog file in a directory
consisting single byte alphanumeric characters, (0 to 9, A t o Z, a to z), spaces, periods (.), underscores (_), colons
(:), slashes (/), and , otherwise the operation is not guaranteed.

27. Catalog Functionality

721

27.6 Catalog file
A catalog file is stored when using the catalog functionality. This file contains the mapping information. For details on
the support range of catalog files, see 21. Support Range of XML Catalogs 1.1. This section describes the syntax of a
catalog file and storing the file.

27.6.1 Syntax of the catalog file
Describe the syntax of a catalog file within the scope of XML Catalogs 1.1 schemas (W3C XML Schemas for an
XML Catalog), and the JAX-WS functionality of Application Server.

27.6.2 Storing the catalog file
As per the restrictions on the file system on your OS and the Java EE 6 specifications, store the catalog file in the
following places.

(1) When developing a Web Services client
Specify the path of the catalog file in the arguments of the -catalog option of the cjwsimport command. You
can specify any name for the catalog file. For details, see Notes for specifying the -catalog option of 14.1(2) List of
options. If reading of the catalog file fails, a warning message (KDJW51221-W) is output to the standard error output
and the process continues with the catalog functionality disabled.

(2) When starting the Web client
Save the catalog file as jax-ws-catalog.xml directly under the META-INF directory. If reading of the catalog
file fails, a message (KDJW30023-W) is output to the log and the process continues with the catalog functionality
disabled. The operation is not guaranteed if multiple catalog files are stored. For example, the operation is not
guaranteed if multiple JAR files with the name jax-ws-catalog.xml are added to the class path.

27.6.3 Example of coding the catalog file
The following example shows the coding of a catalog file when mapping the remote WSDL location to a local WSDL
location by using the catalog functionality:

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog" prefer="system">
 <system systemId="http://localhost:8080/fromjava/AddNumbersImplService?
wsdl"
 uri="./wsdl/UserInfo.wsdl"/>
</catalog>

27. Catalog Functionality

722

28 Attachment Functionality
(wsi:swaRef format)
If you use the attachment functionality, you can handle the text data, and also the
image data and voice data with Web Services.

This chapter provides an overview of the attachment functionality and describes the
mapping rules for using the attachment functionality.

723

28.1 What is the attachment functionality (wsi:swaRef
format)

The attachment functionality is a functionality that sends and receives SOAP Messages with attachments wherein text
and image (binary data) files are attached to SOAP Messages.

This section provides an overview of the attachment functionality based on the following example:

Figure 28‒1: Sending and receiving binary data using the attachment functionality

To attach a file to the SOAP Message, use javax.activation.DataHandler class in an argument of Java
method that invokes the Web Service. A Java source with a file attached is marshalled by the SOAP Messages using
the sending JAX-WS engine and is un-marshalled by the Java source using the receiving JAX-WS engine. The
receiving JAX-WS engine obtains the attachment from the argument of the un-marshalled Java source method.

Note that this functionality complies with WS-I Attachments Profile - Version 1.0 specifications; therefore, WSDL of
wsi:swaRef type is used. Also, since the SOAP Messages with Attachments protocol is used; the SOAP Messages
with attachments are encoded using the MIME Multipart/ Related structure.

To send and receive SOAP messages with attachments, using the APIs of the SAAJ 1.3 specifications, see the section
22.1 Support range of the SAAJ 1.3 specifications.

28. Attachment Functionality (wsi:swaRef format)

724

28.2 Java interface of attachments (wsi:swaRef format)
This subsection describes the Java types for which attachments are specified in the Java interface.

(1) Java types that can be used in attachments
The following table describes the usability of Java type of attachments in the Java interface:

You need to add javax.xml.bind.annotation.XmlAttachmentRef annotation in the Java types that can
be used in attachments. If you add this annotation in the types that cannot be used in attachments, the operations might
not function properly.

Table 28‒1: Usability of Java types as attachments

No. Java type Usability

1 javax.activation.DataHandler Y

2 javax.xml.ws.Holder<DataHandler> Y

3 Array type of javax.activation.DataHandler R

4 Array type of javax.xml.ws.Holder<DataHandler> N

5 Data type that inherits javax.activation.DataHandler N

Legend:
Y: Can be used as attachment.
R: Only one-dimensional array can be used as attachment. If a multi-dimensional array is used, the operations might not function
properly.
N: Cannot be used as attachment.

(2) Locations in which attachments can be specified
You can specify an attachment in the fields of the method argument, method return value, and user-defined type of
Java interface. You cannot specify an attachment in a user-defined exception.

The following table describes the location for specifying an attachment in the Java interface and the whether the Java
type can be specified:

Table 28‒2: Location of specification and specifiability of Java types of attachments

No. Location of specification in the Java
interface Java type of attachment

Can be
specified or

not

1 Method arguments javax.activation.DataHandler Y

2 javax.xml.ws.Holder<DataHandler> Y

3 Array type of javax.activation.DataHandler R

4 Method return values javax.activation.DataHandler Y

5 javax.xml.ws.Holder<DataHandler> N

6 Array type of javax.activation.DataHandler R

7 Fields of the user-defined types javax.activation.DataHandler Y

8 javax.xml.ws.Holder<DataHandler> N

9 Array type of javax.activation.DataHandler R

10 Fields of the user-defined exceptions javax.activation.DataHandler N

11 javax.xml.ws.Holder<DataHandler> N

28. Attachment Functionality (wsi:swaRef format)

725

No. Location of specification in the Java
interface Java type of attachment

Can be
specified or

not

12 Fields of the user-defined exceptions Array type of javax.activation.DataHandler N

Legend:
Y: Can be specified.
R: Can be specified only when one-dimensional array is used. If specified using a multi-dimensional array, the operations might
not function properly.
N: Cannot be specified.

(3) Attachment that can be specified in javax.activation.DataHandler type
The javax.activation.DataHandler type is a type of JavaBeans Activation Framework (JAF), so you can
specify any MIME type attachment. For details on the extensions for the attachments and the MIME type mapping set
up by default, see 28.4.2(3) Mapping between the attachment extension and MIME types.

28. Attachment Functionality (wsi:swaRef format)

726

28.3 WSDL for attachments (wsi:swaRef format)
When you use the SOAP Messages with attachments, you can define an attachment on WSDL. This section describes
the WSDL coding and the mapping between WSDL and Java types when attachments are used.

28.3.1 WSDL coding when attachments are used (wsi:swaRef format)
To handle attachments in WSDL, code using the wsi:swaRef type. The wsi:swaRef type is defined in the WS-I
Attachments Profile - Version 1.0 as the type for handling attachments in WSDL

The following is an example of WSDL coded with the wsi:swaRef type on the basis of the type defined in WS-I
Attachments Profile - Version 1.0:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://localhost"
 xmlns:wsi="http://ws-i.org/profiles/basic/1.1/xsd" ...>
 <wsdl:types>
 <schema elementFormDefault="qualified" targetNamespace="http://localhost"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://ws-i.org/profiles/basic/1.1/xsd"/>
 <element name="getUserData">
 <complexType>
 <sequence>
 <element name="in0" type="xsd:string"/>
 <element name="in1" type="wsi:swaRef"/>
 </sequence>
 </complexType>
 </element>
 ...
 </schema>
 </wsdl:types>
 <wsdl:message name="getUserDataRequest">
 <wsdl:part element="intf:getUserData" name="parameters"/>
 </wsdl:message>
 ...
 <wsdl:portType name="UserInfo">
 <wsdl:operation name="getUserData">
 <wsdl:input message="intf:getUserDataRequest" name="getUserDataRequest"/>
 ...
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

In this example, the wsi:swaRef type, indicating an attachment, is specified in the getUserData method
argument (type of the element element in the schema definition).

Precautions for handling attachments in WSDL

• The swaRef type can be specified in the schema element type (type attribute of the element element). If
the swaRef type is specified in the attribute type (type attribute of the attribute element), the
operations might not function properly.

• In the XML Schema that specifies the swaRef type, you must import the name space http://ws-i.org/
profiles/basic/1.1/xsd as shown in the WSDL example. If the name space is not imported, a
Cosminexus XML Processor error is output.
The following table describes the types and usability of the schemaLocation attribute of the
xsd:import element that imports the namespace :

Table 28‒3: Type and usability of the schemaLocation attribute of the xsd:import element (when
swaRef type is used)

No. schemaLocation attributes Usability

1 Not specified Can be used. #1

2 http://wsi.org/profiles/basic/1.1/swaref.xsd Can be used. #1

3 Other than No.1 and No.2 Cannot be used. #2

28. Attachment Functionality (wsi:swaRef format)

727

#1
The cjwsimport command references the schema of the name space http://ws-i.org/profiles/
basic/1.1/xsd stored in the Cosminexus JAX-WS functionality.

#2
The cjwsimport command references the schema present in the location specified in the schemaLocation
attribute. However, because the command references a schema for which contents cannot be guaranteed with the
Cosminexus JAX-WS functionality, this is not supported.

• Attachments cannot be used in the user-defined exceptions, so the swaRef type cannot be specified in the
schema element type (type attribute of the element element) referenced from the wsdl:fault element.
If the swaRef type is specified in the schema element type referenced from the wsdl:fault element, the
operations might not function properly.

28.3.2 Mapping of Java type of attachments and WSDL (wsi:swaRef
format)

This subsection describes the rules for mapping the Java type of attachments to WSDL:

Rules for mapping the Java type of attachments to WSDL

1. The Java type of attachments is mapped to swaRef type.

2. The namespace of swaRef type is declared with the wsdl:definitions element.

3. The namespace of swaRef type is imported with the XML Schema that specifies the swaRef type.

The following figure shows an example of mapping of Java type of attachments and WSDL. The numbers in 'Rules
for mapping the Java type of attachments to WSDL' above correspond to the numbers in the following figure:

Figure 28‒2: Example of mapping Java type of attachments to WSDL

28.3.3 Mapping WSDL to the Java type of attachments (wsi:swaRef
format)

This subsection describes the rules for mapping WSDL to the Java type of attachments.

Rules for mapping WSDL to the Java type of attachments

1. The swaRef type of WSDL is mapped to the Java type of attachments.

28. Attachment Functionality (wsi:swaRef format)

728

The following figure shows example of mapping WSDL to the Java type of attachments. The numbers in 'Rules for
mapping WSDL to the Java type of attachments' above correspond to the numbers in the following figure:

Figure 28‒3: Example of mapping WSDL to Java type of attachments

28. Attachment Functionality (wsi:swaRef format)

729

28.4 SOAP Messages with attachments (wsi:swaRef
format)

The SOAP Messages with attachments use the SOAP Messages with Attachments protocol and are encoded using the
MIME Multipart/ Related structure.

The following figure shows the structure of the SOAP Messages with attachments:

Figure 28‒4: Structure of SOAP Messages with attachments

The following table describes each part of the SOAP Messages with attachments:

Table 28‒4: Description about each part of SOAP Messages with attachments

Name of each part Description

HTTP header This is the header information dependent on the HTTP protocol.

Boundary string of the HTTP header and
HTTP body

This is a string indicating the boundary of the HTTP header and HTTP body.

HTTP body This describes the message to be sent.

Consists of the root part and attachment part.

Boundary string of the MIME part This is a string indicating the boundary of each MIME part.

Root part This part describes the main message.

Consists of the MIME header and MIME body. One root part is necessarily
defined.

MIME header This is the header information of the root part.

28. Attachment Functionality (wsi:swaRef format)

730

Name of each part Description

Boundary string between the
MIME header and MIME body

This is a string indicating the boundary between the MIME header and MIME
body of the root part.

MIME body This describes the main message.

SOAP Envelope This describes the SOAP Envelope.

SOAP Header This describes the header information of the SOAP Message.

SOAP Body This describes the SOAP Message text (XML).

Boundary string of the MIME part This is a string indicating the boundary of each MIME part.

Attachment part This part describes the attachment contents.

Consists of the MIME header and MIME body. Define 0 or more attachment
parts.

MIME header This is the header information of the attachment part.

Boundary string between the
MIME header and MIME body

This is a string indicating the boundary between MIME header and MIME body
of the attachment part.

MIME body This describes the attachment contents (binary data).

End string of the MIME part This is a string indicating the end of the MIME part.

28.4.1 Mapping an attachment to a SOAP Message (wsi:swaRef format)
This subsection describes the settings when you map an attachment to a SOAP message. For details about the
mapping rules, check this subsection together with 28.4.2 Precautions on mapping an attachment to a SOAP message
(wsi:swaRef format).

(1) HTTP header
The following table describes the values set for the fields and parameters of the HTTP header when attachments are
used:

Table 28‒5: Values set in the fields and parameters of HTTP header

No. Fields name Parameter
name Settings

1 Content-Type -- multipart/related is set.

2 type SOAP 1.1 specifications
text/xml is set.

SOAP 1.2 specifications
application/soap+xml is specified.

3 boundary The boundary string of the MIME part is set.

Legend:
--: Indicates that the name is directly set in Content-Type.

When 1 or more non-root MIME parts are enumerated (when SOAP Messages with attachments are sent and
received), multipart/related is set in the Content-Type. If there is no MIME part, text/xml is set for the SOAP 1.1
specifications and application/soap+xml is set for the SOAP 1.2 specifications.

(2) HTTP body
The HTTP body consists of the root part, attachment part, and boundary string of each part. The following points
describe the contents generated in each part and boundary string and the settings when you use attachments:

28. Attachment Functionality (wsi:swaRef format)

731

(a) MIME header of the root part

The following table lists the values set up in the Content-Type field of the root part when you use attachments:

Table 28‒6: Values set up in the root part field

No. Field name Settings

1 Content-Type SOAP 1.1 specifications
text/xml is set up.

SOAP 1.2 specifications
application/soap+xml is set up.

2 Content-Id Globally unique value"+"@"+"jaxws.cosminexus.com is set up.

(b) MIME body of the root part

When you use attachments, SOAP Envelope is saved in the MIME body of the root part as it is. The CID URL scheme
is used as the method for referencing the attachments from the SOAP Body in the SOAP Envelope.

The following is the CID URL scheme type:

"cid:" + Content-Id-of-the-attachment-part

(c) Boundary string of the MIME header and MIME body of the root part

"CRLF" is set as the boundary string between the MIME header and MIME body of the root part.

(d) MIME header of the attachment part

The following table describes the values set in the MIME header of the attachment part when attachments are used:

Table 28‒7: Values set in the MIME header of the attachment part

No. Fields name Parameter
name Settings

1 Content-Type -- MIME type#1 is set according to the attachment type.

2 charset The character code#2 is specified when the DataHandler
object that is generated, is set.

3 Content-Transfer-
Encoding

None "binary" is set.

4 Content-Id None "Globally unique value" + "@" + "jaxws.cosminexus.com" is
set.

Legend:
--: Indicates that the name is directly set in Content-Type.

#1
The settings for the Content-Type field differ as follows depending on the method of generating the
DataHandler object:

• When the object is generated using DataHandler(DataSource) constructor
For FileDataSource, the MIME type determined by JAF from the extension of the input attachment is set
as the value of Content-Type field. For details about the mapping between the attachment extension and
the MIME types, see 28.4.2(3) Mapping between the attachment extension and MIME types.

• When the object is generated using DataHandler(Object, String) constructor
When the DataHandler object is generated, the contents specified in the second argument of the
constructor (MIME type) are set as the value of the Content-Type field as it is.

28. Attachment Functionality (wsi:swaRef format)

732

#2
For example, when the following DataHandler object is generated, the charset parameter value 'UTF-8'
specified in the second argument is set in charset of Content-Type:

DataHandler dhandler = new DataHandler ("abcde", "text/plain; charset=Shift_JIS");

The javax.activation.DataHandler type that is a Java type of attachment is a type of JavaBeans
Activation Framework (JAF); therefore, you can specify any MIME type attachment. For details about the
correspondence between the attachment extension and the MIME types set by default when FileDataSource
is used to generate the DataHandler object, see 28.4.2(3) Mapping between the attachment extension and
MIME types.

(e) MIME body of the attachment part

The binary data indicating the attachment contents is stored in the MIME body of attachment part.

(f) Boundary string of the MIME header and MIME body of the attachment part

"CRLF" is set as the boundary string of the MIME header and MIME body of the attachment part, as for the root part.

(g) Boundary string between MIME parts

The following string is set as the boundary string between the root part and attachment part and between the
attachment parts:

"CRLF" + "--" + "Boundary-parameter-value-of-HTTP-header"

(h) End string of the MIME part

The following string is set as the end string at the end of MIME part:

"CRLF" + "--" + "<Boundary-parameter-value-of-HTTP-header>" + "--"

(3) Boundary string of the HTTP header and HTTP body
"CRLF" is set as the boundary string between the HTTP header and HTTP body.

28.4.2 Precautions on mapping from an attachment to a SOAP Message
(wsi:swaRef format)

This subsection describes the precautions for mapping the SOAP Message from the attachment.

(1) Coding order of MIME part
A MIME part consists of 1 root part and 0 or more attachment parts.

The root part is coded at the beginning of the MIME part. After the root part, the attachment part is coded.

The arguments and return values specified in the Java interface are mapped in the attachment part. The following table
describes the relationship between the contents specified in the Java interface and the coding order in the attachment
part:

Table 28‒8: Contents specified in Java interface and coding order of the attachment part

No. Location for specifying in Java
interface Coding order of the attachment part

1 Method argument Coded in the order specified in the method argument.

2 Method return value Coded at the beginning of the attachment part.

3 Array type Coded in the order of the elements in the array.

28. Attachment Functionality (wsi:swaRef format)

733

No. Location for specifying in Java
interface Coding order of the attachment part

4 User-defined type Coded in the order of specification of the user-defined type.

When specifying the Java type of attachments using the user-defined types
specified in the user-defined types, the attachment parts are coded in the
depth first order.

The following is an example of mapping the Java interface and attachment parts:

Figure 28‒5: Example of mapping the Java interface and attachment parts

(2) Mapping the root part to the attachment
The Content-Id of the corresponding attachment part is coded in the CID URL scheme that is coded in the SOAP
Body of the root part. The corresponding attachment part is referenced from the root part using the Content-Id.

The following are some of the SOAP Messages with attachments. The part in bold is the CID URL scheme and the
Content-Id of the corresponding attachment part.

--uuid:73a28380-5de5-45e8-af15-c879e65d62a0
Content-Type:text/xml

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <getUserData xmlns="http://localhost">
 <in0>cid:d10ed73c-e9b7-418e-8201-ba920cccb214@jaxws.cosminexus.com</in0>
 </getUserData>
 </S:Body>
</S:Envelope>

--uuid:73a28380-5de5-45e8-af15-c879e65d62a0
Content-Id:<d10ed73c-e9b7-418e-8201-ba920cccb214@jaxws.cosminexus.com>
Content-Type:text/plain
Content-Transfer-Encoding:binary

Attached-data
--uuid:73a28380-5de5-45e8-af15-c879e65d62a0--

(3) Mapping between the attachment extension and MIME types
The following table describes the mapping between the attachment extensions and the MIME types set by default:

28. Attachment Functionality (wsi:swaRef format)

734

Table 28‒9: Correspondence table of attachment extensions and MIME types

No. Attachment extensions Set up MIME types

1 html, htm text/html

2 txt, text text/plain

3 gif, GIF image/gif

4 ief image/ief

5 jpeg, jpg, jpe, JPG image/jpeg

6 tiff, tif image/tiff

7 xwd image/x-xwindowdump

8 ai, eps, ps application/postscript

9 rtf application/rtf

10 tex application/x-tex

11 texinfo, texi application/x-texinfo

12 t, tr, roff application/x-troff

13 au audio/basic

14 midi, mid audio/midi

15 aifc audio/x-aifc

16 aif, aiff audio/x-aiff

17 wav audio/x-wav

18 mpeg, mpg, mpe video/mpeg

19 qt, mov video/quicktime

20 avi video/x-msvideo

If extensions that do not exist in this table are specified, 'application/octet-stream' is set in the MIME type.

(4) Mapping the attachment data size and the attachment parts
When the attachment data size specified in the Java interface is null and when data of 0 or more bytes exists, the
method of mapping to the attachment part differs. The following points describe the mapping in each of the cases:

(a) When the attachment data size is null

When the attachment data size is null, the attachment data size is not mapped to the attachment part. Only the SOAP
Envelope is coded without generating the MIME part. Also, an empty element is specified in the element of the
relevant argument of the SOAP Body.

The following is an example of mapping when the attachment data size is null:

• Web Service invoking program

...
UserInfoService service = new UserInfoService();
UserInfo impl = service.getUserInfo();

result = impl.getUserData(null);
...

• SOAP Message

28. Attachment Functionality (wsi:swaRef format)

735

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <getUserData xmlns="http://localhost">
 </getUserData>
 </S:Body>
</S:Envelope>

(b) When the attachment data size is 0 or more bytes

When the attachment data size is 0 or more bytes, the attachment data size is mapped to the attachment part. In this
case, the root part and attachment part together form the multi part. When multiple attachments are specified in the
Java interface, multiple attachment parts are coded. However, for 0 bytes, the MIME body inside the attachment part
is empty.

28.4.3 Mapping the SOAP message to the attachment (wsi:swaRef
format)

JAX-WS engine guarantees the mapping of SOAP message with an attachment to the attachment data only when the
SOAP message with the received attachments complies with the WS-I Attachments Profile - Version 1.0 specification.
If any other SOAP message is received, the operation is not guaranteed.

28. Attachment Functionality (wsi:swaRef format)

736

28.5 Generating and obtaining the Java instance of the
attachment (wsi:swaRef format)

To handle an attachment with a program, you must use the javax.activation package of JAF. This section
describes the method of generating the attachment instance and the method of obtaining data using the
javax.activation package.

For details about JAF specifications, see API specifications for JAF.

28.5.1 Method of generating the attachment instance (wsi:swaRef
format)

The javax.activation.DataHandler object is generated as an attachment object. The following table lists
the constructors of the javax.activation.DataHandler class:

Table 28‒10: Constructors of the javax.activation.DataHandler class

No. Use case Constructor Description of the argument

1 Attaching a file DataHandler(javax.activa
tion.DataSource ds)

[First argument]

This is the
javax.activation.DataSource
object.

The object of the
javax.activation.FileDataSourc
e class can be specified.

2 Attaching an object that is on
memory

DataHandler(java.lang.Ob
ject obj,
java.lang.String
mimeType)

[First argument]

This is the Java object.

[Second argument]

This is the MIME type of the object.

For details about the MIME type that can be
specified, see 28.4.2(3) Mapping between the
attachment extension and MIME types.

Depending on the objects sent as attachments, the method of generating the javax.activation.DataHandler
object is different. The following points describe the generation method for each object to be sent:

(1) Method of sending an existing file as an attachment
To attach and send an existing file:

1. Generate the javax.activation.FileDataSource object.
In the argument, specify the file path of attachment to be sent and generate the
javax.activation.FileDataSource object.

javax.activation.FileDataSource fdSource =
 new javax.activation.FileDataSource("/tmp/sample.jpg");

2. Generate the javax.activation.DataHandler object.
Specify the javax.activation.FileDataSource object in the argument and generate
javax.activation.DataHandler object.

javax.activation.DataHandler dhandler =
 new javax.activation.DataHandler(fdSource);

28. Attachment Functionality (wsi:swaRef format)

737

(2) Method of sending a Java object as an attachment
To send a Java object as an attachment:

1. Generate the Java object.
Here, you generate the java.awt.Image object to be sent as an attachment:

java.awt.Image attachments =
 Toolkit.getDefaultToolkit().createImage("sample.jpg");

2. Generate the javax.activation.DataHandler object.
Specify the Java object and MIME type corresponding to the Java object in the argument and generate
javax.activation.DataHandler object.

javax.activation.DataHandler dhandler = new
 javax.activation.DataHandler(attachments, "image/jpeg");

(3) Method of sending the java.lang.String object as an attachment
To send the java.lang.String object as an attachment:

1. Generate the java.lang.String object.
Generate the java.lang.String object of the string to be sent as an attachment.

java.lang.String attachments = new java.lang.String("abcde");

2. Generate the javax.activation.DataHandler object.
Specify the java.lang.String object and MIME type in the argument and generate the
javax.activation.DataHandler object. The java.lang.String object is encoded using the
character code specified in charset parameter.

javax.activation.DataHandler dhandler = new
javax.activation.DataHandler(attachments, "text/plain; charset=UTF-8");

(4) Precautions on creating the javax.activation.DataHandler object
If the object that you want to send as an attachment in the wsi:swaRef format is a text file, an XML file, or a
java.lang.String object (string), you can specify the character code of the string included in the object by using
the DataHandler (Object, String) constructor of the javax.activation.DataHandler class.

If you do not specify the character code when creating the javax.activation.DataHandler object, the object
to be sent is encoded by the default character code (US-ASCII). If the object contains characters other than the
default character code (US-ASCII), the attachment that is sent is treated as invalid. Therefore, specify an appropriate
character code especially when you want to include Japanese characters.

If the object to be sent is an XML file, the character code specified in the XML declaration is not used. The XML file
is encoded using the default character code (US-ASCII), or the character code specified when creating the
javax.activation.DataHandler object, and then sent.

To specify a character code, assign the charset parameter to the MIME type of the object to be specified in the
second argument of the DataHandler(Object, String) constructor. The following is the coding format of
the second argument of the DataHandler(Object, String) constructor.

Mime type of the object to be sent+";"+"charset"+"="+character code#

#
The character code is not case sensitive. Also, you cannot specify the character code that is not supported by the
JDK and a blank character.

28. Attachment Functionality (wsi:swaRef format)

738

28.5.2 Method of obtaining the attachment data (wsi:swaRef format)
This subsection describes about how to obtain the attachment data. The "dhandler" indicated in each example
shows the received javax.activation.DataHandler object.

(1) Method of obtaining an attachment as a java.io.InputStream object
To obtain the received attachment as the java.io.InputStream object, obtain the java.io.InputStream
object using the getInputStream method from the received javax.activation.DataHandler object.

java.io.InputStream stream = dhandler.getInputStream();

(2) Method of obtaining an attachment as a javax.activation.DataSource object
To obtain the received attachment as the javax.activation.DataSource object, obtain the
javax.activation.DataSource object linked using the getDataSource method from the received
javax.activation.DataHandler object.

javax.activation.DataSource datasource = dhandler.getDataSource();

(3) Method of obtaining an attachment as a Java object
The procedure for obtaining the received attachment as a Java object is as follows. An example of obtaining the
java.awt.Image object is described here.

1. Obtain the attachment data as an object.
Obtain the object using the getContent method from the received javax.activation.DataHandler
object.

java.lang.Object content = dhandler.getContent();

2. Obtain the MIME type of the attachment.
Execute the getContentType method for the received javax.activation.DataHandler object. By
executing the getContentType method, you can obtain the MIME type of the attachment.

java.lang.String mimetype = dhandler.getContentType();

Obtained-mimetype-contents image/jpeg

3. Cast the object to the appropriate type.
Cast the object to the appropriate type according to the MIME type of the attachment.

java.awt.Image attachment = (java.awt.Image) content;

(4) Method of obtaining an attachment as a java.lang.String object
To obtain the received attachment as a Java object:

1. Obtain the attachment data as an object.
Obtain the object using the getContent method from the received javax.activation.DataHandler
object.

java.lang.Object content = dhandler.getContent();

2. Obtain the MIME type of the attachment.
Execute the getContentType method for the received javax.activation.DataHandler object. By
executing the getContentType method, you can obtain the MIME type and character code of the attachment.

java.lang.String mimetype = dhandler.getContentType();

Obtained-mimetype-contents text/plain; charset=UTF-8

28. Attachment Functionality (wsi:swaRef format)

739

3. Cast the object to the appropriate type.
Cast the object to the appropriate type according to the MIME type of the attachment.

java.lang.String attachment = (java.lang.String) content;

(5) Notes when acquiring a javax.activation.DataHandler object
Receiving a SOAP message of the MIME Multipart or related structure that contains an attachment of the
wsi:swaRef format enables you to handle the SOAP messages as an attachment of the streamed wsi:swaRef
format. Because the receiving process requires all the data to be imported from the input stream of the
javax.activation.DataHandler object to completely receive the attachment of the wsi: swaRef format,
the sender is in stand-by status until all the data is imported from the input stream.To resolve this condition, you must
either import all the data from the java.io.InputStream object of the javax.activation.DataHandler
object or write the data from the input stream to the output stream by using the
writeTo(java.io.OutputStream) method of the javax.activation.DataHandler class.

28. Attachment Functionality (wsi:swaRef format)

740

29 Examples of the Development
Starting from SEI (When using
Attachments of the wsi:swaRef
format)
This chapter describes the examples for the development of Web Services starting
from SEI, using attachments.

741

29.1 Configuration examples of development (Starting
from SEI and attachments of wsi:swaRef format)

In the development examples described in this chapter, develop a Web Service, starting from SEI. The developed Web
Service uses attachments.

This section provides an overview and describes the information used for the Web Service whose development will be
illustrated.

Overview of development example
A new Web Service will be developed that will manage user information such as employee identification number,
photograph, employee name, and affiliation and return the processing result for the input from the Web Service
client.
The following tables describe the request information from the Web Service client and the response information
from the server:

Table 29‒1: Request information from the Web Service client

Information name Java data type

Employee identification number java.lang.String

Photograph javax.activation.DataHandler

Table 29‒2: Response information from the server

Information name Java data type

Confirm registration message java.lang.String

Name java.lang.String

Affiliation java.lang.String

The response information from the server is stored using the UserData class of the user-defined type class.

The following table describes the configuration of the current directory used in the Web Service development.

Table 29‒3: Configuration of the current directory (Starting from SEI and attachments)

Directory Description

c:\temp\jaxws\works
\attachments

This is the current directory.

server\ Used for Web Service development.

META-INF\ Corresponds to the META-INF directory of the EAR file.

application.xml Created in 29.3.4 Creating application.xml.

src\ Stores the source file (*.java) for the Web Service. Used in 29.3.1 Creating
Web Services Implementation Class and 29.3.2 Compiling Web Services
Implementation Class.

WEB-INF\ Corresponds to the WEB-INF directory of the WAR file.

web.xml Created in 29.3.3 Creating web.xml.

classes\ Stores the compiled class file (*.class). Used in 29.3.2 Compiling Web
Services Implementation Class.

attachments_dynamic_gen
erate.ear

Created in 29.3.5 Creating EAR files.

attachments_dynamic_gen
erate.war

Created in 29.3.5 Creating EAR files.

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

742

Directory Description

client\ Used for the development of the Web Service client.

src\ Stores the source file (*.java) of the Web Service client. Used in 29.5.1
Generating a service class and 29.5.2 Creating Web Services Implementation
Class .

classes\ Stores the compiled class file (*.class). Used in 29.5.3 Compiling
Implementation Class for the Web Services client.

image.jpg Used in the JPEG file to be used in the Web Service client.

usrconf.cfg Created in 29.6.1 Creating an option definition file for Java applications.

usrconf.properties Created in 29.6.2 Creating the user property file for Java applications.

Change the current directory path according to the environment to be developed.

Note that the directory and file names listed in the above table will be used in the description hereafter. The part
formatted in bold in the command execution examples and in the Java source indicates the specified values and
generated values that are used in this example. Read according to the environment you want to build.

Furthermore, in the development examples described in this chapter, the Web Service and Web Service client are
developed in the same environment, but you can also develop them in separate environments. When you want to
develop the Web Service and Web Service client in different environments, read the current directory path suitable to
the respective environments.

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

743

29.2 Example of the development flow (Starting from
SEI and attachments of wsi:swaRef)

In the development examples described in this chapter, the flow of development and execution is as follows.

Developing a Web Service

1. Creating Web Services Implementation Class (29.3.1)

2. Executing the javac command and compiling Web Services Implementation Class (29.3.2)

3. Creating web.xml (29.3.3)

4. Creating application.xml (29.3.4)

5. Creating EAR files (29.3.5)

Deploying and starting

1. Deploying EAR files (29.4.1)

2. Starting Web Services (29.4.2)

Developing a Web Service client

1. Executing the cjwsimport command and generating the service class (29.5.1)

2. Creating Implementation Class for the Web Services client (29.5.2)

3. Compiling Implementation Class for the Web Services client (29.5.3)

Executing a Web Service

1. Creating an option definition file for Java applications (29.6.1)

2. Creating the user property file for Java applications (29.6.2)

3. Executing the Web Services client (29.6.3)

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

744

29.3 Examples of Web Service development (Starting
from SEI and attachments of wsi:swaref format)

This section describes the examples for the development of Web Services starting from SEI (using attachments).

29.3.1 Creating the Web Service Implementation Class
Create the Web Service Implementation Class that codes the processing of the Web Service. In this subsection, you
calculate the contents of the received request message and create the Web Service Implementation Class that returns
the response message.

The following is an example of the creation of a Web Service Implementation Class:

package com.sample;

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.xml.bind.annotation.XmlAttachmentRef;
import javax.activation.DataHandler;

@javax.jws.WebService(serviceName="UserInfoService",targetNamespace="http://
sample.com")
public class UserInfoImpl{

 public UserData getUserData(String in0,
 @XmlAttachmentRef javax.activation.DataHandler in1)
 throws UserInfoException{

//Processing-for-registering-the-photograph-into-the-employee-information
 ...

 UserData userdata = new UserData();
 //Set-up-the-registered-employee-name-and-affiliation
 if (in0.equals("1"))
 {
 userdata.setName("Hitachi Taro");
 userdata.setSection("The personnel section");
 } if (...) {
 ...
 } ...

 //Set-up-the-confirm-registration-message
 if (in1 == null)
 {
 userdata.setMessage("Failure(no image).");
 } else {
 userdata.setMessage("Success.");
 }
 return userdata;
 }

}

The created UserInfoImpl.java is stored in c:\temp\jaxws\works\attachments\server\src
\com\sample\directory with the UTF-8 format.

The user-defined type class com.sample.UserData used in com.sample.UserInfoImpl is also created.
Normally, the creation of the user-defined type class is optional, but a user-defined type class will be created here.

The following is an example of the creation of a user-defined type class:

package com.sample;

public class UserData{

 private java.lang.String message;
 private java.lang.String name;
 private java.lang.String section;

 public UserData(){
 }

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

745

 public java.lang.String getMessage() {
 return this.message;
 }

 public void setMessage(java.lang.String message) {
 this.message = message;
 }

public java.lang.String getName() {
 return this.name;
 }

 public void setName(java.lang.String name) {
 this.name = name;

}

public java.lang.String getSection() {
 return this.section;
 }

public void setSection(java.lang.String section) {
 this.section = section;
 }
}

The created UserInfoImpl.java is stored in c:\temp\jaxws\works\attachments\server\src
\com\sample\directory with the UTF-8 format.

The exception class com.sample.UserInfoException thrown in com.sample.UserInfoImpl is also
created. Normally, the creation of the exception class is optional, but an exception class will be created here.

The following is an example of the creation of an exception class:

package com.sample;

public class UserInfoException extends Exception {
 String detail;

 public UserInfoException (String message, String detail) {
 super (message);
 this.detail = detail;
 }

 public String getDetail () {
 return detail;
 }
}

The created UserInfoException.java is stored in c:\temp\jaxws\works\attachments\server
\src\com\sample\directory with the UTF-8 format.

29.3.2 Compiling Web Services Implementation Class
Compile Web Services Implementation Class, by executing the javac command. For details on the javac
command, see the JDK documentation.

The following example describes the execution of the javac command.

> cd c:\temp\jaxws\works\attachments\server\
> mkdir WEB-INF\classes\
> javac -cp
"%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%\CC\client\lib\j2ee-
javax.jar;%COSMINEXUS_HOME%\CC\client\lib\HiEJBClientStatic.jar;%COSMINEXUS_HOME%\jaxp
\lib\csmjaxb.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmstax.jar;%HNTRLIB2_HOME%\classes\hntrlib2j.jar;%HNTRLIB2
_HOME%\classes\hntrlibMj.jar" -d WEB-INF\classes\ -s src src\com\sample
\UserInfoImpl.java src\com\sample\UserData.java src\com\sample\UserInfoException.java

On successful execution of the javac command, the compiled classes are output to the following path:c:\temp
\jaxws\works\attachments\server\WEB-INF\classes\com\sample\DirectoryYou can execute

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

746

the cjwsgen command for the compiled Web Services Implementation Class to check errors in advance. For details
on the cjwsgen command, see 10.23 (1)Using the cjwsgen command for checking errors.

29.3.3 Creating web.xml
Create the web.xml that is required as a WAR file component.

The following is an example of the creation of the web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
 <description>Sample web service "fromjava"</description>
 <display-name>Sample_web_service_fromjava</display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/UserInfoService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

The created web.xml is stored in c:\temp\jaxws\works\attachments\server\WEB-INF
\directory with the UTF-8 format. For details about the web.xml settings, see 3.4 Creating web.xml.

29.3.4 Creating application.xml
Create the application.xml that is required as an EAR file component.

The following is an example of the creation of application.xml. Note that no items are set in
application.xml as the Web Service.

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "fromjava"</description>
 <display-name>Sample_application_fromjava</display-name>
 <module>
 <web>
 <web-uri>attachments_dynamic_generate.war</web-uri>
 <context-root>attachments_dynamic_generate</context-root>
 </web>
 </module>
</application>

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

747

When creating web.xml of version 5, specify 5 in the version attribute of the application element and
specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second location
information in the xsd:schemaLocation attribute.

The created application.xml is stored in c:\temp\jaxws\works\attachments\server\META-INF
\directory with the UTF-8 format. For details about the precautions for creating application.xml, see 5.2.2
Notes on editing application.xml in the uCosminexus Application Server Application Development Guide.

29.3.5 Creating EAR files
Use the jar command to create an EAR file containing the hitherto created files.

The following is an example of the creation of an EAR file:

> cd c:\temp\jaxws\works\attachments\server\
> jar cvf attachments_dynamic_generate.war .\WEB-INF
> jar cvf attachments_dynamic_generate.ear .\attachments_dynamic_generate.war .\META-
INF\application.xml

If the processing ends normally, attachments_dynamic_generate.ear is created in c:\temp\jaxws
\works\attachments\server\directory.

For details about the jar command, see the JDK documentation.

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

748

29.4 Examples of deployment and startup (Starting from
SEI and attachments of wsi:swaRef format)

This section describes the examples for the deployment and the startup starting from SEI, using attachments.

29.4.1 Deploying EAR files
Use the cjimportapp command to deploy the created EAR file on the J2EE server.

The following is an example of deployment:

> cd c:\temp\jaxws\works\attachments\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f attachments_dynamic_generate.ear

For details about the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus
Application Server Command Reference Guide.

For how to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

29.4.2 Starting Web Services
Use the cjstartapp command to start the Web Service.

The following is an example of Web Service startup:

> cd c:\temp\jaxws\works\attachments\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver -nameserver
corbaname::testserver:900 -name Sample_application_fromjava

For details about the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus
Application Server Command Reference Guide.

For how to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications in the
uCosminexus Application Server Management Portal User Guide.

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

749

29.5 Examples of Web Service client development
(Starting from SEI and attachments of wsi:swaRef
format)

This section describes the examples for the development of Web Service clients starting from SEI, using attachments.

29.5.1 Generating a service class
If you execute the cjwsimport command, the Java source, such as service class, required for Web Service client
development is generated. For details about the cjwsimport command, see 14.1 cjwsimport command.

The following is an example of the execution of the cjwsimport command.

> cd c:\temp\jaxws\works\attachments\client\
> mkdir src\
> mkdir classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes http://webhost:8085/
attachments_dynamic_generate/UserInfoServicwsdl

If the execution ends normally, the Java source is generated in c:\temp\jaxws\works\attachments
\client\src\com\sample\directory.

The following table describes a list of products.

Table 29‒4: Products during service class generation (Starting from SEI and attachments)

File name Description

GetUserData.java This is the JavaBean class corresponding to type referenced by the wrapper
element of the request message in the WSDL definition.

GetUserDataResponse.java This is the JavaBean class corresponding to type referenced by the wrapper
element of the response message in the WSDL definition.

ObjectFactory.java This is the ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is the package-info.java file.

UserData.java This is the JavaBean class corresponding to UserData.

UserInfoImpl.java This is SEI corresponding to 'Service' in the WSDL definition.

UserInfoService.java This is the service class.

UserInfoException.java This is the JavaBean class corresponding to UserInfoException.

UserInfoException_Exception.j
ava

This is the wrapper exception class of the fault bean.

29.5.2 Creating the Web Service Implementation Class
You create the implementation class for the Web Service client that uses the Web Service.

The following is an example of creation of a Web Service client that invokes the Web Service once:

package com.sample.client;

import java.io.File;

import javax.activation.DataHandler;
import javax.activation.FileDataSource;

import com.sample.UserInfoImpl;

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

750

import com.sample.UserData;
import com.sample.UserInfoService;
import com.sample.UserInfoException_Exception;

public class TestClient {
 public static void main(String[] args) {
 try {
 //Generating-the-DataHandler-object
 File imagefile = new File("image.jpg");
 FileDataSource fdSource = new FileDataSource(imagefile);
 DataHandler dhandler = new DataHandler(fdSource);

 UserInfoService service = new UserInfoService();
 UserInfoImpl_port = service.getUserInfoImplPort();

 UserData userdata = port.getUserData("1", dhandler);

System.out.print("[RESULT] " + userdata.getMessage());
 System.out.println(" Name:" + userdata.getName()
 + ", Section:" + userdata.getSection());
 }
 catch(UserInfoException_Exception e){
 e.printStackTrace();
 catch(Exception e){
 e.printStackTrace();
 }
 }

}

The created TestClient.java is stored in c:\temp\jaxws\works\attachments\client\src\com
\sample\client\directory with the UTF-8 format.

29.5.3 Compiling the implementation class for the Web Service client
Use the javac command to compile the created Web Service client.

The following is an example of compilation:

> cd c:\temp\jaxws\works\attachments\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\com\sample\client\TestClient.java

If the processing ends normally, the TestClient.class is generated in c:\temp\jaxws\works
\attachments\client\classes\com\sample\client\directory.

For details about the javac command, see the JDK documentation.

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

751

29.6 Examples of Web Service execution (Starting from
SEI and attachments of wsi:swaRef format)

This section describes the example for the execution of Web Service clients starting from SEI, using attachments.

29.6.1 Creating the option definition file for Java applications
Create the option definition file for Java applications (usrconf.cfg) required for executing a Web Service.

The following is an example of creation of the option definition file for Java applications:

add.class.path=Cosminexus-installation-directory\jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home=Cosminexus-installation-directory

For the Cosminexus-installation-directory part, use the absolute path to specify the path where Cosminexus is
installed.

The created option definition file for Java applications is stored in c:\temp\jaxws\works\attachments
\client\directory. For details about the option definition file for Java applications, see 14.2 usrconf.cfg
(Option definition file for Java applications) in the uCosminexus Application Server Definition Reference Guide.

29.6.2 Creating the user property file for Java applications
Create the user property file for Java applications required for executing a Web Service.

Since the settings are not specially changed here, create an empty file named usrconf.properties in c:\temp
\jaxws\works\attachments\client\directory. For details about the user property file for Java
applications, see 14.3 usrconf.properties (User property file for Java applications) in the uCosminexus Application
Server Definition Reference Guide.

29.6.3 Executing the Web Service client
Use the cjclstartap command to execute the Web Service client.

The following is an example of the execution of the Web Service client:

> cd c:\temp\jaxws\works\attachments\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" com.sample.client.TestClient

If the execution ends normally, the result of Web Service client execution is displayed. The following is an example of
the display of the execution result:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\attachments\client, PID = 2636)
[RESULT] Success. Name:Hitachi Taro, Section:The personnel section
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in italics changes according to the execution timing and environment.

For details about the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus
Application Server Command reference Guide.

29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)

752

30 Attachment functionality (MTOM/
XOP)
Attachment functionality enables handling of not only the text data but also images
and voice data through Web Services.

This document gives an overview of the attachment functionality and the mapping
conventions involved when the attachment functionality is used.

753

30.1 Description of the attachment functionality (MTOM/
XOP)

The attachment functionality of the MTOM/XOP specification format is sending and receiving the Base64 format data
of the SOAP messages (XML data of the xsd:base64 Binary type) as the binary data by using SOAP Message
Transmission Optimization Mechanism (MTOM) and XML-binary Optimized Packaging (XOP). The data sent and
received through this functionality is attached to the SOAP messages of MIME Multipart/Related structure.

The following example gives an overview of the attachment functionality:

Figure 30‒1: Sending and receiving binary data by using the attachment functionality

30. Attachment functionality (MTOM/XOP)

754

30.2 Java interface of an attachment (MTOM/XOP)
This section describes the Java type that is used for specifying an attachment in a Java interface.

(1) Target of attachments in MTOM/XOP specification format
All the Java types, which are mapped to the Base64 format data of the following items, are targeted for the
attachments in the MTOM/XOP specification format:

• Method arguments

• Method return values

• User-defined type fields

If there are multiple Java types, which are mapped to the Base64 format data, you cannot specify only a particular
Java type as the target of the attachments in the MTOM/XOP specification format.

(2) Annotations used in an attachment in MTOM/XOP specification format
Following annotations are used in an attachment in MTOM/XOP specification format:

• javax.xml.ws.soap.MTOM
• javax.xml.bind.annotation.XmlMimeType

(3) How to use the attachments in MTOM/XOP specification format
Annotate the javax.xml.ws.soap.MTOM annotation in the Web Service implementation class to use the
MTOM/XOP specification format attachments in the Web Service. The following is an example of a Web Service
implementation class that uses the attachments in MTOM/XOP specification format:

package com.sample;

@MTOM
@BindingType(...)
public class UserInfoImpl implements UserInfo {

 public UserData setUserData(Image image)
 throws UserDefinedException {

 }
}

You can also use the attachments in MTOM/XOP specification format by specifying the field value of the
javax.xml.ws.soap.SOAPBinding interface in the javax.xml.ws.BindingType annotation instead of
the javax.xml.ws.soap.MTOM annotation. The following table describes the relation between the field values of
the javax.xml.ws.soap.SOAPBinding interface specified in the javax.xml.ws.soap.MTOM annotation
and the javax.xml.ws.BindingType annotation.

Table 30‒1: Relation between the MTOM annotation and SOAPBinding interface fields

No.

MTOM annotation BindingType annotation

MTOM/XOP type
attachmentIf annotated

enabled
element

value
SOAPBinding interface field value Availability of

the field value

1 YES true SOAP11HTTP_BINDING YES Y

2 SOAP12HTTP_BINDING YES Y

3 SOAP11HTTP_MTOM_BINDING YES Y

4 SOAP12HTTP_MTOM_BINDING YES Y

30. Attachment functionality (MTOM/XOP)

755

No.

MTOM annotation BindingType annotation

MTOM/XOP type
attachmentIf annotated

enabled
element

value
SOAPBinding interface field value Availability of

the field value

5 YES false SOAP11HTTP_BINDING YES N

6 SOAP12HTTP_BINDING YES N

7 SOAP11HTTP_MTOM_BINDING NO# --

8 SOAP12HTTP_MTOM_BINDING NO# --

9 NO -- SOAP11HTTP_BINDING YES N

10 SOAP12HTTP_BINDING YES N

11 SOAP11HTTP_MTOM_BINDING YES Y

12 SOAP12HTTP_MTOM_BINDING YES Y

Legend:
Y: Enabled
N: Disabled
--: Not Applicable

#
javax.xml.ws.WebServiceException occurs when the Web Service starts.

The following is an example of a Web Service implementation class that uses the field values of the
javax.xml.ws.soap.SOAPBinding interface instead of the javax.xml.ws.soap.MTOM annotation:

package com.sample;

@BindingType(SOAPBinding.SOAP11HTTP_MTOM_BINDING)
public class UserInfoImpl implements UserInfo {

 public UserData setUserData(Image image)
 throws UserDefinedException {

 }
}

(4) Document Bare style attachments in MTOM/XOP specification format
In a Document Bare style Java class, if you want to link Java type and MIME type by using an attachment in
MTOM/XOP specification format, you must not use the Java type as a return value of the service method or as a
parameter. To link Java type and MIME type, use Java type in the user-defined type field and annotate the getter
method of that field with the javax.xml.bind.annotation.XmlMimeType annotation.

30. Attachment functionality (MTOM/XOP)

756

30.3 Attachment WSDL (MTOM/XOP)
WSDL does not have an element or attribute to know whether an attachment in the MTOM/XOP specification format
is being used. Hence, you cannot know from WSDL whether the Web Service is using an attachment in the
MTOM/XOP specification format.

30.3.1 non-wrapper style attachments in MTOM/XOP specification
format (MTOM/XOP)

In a non-wrapper style WSDL, to specify MIME type in the xsd:base64Binary type by using an attachment in
the MTOM/XOP specification format, do not use the xsd:base64Binary type for the type attribute of the
xsd:element element that is referenced from the wsdl:part element. To specify MIME type as the
xsd:base64Binary type, use compound type as the type attribute of the xsd:element element that is
referenced from the wsdl:part element, and specify the xsd:base64Binary type in the xsd:element
element of the said compound type and attach the xmime:expectedContentTypes attribute.

(1) Using the xop:Include element in WSDL
The xop:Include element appears in the SOAP messages of attachments in the MTOM/XOP specification format
and links the route part and attachment part. Hence, you cannot use the xop:Include element in the WSDL schema
declaration. Behavior is not guaranteed if the xop:Include element is used in the WSDL schema declaration.

30. Attachment functionality (MTOM/XOP)

757

30.4 Behavior of the JAX-WS engine
This section describes the behavior of the Web Service side and Web Service client side JAX-WS engine.

30.4.1 Behavior of the JAX-WS engine on a Web Service machine
The availability of attachments in MTOM/XOP specification format in the Web Service side JAX-WS engine depends
upon the field value of the SOAPBinding interface specified in the javax.xml.ws.soap.MTOM annotation or
javax.xml.ws.BindingType annotation specified in the Web Service implementation class. The following
table describes the usage of attachments in MTOM/XOP specification format, and the behavior upon receiving the
request messages:

Table 30‒2: Availability of attachments in MTOM/XOP specification format and the behavior upon
receiving the request messages

No.

Attachment in
MTOM/XOP
specification

format

Data included in the
received messages

Successf
ully

received/
failed

Relation between the
threshold and the

attachment to be sent#

Data included in the
response messages

to be sent

1 Used Binary data Successful Threshold attachment
size

Binary data

2 Base64 type data Successful Threshold>attachment
size

3 Not used Binary data Successful None Base64 type data

4 Base64 type data Successful None

#
Not determined with the threshold if the javax.activation.DataHandler is used. Always sent as binary data.

If the javax.xml.ws.soap.MTOM annotation is not specified in the Web Service implementation class, or if
SOAPBinding.SOAP11HTTP_MTOM_BINDING and SOAPBinding.SOAP12HTTP_MTOM_BINDING are not
specified in the field values of the SOAPBinding interface that is specified in the
javax.xml.ws.BindingType annotation, attachments in MTOM/XOP specification format are not used.
Irrespective of whether binary data is included, all request messages are received. Also, response messages with
Base64 type data are sent.

(1) Changes due to the javax.xml.bind.annotation.XmlMimeType annotation
Depending upon whether the javax.xml.bind.annotation.XmlMimeType annotation, which links Java
type and MIME type, is annotated or not annotated in SEI etc, the value of the Content-Type field in the attachment
part of the messages sent through the attachments in MTOM/XOP specification format changes. See below for how
the Content-Type value in the attachment part changes depending upon whether the
javax.xml.bind.annotation.XmlMimeType annotation is used.

• XmlMimeType annotation is used
The Content-Type field value in the attachment part will be the value of the value element in the
XmlMimeType annotation.

• XmlMimeType annotation is not used
The Content-Type field value in the attachment part will be the initial value of the corresponding Java type being
used. The following table lists the initial values:

Table 30‒3: Content-Type initial values corresponding Java type

No. Java type Content-Type initial value

1 java.awt.Image image/png

30. Attachment functionality (MTOM/XOP)

758

No. Java type Content-Type initial value

2 javax.xml.transform.Source application/xml

3 javax.activation.DataHandler javax.activation.DataHandler object MIME type#

4 Array type of java.awt.Image image/png

5 Array type of
javax.activation.DataHandler

javax.activation.DataHandler object MIME type#

6 java.util.List<Image> image/png

7 java.util.List<DataHandler> javax.activation.DataHandler object MIME type#

8 javax.xml.ws.Holder<Image> image/png

9 javax.xml.ws.Holder<Source> application/xml

10 javax.xml.ws.Holder<DataHandle
r>

javax.activation.DataHandler object MIME type#

11 byte[] application/octet-stream

#
If you use DataHandler, the value set in the Content-Type field differs according to the method used for
generating the DataHandler object.

