HITACHI

Inspire the Next

uCosminexus Application Server

API| Reference Guide

3020-3-Y21-10(E)



m Relevant program products

See the manual uCosminexus Application Server Overview.

m Export restrictions

If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law, and USA export
control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

m Trademarks

CORBA is a registered trademark of Object Management Group, Inc. in the United States.

IIOP is a trademark of Object Management Group, Inc. in the United States.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

OMG, CORBA, 110P, UML, Unified Modeling Language, MDA and Model Driven Architecture are either registered trademarks or
trademarks of Object Management Group, Inc. in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

SOAP is an XML-based protocol for sending messages and making remote procedure calls in a distributed environment.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States

and/or other countries.

The other company names and product names are either trademarks or registered trademarks of the respective companies.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Throughout this document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization
used by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use of a

trademark in this document should not be regarded as affecting the validity of the trademark.

m Microsoft product name abbreviations

This manual uses the following abbreviations for Microsoft product names:

Abbreviation

Full name or meaning

Windows

Windows Server
2008

Windows Server
2008 x86

Microsoft(R) Windows Server(R) 2008 Standard 32-bit

Microsoft(R) Windows Server(R) 2008 Enterprise 32-bit

Windows Server
2008 x64

Microsoft(R) Windows Server(R) 2008 Standard

Microsoft(R) Windows Server(R) 2008 Enterprise

Windows Server
2008 R2

Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server
2012

Windows Server
2012 Standard

Microsoft(R) Windows Server(R) 2012 Standard

Windows Server
2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Datacenter

Windows XP

Microsoft(R) Windows(R) XP Professional Operating System

Windows Vista

Windows Vista
Business

Microsoft(R) Windows Vista(R) Business (32 bit)

Windows Vista
Enterprise

Microsoft(R) Windows Vista(R) Enterprise (32 bit)

Windows Vista
Ultimate

Microsoft(R) Windows Vista(R) Ultimate (32 bit)




Abbreviation Full name or meaning

Windows Windows 7 Windows 7 x86 Microsoft(R) Windows(R) 7 Professional (32 bit)

Microsoft(R) Windows(R) 7 Enterprise (32 bit)

Microsoft(R) Windows(R) 7 Ultimate (32 bit)

Windows 7 x64 Microsoft(R) Windows(R) 7 Professional (64 bit)

Microsoft(R) Windows(R) 7 Enterprise (64 bit)

Microsoft(R) Windows(R) 7 Ultimate (64 bit)

Windows 8 Windows 8 x86 Windows(R) 8 Pro (32 bit)

Windows(R) 8 Enterprise (32 bit)

Windows 8 x64 Windows(R) 8 Pro (64 bit)

Windows(R) 8 Enterprise (64 bit)

Note that Windows 32 bit and Windows 64 bit are sometimes respectively referred to as Windows x86 and Windows x64.

m Restrictions

Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The software
described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of the terms and
conditions governing your use of the software and documentation, including all warranty rights, limitations of liability, and disclaimers of
warranty.

Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in Japan.

m Issued
Aug. 2013: 3020-3-Y21-10(E)

m Copyright
All Rights Reserved. Copyright (C) 2012, 2013, Hitachi, Ltd.



Summary of amendments

The following table lists changes in the manual 3020-3-Y21-10(E) for uCosminexus Application Server 09-50,
uCosminexus Application Server(64) 09-50, uCosminexus Client 09-50, uCosminexus Developer 09-50,
uCosminexus Service Architect 09-50, uCosminexus Service Platform 09-50, uCosminexus Service Platform(64)
09-50 and product changes related to the manual:

Changes Location

A description has been added for the client APIs of RESTful Web Services used to implement 1.1
Web resource clients.

@WebServiceRef has been added to the support range of annotations included in the 2.1.8
javax.xml.ws package.

A table has been added for the definable range of the annotations of Bean Validation. 2.1.13

An exception class of the EADs session failover disable functionality has been added to the 3.1
APIs used with Web containers.

JDK6.0 is now supported. Appendix B

In addition to the above changes, minor editorial corrections have been made.



Preface

For details on the prerequisites before reading this manual, see the manual uCosminexus Application Server Overview.

m Non-supported functionality

Some functionality described in this manual is not supported. Non-supported functionality includes:

¢ Audit log functionality

* Compatibility functionality

* Cosminexus Component Transaction Monitor

* Cosminexus DABroker Library

* Cosminexus Reliable Messaging

¢ Cosminexus TPBroker and VisiBroker

* Cosminexus Web Service - Security

¢ Cosminexus XML Security - Core functionality
» JP1 linkage functionality

¢ Management portal functionality

* Migration functionality

* SOAP applications complying with specifications other than JAX-WS 2.1
* uCosminexus OpenTP1 linkage functionality

¢ Virtualized system functionality

* XML Processor high-speed parse support functionality

m Non-supported compatibility functionality

"Compatibility functionality" in the above list refers to the following functionality:

* Basic mode

* Check of JSP source compliance (cjjsp2java) with the JSP1.1 and JSP1.2 specifications
» Database connection using Cosminexus DABroker Library

« EJB client application log subdirectory exclusive mode

¢ J2EE application test functionality

e Memory session failover functionality

* Servlet engine mode

¢ Simple Web server functionality

¢ Switching multiple existing execution environments

* Using EJB 2.1 and Servlet 2.4 annotation






Overview of APIs and Tag Libraries 1
1.1 Types of APIs and Tag Libraries 2
1.2 Format for describing annotation 4
1.3 Coding Format of APIs 5
Annotations and Dependency Injection Supported by Application Server 7
2.1 Scope for the supported annotations 8
2.1.1 Scope of support for the annotations included in the javax.annotation package 8
2.1.2 Scope of support for the annotations included in the javax.annotation.security package 10
2.1.3 Scope of support for the annotations included in the javax.ejb package 13
2.1.4 Scope of support for the annotations included in the javax.interceptor package 17
2.1.5 Scope of support for the annotations included in the javax.jws package 18
2.1.6 Scope of support for the annotations included in the javax.persistence package 18
2.1.7 Scope of support for the annotations included in the javax.servlet.annotation package 21
2.1.8 Scope of support for the annotations included in the javax.xml.ws package 22
2.1.9 Support range of annotations included in the javax.xml.ws.soap package 22
2.1.10 Support range of annotations included in the javax.xml.ws.spi package 23
2.1.11 List of supported CDI annotations 23
2.1.12 List of supported JSF annotations 25
2.1.13 List of supported Bean Validation annotations 26
2.2 javax.annotation package 28
2.2.1 @PostConstruct 28
2.2.2 @PreDestroy 28
2.2.3 @Resource 28
2.2.4 @Resources 33
2.3 javax.annotation.security package 34
2.3.1 @DeclareRoles 34
2.3.2 @DenyAll 34
2.3.3 @PermitAll 35
2.3.4 @RolesAllowed 35
2.3.5 @RunAs 35
2.4 javax.ejb package 37
2.4.1 @AccessTimeout 38
2.4.2 @AfterBegin 39
2.4.3 @AfterCompletion 39
2.4.4 @ApplicationExceptionn 39
2.4.5 @Asynchronous 40
2.4.6 @BeforeCompletion 40



Contents

2.4.7 @ConcurrencyManagement 40
2.4.8 @DependsOn 41
249 @QEJB 41
2.4.10 @EJBs 43
2.4.11 @Init 43
2.4.12 @Local 44
2.4.13 @LocalBean 44
2.4.14 @LocalHome 45
2.4.15 @Lock 45
2.4.16 @PostActivate 46
2.4.17 @PrePassivate 46
2.4.18 @Remote 46
2.4.19 @RemoteHome 47
2.4.20 @Remove 47
2.4.21 @Schedule 48
2.4.22 @Schedules 50
2.4.23 @Singleton 50
2.4.24 @Startup 51
2.4.25 @Stateful 51
2.4.26 @Stateless 52
2.4.27 @Timeout 53
2.4.28 @TransactionAttribute 53
2.4.29 @TransactionManagement 54
2.5 javax.faces.bean package 55
2.5.1 @ManagedBean 55
2.6 javax.interceptor package 56
2.6.1 @Aroundinvoke 56
2.6.2 @ExcludeClassinterceptors 56
2.6.3 @ExcludeDefaultinterceptors 56
2.6.4 @Interceptors 56
2.7 javax.persistence package 58
2.7.1 @AssociationOverride 62
2.7.2 @AssociationOverrides 63
2.7.3 @AttributeOverride 63
2.7.4 @AttributeOverrides 64
2.7.5 @Basic 65
2.7.6 @Column 66
2.7.7 @ColumnResult 67
2.7.8 @DiscriminatorColumn 68
2.7.9 @DiscriminatorValue 69
2.7.10 @Embeddable 70



2.7.11 @Embedded

2.7.12 @EmbeddedId

2.7.13 @Entity

2.7.14 @EntityListeners
2.7.15 @EntityResult

2.7.16 @Enumerated

2.7.17 @ExcludeDefaultListeners
2.7.18 @ExcludeSuperclassListeners
2.7.19 @FieldResult

2.7.20 @GeneratedValue
2.7.21 @Id

2.7.22 @IdClass

2.7.23 @Inheritance

2.7.24 @JoinColumn

2.7.25 @JoinColumns

2.7.26 @JoinTable

2.7.27 @Lob

2.7.28 @ManyToMany
2.7.29 @ManyToOne

2.7.30 @MapKey

2.7.31 @MappedSuperclass
2.7.32 @NamedNativeQueries
2.7.33 @NamedNativeQuery
2.7.34 @NamedQueries
2.7.35 @NamedQuery
2.7.36 @OneToMany