• If generated by using the DataHandler (DataSource) constructor
In FiledataSource, from the extension of the file data that is used as an input, the MIME type decided by
JAF is set as the value of the Content-Type field.

• If generated by using the DataHandler (Object, String) constructor

The contents (MIME type) specified in the 2nd argument of the constructor when the DataHandler object is
generated is set as is as the Content-Type field value.

30.4.2 Behavior of the JAX-WS engine on a Web Service client machine
The availability of attachments in MTOM/XOP specification format in the Web Service client side JAX-WS engine
depends upon the MTOMFeature class used to obtain an SEI. The following table describes the availability of
attachments in MTOM/XOP specification format, and the behavior upon sending/receiving the messages.

Table 30‒4: Availability of attachments in MTOM/XOP specification format and the behavior upon sending/
receiving the messages

No.

Attachment in
MTOM/XOP
specification

format

Relation between the
threshold and the size
of the attachment to be

sent#

Data included in the
request messages to

be sent

Data included in the
received response

messages

Successf
ully

received/
failed

1 Used Threshold
attachment size

Binary data Binary data Successful

2 Base64 type data Successful

3 Threshold>attachment
size

Base64 type data Binary data Successful

4 Base64 type data Successful

5 Not used -- Base64 type data Binary data Successful

6 Base64 type data Successful

Legend:
--: Not Applicable

30. Attachment functionality (MTOM/XOP)

759

#
Not determined with the threshold if the javax.activation.DataHandler is used. Always sent as binary data.

The MTOMFeature class can be used concurrently with the other Feature classes. The following is one such
example:

package com.sample;

......

public class TestClient {

 public static void main(String[] args) {
 try {
 File portrait = new File("portrait.png");
 if (!portrait.exists()) {
 throw new RuntimeException("Cannot file \"portrait.png\".");
 }
 BufferedImage image = ImageIO.read(portrait);

 AddressingFeature addressingFeature = new AddressingFeature();
 MTOMFeature mtomFeature = new MTOMFeature();

 UserInfoService service = new UserInfoService();
 UserInfoImpl port = service.getUserInfoImplPort(addressingFeature,
mtomFeature);

 UserData userData = port.getUserData(image);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

You can set the availability of attachments in MTOM/XOP specification format by using the setMTOMEnabled
method of javax.xml.ws.soap.SOAPBinding instead of the MTOMFeature class. The following example
describes how to set the availability of attachments in MTOM/XOP specification format by using the
setMTOMEnabled method of javax.xml.ws.soap.SOAPBinding:

package com.sample;

......

public class TestClient {

 public static void main(String[] args) {
 try {
 File portrait = new File("portrait.png");
 if (!portrait.exists()) {
 throw new RuntimeException("Cannot file \"portrait.png\".");
 }
 BufferedImage image = ImageIO.read(portrait);

 UserInfoService service = new UserInfoService();
 UserInfoImpl port = service.getUserInfoImplPort();

 BindingProvider bindingProvider = (BindingProvider)port;
 Binding binding = bindingProvider.getBinding();
 SOAPBinding soapBinding = (SOAPBinding)binding;
 soapBinding.setMTOMEnabled(true);

 UserData userData = port.getUserData(image);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

When setting up the availability of attachments in MTOM/XOP specification format by using the
setMTOMEnabled method of javax.xml.ws.soap.SOAPBinding, if the availability is already set up by the
setMTOMEnabled method of the javax.xml.ws.soap.SOAPBinding and the MTOMFeature class
beforehand, the values that are set up later by the setMTOMEnabled method become invalid and the availability
cannot be set.

30. Attachment functionality (MTOM/XOP)

760

If you do not use the MTOMFeature class when obtaining an SEI, or if you do not set the availability of attachments
in MTOM/XOP specification format in the setMTOMEnabled method of
javax.xml.ws.soap.SOAPBinding, the attachments in MTOM/XOP specification format are not used. The
request messages sent will include Base64 type data. Also, irrespective of whether the messages include binary data,
all response messages are received.

(1) Changes due to the xmime:expectedContentTypes attribute
Depending upon the availability of the xmime:expectedContentTypes attribute in the WSDL schema element,
the Content-Type field value present in the attachment part of the messages sent by the attachments in MTOM/XOP
specification format changes. See below for how the Content-Type value in the attachment part changes depending
upon whether the xmime:expectedContentTypes attribute is used.

• xmime:expectedContentTypes attribute exists
The Content-Type field value in the attachment part will be the value that is specified in the
xmime:expectedContentTypes attribute.

• xmime:expectedContentTypes attribute does not exist
The Content-Type field value in the attachment part will be application/octet-stream.

30. Attachment functionality (MTOM/XOP)

761

30.5 SOAP messages of the attachments in the
MTOM/XOP specification format

When the attachments in MTOM/XOP specification format are used, the related SOAP messages have the MIME
multipart/related structure that is generated by using the SOAP Messages with Attachments protocol. This section
describes the SOAP messages with attachments in MTOM/XOP specification format.

The following figure shows the structure of the SOAP messages with attachments in MTOM/XOP specification
format.

Figure 30‒2: Structure of the SOAP messages with attachments in MTOM/XOP specification format

The following table describes each part of a SOAP message with attachments in MTOM/XOP specification format.

Table 30‒5: Description of each part of a SOAP message with attachments in MTOM/XOP specification
format

Name of each part Explanation

HTTP header This is the HTTP dependent header information.

Border string between the HTTP header and
HTTP body

This is a string that shows the border between the HTTP header and HTTP
body.

HTTP body Messages to be sent are described here.

This is formed of the route part and attachment part.

MIME part border string This is a string that shows the border between each MIME part.

Route part Message body is described in this part.

30. Attachment functionality (MTOM/XOP)

762

Name of each part Explanation

Route part This is formed of MIME header and MIME body. You must define at least one
such part.

MIME header This is the header information of the route part.

Border string between the MIME
header and MIME body

This is a string that shows the border between the route part and MIME body.

MIME body Message body is described in this part.

SOAP envelope SOAP envelope is described here.

SOAP header Header information of the SOAP messages is described here.

SOAP body SOAP message body (XML) is described here.

MIME part border string This is a string that shows the border between each MIME part.

Attachment part Contents of the attachments in MTOM/XOP specification format are described
in this part.

This part comprises of the MIME header and MIME body and you can define 0
or more such parts.

MIME header This is the header information of the attachment part.

Border string between the MIME
header and MIME body

This is a string that shows the border between the MIME header and MIME
body of the attachment part.

MIME body The contents (binary data) of the attachments in MTOM/XOP specification
format are described here.

MIME part end string This is a string that shows the end of the MIME part.

30.5.1 Mapping the attachments to the SOAP messages (MTOM/XOP)
This subsection describes the settings required for mapping the attachments to the SOAP messages. For the mapping
conventions, also see 30.5.2 Notes on mapping from the attachments to the SOAP messages (MTOM/XOP).

(1) HTTP header
The following table lists the values that are set in the HTTP header field and parameters when attachments in
MTOM/XOP specification format are used.

Table 30‒6: HTTP header fields and parameter settings

No. Field name Parameter name Settings

1 Content-Type -- "multipart/related" is set.#

2 start Route part Content-Id is set.

3 type "application/soap+xml" is set.

4 boundary MIME part border string is set.

5 start-info SOAP 1.1 specifications
"text/xml" is set.

SOAP 1.2 specifications
"application/soap+xml" is set.

Legend:
--: Shows that the value is directly set in the Content-Type field.

30. Attachment functionality (MTOM/XOP)

763

#
Even if the MIME part is only a route part, or if at least 1 attachment MIME part is used (It is a SOAP message with
MTOM/XOP type attachment), you must set "multipart/related".

(2) HTTP body
HTTP body has a route part, an attachment part, and the border strings between each part. This section describes the
contents generated in each part and the values set when using the attachments.

(a) Route part MIME header

The following table lists the values that are set in the route part fields when using the attachments.

Table 30‒7: Route part fields and parameter settings

No. Field name Parameter
name Settings

1 Content-Type -- "application/xop+xml" is set.

2 charset "utf-8" is set.

3 type SOAP 1.1 specifications
"text/xml" is set.

SOAP 1.2 specifications
"application/soap+xml" is set.

4 Content-Transfer-Encoding None "binary" is set.

5 Content-Id None "rootpart*"+" globally unique value
"+"@"+"jaxws.cosminexus.com" is set.

Legend:
--: Shows that the value is directly set in the Content-Type field.

(b) Route part MIME body

When using attachments, SOAP envelope is stored as is in the MIME body of the route part. XOP is used for
referencing the MTOM/XOP specification format attachments from the SOAP body that exists inside the SOAP
envelope.

(c) Attachment part MIME header

The following table lists the values that are set in the MIME header of the attachment part when using attachments.

Table 30‒8: Attachment part fields and parameter settings

No. Field name Parameter
name Settings

1 Content-Type -- Text expression of the MIME type specified in the value element of
the XmlMimeType annotation is set.#1, #2, #3

2 charset If the target of MTOM/XOP specification format attachments is
Source type, "UTF-8" is set.#4

If the target of MTOM/XOP specification format attachments is
DataHandler type, the character code specified when generating
the DataHandler object is set.#5

If the target of MTOM/XOP specification format attachments is a
Java type other than those mentioned above, the parameter does not
appear.

3 Content-Transfer-
Encoding

None "binary" is set.

30. Attachment functionality (MTOM/XOP)

764

No. Field name Parameter
name Settings

4 Content-Id None "globally unique value"+"@"+"jaxws.cosminexus.com" is set.

Legend:
--: Indicates that the value is directly set in the Content-Type field.

#1
It is a MIME type set in the Content-Type field. For the "text/xml" and "application/xml" MIME types that
represent XML, we recommend "application/xml".

#2
If a MIME type with a parameter is specified in the value element of the XmlMimeType annotation, that
parameter is also set in the Content-Type field.

#3
The value set in the Content-Type field changes as follows according to the method used for generating the
DataHandler object:

• If the object is generated in the DataHandler(DataSource) constructor
In FiledataSource, from the extension of the attachment that is used as an input, the MIME type decided
by JAF is set as the value of the Content-Type field.

• If the object is generated in the DataHandler(Object, String) constructor

The contents (MIME type) specified in the 2nd argument of the constructor when the DataHandler object is
generated is set as is as the Content-Type field value.

#4
If the MIME type specified in the xmime:expectedContentTypes attribute or
javax.xml.bind.annotation.XmlMimeType annotation includes charset, the charset value in the
Content-Type field will be the charset value included in the specified MIME type.

#5
If the DataHandler object is generated and sent as an MTOM/XOP specification format attachment in the
following manner, the charset parameter value Shift_JIS specified in the 2nd argument will be set for the
Content-Type charset.

DataHandler dhandler = new DataHandler ("Double byte character", "text/plain;
charset=Shift_JIS");

The javax.activation.DataHandler Java type of MTOM/XOP specification format attachment is a
JavaBeans Activation Framework(JAF) type same as the javax.activation.DataHandler Java
type that can be used as wsi:swaRef format attachment. Hence, you can specify attachment data of any MIME type for
the javax.activation.DataHandler type.

30.5.2 Notes on mapping from the attachments to the SOAP messages
(MTOM/XOP)

This subsection describes the notes on mapping attachments to SOAP messages.

(1) Coding order of the MIME part
A MIME part has one route part and none or more attachment parts.

The route part is defined in the beginning of the MIME part. After the route part, the attachment part is defined.

In the attachment part, the arguments or return values specified in the Java interface are mapped. The following table
describes the mapping between the contents specified in the Java interface and the definition sequence in the
attachments.

30. Attachment functionality (MTOM/XOP)

765

Table 30‒9: Contents specified in the Java interface and the definition sequence in the attachment part

No. Contents specified in the Java
interface Definition sequence in the attachment part

1 Method arguments Defined in sequence as specified in the method arguments.

2 Method return values Defined in the beginning of the attachment part.

3 Array type Defined in sequence of the elements within the array.

4 User definition type It is defined in order specified inside the user-defined type.

When specifying the Java type of the attachment in the user-defined type
inside the user-defined type, the attachment part is defined by depth-based
priority order.

The following figure shows an example of mapping the Java interface to the attachment part.

Figure 30‒3: Java interface and attachment mapping: Example

(2) Mapping the route part to the attachment
When the attachment is of MTOM/XOP specification format, the XOP information set defined in the XOP
specifications is used for mapping the route part to the attachment. The XOP information is coded in the SOAP body
of the route part, and the Content-Id of the corresponding attachment is set. The corresponding attachment can be
referenced from the route part by the Content-Id. The following is an example of referencing an attachment from the
route part. The bold portion indicates the CID URL schema and the Content-Id of the corresponding attachment.

-uuid:e63fe7dc-ad8a-4fb1-8f56-ce7b5841a06f
Content-Type: text/xml

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <getUserData xmlns="http://localhost">
 <in0>
 <xop:Include xmlns="http://www.w3.org/2004/08/xop/include" href="cid:
39820675-44bb-4e28-9926-577bf27fa07c@jaxws.cosminexus.com"/>
 </in0>
 </getUserData>
 </S:Body>
</S:Envelope>

--uuid:e63fe7dc-ad8a-4fb1-8f56-ce7b5841a06f
Content-Id:<39820675-44bb-4e28-9926-577bf27fa07c@jaxws.cosminexus.com>
Content-Type: image/jpeg

30. Attachment functionality (MTOM/XOP)

766

Content-Transfer-Encoding: binary

[attached data]
--e63fe7dc-ad8a-4fb1-8f56-ce7b5841a06f--

(a) Format of the XOP information set

The format of the XOP information set defined in the SOAP body of the route part is as follows:

"<xop: Include href=" + CID URL-schema + "/>"

(b) Mapping based on the data size of the attachments in MTOM/XOP specification format

The method of mapping the attachments in MTOM/XOP specification format to the attachment part differs according
to the data size of the attachment specified in the Java type and the Java interface of the mapping source. The
following table lists various mapping methods.

Table 30‒10: Mapping the MTOM/XOP specification format attachments to the attachment part based on
the data size

No. Java type Data size of the attachment Mapping to the attachment part

1 byte[] null Mapping is not done#1

2 0 byte data Mapping is done#2

3 Data bigger than 0 bytes Mapping is done#3

4 java.awt.Image type null Mapping is not done#1

5 0 byte data Mapping is not done#1

6 Data bigger than 0 bytes Mapping is done#3

7 javax.xml.transform.Sourc
e type

Null Mapping is not done#1

8 0 byte data Mapping is done#2

9 Data bigger than 0 bytes Mapping is done#3

10 javax.activation.DataHand
ler type

null Mapping is not done#1

11 0 byte data Mapping is done#2

12 Data bigger than 0 bytes Mapping is done#3

#1
Unlike the wsi:swaRef format attachments, this is the multipart that is formed only of the route part. SOAP
envelopes are stored in the MIME body of the route part. No element of the argument corresponding to the SOAP
body appears. The following is an example of XML mapping when the attachment data is null:

• The program that invokes the Web Service

...
UserInfoService service = new UserInfoService();
UserInfo impl = service.getUserInfo(new MTOMFeature());

result = impl.getUserData(null);
...

• SOAP messages

--uuid:cbc0221b-8ee3-40a3-adc1-d5fa52a8d66e
Content-Id: <rootpart*cbc0221b-8ee3-40a3-adc1-d5fa52a8d66e@jaxws.cosminexus.com>
Content-Type: application/xop+xml;charset=utf-8;type="text/xml"
Content-Transfer-Encoding: binary

<?xml version="1.0" ?>

30. Attachment functionality (MTOM/XOP)

767

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:getUserData xmlns:ns2="http://localhost">
 </ns2:getUserData>
 </S:Body>
</S:Envelope>
--uuid:cbc0221b-8ee3-40a3-adc1-d5fa52a8d66e--

#2
This is a multipart that is formed of the attachment part that has no route part and data (MIME body is empty). If
multiple attachment data is specified in the Java interface, the attachment parts will also be multiple.

#3
This is a multipart that is formed of a route part and an attachment part. If multiple attachment data is specified in
the Java interface, the attachment parts will also be multiple.

30.5.3 Mapping the SOAP messages to the attachments (MTOM/XOP)
In the JAX-WS engine, mapping between the SOAP message with an attachment and the attached data is guaranteed
only if the received SOAP message (with an attachment) adheres to the MTOM/XOP specifications. Behavior is not
guaranteed if other type of SOAP messages is received.

30. Attachment functionality (MTOM/XOP)

768

30.6 Precautions
The following are the precautions when using the attachments in MTOM/XOP specification format:

• You cannot use them concurrently with the wsi:swaRef format attachments. Behavior is not guaranteed if used
concurrently.

• You cannot send or receive them concurrently with the wsi:swaRef type attachments in a single operation.

• You cannot use them in the provider implementation class (class that implements the
javax.xml.ws.provider interface). Behavior is not guaranteed if attachments in MTOM/XOP specification
format are used in the provider implementation class.

• You cannot use them along with the handler framework. Behavior is not guaranteed if used along with the handler
framework. To send and receive attachments when using the handler framework, use the attachment functionality
(wsi:swaRef format).

• You cannot use them along with WSS (Cosminexus Web Services-Security). The behavior is not guaranteed if
used along with WSS.

30. Attachment functionality (MTOM/XOP)

769

30.7 Data that can be sent and received and the Java
types that can be used in the attachment
(MTOM/XOP format)

The byte[] and other Java types can be used in the MTOM/XOP format attachment depending on the data to be sent
and received. The following table describes the Java types, which can be used and the data that can be sent and
received through an attachment in the MTOM/XOP format.

Table 30‒11: Java types and data that can be sent and received through an attachment in the MTOM/XOP
format

No. Java type Data that can be sent and received

1 byte[] All the data can be sent and received.

2 javax.activation.DataHandler

3 java.awt.Image Image data can be sent and received.

4 javax.xml.transform.Source XML file can be sent and received.

30.7.1 How to create Java objects for data to be sent
This subsection describes how to create a Java object depending on the data to be sent as an attachment in the
MTOM/XOP format.

(1) Sending an existing text file
You can send an existing text file by using either of the two methods such as byte[] or
javax.activation.DataHandler. The details on the respective procedures are as follows:

(a) Using byte[]

The procedure to send an existing text file by using byte[] is as follows:

1. Generating the java.io.FileInputStream object
Generate the java.io.FileInputStream object by specifying the file path of the attachment to be sent, in
an argument.

java.io.FileInputStream fileInputStream =
 new java.io.FileInputStream("sample.txt");

2. Generating byte[]
Write the byte data read from the java.io.FileInputStream object to the
java.io.ByteArrayOutputStream object.
Then, generate byte[] by using the toByteArray() method of the
java.io.ByteArrayOutputStream class.

java.io.ByteArrayOutputStream byteArrayOutputStream =
 new java.io.ByteArrayOutputStream();

int i = 0;
while ((i = fileInputStream.read()) != -1) {
 byteArrayOutputStream.write(i);
}

byte[] bytes = byteArrayOutputStream.toByteArray();

(b) Using javax.activation.DataHandler

The procedure to attach and send an existing file by using javax.activation.DataHandler is as follows:

30. Attachment functionality (MTOM/XOP)

770

1. Generating the javax.activation.DataSource object
Generate the javax.activation.FileDataSource object by specifying the file path of the attachment to
be sent, in an argument.

javax.activation.FileDataSource fileDataSource =
 new javax.activation.FileDataSource("sample.txt");

2. Generating the javax.activation.DataHandler object
Generate the javax.activation.DataHandler object by specifying the
javax.activation.FileDataSource object in an argument.

javax.activation.DataHandler dataHandler =
 new javax.activation.DataHandler(fileDataSource);

(2) Sending an existing image file
You can send an existing image file by using any of the three methods such as byte[],
javax.activation.DataHandler, or java.awt.Image. The details on the respective procedures are as
follows:

(a) Using byte[]

The procedure to send an existing image file by using byte[] is as follows:

1. Generating the java.io.FileInputStream object
Generate the java.io.FileInputStream object by specifying the file path of the attachment to be sent, in
an argument.

java.io.FileInputStream fileInputStream =
 new java.io.FileInputStream("sample.png");

2. Generating byte[]
Write the byte data read from the java.io.FileInputStream object to the
java.io.ByteArrayOutputStream object.
Then, generate byte[] by using the toByteArray() method of the
java.io.ByteArrayOutputStream class.

java.io.ByteArrayOutputStream byteArrayOutputStream =
 new java.io.ByteArrayOutputStream();

int i = 0;
while ((i = fileInputStream.read()) != -1) {
 byteArrayOutputStream.write(i);
}

byte[] bytes = byteArrayOutputStream.toByteArray();

(b) Using javax.activation.DataHandler

The procedure to send an existing image file by using javax.activation.DataHandler is as follows:

1. Generating the javax.activation.DataSource object
Generate the javax.activation.FileDataSource object by specifying the file path of the attachment to
be sent, in an argument.

javax.activation.FileDataSource fileDataSource =
 new javax.activation.FileDataSource("sample.png");

2. Generating the javax.activation.DataHandler object
Generate the javax.activation.DataHandler object by specifying the
javax.activation.FileDataSource object in an argument.

javax.activation.DataHandler dataHandler =
 new javax.activation.DataHandler(fileDataSource);

30. Attachment functionality (MTOM/XOP)

771

(c) Using java.awt.Image

The procedure to send an existing image file by using java.awt.Image is as follows:

1. Generating the java.awt.Image object
Generate the java.awt.Image object by specifying the file path of the attachment to be sent to an argument of
the createImage(String) method in the java.awt.Toolkit class.

java.awt.Image image =
 Toolkit.getDefaultToolkit().createImage("sample.png");

(3) Sending an existing XML file
You can send an existing XML file by using any of the three methods such as byte[],
javax.activation.DataHandler, or javax.xml.transform.Source. The details on the respective
procedures are as follows:

(a) Using byte[]

The procedure to send an existing XML file by using byte[] is as follows:

1. Generating the java.io.FileInputStream object
Generate the java.io.FileInputStream object by specifying the file path of the attachment to be sent, in
an argument.

java.io.FileInputStream fileInputStream =
 new java.io.FileInputStream("sample.xml");

2. Generating byte[]
Write the byte data read from the java.io.FileInputStream object to the
java.io.ByteArrayOutputStream object. Then, generate byte[] by using the toByteArray()
method of the java.io.ByteArrayOutputStream class.

java.io.ByteArrayOutputStream byteArrayOutputStream =
 new java.io.ByteArrayOutputStream();

int i = 0;
while ((i = fileInputStream.read()) != -1) {
 byteArrayOutputStream.write(i);
}

byte[] bytes = byteArrayOutputStream.toByteArray();

(b) Using javax.activation.DataHandler

The procedure to send an existing XML file by using javax.activation.DataHandler is as follows:

1. Generating the javax.activation.DataSource object
Generate the javax.activation.FileDataSource object by specifying the file path of the attachment to
be sent, in an argument.

javax.activation.FileDataSource fileDataSource =
 new javax.activation.FileDataSource("sample.xml");

2. Generating the javax.activation.DataHandler object
Generate the javax.activation.DataHandler object by specifying the
javax.activation.FileDataSource object in an argument.

javax.activation.DataHandler dataHandler =
 new javax.activation.DataHandler(fileDataSource);

(c) Using javax.xml.transform.Source

The procedure to send an existing XML file by using javax.xml.transform.Source is as follows:

1. Generating the javax.xml.transform.Source object

30. Attachment functionality (MTOM/XOP)

772

Generate the javax.xml.transform.stream.StreamSource object by specifying the file path of the
attachment to be sent, in an argument.

 javax.xml.transform.stream.StreamSource streamSource =
 new javax.xml.transform.stream.StreamSource("sample.xml");

(4) Sending java.lang.String object
You can send the java.lang.String object by using either of the two methods such as byte[] or
javax.activation.DataHandler. The details on the respective procedures are as follows:

(a) Using byte[]

The procedure to send the java.lang.String object by using byte[] is as follows:

1. Generating the java.lang.String object

java.lang.String str =
 new java.lang.String("abcde");

2. Generating byte[]
Generate byte[] by using the getBytes() method of the java.lang.String class.

byte[] bytes =
 str.getBytes();

(b) Using javax.activation.DataHandler

The procedure to send the java.lang.String object by using javax.activation.DataHandler is as
follows:

1. Generating the java.lang.String object

java.lang.String str =
 new java.lang.String("abcde");

2. Generating the javax.activation.DataHandler object
Generate the javax.activation.DataHandler object by specifying the java.lang.String object
and the MIME type, in an argument.

javax.activation.DataHandler dataHandler =
 new javax.activation.DataHandler(str, "text/plain; charset=UTF-8");

(5) Precautions on generating the javax.activation.DataHandler object
When sending a text file, an XML file or a java.lang.String object (String) as a
javax.activation.DataHandler object through an attachment in the MTOM/XOP specification format, you
can specify the character code of the characters to be included in the object by using the DataHandler (Object,
String) constructor of the javax.activation.DataHandler class in the same way as the codes are
specified in an attachment in the wsi:swaRef format.

For details on how to specify a character code where the DataHandler (Object, String) constructor was
used, see 28.5.1(4) Precautions on generating the javax.activation.DataHandler object.

30.7.2 How to acquire the received data
If the data received through an attachment in the MTOM/XOP specification format is other than the
javax.activation.DataHandler object (byte[], java.awt.Image object, or
javax.xml.transform.Source instance), the JAXB converts the received data into an appropriate Java object.
Therefore, you need not convert the data in an application.

If the received data is a javax.activation.DataHandler object, you can acquire the received data by using
the same method as that for an attachment in the wsi:swaRef format.

30. Attachment functionality (MTOM/XOP)

773

For details on how to acquire an attachment in the wsi:swaRef format, see 28.5.2 How to acquire the attachment
data (wsi:swaRef format).

(1) Notes on acquiring the javax.activation.DataHandler object
Receiving a SOAP message of the MIME Multipart or related structure that contains an attachment in the MTOM and
XOP specification format enables you to handle a SOAP message as an attachment of the streamed MTOM/XOP
specification format. Because the receiving process does not complete at the receiver side of the attachment in the
MTOM/XOP format unless all the data is imported from the input stream contained in the
javax.activation.DataHandler object, the sending process at sender side waits until the receiving process
completes at the receiving side.

To come out of this state, you must either import all the data from the java.io.InputStream object contained in
the javax.activation.DataHandler object or export the imported streamed data to the output stream by
using the writeTo(java.io.OutputStream) method of the javax.activation.DataHandler class.

(2) Notes on acquiring the javax.xml.transform.Source object
When the data received in an attachment in the MTOM/XOP specification format is the
javax.xml.transform.Source object, you can handle the data as an attachment in the streamed MTOM/XOP
specification format. The JAXB converts the javax.xml.transform.Source object into the
javax.xml.transform.stream.StreamSource object.

Because the receiving process does not complete at the receiving side of the attachment in the MTOM and XOP
specification format unless all the data is imported from the input stream contained in the
javax.xml.transform.stream.StreamSource object, the sending process at the sender side waits until the
receiving process completes at the receiving side.

To eliminate this state, you must import all the data from the java.io.Reader object contained in the
javax.xml.transform.stream.StreamSource object.

30. Attachment functionality (MTOM/XOP)

774

31 Example of the development
starting from SEI (when using
attachments in the MTOM/XOP
specification format)
This chapter describes an example of developing a Web Service starting from SEI by
using attachments.

775

31.1 Configuration of the development example (starting
from SEI or the attachments in the MTOM/XOP
specification format)

This chapter describes an example of developing a Web Service starting from SEI. The Web Service to be developed
uses the attachments in the MTOM/XOP specification format.

This section gives an overview of the Web Service to be developed and the information used.

Overview of the development example
This example describes how to develop a new Web Service that will manage the user information such as
employee identification number, photograph, employee name, and affiliation, and return the processing results for
the input from the Web Service client.
The following tables describe the information requested from the Web Service client and the server response.

Table 31‒1: Request information from the Web Service client

Information Java data type

Employee identification number java.lang.String

Facial Photograph javax.activation.DataHandler

Table 31‒2: Response from the server

Information Java data type

Registration confirmation message java.lang.String

Employee name java.lang.String

Affiliation java.lang.String

The response information from the server is stored in the user-defined Userdata class.

The following is the configuration of the current directory of the Web Service to be developed.

Table 31‒3: Configuration of the current directory (starting from SEI and attachments)

Directory Explanation

c:\temp\jaxws\works\mtom\ This is the current directory.

server\ Used for developing the Web Services.

META-INF\ Corresponds to the META-INF directory of the EAR files.

application.xml Created in 31.3.4 Creating application.xml.

src\ Stores the source file (*.java) for the Web Service. Used in 31.3.1 Creating
Web Services Implementation Classand 31.3.2 Compiling Web Services
Implementation Classes.

WEB-INF\ Corresponds to the WEB-INF directory of the WAR files.

web.xml Created in 31.3.3 Creating web.xml.

classes\ Stores the compiled class file (*.class). Used in 31.3.2 Compiling Web
Services Implementation Classes.

mtom_dynamic_generate.e
ar

Created in 31.3.5 Creating EAR files.

mtom_dynamic_generate.w
ar

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

776

Directory Explanation

client\ Used for developing the Web Service client.

src\ Stores the source file (*.java) of the Web Service client. Used in 31.5.1
Generating a service classand 31.5.2 Creating Implementation Class for the
Web Services client.

classes\ Stores the compiled class file (*.class). Used in 27.5.3 Compiling an
implementation class for the Web Service client.

portrait.png Used in the PNG file that is used in the Web Service client.

usrconf.cfg Created in 31.6.1 Creating an option definition file for Java applications.

usrconf.properties Created in 31.6.2 Creating a user property file for Java applications.

Change the current directory path according to the development environment.

Note that the description below uses the directory and files names mentioned in the above table. The values in bold
used in the command execution examples or Java source are the values that are specified or generated in this example.
Use appropriate values according to the environment you build.

Furthermore, in the development example described in this chapter, the Web Service and the Web Service client are
developed in the same environment; however, they can be developed on different environments as well. To develop
the Web Service and the Web Service client in separate environments, you must change the current directory path
according to the respective environment.

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

777

31.2 Flow of the development example (starting from
SEI or attachments in MTOM/XOP specification
format)

The procedure for developing and executing a Web Service described in the development examples of this chapter is
as follows:

Developing a Web Service

1. Create Web Services Implementation Class (31.3.1)

2. Compiling Web Services Implementation Class (31.3.2)

3. Create a web.xml file(31.3.3)

4. Create an application.xml file (31.3.4)

5. Create an EAR file (31.3.5)

Deploying and starting the service

1. Deploy the EAR file (31.4.1)

2. Start the Web Service (31.4.2)

Developing the Web Service client

1. Execute the cjwsimport command to generate a service class (31.5.1)

2. Create Implementation Class for the Web Services client (31.5.2)

3. Compile Implementation Class for the Web Services client (31.5.3)

Executing the Web Service

1. Create an option definition file for Java applications (31.6.1)

2. Create a user property file for Java applications (31.6.2)

3. Execute the Web Services client (31.6.3)

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

778

31.3 Example of Web Service development(starting from
SEI or attachment in MTOM/XOP specification
format)

This section describes an example of developing a Web Service (by using attachments) starting from SEI.

31.3.1 Creating a Web Service Implementation Class
Create a Web Service Implementation Class that codes the processing of the Web Service.

This example describes how to calculate the contents of the received request message and create a Web Service
Implementation Class that returns a response message.

The following example shows how to create a Web Service Implementation Class.

package com.sample;

import java.awt.Image;
import javax.jws.Web Service;
import javax.xml.ws.soap.MTOM;
import javax.xml.bind.annotation.XmlMimeType;

@MTOM
@Web Service(serviceName="UserInfoService",targetNamespace="http://sample.com")
public class UserInfoImpl {

 public UserData getUserData(String in0, @XmlMimeType("image/png")Image in1)
 throws UserInfoException {

//Register the photograph to employee information
......

 UserData userdata = new UserData();
 //Set the registered employee name and affiliation
 if (in0.equals("1")) {
 userdata.setName("HitachiTaro");
 userdata.setSection("The personnel section");
 } if (......) {

 }

//Set registration confirmation message
 if (in1 == null) {
 userdata.setMessage("Failure(no image).");
 } else {
 userdata.setMessage("Success.");
 }
 return userdata;
}
}

Save the created UserInfoImpl.java in the c:\temp\jaxws\works\mtom\server\src\com\sample
\ directory in UTF-8 format.

Also, create a user-defined class com.sample.UserData used in com.sample.UserInfoImpl. Typically,
creation of an exception class is optional, but in this example an exception class is created:

The following is an example for creating a user-defined class:

package com.sample;

import java.lang.String;

public class UserData {

 private String message;
 private String name;
 private String section;

 public UserData() {
 }

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

779

 public String getMessage() {
 return this.message;
 }

 public void setMessage(String message) {
 this.message = message;
 }

 public String getName() {
 return this.name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getSection() {
 return this.section;
 }

 public void setSection(String section) {
 this.section = section;
 }
}

The created UserData.java is stored in the c:\temp\jaxws\works\mtom\server\src\com\sample\
directory in UTF-8 format.

Also, create an exception class com.sample.UserInfoException thrown in
com.sample.UserInfoImpl. Typically, creation of an exception class is optional, but in this example an
exception class is created:

The following is an example for creating an exception class:

package com.sample;

import java.lang.Exception;
import java.lang.String;

public class UserInfoException extends Exception {

 String detail;

 public UserInfoException(String message, String detail) {
 super(message);
 this.detail = detail;
 }

 public String getDetail() {
 return detail;
 }
}

The created UserInfoException.java class is stored in the c:\temp\jaxws\works\mtom\server
\src\com\sample\ directory in UTF-8 format.

31.3.2 Compiling Web Services Implementation Classes
Execute the javac command to compile Web Services Implementation Class. Include the Web Service
implementation class during compilation. For details on the javac command, see the JDK documentation.

The following example describes the execution of the javac command:

> cd c:\temp\jaxws\works\mtom\server\
> mkdir WEB-INF\classes\
> javac -cp
"%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%\CC\client\lib\j2ee-
javax.jar;%COSMINEXUS_HOME%\CC\client\lib\HiEJBClientStatic.jar;%COSMINEXUS_HOME%\jaxp
\lib\csmjaxb.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmstax.jar" -d WEB-INF\classes\ -s src src\com\sample\UserInfoImpl.java src\com
\sample\UserData.java src\com\sample\UserInfoException.java

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

780

On successful execution of the javac command, the compiled classes are output to the following path: c:\temp
\jaxws\works\mtom\server\WEB-INF\classes\com\sample\Directory
You can execute the cjwsgen command for the compiled Web Services Implementation Classes to check errors in
advance. For details on the cjwsgen command, see 10.23(1) Using the cjwsgen command for checking errors.
Creating web.xml

Create a web.xml file that is required as a WAR file component.

The following is an example for creating a web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3.0.xsd">
 <description>Sample Web Service "mtom_dynamic_generate "</description>
 <display-name>Sample_web_service_mtom_dynamic_generate </display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>

 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/UserInfoService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

The created web.xml is stored in the c:\temp\jaxws\works\mtom\server\WEB-INF\ directory in UTF-8
format. For the web.xml settings, see 3.4 Creating web.xml.

31.3.3 Creating a web.xml file
Create a web.xml file that is required as a WAR file component.

The following is an example for creating a web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
 <description>Sample web service "mtom_dynamic_generate"</description>
 <display-name>Sample_web_service_mtom_dynamic_generate</display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

781

 </servlet>
 <servlet-mapping>

 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/UserInfoService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

The created web.xml file is stored in the c:\temp\jaxws\works\wsrm\server\WEB-INF\ directory in
the UTF-8 format. For the web.xml settings, see 3.4 Creating web.xml.

31.3.4 Creating an application.xml file
Create an application.xml file that is required as an EAR file component.

The following is an example for creating an application.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "mtom_dynamic_generate"</description>
 <display-name>Sample_application_mtom_dynamic_generate</display-name>
 <module>
 <web>
 <web-uri>mtom_dynamic_generate.war</web-uri>
 <context-root>mtom_dynamic_generate</context-root>
 </web>
 </module>
</application >

When creating application.xml of version 5, specify 5 in the version attribute of the application
element and specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second
location information in the xsd:schemaLocation attribute.

The created application.xml file is stored in the c:\temp\jaxws\works\wsrm\server\META-INF\
directory in the UTF-8 format. For notes on creating an application.xml file, see 5.2.2 Notes on editing
application.xml in the uCosminexus Application Server Application Development Guide.

31.3.5 Creating EAR files
Use the jar command to create EAR files.

The following is an example for creating an EAR file:

> cd c:\temp\jaxws\works\mtom\server\
> jar cvf mtom_dynamic_generate.war .\WEB-INF
> jar cvf mtom_dynamic_generate.ear .\mtom_dynamic_generate.war .\META-INF
\application.xml

On successful termination of the jar command, wsrm.ear is created in the c:\temp\jaxws\works
\mtom_dynamic_generate\server\directory.
For the jar command, see the JDK documentation.

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

782

31.4 Examples of deployment and startup (Starting from
SEI or attachments in the MTOM/XOP specification
format)

This section describes how to deploy and start services for the development starting from SEI by using attachments.

31.4.1 Deploying EAR files
Use the cjimportapp command to deploy the created EAR file to a J2EE server.

The following is an example of deployment:

> cd c:\temp\jaxws\works\mtom\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f mtom_dynamic_generate.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For the method to deploy (or import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
Applications in the uCosminexus Application Server Management Portal User Guide.

31.4.2 Starting Web Service
Use the cjstartapp command to start the Web Service.

The following is an example for starting the Web Service:

> cd c:\temp\jaxws\works\mtom\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver -nameserver
corbaname::testserver:900 -name Sample_application_mtom_dynamic_generate

For the cjstartapp command, see cjimportapp (Starting J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE Applications in
the uCosminexus Application Server Management Portal User Guide.

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

783

31.5 Examples of developing the Web Service clients
(starting from SEI or attachments in the
MTOM/XOP specification format)

This section describes the examples for the development of Web Service client starting from SEI by using
attachments.

31.5.1 Generating a service class
If you execute the cjwsimport command, the Java source, such as a service class that is required for developing the
Web Service client will be generated. For the cjwsimport command, see 14.1 cjwsimport command.

The following is an example for executing the cjwsimport command:

> cd c:\temp\jaxws\works\mtom\client\
> mkdir src\
> mkdir classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes http://webhost:8085/
mtom_dynamic_generate/UserInfoService?wsdl

On successful termination of the cjwsimport command, the Java source is generated in the c:\temp\jaxws
\works\mtom\client\src\com\sample\ directory.

The following table lists the generated products:

Table 31‒4: Products generated when the service class is generated (starting from SEI or attachments)

File name Explanation

GetUserData.java This is a JavaBean class corresponding to the type referenced by the wrapper
element of the request message in the WSDL definition.

GetUserDataResponse.java This is a JavaBean class corresponding to the type referenced by the wrapper
element of the response message in the WSDL definition.

ObjectFactory.java This is an ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is a package-info.java file.

UserData.java This is the UserData corresponding to

JavaBean class.

UserInfoImpl.java This is the SEI corresponding to 'Service' in the WSDL definition.

UserInfoService.java This is a service class.

UserInfoException.java This is a JavaBean class corresponding to UserInfoException.

UserInfoException_Exception.
java

This is a wrapper exception class of the fault bean.

31.5.2 Creating an implementation class for the Web Service client
Create an implementation class for the Web Service client that uses the Web Service.

The following is an example for creating a Web Service client that invokes Web Services once:

package com.sample.client;

import java.awt.Image;
import java.io.File;

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

784

import javax.imageio.ImageIO;
import javax.xml.ws.soap.MTOMFeature;

import com.sample.UserInfoImpl;
import com.sample.UserData;
import com.sample.UserInfoService;
import com.sample.UserInfoException_Exception;

public class TestClient {

 public static void main(String[] args) {
 try {
 // Generate image object
 File imageFile = new File("portrait.png");
 if (!imageFile.exists()) {
 throw new RuntimeException("Cannot find the file \"portrait.png\".");
 }
 Image image = ImageIO.read(imageFile);

 UserInfoService service = new UserInfoService();
 UserInfoImpl port = service.getUserInfoImplPort(new MTOMFeature());

 UserData userdata = port.getUserData("1", image);

 System.out.print("[RESULT] " + userdata.getMessage());
 System.out.println(" Name:" + userdata.getName()
 + ", Section:" + userdata.getSection());
 } catch(UserInfoException_Exception e) {
 e.printStackTrace();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

The created TestClient.java is stored in the c:\temp\jaxws\works\mtom\client\src\com
\sample\client\ directory in UTF-8 format.

31.5.3 Compiling an implementation class for the Web Service client
Use the javac command to compile the created Web Service client.

The following example describes how to compile the created Web Service client:

> cd c:\temp\jaxws\works\mtom\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\com\sample\client\TestClient.java

On successful termination of the javac command, the TestClient.class is generated in the c:\temp
\jaxws\works\mtom\client\classes\com\sample\client\ directory. For the javac command, see
the JDK documentation.

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

785

31.6 Examples for executing the Web Services (starting
from SEI or attachments in the MTOM/XOP
specification format)

This section describes the example for the execution of Web Service clients starting from SEI by using attachments.

31.6.1 Creating an option definition file for Java applications
Create an option definition file for Java applications (usrconf.cfg) required for executing the Web Service.

The following is an example for creating the option definition file for Java applications:

add.class.path=Cosminexus-Installation-directory\jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home=Cosminexus-installation-directory

For the Cosminexus-installation-directory part, use the absolute path to specify the path where Cosminexus is installed

The created option definition file for Java applications is stored in the c:\temp\jaxws\works\mtom\client\
directory. For the option definition file for Java applications, see 14.2.usrconf.cfg (Option definition file for Java
applications) in the uCosminexus Application Server Definition Reference Guide.

31.6.2 Creating a user property file for Java applications
Create a user property file for the Java applications required for executing the Web Service.

Because the settings are not particularly changed, create an empty file named usrconf.properties in c:\temp
\jaxws\works\mtom\client\ directory. For the user property file for Java applications, see 14.3
usrconf.properties (User property file for Java applications) in the uCosminexus Application Server Definition
Reference Guide.

31.6.3 Executing Web Service clients
Use the cjclstartap command to execute a Web Service client.

The following is an example for executing the Web Service client:

> cd c:\temp\jaxws\works\mtom\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" com.sample.client.TestClient

On successful termination of the cjclstartap command, the execution results of the Web Service client are
displayed. The following is an example for displaying the execution results:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\mtom\client, PID = 2636)
[RESULT] Success. Name: HitachiTaro, Section:The personnel section
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in italics changes according to the execution timing and the environment.

For the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application Server
Command Reference Guide.

31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)

786

32 Streaming
This chapter gives an overview of the Cosminexus Streaming functionality, how to
use the functionality, and the settings required to use the functionality.

787

32.1 What is the Streaming functionality
Streaming is a functionality used in the attachment functionality to receive SOAP Messages (of MIME Multipart/
Related structure) containing large attachments, without Java heap size restrictions. This is possible, because the
processing is carried out without extracting the big size MIME body included in the SOAP Messages to the memory.
You can use the Streaming functionality to map the SOAP messages containing the received attachment to the
javax.activation.DataHandler class.

The following figure shows the send/receive of binary data by using the Streaming functionality:

Figure 32‒1: Binary data send/receive by using Streaming

You can use Streaming only when using attachments in the MTOM/XOP specification format. You cannot use
Streaming for attachments in the wsi:swaRef format.

32. Streaming

788

32.2 How to use Streaming
To use Streaming, you must set on the receiver side of the SOAP messages of MIME Multipart/Related structure
containing attachments. This section describes how to use the Web Service side and the Web Service client side.

32.2.1 Web Services machine
To use Streaming in the Web Service, annotate the com.sun.xml.ws.developer.StreamingAttachment
annotation in the Web Service Implementation Class. For the
com.sun.xml.ws.developer.StreamingAttachment annotation, see 16.2.2
com.sun.xml.ws.developer.StreamingAttachment annotation.

The following is an example of the Web Service Implementation Class that uses Streaming. In this example, "C:/
TMP" directory is specified as the output destination of the temporary file created by Streaming. Perform detailed
parsing of SOAP messages containing attachments and output MIME bodies of 50,000 bytes or more as temporary
files.

package com.sample;

......

@MTOM
@StreamingAttachment(dir="C:/TMP", parseEagerly=true, memoryThreshold=50000L)
@BindingType(...)
public class UserInfoImpl implements UserInfo {

 public DataHandler getUserInfo(DataHandler dataHandler)
 throws UserDefinedException {
 if (dataHandler instanceof StreamingDataHandler) {
 StreamingDataHandler sdh = null;
 try {
 sdh = (StreamingDataHandler)dataHandler;

 } finally {
 try {
 if (sdh != null) {
 sdh.close();
 }
 } catch(Exception ex) {

 }
 }
 }
 }
}

If you are using Streaming in a Web Service side, and you receive a request message that satisfies all the following
conditions, data of the response message will be in Base64 format.

• There is no application/xop+xml in the Accept field of the HTTP header of the request message.

• There is no application/xop+xml in the Content-Type of the root part of the request message.

32.2.2 Web Service client side
To use Streaming in the Web Service client, set the
com.sun.xml.ws.developer.StreamingAttachmentFeature class while acquiring SEI.

For the com.sun.xml.ws.developer.StreamingAttachmentFeature class, see 19.2.4 (1)
com.sun.xml.ws.developer.StreamingAttachmentFeature class.

The following is an example of a Web Service client that uses Streaming. In this example "C:/TMP" directory is
specified as the output destination of the temporary file created by Streaming. Perform detailed parsing of SOAP
messages containing attachments and output the MIME bodies of 50,000 bytes or more as temporary files.

package com.sample;

32. Streaming

789

......

public class TestClient {

 public static void main(String[] args) {
 try {
 File portrait = new File("portrait.png");
 FileDataSource fileDataSource = new FileDataSource(portrait);
 DataHandler dataHandler = new DataHandler(fileDataSource);

 MTOMFeature mtomFeature = new MTOMFeature();
 StreamingAttachmentFeature streamingAttachmentFeature = new
StreamingAttachmentFeature("C:/TMP", true, 50000L);

 UserInfoService service = new UserInfoService();
 UserInfoImpl port = service.getUserInfoImplPort(mtomFeature,
streamingAttachmentFeature);
 DataHandler userData = port.getUserInfo(dataHandler);
 if (userData instanceof StreamingDataHandler) {
 StreamingDataHandler sdh = null;
 try {
 sdh = (StreamingDataHandler)userData;
 sdh.moveTo(file);

 } finally {
 try {
 if (sdh != null) {
 sdh.close();
 }
 } catch(Exception ex) {

 }
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

32.2.3 Variations due to parseEagerly
In Streaming, the timing of parsing the SOAP messages containing attachments, analysis results, and exceptions that
occur if there are errors in SOAP messages vary according to the value specified in the parseEagerly in the
argument of the com.sun.xml.ws.developer.StreamingAttachmentFeature class and
com.sun.xml.ws.developer.StreamingAttachment annotation element.

The following table lists the parseEagerly values and variations:

Table 32‒1: parseEagerly values and variations

No.
parseEager
ly value

Timing for parsing the SOAP
messages

Exception thrown if there is any error in SOAP
messages

1 true When a SOAP message containing an
attachment is unmarshalled.

org.jvnet.mimepull.MIMEParsingExcep
tion

2 false When a streamed attachment is operated. java.io.IOException

Specify true as the parseEagerly value when an error in the SOAP message containing an attachment is
detected not in user applications, but while un-marshaling.

32.2.4 Operating streamed attachments
When using Streaming, if you receive a SOAP message of MIME Multipart/Related structure containing an
attachment, the received attachment is mapped to the
com.sun.xml.ws.developer.StreamingDataHandler class instead of the
javax.activation.DataHandler class in JAX-WS, and can be handled as a streamed attachment.

32. Streaming

790

For the com.sun.xml.ws.developer.StreamingDataHandler class, see 19.2.4 (2)
com.sun.xml.ws.developer.StreamingDataHandler class.

The following is an example of operating a streamed attachment. In this example, the streamed attachment is output
with a different name as "C:/portrait.png":

package com.sample;

......

@MTOM
@StreamingAttachment(dir="C:/TMP", parseEagerly=true, memoryThreshold=50000L)
@BindingType(...)
public class UserInfoImpl implements UserInfo {

 public DataHandler getUserInfo(DataHandler dataHandler)
 throws UserDefinedException {
 if (dataHandler instanceof StreamingDataHandler) {
 File file = new File("C:/portrait.png");
 StreamingDataHandler sdh = null;
 try {
 sdh = (StreamingDataHandler)dataHandler;
 sdh.moveTo(file);

 } finally {
 try {
 if (sdh != null) {
 sdh.close();
 }
 } catch(Exception ex) {

 }
 }
 }
 }
}

(1) Points to be noted when operating the streamed attachments
The following are the points to be noted when operating the streamed attachments:

• When using Streaming, you must distinguish the
com.sun.xml.ws.developer.StreamingDataHandler class with the help of an instanceof
operator.

• Irrespective of whether the attachments are used, you must close the attachments that are output in the temporary
files by using the com.sun.xml.ws.developer.StreamingDataHandler#close() method. If you
do not close the attachments, JAX-WS will not remove the temporary files.

• You can invoke only the com.sun.xml.ws.developer.StreamingDataHandler#close() method
after invoking the com.sun.xml.ws.developer.StreamingDataHandler#readOnce() and
com.sun.xml.ws.developer.StreamingDataHandler#moveTo(File) methods. The operation is
not guaranteed if the methods other than the
com.sun.xml.ws.developer.StreamingDataHandler#close() method are invoked.

• If you invoke the com.sun.xml.ws.developer.StreamingDataHandler#readOnce() method,
you must close the input stream after reading all the data from the input stream acquired when the attachment was
no longer required. Thereafter, you must invoke the
com.sun.xml.ws.developer.StreamingDataHandler#close() method. The following is an
example of invoking the com.sun.xml.ws.developer.StreamingDataHandler#readOnce()
method:

package com.sample;
...

@MTOM
@StreamingAttachment(...)
...
public class UserInfoImpl implements UserInfo {

 public @XmlMimeType("application/octet-stream")
 DataHandler getUserInfo(
 @XmlMimeType("application/octet-stream")

32. Streaming

791

 DataHandler dataHandler)
 throws ... {
 if (dataHandler instanceof StreamingDataHandler) {
 StreamingDataHandler sdh = null;
 try {
 sdh = (StreamingDataHandler)dataHandler;
 ...
 InputStream inputStream = sdh.readOnce();
 ...
 // read all the data of the attachment from the input stream
 while ((inputStream.read()) != -1);

 //close the input stream
 inputStream.close();
 } finally {
 try {
 if (sdh != null) {
 //invoke the close() method of the StreamingDataHandler
 //class
 sdh.close();
 }
 } catch(Exception ex) {
 ...
 }
 }
 }
 ...
 }
}

• If you invoke the com.sun.xml.ws.developer.StreamingDataHandler#moveTo(File) method,
you must invoke the com.sun.xml.ws.developer.StreamingDataHandler#close() method when
the attachment is no longer required.

• If an exception occurs when you invoke the
com.sun.xml.ws.developer.StreamingDataHandler#moveTo(File) method, you must acquire
the input stream by invoking the
com.sun.xml.ws.developer.StreamingDataHandler#readOnce() method. Close the input
stream after reading all the data from that input stream. Thereafter, you must invoke the
com.sun.xml.ws.developer.StreamingDataHandler#close() method. The following is an
example of invoking the com.sun.xml.ws.developer.StreamingDataHandler#moveTo(File)
method:

package com.sample;
...

@MTOM
@StreamingAttachment(...)
...
public class UserInfoImpl implements UserInfo {

 public @XmlMimeType("application/octet-stream")
 DataHandler getUserInfo(
 @XmlMimeType("application/octet-stream")
 DataHandler dataHandler)
 throws ... {
 if (dataHandler instanceof StreamingDataHandler) {
 StreamingDataHandler sdh = null;
 try {
 File file = new File(...);
 sdh = (StreamingDataHandler)dataHandler;
 ...
 sdh.moveTo(file);
 } catch(Exception e)
 try {
 if (sdh != null) {
 InputStream inputStream = sdh.readOnce();

 //read all the data of the attachment from the
 //input stream
 while ((inputStream.read()) != -1);

 //close the input stream
 inputStream.close();
 }
 } catch(Exception ex) {
 ...
 }

32. Streaming

792

 } finally {
 try {
 if (sdh != null) {
 //invoke the close()method of the StreamingDataHandler
class
 sdh.close();
 }
 } catch(Exception ex) {
 ...
 }
 }
 }
 ...
 }
}

• If you do not invoke the com.sun.xml.ws.developer.StreamingDataHandler#readOnce() and
com.sun.xml.ws.developer.StreamingDataHandler#moveTo(File) methods, you must acquire
the input stream by invoking the
com.sun.xml.ws.developer.StreamingDataHandler#readOnce() method when the attachment
is no longer required. Close the input stream after reading all the data from that input stream. Thereafter, you must
invoke the com.sun.xml.ws.developer.StreamingDataHandler#close() method.

• Among the methods of the javax.activation.DataHandler class, the
com.sun.xml.ws.developer.StreamingDataHandler class can invoke only the
getContentType()method. The operation is not guaranteed if any other method is invoked.

• Do not send the streamed attachments of the received javax.activation.DataHandler class or the
javax.xml.ws.Holder<DataHandler> class as it is in the Web Service client or Web Service
Implementation Class after using them. While sending, generate a new javax.activation.DataHandler
object, and then send the received streamed attachment.

32. Streaming

793

32.3 Temporary files (Streaming)
When using Streaming, if you receive a SOAP message of MIME Multipart/Related structure containing an
attachment, the MIME body contained in the SOAP message might be output to a temporary file and not to the
memory. Whether the MIME body contained in the SOAP message is extracted to the memory or output to the
temporary file is determined based on the value specified in the parseEagerly, type of MIME parts, and the
MIME body size.

The following table lists the output destination of the MIME body contained in the SOAP message:

Table 32‒2: Output destination of MIME bodies contained in SOAP messages

No. Type of MIME Parts
Value

specified in
parseEagerly

MIME body size Output destination of MIME body

1 Root Part -- Greater than the threshold
value #

Output to the temporary file instead
of deploying to the memory.

2 Less than or equal to the
threshold value#

Deploy to the memory instead of an
output to a temporary file.

3 Attachment Part true Greater than threshold # Outputs to the temporary file instead
of extracting to the memory.

4 Below the threshold# Extracts to the memory instead of
performing output to a temporary
file.

5 false None Outputs neither to a temporary file
nor to the memory.

Legend:
--: The specified value does not have an effect on the output destination of the MIME body.

#
Threshold is the value of the memoryThreshold element of the
com.sun.xml.ws.developer.StreamingAttachment annotation or the memoryThreshold value of the
com.sun.xml.ws.developer.StreamingAttachmentFeature class.

Determine whether to output the MIME body included in the SOAP message to the temporary file after evaluating
MIME bodies of each MIME part. If there is one root part and two attachment parts in the SOAP message of the
MIME Multipart/Related structure that contains the received attachment, the evaluation to determine whether to
output a temporary file will be executed three times.

32.3.1 Naming convention
The name of the temporary file output by Streaming will have the prefix "MIME", and the suffix ".tmp". This name is
automatically assigned by JAX-WS and therefore cannot be renamed.

The following is an example of a temporary file name output by Streaming:

MIME6838906861691549713.tmp

In the following cases, if you specify the same directory as the output destination of the temporary file, the temporary
file name might get duplicated.

• When the Web Service or the Web Service client for which Streaming is used is deployed to multiple J2EE
servers

• When using streaming on the Web Service clients with different processes

• A combination of the above mentioned cases

32. Streaming

794

Therefore, you must change the output destination of the temporary file for each J2EE server if you deploy the Web
Service or the Web Service client (for which Streaming is used) to multiple J2EE servers, or for each client if you
choose to perform streaming on the Web Service clients with different processes.

32.3.2 Output and Deletion
A temporary file will be output when a SOAP message of MIME Multipart/Related structure containing an attachment
is received. The temporary file corresponding to the MIME body of the root part is deleted by the JAX-WS engine
after un-marshaling the SOAP message. The temporary file corresponding to the MIME body of the attachment part is
deleted when the streamed attachment is closed (when the StreamingDataHandler#close() method is
invoked).

While receiving the SOAP messages of the MIME Multipart/Related structure, the temporary file might remain
undeleted if the connection breaks or if the JVM shuts down. Delete the temporary file if it is not deleted
automatically.

32.3.3 How to estimate
The size of the temporary file output by Streaming is of the same size as the MIME body contained in a received
SOAP Message of MIME Multipart/Related structure. You can calculate the maximum disk usage of the temporary
files by using the following formula:

• Maximum disk usage of the temporary file (Web Service):

Maximum disk usage of the temporary files = Maximum size of the MIME body to be received XXX123123xxxXXX
Maximum number of MIME bodies to be received XXX123123xxxXXX Number of concurrent executions of the Web
Services using Streaming

• Maximum disk usage of the temporary files (Web Service client):

Maximum disk usage of the temporary files = Maximum size of the MIME body to be received XXX123123xxxXXX
Maximum number of MIME bodies to be received XXX123123xxxXXX Web Service invocation count

32. Streaming

795

33 Example of the development
starting from SEI (when using
streaming)
This chapter describes the examples for the development of Web Services starting
from SEI by using the streaming functionality.

797

33.1 Starting from development example (starting from
SEI and streaming)

This chapter describes examples for developing the Web Services starting from SEI. Note that this section describes
how to develop the Web Services in the implicit SEI format (a format that does not create SEI in the explicit format)
as described in the paragraph 3.3 of the JAX-WS2.2 specifications.

The following table describes the configuration of the Web Service to be developed:

Table 33‒1: Configuration of the Web Service (Starting from SEI and addressing)

No. Item Value

1 Name of the J2EE server to be deployed jaxwsserver

2 Host name and port number of the Web server webhost:8085

3 Naming Server URL corbaname::testserver:900

4 Context route addressing_dynamic_generate

5 Style document/literal/wrapped

6 Namespace URI http://sample.com

7 Port type Number 1

8 Local name AddNumbersImpl

9 Operation Number 3

10 Local name 1 add

11 Local name 2 add2

12 Local name 3 add3

13 Service Number 1

14 Local name AddNumbersImplService

15 Port Number 1

16 Local name AddNumbersImplPort

17 Web Service Implementation Class com.sample.AddNumbersImpl

18 Methods made public in the
Web Service Implementation
Class

Number 3

19 Method name 1 add

20 Method name 2 add2

21 Method name 3 add3

22 Exceptions thrown in the Web
Service Implementation Class
methods

Number 1

23 Class name com.sample.AddNumbersFault

The following table describes the configuration of the current directory, when the Web Service is developed:

Table 33‒2: Configuration of the current directory (Starting from SEI and addressing)

Directory Explanation

c:\temp\jaxws\works\ streaming This is the current directory.

server\ Used for Web Service development.

33. Example of the development starting from SEI (when using streaming)

798

Directory Explanation

META-INF\ Corresponds to the META-INF directory of the EAR file.

application.xml Created in 33.3.4 Creating application.xml.

src\ Saves the source file (*.java) for the Web Service. Used in 33.3.1 Creating
Web Services Implementation Classand 33.3.2 Compiling Web Services
Implementation Class.

WEB-INF\ Corresponds to the WEB-INF directory of the WAR file.

web.xml Created in 33.3.3 Creating web.xml.

classes\ Saves the compiled class file (*.class). Used in 33.3.2 Compiling Web
Services Implementation Class.

addressing_dynamic_generate
.ear

Created in 33.3.5 Creating EAR files.

addressing_dynamic_generate
.war

Created in 33.3.5 Creating EAR files.

client\ Used for the development of the Web Services client.

src\ Saves the source file (*.java) of the Web Service client. Used in 33.5.1
Generating a service class and 33.5.2 Creating Implementation Class for the
Web Services client.

classes\ Saves the compiled class file (*.class). Used in 33.5.3 Compiling
Implementation Class for the Web Services client.

usrconf.cfg Created in 33.6.1 Creating an option definition file for Java applications.

usrconf.properties Created in 33.6.2 Creating a user property file for Java applications.

Change the current directory path according to the environment to be developed.

Note that the directory and file names listed in the above table will be used in the description hereafter. The part
formatted in the gothic font, in the command execution example and in the Java source, indicates the specified values
and generated values that are used in this example. Substitute and read according to the environment you want to
build.

Also, in the development examples described in this chapter, the Web Service and Web Service client are developed
in the same environment, but you can also develop them in separate environments. For developing the Web Service
and Web Service client in different environments, substitute and read the current directory path suitable to the
respective environments.

33. Example of the development starting from SEI (when using streaming)

799

33.2 Flow of development examples (Starting from SEI
and streaming)

This section describes the development examples for the development and execution flow.

Developing a Web Service

1. Creating Web Services Implementation Class (33.3.1)

2. Executing the javac command to compile Web Services Implementation Class(33.3.2)

3. Creating web.xml (33.3.3)

4. Creating application.xml (33.3.4)

5. Creating EAR files (33.3.5)

Deploying and starting

1. Deploying EAR files (33.4.1)

2. Starting Web Services (33.4.2)

Developing a Web Service client

1. Executing the cjwsimport command to generate a service class (33.5.1)

2. Creating Implementation Class for the Web Services client (33.5.2)

3. Compiling Implementation Class for the Web Services client (33.5.3)

Executing a Web Service

1. Creating an option definition file for Java applications (33.6.1)

2. Creating a user property file for Java applications (33.6.2)

3. Executing the Web Services client (33.6.3)

33. Example of the development starting from SEI (when using streaming)

800

33.3 Examples of Web Service development (Starting
from SEI and streaming)

This section describes the examples for developing Web Services starting from SEI (using streaming).

33.3.1 Creating the Web Service Implementation Class
Create a Web Service Implementation Class to code the processing of Web Services. This subsection describes how to
calculate the contents of the received request message and create the Web Service Implementation Class that returns
response messages.

The following is an example for creating a Web Service Implementation Class:

package com.sample;

import javax.activation.DataHandler;
import javax.jws.WebService;
import javax.xml.ws.soap.MTOM;
import javax.xml.bind.annotation.XmlMimeType;
import com.sun.xml.ws.developer.StreamingAttachment;
import com.sun.xml.ws.developer.StreamingDataHandler;

@MTOM
@StreamingAttachment(dir="C:/TMP", parseEagerly=true, memoryThreshold=50000L)
@WebService(serviceName="UserInfoService",targetNamespace="http://sample.com")
public class UserInfoImpl {

 public UserData getUserData(String in0, @XmlMimeType("application/octet-
stream")DataHandler in1)
 throws UserInfoException {

 if (in1 != null) {
 if (in1 instanceof StreamingDataHandler) {
 StreamingDataHandler sdh = null;
 try {
 //Registering a photograph to the employee information
 sdh = (StreamingDataHandler)in1;

 } catch(Exception e) {
 throw new UserInfoException("Exception occurred.",
e.getMessage());
 } finally {
 try {
 if (sdh != null) {
 //Closing the data
 sdh.close();
 }
 } catch(Exception ex) {

 }
 }
 }
 }

 UserData userdata = new UserData();
 //Setting the name and affiliation of the registered employee
 if (in0.equals("1")) {
 userdata.setName("Hitachi Taro ");
 userdata.setSection("The personnel section");
 } if (....) {

 } ...

 //Setting the registration confirmation message
 if (in1 == null) {
 userdata.setMessage("Failure(no image).");
 } else {
 userdata.setMessage("Success.");
 }
 return userdata;
 }
}

33. Example of the development starting from SEI (when using streaming)

801

The created AddNumbers.java is saved in the c:\temp\jaxws\works\addressing\server\src\com
\sample\ directory with the UTF-8 format.

Next, create the main Web Service that implements SEI. This subsection describes how to calculate the contents of the
received request message and create the Web Service Implementation Class com.sample.AddNumbersImpl that
is returned as a response message.

The following is an example for creating the main Web Service:

package com.sample;

import javax.jws.WebService;
import javax.xml.ws.soap.Addressing;

@Addressing
@WebService(endpointInterface = "com.sample.AddNumbers")
public class AddNumbersImpl implements AddNumbers {

 public int add(int number1, int number2) throws AddNumbersFault {
 return impl(number1, number2);
 }

 public int add2(int number1, int number2) throws AddNumbersFault {
 return impl(number1, number2);
 }

 public int add3(int number1, int number2) throws AddNumbersFault {
 return impl(number1, number2);
 }

 int impl(int number1, int number2) throws AddNumbersFault {
 if (number1 < 0 || number2 < 0) {
 throw new AddNumbersFault("Negative numbers can't be added!",
 "Numbers: " + number1 + ", " + number2);
 }
 return number1 + number2;
 }
}

The created AddNumbersImpl.java is saved in the c:\temp\jaxws\works\addressing\server\src
\com\sample\ directory with the UTF-8 format.

Also create an exception class com.sample.AddNumbersFault thrown in the
com.sample.AddNumbersImpl class.

The following is an example for creating an exception class:

package com.sample;

public class AddNumbersFault extends Exception {

 String detail;

 public AddNumbersFault(String message, String detail) {
 super(message);
 this.detail = detail;
 }

 public String getDetail() {
 return detail;
 }
}

The created AddNumbersFault.java is saved in the c:\temp\jaxws\works\addressing\server
\src\com\sample\ directory with the UTF-8 format.

33.3.2 Compiling Web Services Implementation Class
Compile the Web Services Implementation Class, by executing the javac command. For details on the javac
command, see the JDK documentation.

The following is the execution example of the javac command.

33. Example of the development starting from SEI (when using streaming)

802

> cd c:\temp\jaxws\works\streaming\server\
> mkdir WEB-INF\classes\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;%COSMINEXUS_HOME%
\jaxp\lib\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib\csmstax.jar;%HNTRLIB2_HOME%\classes
\hntrlib2j.jar;%HNTRLIB2_HOME%\classes\hntrlibMj.jar" -d WEB-INF\classes\ -s src src
\com\sample\AddNumbers.java src\com\sample\AddNumbersImpl.java src\com\sample
\AddNumbersFault.java

The compiled classes are output to the c:\temp\jaxws\works\addressing\server\WEB-INF\classes
\com\sample\ directory, if the javac command successfully ends. Executing the cjwsgen command for
the compiled Web Services Implementation Classes enables you to check errors in advance. For details on the
cjwsgen command, see 14.3 cjwsgen command and for details on error checking, see 10.23 (1) Using the cjwsgen
command for checking errors.

33.3.3 Creating web.xml
Create web.xml that is required as a WAR file component.

The following is an example for creating web.xml:

<<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
<description>Sample web service
"streaming_dynamic_generate"</description>
 <display-name>Sample_web_service__streaming_dynamic_generate</display-name>
addressing</display-name>
 <listener>
 <listener-class>

com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/AddNumbersImplService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

The created web.xml is saved in the c:\temp\jaxws\works\addressing\server\WEB-INF\ directory
with the UTF-8 format. For details about the web.xml settings, see the section 3.4 Creating web.xml.

33.3.4 Creating application.xml
Create application.xml that is required as an EAR file component.

The following is an example for creating application.xml. Note that no items are set up in
application.xml as the Web Service.

33. Example of the development starting from SEI (when using streaming)

803

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "streaming_dynamic_generate"</description>
 <display-name>Sample_application_streaming_dynamic_generate</display-name>
_addressing</display-name>
 <module>
 <web>
<web-uri>streaming_dynamic_generate.war</web-uri>
<context-root>streaming_dynamic_generate</context-root>
 </web>
 </module>
</application>

When creating web.xml of version 5, specify 5 in the version attribute of the application element and
specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second location
information in the xsd:schemaLocation attribute.

The created application.xml is saved in the c:\temp\jaxws\works\addressing\server\META-
INF\ directory with the UTF-8 format. For notes on creating application.xml, see 5.2.2 Precautions for editing
application.xml in the uCosminexus Application Server Application Development Guide.

33.3.5 Creating EAR files
Use the jar command to create an EAR file containing the created files.

The following is an example for creating an EAR file:

> cd c:\temp\jaxws\works\addressing\server\
> jar cvf addressing_dynamic_generate.war .\WEB-INF
> jar cvf
addressing_dynamic_generate.ear .\addressing_dynamic_generate.war .\META-INF
\application.xml

If the jar command is terminated successfully, streaming_dynamic_generate.ear is created in the c:
\temp\jaxws\works\addressing\server\ directory. For details about the jar command, see the JDK
documentation.

33. Example of the development starting from SEI (when using streaming)

804

33.4 Examples of deployment and startup (Starting from
SEI and streaming)

This section describes the examples for the deployment and the startup starting from SEI, using the streaming
functionality.

33.4.1 Deploying EAR files
Use the cjimportapp command to deploy the created EAR file on the J2EE server.

The following is an example of deployment:

> cd c:\temp\jaxws\works\addressing\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f addressing_dynamic_generate.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For details on how to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

33.4.2 Starting Web Services
Use the cjstartapp command to start Web Services.

The following is an example for starting a Web Service:

> cd c:\temp\jaxws\works\addressing\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver -nameserver
corbaname::testserver:900 -name Sample_application_addressing_dynamic_generate

For the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus Application Server
Command Reference Guide.

For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications in
the uCosminexus Application Server Management Portal User Guide.

33. Example of the development starting from SEI (when using streaming)

805

33.5 Examples of developing the Web Service client
(Starting from SEI and streaming)

This section describes the examples for the development of Web Service clients (using the addressing functionality)
starting from SEI.

33.5.1 Generating a service class
If you execute the cjwsimport command, the Java source such as a service class that is required for developing a
Web Service client is generated. For details about the cjwsimport command, see the section 14.1 cjwsimport
command.

The following is an example of the execution of the cjwsimport command:

> cd c:\temp\jaxws\works\addressing\client\
> mkdir src\
> mkdir classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes http://webhost:8085/
addressing_dynamic_generate/AddNumbersImplService?wsdl

If the cjwsimport command is terminated successfully, the Java source is generated in the c:\temp\jaxws
\works\addressing\client\src\com\sample\ directory.

The following table lists the products:

Table 33‒3: Products during service class generation (Starting from SEI and addressing)

File name Explanation

Add.java This is the JavaBean class corresponding to the type
referenced by the wrapper element of the request message of
operation in the WSDL definition.

AddResponse.java This is the JavaBean class corresponding to the type
referenced by the wrapper element of the response message
of operation in the WSDL definition.

Add2.java This is the JavaBean class corresponding to the type
referenced by the wrapper element of the request message of
operation in the WSDL definition.

Add2Response.java This is the JavaBean class corresponding to the type
referenced by the wrapper element of the response message
of operation in the WSDL definition.

Add3.java This is the JavaBean class corresponding to the type
referenced by the wrapper element of the request message of
operation in the WSDL definition.

Add3Response.java This is the JavaBean class corresponding to the type
referenced by the wrapper element of the response message
of operation in the WSDL definition.

ObjectFactory.java This is the ObjectFactory class of the JAXB 2.2
specifications.

package-info.java This is the package-info.java file.

AddNumbers.java This is the Service Endpoint Interface (SEI) corresponding to
service in the WSDL definition.

AddNumbersImplService.java This is a service class.

33. Example of the development starting from SEI (when using streaming)

806

File name Explanation

AddNumbersFault.java This is the JavaBean class corresponding to
AddNumbersFault in the WSDL definition.

AddNumbersFault_Exception.java This is the wrapper exception class of the fault bean.

The file names Add, AddNumbersImpl, and AddNumbersImplService change as per the coding of the local
names in operation, port type, and service. For details about mapping of the local names in operation,
port type, and service, see the following sections:

• 15.1.2 Mapping a port type to a SEI name

• 15.1.3 Mapping the operations to the method names

• 15.1.4 Mapping a message part to a parameter and return value (For the wrapper style)

• 15.1.5 Mapping the message part to the parameter and return value (For non-wrapper style)

33.5.2 Creating an implementation class for the Web Service client
Create an implementation class for the Web Service client that uses the Web Services.

The following is an example for creating a Web Service client that invokes the Web Service thrice:

package com.sample.client;

import javax.xml.namespace.QName;
import javax.xml.ws.soap.AddressingFeature;
import javax.xml.ws.wsaddressing.W3CEndpointReference;
import javax.xml.ws.wsaddressing.W3CEndpointReferenceBuilder;

import com.sample.AddNumbers;
import com.sample.AddNumbersImplService;
import com.sample.AddNumbersFault_Exception;

public class TestClient {

 int number1 = 10;
 int number2 = 10;
 int negativeNumber = -10;

 public static void main(String[] args) {
 TestClient client = new TestClient();

 client.existActionAnnotation1();
 client.existActionAnnotation2();
 client.notExistActionAnnotation();
 client.existFaultActionAnnotation();
 client.notExistFaultActionAnnotation();
 }

 public void existActionAnnotation1() {
 System.out.println("existActionAnnotation1");
 try {
 AddressingFeature feature = new AddressingFeature();

 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbers stub = service.getAddNumbersImplPort(feature);
 int result = stub.add(number1, number2);
 assert result == 20;
 } catch (Exception ex) {
 ex.printStackTrace();
 assert false;
 }
 }

 public void existActionAnnotation2() {
 System.out.println("existActionAnnotation2");
 try {
 AddressingFeature feature = new AddressingFeature();
 W3CEndpointReferenceBuilder eprBuilder = new
W3CEndpointReferenceBuilder();
 eprBuilder.address("http://webhost:8085/addressing/
AddNumbersImplService");

33. Example of the development starting from SEI (when using streaming)

807

 eprBuilder.serviceName(new QName("http://sample.com/",
"AddNumbersImplService"));
 eprBuilder.endpointName(new QName("http://sample.com/",
"AddNumbersImplPort"));
 W3CEndpointReference epr = eprBuilder.build();

 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbers stub = service.getPort(epr, AddNumbers.class, feature);
 int result = stub.add(number1, number2);
 assert result == 20;
 } catch (Exception ex) {
 ex.printStackTrace();
 assert false;
 }
 }

 public void notExistActionAnnotation() {
 System.out.println("notExistActionAnnotation");
 try {
 AddressingFeature feature = new AddressingFeature();

 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbers stub = service.getAddNumbersImplPort(feature);
 int result = stub.add2(number1, number2);
 assert result == 20;
 } catch (Exception ex) {
 ex.printStackTrace();
 assert false;
 }
 }

 public void existFaultActionAnnotation() {
 System.out.println("existFaultActionAnnotation");
 try {
 AddressingFeature feature = new AddressingFeature();

 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbers stub = service.getAddNumbersImplPort(feature);
 stub.add3(negativeNumber, number2);
 assert false;
 } catch (AddNumbersFault_Exception e) {
 System.out.println("This is expected exception");
 } catch (Exception e) {
 e.printStackTrace();
 assert false;
 }
 }

 public void notExistFaultActionAnnotation() {
 System.out.println("notExistFaultActionAnnotation");
 try {
 AddressingFeature feature = new AddressingFeature();

 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbers stub = service.getAddNumbersImplPort(feature);
 stub.add(negativeNumber, number2);
 assert false;
 } catch (AddNumbersFault_Exception ex) {
 System.out.println("This is expected exception");
 } catch (Exception e) {
 e.printStackTrace();
 assert false;
 }
 }
}

The created TestClient.java is saved in the c:\temp\jaxws\works\addressing\client\src\com
\sample\client\ directory with the UTF-8 format.

Note that com.sample, AddNumbers, AddNumbersImplService, AddNumbersImplPort, add, add2,
and add3 differ as per the package names, class names, and the method names in the classes of the generated Java
source. For developing Web Services with different configurations, you must review the coding of the package names,
class names, and method names in the classes.

33.5.3 Compiling the implementation class for the Web Service client
Use the javac command to compile the created Web Service client.

33. Example of the development starting from SEI (when using streaming)

808

The following is an example of compilation:

> cd c:\temp\jaxws\works\addressing\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\com\sample\client\TestClient.java

If the javac command is terminated successfully, TestClient.class is generated in the c:\temp\jaxws
\works\addressing\client\classes\com\sample\client\ directory. For details about the javac
command, see the JDK documentation.

33. Example of the development starting from SEI (when using streaming)

809

33.6 Examples of executing the Web Services (Starting
from SEI and streaming)

This section describes the examples for executing Web Service clients (when using the streaming functionality)
starting from SEI.

33.6.1 Creating option definition files for Java applications
Create option definition files for Java applications (usrconf.cfg) required for executing a Web Service.

The following is an example for creating option definition files for Java applications:

add.class.path=Cosminexus-installation-directory\jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home=Cosminexus-installation-directory
add.jvm.arg=-Dejbserver.server.prf.PRFID=<PRF ID>

For Cosminexus-installation-directory, use the absolute path to specify the path where Cosminexus is installed.

The created option definition file for Java applications is stored in the c:\temp\jaxws\works\streaming
\client\ directory. For the option definition file for Java applications, see 14.2 usrconf.cfg (Option definition file
for Java applications) in the uCosminexus Application Server Definition Reference Guide.

33.6.2 Creating user property files for Java applications
Create user property files for Java applications required for executing Web Services.

Because the settings are not specially changed, create an empty file named usrconf.properties in the c:
\temp\jaxws\works\addressing\client\ directory. For the user property file for Java applications, see
14.3 usrconf.properties (User property file for Java applications) in the uCosminexus Application Server Definition
Reference Guide.

33.6.3 Executing the Web Service client
Use the cjclstartap command to execute Web Service clients.

The following is an example for executing a Web Service client:

> cd c:\temp\jaxws\works\addressing\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" com.sample.client.TestClient

If the cjclstartap command is terminated successfully, the result of Web Service client execution is displayed.
The following is an example for displaying the execution results:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\streaming\client, PID = 2636)
existActionAnnotation1
existActionAnnotation2
notExistActionAnnotation
existFaultActionAnnotation
This is expected exception
notExistFaultActionAnnotation
This is expected exception
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in italics changes according to the execution timing and the environment.

For the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application Server
Command Reference Guide.

33. Example of the development starting from SEI (when using streaming)

810

34 WS-RM 1.2 Functionality
This chapter describes the WS-RM 1.2 functionality (Web Service Reliable
Messaging functionality).

811

34.1 What is the WS-RM 1.2 functionality
The WS-RM 1.2 functionality is the functionality for reliably exchanging (sending and receiving) SOAP Messages
between Web Services and Web Service clients through RMD (Reliable Messaging Destination) andRMS (Reliable
Messaging Source).

This functionality monitors the sending and receiving of messages between RMS and RMD by sending an Ack
message in the background when the recipient receives a message. As and when required, the WS-RM 1.2
functionality automatically re-sends the messages and removes the duplicate messages, thus increasing the reliability
of the communication.

The following figure shows the flow of sending and receiving SOAP Messages by using the WS-RM 1.2
functionality.

Figure 34‒1: Flow of sending and receiving SOAP Messages by using the WS-RM 1.2 functionality

You cannot use the Dispatch interface and Provider interface.

34. WS-RM 1.2 Functionality

812

34.2 Message flow when the WS-RM 1.2 functionality is
used

The following figure shows the message flow when the WS-RM 1.2 functionality is used:

Figure 34‒2: Message flow when the WS-RM 1.2 functionality is used

1. Exchanging the WS-RM Policy
Exchange the availability and the WS-RM Policy of the WS-RM 1.2 functionality between the message source
and the destination. Exchange the WS-RM Policy by coding the WS-RM Policy specifications in the WSDL file.

2. Generating a sequence
Before sending the application message, generate a sequence and share RMS and RMD. A sequence is a context
related to a set of a series of application messages that are sent by using the WS-RM 1.2 functionality. The
sequence generation processing is automatically executed when the Web Service method is invoked for the first
time for a port object.

3. Sending application messages
After the sequence is generated, RMS sends the application messages to RMD. A sequence identifier and a
message number are added to the application messages to be sent.

4. Closing the sequence
When the sending of the application messages is completed, RMS can close the sequence. Once the sequence is
closed, RMS cannot send and receive new application messages. Even if the sequence is closed, the related
resources are saved and not destroyed. The sequence closing operation is executed when the close method is
invoked on the Web Service client side.

5. Terminating the sequence
When the sending of the application messages is completed, RMS terminates the sequence. When the sequence is
terminated, the related resources are destroyed. To generate the sequence again, reacquire the port object and
invoke the Web Service method.

34. WS-RM 1.2 Functionality

813

Hereafter, the messages related to the sequence generation, the sequence closure, and the sequence termination are
collectively called Sequence life cycle messages.

34. WS-RM 1.2 Functionality

814

34.3 Delivery assurance functionality of WS-RM 1.2
Delivery assurance is the functionality for resending, removing the duplication, and controlling the order of SOAP
Messages to send and receive the SOAP Messages reliably.

The following table lists the types of Delivery assuranceand the support range in the Cosminexus WS-RM 1.2
functionality.

Table 34‒1: Types of Delivery assurance and the support range in the Cosminexus WS-RM 1.2
functionality

No. Type Operation RMS
processing RMD processing Support

1 AtLeastOnce Deliver

at least once

Resend -- N

2 AtMostOnce Deliver without duplication -- Remove
duplication

N

3 ExactlyOnce Deliver

only once

Resend Remove
duplication

Y

4 InOrder Deliver as per order -- Order control N

Legend:
Y: Can be used.
N: Cannot be used.
--: Not applicable

(1) Resending
When using the WS-RM 1.2 functionality, if an application message is not delivered to the destination, the message is
automatically resent from RMS for the maximum number of times as set in the WS-RM Policy for resending the
application message. If the application message is not delivered even after resending it for the specified number of
times, javax.xml.ws.WebServiceException is returned to the client application.

The following are the conditions for resending the messages:

• If a timeout occurs due to no response even after the read timeout value or the connection timeout value set in the
JAX-WS Operation definition file or the request context for the client socket is exceeded.

• If the connection with the server is unexpectedly disconnected and no response could be received.

• If an Ack message with the blank Body element is received as a response to the application message or
automatically resent application message.

• If HTTP status code 202 is received as a response to the application message or automatically resent application
message.

• If the HTTP status code 2012, 300 to 399, 400 to 499, or 500 to 599 is received as a response to the application
message that is automatically resent.

(2) Removing duplication
When you receive a message that is same as the message received earlier, it is not delivered to the destination and is
destroyed at RMD. The application is not invoked.

The following messages are returned to the client, if duplicate messages are received:

• If you receivea request that is duplicating the request for which the response is already returned, contents same as
theresponseoncereturnedare returned.

• While processing a request, if the same request is received again, an Ack message with a blank Body element is
returned to the client. However, if there is no Ack to return, HTTP status code 202 is returned.

34. WS-RM 1.2 Functionality

815

34.4 How to add the WS-RM Policy
Enable the WS-RM 1.2 functionality by adding the WS-RM Policy to the WSDL file. The following items are to be
added:

1. Defining the name space prefix to be used in the WS-RM Policy

2. Defining a policy as the child element of the wsdl:definitions element

3. Referencing a policy in the child element of the wsdl:binding element

The following example explains how to add these items:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="TestJaxWsService"
 <!--Partially omitted -->

<!-- 1. Define the name space prefix to be used in the WS-RM Policy -->
 xmlns:wsp="http://www.w3.org/ns/ws-policy"
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl">

<!-- 2. Define a policy as the child element of the wsdl:definitions element -->

 <wsp:Policy wsu:Id="WSRM_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsrmp:RMAssertion>
 <wsp:Policy>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsp:Policy>
 </wsrmp:RMAssertion>
 <wsaw:UsingAddressing/>
 <!- Other settings -->
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

 <wsdl:types>

<!-- Partially omitted -->

<!-- 3. Reference a policy in the child element of the wsdl:binding element -->
 <wsdl:binding name="testJaxWsBinding" type="tns:TestJaxWs">
 <wsp:PolicyReference URI="#WSRM_policy"/>

<!-- The rest is omitted -->

The bold values are the definitions or references of the name space prefix definition, WS-RM Policy definition, or
WS-RM Policy.

Code the definitions of the WS-RM Policy as a child element of the wsdl:definitions element.

You can omit the elements under the wsrmp:DeliveryAssurance element. Code the elements under the
wsrmp:DeliveryAssurance element and those other than "<!--Other settings-->" as is. Add settings for "<!--
Other settings-->" as and when required.

For the properties to be added in a WSDL as "<!--Other settings-->", see the section 23.4 Settings by WS-Policy.

34. WS-RM 1.2 Functionality

816

35 Example of the Development
Starting from WSDL (using WS-RM
1.2)
This chapter describes the examples for the development of Web Services starting
from WSDL, by using the WS-RM 1.2 functionality.

817

35.1 Configuration of the development example (Starting
from WSDL/WS-RM 1.2)

This section describes an example of developing a Web Service starting from WSDL.

The following table lists the configuration of the Web Service to be developed:

Table 35‒1: Web Service configuration (Starting from WSDL)

No. Item Value

1 Name of the J2EE Sever to be deployed jaxwsserver

2 The host name and the port number of the Web Server webhost:8085

3 URL of the Naming Server corbaname::testserver:900

4 Context route wsrm

5 Style document/literal/wrapped

6 Namespace URI http://example.com/sample

7 Port type No. 1

8 Local name TestJaxWs

9 Operation No. 1

10 Local name jaxWsTest1

11 Service No. 1

12 Local name TestJaxWsService

13 Port No. 1

14 Local name testJaxWs

15 WSDL file name input.wsdl

The following table lists the configuration of the current directory used in the Web Service development:

Table 35‒2: Configuration of the current directory (Starting from WSDL)

Directory Explanation

c:\temp\jaxws\works\wsrm This is the current directory.

server\ This is used in the Web Service development.

META-INF\ Corresponds to the META-INF directory of the EAR files.

application.xml Created in 35.3.7 Creating an application.xml file.

src\ Stores the source files (*.java) of the Web Service. Used in 35.3.3 Creating
SEI and 35.3.5 Compiling Web Services Implementation Class.

WEB-INF\ Corresponds to the WEB-INF directory of the WAR files.

web.xml Created in 35.3.6 Creating web.xml.

classes\ Stores the compiled class files (*.class).

wsdl\ Stores the created wsdl.

temporary\ Stores the temporary files when creating a WSDL based on the WSDL that is
coded and converted by using Java. The creation of this directory is optional.

src\

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

818

Directory Explanation

Stores the temporary files when creating a WSDL based on the WSDL that is
coded and converted by using Java. The creation of this directory is optional.

classes\

wsrm.ear Created in 35.3.8 Creating EAR files.

wsrm.war

client\ This is used in the Web Service client development.

src\ Stores the source files (*.java) of the Web Service client. Used in 35.5.1
Generating a service class and 35.5.2 Creating Implementation Class for the
Web Services client.

classes\ Stores the compiled class files (*.class). Used in 35.5.4 Compiling
Implementation Class for the Web Services client.

usrconf.cfg Created in 35.6.1 Creating an option definition file for Java applications.

usrconf.properties Created in 35.6.2 Creating a user property file for Java applications.

Change the current directory path according to the development environment.

Note that the description below uses the directory and file names mentioned in the above table. The values in bold
used in the command execution examples or Java source in this document are the values that are specified or
generated in the examples used within this document. Use appropriate values according to the environment you build.

Furthermore, in the development example described in this chapter, the Web Service and the Web Service client are
developed in the same environment; however, they can be developed in different environments as well. To develop
the Web Service and the Web Service client in separate environments, you must change the current directory path
according to the respective environment.

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

819

35.2 Flow of the development example (Starting from
WSDL/WS-RM 1.2)

The procedure for development and execution described in the development examples in this chapter are as follows:

Developing a Web Service

1. Create a WSDL file (35.3.1)

2. Add WS-RM Policy in the WSDL file (35.3.2)

3. Execute the cjwsimport command and generate SEI (35.3.3)

4. Create Web Services Implementation Class (35.3.4)

5. Compile Web Services Implementation Class (35.3.5)

6. Create a web.xml file (35.3.6)

7. Create an application.xml file (35.3.7)

8. Create an EAR file (35.3.8)

Deploying and starting the service

1. Deploy the EAR file (35.4.1)

2. Start the Web Services (35.4.2)

Developing the Web Service client

1. Execute the cjwsimport command and generate a service class (35.5.1)

2. Create Implementation Class for the Web Services client (35.5.2)

3. Add the sequence termination processing in Implementation Class for the Web Services client (35.5.3)

4. Compile Implementation Class for the Web Services client (35.5.4)

Executing the Web Service

1. Create an option definition file for Java applications (35.6.1)

2. Create a user property file for Java applications (35.6.2)

3. Execute the Web Services client (35.6.3)

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

820

35.3 Examples of developing a Web Service (Starting
from WSDL/WS-RM 1.2)

This section describes an example of developing a Web Service starting from WSDL.

35.3.1 Creating a WSDL file
Create a WSDL file and define the meta-information of the Web Service. Define the WSDL definitions within the
range specified in the following specifications:

• WSDL 1.1 specifications
For the support range, see 20.1 Support range of WSDL 1.1 specifications.

• XML Schema specifications
For the support range, see the uCosminexus Application Server XML Processor User Guide.

• WS-I Basic Profile 1.1 specifications

There are two methods for creating a WSDL file. a) Create a new WSDL file or b) Create a WSDL file by converting
the Java source.

(1) Creating a new WSDL file
Create a WSDL file (input.wsdl). The created WSDL file is stored in the c:\temp\jaxws\works\wsrm
\server\WEB-INF\wsdl\ directory in the UTF-8 format.

The following is an example for creating a WSDL file for SOAP 1.1:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="TestJaxWsService"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://example.com/sample"
 targetNamespace="http://example.com/sample">

 <wsdl:types>
 <xsd:schema targetNamespace="http://example.com/sample">
 <!-- wrapper element of the request message -->
 <xsd:element name="jaxWsTest1" type="tns:jaxWsTest1"/>

 <!-- wrapper element of the response message -->
 <xsd:element name="jaxWsTest1Response" type="tns:jaxWsTest1Response"/>

 <!-- wrapper element of the fault message -->
 <xsd:element name="UserDefinedFault" type="tns:UserDefinedFault"/>

 <!-- Type referenced by the wrapper element of the request message -->
 <xsd:complexType name="jaxWsTest1">
 <xsd:sequence>
 <xsd:element name="information" type="xsd:string"/>
 <xsd:element name="count" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Type referenced by the wrapper element of the response message -->
 <xsd:complexType name="jaxWsTest1Response">
 <xsd:sequence>
 <xsd:element name="return" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Type referenced by the wrapper element of the fault message -->
 <xsd:complexType name="UserDefinedFault">
 <xsd:sequence>
 <xsd:element name="additionalInfo" type="xsd:int"/>
 <xsd:element name="detail" type="xsd:string"/>
 <xsd:element name="message" type="xsd:string"/>
 </xsd:sequence>

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

821

 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>

 <!-- Request message -->
 <wsdl:message name="jaxWsTest1Request">
 <wsdl:part name="inputParameters" element="tns:jaxWsTest1"/>
 </wsdl:message>

 <!-- Response message -->
 <wsdl:message name="jaxWsTest1Response">
 <wsdl:part name="outputParameters" element="tns:jaxWsTest1Response"/>
 </wsdl:message>

 <!-- Fault message -->
 <wsdl:message name="UserDefinedException">
 <wsdl:part name="fault" element="tns:UserDefinedFault"/>
 </wsdl:message>

 <!-- Port type -->
 <wsdl:portType name="TestJaxWs">
 <!-- Operation -->
 <wsdl:operation name="jaxWsTest1">
 <wsdl:input message="tns:jaxWsTest1Request"/>
 <wsdl:output message="tns:jaxWsTest1Response"/>
 <wsdl:fault name="UserDefinedFault"
 message="tns:UserDefinedException"/>
 </wsdl:operation>
 </wsdl:portType>

<!-- Binding (SOAP 1.1/HTTP binding) -->
<wsdl:binding name="testJaxWsBinding" type="tns:TestJaxWs">
 <!-- document/literal/wrapped -->
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <!-- Operation -->
 <wsdl:operation name="jaxWsTest1">
 <soap:operation/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="UserDefinedFault">
 <soap:fault name="UserDefinedFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <!-- Service -->
 <wsdl:service name="TestJaxWsService">
 <!-- Port -->
 <wsdl:port name="testJaxWs" binding="tns:testJaxWsBinding">
 <soap:address location="http://webhost:8085/wsrm/TestJaxWsService"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

The following is an example for creating a WSDL file for SOAP 1.2:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="TestJaxWsService"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://example.com/sample"
 targetNamespace="http://example.com/sample">

 <wsdl:types>
 <xsd:schema targetNamespace="http://example.com/sample">
 <!-- wrapper element of the request message -->
 <xsd:element name="jaxWsTest1" type="tns:jaxWsTest1"/>

 <!-- wrapper element of the response message -->
 <xsd:element name="jaxWsTest1Response" type="tns:jaxWsTest1Response"/>

 <!-- wrapper element of the fault message -->
 <xsd:element name="UserDefinedFault" type="tns:UserDefinedFault"/>

 <!-- wrapper element of the fault message -->

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

822

 <xsd:complexType name="jaxWsTest1">
 <xsd:sequence>
 <xsd:element name="information" type="xsd:string"/>
 <xsd:element name="count" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Type referenced by the wrapper element of the response message -->
 <xsd:complexType name="jaxWsTest1Response">
 <xsd:sequence>
 <xsd:element name="return" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Type referenced by the wrapper element of the fault message -->
 <xsd:complexType name="UserDefinedFault">
 <xsd:sequence>
 <xsd:element name="additionalInfo" type="xsd:int"/>
 <xsd:element name="detail" type="xsd:string"/>
 <xsd:element name="message" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>

 <!-- Request message -->
 <wsdl:message name="jaxWsTest1Request">
 <wsdl:part name="inputParameters" element="tns:jaxWsTest1"/>
 </wsdl:message>

 <!-- Response message -->
 <wsdl:message name="jaxWsTest1Response">
 <wsdl:part name="outputParameters" element="tns:jaxWsTest1Response"/>
 </wsdl:message>

 <!-- Fault message -->
 <wsdl:message name="UserDefinedException">
 <wsdl:part name="fault" element="tns:UserDefinedFault"/>
 </wsdl:message>

 <!-- Port type -->

 <wsdl:portType name="TestJaxWs">
 <!-- Operation -->
 <wsdl:operation name="jaxWsTest1">
 <wsdl:input message="tns:jaxWsTest1Request"/>
 <wsdl:output message="tns:jaxWsTest1Response"/>
 <wsdl:fault name="UserDefinedFault"
 message="tns:UserDefinedException"/>
 </wsdl:operation>
 </wsdl:portType>

<!-- Binding (SOAP 1.2/HTTP binding) -->
<wsdl:binding name="testJaxWsBinding" type="tns:TestJaxWs">
 <!-- document/literal/wrapped -->
 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <!-- Operation -->
 <wsdl:operation name="jaxWsTest1">
 <soap12:operation/>
 <wsdl:input>
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="UserDefinedFault">
 <soap12:fault name="UserDefinedFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <!-- Service -->
 <wsdl:service name="TestJaxWsService">
 <!-- Port -->
 <wsdl:port name="testJaxWs" binding="tns:testJaxWsBinding">
 <soap12:address location="http://webhost:8085/wsrm/TestJaxWsService"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

823

(2) Creating a WSDL file by converting the Java source
Create a Web Service Implementation Class and an exception class to be temporarily implemented for the WSDL
conversion, and execute the WSDL generation functionality of the cjwsgen command to create a WSDL file from
the already compiled Java source. Annotate the created class by using the javax.jws.WebService annotation.
When using SOAP 1.2, annotate with the javax.xml.ws.BindingType annotation in which SOAP 1.2 is
specified additionally. You need not implement any method.

The source code for the temporarily implemented Web Service Implementation Class and
TestJaxWsService.wsdl differs depending on whether you use SOAP 1.1 or SOAP 1.2.

The following is an example of the temporarily implemented Web Service Implementation Class when SOAP 1.1 is
used.

package com.example.sample;

@javax.jws.WebService
public class TestJaxWsImpl {

 public String jaxWsTest1(String information, int count)
 throws UserDefinedException
 {
 // Need not be implemented
 return null;
 }

}

The following is an example of the temporarily implemented Web Service Implementation Class when SOAP 1.2 is
used.

package com.example.sample;

@javax.jws.WebService
@javax.xml.ws.BindingType(javax.xml.ws.soap.SOAPBinding.SOAP12HTTP_BINDING)
public class TestJaxWsImpl {

 public String jaxWsTest1(String information, int count)
 throws UserDefinedException
 {
 // Need not be implemented
 return null;
 }

}

The following is an example of the temporarily implemented exception class:

package com.example.sample;

public class UserDefinedFault extends Exception{
 // Need not be implemented
 public int additionalInfo;
 public String detail;
 public String message;
}

Save and compile the created TestJaxWsImpl.java and UserDefinedFault.java in the c:\temp
\jaxws\works\wsrm\server\temporary\src\com\example\sample\ directory in the UTF-8 format.

The following is an example of compilation:

> cd c:\temp\jaxws\works\wsrm\server\
> mkdir .\temporary
> mkdir .\temporary\classes
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar" -d .\temporary\classes .\temporary\src\com\example
\sample\TestJaxWsImpl.java .\temporary\src\com\example\sample\UserDefinedFault.java

On successful compilation, the TestJaxWsImpl.class and UserDefinedFault.class files are generated
in the c:\temp\jaxws\works\wsrm\server\temporary\classes\com\example\sample\

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

824

directory. Use these class files and create a WSDL file by using the WSDL generation functionality of the cjwsgen
command.

The following is an example for executing the cjwsgen command:

> cd c:\temp\jaxws\works\wsrm\server\
> mkdir .\WEB-INF\wsdl\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsgen.bat" -r .\WEB-INF\wsdl -d .\temporary\classes -
cp .\temporary\classes com.example.sample.TestJaxWsImpl

On successful termination of the cjwsgen command, TestJaxWsService.wsdl and
TestJaxWsService_schema1.xsd are generated in the c:\temp\jaxws\works\wsrm\WEB-INF\wsdl
\ directory. Delete the classes from the c:\temp\jaxws\works\wsrm\temporary\classes\ directory.

You must partially modify the generated TestJaxWsService.wsdl and
TestJaxWsService_schema1.xsd.

The following is an example for modifying TestJaxWsService.wsdl when SOAP 1.1 is used. The parts in
Italics indicate modifications.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://example.com/sample" name="TestJaxWsImplService"
xmlns:tns="http://example.com/sample" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns="http://schemas.xmlsoap.org/
wsdl/">
 <types>
 <xsd:schema targetNamespace="http://example.com/sample">
 <xsd:include schemaLocation="TestJaxWsImplService_schema1.xsd"/>
 </xsd:schema>
 </types>
 <message name="jaxWsTest1">
 <part name="parameters" element="tns:jaxWsTest1"/>
 </message>
 <message name="jaxWsTest1Response">
 <part name="parameters" element="tns:jaxWsTest1Response"/>
 </message>
 <message name="UserDefinedFault">
 <part name="fault" element="tns:UserDefinedFault"/>
 </message>
 <portType name="TestJaxWs">
 <operation name="jaxWsTest1">
 <input message="tns:jaxWsTest1"/>
 <output message="tns:jaxWsTest1Response"/>
 <fault message="tns:UserDefinedFault" name="UserDefinedFault"/>
 </operation>
 </portType>
 <binding name="testJaxWsBinding" type="tns:TestJaxWs">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="jaxWsTest1">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 <fault name="UserDefinedFault">
 <soap:fault name="UserDefinedFault" use="literal"/>
 </fault>
 </operation>
 </binding>
 <service name="TestJaxWsService">
 <port name="testJaxWs" binding="tns:testJaxWsBinding">
 <soap:address location="http://webhost:8085/wsrm/TestJaxWsService"/>
 </port>
 </service>
</definitions>

The following is an example for modifying TestJaxWsService.wsdl when SOAP 1.2 is used. The parts in
Italics indicate modifications.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://example.com/sample" name="TestJaxWsImplService"
xmlns:tns="http://example.com/sample" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns="http://
schemas.xmlsoap.org/wsdl/">

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

825

 <types>
 <xsd:schema targetNamespace="http://example.com/sample">
 <xsd:include schemaLocation="TestJaxWsImplService_schema1.xsd"/>
 </xsd:schema>
 </types>
 <message name="jaxWsTest1">
 <part name="parameters" element="tns:jaxWsTest1"/>
 </message>
 <message name="jaxWsTest1Response">
 <part name="parameters" element="tns:jaxWsTest1Response"/>
 </message>
 <message name="UserDefinedFault">
 <part name="fault" element="tns:UserDefinedFault"/>
 </message>
 <portType name="TestJaxWs">
 <operation name="jaxWsTest1">
 <input message="tns:jaxWsTest1"/>
 <output message="tns:jaxWsTest1Response"/>
 <fault message="tns:UserDefinedFault" name="UserDefinedFault"/>
 </operation>
 </portType>
 <binding name="testJaxWsBinding" type="tns:TestJaxWs">
 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
 <operation name="jaxWsTest1">
 <soap12:operation soapAction=""/>
 <input>
 <soap12:body use="literal"/>
 </input>
 <output>
 <soap12:body use="literal"/>
 </output>
 <fault name="UserDefinedFault">
 <soap12:fault name="UserDefinedFault" use="literal"/>
 </fault>
 </operation>
 </binding>
 <service name="TestJaxWsService">
 <port name="testJaxWs" binding="tns:testJaxWsBinding">
 <soap12:address location="http://webhost:8085/wsrm/TestJaxWsService"/>
 </port>
 </service>
</definitions>

The following is an example for modifying the TestJaxWsService_schema1.xsd. The parts in Italics indicate
modifications.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" targetNamespace="http://example.com/sample"
xmlns:tns="http://example.com/sample" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="UserDefinedFault" type="tns:UserDefinedFault"/>

 <xs:element name="jaxWsTest1" type="tns:jaxWsTest1"/>

 <xs:element name="jaxWsTest1Response" type="tns:jaxWsTest1Response"/>

 <xs:complexType name="jaxWsTest1">
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 <xs:element name="arg1" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="jaxWsTest1Response">
 <xs:sequence>
 <xs:element name="return" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="UserDefinedFault">
 <xs:sequence>
 <xs:element name="message" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Change the name of the modified TestJaxWsService.wsdl file to input.wsdl, and save the file in the c:
\temp\jaxws\works\wsrm\server\WEB-INF\wsdl\ directory.

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

826

35.3.2 Adding the WS-RM Policy in the WSDL file
Add the WS-RM Policy in the newly added WSDL file. The following are the items to be added:

1. Defining the name space prefix to be used with the WS-RM Policy

2. Defining the policy as the child element of the wsdl:definitions element

3. Referencing the policy with the child element of the wsdl:binding element

The following is an example for adding the policy:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="TestJaxWsService"

<!-- omitted -->

<!-- 1.Defining the name space prefix to be used with the WS-RM Policy -->
 xmlns:wsp="http://www.w3.org/ns/ws-policy"
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl">

<!-- 2.Defining the policy as the child element of the wsdl:definitions element -->
 <wsp:Policy wsu:Id="WSRM_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsrmp:RMAssertion>
 <wsp:Policy>
 </wsrmp:RMAssertion>
 <wsaw:UsingAddressing/>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

 <wsdl:types>

<!-- omitted -->

<!-- 3.Referencing the policy with the child element of the wsdl:binding element -->
 <wsdl:binding name="testJaxWsBinding" type="tns:TestJaxWs">
 <wsp:PolicyReference URI="#WSRM_policy"/>
 <!-- document/literal/wrapped -->

<!-- rest is omitted -->

35.3.3 Creating SEI
Execute the cjwsimport command to generate additional Java sources such as SEI required to develop the Web
Services. For the cjwsimport command, see 14.1 cjwsimport command.