2.7.37 @OneToOne

2.7.38 @OrderBy

2.7.39 @PersistenceContext
2.7.40 @PersistenceContexts
2.7.41 @PersistenceProperty
2.7.42 @PersistenceUnit
2.7.43 @PersistenceUnits
2.7.44 @PostLoad

2.7.45 @PostPersist

2.7.46 @PostRemove

2.7.47 @PostUpdate

2.7.48 @PrePersist

2.7.49 @PreRemove

2.7.50 @PreUpdate

2.7.51 @PrimaryKeyJoinColumn

Contents

70
70
71
71
72
73
73
74
74
75
76
76
77
78
80
81
82
83
84
86
87
87
87
89
90
91
92
94
95
96
97
97
98
99
99
99
99

100

100

100

100



Contents

2.7.52 @PrimaryKeyJoinColumns 102
2.7.53 @QueryHint 102
2.7.54 @SecondaryTable 103
2.7.55 @SecondaryTables 104
2.7.56 @SequenceGenerator 105
2.7.57 @SqlResultSetMapping 106
2.7.58 @SqlResultSetMappings 107
2.7.59 @Table 108
2.7.60 @TableGenerator 109
2.7.61 @Temporal 111
2.7.62 @Transient 112
2.7.63 @Version 112
2.7.64 Correspondence between the annotations and O/R mapping 113

2.8 javax.servlet.annotation package 116
2.8.1 @HandlesTypes 116
2.8.2 @HttpConstraint 117
2.8.3 @HttpMethodConstraint 118
2.8.4 @MultipartConfig 119
2.8.5 @ServletSecurity 120
2.8.6 @WeblnitParam 120
2.8.7 @WebfFilter 121
2.8.8 @WebListener 124
2.8.9 @WebServlet 124

2.9 Dependency Injection supported on Cosminexus Application Server 127
3 APIs Used in the Web Container 129
3.1 Exception classes 130
4 APIs Used by EJB Client Applications 133
4.1 List of APIs used by EJB client applications 134
4.2 EJBClientlnitializer Class 135
Initialize method 135

4.3 RequestTimeoutConfigFactory Class 136
getRequestTimeoutConfig method 136

4.4 RequestTimeoutConfig Class 137
setRequestTimeout method (format 1) 137
setRequestTimeout method (format 2) 138
unsetRequestTimeout method 138

4.5 UserTransactionFactory class 140
getUserTransaction method 140

4.6 Exception Class 141




Contents

APIls Used When Using the TP1 Inbound Adapter to Link with OpenTP1(INTENTIONALLY

DELETED) 143
5.1 (INTENTIONALLY DELETED) 144
APIs Used in the Asynchronous Parallel Processing of Threads 145
6.1 List of Cosminexus APIs that differ in operation from Timer and Work Manager for Application
Servers specifications 146
APIs Used in the User Log Functionality 147
7.1 List of APIs used in the user log functionality 148
7.2 CJLogRecord Class 149
create Method (Format 1) 151
create Method (Format 2) 151
create Method (Format 3) 152
create Method (Format 4) 152
create Method (Format 5) 153
create Method (Format 6) 153
create Method (Format 7) 154
create Method (Format 8) 154
create Method (Format 9) 155
create Method (Format 10) 156
createp Method (Format 1) 156
createp Method (Format 2) 157
createp Method (Format 3) 158
createp Method (Format 4) 158
createp Method (Format 5) 159
createp Method (Format 6) 160
createp Method (Format 7) 160
createp Method (Format 8) 161
createp Method (Format 9) 162
createp Method (Format 10) 163
createrb Method (Format 1) 163
createrb Method (Format 2) 164
createrb Method (Format 3) 165
createrb Method (Format 4) 166
createrb Method (Format 5) 166
createrb Method (Format 6) 167
createrb Method (Format 7) 168
createrb Method (Format 8) 169
createrb Method (Format 9) 169
createrb Method (Format 10) 170



Contents

APIs Used to Output Audit Logs (INTENTIONALLY DELETED) 173
8.1 (INTENTIONALLY DELETED) 174
9 APIs Used in Performance Analysis Trace 175
9.1 List of APIs used in performance analysis trace 176
9.2 CprfTrace Class 177
getRootApinfo Method 177

] 0 APIs Used with JavaVM 179
10.1 List of APIs used with JavaVM 180
10.2 BasicExplicitMemory Class 181
BasicExplicitMemory constructor (Format 1) 181
BasicExplicitMemory constructor (Format 2) 181
getName method 182
10.3 ExplicitMemory Class 183
countExplicitMemories Method 183
freeMemory method 184
getMemoryUsage Method 184
isActive Method 185
isReclaimed Method 186
newArray method (format 1) 186
newArray method (format 2) 187
newlInstance method (format 1) 188
newlnstance method (format 2) 189
newlnstance method (format 3) 191
reclaim Method (Format 1) 192
reclaim Method (Format 2) 193
reclaim Method (Format 3) 193
reclaim Method (Format 4) 194
setName method 195
toString method 195
totalMemory method 196
usedMemory method 196
10.4 MemoryArea Class 198
10.5 MemorylInfo Class 199
getEdenFreeMemory Method 199
getEdenMaxMemory Method 200
getEdenTotalMemory Method 200
getPermFreeMemory Method 201
getPermMaxMemory Method 201

vi



Contents

getPermTotalMemory Method 201
getSurvivorFreeMemory Method 202
getSurvivorMaxMemory Method 202
getSurvivorTotalMemory Method 203
getTenuredFreeMemory Method 203
getTenuredMaxMemory Method 203
getTenuredTotalMemory Method 204

10.6 Error check (common error check) of the process that controls the Explicit memory block 205

10.7 Exception classes 206

1 1 Properties that can be Used During Application Development 207
11.1 Properties that can be used in a batch application 208
ejbserver.batch.currentdir property 208
Appendixes 209
A. JavaAPI Classes in which Leakage of the Java Heap Memory Occurs Easily 210

B. JavaAPI Classes that Implicitly Generate Threads inside JavaVM 212

B.1 Thread generation process list 212

Index 215

vii






Overview of APIs and Tag Libraries

This chapter describes the types of APIs and tag libraries used by Application Server
and the formats for describing the APIs and tag libraries in this manual.



1. Overview of APIs and Tag Libraries

1.1 Types of APIs and Tag Libraries

This section describes the types of APIs and tag libraries used with Application Server.

In this manual, the APIs and tag libraries that can be used in each application are divided into the following three

types:

* APIs and tag libraries that can be used for J2EE applications

* APIs that can be used for batch applications or EJB client applications

* APIs that can be used for the systems executing Web Services

The following table describes the APIs and the tag libraries that you can use for J2EE applications.

Table 1-1: APIs used with J2EE applications

Referenc
Type of API and tag library Description of API and tag library Reference manual e
location
APIs used in the Web container | APIs used in the Web container This manual Chapter 3
APIs used in the EJB client APIs for setting the security and communication timeout of Chapter 4
application the EJB client.
APIs used in TP1 inbound APIs used in TP1 inbound adapter to integrate with Chapter 5
adapter to integrate with OpenTP1.
OpenTP1
APIs used in the asynchronous APIs used in the asynchronous parallel processing of Chapter 6
parallel processing of threads threads.
APIs used in the integrated user | An integrated user management framework used for user uCosminexus Chapter
management framework authentication when the integrated user management Application Server 15
function is used. Security Management
Guide
Tag library used in the JSP tag library of the integrated user management uCosminexus Chapter
integrated user management framework used for user authentication when the integrated | Application Server 16
framework user management function is used. Security Management
Guide
APIs used in the user log APIs used to output the user log when the log output by the This manual Chapter 7
functionality J2EE application (user log) is to be output in the Hitachi
trace common library format.
APIs used to output audit logs APIs used to output audit logs in J2EE applications. Chapter 8
APIs used in the performance APIs for acquiring the root application information as a Chapter 9
analysis trace character string expression, when analyzing the processing
efficiency of a Cosminexus system with the performance
analysis trace.
APIs used in JavaVM APIs to acquire the memory information of the direct Chapter
garbage collection from a Java program. 10
APIs used in Cosminexus APIs used to set the database information when you connect | uCosminexus Chapter 4
DABroker Library to the database by using Cosminexus DABroker Library. Application Server
Compatibility Guide

Other than APIs and tag libraries, you can also use annotations and Dependency Injection. For details on annotations

and Dependency Injection, see 2. Annotations and Dependency Injection Supported by Application Server.

The following table describes the APIs that you can use for batch applications or EJB client applications.