The following is an example for executing the cjwsimport command:

> cd c:\temp\jaxws\works\wsrm\server\
> mkdir src\
> mkdir WEB-INF\classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -generateService -s src -d WEB-INF
\classes WEB-INF\wsdl\input.wsdl

On successful termination of the cjwsimport command, the Java sources are generated in the c:\temp\jaxws
\works\wsrm\server\src\com\example\sample\ directory. Note that the directory path com
\example\sample\ (the directory path corresponding to the package) changes according to the Namespace Uri
coding. For the mapping between Namespace URI and package, see 15.1.1 Mapping a name space to a package
name.

The following table lists the generated products:

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

827

Table 35‒3: Java sources generated when SEI is created (Starting from WSDL)

File name Explanation

JaxWsTest1.java This is a JavaBean class corresponding to the 'type referenced by the wrapper
element of the request message' in the WSDL definition.

JaxWsTest1Response.java This is a JavaBean class corresponding to the 'type referenced by the wrapper
element of the response message' in the WSDL definition.

ObjectFactory.java This is an ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is a package-info.java file.

TestJaxWs.java This is the SEI corresponding to the TestJaxWsPort type.

TestJaxWsImpl.java This is a skeleton class corresponding to the TestJaxWsPort type.

UserDefinedFault.java This is a JavaBean class (fault bean) corresponding to the 'type referenced by the
wrapper element of the fault message' in the WSDL definition.

UserDefinedException.java This is the wrapper exception class of the fault bean.

The file names JaxWsTest1, TestJaxWs, and TestJaxWsImpl change according to the coding of the local
name for the operation, the local name for the port type, and the local name for the services. For the mapping between
the local name for the operation, local name for the port type, and local name for the services and Java sources, see 15.
Mapping WSDL to Java.

35.3.4 Creating the Web Service Implementation Class
Add the Web Service processing to the skeleton class to create a Web Service Implementation Class. Add the process
to return the contents of the received request message as the response message along with the date information.

The following is an example for creating a Web Service Implementation Class:

package com.example.sample;

import java.util.Calendar;
import javax.jws.WebService;

@WebService(endpointInterface = "com.example.sample.TestJaxWs", targetNamespace =
"http://example.com/sample", serviceName = "TestJaxWsService", portName = "testJaxWs")
public class TestJaxWsImpl {

 public String jaxWsTest1(String information, int count)
 throws UserDefinedException
 {
 Calendar today = Calendar.getInstance();
 StringBuffer result = new StringBuffer(256);
 result.append("We've got your #");
 result.append(new Integer(count));
 result.append(" message \"");
 result.append(information);
 result.append("\"! It's ");
 result.append(String.format("%04d.%02d.%02d %02d:%02d:%02d", new Object[]{
 new Integer(today.get(Calendar.YEAR)),
 new Integer(today.get(Calendar.MONTH) + 1),
 new Integer(today.get(Calendar.DAY_OF_MONTH)),
 new Integer(today.get(Calendar.HOUR_OF_DAY)),
 new Integer(today.get(Calendar.MINUTE)),
 new Integer(today.get(Calendar.SECOND)) }));
 result.append(" now. See ya!");

 return result.toString();
 }

}

The parts in Italics indicate the implementation added in the skeleton.

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

828

35.3.5 Compiling the Web Service Implementation Class
Use the javac command to compile the created Web Service Implementation Class.

The following is an example for compiling the Web Service Implementation Class:

> cd c:\temp\jaxws\works\wsrm\server\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;.\WEB-INF\classes" -d .\WEB-INF\classes src\com\example
\sample\TestJaxWsImpl.java

On successful termination of the javac command, TestJaxWsImpl.class in the c:\temp\jaxws\works
\wsrm\server\WEB-INF\classes\com\example\sample\ directory is overwritten.

For the javac command, see the JDK documentation.

35.3.6 Creating a web.xml file
Create a web.xml file that is required as a WAR file component.

The following is an example for creating a web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
 <description>Sample web service "wsrm"</description>
 <display-name>Sample_web_service_wsrm</display-name>
 <listener>
 <listener-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>

 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/TestJaxWsService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

The created web.xml file is stored in the c:\temp\jaxws\works\wsrm\server\WEB-INF\ directory in
the UTF-8 format. For the web.xml settings, see 3.4 Creating web.xml.

35.3.7 Creating an application.xml file
Create an application.xml file that is required as an EAR file component.

The following is an example for creating an application.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

829

javaee/application_6.xsd">

 <description>Sample application "wsrm"</description>
 <display-name>Sample_application_wsrm</display-name>
 <module>
 <web>
 <web-uri>wsrm.war</web-uri>
 <context-root>wsrm</context-root>
 </web>
 </module>
</application>

When creating application.xml of version 5, specify 5 in the version attribute of the application
element and specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second
location information in the xsd:schemaLocation attribute.

The created application.xml file is stored in the c:\temp\jaxws\works\wsrm\server\META-INF\
directory in the UTF-8 format. For notes on creating an application.xml file, see 5.2.2 Notes on editing
application.xml in the uCosminexus Application Server Application Development Guide.

35.3.8 Creating EAR files
Use the jar command to create EAR files.

The following is an example for creating an EAR file:

> cd c:\temp\jaxws\works\wsrm\server\
> jar cvf wsrm.war .\WEB-INF
> jar cvf wsrm.ear .\wsrm.war .\META-INF\application.xml

On successful termination of the jar command, wsrm.ear is created in the c:\temp\jaxws\works\wsrm
\server\directory.

For the jar command, see the JDK documentation.

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

830

35.4 Example of deploying and starting the service
(Starting from WSDL/WS-RM 1.2)

This section describes how to deploy and start services when the development is done starting from WSDL.

35.4.1 Deploying the EAR files
Use the cjimportapp command to deploy the created EAR file to the J2EE Server.

The following example describes how to deploy the EAR files:

> cd c:\temp\jaxws\works\wsrm\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f wsrm.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For the method to deploy (import) J2EE applications by using the management portal, see, 12.3.3 Importing J2EE
applications in the uCosminexus Application Server Management Portal User Guide.

35.4.2 Starting Web Services
Use the cjstartapp command to start the Web Service.

The following is an example for starting the Web Service:

> cd c:\temp\jaxws\works\wsrm\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver -nameserver
corbaname::testserver:900 -name Sample_application_wsrm

For the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus Application Server
Command Reference Guide.

For the method to start J2EE applications by using the management portal, see, 12.3.1 Starting J2EE applications in
the uCosminexus Application Server Management Portal User Guide.

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

831

35.5 Example of developing a Web Service client
(starting from WSDl/WS-RM 1.2)

This section describes the examples for the development of Web Service clients, starting from WSDL.

35.5.1 Generating a service class
If you execute the cjwsimport command, Java source, such as service class that is required for developing a Web
Service client is generated. For the cjwsimport command, see 14.1 cjwsimport command

The following is an example when the Web Service client is developed in the same environment as the Web Service:

> cd c:\temp\jaxws\works\wsrm\client\
> mkdir src\
> mkdir classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes ..\server\WEB-INF
\wsdl\input.wsdl

The following is an example when the Web Service client is developed in an environment other than the Web Service:

> cd c:\temp\jaxws\works\wsrm\client\
> mkdir src\
> mkdir classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes http://webhost:8085/
wsrm/TestJaxWsService?wsdl

On successful termination of the cjwsimport command, the Java sources are generated in the c:\temp\jaxws
\works\wsrm\client\src\com\example\sample\ directory. Note that the directory path com
\example\sample\ (the directory path corresponding to the package) changes according to the coding of the
namespace URI. For the mapping between Namespace URI and package, see 15.1.1 Mapping a names pace to a
package name.

The following table lists the generated products:

Table 35‒4: Products created when the service class is generated (Starting from WSDL)

File name Explanation

JaxWsTest1.java This is a JavaBean class corresponding to the 'type referenced by the wrapper
element of the request message' in the WSDL definition.

JaxWsTest1Response.java This is a JavaBean class corresponding to the 'type referenced by the wrapper
element of the response message' in the WSDL definition.

ObjectFactory.java This is an ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is a package-info.java file.

TestJaxWs.java This is the SEI corresponding to the TestJaxWsPort type.

TestJaxWsService.java This is a service class.

UserDefinedFault.java This is a JavaBean class corresponding to the 'type referenced by the wrapper
element of the fault message' in the WSDL definition.

UserDefinedException.java This is the wrapper exception class of the fault bean.

The file names JaxWsTest1, TestJaxWs, and TestJaxWsService change according to the coding of the local
name for the operation, the local name for the port type, and the local name for the services. For the mapping between
the local name for the operation, the local name for the port type, and the local name for the services and Java sources,
see the following sections:

• 15.1.2 Mapping a port type to a SEI name

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

832

• 15.1.3 Mapping an operation to a method name

• 15.1.4 Mapping a message part to a parameter and return value (For wrapper style)

• 15.1.5 Mapping a message part to a parameter and return value (For non-wrapper style)

35.5.2 Creating an implementation class for the Web Service client
Create an Implementation Class for Web Service client that uses the Web Services.

The following is an example for creating a Web Service client that invokes Web Services once:

package com.example.sample.client;

import com.example.sample.TestJaxWs;
import com.example.sample.TestJaxWsService;
import com.example.sample.UserDefinedException;

public class TestClient {
 public static void main(String[] args) {
 try {
 TestJaxWsService service = new TestJaxWsService();
 TestJaxWs port = service.getTestJaxWs();

 String returnValue = port.jaxWsTest1("Invocation test.", 1003);

 System.out.println("[RESULT] " + returnValue);
 }
 catch(UserDefinedException e){
 e.printStackTrace();
 }
 }

}

The created TestClient.java is stored in the c:\temp\jaxws\works\wsrm\client\src\com
\example\sample\client\ directory in the UTF-8 format. Note that com.example.sample,
TestJaxWs, TestJaxWsService, TestJaxWs, and jaxWsTest1 change according to the package name, the
class name, and the method name in the class of the generated Java sources. When you want to develop a Web Service
with a different configuration, you must review, and if necessary revise, the coding of the package name, the class
name, and the method name in the class.

35.5.3 Adding sequence termination processing in the Implementation
Class for Web Service client

Add sequence termination processing in the Implementation Class for Web Service client.

The following is an example for adding the sequence termination processing:

package com.example.sample.client;

import com.example.sample.TestJaxWs;
import com.example.sample.TestJaxWsService;
import com.example.sample.UserDefinedException;
import com.sun.xml.ws.Closeable;

public class TestClient {
 public static void main(String[] args) {
 TestJaxWsService service = null;
 TestJaxWs port = null;
 try {
 service = new TestJaxWsService();
 port = service.getTestJaxWs();

 String returnValue = port.jaxWsTest1("Invocation test.", 1003);

 System.out.println("[RESULT] " + returnValue);
 }
 catch(UserDefinedException e){
 e.printStackTrace();
 }
 finally {

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

833

 if(port != null) {
 ((Closeable)port).close();
 }
 }
 }

}

35.5.4 Compiling the implementation class for the Web Service client
Use the javac command to compile the created Implementation class for Web Service client.

The following is an example for compiling the implementation class:

> cd c:\temp\jaxws\works\wsrm\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%
\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\com\example\sample\client\TestClient.java

On successful termination of the javac command, TestClient.class is generated in the c:\temp\jaxws
\works\wsrm\client\classes\com\example\sample\client\ directory. For the javac command,
see the JDK documentation.

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

834

35.6 Example of executing the Web Service (Starting
from WSDL/WS-RM 1.2)

This section describes the example for the execution of Web Service clients, starting from WSDL.

35.6.1 Creating an option definition file for Java applications
Create an option definition file (usrconf.cfg) for Java applications required for executing the Web Service.

The following is an example for creating the option definition file for Java applications:

add.class.path=Conminexus-installation-directory\jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home=Cosminexus-installation-directory
add.jvm.arg=-Dejbserver.server.prf.PRFID=<PRF ID>

For the Cosminexus-installation-directory part, use the absolute path to specify the path where Cosminexus is
installed.

The created option definition file for Java applications is stored in the c:\temp\jaxws\works\wsrm\client\
directory in the UTF-8 format. For the option definition file for Java applications, see 14.2 usrconf.cfg (Option
Definition file for Java applications) in the uCosminexus Application Server Definition Reference Guide.

35.6.2 Creating a user property file for Java applications
Create a user property file for Java applications required for executing the Web Service.

Because the settings are not particularly changed in this example, create an empty file in the c:\temp\jaxws
\works\wsrm\client\ directory. For the user property file for Java applications, see 14.3 usrconf.properties
(User Property file for Java applications) in the uCosminexus Application Server Definition Reference Guide.

35.6.3 Executing the Web Service client
Use the cjclstartap command to execute the Web Service client.

The following is an example for executing the Web Service client:

> cd c:\temp\jaxws\works\wsrm\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" com.example.sample.client.TestClient

On successful termination of the cjclstartap command, the execution results of the Web Service client are
displayed. The following is an example for displaying the execution results:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\wsrm\client, PID = 2636)

[RESULT] We've got your #1003 message "Invocation test."! It's 2007.11.28 14:50:50
now. See ya!
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The parts in Italics change according to the execution timing and environment.

For the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application Server
Command Reference Guide.

35. Example of the Development Starting from WSDL (using WS-RM 1.2)

835

36 Handler Frame Work
In the Cosminexus JAX-WS functionality, you can use the handler framework
defined in the JAX-WS 2.2 specifications to extend the Web Service functionality.

This chapter gives an overview of the handler framework and describes the flow of
processing and the usage settings.

837

36.1 What is the handler framework
A handler framework is the functionality (framework) for intercepting and adding processing in the JAX-WS engine
when a SOAP Message is sent and received. You can add multiple handlers between the Web Service client and Web
Service Implementation Class or the Provider Implementation Class, and extend the Web Service functionality.

The following figure shows the flow of processing in the handler framework:

Figure 36‒1: Flow of processing in the handler framework

The contents of handler processing differ in each combination of outbound or inbound and request or response. The
following table lists the combinations and the processing contents:

Table 36‒1: Combinations of outbound or inbound and request or response and the processing contents

Outbound or
Inbound

Request or
response Processing contents

Outbound Request Indicates that the Web Service client sends the request message.

In this processing, distributing the messages means sending the request messages
to the Web Service.

Response Indicates that the Web Service Implementation Class or the Provider
Implementation Class sends the response message.

In this processing, distributing the messages means sending the response messages
to the Web Service client.

The outbound does not work because no response message is sent in the one-way
operations.

Inbound Request Indicates that the Web Service Implementation Class or the Provider
Implementation Class receives the request message.

In this processing, distributing the messages means allocating the request messages
to the Web Service Implementation Class or the Provider Implementation Class.

Response Indicates that the Web Service client receives the response.

In this processing, distributing the messages means allocating the response
messages to the Web Service client.

36. Handler Frame Work

838

Outbound or
Inbound

Request or
response Processing contents

Inbound Response The inbound does not work as no response message is received in the one-way
operations.

You can acquire the message context in the handler. For details about the message context, see 19.2.5 Using a
message context.

For details about the architecture of the handler framework, see JAX-WS 2.2 specifications.

36. Handler Frame Work

839

36.2 Precautions on using the Web Service security
functionality

When applying Cosminexus Web Services - Security (Web Service security functionality) to a Web Services client,
you cannot use the Web Service Security Handler and the handler framework described in this chapter simultaneously.

For Cosminexus Web Services - Security and Web Service security handler, see the uCosminexus Application Server
Web Service Security Users Guide.

36. Handler Frame Work

840

36.3 Notes on applying to the EJB Web Services
When applying the handler framework to the EJB Web Services, you cannot use the functions provided by the EJB
container concurrently, because the handler framework applied to the EJB Web Services runs in the Web container.
For the functions provided by the EJB container, see 10.19 Invoking EJB Web Service.

36. Handler Frame Work

841

36.4 Types of handlers
Define the logical handler and protocol handler as per the JAX-WS 2.2 specifications. The protocol handler also
defines the SOAP handler. The following is a description of each of these handlers:

Logical handler
This handler implements the javax.xml.ws.handler.LogicalHandler interface.

Protocol handler
This handler implements all the inherited interfaces of javax.xml.ws.handler.Handler, except the
javax.xml.ws.handler.LogicalHandler interface.

SOAP handler
This handler implements the javax.xml.ws.handler.soap.SOAPHandler interface.

The following figure shows the relationship of handlers (class hierarchy):

Figure 36‒2: Class hierarchy of handlers

You can use the logical handler and SOAP handler in the Cosminexus JAX-WS functionality.

If a handler that is neither a logical handler nor a SOAP handler is specified in the handler chain, an error message
(KDJW00009-E) is output to the log and standard error output when the Web Service is initialized in the JAX-WS
engine on the Web Service. In the JAX-WS engine on the Web Service client,
javax.xml.ws.WebServiceException is thrown when an attempt is made to acquire the port.

The handler that implements both, the javax.xml.ws.handler.LogicalHandler interface and the
javax.xml.ws.handler.soap.SOAPHandler interface (handler that is logical handler as well as SOAP
handler) is considered as the logical handler.

36. Handler Frame Work

842

36.5 Execution sequence and organization of the
handler chain

The handler chain is organized in such a manner that the logical handler precedes the SOAP handler. The sequence of
the logical handlers and SOAP handlers is in accordance with the sequence included in the handler chain settings.

The following figure shows an example of the organization of the handler chain:

Figure 36‒3: Example of the organization of the handler chain

As shown in the figure, the handlers are executed in the following sequence in the JAX-WS engine:

In outbound messages:
L1 -> L2 -> L3 -> S1 -> S2 -> S3 -> S4 -> S5 -> S6

In inbound messages:
S6 -> S5 -> S4 -> S3 -> S2 -> S1 -> L3 -> L2 -> L1

For the outbound messages, the handlers are executed in the handler chain sequence from the first handler. For the
inbound messages, the handlers are executed in the reverse handler chain sequence from the last handler.

However, if the handler throws an exception or if the handleMessage method or handleFault method returns
false, the direction of the handler processing changes.

This section describes the processing in the handleMessage method, handleFault method, and close method
respectively.

36.5.1 Processing of the handleMessage method
This subsection describes the processing when the handleMessage method returns true, returns false, and throws
an exception.

(1) When the method returns true
When the handleMessage method returns true, the JAX-WS engine processes the handler in the same direction
as the currently running direction. If there are no more handlers, the messages are distributed.

The following figure shows the flow of request processing:

36. Handler Frame Work

843

Figure 36‒4: Processing when the handleMessage method returns true (request)

The following figure shows the flow of response processing:

Figure 36‒5: Processing when the handleMessage method returns true (response)

36. Handler Frame Work

844

(2) When the method returns false
When the handleMessage method that is processing the request message returns false, the JAX-WS engine
reverses the direction of the message and handler processing, and invokes the handleMessage method of the
previous handler. If there are no more handlers, the messages are distributed.

The following figure shows the flow when handler 2 returns false during request processing:

Figure 36‒6: Processing when the handleMessage method returns false (request)

The JAX-WS engine does not change the message set in the message context. Therefore, the request messages are
distributed to the Web Service client as is. In the Web Service client where the intended response messages were not
distributed, the javax.xml.ws.WebServiceException is thrown.

When the handleMessage method that processes the response message returns false, the direction of the
message does not change. However, all the subsequent handlers are omitted and the messages are distributed.

The following figure shows the flow when handler 2 returns false during response processing:

36. Handler Frame Work

845

Figure 36‒7: Processing when the handleMessage method returns false (response)

(3) When the method throws the ProtocolException or a sub-class
When the handleMessage method that processes the request message throws the ProtocolException or a
sub-class, the JAX-WS engine reverses the direction of the message and handler processing, and invokes the
handleFault method of the previous handler. If there are no more handlers, the messages are distributed.

The following figure shows the flow when handler 2 throws the ProtocolException during request processing:

36. Handler Frame Work

846

Figure 36‒8: Processing when handleMessage throws the ProtocolException (request)

The JAX-WS engine generates and propagates the fault message. The following table lists and describes the generated
messages that differ depending on SOAP versions:

Table 36‒2: Faultmessages generated by the JAXWS engine (ProtocolException throw/ request)

Version Fault message

SOAP 1.1
specification

In the Web Service client faultcode is QName soapenv:Client

In the Web Service faultcode is QName soapenv:Server

SOAP 1.2
specification

In the Web Service client soapenv12:Code is QName
soapenv12:Sender

In the Web Service soapenv12:Code is QName
soapenv12:Receiver

When the handleMessage method that is processing the response message throws the ProtocolException or
a sub-class, the direction of the message does not change. However, all the subsequent handlers are omitted and the
exception is thrown as is.

The following figure shows the flow when handler 2 throws the ProtocolException during response processing:

36. Handler Frame Work

847

Figure 36‒9: Processing when handleMessage throws the ProtocolException (response)

In the Web Service, the JAX-WS engine converts the exception into a SOAP fault and sends the fault. For details
about the fault message conversion, see 10.4.1(2) Runtime exception binding.

(4) When the method throws other runtime exceptions
When the handleMessage method that is processing the request message throws other runtime exceptions, the
JAX-WS engine reverses the direction of the message and handler processing. The JAX-WS engine also omits all the
subsequent handlers and throws the exception as is.

The following figure shows the flow when handler 2 throws the RuntimeException during request processing:

36. Handler Frame Work

848

Figure 36‒10: Processing when handleMessage throws RuntimeException (request)

In the Web Service, the JAX-WS engine converts the exception into a SOAP fault and sends the fault. For details
about the fault message conversion, see the subsection 10.4.1(2) Runtime exception binding.

In the Web Service client, the JAX-WS engine wraps the exception with
javax.xml.ws.WebServiceException and throws WebServiceException.

When the handleMessage method that is processing the response message throws a runtime exception, the
direction of the message does not change. However, all the subsequent handlers are omitted and the messages are
distributed.

The following figure shows the flow when handler 2 throws the RuntimeException during response processing:

36. Handler Frame Work

849

Figure 36‒11: Processing when handleMessage throws RuntimeException (response)

In the Web Service, the JAX-WS engine converts the exception into a SOAP fault and sends the fault. For details
about the fault message conversion, see the subsection 10.4.1(2) Runtime exception binding.

In the Web Service client, the JAX-WS engine wraps the exception with
javax.xml.ws.WebServiceException and throws WebServiceException.

36.5.2 Processing of the handleFault method
This subsection describes the processing when the handleFault method returns true, returns false, and throws an
exception.

(1) When the method returns true
When the handleFault method returns true, the JAX-WS engine processes the handler in the same direction as
the currently running direction. If there are no more handlers, the messages are distributed.

The following figure shows the flow of response processing:

36. Handler Frame Work

850

Figure 36‒12: Processing when the handleFault method returns true (response)

(2) When the method returns false
When the handleFault method returns false, the JAX-WS engine retains the direction that is currently running,
omits all the subsequent handlers and distributes the messages.

The following figure shows the flow when handler 2 returns false during response processing:

36. Handler Frame Work

851

Figure 36‒13: Processing when the handleFault method returns false (response)

(3) When the method throws the ProtocolException or a sub-class
When the handleFault method throws the ProtocolException or a sub-class, the JAX-WS engine retains the
direction that is currently running, omits all the subsequent handlers, and throws an exception.

The following figure shows the flow when handler 2 throws the ProtocolException during response processing:

36. Handler Frame Work

852

Figure 36‒14: Processing when handleFault returns the ProtocolException (response)

In the Web Service, the JAX-WS engine converts the exception into a SOAP fault and replaces the originally stored
SOAP fault. Therefore, the JAX-WS engine actually sends the newly generated fault message. For details about the
fault message conversion, see 10.4.1(2) Runtime exception binding.

(4) When the method throws other runtime exceptions
When the handleFault method throws other runtime exceptions, the JAX-WS engine retains the direction that is
currently running, omits all the subsequent handlers, and distributes the messages.

The following figure shows the flow when handler 2 throws the RuntimeException during response processing:

36. Handler Frame Work

853

Figure 36‒15: Processing when handleFault returns the RuntimeException (response)

In the Web Service, the JAX-WS engine converts the exception into a SOAP fault and replaces the originally stored
SOAP fault. Therefore, the JAX-WS engine actually sends the newly generated fault message. For details about the
fault message conversion, see 10.4.1(2) Runtime exception binding.

In the Web Service client, the JAX-WS engine wraps the exception with
javax.xml.ws.WebServiceException and throws WebServiceException.

36.5.3 Processing of the close method
Just before distributing the response messages to the Web Service client, the JAX-WS engine invokes the close
method of the handlers that are already invoked.

The close method is invoked in the reverse order of the invocation of the handlers. Therefore, if the processing of
the handler is reversed while the request message is being processed, the close method of the un-invoked handlers is
not invoked. However, if all the handlers are executed for processing the request message, even if the invocation of
handlers is omitted during the processing of the response message, the close method of all the handlers is invoked in
the reverse order of the order when the request message was processed.

Also, in a one-way operation, the calling order for Web Services and the Web Client differs as follows:

Web Services
After calling Web Services Implementation Class or Provider Implementation Class, the close method of the
already called handler is called in the reverse order of the order in which the one-way messages were processed.

Web Client
After receiving an HTTP response, the close method of the already called handler is called in the reverse order
of the order in which the one-way messages were processed.

36. Handler Frame Work

854

36.6 Initializing and destroying the handler
This section describes the operations of the JAX-WS engine when the handler is initialized and when the handler is
destroyed.

(1) In the Web Service
When the handler has a method that is annotated using the javax.annotation.PostConstruct annotation,
that method is invoked to initialize the Web Service.

When the handler has a method that is annotated using the javax.annotation.PreDestory annotation, that
method is invoked to destroy the Web Service.

(2) In Web Service client
Even if the handler has methods that are annotated using the javax.annotation.PostConstruct annotation
or javax.annotation.PreDestory annotation, those methods are not invoked.

36. Handler Frame Work

855

36.7 Operations and settings for the handler when the
SOAP Header is included in the SOAP Message

In the handler, Web Service Implementation Class, and stub-based Web Service client, you can set up a SOAP Header
that can be processed in the SOAP Message. Note that even if you set up SOAP Header in a Provider Implementation
Class and a dispatch-based Web Service client, the SOAP Header cannot be processed.

In this section, the operations of the handler when a SOAP Message containing a SOAP Header is received will be
described separately for the Web Service and the Web Service client. This section also describes the settings for the
SOAP Header.

36.7.1 Operations of the handler when the SOAP Header is included in
the SOAP Message (in the Web Service)

When a SOAP Message containing a SOAP Header is received, the handler processing varies according to the settings
in the soap:mustUnderstand attribute of the SOAP Header. This subsection describes the processing contents
when the soap:mustUnderstand attribute is 1 and when the soap:mustUnderstand attribute is not 1.

(1) When the soap:mustUnderstand attribute is '1'
When a SOAP Message with a SOAP Header wherein soap:mustUnderstand attribute is 1 is received, all the
handlers are invoked if that SOAP Header can be processed using one of the set up handlers or the Web Service
Implementation Class.

The following figure shows the handler processing when the SOAP Header can be processed using handlers:

Figure 36‒16: Processing when the SOAP Header can be processed using handlers (in the Web Service)

36. Handler Frame Work

856

The example in the figure assumes that handler 3 that can process the element name tns:headerA is set up. At this
time, if the SOAP Header tns:headerA is received, all the handlers - handler 3, handler 2, and handler 1 are
invoked.

The following figure shows the handler processing when the SOAP Header can be processed using the Web Service
Implementation Class:

Figure 36‒17: Processing when the SOAP Header can be processed using the Web Service
Implementation Class (in the Web Service)

Even assuming that only the Web Service Implementation Class can process the element name tns:headers, all
the handlers are invoked as for processing using handlers.

When a SOAP Message with a SOAP Header wherein the soap:mustUnderstand attribute is 1 is received, a
SOAP fault with soap:MustUnderstand set in faultcode is returned in the following cases:

• One of the set handlers cannot process the SOAP Header.

• The SOAP Header cannot be processed in the Web Service Implementation Class.

• The Provider Implementation Class is used.

The following figure shows handler processing when the SOAP Header cannot be processed:

36. Handler Frame Work

857

Figure 36‒18: Processing of the handler when the SOAP Header cannot be processed (in the Web
Service)

(2) When the soap:mustUnderstand attribute is not '1'
When the soap:mustUnderstand attribute is not 1, all the set up handlers are invoked.

The following figure shows the handler processing when the soap:mustUnderstand attribute is not 1:

36. Handler Frame Work

858

Figure 36‒19: Processing of the handler when the soap:mustUnderstand attribute is not '1' (in the Web
Service)

In the above example, when both the handler and the Web Service Implementation Class cannot process the element
tns:headerZ, but the soap:mustUnderstand attribute is not 1, a SOAP fault does not occur and all the
handlers are invoked.

36.7.2 Operations of the handler when the SOAP Header is included in
the SOAP Message (in the Web Service client)

When a SOAP Message containing a SOAP Header is received, the handler processing varies according to the settings
in the soap:mustUnderstand attribute of the SOAP Header. This subsection describes the processing contents
when the soap:mustUnderstand attribute is 1 and when the soap:mustUnderstand attribute is not 1.

(1) When the soap:mustUnderstand attribute is '1'
When a SOAP Message with a SOAP Header wherein soap:mustUnderstand attribute is 1 is received, all the
handlers are invoked if that SOAP Header can be processed using one of the set up handlers or the Web Service client.

The following figure shows the handler processing when the SOAP Header can be processed using handlers:

36. Handler Frame Work

859

Figure 36‒20: Processing when the SOAP Header can be processed using handlers (in the Web Service
client)

The example in the figure assumes that handler 3 that can process the element name tns:headerA is set up. At this
time, if the SOAP Header tns:headerA is received, all the handlers - handler 3, handler 2, and handler 1 are
invoked.

The following figure shows the handler processing when the SOAP Header can be processed using the Web Service
Implementation Class:

36. Handler Frame Work

860

Figure 36‒21: Processing when the SOAP Header can be processed using the Web Service
Implementation Class (in the Web Service client)

Even assuming that only the Web Service Implementation Class can process the element name tns:headerCL, all
the handlers are invoked as for processing using handlers.

When a SOAP Message with a SOAP Header wherein soap:mustUnderstand attribute is 1 is received,
javax.xml.ws.soap.SOAPFaultException is returned and an error occurs (KDJW10022-E) in the
following cases:

• One of the set handlers cannot process the SOAP Header.

• The SOAP Header cannot be processed in the Web Service client.

• The Web service client is dispatch-based.

The following figure shows handler processing when the SOAP Header cannot be processed:

36. Handler Frame Work

861

Figure 36‒22: Processing of the handler when the SOAP Header cannot be processed (in the Web
Service client)

(2) When the soap:mustUnderstand attribute is not '1'
When the soap:mustUnderstand attribute is not 1, all the set up handlers are invoked.

The following figure shows the handler processing when the soap:mustUnderstand attribute is not 1:

36. Handler Frame Work

862

Figure 36‒23: Processing of the handler when the soap:mustUnderstand attribute is not '1' (in the Web
Service client)

In the above example, when both the handler and the Web Service Implementation Class cannot process the element
tns:headerCL, but the soap:mustUnderstand attribute is not "1", an error does not occur and all the handlers
are invoked.

36.7.3 Setting the SOAP Header that can be processed
In this subsection, the method of setting up a SOAP Header that can be processed will be described with respect to the
handler, the Web Service Implementation Class, and the Web Service client.

(1) To set the SOAP Header using the handler
Create the handler class implementing the javax.xml.ws.handler.soap.SOAPHandler interface and use
the getHeaders() method to return java.util.Set containing QName of the SOAP Header that can be
processed. The following is an example of settings in the handler:

public class MySOAPHandler implements SOAPHandler<SOAPMessageContext> {
 private final static Set<QName> headers;

 static {
 headers = new HashSet<QName>();
 headers.add(new QName("http://test.org/handler/", "headerA"));
 }

 public Set<QName> getHeaders(){
 return headers;
 }
 (The-rest-of-the-implementation-is-omitted)
}

36. Handler Frame Work

863

(2) To set the SOAP Header using the Web Service Implementation Class
For the development of Web Services starting from SEI, define a method with an argument annotated using the
javax.jws.WebParam annotation in the Web Service Implementation Class. Define the following settings in the
javax.jws.WebParam annotation:

• Specify true in the header attribute.

• Specify javax.jws.WebParam.Mode.IN or javax.jws.WebParam.Mode.INOUT in the mode
attribute.

The following is an example of settings in the Web Service Implementation Class:

@WebService
@SOAPBinding (parameterStyle= javax.jws.soap.SOAPBinding.ParameterStyle.BARE)
@HandlerChain (file="handlerchainfile.xml")
public class MyWebService{
 @WebMethod(operationName = "webMethod")
 public String webMethod(
 @WebParam(targetNamespace="http://test.org/handler/", name="message")
 String message,
 @WebParam(targetNamespace="http://test.org/handler/", name="headerS", header = true,
WebParam.Mode.IN)
 String headerS
){
 (The-rest-of-the-implementation-is-omitted)
}
}

For the development of Web Services starting from WSDL, code the soap:header element in WSDL within the
range supported in WSDL 1.1 specifications and Cosminexus JAX-WS functionality. For details about the coding of
the soap:header element in the Cosminexus JAX-WS functionality, see 20.1.22 soap:header element.

(3) To set the SOAP Header using the Web Service client
If WSDL that is the Metadata of the connected Web Service, contains the soap:header element, that
soap:header element can be processed. The following is an example of WSDL:

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://test.org/handler/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://test.org/handler/"
 name="HandlerTest01Service">

 <types>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="1.0"
 targetNamespace="http://test.org/handler/">
 <xs:element name="headerCL" nillable="true" type="xs:string"></xs:element>
 <xs:element name="message" nillable="true" type="xs:string"></xs:element>
 <xs:element name="testResponse" nillable="true" type="xs:string"></xs:element>
 </xs:schema>
 </types>

<message name="test">
 <part name="message" element="tns:message"></part>
 <part name="headerCL" element="tns:headerCL"></part>
 </message>
 <message name="testResponse">
 <part name="testResponse" element="tns:testResponse"></part>
 <part name="headerCL" element="tns:headerCL"></part>
 </message>

 <portType name="HandlerTest01">
 <operation name="test" parameterOrder="message headerCL">
 <input message="tns:test"></input>
 <output message="tns:testResponse"></output>
 </operation>
 </portType>

<binding name="HandlerTest01Binding" type="tns:HandlerTest01">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"></
soap:binding>

36. Handler Frame Work

864

 <operation name="test">
 <soap:operation soapAction=""></soap:operation>
 <input>

<soap:body use="literal" parts="message"></soap:body>
 <soap:header message="tns:test" part="headerCL" use="literal"></soap:header>
 </input>
 <output>

<soap:body use="literal" parts="testResponse"></soap:body>
 <soap:header message="tns:testResponse" part="headerCL" use="literal"></soap:header>
 </output>
 </operation>
 </binding>

<service name="HandlerTest01Service">
 <port name="HandlerTest01Port" binding="tns:HandlerTest01Binding">
 <soap:address location="http://localhost:80/SOAPHeaderTest/HandlerTestService431"></
soap:address>
 </port>
 </service>
</definitions>

In this case, the SOAP Header with element name {http://test.org/handler/}headerCL can be
processed. For details about the soap:header element of a WSDL, see 20.1.22 soap:header element.

36. Handler Frame Work

865

36.8 Deploying the handlers
This section describes the deployment of the implementation class for the handler.

(1) In the Web Service
Deploy the handler implementation class to the following locations:

• In POJO Web Services: Deploy to the class path of the WAR file

• In EJB Web Services: Deploy to the class path of the EJB JAR file

If deployed on the class path of the WAR file or the EJB JAR file, the class need not be included in the WAR file or
the EJB JAR file.

(2) In the Web Service client
Deploy the implementation class for the handler on the class path of the Web Service client.

36. Handler Frame Work

866

36.9 Setting the handler chain
In the Web Service Implementation Class and Web Service client, you can dynamically use the handler chain settings.

This section describes the handler chain settings and the examples of settings.

36.9.1 Setting the handler chain in the Web Service
To set the handler chain in the Web Service, annotate the SEI, Web Service Implementation Class, or the Provider
Implementation Class using the javax.jws.HandlerChain annotation and specify the handler chain setup file
using the file element of the javax.jws.HandlerChain annotation.

The following is an example of annotating the Web Service Implementation Class using the
javax.jws.HandlerChain annotation:

package com.sample;

@javax.jws.WebService
@javax.jws.HandlerChain(file="handlers.xml")
public class AddNumbersImpl{

 public int add(int number1, int number2) throws AddNumbersFault{
 ...
 }

}

In this example, the handler chain defined in the handler chain setup file handlers.xml is linked with the Web
Service Implementation Class com.sample.AddNumbersImpl.

A handler chain setup file is required for each Web Service. A handler chain setup file might also be shared by
multiple Web Services, but in that case, the same settings are applied.

For details about the javax.jws.HandlerChain annotation, see the subsection 16.2.3 javax.jws.HandlerChain
annotation.

(1) Handler chain setup file
The handler chain setup file defines the handler chain configuration when the handler is used to add processing for the
Web Service. The file is specified using the file element of the javax.jws.HandlerChain annotation.

For details about the support range of the handler chain setup file, see the subsection 19.4 Support range of the
handler chain setup file. This point describes the syntax and deployment of the handler chain setup file.

(a) Syntax of the handler chain setup file

Code the syntax of the handler chain setup file in the range supported by the standard schema of Java EE 5
specifications (Java EE Web Services Metadata Handler Chain Schema) and the Cosminexus JAX-WS functionality.

You can reference the standard schema by accessing the namespace URI of Java EE 5 (http://
java.sun.com/xml/ns/javaee/). The following is an example of coding of the handler chain setup file:

<?xml version="1.0" encoding="UTF-8"?>
<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-class>org.test.handler.LoggingHandler</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

(b) Deployment of the handler chain setup file

Store the handler chain setup file at the following locations:

• In POJO Web Services: Under the WEB-INF directory of WAR file.

36. Handler Frame Work

867

• In EJB Web Services: EJB JAR

The deployment of the file complies with the file system limitations for the OS and Java EE 5 specifications, and if the
file can be stored in the WAR file or EJB JAR file, there are no limitations on the file name, the directory name below
the WEB-INF directory, EJB JAR directory name, and the path length.

(2) SOAP role and actor settings
If the SOAP role and actor settings are omitted or if null is specified, the default value is specified. The default
value is http://schemas.xmlsoap.org/soap/actor/next for a SOAP Messages in the SOAP 1.1
specification and http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver for the
SOAP Messages in the SOAP 1.2 specification.

(3) soap:mustUnderstand attribute settings
Set up 0, 1, true, or false in the soap:mustUnderstand attribute. If another value is specified, 0 or false
is assumed.

36.9.2 Setting the handler chain in the Web Service client
To set the handler chain in the Web Services client, use the JAX-WS API. For the details on the available JAX-WS
APIs, see 19.2 Support Range of API.

(1) Add Code that sets the handler chain
The following methods are used to set a handler chain on a Web Services Client:

• Setting the handler chain to a service class

• Setting the handler chain to a port

This section describes the methods of setting the handler chain.

(a) Setting the handler chain to a service class

The following example describes the code added to the Web Services Client to set the handler chain to a service class
by using an API:

package com.example.sample.client;

import com.example.sample.TestJaxWs;
import com.example.sample.TestJaxWsService;
import com.example.sample.UserDefinedException;

public class TestClient {
 public static void main(String[] args) {
 try {
 TestJaxWsService service = new TestJaxWsService();
 // Handler-resolver-is-generated-and-set-in-the-service-class
 SampleHandlerResolver handlerResolver = new SampleHandlerResolver();
 service.setHandlerResolver(handlerResolver);
 TestJaxWs port = service.getTestJaxWs();

 String returnValue = port.jaxWsTest1("Invocation test.", 1003);

 System.out.println("[RESULT] " + returnValue);
 }
 catch(UserDefinedException e){
 e.printStackTrace();
 }
 }
}

The following is an example of a handler resolver:

package com.example.sample.client;

36. Handler Frame Work

868

import java.util.ArrayList;
import java.util.List;

import javax.xml.ws.handler.HandlerResolver;
import javax.xml.ws.handler.PortInfo;
import javax.xml.ws.soap.SOAPBinding;

public class SampleHandlerResolver implements HandlerResolver{
 //Handler-chain-stored-by-this-handler-resolver
 private List<Handler> handlerChain = new ArrayList<Handler>();

 //Use-a-convenient-method-to-add-the-handler-to-the-handler-chain-in-advance
 //The-constructor-is-used-to-add-the-handler-here
 public SampleHandlerResolver(){
 this.handlerChain.add(new SomeHandler());
 }

 //Returns-the-handler-chain
 public List<Handler> getHandlerChain(PortInfo portInfo){
 //Check-the-contents-of-the-portInfo-object
 //If-the-portInfo-object-can-be-processed-by-this-handler-resolver-the-handler-chain-
is-returned
 if(portInfo.getBindingID().equals(SOAPBinding.SOAP11HTTP_BINDING)
 && portInfo.getPortName().equals(...)
 && portInfo.getServiceName().equals(...)){
 return this.handlerChain;
 }
 else{
 ...
 }
 }
}

The changes in the handler resolver set up using the javax.xml.ws.Service#setHandlerResolver
method do not affect the handler chains of ports previously acquired from the same Service object.

(b) Setting the handler chain to a port

The following example shows a Web Services client to which a code is added to set the handler chain to a port by
using an API:

package com.example.sample.client;

import java.util.ArrayList;
import java.util.List;

import javax.xml.ws.Binding;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.Handler;

import com.example.sample.TestJaxWs;
import com.example.sample.TestJaxWsService;
import com.example.sample.UserDefinedException;

public class TestClient {
 public static void main(String[] args) {
 try {
 TestJaxWsService service = new TestJaxWsService();
 TestJaxWs port = service.getTestJaxWs();

// Generate a handler chain to be set to a port

 List<Handler> handlerChain = new ArrayList<Handler>();
 //Add a handler to the handler chain
 handlerChain.add(new SomeHandler());

 //Acquire javax.xml.ws.Binding
 Binding binding = ((BindingProvider)port).getBinding();

// Set the handler chain to a port by using javax.xml.ws.Binding

 binding.setHandlerChain(handlerChain);

 String returnValue = port.jaxWsTest1("Invocation test.", 1003);
 System.out.println("[RESULT] " + returnValue);
 }
 catch(UserDefinedException e){
 e.printStackTrace();
 }

36. Handler Frame Work

869

 }
}

If you set the handler chain in both the service classes and ports acquired from the service classes, the handler chain
set in the ports is used. Also, the handler chain set by the javax.xml.ws.Binding#setHandlerChain
method does not affect the handler chain of the Service object from which the ports are to be acquired.

(2) SOAP role and actor settings
If the SOAP role and actor settings are omitted or if null is specified, the default value is set up. The default value is
http://schemas.xmlsoap.org/soap/actor/next for a SOAP Message in the SOAP 1.1 specification
and http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver for a SOAP Message
in the SOAP 1.2 specification.

(3) soap:mustUnderstand attribute settings
Set up 0, 1, true, or false in the soap:mustUnderstand attribute. If another value is specified, 0 or false
is assumed.

36. Handler Frame Work

870

37 Addressing Functionality
This chapter describes the communication methods which can be implemented with
the Cosminexus addressing functionality, and the settings for using the Cosminexus
addressing functionality.

871

37.1 Addressing functionality
The Addressing functionality is used to standardize the information such as server names and port numbers given by
the general transfer protocol and communication system, and make the Web Services and messages independent from
a specific transport or communication system. The addressing functionality supports two types of communication
methods; synchronous communication and asynchronous communication.

37.1.1 Synchronous communication

(1) Flow of synchronous communication
In the synchronous communication, the Web Service client sends a request message for invoking a service method in
a Web Service, and receives the resulting response message from the Web Service.

The following figure shows the flow of synchronous communication:

Figure 37‒1: Flow of synchronous communication

(2) Settings for synchronous communication
To use the synchronous communication, set up the anonymous URI http://www.w3.org/2005/08/
addressing/anonymous defined in the WS-Addressing 1.0 specifications, with the wsa:ReplyTo/
wsa:Address element of the addressing header.

The following are the examples of the contents specified in the addressing header with the conditions:

• Web Service URI
http://localhost/addressing/AddNumbersImplService

• Action value for invoking the Web Service
http://sample.com/input

• Anonymous URI
http://www.w3.org/2005/08/addressing/anonymous

• Unique ID indicating this message
uuid:4cfb4248-a552-4e33-a610-6af94f2aad07
<To xmlns="http://www.w3.org/2005/08/addressing">
 http://localhost/addressing/AddNumbersImplService
</To>
<Action xmlns=http://www.w3.org/2005/08/addressing>
 http://sample.com/input
</Action>
<ReplyTo xmlns="http://www.w3.org/2005/08/addressing">
 <Address>http://www.w3.org/2005/08/addressing/anonymous</Address>
</ReplyTo>
<MessageID xmlns="http://www.w3.org/2005/08/addressing">

37. Addressing Functionality

872

 uuid:4cfb4248-a552-4e33-a610-6af94f2aad07
</MessageID>

37.1.2 Asynchronous communication

(1) Flow of asynchronous communication
In the asynchronous communication using the addressing functionality, the Web Service client sends a request
message for invoking a service method that exists in a Web Service, and then ends the processing without receiving
the resulting response message from the Web Service. The Web Service sends the response message to another Web
Service.

The following figure shows the flow of asynchronous communication:

Figure 37‒2: Flow of asynchronous communication

(2) Settings for asynchronous communication
To use the asynchronous communication, set up the Web Service URL that sends response messages in the
wsa:ReplyTo/wsa:Address and wsa:FaultTo/wsa:Address elements of the addressing header.

The following are the examples of the contents specified in the addressing header with the conditions:

• Web Service URI
http://localhost/addressing/AddNumbersImplService

• Action value for invoking the Web Service
http://sample.com/input

• URL for sending the response message when the Web Service terminates successfully
http://localhost/responseserver/ResponseServerImplService

• URL for sending the response message when the Web Service terminates abnormally
http://localhost/responseserver/FaultServerImplService

• Unique ID indicating this message
uuid:b19439fa-7a29-4045-93d9-56d6a2183afd

37. Addressing Functionality

873

<To xmlns="http://www.w3.org/2005/08/addressing">
 http://localhost/addressing/AddNumbersImplService
</To>
<Action xmlns="http://www.w3.org/2005/08/addressing">
 http://sample.com/input
</Action>
<ReplyTo xmlns="http://www.w3.org/2005/08/addressing">
 <Address>
 http://localhost/responseserver/ResponseServerImplService
 </Address>
</ReplyTo>
<FaultTo xmlns="http://www.w3.org/2005/08/addressing">
 <Address>
 http://localhost/responseserver/FaultServerImplService
 </Address>
</FaultTo>
<MessageID xmlns="http://www.w3.org/2005/08/addressing">
 uuid:b19439fa-7a29-4045-93d9-56d6a2183afd
</MessageID>

(3) Precautions for asynchronous communication
This subsection describes the precautions for using the asynchronous communication.

• Even if the Web Service fails to send the response message, no error is returned to the Web Service client.

• In the wsa:ReplyTo/wsa:Address and wsa:FaultTo/wsa:Address elements of the addressing
header, if you set up the same URL as you would set up for the Web Service specified in the wsa:To element,
the sending source and destination of the response message become the same and the communication might go
into an infinite loop.

• If the JAX-WS engine of the Web Service machine receives a fault message as the request message, the fault
message is processed as a server error (HTTP code: 500). Therefore, you cannot create a Web Service that
receives a fault message as a request message.

• You cannot use the asynchronous communication through a proxy. To use the asynchronous communication, send
the response message to another Web Service without passing through a proxy.

37. Addressing Functionality

874

37.2 WSDL extension elements and extension attributes
The WS-Addressing 1.0 specifications define two extension elements and one extension attribute for coding in the
WSDL. This section describes the WSDL extension elements and the extension attribute.

37.2.1 WSDL extension elements
The following WSDL extension elements of the WS-Addressing 1.0 specifications are available with Cosminexus:

(1) wsaw:UsingAddressing element
This element indicates whether the addressing functionality is enabled using Web Services.

You can code the wsaw:UsingAddressing element as a child element of the wsdl:definitions/
wsdl:binding or wsdl:definitions/wsdl:service/wsdl:port element. The addressing functionality
is enabled in the Web Service used for coding this element.

• wsdl:required attribute
This attribute indicates whether an addressing header is required for a request message.
If true is specified in this attribute, an addressing header is required. If false is specified, an addressing header
is optional.

Note that you cannot code an attribute belonging to a child element or the name space http://www.w3.org/
2006/05/addressing/wsdl in the wsaw:UsingAddressing element. If such an attribute is coded, a
standard error is output and an error message is output to logs during the cjwsimport command is executed, and
then the processing of the cjwsimport command ends (KDJW51029-E).

(2) wsaw:Anonymous element
This element indicates whether an anonymous URI can be used in response end points (wsa:From/wsa:Address,
wsa:ReplyTo/wsa:Address, and wsa:FaultTo/wsa:Address elements) of an addressing header.

You can code the wsaw:Anonymous element as a child element of the wsdl:definitions/wsdl:binding/
wsdl:operation element. You can specify the following values:

• optional
Using an anonymous URI in a response end point of a request message is optional.

• required
An anonymous URI must always be used as a response end point of a request message.

• prohibited
Do not use an anonymous URI as a response end point of a request message.

You can specify only one of the above values in the wsaw:Anonymous element. If another value is specified, a
standard error is output and an error message is output to logs when the cjwsimport command is executed, and
then the processing of the cjwsimport command ends (KDJW51029-E). Also, you cannot code an attribute
belonging to a child element or the namespace http://www.w3.org/2006/05/addressing/wsdl in the
wsaw:Anonymous element. If such an attribute is coded, a standard error is output and an error message is output to
logs when the cjwsimport command is executed, and then the processing of the cjwsimport command ends
(KDJW51029-E).

Note that this element is not coded in the WSDL file issued by the JAX-WS engine of a Web Service machine and the
WSDL file generated using the cjwsgen command. Prepare a WSDL file coding this element to control the
operations, when an anonymous URI is specified.

(3) wsam:Addressing element
The wsam:Adressing element indicates whether the WS-Addressing functionality is enabled in Web Services.
With the JAX-WS 2.2 specifications (WS-Addressing 1.0 meta data), you use this element instead of the

37. Addressing Functionality

875

wsaw:UsingAddressing element. When both the wsam:Adressing and wsaw:UsingAddressing
elements are specified simultaneously, you indicate that an addressing header is required in a request message by
specifying that the addressing header is required in either of the elements.

You can code the wsam:Adressing element as a child element of the wsdl:definitions/wsdl:binding
or wsdl:definitions/wsdl:service/wsdl:port element. When you code the wsam:Adressing
element, the settings of this element are given priority.

• wsp:Optional attribute
The wsp:Optional attribute indicates whether an addressing header is required in a request message.
If true is specified in this attribute, an addressing header is optional. If false is specified or this attribute is
omitted, an addressing header is required.

(4) wsam:AnonymousResponses element
The wsam:AnonymousResponse element indicates that you must specify an anonymous URI in response end
points (wsa:From/wsa:Address, wsa:ReplyTo/wsa:Address, and wsa:FaultTo/wsa:Address
elements) for a request message containing an addressing header.

You can code this element as a child element of wsdl:definitions/wsdl:binding/wsam:Addressing/
wsp:Policy or wsdl:definitions/wsdl:service/wsdl:port/wsam:Addressing/wsp:Policy.

(5) wsam:NonAnonymousResponses element
The wsam:NonAnonymousResponses element indicates that you must specify a non-anonymous URI in
response end points (wsa:From/wsa:Address, wsa:ReplyTo/wsa:Address, and wsa:FaultTo/
wsa:Address elements) for a request message containing an addressing header.

You can code this element as a child element of wsdl:definitions/wsdl:binding/wsam:Addressing/
wsp:Policy or wsdl:definitions/wsdl:service/wsdl:port/wsam:Addressing/wsp:Policy.

(6) Notes for WSDL extension elements
This subsection describes the notes for using the following WSDL extension element:

wsaw:Anonymous element

The wsaw:Anonymous element is not indicated in the WSDL file published by the JAX-WS engine of a service
machine or the WSDL file generated by the cjwsgen tool. To control the operations when an anonymous URI is
specified by using the wsaw:Anonymous element, you must prepare a WSDL file with the coded
wsaw:Anonymous element.

37.2.2 WSDL extension attributes
This subsection describes the WSDL extension attribute of the WS-Addressing 1.0 specifications available with
Cosminexus:

• wsaw:Action attribute
This extension attribute is used to bind the Action value of the addressing header with the wsdl:input,
wsdl:output and wsdl:fault elements.
You can code the wsaw:Action attribute as the extension attribute of the wsdl:input, wsdl:output, and
wsdl:fault elements, the child elements of the wsdl:portType/wsdl:operation element. If you code
this attribute as the extension attribute of other elements, the value is ignored. If a space is specified in this
attribute, the space is used as the Action value as it is. Also, if null ("") is specified, the wsaw:Action
attribute is ignored.
If this attribute is coded in WSDL, the javax.xml.ws.Action and javax.xml.ws.FaultAction
annotations are created in SEI that is generated using the cjwsimport command. For details on the
javax.xml.ws.Action annotation, see the section 16.2.13 javax.xml.ws.Action annotation and for details on
the javax.xml.ws.FaultAction annotation, see the section 16.2.15 javax.xml.ws.FaultAction annotation.
The following figure shows an example of mapping, when the wsaw:Action attribute is used.

37. Addressing Functionality

876

Figure 37‒3: Example of mapping when the wsaw:Action attribute is used

37. Addressing Functionality

877

37.3 Notes for the annotations used with the addressing
functionality

This section describes the precautions for using the addressing functionality.

• Specify the javax.xml.ws.soap.Addressing annotation in the service implementation class.

• The javax.xml.ws.soap.Addressing annotation is not mapped to the skeleton class of the service
implementation class that is generated by executing the cjwsimport command. Therefore, to use the skeleton
class of the service implementation class, you must specify the javax.xml.ws.soap.Addressing
annotation.

For details on the annotations available with the addressing functionality, see the section 16.2.1 List of annotations.

37. Addressing Functionality

878

37.4 Fault messages
This section describes the fault messages issued, when using the addressing functionality.

37.4.1 Un-supported sub-sub code
In the WS-Addressing 1.0 specifications, the sub-sub code used in fault messages are defined in advance. Among the
sub-sub codes provided beforehand, Cosminexus does not support the following sub-sub codes:

• wsa:InvalidEPR
• wsa:DuplicateMessageID
• wsa:ActionMismatch#

#
Supported with the SOAP 1.1 specifications.

37.4.2 Notes for fault messages
This subsection describes the precautions for using the addressing functionality.

• Fault message containing wsa:MessageAddressingHeaderRequired in the sub-code

If the JAX-WS engine of the Web Service machine sends a fault message #1 containing
wsa:MessageAddressingHeaderRequired in the sub-code, set up the same value
(wsa:MessageAddressingHeaderRequired) as the sub-code in the sub-sub code of the fault message.

• Fault message containing wsa:ActionNotSupported in the sub-code

If the Web Service-side JAX-WS engine sends a fault message #2 containing wsa:ActionNotSupported in
the sub-code, no value is set up in the sub-sub code of the fault message.

#1
Fault message without a required element in the addressing header

#2
Fault message in which the value of the wsa:Action element of the addressing header differs from the
wsa:Action value in the Web Service

37. Addressing Functionality

879

37.5 Operations of the JAX-WS engine on a Web
Service machine (When using the addressing
functionality)

This section describes the operations of the JAX-WS engine of the Web Service machine, when using the addressing
functionality.

37.5.1 Operations for receiving request messages
When you use the addressing functionality, the operations for receiving request messages depend on the contents of
the elements set up in the javax.xml.ws.soap.Addressing annotation specified in the service
implementation class. The following table lists and describes the relationship between the
javax.xml.ws.soap.Addressing annotation and the operations for receiving request messages.

Table 37‒1: javax.xml.ws.soap.Addressing annotation and operations for receiving request messages

No.

javax.xml.ws.soap.Addressing
annotation

Operation when a request message is received

Addressing header

Communicationenabled
element

required
element Request message Response message

1 true true Y Y Successful

2 N N

(Fault message)

Failure

3 false Y Y Successful

4 N N Successful

5 false true Y N Successful

6 N N Successful

7 false Y N Successful

8 N N Successful

Legend:
Y: Addressing header exists.
N: Addressing header does not exist.

If the javax.xml.ws.soap.Addressing annotation is not specified in the service implementation class, the
addressing functionality is disabled. In such a case, irrespective of the presence or absence of the addressing header,
the Web Service receives the request message. Also, since the addressing functionality is disabled, the Web Service
sends a response message without the addressing header even if the received request message has the addressing
header specified. Because the response messages do not exist for one-way operations, the addressing functionality in
which the one-way operations are used is not supported. The operation is not guaranteed if you use the addressing
functionality with one-way operations.

37.5.2 Response messages
This subsection describes the response messages.

37. Addressing Functionality

880

(1) Sending destination for the response messages
If a value other than an anonymous URI is used in the response end point of the addressing header included in the
request message, the sending destination of the response message differs depending on the availability of the
wsa:From/wsa:Address, wsa:ReplyTo/wsa:Address, and wsa:FaultTo/wsa:Address elements.

The following table lists and describes the relationship between availability of the elements and the sending
destination of the response messages:

Table 37‒2: Sending destination of the response messages

No.

Addressing header
Type of response

message to be
sent

Sending
destination of the

response message
wsa:From/

wsa:Address
element

wsa:ReplyTo/
wsa:Address

element

wsa:FaultTo/
wsa:Address

element

1 Does not exist Does not exist Does not exist Normal message HTTP sending
source

2 Abnormal message HTTP sending
source

3 Exists Normal message HTTP sending
source

4 Abnormal message wsa:FaultTo/
wsa:Address
element

5 Exists Does not exist Normal message wsa:ReplyTo/
wsa:Address
element

6 Abnormal message wsa:ReplyTo/
wsa:Address
element

7 Exists Normal message wsa:ReplyTo/
wsa:Address
element

8 Abnormal message wsa:FaultTo/
wsa:Address
element

9 Exists Does not exist Does not exist Normal message HTTP sending
source

10 Abnormal message HTTP sending
source

11 Exists Normal message HTTP sending
source

12 Abnormal message wsa:FaultTo/
wsa:Address
element

13 Exists Does not exist Normal message wsa:ReplyTo/
wsa:Address
element

14 Abnormal message wsa:ReplyTo/
wsa:Address
element

15 Exists Normal message wsa:ReplyTo/
wsa:Address
element

37. Addressing Functionality

881

No.

Addressing header
Type of response

message to be
sent

Sending
destination of the

response message
wsa:From/

wsa:Address
element

wsa:ReplyTo/
wsa:Address

element

wsa:FaultTo/
wsa:Address

element

16 Exists Exists Exists Abnormal message wsa:FaultTo/
wsa:Address
element

(2) Operations when http://www.w3.org/2005/08/addressing/none is specified
http://www.w3.org/2005/08/addressing/none is a URI indicating that the message is not sent using the
WS-Addressing 1.0 specifications. If this URI is set up in the wsa:ReplyTo/wsa:Address and
wsa:FaultTo/wsa:Address elements of the addressing header, the response message is not sent.

37.5.3 Operations when the wsaw:Anonymous element is specified
If both the elements; wsaw:UsingAddressing and wsaw:Anonymous are coded in WSDL, the receipt of the
request message might fail and a fault message might be returned depending on the response end point value in the
addressing header of the received request message. The following table lists and describes the relationship between
the wsaw:Anonymous element and the operations of the Web Service-side JAX-WS engine:

Table 37‒3: wsaw:Anonymous element and the operations of the Service-side JAX-WS engine

No. Value of the
wsaw:Anonymous element Response end point value Operation of the Web Service-side JAX-WS

engine

1 optional Anonymous URI Normal termination

2 Non-anonymous URI Normal termination

3 required Anonymous URI Normal termination

4 Non-anonymous URI Reception failure (fault message)

5 prohibited Anonymous URI Reception failure (fault message)

6 Non-anonymous URI Normal termination

For the values specified in the wsaw:Anonymous element, see the subsection 37.2.1 WSDL extension elements.

37.5.4 Operations when an Addressing annotation is specified
If the javax.xml.ws.soap.Addressing annotation is specified in the service implementation class, the WSDL
file issued by the Web Service-side JAX-WS engine and the WSDL file generated by executing the cjwsgen
command become as follows:

• In the WSDL file, the wsaw:Action attribute is not only given to the wsaw:UsingAddressing element,
but also to the wsdl:input element. The given value is the default Action value defined in the WS-
Addressing 1.0 specifications. For details about the default Action value, reference the WS-Addressing 1.0
specifications.

• If false is specified in the required element of the javax.xml.ws.soap.Addressing annotation, the
wsdl:required attribute of the wsaw:UsingAddressing element is not given in the WSDL file.

37. Addressing Functionality

882

37.5.5 Operations when an Action annotation is specified
If you specify the javax.xml.ws.FaultAction annotation indicating a class other than the exception class
declared using the throws clause of the method in the fault element of the javax.xml.ws.Action annotation
specified in the SEI method, the javax.xml.ws.FaultAction annotation is ignored.

37.5.6 Operations when the wsa:Action element is specified
This subsection describes the values of the wsa:Action element and the precautions for specifying the
wsa:Action element.

(1) Values of the wsa:Action element
The values of the wsa:Action element of the addressing header change according to the following conditions:

• Is the javax.xml.ws.Action annotation specified in the SEI method?

• Is the wsaw:Action attribute coded in the WSDL?

The following table lists and describes the relationship between the javax.xml.ws.Action annotation and
wsaw:Action attribute and the values of the wsa:Action element:

Table 37‒4: Values of the wsa:Action element

No. Action annotation wsaw:Action
attribute Value of the wsa:Action element

1 Specified Coded Value of the Action annotation

2 Not coded Value of the Action annotation

3 Not specified Coded Value of the wsaw:Action attribute of WSDL

4 Not coded Default Action value defined in the WS-Addressing 1.0
specifications

Specify the value of the wsa:Action element of the addressing header used by the Web Service for response or
fault in the asynchronous communication as described above.

(2) Precautions for receiving the request message
This point describes the precautions for receiving the request messages.

• If the value of the wsa:Action element differs in the addressing header of the received request message and the
addressing header used by the Service-side JAX-WS engine, the attempt to invoke the Web Service will fail. An
error occurs in the Web Service-side JAX-WS engine and a fault message containing the sub-sub code
wsa:ActionNotSupported, defined in the WS-Addressing 1.0 specifications, is sent.

• If the value of the wsa:Action element of the addressing header in the received request message and the value
of SOAPAction is different, an error occurs. However, if the value of SOAPAction is null (""), an error does
not occur even if the value of wsa:Action element is not null. If an error occurs, the Web Service-side JAX-
WS engine sends a fault message containing the sub-sub code wsa:ActionMismatch, defined in the WS-
Addressing 1.0 specifications.

37.5.7 Operations when the wsa:MessageID element is not specified
An addressing header that does not contain the wsa:MessageID element is not considered normal. Therefore, an
error occurs in the JAX-WS engine of the Web Service machine and a fault message containing the subcode
wsa:MessageAddressingHeaderRequired, defined in the WS-Addressing 1.0 specifications is sent.

37. Addressing Functionality

883

37.6 Operations of the JAX-WS engine on a Web
Service client machine (When using the addressing
functionality)

This section describes the operations of the JAX-WS engine of the Web Service client machine, when using the
Addressing Function.

37.6.1 Operations for sending and receiving messages
The addressing functionality follows the settings of a WSDL mapped with an acquired SEI. However, if SEI is
acquired using the AddressingFeature class, the settings of the AddressingFeature class are given
priority, therefore you can set up the operations for sending and receiving messages with the arguments that are
specified when generating the AddressingFeature class.

The following table lists and describes the relationship between the AddressingFeature class and the operations
for sending messages:

Table 37‒5: AddressingFeature class and operations for sending messages

No.
AddressingFeature class Operation for sending

request messagesenabled required responses

1 true True Responses.ALL Y

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

2 False Responses.ALL Y

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

3 false True Responses.ALL N

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

4 False Responses.ALL N

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

Legend:
Y: The addressing or header is given to the message.
N: The addressing or header is not given to the message.

The following table lists and describes the relationship between the AddressingFeature class and the operations
for receiving messages:

Table 37‒6: AddressingFeature class and operations for receiving messages

No.

AddressingFeature class Operation for receiving
response message

enabled required responses Addressing
header

Communic
ation

1 true true Responses.ALL Y Successful

37. Addressing Functionality

884

No.

AddressingFeature class Operation for receiving
response message

enabled required responses Addressing
header

Communic
ation

1 true true Responses.ANONYMOUS Y Successful

Responses.NON_ANONYMOUS

2 Responses.ALL N Failure

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

3 false Responses.ALL Y Successful

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

4 Responses.ALL N Successful

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

5 false true Responses.ALL Y Successful

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

6 Responses.ALL N Successful

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

7 false Responses.ALL Y Successful

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

8 Responses.ALL N Successful

Responses.ANONYMOUS

Responses.NON_ANONYMOUS

Legend:
Y: The addressing header exists.
N: The addressing header does not exist.

#
The settings of a responses attribute of the AddressingFeature class do not impact the operations of the JAX-WS
engine on a client machine.

37.6.2 AddressingFeature class and anonymous URI
When you use the AddressingFeature class to acquire SEI, the JAX-WS engine of the Web Service client
machine sets up an anonymous URI in the wsa:ReplyTo/wsa:Address element of the addressing header. At
this time, if you invoke the following Web Service, the anonymous URI cannot be used, so
WebServiceException occurs when invoking a service method:

• a Web Service wherein prohibited is specified in the wsa:Anonymous element of a WSDL

37. Addressing Functionality

885

• a Web Service wherein the wsam:NonAnonymousResponses element is specified in the child element of the
wsam:Addressing element

To communicate with a Web Service wherein prohibited is specified in the wsa:Anonymous element or the
wsam:NonAnonymousResponses element is specified in the child element of the wsam:Addressing element,
create an addressing header specifying a non-anonymous URI.

37.6.3 Notes for the wsaw:Action and wsam:Action attributes
A value of the wsa:Action element in the addressing header of a request message sent by the JAX-WS engine on a
client machine differs according to the attributes coded in the WSDL. The following values are specified in the
wsa:Action element:

When coding the wsaw:Action attribute
A value of the wsaw:Action attribute is specified.

When coding the wsam:Action attribute
A value of the wsam:Action attribute is specified.

When coding the wsam:Action and wsaw:Action attributes
A value of the wsam:Action attribute is specified.

When no attribute is coded
A default Action value, predetermined in the specification, is specified.
For details on the default Action value, see the WS-Addressing 1.0 Metadata specifications.

37.6.4 Notes for the wsa:Action element
If the value of the wsa:Action element in the addressing header and the SOAPAction value differ in the response
message received by the JAX-WS engine of the Web Service client machine, the operations might not function
properly.

37.6.5 Notes related to acquiring SEI
If you use the getPort(Class<T>, WebServiceFeature...) method of the W3CEndpointReference
class, WebServiceException occurs, and you cannot acquire SEI. To acquire SEI, use the
getPort(EndpointReference, Class<T>, WebServiceFeature...) method of the Service class.

37. Addressing Functionality

886

38 Examples of development from SEI
(when addressing functionality
used)
This chapter describes the examples for developing Web Services starting from SEI,
using the addressing functionality.

887

38.1 Configuration examples of development (Starting
from SEI and addressing)

This chapter describes examples for developing the Web Services starting from SEI.

The following table lists and describes the configuration of the Web Service to be developed:

Table 38‒1: Configuration of the Web Service (Starting from SEI and addressing)

No. Item Value

1 Name of the J2EE server to be deployed jaxwsserver

2 Host name and port number of the Web server webhost:8085

3 Naming Server URL corbaname::testserver:900

4 Context route addressing_dynamic_generate

5 Style document/literal/wrapped

6 Namespace URI http://sample.com

7 Port type Number 1

8 Local name AddNumbersImpl

9 Operation Number 3

10 Local name 1 add

11 Local name 2 add2

12 Local name 3 add3

13 Service Number 1

14 Local name AddNumbersImplService

15 Port Number 1

16 Local name AddNumbersImplPort

17 Web Service Implementation Class com.sample.AddNumbersImpl

18 Methods made public in the
Web Service Implementation
Class

Number 3

19 Method name 1 add

20 Method name 2 add2

21 Method name 3 add3

22 Exceptions thrown in the Web
Service Implementation Class
methods

Number 1

23 Class name com.sample.AddNumbersFault

The following table lists and describes the configuration of the current directory, when the Web Service is developed.

Table 38‒2: Configuration of the current directory (Starting from SEI and addressing)

Directory Explanation

c:\temp\jaxws\works\addressing This is the current directory.

server\ Used for Web Service development.

META-INF\ Corresponds to the META-INF directory of the EAR file.

38. Examples of development from SEI (when addressing functionality used)

888

Directory Explanation

application.xml Created in 38.3.4 Creating application.xml.

src\ Saves the source file (*.java) for the Web Service. Used in 38.3.1 Creating
Web Services Implementation Classand 38.3.2 Compiling Web Services
Implementation Classes.

WEB-INF\ Corresponds to the WEB-INF directory of the WAR file.

web.xml Created in 38.3.3 Creating web.xml.

classes\ Saves the compiled class file (*.class). Used in 38.3.2 Compiling Web
Service Implementation Classes.

addressing_dynamic_generate
.ear

Created in 38.3.5 Creating EAR files.

addressing_dynamic_generate
.war

Created in 38.3.5 Creating EAR files.

client\ Used for the development of the Web Service client.

src\ Saves the source file (*.java) of the Web Service client. Used in 38.5.1
Generating a service classand 38.5.2 Creating Implementation Class for the
Web Services client.

classes\ Saves the compiled class file (*.class). Used in 38.5.3 Compiling
Implementation Class for the Web Services client.

usrconf.cfg Created in 38.6.1 Creating an option definition file for Java applications.

usrconf.properties Created in 38.6.2 Creating a user property file for Java applications.

Change the current directory path according to the environment to be developed.

Note that the directory and file names listed in the above table will be used in the description hereafter. The part
formatted in Bold, in the command execution example and in the Java source, indicates the specified values and
generated values that are used in this example. Substitute and read according to the environment you want to build.

Also, in the development examples described in this chapter, the Web Service and Web Service client are developed
in the same environment, but you can also develop them in separate environments. For developing the Web Service
and Web Service client in different environments, substitute and read the current directory path suitable to the
respective environments.

38. Examples of development from SEI (when addressing functionality used)

889

38.2 Flow of development examples (Starting from SEI
and addressing)

This section describes the development examples for the development and execution flow.

Developing a Web Service

1. Creating Web Services Implementation Class (38.3.1)

2. Executing the javac command and compiling the Web Services Implementation Classes (38.3.2)

3. Creating web.xml (38.3.3)

4. Creating application.xml (38.3.4)

5. Creating EAR files (38.3.5)

Deploying and starting

1. Deploying EAR files (38.4.1)

2. Starting Web Services (38.4.2)

Developing a Web Service client

1. Executing the cjwsimport command and generating a service class (38.5.1)

2. Creating Implementation Class for the Web Services client (38.5.2)

3. Compiling Implementation Class for the Web Services client (38.5.3)

Executing a Web Service

1. Creating an option definition file for Java applications (38.6.1)

2. Creating a user property file for Java applications (38.6.2)

3. Executing the Web Services client (38.6.3)

38. Examples of development from SEI (when addressing functionality used)

890

38.3 Examples of Web Service development (Starting
from SEI and addressing)

This section describes the examples for developing Web Services starting from SEI (using the addressing
functionality).

38.3.1 Creating the Web Service Implementation Class
Create a Web Service Implementation Class to code the processing of Web Services. This subsection describes how to
calculate the contents of the received request message and create the Web Service Implementation Class that returns
response messages.

The following is an example for creating a Web Service Implementation Class:

package com.sample;

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.xml.ws.Action;
import javax.xml.ws.FaultAction;

@WebService(name = "AddNumbers", targetNamespace = "http://sample.com/")
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT, use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
interface AddNumbers {

 @Action(input = "http://sample.com/input",
 output = "http://sample.com/output")
 public int add(int number1, int number2) throws AddNumbersFault;

 public int add2(int number1, int number2) throws AddNumbersFault;

 @Action(input = "http://sample.com/input3",
 output = "http://sample.com/output3",
 fault = {@FaultAction(className = AddNumbersFault.class, value = "http://
sample.com/fault3")})
 public int add3(int number1, int number2) throws AddNumbersFault;
}

The created AddNumbers.java is saved in the c:\temp\jaxws\works\addressing\server\src\com
\sample\ directory with the UTF-8 format.

Next, create the main Web Service that implements SEI. This subsection describes how to calculate the contents of the
received request message and create the Web Service Implementation Class com.sample.AddNumbersImpl that
is returned as a response message.

The following is an example for creating the main Web Service:

package com.sample;

import javax.jws.WebService;
import javax.xml.ws.soap.Addressing;

@Addressing
@WebService(endpointInterface = "com.sample.AddNumbers")
public class AddNumbersImpl implements AddNumbers {
 public int add(int number1, int number2) throws AddNumbersFault {
 return impl(number1, number2);
 }

 public int add2(int number1, int number2) throws AddNumbersFault {
 return impl(number1, number2);
 }

 public int add3(int number1, int number2) throws AddNumbersFault {
 return impl(number1, number2);
 }
 int impl(int number1, int number2) throws AddNumbersFault {
 if (number1 < 0 || number2 < 0) {
 throw new AddNumbersFault("Negative numbers can't be added!",
 "Numbers: " + number1 + ", " + number2);

38. Examples of development from SEI (when addressing functionality used)

891

 }
 return number1 + number2;
 }
}

The created AddNumbersImpl.java is saved in the c:\temp\jaxws\works\addressing\server\src
\com\sample\ directory with the UTF-8 format.

Also create an exception class com.sample.AddNumbersFault thrown in the
com.sample.AddNumbersImpl class.

The following is an example for creating an exception class:

package com.sample;

public class AddNumbersFault extends Exception {

 String detail;

 public AddNumbersFault(String message, String detail) {
 super(message);
 this.detail = detail;
 }

 public String getDetail() {
 return detail;
 }
}

The created AddNumbersFault.java is saved in the c:\temp\jaxws\works\addressing\server
\src\com\sample\ directory with the UTF-8 format.

38.3.2 Compiling Web Services Implementation Classes
Compile Web Services Implementation Classes by executing the javac command. For details on the javac
command, see the JDK documentation.

The following example describes the execution of javac command:

> cd c:\temp\jaxws\works\addressing\server\
> mkdir WEB-INF\classes\
> javac -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%\CC\client\lib
\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib\csmstax.jar" -d WEB-INF\classes\ -s src src
\com\sample\AddNumbers.java src\com\sample\AddNumbersImpl.java src\com\sample
\AddNumbersFault. java

On successful execution of the javac command, the compiled classes are output to the following path:

c:\temp\jaxws\works\addressing\server\WEB-INF\classes\com\sample\directory
Executing the cjwsgen command for the compiled Web Services Implementation Classes enables you to check
errors in advance. For details on the cjwsgen command see 14.3 cjwsgen command and for details on error checking
see 10.23 (1) Using the cjwsgen command to check errors.

• In Windows (x64)

> set HNTRLIB2_HOME=HNTRLib2-Installation-directory
> cd c:\temp\jaxws\works\addressing\server\
> mkdir \WEB-INF\classes\
> apt -factory com.cosminexus.istack.ws.AnnotationProcessorFactoryImpl -factory
com.cosminexus.istack.ws.AnnotationProcessorFactoryImpl -J-
Dcosminexus.home="%COSMINEXUS_HOME%" -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;
%COSMINEXUS_HOME%\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmjaxb.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxp.jar;%COSMINEXUS_HOME%\jaxp\lib
\csmstax.jar;%HNTRLIB2_HOME%\classes\hntrlib2j64.jar;%HNTRLIB2_HOME%\classes
\hntrlibMj64.jar" -d WEB-INF\classes\ -s src src\com\sample\AddNumbers.java src\com
\sample\AddNumbersImpl.java src\com\sample\AddNumbersFault.java

38. Examples of development from SEI (when addressing functionality used)

892

38.3.3 Creating web.xml
Create web.xml that is required as a WAR file component.

The following is an example for creating web.xml:

<<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app_3_0.xsd">
 <description>Sample web service "addressing"</description>
"addressing_dynamic_generate"</description>
<display-name>Sample_web_service_addressing_dynamic_generate</display-name>
 <listener>
 <listener-class>

com.cosminexus.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <description>Endpoint servlet for Cosminexus JAX-WS</description>
 <display-name>Endpoint_servlet_for_Cosminexus_JAX_WS</display-name>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <servlet-class>
 com.cosminexus.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>CosminexusJaxwsServlet</servlet-name>
 <url-pattern>/AddNumbersImplService</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

When creating web.xml of version 2.5, specify 2.5 in the version attribute of the web-app element and specify
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd as the second location information in the
xsd:schemaLocation attribute.

The created web.xml is saved in the c:\temp\jaxws\works\addressing\server\WEB-INF\ directory
with the UTF-8 format. For details about the web.xml settings, see the section 3.4 Creating web.xml.

38.3.4 Creating application.xml
Create application.xml that is required as an EAR file component.

The following is an example for creating application.xml. Note that no items are set up in
application.xml as the Web Service.

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

<description>Sample application
 "addressing_dynamic_generate "</description>
<display-name>Sample_application_addressing_dynamic_generate</display-name>
 <module>
 <web>
 <web-uri>addressing_dynamic_generate.war</web-uri>
 <context-root>addressing_dynamic_generate</context-root>
 </web>
 </module>
 </application>

38. Examples of development from SEI (when addressing functionality used)

893

When creating web.xml of version 5, specify 5 in the version attribute of the application element and
specify http://java.sun.com/xml/ns/javaee/application_5.xsd as the second location
information in the xsd:schemaLocation attribute.

The created application.xml is saved in the c:\temp\jaxws\works\addressing\server\META-
INF\ directory with the UTF-8 format. For details about the precautions for creating application.xml, see 5.2.2
Notes on editing application.xml in the uCosminexus Application Server Application Development Guide.

38.3.5 Creating EAR files
Use the jar command to create an EAR file containing the created files.

The following is an example for creating an EAR file:

> cd c:\temp\jaxws\works\addressing\server\
> jar cvf addressing_dynamic_generate.war .\WEB-INF
> jar cvf
addressing_dynamic_generate.ear .\addressing_dynamic_generate.war .\META-INF
\application.xml

If the jar command is terminated successfully, addressing_dynamic_generate.ear is created in the c:
\temp\jaxws\works\addressing\server\ directory.

For the jar command, reference the JDK documentation.

38. Examples of development from SEI (when addressing functionality used)

894

38.4 Examples of deployment and startup (Starting from
SEI and addressing)

This section describes the examples for the deployment and the startup starting from SEI, using the addressing
functionality.

38.4.1 Deploying EAR files
Use the cjimportapp command to deploy the created EAR file on the J2EE server.

The following is an example of deployment:

> cd c:\temp\jaxws\works\addressing\server\
> "%COSMINEXUS_HOME%\CC\admin\bin\cjimportapp" jaxwsserver -nameserver
corbaname::testserver:900 -f addressing_dynamic_generate.ear

For the cjimportapp command, see cjimportapp (Importing J2EE applications) in the uCosminexus Application
Server Command Reference Guide.

For the method to deploy (import) J2EE applications by using the management portal, see 12.3.3 Importing J2EE
applications in the uCosminexus Applications Server Management Portal User Guide.

38.4.2 Starting Web Services
Use the cjstartapp command to start Web Services.

The following is an example for starting a Web Service:

> cd c:\temp\jaxws\works\addressing\ \
> "%COSMINEXUS_HOME%\CC\admin\bin\cjstartapp" jaxwsserver corbaname::testserver:900 -
name Sample_application_addressing_dynamic_generate

For the cjstartapp command, see cjstartapp (Starting J2EE applications) in the uCosminexus Application Server
Command Reference Guide.

For the method to start J2EE applications by using the management portal, see 12.3.1 Starting J2EE applications in
the uCosminexus Application Server Management Portal User Guide.

38. Examples of development from SEI (when addressing functionality used)

895

38.5 Examples of Web Service client development
(Starting from SEI and addressing)

This section describes the examples for the development of Web Service clients (using the addressing functionality)
starting from SEI.

38.5.1 Generating a service class
If you execute the cjwsimport command, the Java source such as a service class that is required for developing a
Web Service client is generated. For details about the cjwsimport command, see the section 14.1 cjwsimport
command.

The following is an example of the execution of the cjwsimport command:

> cd c:\temp\jaxws\works\addressing\client\
> mkdir src\
> mkdir classes\
> "%COSMINEXUS_HOME%\jaxws\bin\cjwsimport.bat" -s src -d classes http://webhost:8085/
addressing_dynamic_generate/AddNumbersImplService?wsdl

If the cjwsimport command is terminated successfully, the Java source is generated in the c:\temp\jaxws
\works\addressing\client\src\com\sample\ directory.

The following table lists the products:

Table 38‒3: Products during service class generation (Starting from SEI and addressing)

File name Explanation

Add.java This is the JavaBean class corresponding to the type referenced by the
wrapper element of the request message of operation in the WSDL
definition.

AddResponse.java This is the JavaBean class corresponding to the type referenced by the
wrapper element of the response message of operation in the WSDL
definition.

Add2.java This is the JavaBean class corresponding to the type referenced by the
wrapper element of the request message of operation in the WSDL
definition.

Add2Response.java This is the JavaBean class corresponding to the type referenced by the
wrapper element of the response message of operation in the WSDL
definition.

Add3.java This is the JavaBean class corresponding to the type referenced by the
wrapper element of the request message of operation in the WSDL
definition.

Add3Response.java This is the JavaBean class corresponding to the type referenced by the
wrapper element of the response message of operation in the WSDL
definition.

ObjectFactory.java This is the ObjectFactory class of the JAXB 2.2 specifications.

package-info.java This is the package-info.java file.

AddNumbers.java This is the Service Endpoint Interface (SEI) corresponding to service in the
WSDL definition.

AddNumbersImplService.java This is a service class.

AddNumbersFault.java This is the JavaBean class corresponding to AddNumbersFault in the WSDL
definition.

38. Examples of development from SEI (when addressing functionality used)

896

File name Explanation

AddNumbersFault_Exception.ja
va

This is the wrapper exception class of the fault bean.

The file names Add, AddNumbersImpl, and AddNumbersImplService change as per the coding of the local
names in operation, port type, and service. For details about mapping of the local names in operation,
port type, and service, see the following sections:

• 15.1.2 Mapping a port type to a SEI name

• 15.1.3 Mapping an operation to a method name

• 15.1.4 Mapping a message part to a parameter and return value (For wrapper style)

• 15.1.5 Mapping a message part to a parameter and return value (For non-wrapper style)

38.5.2 Creating an implementation class for the Web Service client
Create an implementation class for the Web Service client that uses the Web Services.

The following is an example for creating a Web Service client that invokes the Web Service thrice:

package com.sample.client;

import javax.xml.namespace.QName;
import javax.xml.ws.soap.AddressingFeature;
import javax.xml.ws.wsaddressing.W3CEndpointReference;
import javax.xml.ws.wsaddressing.W3CEndpointReferenceBuilder;

import com.sample.AddNumbers;
import com.sample.AddNumbersImplService;
import com.sample.AddNumbersFault_Exception;

public class TestClient {
 int number1 = 10;
 int number2 = 10;
 int negativeNumber = -10;

 public static void main(String[] args) {
 TestClient client = new TestClient();

 client.existActionAnnotation1();
 client.existActionAnnotation2();
 client.notExistActionAnnotation();
 client.existFaultActionAnnotation();
 client.notExistFaultActionAnnotation();
 }

 public void existActionAnnotation1() {
 System.out.println("existActionAnnotation1");
 try {
 AddressingFeature feature = new AddressingFeature();
 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbers stub = service.getAddNumbersImplPort(feature);
 int result = stub.add(number1, number2);
 assert result == 20;
 } catch (Exception ex) {
 ex.printStackTrace();
 assert false;
 }
 }

 public void existActionAnnotation2() {
 System.out.println("existActionAnnotation2");
 try {
 AddressingFeature feature = new AddressingFeature();
 W3CEndpointReferenceBuilder eprBuilder = new
W3CEndpointReferenceBuilder();
 eprBuilder.address("http://webhost:8085/addressing_dynamic_generate/
AddNumbersImplService");
 eprBuilder.serviceName(new QName("http://sample.com/",
"AddNumbersImplService"));
 eprBuilder.endpointName(new QName("http://sample.com/",
"AddNumbersImplPort"));
 W3CEndpointReference epr = eprBuilder.build();

38. Examples of development from SEI (when addressing functionality used)

897

 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbers stub = service.getPort(epr, AddNumbers.class, feature);
 int result = stub.add(number1, number2);
 assert result == 20;
 } catch (Exception ex) {
 ex.printStackTrace();
 assert false;
 }
 }

 public void notExistActionAnnotation() {
 System.out.println("notExistActionAnnotation");
 try {
 AddressingFeature feature = new AddressingFeature();
 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbers stub = service.getAddNumbersImplPort(feature);
 int result = stub.add2(number1, number2);
 assert result == 20;
 } catch (Exception ex) {
 ex.printStackTrace();
 assert false;
 }
 }

 public void existFaultActionAnnotation() {
 System.out.println("existFaultActionAnnotation");
 try {
 AddressingFeature feature = new AddressingFeature();

 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbers stub = service.getAddNumbersImplPort(feature);
 stub.add3(negativeNumber, number2);
 assert false;
 } catch (AddNumbersFault_Exception e) {
 System.out.println("This is expected exception");
 } catch (Exception e) {
 e.printStackTrace();
 assert false;
 }
 }
 public void notExistFaultActionAnnotation() {
 System.out.println("notExistFaultActionAnnotation");
 try {
 AddressingFeature feature = new AddressingFeature();

 AddNumbersImplService service = new AddNumbersImplService();
 AddNumbers stub = service.getAddNumbersImplPort(feature);
 stub.add(negativeNumber, number2);
 assert false;
 } catch (AddNumbersFault_Exception ex) {
 System.out.println("This is expected exception");
 } catch (Exception e) {
 e.printStackTrace();
 assert false;
 }
 }
}

The created TestClient.java is saved in the c:\temp\jaxws\works\addressing\client\src\com
\sample\client\ directory with the UTF-8 format.

Note that com.sample, AddNumbers, AddNumbersImplService, AddNumbersImplPort, add, add2,
and add3 differ as per the package names, class names, and the method names in the classes of the generated Java
source. For developing Web Services with different configurations, you must review the coding of the package names,
class names, and method names in the classes.

38.5.3 Compiling the implementation class for the Web Service client
Use the javac command to compile the created Web Service client.

The following is an example of compilation:

> cd c:\temp\jaxws\works\addressing\client\
> javac -encoding UTF-8 -cp "%COSMINEXUS_HOME%\jaxws\lib\cjjaxws.jar;%COSMINEXUS_HOME%

38. Examples of development from SEI (when addressing functionality used)

898

\CC\client\lib\j2ee-javax.jar;%COSMINEXUS_HOME%\jaxp\lib\csmjaxb.jar;.\classes" -d .
\classes src\com\sample\client\TestClient.java

If the javac command is terminated successfully, TestClient.class is generated in the c:\temp\jaxws
\works\addressing\client\classes\com\sample\client\ directory.

For the javac command, reference the JDK documentation.

38. Examples of development from SEI (when addressing functionality used)

899

38.6 Examples of Web Service execution (Starting from
SEI and addressing)

This section describes the examples for executing Web Service clients (when using the addressing functionality)
starting from SEI.

38.6.1 Creating option definition files for Java applications
Create option definition files for Java applications (usrconf.cfg) required for executing a Web Service.

The following is an example for creating option definition files for Java applications:

add.class.path= Cosminexus -installation-directory\jaxws\lib\cjjaxws.jar
add.class.path=.\classes
ejb.client.log.directory=logs
add.jvm.arg=-Dcosminexus.home= Cosminexus -installation-directory
add.jvm.arg=-Dejbserver.server.prf.PRFID=<PRF ID>

For Cosminexus-installation-directory, use the absolute path to specify the path where Cosminexus is installed.

The created option definition file for Java applications is saved in the c:\temp\jaxws\works\addressing
\client\ directory. For details about the option definition files for Java applications, see 14.2 usrconf.cfg (Option
definition file for Java applications) in the uCosminexus Application Server Definition Reference Guide.

38.6.2 Creating user property files for Java applications
Create user property files for Java applications required for executing Web Services.

Because the settings are not specially changed, create an empty file named usrconf.properties in the c:
\temp\jaxws\works\addressing\client\ directory. For details about the user property files for Java
applications, see 14.3 usrconf.properties (User property file for Java applications) in the uCosminexus Application
Server Definition Reference Guide.

38.6.3 Executing the Web Service client
Use the cjclstartap command to execute Web Service clients.

The following is an example for executing a Web Service client:

> cd c:\temp\jaxws\works\addressing\client\
> "%COSMINEXUS_HOME%\CC\client\bin\cjclstartap" com.sample.client.TestClient

If the cjclstartap command is terminated successfully, the result of Web Service client execution is displayed.
The following is an example for displaying the execution results:

KDJE40053-I The cjclstartap command will now start. (directory for the user
definition file = c:\temp\jaxws\works\addressing\client, PID = 2636)
existActionAnnotation1
existActionAnnotation2
notExistActionAnnotation
existFaultActionAnnotation
This is expected exception
notExistFaultActionAnnotation
This is expected exception
KDJE40054-I The cjclstartap command was stopped. (PID = 2636, exit status = 0)

The part in italics changes according to the execution timing and the environment.

For the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application Server
Command Reference Guide.

38. Examples of development from SEI (when addressing functionality used)

900

Part 5: Troubleshooting

39 Troubleshooting
This chapter describes the action for failures that occurred during the operations of
Web Services or Web resources.

901

39.1 Types of failure and actions
The following failures might occur when operating Web Services or Web resources:

When a Web Service or a Web resource does not operate normally

• Running program ends abnormally

• Program does not operate as intended

When a Web Service or a Web resource operates normally

• The performance is not as expected

If the program does not operate normally, an error message or warning message is displayed on the log or console and
the program ends abnormally. Even if the program ends normally, the operations might not be as intended.

Furthermore, even if the program operates normally, the processing capacity of the program or component might not
reach the expected performance.

The following subsections describe each of the above cases. Also, when invoking an EJB Web Service, an error might
occur in an EJB container. For details on the errors that occur in EJB containers, see 8.11 Trace collection points of
EJB containers in the uCosminexus Application Server Maintenance and Migration Guide.

Note that you cannot define a Web Service or a Web resource message in a System Log Messages Mapping file for
JP1/IM integration. Consequently, you cannot convert a Web Service or a Web resource message to a JP1 event and
issue that JP1 event. For details on the System Log Messages Mapping file for JP1/IM integration, see 10.19 System
Log Messages Mapping files for JPI/IM integration in the uCosminexus Application Server Definition Reference
Guide.

39.1.1 When a running program ends abnormally
The following figure shows the flow of actions when a running program ends abnormally:

Figure 39‒1: Flow of checks when a warning, error message is output

When a created program does not operate normally and issues an error message or warning message, check the cause
from the contents of the message output in the log. The log that you will check is the operation log and the exception

39. Troubleshooting

902

log. Check the cause of the failure on the basis of the information output in each log and the stack trace information of
the exception.

Note that the warning and error messages, that occur during the execution of a command, are output in the command
operation or exception logs. For details about the logs, see 39.3 Log.

If the occurred failure is considered to have a cause apart from the program and if the cause cannot be resolved, collect
the failure information and contact the system administrator. For details about the failure information, see 39.2
Material to be acquired when a failure occurs.

39.1.2 When a program does not operate as intended
Even if error or warning messages are not issued, a created program does not operate as intended due to causes such as
defects. In this case, the program might not send an intended SOAP Message (in the case of Web Services) or an
HTTP message (in the case of Web resources) for implementing Web Services or Web resources. If the program does
not operate as intended, analyze the contents of the sent and received SOAP Messages and check whether the intended
message is being sent.

For details about the contents output to the communication logs, see 39.3.5 Log format.

The following figure shows the flow of communication for SOAP Messages.

Figure 39‒2: Output of communication log (for Web Services)

The following figure shows an HTTP message communication flow.

39. Troubleshooting

903

Figure 39‒3: Output of the communication log (In the case of Web resources)

39.1.3 When the performance is not as expected
Even if the program is operating normally, the runtime performance might not be as expected. Apart from problems in
the program, the cause might be the problems in components such as the Web server and database. If there are
problems in the components, the check using the Trace based performance analysis (PRF) is more effective. If you use
the Trace based performance analysis, you can analyze the processing time of each layer and the status of requests.
Follow the flow of requests from the program in the Web Service client and check where the delay is occurring.

For details about the checking method using the Trace based performance analysis, see 39.4.3 Method of performance
analysis based on Trace based performance analysis.

The following figure shows an example of the processing time in each functionality layer.

39. Troubleshooting

904

Figure 39‒4: Example of the processing time in each functionality layer

39. Troubleshooting

905

39.2 Material to be acquired when a failure occurs
For a failure for which you need to contact the system administrator or a failure for which you do not understand the
measures you need to take, collect the following failure information and contact the system administrator:

Note that '?' in the following file names indicates the number of files:

• Operation log (cjwmessage?.log or cjrmessage?.log)

• Exception log (cjwexception?_?.log or cjrexception?_?.log)

• Maintenance log (cjwmessage?.log or cjrmessage?.log)

• Communication log (cjwtransport?_?.log or cjrtransport?_?.log)

• Command operation log (cjwsimport?.log, cjwapt?.log)

• Command exception log (cjwsimportex?_?.log, cjwaptex?_?.log)

• Command maintenance log (cjwsimport?.log, cjwapt?.log)

• Trace based performance analysis

• User-program specific log (only when present)

• Common definition file (cjwconf.properties or cjrconf.properties)

• Process-wise definition file

• DD file for the Web Service (web.xml, cosminexus -jaxws.xml)

• System properties and system class path set for the server and client

• Standard output and standard error output of the server and client

• Cosminexus Component Container and the Web server log

• Information collected for failure, defined in Cosminexus Component Container:

• User-defined file for the J2EE server

• Maintenance information of the J2EE server

• User-defined file of the server management commands

• Maintenance information of the server management commands

• Standard output and standard error output of the J2EE server

• Cosminexus TPBroker log in the J2EE server

• System properties and the system class path set in the EJB client application

• Standard output and standard error output of the EJB client application

To obtain the collection information as specified in Cosminexus Component Container when a failure occurs, see
3.8.9 How to collect data in the uCosminexus Application Server Maintenance and Migration Guide.

39. Troubleshooting

906

39.3 Log
This section describes the logs output during the development and execution of Web Services or Web resources.

39.3.1 Types of log
The following table lists and describes the output log types and provides an overview.

Table 39‒1: Types of log

No. Classification Overview

1 operation log This log outputs the operation status. This log is used to check the problem that occurred and to
remove the problem.

2 exception log This log outputs the exception stack trace. This log is used to check the details of the exception
that occurred.

3 maintenance log This log outputs the maintenance information.

4 communication
log#

This log outputs the sent and received SOAP Messages. This log is used to check the contents
sent and received during application development and during failure investigation.

#
In the case of a JAX-WS functionality, for enabling the communication log, specify a value in the
com.cosminexus.jaxws.logger.runtime.transport.client_dump property (communication log output (in the
Web Service client)), and com.cosminexus.jaxws.logger.runtime.transport.server_dump property
(communication log output (in the Web Service)) of the action definition file.
For details about the properties, see 10.1.2 Settings for the common definition file.
In the case of a JAX-RS functionality, for enabling the communication log, specify a value in the
com.cosminexus.jaxrs.logger.runtime.transport.server.level property (communication log output
level) of the action definition file. For details on the properties, see 13.1.2 Common definition file settings.

The following table lists and describes the relationship between the functionality that outputs the log and the output
log.

Table 39‒2: Relationship between the functionality and the output log

No. Functionality

Output log

Operation
log

Exception
log

Maintenance
log

Communicati
on log

1 Web Service and Web resource Y Y Y Y

2 Web Service client Y Y Y Y

3 cjwsimport command Y Y Y --

4 apt command Y Y Y --

5 cjwsgen command Y Y Y --

Legend:
Y: Log is output.
--: Log is not output.

39.3.2 Log file rotation
With the Cosminexus JAX-WS functionality and JAX-RS functionality, logs are rotated to multiple files, and then the
logs are output. This subsection describes the log file rotation.

39. Troubleshooting

907

(1) How to rotate
With the Cosminexus JAX-WS functionality and JAX-RS functionality, if Web resources or Web Services run on a
J2EE server, you can specify the rotation switching for types of the output logs. The following table lists the log types
and describes whether the settings to switch the log types can be specified.

Table 39‒3: Log types and whether the rotation switching can be specified

No. Log types Whether the rotation switching can be specified

1 Operation log Y

2 Exception log N

3 Maintenance log Y

4 Communication log N

Legends:
Y: You can specify the settings for rotation switching.
N: You cannot specify the settings for rotation switching.

Note
If the output destination file has the same size as that of the specified file, the output destination is switched to the next file
(wraparound mode), by default. For details, see 3. Preparation for Troubleshooting in the uCosminexus Application Server
Maintenance and Migration Guide.

You cannot specify a rotation switching in the logs of the Web Service client that starts by the Java application startup
command (cjclstartap command) or in the logs output when implementing the command line interface.

39.3.3 Log output destination
This subsection describes the log output destination for each usage situation.

(1) When using the Web Service on the J2EE server and the Web Service client
The following table lists and describes the log output destination of the Web Service and Web Service client (such as
servlet and EJB) running on the J2EE server:

Table 39‒4: Log output destination (for a Web Service or Web resource client running on the J2EE)

No. Log types Output destination directory File names

1 Operation log <ejb.server.log.directory>/CJW For the round up method
cjwmessage?.log
For the shift method

Current log file: cjwmessage.log
Back up file:
cjwmessage?.log

2 Exception
log

<ejb.server.log.directory>/CJW cjwexception?_?.log

3 Maintenance
log

<ejb.server.log.directory>/CJW/
maintenance

For the round up method cjwmessage?.log
For the shift method

Current Log File:
cjwmessage.log
Back up file:
cjwmessage?.log

4 Communicati
on log

<ejb.server.log.directory>/CJW cjwtransport?_?.log

39. Troubleshooting

908

Notes

• <ejb.server.log.directory> becomes the log output destination for the J2EE server. For details, see
3.3.6 Settings for collecting the J2EE server logs in the uCosminexus Application Server Maintenance and
Migration Guide.

• '?' in the file name indicates the number of files.

• If a problem occurs before the log initialization processing, the log is output to the operation log
(cjmessage?.log) of Cosminexus Component Container.

• A current log file is the log file of the output destination.

• A back up file is the log file that is set up as a back up by rotation.

(2) When using the Web Service client in the command line interface
The following table lists and describes the log output destination when the Web Service client is invoked using the
Java application start command (cjclstartap):

Table 39‒5: Log output destination (when using a Web Service from the command line interface)

No. Log type Output destination directory File name

1 Operation log <ejbserver.client.log.director
y>/
<ejbserver.client.ejb.log>/
<ejbserver.client.log.appid>/
CJW

cjwmessage?.log

2 Exception
log

<ejbserver.client.log.director
y>/
<ejbserver.client.ejb.log>/
<ejbserver.client.log.appid>/
CJW

cjwexception?_?.log

3 Maintenance
log

<ejbserver.client.log.director
y>/
<ejbserver.client.ejb.log>/
<ejbserver.client.log.appid>/CJW/
maintenance

cjwmessage?.log

4 Communicati
on log

<ejbserver.client.log.director
y>/
<ejbserver.client.ejb.log>/
<ejbserver.client.log.appid>/
CJW

cjwtransport?_?.log

Notes

• <ejbserver.client.log.directory>, <ejbserver.client.ejb.log>, and
<ejbserver.client.log.appid> become the output destination for the system log of the EJB client
application. For details, see 4.5.2 Output destination for system logs of EJB client applications in the manual
uCosminexus Application Server Maintenance and Migration Guide.

• '?' in the file name indicates the number of files.

• If a problem occurs before the log initialization processing, the log is output to the operation log
(cjclmessage?.log) of Cosminexus Component Container.

(3) When a command is executed
The following table lists and describes the log output destination when a command is executed.

39. Troubleshooting

909

Table 39‒6: Log output destination (when a command is executed)

No. Log types Output destination directory File names

1 Operation
log

Command-log-output-destination-directory
(com.cosminexus.jaxws.tool.log.dir
ectory)

For the cjwsimport command:
cjwsimport?.log
For the apt command: cjwapt?.log
For the cjwsgen command:
cjwsgen?.log

2 Exception
log

Command-log-output-destination-directory
(com.cosminexus.jaxws.tool.log.dir
ectory)

For the cjwsimport command:
cjwsimportex?_?.log
For the apt command: cjwaptex?_?.log
For the cjwsgen command: cjwsgenex?
_?.log

3 Maintenance
log

Command-log-output-destination-directory
(com.cosminexus.jaxws.tool.log.dir
ectory)/maintenance

For the cjwsimport command:
cjwsimport?.log
For the apt command: cjwapt?.log
For the cjwsgen command:
cjwsgen?.log

Notes

• Set the Command-log-output-destination-directory
(com.cosminexus.jaxws.tool.log.directory) using the properties of the action definition file.
The default output destination is Cosminexus-installation-directory/jaxws/logs.
For details about the properties, see 10.1.2 Settings for the common definition file.

• '?' in the file name indicates the number of files.

(4) When using a Web resource and a Web resource client operating on the J2EE server
The following table describes the output destinations for logs when using a Web resource and a Web resource client
operating on the J2EE server.

Table 39‒7: Log output destination (for a Web Service and a Web resource client running on the J2EE
server)

No. Log type Output destination directory File name

1 Operation
log

<ejb.server.log.directory>/CJR For a Round up method
cjrmessage?.log

For a Shift method
Current Log files:
cjrmessage.log
Back up files:
cjrmessage?.log

2 Exception
log

<ejb.server.log.directory>/CJR cjrexception?_?.log

3 Maintenance
log

<ejb.server.log.directory>/CJR/
maintenance

For a Round up method
cjrmessage?.log

For a Shift method
Current Log files:
cjrmessage.log
Back up files:
cjrmessage?.log

4 Communicati
on log

<ejb.server.log.directory>/CJR cjrtransport?_?.log

39. Troubleshooting

910

Notes

• The <ejb.server.log.directory> serves as the log output destination of the J2EE server. For details, see 3.3.6
Settings for collecting the J2EE server logs in the uCosminexus Application Server Maintenance and
Migration Guide.

• '?' in the file name indicates the number of files.

• If a problem occurs before the log initialization processing, the log is output to the operation log
(cjrmessage?.log) of Cosminexus Component Container.

• A current log file is the log files of the output destination.

• A backup file is a log file that is backed up by rotation.

(5) When using Web resources from the command line interface
The following table lists log output destinations when starting a Web resource client by using a startup command
(cjclstartap) of Java applications.

Table 39‒8: Log output destination (when using a Web resource from the command line interface)

No. Log type Output destination directory File name

1 Operation log <ejbserver.client.log.directory>/
<ejbserver.client.ejb.log>/
<ejbserver.client.log.appid>/CJR

cjrmessage?.log

2 Exception
log

<ejbserver.client.log.directory>/
<ejbserver.client.ejb.log>/
<ejbserver.client.log.appid>/CJR

cjrexception?_?.log

3 Maintenance
log

<ejbserver.client.log.directory>/
<ejbserver.client.ejb.log>/
<ejbserver.client.log.appid>/CJR/
maintenance

cjrmessage?.log

4 Communicati
on log

<ejbserver.client.log.directory>/
<ejbserver.client.ejb.log>/
<ejbserver.client.log.appid>/CJR

cjrtransport?_?.log

Notes

• <ejbserver.client.log.directory>, <ejbserver.client.ejb.log>, and <ejbserver.client.log.appid> serve as the
system log output destination of an EJB client application. For details, see 4.5.2 Output destination of system
logs for EJB client applications in the uCosminexus Application Server Maintenance and Migration Guide.