1. Overview of APIs and Tag Libraries

Table 1-2: APIs that can be used for batch applications or EJB client applications

Referenc
Type of API and tag library Description of APl and tag library Reference manual e
location
APIs used in the EJB client APIs used for setting up the security and the communication | This manual Chapter 4
application timeout of EJB client applications.
APIs used in the user log APIs used to output the user log when you want to output Chapter 7
functionality the log (user log) to be output by batch application or EJB
client application in the Hitachi trace common library
format.
APIs used to output audit logs APIs used to output audit logs in batch applications or EJB Chapter 8
client applications.
APIs used in the performance APIs for acquiring the root application information as a Chapter 9
analysis trace character string expression, when analyzing the processing
efficiency of a Cosminexus system with the performance
analysis trace.
APIs used in JavaVM APIs to acquire the memory information of the direct Chapter
garbage collection from a Java program. 10
APIs used in Cosminexus APIs used to set the database information when you wantto | uCosminexus Chapter 4
DABroker Library connect to the database by using Cosminexus DABroker Application Server
Library. Compatibility Guide
The following table describes the APIs that you can use with the systems executing Web Services.
Table 1-3: APIs that can be used with the systems executing Web Services
Referenc
Types of API Explanation of API Reference manual e
location
APIs used in the development APIs used when developing SOAP Web Services or Web uCosminexus Chapter
of SOAP Web Services Service clients. Application Server Web 19
complying with the JAX-WS Service Development
2.2 specifications Guide
APIs used in the development APIs used when developing RESTful Web Services (Web Chapter
of RESTful Web Services resources). The HTTP client is developed using the client 24
complying with the JAX-RS APIs for RESTful Web Services or the standard Java APIs.
1.1 specifications
The client APIs for RESTful APIs used when implementing clients of RESTful Web Chapter
Web Services that are used for Services (Web Services), with the client APIs for RESTful 25

implementing Web resource
clients

Web Services.




1. Overview of APIs and Tag Libraries

1.2 Format for describing annotation

Chapter 2 describes the annotations in the following format. Note that each annotation is described in alphabetical
order.

(1) Description

This section describes the function of the annotations.

(2) Attribute

This describes the attributes included in an annotation. Each attribute is described in the following format:

(a) Attribute name
Type
Indicates the type of the attributes.
Description
This section describes the function of the attributes.
Default value
Indicates the default value of the attributes.



1. Overview of APIs and Tag Libraries

1.3 Coding Format of APIs

APIs are described in the following format from chapter 3 to chapter 10. Each API is described according to the
alphabetical order.

Description
This section describes the functions of the API.
Format
This section describes the coding format of the API.
Parameters
This section describes the API parameters.
Exceptions
This section describes the exceptions that occur when using the API.
Return value
This section describes the return value of the APL
Caution
This section describes the precautions to be taken when using the API.






Annotations and Dependency
Injection Supported by Application
Server

This chapter describes the annotations and Dependency Injection supported by
Application Server.

If you are using the annotation reference disable functionality, an annotation
specification is not referenced. For details on the annotation reference disable
functionality, see /2.5 Controlling the annotation references in the uCosminexus
Application Server Common Container Functionality Guide.



2. Annotations and Dependency Injection Supported by Application Server

2.1 Scope for the supported annotations

An annotation is a language specification that enables you to attach a comment to the source code.

The following table lists the annotations supported by Application Server.

2.1.1 Scope of support for the annotations included in the
javax.annotation package

This section describes the applicability of annotations of the javax.annotation package. The following sections
describe the annotations that you can code in each component:

(1) WAR file (Servlet 3.0 compliant)

The following table lists the annotations that you can code in a WAR file:

Table 2-1: Annotations (javax.annotation package) that can be coded in WAR file (Servlet 3.0 compliant)

Servlet specifications

JSP Specifications

Tag handler Tag Exce Man
. Even librar ) aged Othe
Annotation Servi  Serv Servl | Even t _ Clas  Simp y ption Bea r
name Servl et t . JSPfi ; Clas
ot et et filter | listen listen e sic le even n(JS | class
(API) fiter o er tag = tag t s F)
(API) hand = hand | listen
ler ler er
@PostCon Y -- Y -- Y -- -- Y Y N -- Y# --
struct
@PreDest Y -- Y - Y -- - Y Y N - Y# -
roy
@Resourc Y - Y - Y -- - Y Y N - Y -
e
@Resourc Y -- Y - Y -- - Y Y N - Y -
es
Legend:
Y: Supported.

N: Not supported by Application Server.
--: Not supported by standard specifications.

Annotation depends on JSF. For the support scope, see the JSF specification document.

(2) WAR file (Supported by Servlet 2.5)

The following table lists the annotations that you can code in a WAR file.

Table 2-2: Annotations (javax.annotation package) that can be coded in a WAR file (Supported by Servlet
2.5)

Servlet specifications JSP specifications

Tag handler Other
Annotation name Event Tag library
Servlet Sfe”:\élret listen JfﬁeP Classic Simple event class
er tag tag listener
handler handler
@PostConstruct Y Y Y - Y Y N -




2. Annotations and Dependency Injection Supported by Application Server

Servlet specifications JSP specifications
Tag handl
Annotation name Serviet Event JSP A Tag library Olther
Servlet filter listen file Classic Simple event Cass
er tag tag listener

handler | handler

@PreDestroy Y Y Y - Y Y N -
@Resource Y Y Y -- Y Y N -
@Resources Y Y Y -- Y Y N -
Legend:
Y: Supported.

N: Not supported by Application Server.
--: Not applicable.

(3) EJB-JAR File (EJB3.1/3.0 compliant)

The following table lists the annotations that you can code in an EJB-JAR file:

Table 2-3: Annotations (javax.annotation package) that can be coded in an EJB-JAR file (EJB3.1/3.0

compliant)
Enterprise Bean

Interceptor 23 Ot
e a

. ti
Annotation name . . Other Def P r
Interface Sgsswn Entlty dl\(lessaége- than the ault oln cla
ean ean riven Bean default inter S oo

intercepto .~ cept = SS

r or
@PostConstruct - Y - N Y Y - -
@PreDestroy - Y - N Y Y - -
@Resource - Y -- N Y Y - -
@Resources - Y - N Y Y - -
Legend:
Y: Supported.

N: Not supported by Application Server.
--: Not applicable.

(4) Library JAR file (Servlets or JSPs)

The following table lists the annotations that you can code in a servlet or a JSP of a library JAR file:

Table 2-4: Annotations (javax.annotation package) that can be coded in a library JAR file (Servlets or

JSPs)
Servlet specifications JSP specifications
. Tag handler
Annotation Servlet Event JsS Tag library
name Servlet = Servle - Event . ]
Servlet (AP) t filter filter listener listener P Classic Simple ta event
(API) (APl)  file tag 9 listener
handler
handler

@PostCons - - Y -- Y - - Y Y N
truct




2. Annotations and Dependency Injection Supported by Application Server

Servlet specifications JSP specifications
. Tag handler
AT U Serviet  Servie Servlet Event Event JS Tag library
DS Servlet (API) t filter filter listener listener P Classic Simple ta event
(API) (APl)  file tag o dlerg listener
handler
@PreDestr - - Y - Y - - Y Y N
oy
@Resource - - Y - Y - - Y Y N
@Resource - - Y - Y - - Y Y N
S
Legend:
Y: Supported.

N: Not supported by Application Server.
--: Not applicable.

(5) Library JAR file (Enterprise Bean, exception class, or other classes)

The following table lists the annotations that you can coded in the Enterprise Beans, exception classes, or the other
classes of a library JAR file:

Table 2-5: Annotations (javax.annotation package) that can be coded in a library JAR file (Enterprise
Beans, exception classes, or other classes)

Enterprise Bean
Annotation name Excepti|=Other;
Interface e it Message-driven Bean Interce | onclass | class
Bean Bean ptor
@PostConstruct - - - N Y - -
@PreDestroy - - -- N Y - -
@Resource - - - N Y - -
@Resources - - - N Y — —

Legend:
Y: Supported.
N: Not supported by Application Server.
--: Not applicable.

2.1.2 Scope of support for the annotations included in the
javax.annotation.security package

This subsection describes the applicability of annotations included in the javax.annotation.security
package. The following sections describe the annotations that you can code in each component:

(1) WAR File (Servlet 3.0 compliant)

The following table lists the annotations that you can code in a WAR file.

10



2. Annotations and Dependency Injection Supported by Application Server

Table 2-6: Annotations (javax.annotation.security package) that can be coded in WAR file (Servlet 3.0

compliant).
Servlet specifications JSP specifications
S Tag handler
° E  Ev
S L v | en
Annotation Ser | er (fellt e t é Tag Exceptio ':g:g:?fg Other
name Serv  vlet | vl te nt | list P Classic | Simple | library n class = class
let (AP | et r lis | en fil tag tag event )
) filt ( te | er e handle | handle @ listener
er n (A r r
a er Pl
Pl
)
@DeclareRo Y Y Y - Y - - - - — - - -
les
@RunAs Y N - - - - - - - - - - -
Legend:
Y: Supported.

N: Not supported by Application Server.

--: Not supported by standard specifications.

(2) WAR file (Supported by Servlet 2.5)

The following table lists the annotations that you can code in a WAR file:

Table 2-7: Annotations (javax.annotation.security package) that can be coded in a WAR file (Supported by
Servlet 2.5)

Servlet specifications

JSP specifications

Annotation name T2 handler Tag Other
Serviet ~ Serviet - Event ISP Classic  Simple 521y s
filter listener file event
tag tag list
handler handler Sy
@DeclareRoles Y - - - - - - .
@RunAs Y Y Y -- - - - -
Legend:
Y: Supported.
--: Not applicable.

(3) EJB-JAR file (EJB3.1/EJB3.0 compliant)

The following table lists the annotations that you can code in an EJB-JAR file:

11



2. Annotations and Dependency Injection Supported by Application Server

Table 2-8: Annotations (javax.annotation.security package) that can be coded in an EJB-JAR file (EJB3.1/
EJB3.0 compliant)

Enterprise Bean
Intercept
or
Ot
he Ex
r ce Ot
. tha  De  pti | her
Annotation name
. . Message- n fau on cla
Interface Session Bean Entity Bean driven Bean the It da | ss
def | int ss
aul  erc
t ept
int or
erc
ept
or
@DeclareRoles - Y - N _ _ _ —
@DenyAll - Y - N - - - -
@PermitAll - Y - N - - - -
@RolesAllowed - Y - N - - — -
@RunAs - Y - N - - - -
Legend:
Y: Supported.