• '?' in the file name indicates the number of files.

• If a problem occurs before the log initialization processing, the log is output to the operation log
(cjrmessage?.log) of Cosminexus Component Container.

39.3.4 Importance level and output conditions of logs
This subsection describes the importance level and output conditions of log.

(1) Importance level of log
The following table lists and describes the importance level of the log and the output contents of the message.

39. Troubleshooting

911

Table 39‒9: Meaning of importance level and the output contents

No. Importance
level Meaning of the message Output contents of the message

1 ERROR This message level indicates an important
failure.

This message is output when a problem occurs
and the processing cannot continue.

To continue processing, action needs to be
taken.

From the message ID indicators, a message
with -E is output. The failure information such
as the occurred exception and the action is
output in the message.

2 WARN This message level indicates a potential
problem.

This message is output when a problem
occurs, but the processing can continue.

This potential problem does not need
immediate action, but it is desirable that action
be taken.

From the message ID indicators, a message
with -W is output. The failure information
such as the occurred exception and the action
contents are output in the message.

(Example)
The definition is wrong, so the default
value is used.

3 INFO This message level provides information.

Though action is not required, the information
that must be notified is output.

A message with message ID indicator -I is
output. The contents to be notified are output
in the message.

(Example)
The command processing has started.

4 DEBUG This is a DEBUG level message.

This information is used for investigating the
cause of failure.

A message with the message ID KDJW99999-
I (for Web Services) or KDJJ99999-I (for Web
resources) is output.

(Example)
Such as the runtime environment, method
trace.

For details about the importance levels of the logs output when the log levels are defined in the configuration file, see
39.3.6 Setting logs.

(2) Operation log/ Exception log/ Maintenance log output conditions
The contents output in the operation log, exception log, and maintenance log change depending on the log definition
specified in the action definition file.

The following table lists and describes the output conditions for the operation log, exception log, and maintenance log.

Table 39‒10: Output conditions for the operation log/ exception log/ maintenance log (Importance level of
the event)

Log types Log definition
Importance level of the occurred event

ERROR WARN INFO DEBUG

Operation log

Exception log #
NONE -- -- -- --

ERROR Y -- -- --

WARN Y Y -- --

INFO Y Y Y --

DEBUG Y Y Y Y

Maintenance log NONE -- -- -- --

ALL Y Y Y Y

39. Troubleshooting

912

Legend:
Y: Log is output.
--: Log is not output.

#
The exception log is not output if there is no exception information. Note that the exception information specifies the stack trace
of the exception that causes the event to occur.

The default log definition is INFO for the output level of the operation log and exception log and ALL for the output
level of the maintenance log. Alternatively, if an event with importance level 'ERROR' occurs in the default settings,
log is output in the operation log, maintenance log, and the exception log.

The number of operation and exception logs might increase whenever you change the log definition to NONE, ERROR,
WARN, INFO, or DEBUG. Changing the log definition in such a way so that more logs are output is called raising the
output level. If the number of logs increases, the overall processing speed might decrease, so when you raise the
output level, consider the estimation of the processing speed and the number of files.

(3) Communication log output conditions
The contents output for the communication log change depending on the log definition specified in the action
definition file. However, the properties to be specified differ depending on Web Service clients, Web Services, or
Web resources. The properties to be set are as follows:

• com.cosminexus.jaxws.logger.runtime.transport.client_dump (on the Web Service client
machine)

• com.cosminexus.jaxws.logger.runtime.transport.server_dump (on the Web Service
machine)

• com.cosminexus.jaxrs.logger.runtime.transport.server.level (on the Web resource
machine)

The following table lists and describes the definition of the communication log and the output contents:

Table 39‒11: Communication log output conditions (in the Web Service client)

Log definition Output contents

ALL The sent and received messages are always output.

HEADER The HTTP header of the received message is always output.

ERROR_HEADER Output only when the HTTP header of the received message returns an error.

NONE The sent and received messages are not output.

Table 39‒12: Communication log output conditions (On a Web Service or Web resource machine)

Log definition Output contents

ALL The sent and received messages of Web Services or Web resources are always output. For a
received message, the HTTP request information is also output.

HEADER The HTTP header of the received message and the HTTP request information is always output.

ERROR_HEADER The HTTP header of the received message and the HTTP request information are output only
when an error occurs (you can specify for Web Services).

NONE The sent and received messages of Web Services or Web resources are not output.

The number of communication logs increases in the sequence of the log definitions NONE, ERROR_HEADER,
HEADER, and ALL. If the number of log increases, the overall processing speed might decrease, so when you change
the default log definition, consider the estimation of the processing speed and the number of files.

39. Troubleshooting

913

39.3.5 Log format
This subsection describes the format of the operation log, maintenance log, exception log, and communication log.

(1) Operation log and maintenance log format
The following table lists and describes the output items and contents of the operation log and maintenance log.

Table 39‒13: Operation log and maintenance log format

Items Output contents

Number This is the serial number of a trace code (4 digits). Starts from 0000 and returns to 0000 when
the number goes to 9999.

Date Date of output (yyyy/mm/dd format)

Time Time of output (hh:mm:ss.nnn format)

Application name • For Web Services and Web Service clients: cjw
• For the cjwsimport command: cjwsimport
• For the apt command: cjwapt
• For the cjwsgen command: cjwsgen
• For the WS-RM 1.2functionality: wsrm
• For Web resources: cjr

Process identifier Process identifier (hexadecimal)

Thread identifier Thread identifier (hexadecimal)

Message ID Message ID

Message types Message types

• ER: Indicates that an error message was displayed.

• EC: Indicates that an exception was caught.

• None: Indicates trace information other than above.

Message text Main message body

CRLF End of record sign

(2) Exception log and communication log format
The following table lists and describes the output items and contents of the exception log and communication log.

Table 39‒14: Exception log and communication log format

Items Output contents

Date Date of output (yyyy/mm/dd format)

Time Time of output (hh:mm:ss format)

Source class name Class name that issued the log

Level Log importance level

Message Main message body

The following example describes a communication log output for the JAX-WS functionality:

2008/10/14 13:09:44 com.cosminexus.xml.ws.transport.http.client.HttpTransportPipe
process

39. Troubleshooting

914

Information: KDJW30011-I http client message
---[HTTP request]---
SOAPAction: ""
Content-Type: text/xml;charset="utf-8"
X-hitachi-rootAp: MTgxNDczMTYyLzE2ODgvMC84MDI=
X-hitachi-clientAp: MTgxNDczMTYyLzE2ODgvMC84MDI=
Accept: text/xml, multipart/related, text/html, image/gif, image/jpeg, *; q=.2, */*;
q=.2
<?xml version="1.0" ?><S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/
envelope/"><S:Body><ns2:jaxWsTest1 xmlns:ns2="http://example.com/
sample"><information>Invocation test.</information><count>1003</count></
ns2:jaxWsTest1></S:Body></S:Envelope>
2008/10/14 13:09:45 com.cosminexus.xml.ws.transport.http.client.HttpTransportPipe
process
Information: KDJW30012-I http client message
---[HTTP response 200]---
HTTP/1.1 200 OK
Keep-alive: timeout=3, max=100
Date: Tue, 14 Oct 2008 04:09:44 GMT
Content-type: text/xml;charset=utf-8
Connection: Keep-Alive
Transfer-encoding: chunked
Server: Cosminexus HTTP Server
<?xml version="1.0" ?><S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/
envelope/"><S:Body><ns2:jaxWsTest1Response xmlns:ns2="http://example.com/
sample"><return>We've got your #1003 message "Invocation test."! It's
2008.10.14 13:09:45 now. See ya!</return></ns2:jaxWsTest1Response></S:Body></
S:Envelope>

The following example describes a communication log output for the JAX-RS functionality:

• Server side

Sep 10, 2011 7:57:48 PM com.cosminexus.jersey.api.container.filter.LoggingFilter
filter
INFO: KDJJ30013-I 1 * Server in-bound request
1 > POST http://sample.com/example/root/path%20value;matrix=matrix%20value?
query=query%20value
1 > user-agent: Java/1.5.0_11
1 > host: sample.com
1 > accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
1 > connection: keep-alive
1 > content-type: application/x-www-form-urlencoded
1 > content-length: 19
1 >
form=form%2520value

Sep 10, 2011 7:57:48 PM com.cosminexus.jersey.api.container.filter.LoggingFilter
$Adapter finish
INFO: KDJJ30015-I 1 * Server out-bound response
1 < 200
1 < Content-Type: text/html
1 <
matrix%20value path%20value form%20value query%20value

• Client side

Aug 27, 2012 10:30:06 AM com.cosminexus.jersey.api.client.filter.LoggingFilter
printRequest
INFO: KDJJ30026-I 1 * Client out-bound request
1 > POST http://sample.com/example
1 > Content-Type: text/plain
1 >
requestEntity

Aug 27, 2012 10:30:06 AM com.cosminexus.jersey.api.client.filter.LoggingFilter
printResponse
INFO: KDJJ30027-I 1 * Client in-bound response
1 < 200
1 < Content-Type: text/html
1 <
responseEntity

In the case of a JAX-RS functionality, even if the property is not specified in the action definition file, you can set up
whether to output communication logs for the Web applications having Web resources, by including the following
servlet initialization parameters and values in web.xml.

39. Troubleshooting

915

No. Servlet initialization parameter Value Operation

1 com.sun.jersey.spi.conta
iner.ContainerRequestFil
ters

com.cosminexus.jersey.ap
i.container.filter.Loggi
ngFilter

The HTTP request information is
output to a communication log.

2 com.sun.jersey.spi.conta
iner.ContainerResponseFi
lters

com.cosminexus.jersey.ap
i.container.filter.Loggi
ngFilter

The HTTP response information is
output to a communication log.

#
If you specify a value other than the values mentioned in the above table, the settings will be ignored.
If a property is specified in the action definition file, you cannot set up whether to output communication logs for the Web
applications having Web resources.

You can also set up whether to control the output of the entity information for the Web applications having Web
resources. The following table describes the servlet initialization parameters and values.

No. Servlet initialization parameter Value Operation

1 com.sun.jersey.config.featur
e.logging.DisableEntityloggi
ng

True The entity information cannot be output to a communication
log.

Fals
e

The entity information cannot be output to a communication
log.

#
If you specify a value other than true or false, the value of the property acquired from the common definition file
(cjrconf.properties) is used and the entity information is output to the communication log. Note that the value specified
by using web.xml is ignored.

(3) Character encoding in communication logs
Regardless of the character encoding in a SOAP Message (for Web Services) and an HTTP message (for Web
resources), the character encoding specified in the property of the following action definition files is applied to the
communication log. By default, the platform dependent encoding is used in the communication log.

com.cosminexus.jaxws.logger.runtime.transport.encoding property (for Web Services)

com.cosminexus.jaxrs.logger.runtime.transport.encoding property (for Web resources)

If the character encoding in a message and a communication log differs, some of the characters in the communication
log might become invalid depending on the combination. For example, if the character encoding in a message is
UTF-8 and the character encoding in the communication log is MS932, and if the message contains the characters that
do not exist in MS932, such characters become invalid in the communication log. Therefore, when developing Web
Services or Web resources, we recommend that you define the available character codes or character sets, and report
the same to a Web Service client or a Web resource client developer (WSDL public destination).

Points to note depending upon the functionality used:

• When sending or receiving an attachment (wsi:swaRef format, MTOM/XOP specification format), the
characters in the communication log and the SOAP envelope of the root part might become invalid because the
attachments might include a binary data or a character string in a different character encoding format.

(4) Names of the HTTP header output to the communication log
The name of the HTTP header that is output to the communication log always has only the first character in upper
case, regardless of the HTTP messages actually sent and received (HTTP messages including SOAP messages).

Example: Content-type

39.3.6 Setting logs
Specify the output level, size, and number of files in the action definition file.

39. Troubleshooting

916

The following is an example of settings in the action definition file:

com.cosminexus.jaxws.logger.runtime.message.level=INFO
com.cosminexus.jaxws.logger.runtime.message.file_num=2
com.cosminexus.jaxws.logger.runtime.message.file_size=2097152

com.cosminexus.jaxws.logger.runtime.maintenance.level=ALL
com.cosminexus.jaxws.logger.runtime.maintenance.file_num=2
com.cosminexus.jaxws.logger.runtime.maintenance.file_size=16777216

com.cosminexus.jaxws.logger.runtime.exception.level=INFO
com.cosminexus.jaxws.logger.runtime.exception.file_num=2
com.cosminexus.jaxws.logger.runtime.exception.file_size=16777216

com.cosminexus.jaxws.logger.runtime.transport.client_dump=NONE
com.cosminexus.jaxws.logger.runtime.transport.server_dump=NONE
com.cosminexus.jaxws.logger.runtime.transport.encoding=DEFAULT

com.cosminexus.jaxws.logger.cjwsimport.message.level=INFO
com.cosminexus.jaxws.logger.cjwsimport.message.file_num=2
com.cosminexus.jaxws.logger.cjwsimport.message.file_size=2097152

com.cosminexus.jaxws.logger.cjwsimport.exception.level=INFO
com.cosminexus.jaxws.logger.cjwsimport.exception.file_num=2
com.cosminexus.jaxws.logger.cjwsimport.exception.file_size=16777216

com.cosminexus.jaxws.logger.cjwsimport.maintenance.level=ALL
com.cosminexus.jaxws.logger.cjwsimport.maintenance.file_num=2
com.cosminexus.jaxws.logger.cjwsimport.maintenance.file_size=16777216

com.cosminexus.jaxws.logger.apt.message.level=INFO
com.cosminexus.jaxws.logger.apt.message.file_num=2
com.cosminexus.jaxws.logger.apt.message.file_size=2097152

com.cosminexus.jaxws.logger.apt.exception.level=INFO
com.cosminexus.jaxws.logger.apt.exception.file_num=2
com.cosminexus.jaxws.logger.apt.exception.file_size=16777216

com.cosminexus.jaxws.logger.apt.maintenance.level=ALL
com.cosminexus.jaxws.logger.apt.maintenance.file_num=2
com.cosminexus.jaxws.logger.apt.maintenance.file_size=16777216

com.cosminexus.jaxws.logger.cjwsgen.message.level=INFO
com.cosminexus.jaxws.logger.cjwsgen.message.file_num=2
com.cosminexus.jaxws.logger.cjwsgen.message.file_size=2097152

com.cosminexus.jaxws.logger.cjwsgen.exception.level=INFO
com.cosminexus.jaxws.logger.cjwsgen.exception.file_num=2
com.cosminexus.jaxws.logger.cjwsgen.exception.file_size=16777216

com.cosminexus.jaxws.logger.cjwsgen.maintenance.level=ALL
com.cosminexus.jaxws.logger.cjwsgen.maintenance.file_num=2
com.cosminexus.jaxws.logger.cjwsgen.maintenance.file_size=16777216

39.3.7 Estimating the log
This subsection describes how to estimate each log file.

(1) Setting the model and log to be used
This point describes the method of estimating the log using the following model 1 and model 2 as examples:

Model 1: Normal system
A model when a request is sent from the Web Service and SEI returns the response normally.

Model 2: Abnormal system
A model when RuntimeException is thrown in SEI of the Web Service.

The log settings used in these models are as follows:

• For the operation log/ exception log/ maintenance log settings, default values are not changed.

• For the communication log settings, specify 'ALL' in each of the following properties:
For the JAX-WS functionality

39. Troubleshooting

917

• com.cosminexus.jaxws.logger.runtime.transport.client_dump
• com.cosminexus.jaxws.logger.runtime.transport.server_dump

For the JAX-RS functionality

• com.cosminexus.jaxrs.logger.runtime.transport.server.level

For details about the log settings and default values, see 10.1.2 Settings for the common definition file.

(2) Method of estimating the log
The following table lists and describes the log output results for model 1 and model 2.

In this table, 'At start' indicates when the application starts, 'At end' indicates when the application stops, and 'when 1
request is processed' indicates the processing of one request by SEI. The output amount shows the amount of log
output in these periods.

Table 39‒15: Example of log output at start, when 1 request is processed, and at stop (model 1/ model 2)

No. Log types
Output amount

At start When 1 request is processed At end

1 Operation log 0.7KB Model 1:
0.0 KB

Model 2:
0.3 KB

0.3KB

2 Exception log 0KB Model 1:
0 KB

Model 2#:
5 KB

0KB

3 Communication log 0KB 0.3 KB + HTTP request + HTTP responses 0KB

4 Maintenance log 2.4KB Model 1:
3.2 KB

Model 2:
3.6 KB

0.4KB

#
Becomes the amount of stack trace of the exception.

The formula for estimating the log is as follows. Based on this result, each log file obtains one file size and number of
files.

Amount-of-log-output-per-unit-time =
 Amount-of-output-at-start
 + Amount-of-output-when-one-request-is-processed-in-model-1 Total-number-of-
requests Percentage-of-normal-case-requests
 + Amount-of-output-when-one-request-is-processed-in-model-2 Total-number-of-
requests Percentage-of-abnormal-case-requests
 + Amount-of-output-at-end

The following points describe how to estimate each file using examples based on this formula:

The example assumes a system in which there are 100 requests on an average in 1 minute and the log file size and
number are estimated such that log is not wrapped around for 3 hours. Among all the requests, if you assume that
requests ending normally are 80% and requests ending abnormally are 20%, because of 50-requests/ minute, total
18,000 requests (100 requests/ minute 180 minutes) arrive in 3 hours.

In this case, if you calculate the amount of operation log output, the result will be as follows:

0.7 KB (Amount-of-output-at-start)
+ {0.0 KB 18000}(Amount-of-output-when-all-requests-are-processed-in-model-1)
0.8 (Percentage-of-normal-case-requests)

39. Troubleshooting

918

+ {0.3 KB 18000}(Amount-of-output-when-all-requests-are-processed-in-model-2)
0.2 (Percentage-of-abnormal-case-requests)
+ 0.3 KB (Amount-of-output-at-end)
=1081 KB

As a result of calculation, the file size and number of files meets the default value.

Similarly, if you calculate the amount of maintenance log, the result will be as follows:

2.4 KB (Amount-of-output-at-start)
+{3.2 KB 18000}(Amount-of-output-when-all-requests-are-processed-in-model-1)
0.8 (Percentage-of-normal-case-requests)
+{3.6 KB 18000}(Amount-of-output-when-all-requests-are-processed-in-model-2)
0.2 (Percentage-of-abnormal-case-requests)
+0.4 KB (Amount-of-output-at-end)
=59043 KB 57.6 MB

If you assume 15 MB per log file as calculation result, the files count becomes four.

Notes
In the communication log, the amount of output changes according to the HTTP request and HTTP response.
When you use attachments for communication, the attachment contents are recorded in the communication log as
well, so when you use a particularly large attachment, you need to consider the size and number of files of the
communication log file.

39. Troubleshooting

919

39.4 Performance analysis trace (PRF)
The Trace based performance analysis indicates trace information for checking the performance analysis and failure.
By referencing the Trace based performance analysis, you can analyze the degree of achievement of request
processing when a system performance bottleneck or failure occurs.

For details about the performance analysis trace provided by Cosminexus system, see 4.6 Performance analysis trace
in the uCosminexus Application Server Maintenance and Migration Guide.

39.4.1 Collection level of Trace based performance analysis
The following table lists and describes the collection levels of the performance analysis trace that can be used with the
Cosminexus JAX-WS functionality or the JAX-RS functionality.

Table 39‒16: List of collection levels of Trace based performance analysis

No. Collection level Purpose

1 Standard level

(Default)

The trace information that can identify the boundary (entry and exit) between the
Cosminexus JAX-WS functionality or the JAX-RS functionality and other functionality is
output.

2 Detailed level The trace information about the internal processing of the Cosminexus JAX-WS
functionality or the JAX-RS functionality is output in addition to the contents of the
standard level.

3 Maintenance level This is a level used for collecting the maintenance information when failure occurs and is
not used normally.

39.4.2 Trace output information of Trace based performance analysis
The following table lists and describes the trace output information of the performance analysis trace that is output
with the Cosminexus JAX-WS functionality or the JAX-RS functionality.

Table 39‒17: Trace output information of Trace based performance analysis

No. File item Contents

1 Event ID This is the event ID of the trace collection point.

2 Client application
information

This is unique information between the Web Services client and Web Services within the
valid range of the root application information. However, this is not unique for the WS-
RM 1.2 functionality. See Option information

3 Root application
information

This is unique information in the processing for a series of requests. However, this is not
unique for the WS-RM 1.2 functionality. See Option information

4 Return code This is the type of trace collection points (normal end or abnormal end).

5 Interface name This is the class name of the trace collection point.

6 Operation name This is the method name of the trace collection point.

7 Optional information This is the option information.

This subsection describes the valid range of client application information and root application information and the
trace collection points.

(1) Valid range of client application information and root application information
This subsection describes the valid range of client application information and root application information separately
for a Web Service and a Web resource.

39. Troubleshooting

920

(a) For a Web Service

The following figure describes the valid range of the client application and root application information for Web
Services.

Figure 39‒5: Valid range of client application information and root application information (for a Web
Service)

The root application information (consists of the communication number, the process ID, and the IP address) is unique
in the processing for a series of requests.

If a request is sent from the Web Services client (A) that is started by running the startup command (cjclstartap)
of Java applications to the Web Service (B), the Web Service (B) becomes the Web Service client. Further, if Web
Service (B) that becomes the Web Service client sends requests to the other Web Services(C) and (D), the value from
A to D is a unique value.

The client application information (consists of the communication number, the process ID, and the IP address) is
unique in the processing for a series of requests of the Web Services client and Web Service within the valid range of
the root application information.

The client application information (1) to (4) form different client application information.

39. Troubleshooting

921

(b) For a Web resource

This subsection describes the valid range of client application information and root application information for Web
resources, based on the following figure.

Figure 39‒6: Valid range of client application information and root application information (for a Web
resource)

In the above figure, the Web resource client (A) and the Web resource or Web resource client (B) use a client API for
RESTful Web Services. The Web resource or Web resource client (B), the Web resource (C), and the Web resource
(D) are the Web resources operating on the JAX-RS engine.

The root application information will be unique throughout processing of all the requests made after the client calls a
client API for RESTful Web Services until the client receives an HTTP response.

On the other hand, each call will have unique client application information. Each of the client application information
from (1) to (5) in the figure has a unique value.

39. Troubleshooting

922

Even when the client retrieves an entity of the HTTP response from the ClientResponse object returned by either
of the following operations, inconsecutively to the respective operations, the root application information and the
client application information will be unique across the series of calls.

• The handle method of the Client class

• The method method of the WebResource class or the WebResource.Builder class or all the methods
compliant with the HTTP methods.

The following figure shows the concept. Note that the client application information is omitted in the figure because
the scope of the client application information and the root application information is the same.

Figure 39‒7: Inconsecutive calling and application information

Accordingly, the root application information (root application information (2) in the figure) used in inconsecutive
calling of the get(Class) method of the WebResource class and the getEntity(Class) method of the
ClientResponse class is unique, similar to the root application information (root application information (1) in the
figure) of the post(Class, Object) method of the WebResource class that is executed throughout after the
HTTP communication is established until the requests and responses are received.

39. Troubleshooting

923

Furthermore, the root application information (root application information (3) in the figure), which is used when
calling the handle(Class) method of the Client class and the getEntity(Class) method of the
ClientResponse class inconsecutively, is also unique.

(2) Trace collection point of Trace based performance analysis
The following figure shows the trace collection points of the trace based performance analysis output with the
Cosminexus JAX-WS functionality. Note that when you use the WS-RM 1.2 functionality, other Trace based
performance analysis that is not coded will also output. For details, see the section 39.4.2(2)(c) Trace collection points
when the WS-RM 1.2 functionality is used.

(a) Trace collection point when the POJO Web service is invoked

Figure 39-8and Figure 39-9 show the request-response operation and the one-way operation for the trace collection
points when the POJO Web Service is invoked. For the trace collection points when the Provider
Implementation class returns null in the one-way operation, see Figure 39-8.

39. Troubleshooting

924

Figure 39‒8: Trace collection point when the POJO Web Service is invoked (request-response operation)

39. Troubleshooting

925

Figure 39‒9: Trace collection points when the POJO Web Service is invoked (one-way operation)

The following table shows the relationship between each trace collection point and event ID:

Table 39‒18: Trace collection point and output information in the standard level (JAX-WS functionality and
POJO Web Service)

No. in
figure Collection point

Output information

Event ID Optional information

1 When the Web Service
client library starts

For stub-based Web Service
clients

0xA400 --

For dispatch-based Web Service
clients

0xA420

2 Before the HTTP message of the Web Service client library is
sent

0xA404 End point URL

3 When the servlet of the JAX-WS engine starts 0xA408 Context root

4 Before the Web Service is
invoked

For Web Service
Implementation Classes

0xA40C Service method name

39. Troubleshooting

926

No. in
figure Collection point

Output information

Event ID Optional information

4 Before the Web Service is
invoked

For Provider Implementation
Classes

0xA424 --

5 After the Web Service is
invoked

For Web Service
Implementation Classes

0xA410 Exception name for abnormal
end.

For Provider Implementation
Classes

0xA428

6 Before the HTTP message of the JAX-WS engine is sent 0xA414# --

7 After the HTTP message of the Web Service client library is
received

0xA418 Exception name for abnormal
end.

8 When the Web Service
client library ends

For stub-based Web Service
clients

0xA41C Exception name for abnormal
end.

For dispatch-based Web Service
clients

0xA42C

Legend:
--: There is no optional information.

#
The trace is not collected when the Provider Implementation class returns null after a Web Service is called.

Table 39‒19: Trace collection point and output information in the detail level (JAX-WS functionality and
POJO Web service)

No.in
figure Collection point

Output information

Event ID Optional information

9 Before the handler is invoked 0xA430# Handler position and handler
class name

10 After the handler is invoked 0xA434# Exception name for abnormal
end.

11 After the HTTP message of the Web Service client library is
sent

0xA438 Exception name for abnormal
end.

12 Before un-marshalling For stub-based Web Service
clients and Web Service
Implementation Classes

0xA43C --

For dispatch-based Web Service
clients and Provider
Implementation Classes

0xA450#

13 After un-marshalling For stub-based Web Service
clients and Web Service
Implementation Classes

0xA440 --

For dispatch-based Web Service
clients and Provider
Implementation Classes

0xA454#

14 After the HTTP message of the JAX-WS engine is sent 0xA444# Exception name for abnormal
end.

15 When the servlet of the JAX-WS engine ends 0xA448 Exception name for abnormal
end.

Legend:
--: There is no optional information.

39. Troubleshooting

927

#
The trace is not collected when the Provider Implementation class returns null after a Web Service is called.

(b) Trace collection point when invoking the EJB Web Service

The following figure shows the trace collection point for a request-response operation when invoking the EJB Web
Service. Note that the trace collection point of the Web Service client is same as when the POJO Web Service is
invoked. Furthermore, for the trace collection points for Web Services in a one-way operation, substitute invoking a
service by invoking an EJB container when referencing Figure 39-9 Trace collection points when the POJO Web
Service is invoked (a one-way operation).

Figure 39‒10: Trace collection point when invoking the EJB Web Service (request-response operations)

The following table lists and describes the relationship between each trace collection point and event ID:

39. Troubleshooting

928

Table 39‒20: Trace collection point and output information in the standard level (JAX-WS functionality and
POJO Web service)

No. in
Figure Collection point

Output information

Event ID Optional information

1 When the servlet of a JAX-WS engine starts 0xA408 Context root

2 Before the EJB container is
invoked

For Web Service
Implementation Classes

0xA40E Service method name

3 Before the EJB method is invoked 0x8482 --

4 After the EJB method is invoked 0x8483 --

5 After the EJB container is
invoked

For Web Service
Implementation Classes

0xA412 Exception name for abnormal
end

6 After the HTTP message of the JAX-WS engine is sent 0xA414 Exception name for abnormal
end

Legend:
--: There is no optional information.

Table 39‒21: Trace collection point and output information in the detail level (JAX-WS functionality and
POJO Web Service)

No. in
Figure Collection point

Output information

Event ID Optional information

7 Before the handler is invoked 0xA430 Handler position and handler
class name

8 After the handler is invoked 0xA434 Exception name for abnormal
end.

9 Before un-marshaling For Web Service
Implementation Classes

0xA43C --

10 After un-marshaling For Web Service
Implementation Classes

0xA440 --

11 After the HTTP message of the JAX-WS engine is sent 0xA444 Exception name for abnormal
end

12 When the servlet of the JAX-WS engine ends 0xA448 Exception name for abnormal
end

Legend:
--: There is no optional information.

(c) Trace collection points when the WS-RM 1.2 functionality is used

The following figure shows the trace collection points of the Trace based performance analysis output, when the WS-
RM 1.2functionality is used to send and receive the sequence life cycle messages:

39. Troubleshooting

929

Figure 39‒11: Trace collection points when the sequence life cycle messages are sent and received

The following table lists and describes the relationship between each trace collection point and event ID:

Table 39‒22: Trace collection points and output information in the standard level (Life cycle messages of
the WS-RM 1.2 functionality)

Number
in figure Collection point

Output information

Event ID Optional information

1 When the WS-RM 1.2 in the Web Service
client starts

0xA4B0 One of the following is output.

• CreateSequence

• CloseSequence, SequenceID

• TerminateSequence, SequenceID

2 Before the message in the Web Service client
sequence life cycle is sent

0xA4B1 One of the following is output.

• CreateSequence

• CloseSequence, SequenceID

• TerminateSequence, SequenceID

3 When the WS-RM 1.2functionality in the Web
Service client starts

0xA4B2 One of the following is output

• CreateSequence

• CloseSequence, SequenceID

• TerminateSequence, SequenceID

4 When the WS-RM 1.2 functionality in the
Web Service ends

0xA4B3 One of the following is output
CreateSequence, SequenceID

• CloseSequence, SequenceID

• TerminateSequence, SequenceID

• Exception name for abnormal end

39. Troubleshooting

930

Number
in figure Collection point

Output information

Event ID Optional information

5 After the sequence life cycle message in the
Web Service client is received.

0xA4B4 One of the following is output.

• CreateSequence

• CloseSequence, SequenceID

• TerminateSequence, SequenceID

• Exception name for abnormal end

6 When the WS-RM 1.2 functionality in the
Web Service client ends

0xA4B5 One of the following is output.

• CreateSequence, SequenceID

• CloseSequence, SequenceID

• TerminateSequence, SequenceID

• Exception name for abnormal end

The following figure shows the trace collection points of the Trace based performance analysis for the sequence traffic
messages of the WS-RM 1.2functionality:

Figure 39‒12: Trace collection points for the sequence traffic messages

The following table lists and describes the relationship between each trace collection point and event ID:

39. Troubleshooting

931

Table 39‒23: Trace collection points and output information in the standard level(Sequence traffic
messages of the WS-RM 1.2 functionality)

Number
in figure Collection point

Output information

Event ID Optional information

7 When the WS-RM 1.2 functionality in the
Web Service client starts in the request

0xA4B6 SequenceID, MessageNumber

8 When the WS-RM 1.2 functionality in the
Web Service client ends in the request

0xA4B7 One of the following is output.

• SequenceID, MessageNumber

• Exception name for abnormal end

9 When the WS-RM 1.2 functionality in the
Web Service starts in the request

0xA4B8 SequenceID,MessageNumber

10 When the WS-RM 1.2 functionality in the
Web Service ends in the request

0xA4B9 One of the following is output

• SequenceID, MessageNumber

• Exception name for abnormal end

11 When the WS-RM 1.2 functionality in the
Web Service starts in the response .#1

0xA4BA SequenceID, MessageNumber

12 When the WS-RM 1.2 functionality in the
Web Service ends in the response #2

0xA4BB One of the following is output

• SequenceID, MessageNumber

• Exception name for abnormal end

13 When the WS-RM 1.2 functionality in the
Web Service client starts in the response

0xA4BC SequenceID, MessageNumber

14 When the WS-RM 1.2 functionality in the
Web Service client ends in the response

0xA4BD One of the following is output.

• SequenceID

• Exception name for abnormal end.

#1
Not output when duplicate message is received.

#2
Not output when HTTP status code 202 is returned on receiving the duplicate message.

The following figure shows the trace collection points of the Trace based performance analysis for the Ack messages
of the WS-RM 1.2functionality:

39. Troubleshooting

932

Figure 39‒13: Trace collection point of Ack message

The following table lists and describes the relationship between each trace collection point and event ID:

Table 39‒24: Trace collection points and output information in the detailed level (Ack message of the WS-
RM 1.2 functionality)

Number
in figure Collection point

Output information

Event ID Optional information

15 When the WS-RM 1.2 functionality in the
Web Service client starts

0xA4BE SequenceID

16 When the WS-RM 1.2 functionality in the
Web Service starts

0xA4C0 SequenceID

17 When the WS-RM 1.2 functionality in the
Web Service ends

0xA4C1 One of the following is output.

• SequenceID

• Exception name for abnormal end.

18 When the WS-RM 1.2 functionality in the
Web Service client ends

0xA4BF One of the following is output.

• SequenceID

• Exception name for abnormal end.

(d) Trace collection points when calling RESTful Web Services

The following figure shows the trace collection points when calling RESTful Web Services (Web Services) separately
for resources and clients.

For resources

39. Troubleshooting

933

Figure 39‒14: Trace collection points when calling RESTful Web Services(for resources)

The following table lists the trace collection points and their corresponding event IDs.

Table 39‒25: Trace collection points and the information output at the standard level (JAX-RS functionality
and RESTful Web Services)

Number
in figure Collection point

Output information

Event ID Optional information

1 When starting a servlet of the JAX-RS engine 0xA4A0 --

2 Before calling a Web resource 0xA4A1 One of the following is output:

• JResponseOutInvoker
• ObjectOutInvoker
• ResponseOutInvoker
• TypeOutInvoker
• VoidOutInvoker
• VoidVoidMethodInvoker

HttpReqResDispatcher

3 Before unmarshalling 0xA4A6 --

4 After unmarshalling 0xA4A7 The exception name when an exception is
thrown

5 After calling a Web resource 0xA4A3 One of the following is output.#

• JResponseOutInvoker

• ObjectOutInvoker

39. Troubleshooting

934

Number
in figure Collection point

Output information

Event ID Optional information

5 After calling a Web resource 0xA4A3 • ResponseOutInvoker

• TypeOutInvoker

• VoidOutInvoker

• VoidVoidMethodInvoker

• HttpReqResDispatcher

6 Before marshalling 0xA4A8 --

7 After marshalling 0xA4A9 The exception name when an exception is
thrown

8 Before the JAX-RS engine sends an HTTP
message

0xA4A1 The exception name when an exception is
thrown

Legend
--: No optional information is available.

Table 39‒26: Trace collection points and the information that is output at the standard level (JAX-RS
functionality and RESTful Web Services)

Number
in figure Collection point

Output information

Event ID Optional Information

9 When matching an HTTP request and a
resource

0xA4AC One of the following is output:

• accept root resource classes
• forwarding view to JSP page
• accept implicit view
• match path
• accept sub-resource methods
• accept resource methods
• matched sub-resource method
• matched resource method
• accept resource message in
ResourceClassRule

• accept resource message in
ResourceOjectRule

• accept right hand path
redirect

• accept right hand path
• accept sub-resource locator
• accept termination
• matched message body reader
• matched exception mapper
• mapped exception to response
• matched message body writer

For clients

The following figures show each use case described in 11.4.1 Use case of a Web resource client.

39. Troubleshooting

935

Figure 39‒15: Trace collection points when invoking RESTful Web Services (for a client)

39. Troubleshooting

936

39. Troubleshooting

937

The following table lists and describes the relationship between each trace collection point and event ID.

Table 39‒27: Trace collection points in the standard level and information that is output (client APIs for the
JAX-RS functionality and RESTful Web Services)

No. in
figure Collection point

Output information

Event ID Optional information

1 When calling an HTTP method starts 0xA4A4 End point URL

2 Before marshalling 0xA4A8 --

3 After marshalling 0xA4A9 --

4 When calling an HTTP method is complete 0xA4A5 The exception name when an exception is
thrown

5 Before unmarshalling 0xA4A6 --

6 After unmarshalling 0xA4A7 The exception name when an exception is
thrown

Legend
--: No optional information is available.

39. Troubleshooting

938

39.4.3 Method of performance analysis based on Trace based
performance analysis

The Trace based performance analysis file is a text file that outputs the Trace based performance analysis in a CSV
format.

(1) For Web Services
This subsection describes how to use the performance analysis trace file for analyzing the response time of all the
Web Services including the JAX-WS engine and the response time of a Web Service (UP). Note that this subsection
describes an example of Web Services developed using Web Service Implementation Classes and stub-based Web
Service clients. The event IDs might differ for other Web Services and Web Service clients, so substitute and read as
and when required.

Using the event IDs '0xA408', '0xA40C', '0xA410', and '0xA414' as the keys, the Trace based performance analysis
file will be filtered. The following table lists and describes the trace collection points for each event ID.

Table 39‒28: Trace collection points corresponding to the event IDs to be filtered

No. Event ID Trace collection points

1 0xA408 When the servlet of the JAX-WS engine starts

2 0xA40C Before the Web Service is invoked

3 0xA410 After the Web Service is invoked

4 0xA414 Before a SOAP Message of the JAX-WS engine is sent

The following figure shows an example of filtering the trace based performance analysis files by setting the event IDs
'0xA408', '0xA40C', '0xA410', and '0xA414' as keys, when a request is sent twice.

Figure 39‒16: Example of filtering the Trace based performance analysis

You can check the request processing status from the client application information. If the same request is being
processed, the same client application information is output.

You can analyze the response time of all the Web Services including the JAX-WS engine from the trace collection
time of the event IDs '0xA408' and '0xA414' in the identical client application information. You can also analyze the
response time of a Web Service (UP) from the trace collection point of '0xA40C' and '0xA410'.

39. Troubleshooting

939

(2) For Web resources
This subsection describes how to analyze the response time of Web resources including the JAX-RS engine and the
response time of a Web resource (UP) by using the performance analysis trace file.

You filter the performance analysis trace file by setting the event IDs [0xA4A0], [0xA4A2], [0xA4A3], and
[0xA4A1] as keys. The following table lists the event IDs and their trace collection points.

Table 39‒29: Trace collection points for the event IDs to be filtered

No. Event ID Trace collection point

1 0xA4A0 When starting a servlet of a JAX-RS engine

2 0xA4A2 Before calling a Web resource

3 0xA4A3 After calling a Web resource

4 0xA4A1 Before sending an HTTP message of a JAX-RS engine

The following figure shows an example of filtering the performance analysis trace files by setting the event IDs
[0xA4A0], [0xA4A2], [0xA4A3], and [0xA4A1] as keys, when a request is sent twice.

Figure 39‒17: Example of filtering performance analysis traces

You can check the request processing status from the client application information. When processing the same
request, the same client application information is output.

You can analyze the response time of all the Web resources including the JAX-RS engine, starting from the time of
the trace collection for the event IDs [0xA4A0] and [0xA4A1] of the same client application information. Also, you
can analyze the response time of the Web resource (UP) starting from the time of the trace collection for [0xA4A2]
and [0xA4A3].

39. Troubleshooting

940

Appendixes

941

A. Migrating from an Earlier Version
This appendix describes the migration of SOAP applications developed by using the SOAP application development
support function and SOAP Communication Infrastructure that are functionality of earlier versions.

The SOAP applications and SOAP clients developed using the SOAP application development support function and
the SOAP Communication Infrastructure can be used in the same environment by installing an upgraded version. In
this case, specific settings are not required.

When you use the SOAP applications and SOAP client developed using the SOAP application development support
function and the SOAP Communication Infrastructure on the JAX-WS engine, the environment switches to that of the
JAX-WS engine after installing the upgraded version.

Also, the Web Service and Web Service client are created again. At this time, create the Web Service and Web
Service client in compliance with the support range of JAX-WS 2.1 specifications and Cosminexus JAX-WS
functionality.

A.1 Installing an upgraded version
The SOAP application development support function, SOAP Communication Infrastructure, JAX-WS functionality,
and JAX-RS functionality are installed when installing Cosminexus.

This subsection describes the procedure and precautions for installing an upgraded version on a machine that has an
earlier version installed.

(1) Migrating a J2EE server
You install an upgraded version of Cosminexus in accordance with the migration procedure described in 10.3
Migration procedure of Application Server in the uCosminexus Application Server Maintenance and Migration Guide
(in the case of update installation) or 3.9.2 Migration procedure of Application Server in the uCosminexus Application
Server Maintenance and Migration Guide.

If you install an upgraded version, the settings are such that SOAP application development support function and the
SOAP Communication Infrastructure are used.

(2) Un-deploying a Web Service
When you migrate a Web Service (or a SOAP application), first un-deploy the Web Service (or the SOAP application)
deployed on the J2EE server.

(3) Switching the operating environment
The switching of the SOAP application development support function, SOAP Communication Infrastructure, JAX-
WS engine, and the JAX-RS engine is defined in the option definition file for J2EE servers. This subsection describes
the specified contents and the specification method of the option definition file for J2EE servers.

For details on the option definition file for J2EE servers, see 2.3 usrconf.cfg (Option definition file for J2EE servers)
in the manual uCosminexus Application Server Definition Reference Guide.

• When the JAX-WS and JAX-RS engines are used
When you use the JAX-WS and JAX-RS engines, enable the cjjaxws.jar and cjjaxrs.jar lines in
add.class.path of the option definition file for J2EE servers and disable the hitsaaj.jar line. Specify
the definition according to the following example:

...
#add.class.path=<cosminexus.home>\c4web\lib\hitsaaj.jar
add.class.path=<cosminexus.home>\jaxws\lib\cjjaxws.jar
add.class.path=<cosminexus.home>\jaxrs\lib\cjjaxrs.jar
...

• When the SOAP application development support function/ SOAP Communication Infrastructure is used
When you use the SOAP application development support function/ SOAP Communication Infrastructure, enable
the hitsaaj.jar line in add.class.path of the option definition file for J2EE servers and disable the
cjjaxws.jar line. Specify the definition according to the following example:

A. Migrating from an Earlier Version

942

...
add.class.path=<cosminexus.home>\c4web\lib\hitsaaj.jar
#add.class.path=<cosminexus.home>\jaxws\lib\cjjaxws.jar
...

Notes
You specify the settings so as to avoid the inconsistency in the lines to be enabled and disabled. For example, the
operations might not function properly if all the lines hitsaaj.jar, cjjaxws.jar, and cjjaxrs.jar are
removed or added.

The methods of editing the option definition file for J2EE servers are as follows:

In both the described methods, restart the J2EE server after editing (storing) the option definition file for the J2EE
server. If the J2EE server is not restarted, the edited contents are not applied.

(a) Directly editing the option definition file for J2EE servers

To directly edit the file, open the option definition file for a J2EE server stored in the following location, in a text
editor and change the contents:

Cosminexus-installation-directory/ CC/ server/ usrconf/ ejb/ J2EE-server-name/ usrconf.cfg

(b) When using the management portal of Management Server

When using the management portal of Management Server, you specify the settings using the extension parameters of
the J2EE container settings window.

The following figure describes an example for specifying the settings with the JAX-WS and JAX-RS engines.

Figure A‒1: Example of settings with the JAX-WS and JAX-RS engines when using the management
portal

The following figure shows an example for specifying the settings when using the SOAP application development
support function and SOAP Communication Infrastructure.

A. Migrating from an Earlier Version

943

Figure A‒2: Example of settings for the SOAP application development support function and SOAP
Communication Infrastructure when using the management portal

For details on setting the J2EE container window of the management portal, see the section 10.9.2 J2EE container
settings in the uCosminexus Application Server Management Portal User Guide.

(c) When the Smart Composer functionality is used

When you use the Smart Composer functionality, the option definition file for J2EE servers is added as an extension
parameter of J2EE in the Easy Setup definition file. For details on the Smart Composer functionality, see the
uCosminexus Application Server System Setup and Operation Guide. For details on the Easy Setup definition file, see
Chapter 4 Files Used in the Smart Composer functionality in the uCosminexus Application Server Definition
Reference Guide.

The following example describes the settings when using the JAX-WS and JAX-RS engines:

<param>
 <param-name>add.class.path</ param-name>
 <param-value><cosminexus.home>\jaxws\lib\cjjaxws.jar</ param-value>
</ param>
<param>
 <param-name>add.class.path</param-name>
 <param-value><cosminexus.home>\jaxrs\lib\cjjaxrs.jar</param-value>
</param>

The following is an example of setup when the SOAP application development support function and SOAP
Communication Infrastructure are used:

<param>
 <param-name>add.class.path</ param-name>
 <param-value><cosminexus.home>\c4web\lib\hitsaaj.jar</ param-value>
</ param>

(4) 08-70 are upgraded to 09-00 or later
This subsection describes the notes for upgrading from 08-00 through 08-70 and installing Cosminexus 09-00 or later.

(a) Verifying host name in an SSL connection

Hostname Verification in an SSL connection differs in 08-00 through 08-70 and in 09-00 or later.

A. Migrating from an Earlier Version

944

08-00 through 08-70
When connecting from a Web Service client to an SSL protocol-compliant Web Service, whether the host name
included in the endpoint address matches with the authorized host name is not verified.

09-00 or later
When connecting from a Web Service client to an SSL protocol-compliant Web Service, whether the host name
included in the endpoint address matches with the authorized host name is verified. HostnameVerifier to be
used is a part of the default implementation of JDK. For details on the operations of default
HostnameVerifier of JDK, see the JDK documentation.
Specify true in the com.cosminexus.xml.ws.client.http.HostnameVerificationProperty
property to disable the verification of the host names in 09-00 or later in the same way as in 08-00 through 08-70.

(b) Mapping from a fault through an exception class

When you execute the cjwsimport command, a WSDL fault is mapped to a Java type according to the JAX-WS
2.2 specifications. In such cases, the conditions for creating the wrapper exception class differ in 08-00 through 08-70
and in 09-00 or later.

08-00 through 08-70
When the corresponding wsdl:fault element is defined for the child element of the wsdl:binding and
wsdl:portType elements, the wrapper class is generated. If the wsdl:fault element is defined for any one
of the wsdl:binding and wsdl:portType elements, the wrapper class is not generated.

09-00 or later
When the wsdl:fault element is defined for the child element of the wsdl:portType element, the wrapper
class is generated. You need not define the corresponding wsdl:fault element as the child element of the
wsdl:binding element.

(c) Operation of the Javax.activation.DataHandler object

The operation of the javax.activation.DataHandler object differs in 08-00 to 08-70 and 09-00 or later.

08-00 to 08-70
When the data received in the attachment of the wsi: swaRef format or MTOM/XOP specifications format is
the javax.activation.DataHandler object, import all the data from the input stream.

09-00 or later
When the data received in the attachment of the wsi: swaRef format or the MTOM/XOP specification format
is the the javax.activation.DataHandler object, sequentially import the data from the input stream.
Because the receiving process does not complete at the receiver side of the attachment in the wsi: swaRef
format or the MTOM/XOP specification format unless all the data is imported from the input stream contained in
the javax.activation.DataHandler object, the sending process at sender side waits until the receiving
process completes at the receiving side.
To eliminate this state, you must either import all the data from the java.io.InputStream object contained
in the javax.activation.DataHandler object, or export the imported stream data to the output stream by
using writeTo(java.io.OutputStream) method of the javax.activation.DataHandler class.

(d) Operation of the javax.xml.transform.Source object

The operation of the javax.xml.transform.Source object differs in 08-00 to 08-70 and 09-00 or later.

08-00 to 08-70
When the data received in the attachment of MTOM/XOP specification format is the
javax.xml.transform.Source object, import all the data from the input stream.

09-00 or later
When the data received in the attachment of MTOM/XOP format is the javax.xml.transform.Source
object, sequentially import the data from the input stream. The JAXB converts the
javax.xml.transform.Source object into javax.xml.transform.stream.StreamSource
object.
Because the receiving process does not complete at the receiving side of attachment in the MTOM/XOP
specification format unless all the data is imported from the input stream contained in the

A. Migrating from an Earlier Version

945

javax.xml.transform.stream.StreamSource object, the sending process at the sender side waits
until the receiving process completes at the receiving side.
To eliminate this state, you must import all the data from the java.io.Reader object contained in the
javax.xml.transform.stream.StreamSource object.

(e) Differences in operation when apt command is used

When the apt command is used while combining all the following conditions, the operations differ in 08 to 08-70
and 09-00 or later.

• The document/literal style is specified.

• The Web Services Implementation Class has an implicit SEI.

• The Web Services Implementation Class inherits another Web Services Implementation Class and overrides the
methods of the parent class.

• The parent Web Services Implementation Class has two or more methods and the javax.jws.WebMethod
annotation is annotated in the initial public method.

• The javax.jws.WebMethod annotation is not annotated in the second and subsequent public methods in the
parent Web Services Implementation Class.

• The javax.jws.WebMethod (exclude=true) annotation is annotated by overriding the initial public
methods in the child Web Services Implementation Class.

• The second and subsequent public methods are not overridden in the parent Web Services Implementation Class
of the child Web Services Implementation Class.

08-00 to 08-70
The error message is output in the standard error output and log, and the process ends (KDJW61093-E).

09-00 or later
The process successfully ends.

The examples of implementation are as follows.

Parent Web Services Implementation Class

@WebService
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT, use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
public class AddNumbersParentImpl {
 ...
 @WebMethod
 public int addNumbers1(int number1, int number2) {
 ...
 }
 public int addNumbers2(int number1, int number2) {
 ...
 }
}

Child Web Services Implementation Class

@WebService
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT, use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
public class AddNumbersChildImpl extends AddNumbersParentImpl {
 ...
 @WebMethod(exclude=true)
 public int addNumbers1(int number1, int number2) {
 ...
 }
}

(f) Differences in run time operation at service side when the addressing functionality is used

When the addressing functionality is used and when all the following conditions are combined, the run time operations
at the service side differ in 08-50 to 08-70 and 09-00 or later.

A. Migrating from an Earlier Version

946

• The messages are in the SOAP 1.1 format.

• The wsa: ReplyTo element does not exist in the addressing header of the request message.

• The wsa: FaultTo element is present in the addressing header of the request message, and the URI of the Web
Service is set.

• If an error occurs on the service side, and the service side returns a SOAP fault.

08-50 to 08-70
Returns HTTP Status Code: 202

09-00 or later
Returns HTTP Status Code: 500.

A.2 Compatibility of WSDL created in an earlier version
WSDL created in an earlier version can be used on the JAX-WS engine. However, there is a limit to the XML Schema
coded in WSDL. This subsection describes the limitations on the data typeconstraint facet, and occurrence count.

The following table describes the data type limitations:

Table A‒1: XML Schema data type limitations

No. Data type Maximum
value

Maximum
digits

1 duration type

(format: PnYnMnDTnHnMnS)

nY (year) 2147483647 --

2 nM (month)

3 nD (day)

4 nH (hour)

5 nM (minute)

6 nS (second) 1 second or
more

7 Less than 1
second

8 date type (format: CCYY-MM-DD) CCYY#1

9 gYearMonth type (format: CCYY-MM) CCYY#1

10 gYear type (format: CCYY) CCYY#1

11 dateTime type (format: CCYY-MM-
DDThh:mm:ss)

CCYY#1

Less than 1 second#2

12 dateTime type (format: CCYY-MM-
DDThh:mm:ss)

Less than 1 second#2

13 time type (format: hh:mm:ss) Not defined.

14 base64Binary type Depends on
the memory.

15 hexBinary type

16 decimal type

17 integer type

18 nonPositiveInteger type

19 nonNegativeInteger type

A. Migrating from an Earlier Version

947

No. Data type Maximum
value

Maximum
digits

20 Not defined. Depends on
the memory.

negativeInteger type

21 positiveInteger type

Legend:
--: Not applicable

#1
If exceeding "9999", you can add the digits.