N: Not supported by Application Server.
--: Not applicable.

(4) Library JAR file (Servlets or JSPs)

The following table lists the annotations that you can code in a servlet or JSP of a library JAR file:

Table 2-9: Annotations (javax.annotation.security package) that can be coded in a library JAR file

(Servlets or JSPs)
Servlet specifications JSP specifications
Tag handler
. Ser Servl Event .
Annotation name Ser | viet  Serviet ot II:Tvent listen = JSP : : Tag library
: ) isten ) Classic Simple event
vlet (AP filter filter er file .
| AP er AP tag tag listener
) (=) (AR handler handler
@DeclareRoles - - Y - Y - - - - _
Legend:
Y: Supported.
--: Not applicable.

(5) Library JAR file (Enterprise Bean, exception class, or other classes)

You cannot use the annotations in the Enterprise beans, exception classes, or the other classes of a library JAR file.

12



2. Annotations and Dependency Injection Supported by Application Server

2.1.3 Scope of support for the annotations included in the javax.ejb
package

This subsection describes the applicability of annotations of the javax.ejb package. The following sections
describe the annotations that you can code in each component:

(1) WAR file (Servlet 3.0 compliant)

The following table lists the annotations that you can code in a WAR file:

Table 2-10: Annotations (javax.ejb package) that can be coded in WAR file (Servlet 3.0 compliant)

Servlet specifications JSP specifications

Tag handler Tag Man
. Even librar = Exce age Othe
An:g::;lon Sery | Servi Servi S::VI 2T t jsp Clas  simp y ption = dBea r
ot et et filter | listen listen file sic le even class n(JS @ class
(API) | filter (API) or er tag tag t F)
(API) hand = hand | listen
ler ler er
@Applica -- - - - - - - - - - Y - -
tionExce
ption
QEJB Y - Y - Y - - Y Y N - Y -
@EJBs Y - Y - Y - - Y Y N - Y -
Legend:
Y: Supported.

N: Not supported by Application Server.
--: Not supported by standard specifications.

(2) WAR file (Supported by Servlet 2.5)

The following table lists the annotations that you can code in a WAR file:

Table 2-11: Annotations (javax.ejb package) that can be coded in a WAR file (Supported by Servlet 2.5)

Servlet specifications JSP specifications

Annotation name Event Tag handler Tag Other
Sevle | Semvlet | ion  USPfile  Classic  Simple = Prary  class
t filter event
r tag tag list
handler = handler S
@EJB Y % v _ v Y N —
@EJBs Y Y Y - Y Y N -
Legend:
Y: Supported.

N: Not supported by Application Server.
--: Not applicable.

(3) EJB-JAR file (EJB3.1 compliant)

The following table lists the annotations that you can code in an EJB-JAR file:

13



2. Annotations and Dependency Injection Supported by Application Server

Table 2-12: Annotations (javax.ejb package) that can be coded in an EJB-JAR file (EJB3.1 compliant)

Enterprise Bean
Intercept
or
Ot
he Ex
. ce Ot
De | pti | her
Annotation name tha
. . - fau
Interface Session Bean Entity Bean MEESEEE n on | cla
driven Bean def It cla ss
Int
aul ==
erc
t ept
Int P
or
erc
ept
or
@AccessTimeoutf! - Y - - - - - -
@AfterBegin®? -- Y -- -- -- -- -- --
@AfterCompletion - Y - - - - - -
#3
@ApplicationExce - -- - - - - Y -
ption
@Asynchronous®3 - Y - - - - - -
@BeforeCompletio - Y - - - - - -
n#2
@ConcurrencyMana - Y - - - - - -
gement#l
@DependsOnt? - Y - - - - - -
@EJB - Y -- N Y Y - -
@EJBs -- Y -- N Y Y -- -
@Init*? - Y - - - - - -
@Local Y Y - — - - - -
@LocalBean - Y - - - _ _ -
@LocalHome - Y - - — - — -
@Lock! - Y - - i e R
@Remote Y Y - — - - - -
@RemoteHome - Y - - - — _ -
@Remove'? - Y - - - - - -
@Schedulet3 -- Y -- N -- -- -- -
@Schedulest? - Y - N - - - -
@Ssingleton®! - Y - - - - - --
@Startupt? - Y - - - - - -
@Statefult? -- Y - - - - - -

14



2. Annotations and Dependency Injection Supported by Application Server

Enterprise Bean

Intercept
or
Ot
h Ex
e
r ce Ot
De pti | her
Annotation name tha
. . - fau
Interface Session Bean Entity Bean Message n on | cla
driven Bean def It cla | ss
aul Int ss
erc
! ept
Int P
or
erc
ept
or
@Stateless' - Y - - - - - -
@Timeout®3 - Y - N - - - -
@TransactionAttr - Y - N - - - -
ibute
@TransactionMana - Y - N - - - -
gement
Legend:
Y: Supported.

N: Not supported by Application Server.

--: Not supported by standard specifications.

#1

Can be used only for Singleton Session Bean.

#2

Can be used only for Stateful Session Bean.

#3

Can be used only for Stateless Session Bean and Singleton Session Bean.

#4

Can be used only for Stateless Session Bean.

(4) EJB-JAR file (Supported by EJB3.0)

The following table lists the annotations that you can code in an EJB-JAR file:

Table 2-13: Annotations (javax.ejb package) that can be coded in an EJB-JAR file (Supported by EJB3.0)

Enterprise Bean

Mes Interceptor
. sage .
. Entit
Annotation name Inter | Sesslo ni - Other Exclept|on Olther
5 B By drive than Default YEES CEES
ace | nbean ea n default = Intercept
n Bea @ Interce or
n ptor
@ApplicationException - - - - - - Y -
@EJB -- Y - N Y Y - -
@EJBs - Y - N Y Y - -
@Init#l - Y - - - - - -

15



2. Annotations and Dependency Injection Supported by Application Server

Enterprise Bean

Mes Interceptor
. | sage .
. Entit
Annotation name Inter  Sessio - Other Excleptlon Olther
e TEeo oY dive  than  Default class class
ace ea ea n default | Intercept
n Bea @ Interce or
n ptor
@Local Y Y - - - - - -
@LocalHome - Y - - - - - -
@Remote Y Y - - — - - -
@RemoteHome - Y - - - - _ -
@Remove®! -- Y -- -- -- -- -- --
@Stateful®l - Y - -- -- - - -
@Stateless™ - Y -- -- -- - - -
@Timeout*? - Y - N - - - -
@TransactionAttribute - Y - N - - - -
@TransactionManagement - Y - N — - - -

Legend:
Y: Supported.

N: Not supported by Application Server.

--: Not applicable.
#1

Can be used only for Stateless Session Bean.

#2

Can be used only for Stateful Session Bean.

(5) Library JAR file (Servlets or JSPs)

The following table lists the annotations that you can code in a servlet or JSP of a library JAR file:

Table 2-14: Annotations (javax.ejb package) that can be coded in a library JAR file (Servlets or JSPs)

Servlet specifications JSP specifications
. Tag handler
sl Servlet | Servle S Event Sl “g';g
name Serviet "o tfirer | Ufiter coner listemer  JSPfile  Classic  Simple eve;{’
(API) (API) tag tag listener
handler handler
@EJB - Y - Y -- - Y Y N
@EJBs -- Y -- Y - - Y Y
Legend:
Y: Supported.

N: Not supported by Application Server.

--: Not applicable.

16



2. Annotations and Dependency Injection Supported by Application Server

(6) Library JAR file (Enterprise Bean, exception class, or other classes)

The following table lists the annotations that you can code in the Enterprise Beans, exception classes, or the other
classes of a library JAR file:

Table 2-15: Annotations (javax.ejb package) that can be coded in a library JAR file (Enterprise Beans,
exception classes, or other classes)

Enterprise Bean S

Annotation name " . ption Oty
Interf Session Entity Message-driven Bean Interc las class
ace Bean Bean 9 eptor class
@ApplicationException - - - - - Y -
QEJB - - - - Y - -
@EJBs - - - - Y - -
@Local Y - - - - - -
@Remote Y - - - - - -
Legend:
Y: Supported.
--: Not applicable.

2.1.4 Scope of support for the annotations included in the
javax.interceptor package

This subsection describes the applicability of annotations of the javax.interceptor package. The following
sections describe the annotations that you can code in each component:

You can also use the javax . interceptor package annotations in a CDI application. However, take care when
you use these annotations by combining with EJB. For details on the precautions to be taken, see 9. Using CDI with
Application Server in the uCosminexus Application Server Common Container Functionality Guide.

(1) WAR file (Servlet 3.0/Servlet 2.5 compliant)

No annotations can be used in a WAR file.

(2) EJB-JAR file (EJB3.1/EJB3.0 compliant)

The following table lists the annotations that you can code in an EJB-JAR file:

Table 2-16: Annotations (javax.interceptor package) that can be coded in an EJB-JAR file (EJB3.1/EJB3.0

compliant)
Enterprise Bean
Interceptor
. Excepti
. . Enti
Annotation name Sessi Message- Other on gl?sesr
Interface on B);: driven than Default class
Bean Bean default Intercep
an Intercepto tor
r

@AroundInvoke - Y - N Y Y - -
@ExcludeClassInterceptor - Y - N - - — —
S

@ExcludeDefaultIntercept - Y - N - - - -

ors

17



2. Annotations and Dependency Injection Supported by Application Server

Enterprise Bean

Interceptor
. Excepti
Annotation name Sessi Etntl Message- Other on agir
Interface on Bye driven than Default class
Bean Bean default Intercep
an Intercepto tor
r
@Interceptors - Y - N - - - -

Legend:

Y: Supported.

N: Not supported by Application Server.

--: Not applicable.

(3) Library JAR file (Servlets or JSPs)

You cannot use the annotations in a servlet or JSP of a library JAR file.

(4) Library JAR file (Enterprise Bean, exception class, or other classes)

The following table lists the annotations that you can code in the Enterprise Beans, exception classes, or the other
classes of a library JAR file:

Table 2-17: Annotations (javax.interceptor package) that can be use in a library JAR file (Enterprise
Beans, exception classes, or other classes)

Enterprise Bean Excep
AT TRl (D [ Session Entity Message-driven | Intercept tllon
Bean Bean Bean or class
@AroundInvoke - - - N Y -
Legend:

Y: Supported.

N: Not supported by Application Server.

--: Not applicable.

2.1.5 Scope of support for the annotations included in the javax.jws
package

For details on the support range of annotations included in the javax . jws package and each annotation, see /6.2
Customized mapping from Java to WSDL in the uCosminexus Application Server Web Service Development Guide.

2.1.6 Scope of support for the annotations included in the
javax.persistence package

The components in which the annotations of the javax.persistence package can be used differ based on the

dependability on the JPA Provider. The annotations that depend on the JPA Provider and the annotations that do not
depend on the JPA Provider are described separately:

(1) Annotations that depend on the JPA Provider

This point describes the applicability of the annotations that depend on the JPA Provider. The annotations that can be
coded in each component are as follows:

18



2. Annotations and Dependency Injection Supported by Application Server

(a) WAR file (Servlet 3.0 compliant)
The following table lists the annotations that you can code in a WAR file:

Table 2-18: Annotations (javax. persistence package) that can be coded in WAR file (Servlet 3.0

compliant)
Servlet specifications JSP specifications
Tag handler Tag Man
. Even librar = Exce @aged @ Othe
An:;)rtﬁgon Servl Servl | Servl SZ:VI Evten t JSP Clas | Simp y ption = Bean r
et et ) . listen sic le even  class @ (JSF | class
et ) filter = listen FILE
(API) | filter (API) or er tag tag t )
(API) hand hand | listen
ler ler er
@Persist Y - Y - Y - - Y Y N - Y -
enceCont
ext
@Persist Y - Y - Y - - Y Y N - Y -
enceCont
exts
@Persist Y - Y - Y - - Y Y N - Y -
enceProp
erty
@Persist Y -- Y - Y - - Y Y N - Y -
enceUnit
@Persist Y -- Y - Y - - Y Y N - Y -
enceUnit
S
Legend:
Y: Supported.

N: Not supported by Application Server.
--: Not supported by standard specifications.

(b) WAR file (Supported by Servlet 2.5)
The following table lists the annotations that you can code in a WAR file:

Table 2-19: Annotations (javax.persistence package) that can be coded in a WAR file (Supported by

Servlet 2.5)
Servlet specifications JSP specifications
Tag handler Tag
Annotation name Event . Other class

= Sgwle listene i Classic Simple library

et t filter file event

r tag tag listener

handler handler [2E=S
@PersistenceContext Y Y Y - Y Y N -
@PersistenceContexts Y Y Y - Y Y N -
@PersistenceProperty Y Y Y -- Y Y N --
@PersistenceUnit Y Y Y - Y Y N -
@PersistenceUnits Y Y Y -- Y Y N --

Legend:
Y: Supported.
N: Not supported by Application Server.

19



2. Annotations and Dependency Injection Supported by Application Server

--: Not applicable.

(c) EJB-JAR file (EJB3.1/EJB3.0 compliant)

The following table lists the annotations that you can code in an EJB-JAR file:

Table 2-20: Annotations (javax.persistence package) that can be coded in an EJB-JAR file (Supported by

EJB3.0)
Enterprise Bean
EEEspier Exception Other
ARREIS TS Interfa | Session Entity Me§sag class class
e-driven Other than
ce Bean Bean Default
Bean default
Interceptor
Interceptor
@PersistenceCont - Y - Y Y - -
ext
@PersistenceCont - Y - Y Y - -
exts
@PersistenceProp - Y - Y Y - -
erty
@PersistenceUnit - Y - Y Y - -
@PersistenceUnit - Y - Y Y - -
S
Legend:
Y: Supported.

N: Not supported by Application Server.
--: Not applicable.

(d) Library JAR file (Servlets or JSPs)

The following table lists the annotations that you can code in a servlet or JSP of a library JAR file.

Table 2-21: Annotations (javax.persistence package) that can be coded in a library JAR file (Servlets or

JSPs)
Servlet specifications JSP specifications
‘ Eve | Event Tag handler .Tag
Annotation name Servlet Ser | Servle nt listen library
Servlet vlet t filter . JSP FILE = Classic Simple event
(API) ) liste er .
filter (API) ner (API) tag tag listene
handler handler r
@PersistenceCo - - Y - Y - - Y Y N
ntext
@PersistenceCo -- - Y - Y - - Y Y N
ntexts
@PersistencePr - - Y - Y - - Y Y N
operty
@PersistenceUn -- - Y - Y - - Y Y N
it
@PersistenceUn -- - Y - Y - - Y Y N
its
Legend:
Y: Supported.

N: Not supported by Application Server.

20



2. Annotations and Dependency Injection Supported by Application Server

--: Not applicable.

(e) Library JAR file (Enterprise Bean, exception class, or other classes)
The following table lists the annotations that you can code in the Enterprise Beans, exception classes, or the other
classes of a library JAR file:

Table 2-22: Annotations (javax.persistence package) that can be coded in a library JAR file (Enterprise
Beans, exception classes, or other classes)

Enterprise Bean

Excep
Annotation name Interface SRR Sty Message-driven Bean Ll ctlle?gs
Bean Bean ptor

@PersistenceContext - - - N Y -
@PersistenceContexts - - - N Y -
@PersistenceProperty - -- - N Y -
@PersistenceUnit - - - N Y -
@PersistenceUnits - - - N Y -

Legend:
Y: Supported.
N: Not supported by Application Server.
--: Not applicable.

(2) Annotations that do not depend on the JPA Provider

Irrespective of the file type, you can use the annotations that do not depend on the JPA Provider, in the entity class.

For details on the list of annotations included in the javax .persistence package, see 2.7 javax.persistence
package.

2.1.7 Scope of support for the annotations included in the
javax.servlet.annotation package

This subsection describes the applicable scope of the annotations of the javax.servlet.annotation package.
The annotations that can be coded in each component are as follows:

(1) WAR file (Servlet 3.0 compliant)

The following table lists the annotations that you can code in a WAR file:

Table 2-23: Annotations (javax.servlet.annotation package) that can be coded in WAR file (Servlet 3.0

compliant)
Servlet specifications JSP specifications
Tag handler Tag Man
. Even —— librar  Exce aged Othe
AT Servl Servl | Servl S::VI Evten t JSP Clas | Simp y ption = Bea r
hame ot et et filter  listen listen FILE sic le even class n(JS | class
(API) | filter (API) or er tag tag t F)
(API) hand hand | listen
ler ler er
@Handles - - - - - - - - - - - - Y
Types
@HttpCon Y Y - - -- - - - - - - - -
straint

21



2. Annotations and Dependency Injection Supported by Application Server

Servlet specifications JSP specifications
Tag handler Tag Man

. Even librar = Exce @aged @ Othe

An:;)::gon Servl Servl | Servl SZ:VI Evten t JSP Clas = Simp y ption Bea r
ot et et filter | listen listen FILE sic le even  class n(JS | class
(API) | filter (API) or er tag tag t F)
(API) hand hand | listen
ler ler er

@HttpMet Y Y - - - - - - - - - - -
hodConst
raint
@Multipa Y Y - - - - - - - - - - -
rtConfig
@Servlet Y Y - - - - - - - - — — -
Security
@WebFilt - - Y - - - - - - - . - -
er
@WebInit Y - Y - - - - - - - - - -
Param
@WebList - - - - Y - - - - - - - -
ener
@WebServ Y - - - - - - - - - - - —
let

Legend:

Y: Supported.

--: Not supported by standard specifications.

(2) EJB-JAR file

Annotation that can be coded in EJB-JAR file is not available.

(3) Library JAR (Serviet/JSP)

Annotation that can be coded in Servlet or JSP of library JAR is not available.

(4) Library JAR (Enterprise Bean/ Exception class/ Other classes)

Annotation that can be coded in Enterprise Bean of JAR library, exception class, and other class is not available.

2.1.8 Scope of support for the annotations included in the javax.xml.ws
package

For details on the support range of annotations included in the javax.xml .ws package and each annotation, see
16.2 Customized mapping from Java to WSDL in the uCosminexus Application Server Web Service Development
Guide.

2.1.9 Support range of annotations included in the javax.xml.ws.soap
package

For details on the support range of annotations included in the javax.xml .ws . soap package and each annotation,
see 16.2 Customized mapping from Java to WSDL in the uCosminexus Application Server Web Service Development
Guide.