#2
Subsequent to "ss", after the decimal point, you can specify a value that is less than 1 second.

The following table describes the limitations related to the constraint facet:

Table A‒2: Limitations related to the XML Schema constraint facet

No. Constraint facet Maximum value Maximum digits

1 length 2147483647 --

2 minLength

3 maxLength

4 totalDigits

5 fractionDigits

6 maxInclusive Not defined. Depends on the memory.

7 maxExclusive

8 minInclusive

9 minExclusive

Legend:
--: Not applicable

The following table describes the limitations on the specification of the occurrence count:

Table A‒3: Limitations related to the specification of the XML Schema occurrence count

No. Specification of the occurrence
count Maximum value Maximum digits

1 minOccurs 2147483647 --

2 maxOccurs

Legend:
--: Not applicable

A. Migrating from an Earlier Version

948

B. Migrating from the POJO Web Service to the EJB Web
Service

You can use the EJB functionality by operating the Web Service developed in POJO as an EJB Web Service. This
appendix describes how to migrate the POJO Web Service to the EJB Web Service. Note that when the POJO Web
Service is adequate, migration to EJB is not required.

The following table describes how to migrate the POJO Web Service to the EJB Web Service:

Table B‒1: How to migrate to the EJB Web Service

No. Components of the POJO
Web Service How to migrate to the EJB Web Service

1 Web Service Implementation
Class

Add javax.ejb.Stateless annotation in the source code and compile.

2 Java class other than No.1
(SEI, JavaBeans class (Stub))

You can use the class file as is even after migrating to the EJB Web Service.

3 WSDL The URL that is published as a Web Service differs in the POJO Web Service and
the EJB Web Service. Therefore, change the URL related values for the location
attributes of soap:address element, and then use. For the URL of EJB, see
10.2.2(1) Discovery.

4 DD such as cosminexus-
jaxws.xml, web.xml, and
application.xml

You cannot use the DD created for the POJO Web Service as is in the EJB Web
Service. Create a new DD for the EJB Web Service.

While migrating the POJO Web Service to the EJB Web Service, you must modify the source code of the Web
Service Implementation Class. The description in this section assumes that the class files required for the execution of
the POJO Web Service and the source code required for the Web Service Implementation Class are already available.

The following is the procedure for migration:

(1) Creating the EJB Web Service Implementation Class
Annotate in the source code of a POJO Web Service Implementation Class by using the javax.ejb.Stateless
annotation. Compile the annotated source code and create the class file.

(2) Diverting the class files required for executing the Web Service and the WSDL
You can also use the class files of SEI and JavaBean class (stub) required for executing the POJO Web Service when
executing as an EJB Web Service.

If WSDL used for executing the POJO Web Service exists, these files can be used for executing the EJB Web Service
as well. However, because the URL published as a Web Service differs when executing the POJO Web Service as an
EJB Web Service, change and then use the URL related values for the location attributes of soap:address element of
WSDL. For the URL of the EJB Web Service, see 10.2.2(1) Discovery.

(3) Creating a EJB JAR file
Store the class files and WSDL of (1) (2) in the EJB JAR file. For the configuration of the EJB JAR file, see 3.5.2
Configuring EJB JAR files.

(4) Creating a Deployment descriptor
Create application.xml that specifies the EJB JAR file created in (3). The following is an example of
application.xml. Specify the name of the EJB JAR file created in (3) in statelessjava.jar.

<?xml version="1.0" encoding="UTF-8"?>
<application version="6" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

B. Migrating from the POJO Web Service to the EJB Web Service

949

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/application_6.xsd">

 <description>Sample application "statelessjava_dynamic_generate"</
description>
 <display-name>Sample_application_statelessjava_dynamic_generate </display-name>
 <module>
 <ejb>statelessjava_dynamic_generate.jar</ejb>
 </module>
</application>

For creating application.xml of version 5, set up the version attribute of the application element to 5
and the second location information of the xsd:schemaLocation attribute to http://
java.sun.com/xml/ns/javaee/application_5.xsd.

In EJB Web Service, create web.xml while adding settings of the Servlet filter to web.xml. For details, see 3.5.4
Creating WAR file for settings of EJB Web Service. Also, cosminexus-jaxws.xml does not apply to the EJB
Web Service.

(5) Creating a EAR file
Create an EAR file containing the EJB JAR files created in (3) (4) and application.xml. For EAR file
configuration , see 3.5.3 Creating EAR files.

B. Migrating from the POJO Web Service to the EJB Web Service

950

C. Calculating the Memory Usage for JAX-WS Engine
This appendix describes the memory usage for the JAX-WS engine in the Java heap area (machine on which Web
Service is executed) using the following cases:

• Memory usage when the application starts

• Memory usage per request

• Memory usage per request when attachment is used

• Memory usage per unit time

Note that the default value is assumed for all the settings related to the JAX-WS engine. The memory usage explained
hereafter includes the memory usage in the internal classes of the JAX-WS engine, the memory usage for Java API
invoked by the internal classes and the amount of memory used in the internal implementation classes of JavaVM.

Furthermore, the JAX-WS engine-specific memory usage explained hereafter is a rough guideline. The memory usage
in the actual system might differ slightly.

C.1 Memory usage when the application starts
This subsection describes the memory usage when the application including the Web Service starts. Application
startup indicates when the cjstartapp command is executed or directly after the J2EE application is started from
the Management Server.

When the application starts, the operations such as initialization of classes required for executing the JAX-WS engine
are performed. The amount of memory required for initialization is about 21.2 MB regardless of the processing of the
Web Service Implementation Class.

C.2 Memory usage per request
This subsection describes the memory required for processing each request. One request indicates the operations from
the receipt of the request from the Web Service client, processing of the request, until the returnof a response.

In the first request and from the second request onwards, the JAX-WS engine-specific memory used is different.

The following indicates memory usage during the first request:

memory-usage-per-request(first) =
memory-used-by-the-Web-Service-Implementation-Class + JAX-WS-engine-specific-memory-
usage(2.43 MB)

The following indicates memory usage from the second request onwards:

memory-usage-per-request(second-time-onwards) =
memory-used-by-the-Web-Service-Implementation-Class + JAX-WS-engine-specific-memory-
usage(119.9 KB)

Also, the formula for calculating the memory usage when multiple requests arrive per unit time is as follows:

memory-usage-per-unit-time =
memory-usage-per-request(first) + {memory-usage-per-request(second-time-onwards)
(number-of-requests-processed-per-unit-time - 1)}

C.3 Memory usage per request when attachments are used
This subsection describes the amount of memory required for processing each request in a Web Service application
using attachments. One request indicates the operations from the receipt of the request from the Web Service client,
processing of the request, until the return of a response.

The calculation method described in this subsection, assumes a Web Service that receives an attachment from the Web
Service client and returns the attachment as is to the Web Service client.

C. Calculating the Memory Usage for JAX-WS Engine

951

(1) When the attachment size is 10 KB
The following indicates memory usage during the first request:

memory-usage-per-request(first) =
memory-used-by-the-Web-Service-Implementation-Class + JAX-WS-engine-specific-memory-
usage(2.68 MB)

The following indicates memory usage from the second request onwards:

memory-usage-per-request(second-time-onwards) =
memory-used-by-the-Web-Service-Implementation-Class + JAX-WS-engine-specific-memory-
usage(193 KB)

(2) When the attachment size is 100 KB
The following indicates memory usage during the first request:

memory-usage-per-request(first) =
memory-used-by-the-Web-Service-Implementation-Class + JAX-WS-engine-specific-memory-
usage (2.73 MB)

The following indicates memory usage from the second request onwards:

memory-usage-per-request(second-time-onwards) =
memory-used-by-the-Web-Service-Implementation-Class + JAX-WS-engine-specific-memory-
usage (411 KB)

(3) When the attachment size is 1 MB
The following indicates memory usage during the first request:

memory-usage-per-request(first) =
memory-used-by-the-Web-Service-Implementation-Class + JAX-WS-engine-specific-memory-
usage (4.54 MB)

The following indicates memory usage from the second request onwards:

memory-usage-per-request(second-time-onwards) =
memory-used-by-the-Web-Service-Implementation-Class + JAX-WS-engine-specific-memory-
usage (2.24 MB)

C.4 Calculating the memory usage per unit time
The formula for calculating the memory usage when multiple requests arrive per unit time is as follows:

memory-usage-per-unit-time =
memory-usage-per-request(first) + {memory-usage-per-request(second-time-onwards)
(number-of-requests-processed-per-unit-time - 1)}

In this example, the memory usage per hour is calculated for a system in which 60 requests arrive in one minute and
attachments of about 10 KB are handled on an average. In this system, the memory used by the Web Service
Implementation Class is assumed to be 100 KB per request.

In this case, the memory usage per request for the first time is as follows:

100KB + 2.68MB = 2.78MB

Also, the memory usage per request from the second time onwards is as follows:

100KB + 193KB = 293KB

C. Calculating the Memory Usage for JAX-WS Engine

952

From these results, you can calculate the memory usage per hour as follows:

2.78MB + {293KB x (60 x 60 - 1)} = 1,033MB

If you add the amount of memory for application startup to the memory usage per hour, you understand the amount of
memory of Java heap used in one hour after this application starts.

21.2MB + 1, 033MB = 1,054.2MB

C. Calculating the Memory Usage for JAX-WS Engine

953

D. Glossary
Terminology used in this manual

See the manual uCosminexus Application Server and BPM/ESB Platform Terminology Guide.

D. Glossary

954

Index

A
Action definition file (JAX-RS) 252
action definition file (JAX-WS) 134
action element (javax.jws.WebMethod) 355
action for abnormal termination (apt command) 279
action for abnormal termination (cjwsgen command) 289
action for abnormal termination (cjwsimport command) 276
add code that sets the handler chain 868
adding sequence termination processing in implementation

class of Web service client (starting from WSDL, WS-
RM 1.2) 833

adding WS-RM Policy in WSDL file (starting from WSDL,
WS-RM 1.2) 827

AddressingFeature 441
AddressingFeature class and anonymous URI 885
addressing functionality 871
addressing functionality 872
annotation (JAX-RS) 549
annotation for declaring media type 556
annotation used in attachment in MTOM/XOP specification

format 755
apt command 277
argument of the apt command 277
array 151
asynchronous communication 873
attachment data size 735
attachment functionality (MTOM/XOP) 753, 754
attachment functionality (wsi:swaRef) 724
attachment functionality (wsi:swaRef format) 723
AttachmentPart class 519
Attachment part MIME header (attachment to SOAP

message, and MTOM//XOP) 764
attachment that can be specified in

javax.activation.DataHandler type 726
attachment WSDL (MTOM/XOP) 757
automatically generated class 8
available binding declaration (External binding file) 322
available binding declarations (Embedded binding

declaration) 317
available data types (POJO to JSON mapping) 415

B
behavior of JAX-WS engine (MTOM/XOP) 758
behavior of JAX-WS engine on Web Service client

machine (MTOM/XOP) 759
behavior of JAX-WS engine on Web Service machine

(MTOM/XOP) 758
binding attribute (wsdl:port element) 488
boundary string between MIME parts (attachment to SOAP

Message and wsi:swaRef format) 733
boundary string of the HTTP header and HTTP body

(attachment to SOAP Message and wsi:swaRef format)
733

boundary string of the MIME header and MIME body of
the attachment part (attachment to SOAP Message and
wsi:swaRef format) 733

boundary string of the MIME header and MIME body of
the root part (attachment to SOAP Message and
wsi:swaRef format) 732

built-in request method identifier (JAX-RS) 554

C
calculating the memory usage for JAX-WS engine 951
calculating the memory usage per unit time 952
catalog file 722
(catalogue functionality) 714
catalog functionality 713, 714
changing properties of request context (injecting service

classes and ports) 201
checking syntax (kdjj20003-wandkdjj10006-e) when

initializing 267
childElementName attribute (jaxws:bindings element) 326
CID URL scheme type 732
cjwsgen command 280
cjwsimport command 270
class-based mapping 304
classname element (javax.xml.ws.faultaction) 370
className element (javax.xml.ws.RequestWrapper) 372
className element (javax.xml.ws.ResponseWrapper) 374
client API 440, 442
client APIs for RESTful Web Services 8
coding example of servlet-mapping element 34, 42
coding format of the node attribute (jaxws:bindings

element) 322
coding format of the version attribute (jaxws:bindings

element) 322
coding format of the wsdlLocation attribute

(jaxws:bindings element) 321
Coding order of MIME part(MTOM//XOP) 765
coding order of MIME part (wsi:swaRef format) 733
coding rules for action definition file (JAX-RS) 252
coding rules for the action definition file 134
collection level of Trace based performance analysis 920
com.cosminexus.jaxws.http.proxyPassword 181
com.cosminexus.jaxws.http.proxyUser 181
com.cosminexus.jaxws.https.proxyPassword 182
com.cosminexus.jaxws.https.proxyUser 182
com.sun.xml.ws.Closeable class 531
com.sun.xml.ws.developer.StreamingAttachment

annotation 350
com.sun.xml.ws.developer.StreamingAttachmentFeature

class 450
com.sun.xml.ws.developer.StreamingDataHandler class 452
combination of Java types and MIME media types available

for HTTP request entity 698
combination of Java types and MIME media types available

for HTTP response entity 700
combinations of parameters and return values (non-wrapper

style) 339

955

combinations of parameters and return values (wrapper
style) 337

command 7
commands 269
common definition file 134
Common definition file 252
communication log 907
compatibility of WSDL created in an earlier version 947
compiling Implementation Classes for Web Services clients

(starting from SEI and cjwsgen command) 94
compiling Implementation Classes of Web resource client

(RESTful Web Services) 246
compiling implementation class for web service client

(starting from SEI and addressing) 898
compiling implementation class for web service client

(starting from SEI and streaming) 808
compiling implementation class for Web Service

client(starting from SEI or attachment in MTOM/XOP
specification format) 785

compiling implementation class for Web Service client
(starting from WSDL/WS-RM 1.2) 834

compiling Implementation Class for Web Services client
(starting from provider and SAAJ) 131

compiling Implementation Class for Web Services
client(starting from SEI and EJB Web Service) 118

compiling Java sources (RESTful Web Services) 236
compiling the implementation class for the Web Service

client (Starting from SEI and attachments of wsi:swaRef
format) 751

compiling the implementation class for the Web Service
client (Starting from SEI or customization) 106

compiling the implementation class for the Web Service
client (Starting from WSDL) 71

compiling the implementation class for the Web Service
client (Starting from SEI) 83

compiling the Web Service Implementation Class (Starting
from WSDL) 67

compiling Web Service Implementation Class (starting
from WSDL, WS-RM 1.2) 829

compiling Web Services Implementation Classes (starting
from SEI or attachment in MTOM/XOP specification
format) 780

compiling Web Services Implementation Class (starting
and customizing with SEI) 102

compiling Web services Implementation Class (starting
from SEI) 78

compiling Web Services Implementation Class(starting
from SEI and attachments of wsi:swaref format) 746

compiling Web Services Implementation Classes(starting
from SEI and addressing) 892

compiling Web Services Implementation Class (starting
from SEI and EJB Web Service) 113

compiling Web Services Implementation Class (starting
from SEI and streaming) 802

concurrent specification of the embedded binding
declaration and external binding file 324

conditions for issuing the Meta data 173
conditions for Java method parameters 337
conditions for method name 333
conditions for publishing meta data 259
conditions for SEI 332
conditions for SEI name 332

conditions for service name and port name 312
conditions for the fault name 305
conditions for the namespace 292
conditions for the operation name 295
conditions for the package name 330
conditions for the port type name 294
conditions for the Web Service Implementation Class name

344
conditions for the wrapper exception class 342
conditions for the wrapper exception class name 342
conditions for the wrapper style 296
conditions for the WSDL definitions to be imported 709
conditions for Web Service Implementation Class 331
configuration example of development (Starting from SEI

and attachment of wsi:swaRef format) 742
configuration examples for development (starting from

provider and SAAJ) 122
configuration examples of development (starting from SEI

and addressing) 888
configuration examples of development (Starting from SEI

or customization) 98
configuration examples of development (Starting from

WSDL) 58
configurationofdevelopmentexample

(startingfromSEandstreaming) 798
configuration of development example (starting from SEI

or attachment in MTOM/XOP specification format) 776
configuration of development example (starting from

WSDL/WS-RM 1.2) 818
configuration of development examples (RESTful Web

Services) 228
configuration of development examples (starting from sei)

74
configuration of development examples (starting from SEI

and cjwsgen command) 86
configuration of development examples (starting from SEI

and EJB Web Services) 110
configuring EJB JAR file 38
configuring WAR file 211
configuring WAR files 38
connecting by basic authentication 266
connecting through a proxy server 181
Connecting through a proxy server 263
connecting with SSL protocol 265
connection by basic authentication 187
connection by SSL protocol 185
constant and method specifications and notes for

DefaultClientConfig class (Client APIs for RESTful Web
Services) 688

constructor and method specifications and notes for
GenericType class (client APIs for RESTful Web
Services) 617

constructor and method specifications and notes for the
MultivaluedMapImpl class (client APIs for RESTful
Web Services) 697

context (JAX-RS) 558
Cookie class 545
core API 440
Core API 450
creating an archive 38
creating an EAR file 39

Index

956

creating an EAR file (Starting from SEI or customization)
103

creating an implementation class for the Web Service client
(Starting from SEI) 82

creating an implementation class for the Web Service client
(Starting from SEI or customization) 105

creating an implementation class for the Web Service client
(Starting from WSDL) 71

creating an option definition file for Java applications
(Starting from SEI) 84

creating an option definition file for Java applications
(Starting from WSDL) 72

creating application.xml (RESTful Web Services) 237
creating application.xml (starting from provider and SAAJ)

127
creating application.xml (Starting from SEI) 79
creating application.xml (starting from SEI and addressing)

893
creating application.xml (Starting from SEI and

attachments of wsi:swaref format) 747
creating application.xml (starting from SEI and cjwsgen

command) 90
creating application.xml (starting from SEI and EJB Web

service) 114
creating application.xml (starting from SEI and streaming)

803
creating application.xml (Starting from SEI or

customization) 103
creating application.xml (Starting from WSDL) 68
creating application.xml file (starting from WSDL, WS-RM

1.2) 782, 829
creating archive 211
creating a service class (Starting from SEI or

customization) 105
creating a user property file for Java applications (Starting

from SEI) 84
creating a user property file for Java applications (Starting

from SEI or customization) 107
creating a user property file for Java applications (Starting

from WSDL) 72
creating a Web Service Implementation Class (Starting

from WSDL) 66
creating a WSDL file (Starting from WSDL) 61
creating EAR file 211
creating EAR file (RESTful Web Services) 237
creating ear file (starting from SEI and streaming) 804
creating EAR file (starting from WSDL, WS-RM 1.2) 782,

830
creating EAR files (starting from provider and SAAJ) 128
creating EAR files (Starting from SEI) 79
creating ear files (starting from SEI and addressing) 894
creating EAR files (Starting from SEI and attachments of

wsi:swaref format) 748
creating EAR files (starting from SEI and cjwsgen

command) 91
creating EAR files(starting from SEI and EJB Web service)

115
creating EAR files (Starting from WSDL) 68
creating Implementation Classes for Web Services clients

(starting from SEI and cjwsgen command) 93
creating implementation class for web service client

(starting from SEI and addressing) 897

creating implementation class for web service client
(starting from SEI and streaming) 807

creating implementation class for Web Service client
(starting from SEI or attachment in MTOM/XOP
specification format) 784

creating implementation class for Web Service client
(starting from WSDL/WS-RM 1.2) 833

creating Implementation Class for Web Services client
(starting from provider and SAAJ) 130

creating Implementation Class for Web Services client
(starting from SEI and EJB Web service) 117

creating Implementation Class of Web resource client (by
using client API) 240

creating implementation class of Web resource client (by
using java.net.HttpURLConnection) (RESTFul Web
services) 244

creating option definition file for Java application (starting
from SEI or attachment in MTOM/XOP specification
format) 786

creating option definition files for java application (starting
from SEI and streaming) 810

creating option definition file for Java application (starting
from WSDL, WS-RM 1.2) 835

creating option definition file for Java applications
(RESTful Web Services) 248

creating option definition file for Java applications (starting
from SEI and EJB Web Service) 119

creating option definition file for Java applications (Starting
from SEI or customization) 107

creating option definition files for java applications
(starting from provider and SAAJ) 132

creating option definition files for java applications
(starting from SEI and addressing) 900

creating option definition files for Java applications
(starting from SEI and cjwsgen command) 95

creating Provider Implementation Classes 125
creating root resource class 208
creating root resource classes (RESTful Web Services) 231
creating SEI (starting from WSDL, WS-RM 1.2) 827
creating service classes (starting from SEI and cjwsgen

command) 93
creating the option definition file for Java applications

(Starting from SEI and attachments of wsi:swaRef
format) 752

creating the user property file for Java applications
(Starting from SEI and attachments of wsi:swaRef
format) 752

creating the Web Service Implementation Class (Starting
from SEI and attachment of wsi:swaref format) 745

creating the Web Service Implementation Class (Starting
from SEI and attachments of wsi:swaRef format) 750

creating user property file for java application(starting from
SEI and streaming) 810

creating user property file for Java application (starting
from SEI or attachment in MTOM/XOP specification
format) 786

creating user property file for Java application (starting
from WSDL, WS-RM 1.2) 835

creating user property file for Java applications (RESTful
Web Services) 248

creating user property file for Java applications (starting
from SEI and EJB Web Service) 119

Index

957

creating user property files for Java applications (starting
from provider and SAAJ) 132

creating user property files for java applications (starting
from SEI and addressing) 900

creating user property files for Java applications (starting
from SEI and cjwsgen command) 95

creating WAR file for setting of EJB Web service 39
creating web.xml 34
creating web.xml (RESTful Web Services) 236
creating web.xml(SEI source/addressing) 893
creating web.xml (starting from provider and SAAJ) 127
creating web.xml (starting from SEI) 78
creating web.xml (starting from SEI and cjwsgen

command) 90
creating web.xml (starting from SEI and streaming) 803
creating web.xml (starting from sei or attachment in

MTOM/XOP specification format) 781
creating web.xml (Starting from SEI or customization) 102
creating web.xml (Starting from WSDL) 67
creating web.xml file (starting from WSDL, WS-RM 1.2)

781, 829
creating web service implementation class (starting from

SEI and addressing) 891
creating web service implementation class (starting from

SEI and streaming) 801
creating Web service implementation class (starting from

SEI or attachments in MTOM/XOP specification format)
779

creating Web Service Implementation Class (starting from
WSDL, WS-RM 1.2) 828

creating web service implementation classes and provider
implementation classes 33

creating Web Services Implementation Class (Starting from
SEI) 77

creating Web Services Implementation Class (Starting from
SEI or customization) 101

creating Web Services Implementation Class (starting from
SEI and EJB Web Service) 113

creating web xml 209
creating web.xml(starting from SEIwsi:swaRef Tenpu File)

747
creating WSDL 30
creating WSDL file (starting from SEI) 79
creating WSDL file (starting from SEI and EJB Web

service) 114
creating WSDL file (starting from WSDL, WS-RM 1.2)821
customization using cosminexus-jaxws.xml 157
customization with the external binding file 320
customized mapping from Java to WSDL 346
customized mapping of WSDL to Java 316

D
data that can be sent and received and Java types that can

be used in attachment (MTOM/XOP) 770
available data types (JSON to POJO mapping) 418
dealing with name conflict 327
default mapping from WSDL to Java 292
default mapping of Java to WSDL 330
deleting the generics type 344
delivery assurance functionality of WS-RM 1.2 815
deploying ear file (starting from SEI and streaming) 805

deploying EAR file (starting from SEI or attachment in
MTOM/XOP specification format) 783

deploying EAR file (starting from WSDL/WS-RM 1.2) 831
deploying EAR files (RESTful Web Services) 239
deploying EAR files (starting from provider and SAAJ) 129
deploying EAR files (Starting from SEI) 81
deploying ear files (starting from SEI and addressing) 895
deploying EAR files (Starting from SEI and attachments of

wsi:swaref format) 749
deploying EAR files (starting from SEI and cjwsgen

command) 92
deploying EAR files (starting from SEI and EJB Web

service) 116
deploying EAR files (Starting from SEI or customization)

104
deploying EAR files (Starting from WSDL) 69
deploying the handlers 866
deployment of the handler chain setup file 867
destroying the Web Service 180
Detail interface 516
details of support range of XML catalogs 1.1 specifications

508
developing dispatch-based web service clients 27
developing stub-based web service clients 26
development example of Web Services (starting from SEI

and cjwsgen command) 89
development examples of Web Services clients (starting

from SEI and cjwsgen command) 93
development flow of RESTful Web service 28
development starting from provider 24
development starting from SEI 22
development starting from SEI (when using cjwsgen

command) 23
development starting from WSDL 20
disabling URL decoding 408
discovery 7, 8, 152, 257
discovery and dispatch (JAX-RS) 257
discovery and dispatch (JAX-WS) 152
dispatch 7, 8, 155
displaying Web Service information 177
Document Bare style attachment in MTOM/XOP

specification format 756

E
ear file 211
EAR file 39
EJB JAR file 38
element attribute (wsdl:part element) 477
embedded binding declaration 316
enabled element (javax.xml.ws.soap.addressing) 375
enabled element (javax.xml.ws.soap.MTOM) 377
enabling and disabling Meta data issue 175
enabling features (injecting service classes and ports) 200
end code of the cjwsimport command 276
end codes of cjwsgen command 289
endpointInterface element (javax.jws.WebService) 360
end string of the MIME part (attachment to SOAP Message

and wsi:swaRef format) 733
entity provider 410
EntityTag class 545

Index

958

enumerated constants of ClientResponse.Status class and
specifications for methods (client APIs for RESTful Web
Services) 611

er:catalog element 508
er:public element 508
er:system element 509
error page 169
errors detected in HTTP request processing 267
estimating the log 917
example of a handler resolver 868
example of coding catalog file 722
example of deploying and starting service (starting from

WSDL/WS-RM 1.2) 831
example of deployment and startup (Starting from SEI and

attachment of wsi:swaRef format) 749
example of developing Web resources (RESTful Web

Services) 231
example of developing Web Service (starting from

WSDL/WS-RM 1.2) 821
example of developing Web Service client (starting from

WSDL/WS-RM 1.2) 832
Example of development flow (Starting from SEI) 76
example of development starting from SEI (when using

attachments in MTOM/XOP specification format) 775
Example of development starting from SEI (when using

streaming) 797
example of development starting from WSDL 57
example of development starting from WSDL (using WS-

RM 1.2) 817
example of dispatch-based implementation 51
example of executing Web Service (starting from wsdl/ws-

rm1.2) 835
example of how to code servlet-mapping element 209
example of implementing a Web Service client (using JAX-

WS API) 53
example of implementing web service client (dispatch-

based) 52
example of settings when cosminexus-jaxws.xml is used

159
example of specifying javax.xml.ws.WebServiceRef

annotation (injecting service class or port) 198
example of stub-based implementation 44
example of web.xml 209
example of Web Service client development (Starting from

SEI and attachment of wsi:swaRef format) 750
example of Web Service development (Starting from SEI

and attachment of wsi:swaref format) 745
example of Web Service development (starting from SEI

and EJB Web service) 113
example of web service development (starting from SEI

and streaming) 801
example of Web service development (starting from SEI or

attachment in MTOM/XOP specification format) 779
example of Web Service execution (Starting from SEI and

attachment of wsi:swaRef format) 752
examples for executing Web Services (staring from SEI or

attachments in MTOM/XOP specification format) 786
examples for Web Service clients (Starting from WSDL) 70
examples for developing Web Services (Starting from SEI

or customization) 101
examples for development starting from provider (using

SAAJ) 121

examples for development starting from SEI 73
examples for development starting from SEI (for

customization) 97
examples for development starting from SEI (for EJB Web

Services) 109
examples for executing Web Services (starting from

provider and SAAJ) 132
examples for executing Web Services (Starting from SEI)

84
examples for executing Web Services (starting from SEI

and EJB Web Service) 119
examples for executing Web Services (Starting from SEI or

customization) 107
examples for executing Web Services (Starting from

WSDL) 72
examples for the development of Web Services (Starting

from WSDL) 61
examples for the procedure of development (Starting from

WSDL) 60
examples of deploying and starting (RESTful Web

Services) 239
examples of deployment and startup (staring from SEI or

attachments in MTOM/XOP specification format) 783
examples of deployment and startup (starting from provider

and SAAJ) 129
examples of deployment and startup (Starting from SEI) 81
examples of deployment and startup (starting from SEI and

addressing) 895
examples of deployment and startup(starting from SEI and

cjwsgen command) 92
examples of deployment and startup (starting from SEI and

EJB Web Service) 116
examples of deployment and startup (starting from SEI and

streaming) 805
examples of deployment and startup (Starting from SEI or

customization) 104
examples of deployment and startup (Starting from WSDL)

69
examples of developing RESTful Web Services 227
examples of developing Web resource client (RESTful Web

Services) 240
examples of developing Web Service client (starting from

SEI and streaming) 806
examples of developing Web Service clients (Starting from

SEI) 82
examples of developing Web Service clients (starting from

SEI or attachments in MTOM/XOP specification format)
784

examples of developing Web Service clients (Starting from
SEI or customization) 105

examples of developing Web Services (starting from
provider and SAAJ) 125

examples of developing Web Services clients (starting from
provider and SAAJ) 130

examples of development from SEI(when addressing
functionality used) 887

examples of development starting from SEI (using cjwsgen
command) 85

examples of executing Web Services (starting from SEI and
cjwsgen command) 95

examples of executing Web Services (starting from SEI and
streaming) 810

Index

959

examples of implementation using JAX-WS API 53
examples of invoking Web resources (RESTful Web

Services) 248
examples of mapping Java sources to WSDL 31
examples of mapping WSDL to Java sources 31
examples of web.xml 35
examples of web service client development (starting from

SEI and addressing) 896
examples of Web service client development (starting from

SEI and EJB Web Service) 117
examples of web service development (starting from sei) 77
examples of web service development (sarting from SEI

and addressing) 891
examples of web service execution (starting from SEI and

addressing) 900
exception (KDJJ18888-E) that occurs when using client

APIs 268
exception handling 405
exception handling (JSON to POJO mapping) 424
exception handling (POJO to JSON mapping) 417
exception log 907
exception mapping 401
exception mapping provider 410
exceptions that can be handled with exception mapping

provider 268
exceptions that occur during mapping (JSON POJO

mapping) 425
exclude element (javax.jws.webmethod) 354
executing a client application using the command line 190
executing a command line 190
executing the application client 191
executing the Web Service client (Starting from SEI and

attachments of wsi:swaref format) 752
executing web service client (starting from SEI and

addressing) 900
executing web service client (starting from SEI and

streaming) 810
executing Web Service client (starting from SEI or

attachment in MTOM/XOP specification format) 786
executing Web service client (starting from wsdl, ws-

rm1.2) 835
executing Web Service clients (Starting from SEI) 84
executing Web Service clients (Starting from SEI or

customization) 107
executing Web Service clients (Starting from WSDL) 72
executing Web Services (starting from SEI and EJB Web

Service) 119
executing Web Services clients (starting from provider and

SAAJ) 132
executing Web Services clients (starting from SEI and

cjwsgen command) 95

F
fault and exception processing 161
fault and exception processing on the Web Service 161
faultBean element (javax.xml.ws.WebFault) 378
fault element (javax.xml.ws.action) 368
fault messages 879
fault processing on the Web Service client 167
file element (javax.jws.HandlerChain) 352

file name and storage destination of cosminexus-jaxws.xml
157

flow of development example (Starting from SEI and
attachment of wsi:swaRef format) 744

flow of development example (starting from SEI and
streaming) 800

flow of development example (starting from SEI or
attachment MTOM/XOP specification format) 778

flow of development example (starting from WSDL/WS-
RM 1.2) 820

flow of development examples (starting from SEI and
addressing) 890

flow of development examples (starting from SEI and
cjwsgen command) 88

flow of development examples (Starting from SEI or
customization) 100

format of clients 15
format of cosminexus-jaxws.xml 157
format of XOP information set 767
format of the wsdl:import element 711
format of Web services 13
format of Web services and web service clients 13
functionality of RESTful Web services 8
functionality of SOAP Web service 5
functionality to dynamically generate wrapper bean 206
functionality used for developing and executing Web

services 5

G
generated wrapper exception class 305
generating and obtaining Java instance of attachment

(wsi:swaRef format) 737
generating a service class (Starting from SEI) 82
generating a service class (Starting from SEI and

attachments of wsi:swaRef format) 750
generating a service class (Starting from WSDL) 70
generating instance of Web Services client (injecting

service class and port) 200
generating Java source (starting from provider and SAAJ)

126
generating Java sources(starting from SEI and cjwsgen

command) 89
generating SEI (Starting from WSDL) 66
generating service class (starting from SEI and addressing)

896
generating service class (starting from SEI and EJB Web

Service) 117
generating service class (starting from SEI and streaming)

806
generating service class (starting from SEI or attachment in

MTOM/XOP specification format) 784
generating service class (starting from WSDL/WS-RM 1.2)

832
gzip compression of HTTP request body 194

H
handler framework 838
handler frame work 837
header element (javax.jws.WebParam) 355
header element (javax.jws.WebResult) 357

Index

960

hierarchical importing of WSDL definitions 709
how to acquire received data (MTOM/XOP format) 773
how to add WS-RM Policy 816
how to create Java objects for data to be sent (MTOM/

XOP) 770
how to use attachment in MTOM/XOP specification format

755
how to use Streaming 789
http.nonProxyHosts 182
http.proxyHost 181
http.proxyPort 181
HTTP body (attachment to SOAP message, and MTOM//

XOP) 764
http body (attachment to soap message and wsi:swaRef

format) 731
HTTP header 193
HTTP header (attachment to SOAP message, and MTOM//

XOP) 763
http header (attachment to soap message and wsi: swaRef

format) 731
HttpHeaders interface 543
http methods that can be used 178
HTTP response header 466
https.proxyHost 181
https.proxyPort 181
HTTP status code 466
HTTP status code (binding exception to fault) 169
HTTP status codes 192
http status codes 192

I
implementation attribute (cosminexus-jaxws.xml) 158
implementing client by using client API for RESTful Web

Services 212
implementing Web Service clients 44
importance level and output conditions of logs 911
importance level of log 911
importing multiple WSDL definitions 709
inbound 838
information included in ClientRequest class and Web

resource class 573
inheriting annotations 408
initializing and destroying the handler 855
initializing and destroying Web Service 179
initializing the Web Service 179
injectable annotation (JAX-RS) 549
injecting service classes and ports 198
injecting a Web Services context 202
injection 198
input element (javax.xml.ws.action) 368
installing an upgraded version 942
interface transparency 170
invoking EJB Web Service 196
issuing the Meta data 173

J
java.util.list object 151
java.util.Map class 337
javaee:handler-chain element 470
javaee:handler-chains element 470

javaee:handler-class element 471
javaee:handler element 470
javaee:handler-name element 471
javaee:soap-header element 472
javaee:soap-role element 472
Java interface of attachment (MTOM/XOP) 755
Java interface of attachments (wsi:swaRef format) 725
Java types that can be specified in the parameters (non-

wrapper style) 339
Java types that can be specified in the parameters (wrapper

style) 336
Java types that can be used in attachments 725
javavm property 181
javax.jws.HandlerChain annotation 351
javax.jws.Oneway annotation 352
javax.jws.soap.SOAPBinding annotation 353
javax.jws.WebMethod annotation 353
javax.jws.WebParam annotation 355
javax.jws.WebResult annotation 357
javax.jws.WebService annotation 359
javax.servlet.http.HttpServletRequest 563
javax.servlet.http.HttpServletResponse 563
javax.servlet.ServletConfig 561
javax.servlet.ServletContext 562
javax.ws.rs.core.ext.Providers 561
javax.ws.rs.core.HttpHeaders 559
javax.ws.rs.core.Request 559
javax.ws.rs.core.SecurityContext 560
javax.ws.rs.core.UriInfo 558
javax.xml.bind.annotation.XmlElement annotation 361
javax.xml.bind.annotation.XmlMimeType annotation 363
javax.xml.bind.annotation.XmlType annotation 366
javax.xml.ws.action annotation 367
javax.xml.ws.Binding interface 454
javax.xml.ws.BindingProvider interface 442
javax.xml.ws.BindingType annotation 368
javax.xml.ws.Dispatch interface 443
javax.xml.ws.EndpointReference class 443
javax.xml.ws.faultaction annotation 370
javax.xml.ws.handler.Handler<C extends MessageContext>

interface 454
javax.xml.ws.handler.HandlerResolver interface 455
javax.xml.ws.handler.LogicalMessageContext interface 455
javax.xml.ws.handler.MessageContext interface 455
javax.xml.ws.handler.PortInfo interface 456
javax.xml.ws.handler.soap.SOAPHandler<T extends

SOAPMessageContext> interface 457
javax.xml.ws.handler.soap.SOAPMessageContext interface

457
javax.xml.ws.Holder<T> class 457
javax.xml.ws.LogicalMessage interface 458
javax.xml.ws.ProtocolException class 458
javax.xml.ws.Provider interface 449
javax.xml.ws.RequestWrapper annotation 370
javax.xml.ws.ResponseWrapper annotation 372
javax.xml.ws.Service class 444
javax.xml.ws.servicemode annotation 374
javax.xml.ws.soap.addressing annotation 374
javax.xml.ws.soap.AddressingFeature class 459
javax.xml.ws.soap.MTOM annotation 376
javax.xml.ws.soap.MTOMFeature class 460
javax.xml.ws.soap.SOAPBinding interface 461

Index

961

javax.xml.ws.soap.soapfaultexception binding 165
javax.xml.ws.soap.SOAPFaultException class 461
javax.xml.ws.WebFault annotation 377
javax.xml.ws.WebServiceContext interface 449
javax.xml.ws.webserviceexception binding 164
javax.xml.ws.WebServiceException class 462
javax.xml.ws.webserviceprovider annotation 378
javax.xml.ws.WebServiceRef annotation 468
javax.xml.ws.wsaddressing.W3CEndpointReferenceBuilder

class 449
javax.xml.ws.wsaddressing.W3CEndpointReference class

448
JAX-RS engine 8
JAX-RS engine on Web resource (Web resource) 8
JAX-RS engine (Web resource client) 8
jaxws:enableAsyncMapping element (jaxws:bindings

element) 326
jaxws:enableWrapperStyle element (jaxws:bindings

element) 326
jaxws:javadoc element (jaxws:bindings element) 326
jaxws:provider element (jax:bindings element) 327
JAX-WS APIs 8
jaxwsdd:endpoint element (cosminexus-jaxws.xml) 157
jaxwsdd:endpoints element (cosminexus-jaxws.xml) 157
JAX-WS engine 7
JAX-WS/JAX-RS specifications compliant version, prefix

and name space URI 2
JSON to POJO mapping 418

L
limitation of generics type 345
limitations related to the specification of the XML Schema

occurrence count 948
limitations related to the XML Schema constraint facet 948
linking with HTTP response compression functionality 195
list of annotations 347
list of files generated for the apt command 278
list of files generated for the cjwsimport command 274
list of interfaces and classes 440
list of interfaces and classes (JAX-WS) 440
list of mapping of Java source to WSDL 330
list of mapping of WSDL to Java source 292
list of options for the cjwsimport command 271
list of options of cjwsgen command 281
localName element (javax.xml.ws.RequestWrapper) 371
localName element (javax.xml.ws.ResponseWrapper) 373
location attribute (soap:address element) 492
location attribute (soap12:address element) 496
location attribute (wsdl:import element) 475, 711
locations in which attachments can be specified 725
log 907
log file rotation 907
log format 914
log format (exception log/communication log) 914
log format (operation log/maintenance log) 914
logical handler 842
log output conditions (communication log) 913
log output conditions (operation log/exception log/

maintenance log) 912
log output destination 908

log output destination (for a Web Service and a Web
resource client running on J2EE server) 910

log output destination (when a command is executed) 910
log output destination (when running on the J2EE server)

908
log output destination (when using the command line

interface) 909
log output destination (when using Web resource from

command line interface) 911

M
maintenance log 907
mapping (wrapper style) 334
mapping a message part to a parameter and return value

(For wrapper style) 296
mapping a namespace to a package name 292
mapping a port type to a SEI name 293
mapping attachment to SOAP message (MTOM//XOP) 763
mapping attachment to SOAP Message (wsi:swaRef

format) 731
mapping based on data size of attachment in MTOM//XOP

specification format 767
mapping between the attachment extension and MIME

types 734
mapping between WSDL and Java sources 31
mapping from Java to WSDL 329
mapping from operation to method name 294
mapping from WSDL to Java 291
mapping for conflict between the method name and

parameter name 315
mapping for conflict between the SEI name and class name

313
mapping for name conflict 313
Mapping JSON and POJO 413
mapping of Java type of attachments and WSDL

(wsi:swaRef format) 728
mapping of part types to Java sources (Wrapper style) 298
mapping route part to attachment (MTOM//XOP) 766
mapping SEI to binding 342
mapping SOAP message to attachment (MTOM//XOP) 768
mapping SOAP message to attachment (wsi:swaRef

format) 736
mapping the binding extension element to the parameter307
mapping the fault to the exception class 304
mapping the Java wrapper exception class to the fault 341
mapping the message part to the parameter and return value

(For non-wrapper style) 300
mapping the name of method of SEI to an operation 332
mapping the package name to the name space 330
mapping the parameter and return value to the message part

(For non-wrapper style) 338
mapping the parameter and return value to the message part

(For wrapper style) 334
mapping the root part to the attachment (wsi:swaRef

format) 734
mapping the schema type to the Java type 303
mapping the SEI name to the port type 331
mapping the service and port to the service class 309
mapping the Web Service Implementation Class to SEI 331
mapping the Web Service implementation class to the

service and port 343

Index

962

mapping to skeleton class 312
mapping to the fault bean 305
mapping WSDL to Java type of attachments (wsi:swaRef

format) 728
marshalling 7
material to be acquired when a failure occurs 906
mechanism of client API for RESTful Web Services 216
MediaType class 545
media type declaration (RESTful Web service) 407
memory usage per request 951
memory usage per request (when attachments are used) 951
memory usage when the application starts 951
message attribute (soap:header element) 491
message attribute (soap12:header element) 495
message attribute (wsdl:fault element) 481
message attribute (wsdl:input element) 480
message attribute (wsdl:output element) 480
message context properties related to SOAPAction header

466
Message context properties related to WSDL 466
message context properties related to WSDL operation

name 466
message context properties that are irrelevant even when

operated with client-side handler 465
message context properties with HANDLER scope in Web

Service client 466
MessageFactory class 520
message flow when WS-RM 1.2 functionality is used 813
messageName element (javax.xml.ws.WebFault) 378
method of estimating the log 918
method of generating attachment instance (wsi:swaRef

format) 737
method of obtaining attachment data (wsi:swaRef format)

739
method of performance analysis based on Trace based

performance analysis 939
method specifications and notes for Client class (client

APIs for RESTful Web Services) 574
method specifications and notes for ClientRequest.Builder

class (client APIs for RESTful Web Services) 590
method specifications and notes for ClientResponse class

(client APIs for RESTful Web Services) 601
method specifications and notes for

UniformInterfaceException class (client APIs for
RESTful Web Services) 619

method specifications and notes for WebResource.Builder
class (client apis for RESTful Web Services) 656

method specifications and notes for WebResource class
(client APIs for RESTful Web Services) 620

method specifications and notes for
ClientHandlerException class (client APIs for RESTful
Web Services) 582

method specifications and notes for ClientRequest class
(client APIs for RESTful Web Services) 583

migrating from earlier version 942
migrating from POJO Web Service to EJB Web Service 949
migrating J2EE server 942
migration of SOAP applications 942
MIME binding 309
MIME body of the attachment part (attachment to SOAP

Message and wsi:swaRef format) 733

MIME body of the root part (attachment to SOAP Message
and wsi:swaRef format) 732

MimeHeader class 520
mime header of root part (attachment to soap message and

wsi:swaRef format) 732
MIME header of the attachment part (attachment to SOAP

Message and wsi:swaRef format) 732
MimeHeaders class 520
mode element (javax.jws.WebParam) 356
MTOMFeature 441

N
name attribute (cosminexus-jaxws.xml) 158
name element (jaxws:bindings element) 325
name attribute (portType element) 478
name attribute (soap:fault element) 492
name attribute (soap12:fault element) 496
name attribute (wsdl:binding element) 482
name attribute (wsdl:definitions element) 475
name attribute (wsdl:fault element) 481, 486
name attribute (wsdl:input element) 479, 484
name attribute (wsdl:message element) 477
name attribute (wsdl:operation element) 479, 483
name attribute (wsdl:output element) 480, 485
name attribute (wsdl:part element) 477
name attribute (wsdl:port element) 488
name attribute (wsdl:service element) 487
name conflict due to overloading 334
name element (javax.jws.WebParam) 356
name element (javax.jws.WebResult) 357
name element (javax.jws.WebService) 361
name element (javax.xml.bind.annotation.XmlElement) 362
name element (javax.xml.bind.annotation.XmlType) 367
name element (javax.xml.ws.WebFault) 377
names of HTTP header output to communication log 916
namespace attribute (wsdl:import element) 475, 711
namespace coding format 293
namespace element

(javax.xml.bind.annotation.XmlElement) 362
namespace element (javax.xml.bind.annotation.XmlType)

367
NewCookie class 546
nillable element (javax.xml.bind.annotation.XmlElement)

363
Node interface 516
non-wrapper style attachment in MTOM/XOP specification

format (MTOM/XOP) 757
notes 54
notes for annotations used with addressing functionality 878
notes for fault messages 879
notes for importing and including 176
notes for wsa:Action element 886
notes for wsaw:Action and wsam:Action attributes 886
notes on accessing Web service that use addressing

functionality 55
notes on acquiring javax.activation.datahandler object

(MTOM/XOP format) 774
notes on acquiring javax.xml.transform.source (MTOM/

XOPformat) 774
notes on applying to EJB Web Services 841
notes on creating WSDL 500

Index

963

notes on customizing error page 169
notes on customizing inout parameter name in

jaxws:parameter element 328
notes on customizing SEI name 327
notes on mapping from attachments to SOAP messages

(MTOM/XOP) 765
notes on one-way operations 205
notes on transport attribute of SOAP12:binding element of

wsdl 176
notes on using command line interface in Windows with

enabled UAC 290
Notes on using message context 465
notes related to acquiring SEI 886
notes when acquiring javax.activation.DataHandler

(wsi:swaRef format) 740
notes when adding user-defined message context property

(injecting Web Services context) 203
notes when implementing Web resource client (client API

for RESTful Web Services) 223
notes when using catalog functionality 721
number of operations and its child elements coded 295
number of parts of the messages referenced from the fault

306
number of port types coded 294

O
one-way operations 205
operating streamed attachments 790
operation log 907
operation and support range of JAX-WS engine 145
operations and support range of the JAX-WS engine (on the

Web Service client) 148
operations during name conflict (wrapper style) 337
operations for receiving request messages 880
operations for sending and receiving messages 884
operations of JAX-RS engine 257
operations of JAX-WS engine on Web Service client

machine (when using addressing functionality) 884
operations of JAX-WS engine on Web Service machine

(when using addressing functionality) 880
operations of the handler when the SOAP Header is

included in the SOAP Message (in the Web Service) 856
operations of the handler when the SOAP Header is

included in the SOAP Message (in the Web Service
client) 859

operations of the JAX-WS engine 145
operations when Action annotation is specified 883
operations when Addressing annotation is specified 882
operations when web.xml is not included in a WAR file 36
operations when wsa:Action element is specified 883
operations when wsa:MessageID element is not specified

883
operations when wsaw:Anonymous element is specified 882
operation when jaxws:provider element is coded 327
org.jvnet.mimepull.MIMEConfig class 453
organization of the handler chain 843
outbound 838
output element (javax.xml.ws.action) 368
overloading of Java methods 313
overview of developing RESTful Web services 4
overview of developing SOAP Web services 4

overview of developing Web services 4

P
package name customization 316
parameterStyle element (javax.jws.soap.SOAPBinding) 353
parameter types 397
part attribute (jaxws:bindings element) 326
part attribute (soap:header element) 491
part attribute (soap12:header element) 495
partName element (javax.jws.WebParam) 356
partName element (javax.jws.WebResult) 358
partName element (javax.xml.ws.RequestWrapper) 372
partName element (javax.xml.ws.ResponseWrapper) 374
parts attribute (soap:body element) 490
parts attribute (soap12:body element) 494
Path information 465
PathSegment interface 543
path specifying annotation 556
performance analysis trace (PRF) 920
performance of catalog functionality 720
points on developing RESTful Web Services 207
points on developing SOAP Web service 29
POJO to JSON mapping 415
port attribute (cosminexus-jaxws.xml) 158
portName element (javax.jws.WebService) 361
portname element (javax.xml.ws.webserviceprovider) 379
precautions (MTOM/XOP) 769
precautions for mapping from Java to WSDL 344
precautions on creating javax.activation.DataHandler object

738
precautions on generating javax.activation.DataHandler

object (MTOM/XOP format) 773
precautions on mapping from attachment to SOAP message

(wsi:swaRef format) 733
precautions on mapping from WSDL to Java 313
precautions on using command line 191
precautions on using Web Service security functionality 840
prerequisite component software 9
prerequisites 9
prerequisites for developing and executing Web services 9
preventing resending of request by

sun.net.www.http.HttpClient 197
priority of action definition 134
priority order and solutions for name conflict 313
priority order of jaxws:enableWrapperStyle element 319
procedure of developing SOAP Web services 20
procedure of developing Web Service clients 26
procedure of development example (starting from SEI and

EJB Web service) 112
procedure of development examples (starting from provider

and SAAJ) 124
procedures in development example (RESTful Web

services) 230
processing of service-specific exceptions 161
processing of the close method 854
processing of the handleFault method 850
processing of the handleMessage method 843
Process wise definition file 252
process-wise definition file 134
propagation of the Java exception 167

Index

964

propOrder element (javax.xml.bind.annotation.XmlType)
367

protocol handler 842
provider 410
Provider annotation 548
publicId attribute 509
publishing meta data (JAX-RS) 259

R
recursive importing of WSDL definitions 709
relation between JDK and client API for RESTful Web

Services 217
relation between user program and client API for RESTful

Web Services 217
relationship between the part types and the mapping to Java

source (Non-wrapper style) 302
Request interface 544
required element (javax.xml.bind.annotation.XmlElement)

363
required element (javax.xml.ws.soap.addressing) 375
required options (apt command) 277
requirements for mapping (JSON to POJO) 418
requirements for mapping (POJO to JSON) 415
resource classes 382
Response class 546
response messages 880
Response.ResponsBuilder class 546
responses element (javax.xml.ws.soap.Addressing) 376
return value of resource method 394
RMD 812
RMS 812
root resource classes 382
Route part MIME body (attachment to SOAP message, and

MTOM//XOP) 764
Route part MIME header (attachment to SOAP message,

and MTOM//XOP) 764
rules for mapping SEI to binding 343
rules for mapping the method parameters and return values

to the message parts 335
rules for mapping the name of method of SEI to the

operation 333
rules for mapping the Web Service Implementation Class to

the service and port 344
rules for mapping the wrapper exception class to the fault

341
running program ends abnormally 902
runtime exception binding 163

S
SAAJResult class 520
saving already complied files (starting from SEI and

cjwsgen command) 89
SecurityContext interface 544
SEI Kiten Kaihatsu Rei Tenpu File Shi youji(wsi:swaRef

Tenpu File Shi youji) 741
selecting SOAP version 188
selecting SOAP version (during execution) 189
selecting SOAP version (when developing Web Service

client) 189

selecting SOAP version (when developing Web Services)
188

sending and receiving HTTP requests and HTTP responses
by specifying Java type (use case of Web resource client)

212
sending and receiving HTTP requests and HTTP responses

in generic types (use case of Web resource client) 214
sending existing image file (MTOM/XOP format) 771
sending existing text file (MTOM/XOP) 770
sending existing XML file(MTOM/XOP format) 772
sending HTTP requests by specifying Java type and

receiving HTTP responses by using generic type
(ClientResponse) (use case of Web resource client) 214

sending java.lang.String object (MTOM/XOP format) 773
sequence life cycle messages 814
service API 440, 449
serviceName element (javax.jws.WebService) 361
servicename element (javax.xml.ws.webserviceprovider)

379
setting handler chain to port 869
setting handler chain to a service class 868
setting HTTP header (client API for RESTful Web

Services) 219
setting logs 916
Setting of common definition file (JAX-RS) 252
setting properties and features (client API for RESTful Web

Services) 217
settings and operations of JAX-RS functionality 251
settings and operations of JAX-WS functionality 133
settings for command line usage 190
settings for mapping JSON and POJO 414
settings for the common definition file 135
settings for the process-wise definition file 144
Settings using WS-Policy 532
setting the handler chain (in the Web Service) 867
setting the handler chain (in the Web Service client) 868
setting the SOAP Header 863
setting up JAX-WS engine 18
setting up process wise definition file (JAX-RS) 255
skeleton class name when SEI name is customized with

jaxws:class element 328
soap:address element 492
soap:binding element 488
soap:body element 490
soap:fault element 491
soap:header element 490
soap:mustunderstand attribute settings (in web service) 868
soap:mustunderstand attribute settings (in web service

client) 870
soap:operation element 489
soap12:address element 496
soap12:binding element 493
soap12:body element 494
soap12:fault element 495
soap12:header element 494
soap12:operation element 492
soapAction attribute (soap:operation element) 489
soapAction attribute (soap12:operation element) 493
SOAP binding 308
SOAPBody interface 516
SOAPElement interface 517
SOAPEnvelope interface 518

Index

965

SOAPFactory class 520
SOAPFault interface 518
SOAP handler 842
SOAPHeaderElement interface 519
SOAPHeader interface 519
SOAPMessage class 521
SOAP messages of attachments in MTOM/XOP

specification format 762
SOAP Messages with attachments 724
SOAP messages with attachments (wsi:swaRef format) 730
SOAPPart class 522
SOAP role and actor settings (in web service client) 870
SOAP role and actor settings (in web services) 868
SOAP transport and transfer binding 343
specification format of cjwsgen command 280
specification format of the cjwsimport command 270
specification of attributes of the jaxws:bindings element 324
specification of -d, -s, and -keep options and file output

destination 272
specifications for constant, constructors, and methods and

notes for HTTPSProperties class (client APIs for
RESTful Web Services) 693

specifying javax.annotation.Resource annotation (injecting
Web Services context) 202

specifying the jaxws:bindings element (Embedded binding
declaration) 316

specifying the jaxws:bindings element (external binding
file) 320

Specifying the service endpoint address for using the WS-
RM 1.2 functionality 466

starting the PRF daemon 190
starting Web Services (Starting from SEI and attachments

of wsi:swaref format) 749
startingWeb resourceclient (RESTful Web Services) 248
starting web services (starting from SEI and streaming) 805
starting Web service (starting from sei or attachment in

MTOM/XOP specification format) 783
starting Web Service (starting from WSDL/WS-RM 1.2)

831
starting Web Services (RESTful Web Services) 239
starting Web Services (starting from provider and SAAJ)

129
starting Web Services (Starting from SEI) 81
starting web services (starting from SEI and addressing)

895
starting Web Services (starting from SEI and cjwsgen

command) 92
starting Web Services(starting from SEI and EJB Web

Service) 116
starting Web Services (Starting from SEI or customization)

104
starting Web Services (Starting from WSDL) 69
storing catalog file 722
streaming 788
Streaming 787
strings that can be coded in the fault name 306
strings that can be coded in the Java package name 330
strings that can be coded in the method name 333
strings that can be coded in the namespace 293
strings that can be coded in the operation name 295
strings that can be coded in the part name (non-wrapper

style) 302

strings that can be coded in the port type 294
strings that can be coded in the SEI name 332
strings that can be coded in the service name and port name

312
strings that can be coded in the Web Service

Implementation Class name 344
strings that can be coded in the wrapper child element name

(wrapper style) 299
strings that can be coded in the wrapper exception class

name 342
structure of SOAP Messages with attachments 730
style attribute (soap:binding element) 489
style attribute (soap:operation element) 490
style attribute (soap12:binding element) 494
style attribute (soap12:operation element) 493
style element (javax.jws.soap.SOAPBinding) 353
sub resource class 404
supported properties and features 572
supporting conformance 431
supporting JAXB annotations 315, 345
support range for using attachments (SAAJ) 522
support range list of the XML catalogs1.1 specifications

506
support range of annotations 468
support range of API 540
support range of APIs 440
support range of client API interfaces and classes 566
support range of client APIs for RESTful Web Services 565
support range of handler chain configuration file 470
support range of interfaces and classes 440
support range of JAX-RS 1.1 specifications 536
support range of JAX-RS specifications 535
support range of JAX-WS 2.2 specifications 428
support range of JAX-WS engine (on web service) 145
support rangeofJAX-WSspecifications 427
support range of message context properties 463
support range of SAAJ 1.3 specifications 512
support range of SAAJ specifications 511
support range of WSDL 1.1 specifications 474
support range of WSDL Specification 473
support range of WS-RM 1.2 specifications 526
support range of WS-RM Policy 1.2 specifications 529
support range of WS-RM specifications 525
support range of XML catalogs 1.1 505
switching operating environment 942
synchronous communication 872
syntax of catalog file 722
syntax of the handler chain setup file 867
systemId attribute 509

T
targetNamespace attribute (wsdl:definitions element) 475
targetNamespace element (javax.jws.WebParam) 356
targetNamespace element (javax.jws.WebResult) 358
targetNamespace element (javax.jws.WebService) 359
targetNamespace element (javax.xml.ws.RequestWrapper)

371
targetNamespace element

(javax.xml.ws.ResponseWrapper) 373
targetNamespace element (javax.xml.ws.WebFault) 377

Index

966

targetnamespace element
(javax.xml.ws.webserviceprovider) 379

target of attachment in MTOM/XOP specification format
755

temporary files (Streaming) 794
thread safety of client APIs for RESTful Web Services 703
threshold element (javax.xml.ws.soap.MTOM) 377
throwing exceptions to J2EE server 268
trace collection point of Trace based performance analysis

924
trace output information of Trace based performance

analysis 920
transport attribute (soap:binding element) 489
transport attribute (soap12:binding element) 493
troubleshooting 901
troubleshooting of Web resource 267
type attribute (wsdl:binding element) 482
typesofdeliveryassurance 815
types of failure and actions 902
types of handlers 842
types of interfaces and classes 440
types of JAX-WS API interfaces and classes 440
types of log 907

U
uac (user account control) 290
un-deploying Web Service 942
unmarshalling 7
un-supported sub-sub code 879
uri attribute (er:public element) 509
uri attribute (er:system element) 510
UriBuilder class 547
UriInfo interface 544
URI template 401
url-pattern attribute (cosminexus-jaxws.xml) 159
use attribute (soap:body element) 490
use attribute (soap:fault element) 492
use attribute (soap:header element) 491
use attribute (soap12:body element) 494
use attribute (soap12:fault element) 496
use attribute (soap12:header element) 495
use case of Web resource client 212
use element (javax.jws.soap.SOAPBinding) 353
using byte[] (when sending image file) 771
using byte[] (when sending java.lang.String object) 773
using byte[] (when sending text file) 770
using byte[] (when sending XML file) 772
using catalog functionality (when developing Web Services

client) 715
using catalog functionality (when starting Web Services

client) 718
using cjwsgen command for checking errors (functionality

to dynamically generate wrapper bean) 206
using endpointInterface element (javax.jws.WebService

annotation) 331
using handler framework (injecting service class or port)

200
using java.awt.Image (when sending image file) 772
using javax.activation.DataHandler (when sending image

file) 771

using javax.activation.DataHandler (when sending
java.lang.String object) 773

using javax.activation.DataHandler (when sending text file)
770

using javax.activation.DataHandler (when sending XML
file) 772

using javax.xml.transform.Source (when sending XML file)
772

using message context 462
using Streaming in Web Service 789
using Streaming in Web Service client 789

V
valid range of client application information and root

application information 920
value element (javax.xml.bind.annotation.XmlMimeType)

365
value element (javax.xml.ws.bindingtype) 369
value element (javax.xml.ws.faultaction) 370
value element (javax.xml.ws.servicemode) 374
value element (javax.xml.ws.WebServiceRef) 468
values of elements to be customized 327
value that can be specified in jaxws:bindings element 324
variations due to parseEagerly 790

W
war file 211
WAR file 38
Web resources and providers 381
web service security handler 840
what is catalog functionality 714
wsdl:binding element 481
wsdl:definitions element 474
wsdl:documentation element 488
wsdl:fault element (for grandchild element of wsdl:binding

element) 485
wsdl:fault element (for grandchild element of

wsdl:portType element) 480
wsdl:import element 475
wsdl:input element (for grandchild element of wsdl:binding

element) 484
wsdl:input element (for grandchild element of

wsdl:portType element) 479
wsdl:message element 476
wsdl:operation element (for child element of wsdl:binding

element) 482
wsdl:operation element (for child element of wsdl:portType

element) 478
wsdl:output element (for grandchild element of

wsdl:binding element) 484
wsdl:output element (for grandchild element of

wsdl:portType element) 480
wsdl:part element 477
wsdl:port element 487
wsdl:portType element 478
wsdl:service element 486
wsdl:types element 476
WSDL coding when attachments are used (wsi:swaRef

format) 727
WSDL definitions that can be imported 709

Index

967

WSDL extension attributes 876
WSDL extension elements 875
WSDL extension elements and extension attributes 875
WSDL for attachments (wsi:swaRef format) 727
WSDL import functionality 707, 708
wsdlLocation element (javax.jws.WebService) 361
wsdllocation element (javax.xml.ws.webserviceprovider)

380
wsdlLocation element (javax.xml.ws.WebServiceRef) 468
wsimport_opts environment variable 274
WS-RM 1.2 functionality 811, 812

X
XML Schema data type limitations 947
xsd:schema element 496

Index

968

	Web Service Development Guide
	Summary of amendments
	Preface
	Contents
	Part 1: Overview
	1. Overview of Developing and Executing Web services
	1.1 JAX-WS/JAX-RS specifications compliant version, prefix and name space URI
	1.2 Overview of developing Web services
	1.2.1 Overview of developing SOAP Web services
	1.2.2 Overview of developing RESTful Web services

	1.3 Functionality used for developing and executing the Web services
	1.3.1 Functionality of SOAP Web services
	1.3.2 Functionality of RESTful Web services

	1.4 Prerequisites for developing and executing Web services
	1.4.1 Prerequisite component software
	1.4.2 Prerequisites related to functionality and specifications

	1.5 Format of Web services and Clients
	1.5.1 Format of Web services
	1.5.2 Format of clients

	1.6 Setting up JAX-WS and JAX-RS engine

	2. Procedures for Development
	2.1 Development flow of SOAP Web Services
	2.1.1 Development starting from WSDL
	2.1.2 Development starting from SEI
	2.1.3 Development starting from SEI (When using the cjwsgen command)
	2.1.4 Development starting from a provider

	2.2 Procedure of developing Web Service clients
	2.2.1 Developing stub-based Web Service clients
	2.2.2 Developing dispatch-based Web Service clients

	2.3 Development flow of RESTful Web Services

	Part 2: Development and Execution
	3.  Points on developing SOAP Web Services
	3.1 Creating WSDL
	3.2 Mapping between WSDL and Java sources
	3.2.1 Examples of mapping WSDL to Java sources
	3.2.2 Examples of mapping Java sources to WSDL

	3.3 Creating Web Service Implementation Classes and Provider Implementation Classes
	3.4 Creating web.xml
	3.5 Creating an archive
	3.5.1 Configuring WAR files
	3.5.2 Configuring EJB JAR files
	3.5.3 Creating EAR files
	3.5.4 Creating WAR file for the settings of EJB Web Service

	3.6 Implementing Web Service clients
	3.6.1 Example of stub-based implementation
	3.6.2 Example of dispatch-based implementation
	3.6.3 Examples of implementation using JAX-WS API
	3.6.4 Notes
	3.6.5 Notes on accessing the Web Services that use the addressing functionality

	4. Examples of the Development Starting from WSDL
	4.1 Configuration examples of development (Starting from WSDL)
	4.2 Examples for the procedure of development (Starting from WSDL)
	4.3 Examples for the development of Web Services (Starting from WSDL)
	4.3.1 Creating a WSDL file
	4.3.2 Generating SEI
	4.3.3 Creating a Web Service Implementation Class
	4.3.4 Compiling the Web Service Implementation Class
	4.3.5 Creating web.xml
	4.3.6 Creating application.xml
	4.3.7 Creating EAR files

	4.4 Examples of deployment and startup (Starting from WSDL)
	4.4.1 Deploying EAR files
	4.4.2 Starting Web Services

	4.5 Examples for deploying Web Service clients (Starting from WSDL)
	4.5.1 Generating a service class
	4.5.2 Creating an implementation class for the Web Service client
	4.5.3 Compiling the implementation class for the Web Service client

	4.6 Examples for executing Web Services (Starting from WSDL)
	4.6.1 Creating an option definition file for Java applications
	4.6.2 Creating a user property file for Java applications
	4.6.3 Executing Web Service clients

	5. Examples for the Development Starting from SEI
	5.1 Configuration of development examples (Starting from SEI)
	5.2 Example of development flow (Starting from SEI)
	5.3 Examples of Web Service development (starting from SEI)
	5.3.1 Creating Web Services Implementation Class
	5.3.2 Compiling Web Services Implementation Class
	5.3.3 Creating web.xml
	5.3.4 Creating application.xml
	5.3.5 Creating a WSDL file (Optional)
	5.3.6 Creating EAR files

	5.4 Examples of deployment and startup (Starting from SEI)
	5.4.1 Deploying EAR files
	5.4.2 Starting Web Services

	5.5 Examples of developing Web Service clients (Starting from SEI)
	5.5.1 Generating a service class
	5.5.2 Creating an implementation class for the Web Service client
	5.5.3 Compiling the implementation class for the Web Service client

	5.6 Examples for executing Web Services (Starting from SEI)
	5.6.1 Creating an option definition file for Java applications
	5.6.2 Creating a user property file for Java applications
	5.6.3 Executing Web Service clients

	6. Examples of Development Starting from SEI (Using the cjwsgen Command)
	6.1 Configuration of development examples (starting from SEI and the cjwsgen command)
	6.2 Flow of development examples (starting from SEI and the cjwsgen command)
	6.3 Development example of Web Services (Starting from SEI and the cjwsgen command)
	6.3.1 Saving the already compiled class files (starting from SEI and the cjwsgen command)
	6.3.2 Generating Java sources (starting from SEI and the cjwsgen command)
	6.3.3 Creating web.xml (starting from SEI and the cjwsgen command)
	6.3.4 Creating application.xml
	6.3.5 Creating EAR files

	6.4 Examples of deployment and startup (Starting from SEI and the cjwsgen command)
	6.4.1 Deploying EAR files
	6.4.2 Starting Web Services

	6.5 Development examples of Web Services clients (Starting from SEI and the cjwsgen command)
	6.5.1 Creating service classes
	6.5.2 Creating Implementation Classes for Web Services clients
	6.5.3 Compiling Implementation Classes for Web Services clients

	6.6 Examples of executing Web Services (starting from SEI and the cjwsgen command)
	6.6.1 Creating option definition files for Java applications
	6.6.2 Creating user property files for Java applications
	6.6.3 Executing Web Services clients

	7. Examples of Development Starting from SEI (For Customization)
	7.1 Configuration examples for development (Starting from SEI and customization)
	7.2 Flow of development examples (Starting from SEI and customization)
	7.3 Examples of developing Web Services (Starting from SEI or customization)
	7.3.1 Creating Web Services Implementation Class
	7.3.2 Compiling Web Services Implementation Class
	7.3.3 Creating web.xml
	7.3.4 Creating application.xml
	7.3.5 Creating an EAR file

	7.4 Examples of deployment and startup (Starting from SEI or customization)
	7.4.1 Deploying EAR files
	7.4.2 Starting Web Services

	7.5 Examples of developing Web Service clients (Starting from SEI or customization)
	7.5.1 Creating a service class
	7.5.2 Creating an implementation class for the Web Service client
	7.5.3 Compiling the implementation class for the Web Service client

	7.6 Examples for executing Web Services (Starting from SEI or customization)
	7.6.1 Creating an option definition file for Java applications
	7.6.2 Creating a user property file for Java applications
	7.6.3 Executing Web Service clients

	8. Examples of the Development Starting from SEI (For EJB Web Services)
	8.1 Configuration of the development examples (Starting from SEI and EJB Web Services)
	8.2 Procedure for the development examples (Starting from SEI and EJB Web Service)
	8.3 Example of Web Service development (Starting from SEI and EJB Web Service)
	8.3.1 Creating Web Services Implementation Class(starting from SEI and EJB Web Service)
	8.3.2 Compiling Web Services Implementation Class
	8.3.3 Creating application.xml
	8.3.4 Creating a WSDL file (optional)
	8.3.5 Creating EAR files

	8.4 Examples of deployment and startup (Starting from SEI and EJB Web Service)
	8.4.1 Deploying EAR files
	8.4.2 Starting Web Services

	8.5 Examples of Web Service client development (Starting from SEI and EJB Web Service)
	8.5.1 Generating a service class
	8.5.2 Creating an Implementation Class for the Web Services client
	8.5.3 Compiling the Implementation Class for the Web Services client

	8.6 Examples of executing Web Services (Starting from SEI and EJB Web Service)
	8.6.1 Creating an option definition file for Java applications
	8.6.2 Creating a user property file for Java applications
	8.6.3 Executing the Web Services clients

	9. Examples of Development Starting from a Provider (using SAAJ)
	9.1 Configuration examples for development (Starting from a provider and SAAJ)
	9.2 Procedure for the development examples (Starting from a provider and SAAJ)
	9.3 Examples of developing Web Services (Starting from a provider and SAAJ)
	9.3.1 Creating Provider Implementation Classes
	9.3.2 Generating Java sources
	9.3.3 Creating web.xml
	9.3.4 Creating application.xml
	9.3.5 Creating EAR files

	9.4 Examples of deployment and startup (Starting from a provider and SAAJ)
	9.4.1 Deploying EAR files
	9.4.2 Starting Web Services

	9.5 Examples of Web Services client development (Starting from a provider and SAAJ)
	9.5.1 Creating Implementation Class for the Web Services client
	9.5.2 Compiling Implementation Class for the Web Services client

	9.6 Examples for executing Web Services (Starting from a provider and SAAJ)
	9.6.1 Creating option definition files for Java applications
	9.6.2 Creating user property files for Java applications
	9.6.3 Executing Web Services clients

	10. Settings and Operations of the JAX-WS Functionality
	10.1 Action definition file
	10.1.1 Coding rules for the action definition file
	10.1.2 Settings for the common definition file
	10.1.3 Settings for the process-wise definition file

	10.2 Operations of the JAX-WS engine
	10.2.1 Operations and support range of the JAX-WS engine
	10.2.2 Discovery and dispatch

	10.3 Customization using cosminexus-jaxws.xml
	10.3.1 File name and storage destination of cosminexus-jaxws.xml
	10.3.2 Format of cosminexus-jaxws.xml

	10.4 Fault and exception processing
	10.4.1 Fault and exception processing on the Web Service
	10.4.2 Fault processing on the Web Service client
	10.4.3 Propagation of the Java exception
	10.4.4 HTTP status code when binding an exception to a fault
	10.4.5 Notes on customizing an error page

	10.5 Interface transparency
	10.6 Issuing the Meta data
	10.7 Displaying Web Service information
	10.8 HTTP methods that can be used
	10.9 Initializing and destroying the Web Service
	10.10 Connecting through a proxy server
	10.11 Connection by SSL protocol
	10.12 Connection by basic authentication
	10.13 Selecting the SOAP version
	10.13.1 Selecting the SOAP version (when developing Web Services)
	10.13.2 Selecting the SOAP version (when developing a Web Service client)
	10.13.3 Selecting the SOAP version (during the execution)

	10.14 Executing a client application using the command line
	10.14.1 Settings for command line usage
	10.14.2 Executing a command line
	10.14.3 Precautions on using the command line

	10.15 HTTP status codes
	10.16 HTTP header
	10.17 gzip compression of the HTTP request body
	10.18 Linking with the HTTP response compression functionality
	10.19 Invoking an EJB Web Service
	10.20 Preventing the resending of a request by sun.net.www.http.HttpClient
	10.21 Injection
	10.21.1 Injecting service classes and ports
	10.21.2 Injecting a Web Services context

	10.22 One-way operations
	10.22.1 Notes on one-way operations

	10.23 A functionality to dynamically generate wrapper bean

	11. Points on developing RESTful Web Services
	11.1 Creating a root resource class
	11.2 Creating web.xml
	11.3 Creating an archive
	11.3.1 Configuring a WAR file
	11.3.2 Creating an EAR file

	11.4 Implementing a client by using a client API for RESTful Web Services
	11.4.1 Use case of a Web resource client
	11.4.2  Mechanism of a client API for RESTful Web Services
	11.4.3 Setting properties and features
	11.4.4 Setting an HTTP header
	11.4.5 Notes

	12. Examples of Developing RESTful Web Services
	12.1 Configuration of development examples
	12.2 Procedures in the development example
	12.3 Example of developing Web resources
	12.3.1 Creating root resource classes
	12.3.2 Compiling Java sources
	12.3.3 Creating web.xml
	12.3.4 Creating application.xml
	12.3.5 Creating an EAR file

	12.4 Examples of deploying and starting
	12.4.1 Deploying EAR files
	12.4.2 Starting Web Services

	12.5 Examples of developing a Web resource client
	12.5.1 Creating Implementation Class of a Web resource client (by using the client APIs)
	12.5.2 Creating Implementation Class of a Web resource client (by using java.net.HttpURLConnection)
	12.5.3 Compiling Implementation Classes of a Web resource client

	12.6 Examples of invoking Web resources
	12.6.1 Creating an option definition file for Java applications
	12.6.2 Creating a user property file for Java applications
	12.6.3 Starting a Web resource client

	13. Settings and Operations of the JAX-RS Functionality
	13.1 Action definition file
	13.1.1 Coding rules for the action definition file
	13.1.2 Settings of a common definition file
	13.1.3 Setting up a process-wise definition file (JAX-RS)

	13.2 Operations of the JAX-RS engine
	13.2.1 Discovery and dispatch

	13.3 Publishing the meta data
	13.4 Connecting through a proxy server
	13.5 Connecting with an SSL protocol
	13.6 Connecting by basic authentication
	13.7 Troubleshooting
	13.7.1 Checking the syntax when initializing a Web resource (KDJJ20003-W and KDJJ10006-E)
	13.7.2 Errors detected in the received HTTP request processing
	13.7.3 Exceptions that can be handled with an exception mapping provider
	13.7.4 Throwing exceptions to the J2EE server
	13.7.5 Exception (KDJJ18888) that occurs when using client APIs

	Part 3: References
	14. Commands
	14.1 cjwsimport command
	14.2 apt command
	14.3 cjwsgen command
	14.4 Notes on using a command line interface in Windows with enabled UAC
	14.4.1 When the administrator uses a command line interface
	14.4.2 When a user other than the administrator uses a command line interface

	15. Mapping from WSDL to Java
	15.1 Default mapping from WSDL to Java
	15.1.1 Mapping a namespace to a package name
	15.1.2 Mapping a port type to a SEI name
	15.1.3 Mapping from an operation to a method name
	15.1.4 Mapping a message part to a parameter and return value (For wrapper style)
	15.1.5 Mapping the message part to the parameter and return value (For non-wrapper style)
	15.1.6 Mapping the schema type to the Java type
	15.1.7 Mapping the fault to the exception class
	15.1.8 Mapping the binding extension element to the parameter
	15.1.9 Mapping the service and port to the service class
	15.1.10 Mapping to the skeleton class
	15.1.11  Precautions on mapping from WSDL to Java

	15.2 Customized mapping of WSDL to Java
	15.2.1 Customizations in the embedded binding declaration
	15.2.2 Customizations with the external binding file
	15.2.3 Concurrent specification of the embedded binding declaration and external binding file
	15.2.4 Value that can be specified in the jaxws:bindings element
	15.2.5 Values of the elements to be customized
	15.2.6 Dealing with the name conflict
	15.2.7 Operations when the jaxws:provider element is coded
	15.2.8 Notes on customizing the SEI name
	15.2.9 Notes on customizing inout parameter name in the jaxws: parameter element
	15.2.10 Skeleton class name when the SEI name is customized with the jaxws:class element

	16. Mapping from Java to WSDL
	16.1 Default mapping of Java to WSDL
	16.1.1 Mapping the package name to the name space
	16.1.2 Mapping the Web Service Implementation Class to SEI
	16.1.3 Mapping the SEI name to the port type
	16.1.4 Mapping the name of method of SEI to an operation
	16.1.5 Mapping the parameter and return value to the message part (For wrapper style)
	16.1.6 Mapping the parameter and return value to the message part (For non-wrapper style)
	16.1.7 Mapping the Java wrapper exception class to the fault
	16.1.8 Mapping SEI to binding
	16.1.9 Mapping the Web Service implementation class to the service and port
	16.1.10 Precautions for mapping from Java to WSDL

	16.2  Customized mapping from Java to WSDL
	16.2.1 List of annotations
	16.2.2 com.sun.xml.ws.developer.StreamingAttachment annotation
	16.2.3 javax.jws.HandlerChain annotation
	16.2.4 javax.jws.Oneway annotation
	16.2.5 javax.jws.soap.SOAPBinding annotation
	16.2.6 javax.jws.WebMethod annotation
	16.2.7 javax.jws.WebParam annotation
	16.2.8 javax.jws.WebResult annotation
	16.2.9 javax.jws.WebService annotation
	16.2.10  javax.xml.bind.annotation.XmlElement annotation
	16.2.11 javax.xml.bind.annotation.XmlMimeType annotation
	16.2.12 javax.xml.bind.annotation.XmlType annotation
	16.2.13 javax.xml.ws.Action annotation
	16.2.14 javax.xml.ws.BindingType annotation
	16.2.15 javax.xml.ws.FaultAction annotation
	16.2.16 javax.xml.ws.RequestWrapper annotation
	16.2.17 javax.xml.ws.ResponseWrapper annotation
	16.2.18 javax.xml.ws.ServiceMode annotation
	16.2.19 javax.xml.ws.soap.Addressing annotation
	16.2.20 javax.xml.ws.soap.MTOM annotation
	16.2.21 javax.xml.ws.WebFault annotation
	16.2.22 javax.xml.ws.WebServiceProvider annotation

	17. Web Resources and Providers
	17.1 Resource classes
	17.1.1 Root resource classes
	17.1.2 Entity parameters
	17.1.3 Return values
	17.1.4 Parameter types
	17.1.5 Exception mapping
	17.1.6 URI template
	17.1.7 Sub-resource class
	17.1.8 Exception handling
	17.1.9 Media type declaration
	17.1.10 Disabling URL decoding
	17.1.11  Inheriting annotations

	17.2 Provider
	17.2.1  Entity provider
	17.2.2 Exception mapping provider

	18. Mapping JSON and POJO
	18.1 Settings for mapping JSON and POJO
	18.1.1 Mapping on a server
	18.1.2 Mapping on a client

	18.2 POJO to JSON mapping
	18.2.1 Requirements for mapping
	18.2.2 Available data types
	18.2.3 Exception handling

	18.3 JSON to POJO mapping
	18.3.1 Requirements for mapping
	18.3.2 Available data types
	18.3.3 Exception handling

	18.4 Exceptions that occur during mapping

	19. Support Range of the JAX-WS Specifications
	19.1 Support range of the JAX-WS 2.2 specifications
	19.1.1 Support range of the functionality in the JAX-WS 2.2 specifications
	19.1.2 Supporting Conformance

	19.2 Support range of APIs
	19.2.1 List of interfaces and classes (JAX-WS)
	19.2.2 Client API
	19.2.3 Service API
	19.2.4 Core API
	19.2.5 Using a message context

	19.3 Support range of annotations
	19.3.1 javax.xml.ws.WebServiceRef annotation

	19.4 Support range of the handler chain configuration file
	19.4.1 javaee:handler-chains element
	19.4.2 javaee:handler-chain element
	19.4.3 javaee:handler element
	19.4.4 javaee:handler-name element
	19.4.5 javaee:handler-class element
	19.4.6 javaee:soap-header element
	19.4.7 javaee:soap-role element

	20. Support Range of WSDL Specification
	20.1 Support range of the WSDL 1.1 specifications
	20.1.1 wsdl:definitions element
	20.1.2 wsdl:import element
	20.1.3 wsdl:types element
	20.1.4 wsdl:message element
	20.1.5 wsdl:part element
	20.1.6 wsdl:portType element
	20.1.7 wsdl:operation element (For the child element of the wsdl:portType element)
	20.1.8 wsdl:input element (For the grandchild element of the wsdl:portType element)
	20.1.9 wsdl:output element (For the grandchild element of the wsdl:portType element)
	20.1.10 wsdl:fault element (For the grandchild element of the wsdl:portType element)
	20.1.11 wsdl:binding element
	20.1.12 wsdl:operation element (For the child element of the wsdl:binding element)
	20.1.13 wsdl:input element (For the grandchild element of the wsdl:binding element)
	20.1.14 wsdl:output element (For the grandchild element of the wsdl:binding element)
	20.1.15 wsdl:fault element (For the grandchild element of the wsdl:binding element)
	20.1.16 wsdl:service element
	20.1.17 wsdl:port element
	20.1.18 wsdl:documentation element
	20.1.19 soap:binding element
	20.1.20 soap:operation element
	20.1.21 soap:body element
	20.1.22 soap:header element
	20.1.23 soap:fault element
	20.1.24 soap:address element
	20.1.25 soap12:operation element
	20.1.26 soap12:binding element
	20.1.27 soap12:body element
	20.1.28 soap12:header element
	20.1.29 soap12:fault element
	20.1.30 soap12:address element
	20.1.31 xsd:schema element

	20.2 Notes on creating WSDL

	21. Support Range of XML Catalogs 1.1
	21.1 Support range list of the XML Catalogs 1.1 specifications
	21.2 Details of the Support Range of the XML Catalogs 1.1 Specifications
	21.2.1 er:catalog element
	21.2.2 er:public element
	21.2.3 er:system element

	22. Support Range of the SAAJ Specifications
	22.1 Support range of the SAAJ 1.3 specifications
	22.1.1 Detail interface
	22.1.2 Node interface
	22.1.3 SOAPBody interface
	22.1.4 SOAPElement interface
	22.1.5 SOAPEnvelope interface
	22.1.6 SOAPFault interface
	22.1.7 SOAPHeader interface
	22.1.8 SOAPHeaderElement interface
	22.1.9 AttachmentPart class
	22.1.10 MessageFactory class
	22.1.11 MimeHeader class
	22.1.12 MimeHeaders class
	22.1.13 SAAJResult class
	22.1.14 SOAPFactory class
	22.1.15 SOAPMessage class
	22.1.16 SOAPPart class
	22.1.17 Support range for using attachments

	23. Support Range of the WS-RM Specifications
	23.1 Support range of the WS-RM 1.2 specifications
	23.2 Support range of the WS-RM Policy 1.2 specifications
	23.3 com.sun.xml.ws.Closeable class
	23.4 Settings using WS-Policy

	24. Support Range of JAX-RS Specifications
	24.1 Support range of JAX-RS 1.1 specifications
	24.2 Support range of API
	24.2.1 HttpHeaders interface
	24.2.2 PathSegment interface
	24.2.3 Request interface
	24.2.4 SecurityContext interface
	24.2.5 UriInfo interface
	24.2.6 Cookie class
	24.2.7 EntityTag class
	24.2.8 MediaType class
	24.2.9 NewCookie class
	24.2.10 Response class
	24.2.11 Response.ResponsBuilder class
	24.2.12 The UriBuilder class
	24.2.13 Provider annotation

	24.3 Annotations
	24.3.1 Injectable annotation
	24.3.2 Built-in request method identifier
	24.3.3 Path specifying an annotation
	24.3.4 Annotation for declaring the media type

	24.4 Context
	24.4.1 javax.ws.rs.core.UriInfo
	24.4.2 javax.ws.rs.core.HttpHeaders
	24.4.3 javax.ws.rs.core.Request
	24.4.4 javax.ws.rs.core.SecurityContext
	24.4.5 javax.ws.rs.core.ext.Providers
	24.4.6 javax.servlet.ServletConfig
	24.4.7 javax.servlet.ServletContext
	24.4.8 javax.servlet.http.HttpServletRequest
	24.4.9 javax.servlet.http.HttpServletResponse

	25. Support Range of the Client APIs for RESTful Web Services
	25.1 Support range of the client API interfaces and classes
	25.1.1 Supported properties and features
	25.1.2 Information included in the ClientRequest class and the Web resource class

	25.2 Method specifications and notes for the Client class
	create() method
	create(ClientConfig cc) method
	destroy() method
	getProperties() method
	handle(ClientRequest request) method
	resource(String u) method
	resource(URI u) method
	setChunkedEncodingSize(Integer chunkSize) method
	setConnectTimeout(Integer interval) method
	setFollowRedirects(Boolean redirect) method
	setReadTimeout(Integer interval) method

	25.3 Method specifications and notes for the ClientHandlerException class
	25.4 Method specifications and notes for the ClientRequest class
	clone() method
	create() method
	getEntity() method
	getHeaders() method
	getHeaderValue(Object headerValue) method
	getMethod() method
	getProperties() method
	getPropertyAsFeature(String name) method
	getPropertyAsFeature(String name, boolean defaultValue) method
	getURI() method
	setEntity(Object entity) method
	setMethod(String method) method
	setURI(java.net.URI uri) method

	25.5 Method specifications and notes for the ClientRequest.Builder class
	accept(MediaType... types) method
	accept(String... types) method
	acceptLanguage(Locale... locales) method
	acceptLanguage(String... locales) method
	build(URI uri, String method) method
	cookie(Cookie cookie) method
	entity(Object entity) method
	entity(Object entity, MediaType type) method
	entity(Object entity, String type) method
	header(String name, Object value) method
	type(MediaType type) method
	type(String type) method

	25.6 Method specifications and notes for the ClientResponse class
	bufferEntity() method
	close() method
	getAllow() method
	getClient() method
	getClientResponseStatus() method
	getCookies() method
	getEntity(Class<T> c) method
	getEntity(GenericType<T> gt) method
	getEntityInputStream() method
	getEntityTag() method
	getHeaders() method
	getLanguage() method
	getLastModified() method
	getLength() method
	getLocation() method
	getResponseDate() method
	getStatus() method
	getType() method
	hasEntity() method

	25.7 Enumerated constants of the ClientResponse.Status class and specifications for the methods
	Enumerated constants of the ClientResponse.Status class
	StatusCode(int statusCode) method
	getFamily() method
	getReasonPhrase() method
	getStatusCode() method
	toString() method
	valueOf(String name) method
	values() method

	25.8 Constructor and method specifications and notes for the GenericType class
	GenericType() constructor
	GenericType(Type genericType) constructor
	getRawClass() method
	getType() method

	25.9 Method specifications and notes for the UniformInterfaceException class
	getResponse() method

	25.10 Method specifications and notes for the WebResource class
	accept(MediaType... types) method
	accept(String... types) method
	acceptLanguage(Locale... locales) method
	acceptLanguage(String... locales) method
	cookie(Cookie cookie) method
	delete() method
	delete(Class<T> c) method
	delete(Class<T> c, Object requestEntity) method
	delete(GenericType<T> gt) method
	delete(GenericType<T> gt, Object requestEntity) method
	delete(Object requestEntity) method
	entity(Object entity) method
	entity(Object entity, MediaType type) method
	entity(Object entity, String type) method
	get(Class<T> c) method
	get(GenericType<T> gt) method
	getRequestBuilder() method
	getURI() method
	getUriBuilder() method
	head() method
	header(String name, Object value) method
	method(String method) method
	method(String method, Class<T> c) method
	method(String method, Class<T> c, Object requestEntity) method
	method(String method, GenericType<T> gt) method
	method(String method, GenericType<T> gt, Object requestEntity) method
	method(String method, Object requestEntity) method
	options(Class<T> c) method
	options(GenericType<T> gt) method
	path(String path) method
	post() method
	post(Class<T> c) method
	post(Class<T> c, Object requestEntity) method
	post(GenericType<T> gt) method
	post(GenericType<T> gt, Object requestEntity) method
	post(Object requestEntity) method
	put() method
	put(Class<T> c) method
	put(Class<T> c, Object requestEntity) method
	put(GenericType<T> gt) method
	put(GenericType<T> gt, Object requestEntity) method
	put(Object requestEntity) method
	queryParam(String key, String value) method
	queryParams(MultivaluedMap<String, String> params) method
	type(MediaType type) method
	type(String type) method
	uri(java.net.URI uri) method

	25.11 Method specifications and notes for the WebResource.Builder class
	accept(MediaType... types) method
	accept(String... types) method
	acceptLanguage(Locale... locales) method
	acceptLanguage(String... locales) method
	cookie(Cookie cookie) method
	delete() method
	delete(Class<T> c) method
	delete(Class<T> c, Object requestEntity) method
	delete(GenericType<T> gt) method
	delete(GenericType<T> gt, Object requestEntity) method
	delete(Object requestEntity) method
	entity(Object entity) method
	entity(Object entity, MediaType type) method
	entity(Object entity, String type) method
	get(Class<T> c) method
	get(GenericType<T> gt) method
	head() method
	header(String name, Object value) method
	method(String method) method
	method(String method, Class<T> c) method
	method(String method, Class<T> c, Object requestEntity) method
	method(String method, GenericType<T> gt) method
	method(String method, GenericType<T> gt, Object requestEntity) method
	method(String method, Object requestEntity) method
	options(Class<T> c) method
	options(GenericType<T> gt) method
	post() method
	post(Class<T> c) method
	post(Class<T> c, Object requestEntity) method
	post(GenericType<T> gt) method
	post(GenericType<T> gt, Object requestEntity) method
	post(Object requestEntity) method
	put() method
	put(Class<T> c) method
	put(Class<T> c, Object requestEntity) method
	put(GenericType<T> gt) method
	put(GenericType<T> gt, Object requestEntity) method
	put(Object requestEntity) method
	type(MediaType type) method
	type(String type) method

	25.12 Constant and method specifications and notes for the DefaultClientConfig class
	PROPERTY_BUFFER_RESPONSE_ENTITY_ON_EXCEPTION constant
	PROPERTY_CHUNKED_ENCODING_SIZEconstant
	PROPERTY_CONNECT_TIMEOUT constant
	PROPERTY_FOLLOW_REDIRECTS constant
	PROPERTY_READ_TIMEOUT constant
	getPropertyAsFeature(String featureName) method
	getFeatures() method
	getFeature(String featureName) method
	getProperties() method
	getProperty(String propertyName) method

	25.13 Specifications for the constant, constructors, and methods and the notes for the HTTPSProperties class
	PROPERTY_HTTPS_PROPERTIES constant
	HTTPSProperties() constructor
	HTTPSProperties(Hostname Verifier hv) constructor
	HTTPSProperties(Hostname Verifier hv, SSLContext c) constructor
	getHostnameVerifier() method
	getSSLContext() method

	25.14 Constructor and method specifications and notes for the MultivaluedMapImpl class
	25.15 Combinations of available Java types and MIME media types
	25.15.1 Combination of Java types and MIME media types available for an HTTP request entity
	25.15.2 Combination of Java types and MIME media types available for an HTTP response entity

	25.16 Thread safety of the client APIs for RESTful Web Services

	Part 4: Extension Functionality
	26. WSDL Import Functionality
	26.1 What is the WSDL import functionality
	26.2 WSDL definitions that can be imported
	26.3 Format of the wsdl:import element

	27. Catalog Functionality
	27.1 What is the catalog functionality
	27.2 Using the catalog functionality (when developing a Web Services client)
	27.3 Using the catalog functionality (when starting a Web Services client)
	27.4 Performance of the catalog functionality
	27.5 Notes when using the catalog functionality
	27.6 Catalog file
	27.6.1 Syntax of the catalog file
	27.6.2 Storing the catalog file
	27.6.3 Example of coding the catalog file

	28. Attachment Functionality (wsi:swaRef format)
	28.1 What is the attachment functionality (wsi:swaRef format)
	28.2 Java interface of attachments (wsi:swaRef format)
	28.3 WSDL for attachments (wsi:swaRef format)
	28.3.1 WSDL coding when attachments are used (wsi:swaRef format)
	28.3.2 Mapping of Java type of attachments and WSDL (wsi:swaRef format)
	28.3.3 Mapping WSDL to the Java type of attachments (wsi:swaRef format)

	28.4 SOAP Messages with attachments (wsi:swaRef format)
	28.4.1 Mapping an attachment to a SOAP Message (wsi:swaRef format)
	28.4.2 Precautions on mapping from an attachment to a SOAP Message (wsi:swaRef format)
	28.4.3 Mapping the SOAP message to the attachment (wsi:swaRef format)

	28.5 Generating and obtaining the Java instance of the attachment (wsi:swaRef format)
	28.5.1 Method of generating the attachment instance (wsi:swaRef format)
	28.5.2 Method of obtaining the attachment data (wsi:swaRef format)

	29. Examples of the Development Starting from SEI (When using Attachments of the wsi:swaRef format)
	29.1 Configuration examples of development (Starting from SEI and attachments of wsi:swaRef format)
	29.2 Example of the development flow (Starting from SEI and attachments of wsi:swaRef)
	29.3 Examples of Web Service development (Starting from SEI and attachments of wsi:swaref format)
	29.3.1 Creating the Web Service Implementation Class
	29.3.2  Compiling Web Services Implementation Class
	29.3.3 Creating web.xml
	29.3.4 Creating application.xml
	29.3.5 Creating EAR files

	29.4 Examples of deployment and startup (Starting from SEI and attachments of wsi:swaRef format)
	29.4.1 Deploying EAR files
	29.4.2 Starting Web Services

	29.5 Examples of Web Service client development (Starting from SEI and attachments of wsi:swaRef format)
	29.5.1 Generating a service class
	29.5.2 Creating the Web Service Implementation Class
	29.5.3 Compiling the implementation class for the Web Service client

	29.6  Examples of Web Service execution (Starting from SEI and attachments of wsi:swaRef format)
	29.6.1 Creating the option definition file for Java applications
	29.6.2 Creating the user property file for Java applications
	29.6.3 Executing the Web Service client

	30. Attachment functionality (MTOM/XOP)
	30.1 Description of the attachment functionality (MTOM/XOP)
	30.2 Java interface of an attachment (MTOM/XOP)
	30.3 Attachment WSDL (MTOM/XOP)
	30.3.1 non-wrapper style attachments in MTOM/XOP specification format (MTOM/XOP)

	30.4 Behavior of the JAX-WS engine
	30.4.1 Behavior of the JAX-WS engine on a Web Service machine
	30.4.2 Behavior of the JAX-WS engine on a Web Service client machine

	30.5 SOAP messages of the attachments in the MTOM/XOP specification format
	30.5.1 Mapping the attachments to the SOAP messages (MTOM/XOP)
	30.5.2 Notes on mapping from the attachments to the SOAP messages (MTOM/XOP)
	30.5.3 Mapping the SOAP messages to the attachments (MTOM/XOP)

	30.6 Precautions
	30.7 Data that can be sent and received and the Java types that can be used in the attachment (MTOM/XOP format)
	30.7.1 How to create Java objects for data to be sent
	30.7.2 How to acquire the received data

	31. Example of the development starting from SEI (when using attachments in the MTOM/XOP specification format)
	31.1 Configuration of the development example (starting from SEI or the attachments in the MTOM/XOP specification format)
	31.2  Flow of the development example (starting from SEI or attachments in MTOM/XOP specification format)
	31.3 Example of Web Service development(starting from SEI or attachment in MTOM/XOP specification format)
	31.3.1 Creating a Web Service Implementation Class
	31.3.2 Compiling Web Services Implementation Classes
	31.3.3 Creating a web.xml file
	31.3.4 Creating an application.xml file
	31.3.5 Creating EAR files

	31.4 Examples of deployment and startup (Starting from SEI or attachments in the MTOM/XOP specification format)
	31.4.1 Deploying EAR files
	31.4.2 Starting Web Service

	31.5 Examples of developing the Web Service clients (starting from SEI or attachments in the MTOM/XOP specification format)
	31.5.1 Generating a service class
	31.5.2 Creating an implementation class for the Web Service client
	31.5.3 Compiling an implementation class for the Web Service client

	31.6 Examples for executing the Web Services (starting from SEI or attachments in the MTOM/XOP specification format)
	31.6.1 Creating an option definition file for Java applications
	31.6.2 Creating a user property file for Java applications
	31.6.3 Executing Web Service clients

	32. Streaming
	32.1 What is the Streaming functionality
	32.2 How to use Streaming
	32.2.1 Web Services machine
	32.2.2 Web Service client side
	32.2.3 Variations due to parseEagerly
	32.2.4 Operating streamed attachments

	32.3 Temporary files (Streaming)
	32.3.1 Naming convention
	32.3.2 Output and Deletion
	32.3.3 How to estimate

	33. Example of the development starting from SEI (when using streaming)
	33.1 Starting from development example (starting from SEI and streaming)
	33.2 Flow of development examples (Starting from SEI and streaming)
	33.3 Examples of Web Service development (Starting from SEI and streaming)
	33.3.1 Creating the Web Service Implementation Class
	33.3.2  Compiling Web Services Implementation Class
	33.3.3 Creating web.xml
	33.3.4 Creating application.xml
	33.3.5 Creating EAR files

	33.4 Examples of deployment and startup (Starting from SEI and streaming)
	33.4.1 Deploying EAR files
	33.4.2 Starting Web Services

	33.5 Examples of developing the Web Service client (Starting from SEI and streaming)
	33.5.1 Generating a service class
	33.5.2 Creating an implementation class for the Web Service client
	33.5.3 Compiling the implementation class for the Web Service client

	33.6 Examples of executing the Web Services (Starting from SEI and streaming)
	33.6.1 Creating option definition files for Java applications
	33.6.2 Creating user property files for Java applications
	33.6.3 Executing the Web Service client

	34. WS-RM 1.2 Functionality
	34.1 What is the WS-RM 1.2 functionality
	34.2 Message flow when the WS-RM 1.2 functionality is used
	34.3 Delivery assurance functionality of WS-RM 1.2
	34.4  How to add the WS-RM Policy

	35. Example of the Development Starting from WSDL (using WS-RM 1.2)
	35.1  Configuration of the development example (Starting from WSDL/WS-RM 1.2)
	35.2 Flow of the development example (Starting from WSDL/WS-RM 1.2)
	35.3 Examples of developing a Web Service (Starting from WSDL/WS-RM 1.2)
	35.3.1 Creating a WSDL file
	35.3.2 Adding the WS-RM Policy in the WSDL file
	35.3.3 Creating SEI
	35.3.4 Creating the Web Service Implementation Class
	35.3.5 Compiling the Web Service Implementation Class
	35.3.6 Creating a web.xml file
	35.3.7 Creating an application.xml file
	35.3.8 Creating EAR files

	35.4 Example of deploying and starting the service (Starting from WSDL/WS-RM 1.2)
	35.4.1 Deploying the EAR files
	35.4.2 Starting Web Services

	35.5 Example of developing a Web Service client (starting from WSDl/WS-RM 1.2)
	35.5.1 Generating a service class
	35.5.2 Creating an implementation class for the Web Service client
	35.5.3 Adding sequence termination processing in the Implementation Class for Web Service client
	35.5.4 Compiling the implementation class for the Web Service client

	35.6  Example of executing the Web Service (Starting from WSDL/WS-RM 1.2)
	35.6.1 Creating an option definition file for Java applications
	35.6.2 Creating a user property file for Java applications
	35.6.3 Executing the Web Service client

	36. Handler Frame Work
	36.1 What is the handler framework
	36.2 Precautions on using the Web Service security functionality
	36.3 Notes on applying to the EJB Web Services
	36.4 Types of handlers
	36.5 Execution sequence and organization of the handler chain
	36.5.1 Processing of the handleMessage method
	36.5.2 Processing of the handleFault method
	36.5.3 Processing of the close method

	36.6 Initializing and destroying the handler
	36.7 Operations and settings for the handler when the SOAP Header is included in the SOAP Message
	36.7.1 Operations of the handler when the SOAP Header is included in the SOAP Message (in the Web Service)
	36.7.2 Operations of the handler when the SOAP Header is included in the SOAP Message (in the Web Service client)
	36.7.3 Setting the SOAP Header that can be processed

	36.8 Deploying the handlers
	36.9 Setting the handler chain
	36.9.1 Setting the handler chain in the Web Service
	36.9.2 Setting the handler chain in the Web Service client

	37. Addressing Functionality
	37.1 Addressing functionality
	37.1.1 Synchronous communication
	37.1.2 Asynchronous communication

	37.2 WSDL extension elements and extension attributes
	37.2.1 WSDL extension elements
	37.2.2 WSDL extension attributes

	37.3 Notes for the annotations used with the addressing functionality
	37.4 Fault messages
	37.4.1 Un-supported sub-sub code
	37.4.2 Notes for fault messages

	37.5 Operations of the JAX-WS engine on a Web Service machine (When using the addressing functionality)
	37.5.1 Operations for receiving request messages
	37.5.2 Response messages
	37.5.3 Operations when the wsaw:Anonymous element is specified
	37.5.4 Operations when an Addressing annotation is specified
	37.5.5 Operations when an Action annotation is specified
	37.5.6 Operations when the wsa:Action element is specified
	37.5.7 Operations when the wsa:MessageID element is not specified

	37.6 Operations of the JAX-WS engine on a Web Service client machine (When using the addressing functionality)
	37.6.1 Operations for sending and receiving messages
	37.6.2 AddressingFeature class and anonymous URI
	37.6.3 Notes for the wsaw:Action and wsam:Action attributes
	37.6.4 Notes for the wsa:Action element
	37.6.5 Notes related to acquiring SEI

	38. Examples of development from SEI (when addressing functionality used)
	38.1 Configuration examples of development (Starting from SEI and addressing)
	38.2 Flow of development examples (Starting from SEI and addressing)
	38.3 Examples of Web Service development (Starting from SEI and addressing)
	38.3.1 Creating the Web Service Implementation Class
	38.3.2  Compiling Web Services Implementation Classes
	38.3.3 Creating web.xml
	38.3.4 Creating application.xml
	38.3.5 Creating EAR files

	38.4 Examples of deployment and startup (Starting from SEI and addressing)
	38.4.1 Deploying EAR files
	38.4.2 Starting Web Services

	38.5 Examples of Web Service client development (Starting from SEI and addressing)
	38.5.1 Generating a service class
	38.5.2 Creating an implementation class for the Web Service client
	38.5.3 Compiling the implementation class for the Web Service client

	38.6 Examples of Web Service execution (Starting from SEI and addressing)
	38.6.1 Creating option definition files for Java applications
	38.6.2 Creating user property files for Java applications
	38.6.3 Executing the Web Service client

	Part 5: Troubleshooting
	39. Troubleshooting
	39.1 Types of failure and actions
	39.1.1 When a running program ends abnormally
	39.1.2 When a program does not operate as intended
	39.1.3 When the performance is not as expected

	39.2  Material to be acquired when a failure occurs
	39.3 Log
	39.3.1 Types of log
	39.3.2 Log file rotation
	39.3.3 Log output destination
	39.3.4 Importance level and output conditions of logs
	39.3.5 Log format
	39.3.6 Setting logs
	39.3.7 Estimating the log

	39.4 Performance analysis trace (PRF)
	39.4.1 Collection level of Trace based performance analysis
	39.4.2 Trace output information of Trace based performance analysis
	39.4.3 Method of performance analysis based on Trace based performance analysis

	Appendixes
	A. Migrating from an Earlier Version
	A.1 Installing an upgraded version
	A.2 Compatibility of WSDL created in an earlier version

	B. Migrating from the POJO Web Service to the EJB Web Service
	C. Calculating the Memory Usage for JAX-WS Engine
	C.1 Memory usage when the application starts
	C.2 Memory usage per request
	C.3 Memory usage per request when attachments are used
	C.4 Calculating the memory usage per unit time

	D. Glossary

	Index