22



2. Annotations and Dependency Injection Supported by Application Server

2.1.10 Support range of annotations included in the javax.xml.ws.spi

package

For details on the support range of annotations included in the javax.xml.ws. spi package and each annotation,
see 16.2 Customized mapping from Java to WSDL in the uCosminexus Application Server Web Service Development

Guide.

2.1.11 List of supported CDI annotations

The following table lists and describes the supported CDI annotations.

Package Included annotation
javax.decorator @Decorator
@Delegate
javax.enterprise.context @ApplicationScoped

@ConversationScoped

@Dependent

@NormalScope

@RequestScoped

@SessionScoped

javax.enterprise.event

@Observes

javax.enterprise.inject

@Alternative

Q@Any

@Default

@Disposes

@Model

@New

@Produces

@Specializes

@Stereotype

@Typed

javax.inject

@inject

@Named

@QQualifier

@Scope

@Singleton

The following sections describe the annotations (@ inject annotations) that can be coded in each component.
Annotations other than @inject depend on CDI. For details on annotations that depend on CDI, see the CDI

specification documents.

23



2. Annotations and Dependency Injection Supported by Application Server

(1) WAR file (Servlet 3.0 compliant)

The following table lists the annotations that you can code in a WAR file:

Table 2-24: Annotations (javax.inject package) that can be coded in WAR file (Servlet 3.0 compliant)

Servlet specifications JSP specifications
Tag handler Tag Man
. Even —— librar Exce aged Othe
Annotation Servi | Servi  Servl | Even t Clas = Simp y ption | Bean r
name Servl et t . JSP )
et et ) . listen sic le even  class @ (JSF | class
et ) filter = listen FILE
(API) | filter (API) or er tag tag t )
(API) hand hand | listen
ler ler er
@Inject Y -- Y - Y - N N N N N Y Y#
Legend:
Y: Supported.

--: Not supported by standard specifications.
N: Not supported by Application Server.

You can use corresponding components only if the components include CDI functions.

(2) EJB-JAR file (EJB3.1 compliant)

The following table lists the annotations that you can code in an EJB-JAR file:

Table 2-25: Annotations (javax. inject package) that can be coded in an EJB-JAR file (Supported by

EJB3.0)
Enterprise Bean
Intercept
or
Ot Ex
he
. ce Ot
. De ti | her
Annotation name tha P
. . s f
Interface Session Bean Entity Bean Message n au | on | cla
driven Bean def It cla @ ss
-~ Int ss
erc
. ept
Int P
or
erc
ept
or
@Inject N Y N N N N N y#
Legend:
Y: Supported.

N: Not supported by Application Server.

You can use corresponding components only if the components include CDI functions.

(3) Library JAR (Servlet/JSP)

Annotation that can be coded in Servlet or JSP of library JAR is not available.

24



2. Annotations and Dependency Injection Supported by Application Server

(4) Library JAR (Enterprise Bean/ Exception class/ Other classes)

The following table lists the annotations that can be coded in Enterprise Bean of library JAR, Exception class, or other
classes of library JAR:

Table 2-26: Annotations (javax. inject package) that can be coded in Library JAR (Enterprise Bean/
Exception class/Other classes)

Enterprise Bean
. Exceptio Other
ATREEIEN e Interface ngsair?n I;r;teiltry]/ I\/_Igfiiaege Inte;:ept n clapss classes
Bean
@Inject N N N N N N y#
Legend:
Y: Supported.
N: Not supported by Application Server.
#
You can use corresponding components only if the components include CDI functions.
2.1.12 List of supported JSF annotations
The following table lists and describes the supported JSF annotations:
Package Included annotations
javax.faces.application @ResourceDependencies
@ResourceDependency
javax.faces.bean @ApplicationScoped
@CustomScoped
@ManagedProperty
@NoneScoped
@ReferencedBean
@RequestScoped
@SessionScoped
@ViewScoped
javax.faces.component @FacesComponent
javax.faces.component.behavior @FacesBehavior
javax.faces.convert @FacesConverter
javax.faces.event @ListenerFor
@ListenersFor
@NamedEvent
javax.faces.render @FacesBehaviorRenderer
@FacesRenderer
javax.faces.validator @FacesValidator

25



2. Annotations and Dependency Injection Supported by Application Server

The following sections describe the annotations (@ManagedBean annotations) that can be coded in each component.
Note that the annotations other than @ManagedBean depend on JSF. For annotations that depend on JSF, see the JSF
specification documents.

(1) WAR file (Servlet 3.0 compliant)

The following table lists the annotations that you can code in a WAR file:

Table 2-27: Annotations (javax.faces.bean package) that can be coded in a WAR file (Servlet 3.0

compliant)
Servlet specifications JSP specifications
Tag handler Tag Man
. Even —— 1 librar | Exce aged @ Othe
Annotation Seri  Seni  SeMVI Even t Clas = Simp y pton  Bean r
name Servl et t . JSP ;
et et ) . listen sic le even  class @ (JSF | class
et ) filter = listen FILE
(API) filter (API) er er tag tag t )
(API) hand hand | listen
ler ler er
@Managed - - - - - - - - - - - Y -
Bean
Legend:
Y: Supported.

--: Not supported by standard specifications.

(2) EJB-JAR file (EJB3.1 compliant)

Annotation that can be coded in an EJB-JAR file is not available.

(3) Library JAR (Servlet/JSP)

Annotation that can be coded in Servlets or JSPs of library JAR is not available.

(4) Library JAR (Enterprise Bean/ Exception class/ Other classes)

Annotation that can be coded in Enterprise Bean, Exception class, and other library JAR classes is not available.

2.1.13 List of supported Bean Validation annotations

The following table lists and describes the supported Bean Validation annotations. Note that with Application Server,
you can use Bean Validation from JSF and CDI.

Package Annotation
javax.validation @Constraint
@GroupSequence
@OverridesAttribute

@OverridesAttribute.List

@ReportAsSingleViolation

@valid

javax.validation.constraints @AssertFalse

@AssertFalse.List

26



2. Annotations and Dependency Injection Supported by Application Server

Package

Annotation

javax.validation.constraints

@AssertTrue

@AssertTrue.List

@DecimalMax

@DecimalMax.List

@DecimalMin

@DecimalMin.List

@Digits

@Digits.List

@Past

@Pattern.List

@Future

@Future.List

@Max

@Max.List

@Min

@Min.List

@size

@Size.List

@NotNull

@NotNull.List

@Null

@Null.List

@Pattern

@Pattern.List

For Bean Validation annotations, see the Bean Validation specification documents.

The following table describes the definable range for the annotations of Bean Validation.

ltem . javax.validation . o . .
No. Linkage target package javax.validation.constraintspackage Supported version
1 JSF linkage Class on the class Class that specifies @ManagedBean 09-00
path
2 CDI linkage Class on the class JavaBeans class? 09-50
A path
user application
#

When a user program manages the instances of the JavaBeans class, you can use annotations of Bean Validation with that

class.

When a container (such as Servlet/EJB) manages the instances of the JavaBeans class, you cannot use annotations of Bean

Validation with that class.

27



2. Annotations and Dependency Injection Supported by Application Server

2.2 javax.annotation package

The following table lists the annotations included in the javax.annotation package:

List of annotations

Annotation name Functionality

@PostConstruct Specity the method that is called back immediately after the Servlet and Enterprise Bean
instance are generated.

@PreDestroy Specify the method that is called back immediately before deleting the Servlet, Enterprise
Bean instance.

@Resource Declare the resource reference.

@Resources Specify multiple @Resources.

The following subsections describe the details of each annotation.

2.2.1 @PostConstruct

(1) Description

Set the method that is called back immediately after the Servlet and Enterprise Bean instance are generated.

(2) Element

@PostConstruct does not have any elements.

2.2.2 @PreDestroy

(1) Description

Set the method that is called back immediately before the Servlet, Enterprise Bean instance, and others are deleted.

(2) Element

@PreDestroy does not have any elements.

2.2.3 @Resource

(1) Description

Declare the resource reference. You can specify in a class, method, and field. When specified in a method or field, the
annotation becomes a target for Dependency Injection. However, the method must be the set method.

(2) Element

The following table lists the elements of @Resource:

Element name Function

name Specify the name of resource reference. The specified name is used as a JNDI name. You can omit the
element description if the annotation is specified in a method or field.

28



2. Annotations and Dependency Injection Supported by Application Server

Element name Function

type Specify the Java type of a resource. You can omit the element description if the annotation is specified
in a method or field.

authenticationType Specify the authentication type used in the resource.

shareable Specify whether the resource is to be shared.

mappedName Specify the resource display name and queue name for specifying the referenced resource.
lookup Specify the Portable Global INDI name of any other resource that you reference or a resource alias.
description Specify the resource description.

The details of each element are as follows:

(a) name element

Type
String
Description

Specify the name of resource reference. The specified name is used as a JNDI name. You can omit the element
description if the annotation is specified in a method or field.

You can also specify a resource alias. For details on specifying a J2EE resource alias, see 2.6.6 Setting the
optional names for the J2EE resources in the uCosminexus Application Server Common Container Functionality
Guide.

Default value
* When set in a method
Property of the class name or set method in which the annotation is specified

e When set in a field
Class name or field name in which the annotation is specified

(b) type element

Type
Class
Description
Specify the Java type of a resource. You can omit the element description if the annotation is specified in a
method or field.
Default value
* When specified in a method
Argument type of the method
e When set in a field
Field type
type element and the corresponding DD

As the type element differs from J2EE specifications, the corresponding DD changes depending on the set value
(Java Type). The following table describes the corresponding DD that changes depending on the Java Type:

Table 2-28: Table for the corresponding DD depending on the type element

DD tag supported with
. o Cosminexus
Type element DD tag corresponding to J2EE specifications Application Server
specifications*!
java.lang.String™ Env-entry env-entry

29



2. Annotations and Dependency Injection Supported by Application Server

DD tag supported with

Type element DD tag corresponding to J2EE specifications Ap;;s;?ci;eéﬁv -
specifications*!
java.lang.Character® env-entry env-entry
java.lang.Integer®? env-entry env-entry
java.lang.Boolean#2 env-entry env-entry
java.lang.Double#2 env-entry env-entry
java.lang.Byte®? env-entry env-entry
java.lang.short#2 env-entry env-entry
java.lang.Long"? env-entry env-entry
java.lang.Float®? env-entry env-entry
javax.xml.rpc.Service service-ref Examﬁon#3
javax.xml.ws.Service service-ref Examﬁon#3
javax.jws.WebService service-ref Emmpﬁon#3
javax.sgl.DataSource resource-ref resource-ref
javax.jms.ConnectionFactory resource-ref resource-ref
javax.jms.QueueConnectionFactory resource-ref resource-ref
javax.jms.TopicConnectionFactory resource-ref resource-ref
javax.mail.Session resource-ref resource-ref
java.net.URL resource-ref Examﬁon#3
javax.resource.cci.ConnectionFactory resource-ref resource-ref

org.omg.CORBA 2 3.0RB

resource-ref

resource-ref

Other connection factories defined by resource adapter

resource-ref

resource-env-ref

javax.jms.Queue message-destination-ref resource-env-ref
javax.jms.Topic message-destination-ref resource-env-ref
javax.resource.cci.InteractionSpec resource-env-ref Emmpﬁon#3
javax.transaction.UserTransaction resource-env-ref resource-env-ref
javax.xml.ws.WebServiceContext Undefined resource-env-

ref™

All types other than those mentioned above®

resource-env-ref

resource-env-ref

30

#1

If !4 is included in the mappedName element, correspond to <resource-env-ref>, irrespective of the Java Type.

#2

You cannot acquire a value from a standard DD, as a result, the value is displayed in the element file but DI is not

performed.

#3
Exception in the case of import.



2. Annotations and Dependency Injection Supported by Application Server

#4

With Application Server version 08-70 or earlier versions, this element is handled same as all types other than those
mentioned above.

#5

With Application Server version 09-00, subclasses of the java.lang.Class and java.lang.Enum are not handled in
the <env-entry> tag.

(c) authenticationType element
Type
AuthenticationType
Description
Specify the authentication type used in the resource.

Default value
CONTAINER

(d) shareable element

Type

boolean
Description

Specify whether the resource is to be shared.
Default value

true

(e) mappedName element

Type
String
Description
Specify the resource display name and queue name for specifying the referenced resource.
When characters other than single--byte alphanumeric characters and underscores (_) are to be included in the
resource display name, replace them with underscores ().

Default value
Setting conditions of the mappedName element

The setting conditions of the mappedName element change based on the t ype element. The following table
describes the setting conditions of the mappedName element in @Resource:

Table 2-29: Setting conditions of mappedName() in @Resource

Setting condition (Java Type, resource) Availability*1

java.lang.String N

java.lang.Character

java.lang.Integer

java.lang.Boolean

java.lang.Double

java.lang.Byte

java.lang.Short

Z|\z|z|Z2|Z| 2|z

java.lang.Long

31



2. Annotations and Dependency Injection Supported by Application Server

Setting condition (Java Type, resource) Availability*!

java.lang.Float N

javax.xml.rpc.Service

javax.sqgl.DataSource

javax.jms.ConnectionFactory

javax.jms.QueueConnectionFactory

javax.jms.TopicConnectionFactory

javax.mail.Session

java.net.URL

javax.resource.cci.ConnectionFactory

org.omg.CORBA 2 3.0RB

<l|lZ|<|Z|<| K| K| <|<|Z

javax.jms.Queue#2

javax.jms.Topic

javax.resource.cci.InteractionSpec

javax.transaction.UserTransaction

javax.ejb.EjbContext

javax.ejb.SessionContext

javax.ejb.TimerService

<lz|Zz|lz|Z2]|zZ2|x

JavaBeans resource

Legend:
Y: Can be used.
N: Cannot be used.

#1

Mapping to the object to be managed is established with the mappedName element, irrespective of the Java Type. Use ! #
to demarcate the display name of the resource adapter and the name of the object to be managed.

#2
If you use javax.jms.Queue when using TP1/Message Queue - Access or Cosminexus Reliable Messaging, use # as the
delimiter of the resource adapter display name and queue display name.

(f) lookup attribute
Type
String

Description
Specify the Portable Global INDI name of any other resource or a resource alias that you want to reference.

Default value

nn

(g) description element

Type
String

Description
Specify the resource description.

32



2. Annotations and Dependency Injection Supported by Application Server

Default value

nn

2.2.4 @Resources

(1) Description

Specify multiple @Resource. Note that you can specify multiple resources only in a class.

(2) Element

The following table lists the elements of @Resources:

Element name Function

value Define multiple resources (@Resource).

The details of each element are as follows:

(a) value element
Type
Resourcef[]

Description
Define multiple resources (@Resource).

Default value
None

33



2. Annotations and Dependency Injection Supported by Application Server

2.3 javax.annotation.security package

The following table lists the annotations included in the javax.annotation.security package:

List of annotations

Annotation name

Functionality

@DeclareRoles Set the security role reference.

@DenyAll Set in a method that denies access to all security roles.

@PermitAll Set in a class or method that permits access to all security roles.
@RolesAllowed Set a security role for permitting access to a class or method.

@RunAs Set the security role that is applied when executing Servlet or Enterprise Bean.

2.3.1 @DeclareRoles

(1) Description

Set the security role reference. Note that you can specify multiple resources only in a class.

(2) Element
The following table lists the elements of @DeclareRoles:
Element name Function
value Specify the security role name to be referenced.

The details of each element are as follows:

(a) value element

Type
String][]

Description

Specify the security role name to be referenced.

Default value
None

2.3.2 @DenyAll

(1) Description

Set in a method that denies access to all security roles.

(2) Element

@DenyAl1l does not have any elements.

34



2. Annotations and Dependency Injection Supported by Application Server

2.3.3 @PermitAll

(1) Description

Set in a class or method that permits access to all security roles.

(2) Element

@PermitAll does not have any elements.

2.3.4 @RolesAllowed

(1) Description

Set a security role for permitting access to a class or method.

(2) Element

The following table lists the elements of @RolesAllowed:

Element name Function

value Specify the list of roles that have permission to access methods in an application.

The details of each element are as follows:

(a) value element

Type
String][]

Description
Specify the list of roles that have permission to access methods in an application.

Default value

None

2.3.5 @RunAs

(1) Description

Set the security role that is applied when executing Servlet or Enterprise Beans. Note that you can specify multiple
resources only in a class.

(2) Element

The following table lists the elements of @RunAs:

Element name Function

value Specify the security role name that is applied when executing Enterprise Beans.

The details of each element are as follows:

35



2. Annotations and Dependency Injection Supported by Application Server

(a) value element
Type
String

Description

Specify the name of the security role that is applied when executing Servlet or Enterprise Beans.

Default value
None

36



2. Annotations and Dependency Injection Supported by Application Server

2.4 javax.ejb package

The following table lists the annotations included in the javax.ejb package:

List of annotations

Annotation name

Functionality

@AccessTimeout Specify the timeout value of the concurrent access of Singleton Session Bean set by the
Container Managed Concurrency.

@AfterBegin Specify in a method that is called back immediately after starting the transaction of
Stateful Session Bean.

@AfterCompletion Specify in a method that is called back after completing the transaction of Stateful

Session Bean.

@ApplicationException

Specify in an exception class that is considered as an application exception.

@Asynchronous

Specity in a business method that is executed asynchronously.

Specify in a class and method of Stateless Session Bean or Singleton Session Bean.

@BeforeCompletion

Specity in a method that is called back immediately before completing the transaction
of Stateful Session Bean.

@ConcurrencyManagement

Specify the type of the ConcurrencyManagement of Singleton Session Bean. Specify
this annotation only in the Singleton Session Bean class.

@DependsOn Specify to specify the dependency relation between Singleton Session Beans. Specify
this annotation only in Singleton Session Bean class.

@GEJB Specify the reference to EJB business interface or home interface.

@EJBs Specify multiple @EJB.

@Init Specity in a method that is called back when create <METHOD> () defined in the home
interface of Stateful Session Bean is executed.

@Local Specify the local business interface of Enterprise Beans.

@LocalBean Specify if Session Bean is specified as No-Interface view. Specify this annotation only
in the Session Bean class.

@LocalHome Specify in an Enterprise Bean class that supports the invocation using the local home
interface, and local component interface.

@Lock Specify the method to perform exclusive control when you are accessing business
methods of a Singleton Session Bean in which the Container Managed Concurrency is
set.

@PostActivate Specify in a method that is called back immediately after Stateful Session Bean is

activated.

@PrePassivate

Specity in a method that is called back immediately before Stateful Session Bean is
passivated.

@Remote Specify the remote business interface of Enterprise Beans. When an annotation is
specified in an interface, that interface becomes a remote business interface.

@RemoteHome Specify in an Enterprise Bean class that supports the invocation using a remote home
interface, and remote component interface.

@Remove Specify in a business method that deletes Stateful Session Beans.

@Schedule Specify in a timeout method in which calendar base automatic generation timer of EJB
timer service is called back.

@Schedules Specify multiple@Schedules. Specify in a timeout method that is called back.

@singleton Specify this annotation in Singleton Session Bean class.

37



2. Annotations and Dependency Injection Supported by Application Server

Annotation name Functionality

@startup Specify this annotation when a Singleton Session Bean starts concurrently with
application start up. Specify this annotation in Singleton Session Bean class.

@Stateful Specify in Stateful Session Bean class.

@Stateless Specify in a Stateless Session Bean class.

@Timeout Specity in a timeout method that is called back when TimerService is used.
@TransactionAttribute Specify transaction attributes when Enterprise Bean operates in CMT.
@TransactionManagement Specify the transaction management type of the Enterprise Bean.

2.4.1 @AccessTimeout

(1) Description
Specify the timeout value of the concurrent access of Singleton Session Bean in which the Container Managed

Concurrency is set.

(2) Attribute

The following table lists the @AccessTimeout attributes:

Attribute name Functionality

value Specify the time out value.

unit Specify the unit of the timeout value.

Details of each attribute are as follows:

(a) value attribute
Type
long

Description
Specify the time out value.

Default value
None

(b) unit attribute
Type
TimeUnit

Description
Specify the unit of the timeout value.

Default value
MILLISECONDS

38



2. Annotations and Dependency Injection Supported by Application Server

2.4.2 @AfterBegin

(1) Description

Specify in a method that is called back immediately after starting the transaction of Stateful Session Bean.

(2) Attribute

@AfterBegin attributes do not exist.

2.4.3 @AfterCompletion

(1) Description

Specify in a method that is called back after completing the transaction of Stateful Session Bean.

(2) Attribute

@AfterCompletion attributes do not exist.

2.4.4 @ApplicationExceptionn

(1) Description

Specify in an exception class that is considered as an application exception.

(2) Attribute

The following table lists the @ApplicationException properties:

Attribute name Functionality
rollback Specify whether the container performs the roll back of transaction when an exception occurs.
inherited To decide whether this attribute is considered as an application exception, specify whether the

definition set in the class is also applied in the subclass.

Details of each attribute are as follows.

(a) rollback attribute
Type
boolean

Description
Specify whether the container performs the roll back of transaction when an exception occurs.

Default value
false

(b) inherited attribute

Type
boolean

39



2. Annotations and Dependency Injection Supported by Application Server

Description

To decide whether this attribute is considered as an application exception, specify whether the definition set in the
class is also applied to the subclass.

Default value
true

2.4.5 @Asynchronous

(1) Description

Specify in a business method that is executed asynchronously. Specify in the class and method of Stateless Session
Bean or Singleton Session Bean.

(2) Attribute

@Asynchronous attributes do not exist.

2.4.6 @BeforeCompletion

(1) Description

Specify in a method that is immediately called back before completing the transaction of Stateful Session Bean.

(2) Attribute

@BeforeCompletion attributes do not exist.

2.4.7 @ConcurrencyManagement

(1) Description

Specify the type of the ConcurrencyManagement of Singleton Session Bean. Set this annotation only in Singleton
Session Bean class.

(2) Attribute

The following table lists the @ConcurrencyManagement attributes:

Attribute name Functionality

value Specify the type of the ConcurrencyManagement of Singleton Session Bean.

Details of each attribute are as follows:

(a) value attribute
Type
ConcurrencyManagementType

Description
Specify the type of the ConcurrencyManagement of Singleton Session Bean.

Default value
CONTAINER

40



2. Annotations and Dependency Injection Supported by Application Server

2.4.8 @DependsOn

(1) Description

Specify the dependency relation between Singleton Session Beans. Specify this annotation only in the Singleton
Session Bean class.

(2) Attribute

The following table lists the @ DependsOn attribute:

Attribute Name Functionality

value Enumerate the EJB name of the dependent Singleton Session Bean.

Details of each attribute are as follows:

(a) value attribute
Type
Stringl[]

Description
Enumerate the EJB name of the dependent Singleton Session Bean.

Default value
None

2.4.9 @EJB

(1) Description

Specify the reference to EJB business interface or home interface. You can specify in a class, method, and field. When
specified in a method or field, the annotation becomes a target for Dependency Injection. However, the method must
be set method.

(2) Element

The following table lists the elements of @EJB:

Element name Functionality

name Specify the name of resource reference. The specified name is used as a JNDI name. You can omit the
element description if the annotation is specified in a method or field.

beanInterface Specify the business interface class or home interface class. You can omit the element description if the
annotation is specified in a method or field.

beanName Specify the class name without the EJB package to be referenced. However, when the name element is
specified in the annotation (@Stateless, @Stateful) that defines the EJB class to be referenced,
specify the name element. Further, in the case of an EJB that supports the definition in DD, specify the
value of DD <ejb--name>tag.

mappedName You can specify the element, but you cannot run elements on Cosminexus because Cosminexus does not
support elements.

lookup Specify the Portable Global JNDI or the optional name of EJB that is referenced. However, if the
beanName attribute or mappedName attributes are specified, settings of beanName attributes or
mappedName attributes are preferred.

description Specify the description of the EJB to be referenced.

41



2. Annotations and Dependency Injection Supported by Application Server

The details of each element are as follows:

(a) name element
Type
String

Description

Specify the name of resource reference. The specified name is used as a JNDI name. You can omit the element
description if the annotation is specified in a method or field.

Default value
e When set in a method
Property of the class name or set method in which the annotation is specified

¢ When set in a field
Class name or field name in which the annotation is specified

(b) beaninterface element

Type
Class
Description

Specify the business interface class or home interface class. You can omit the element description if the annotation
is specified in a method or field.

Default value
* When specified in a method
Argument type of the method

¢ When set in a field
Field type

(c) beanName element

Type
String
Description

Specify a class name without the package of the referenced EJB. However, if the name attribute is specified in an
annotation (@Stateless, @Stateful, @Singleton) that defines the EJB class to be referenced, specify the
value of the name attribute. For the EJB that supports definition according to DD, specify the value of the <e jb-
name> tag of DD.

Default value

(d) mappedName element
Type
String

Description

You can specify the element, but you cannot run elements on Cosminexus because Cosminexus does not support
elements.

Default value

None

42



2. Annotations and Dependency Injection Supported by Application Server

(e) lookup attribute
Type
String

Description

Specify the Portable Global INDI or the optional name of EJB that is referenced. However, if beanName
attributes or mappedName attributes are specified, settings of beanName attributes or mappedName attributes
are preferred.

Default value

nn

(f) description element

Type
String

Description
Specify the description of the EJB to be referenced.

Default value

2.4.10 @EJBs

(1) Description

Specify multiple @EJIB. Note that you can specify multiple resources only in a class.

(2) Element

The following table lists the elements of @EJBs:

Element name Function

value Specify QREJB.

The details of each element are as follows:

(a) value element

Type
EJB[]

Description
Specify @REJB.

Default value

None

2.4.11 @lnit

(1) Description

Set in a method that is called back when create <METHOD> () defined in the home interface of Stateful Session Bean
is executed.

43



2. Annotations and Dependency Injection Supported by Application Server

(2) Element

The following table lists the elements of @Init:

Element name Function

value Specify the corresponding create<METHOD> () name.

The details of each element are as follows:

(a) value element
Type
String

Description
Specify the corresponding create<METHOD> () name.

Default value

2.4.12 @Local

(1) Description

Set the local business interface of Enterprise Beans.. When you specify an annotation in an interface, that interface
becomes a local business interface. When specifying the annotation in the Bean class, you need to specify the local
business interface in the value element.

(2) Element

The following table lists the elements of @Local:

Element name Function

value When specifying annotations in the Bean class, specify the class of the local business interface.

The details of each element are as follows:

(a) value element

Type
Class[]

Description
When specifying annotations in the Bean class, specify the class of the local business interface.

Default value

{}

2.4.13 @LocalBean

(1) Description

Specify if the Session Bean is specified as No-Interface view. Specify this annotation only in the Session Bean class.

44



2. Annotations and Dependency Injection Supported by Application Server

(2) Attribute

@LocalBean attributes do not exist.

2.4.14 @LocalHome

(1) Description
Specify in an Enterprise Bean class that supports the invocation using the local home interface, and local component

interface.

(2) Element

The following table lists the elements of @LocalHome:

Element name Function

value Specify the local home interface.

The details of each element are as follows:

(a) value element

Type
Class

Description
Specify the local home interface.

Default value

None

2.4.15 @Lock

(1) Description

Specify a method to perform exclusive control when you are accessing business methods of Singleton Session Bean in
which the Container Managed Concurrency is set.

(2) Attribute

The following table lists the @ Lock attributes:

Attribute name Functionality

value Specify whether concurrent access is allowed (READ) or not allowed (WRITE) when you
access business methods.

Details of each attribute are as follows:

(a) value attribute

Type
LockType

Description
Specify whether access is allowed (READ) or not allowed (WRITE) when you access business methods.

45



2. Annotations and Dependency Injection Supported by Application Server

Default value
WRITE

2.4.16 @PostActivate

(1) Description

Set in a method that is called back immediately after Stateful Session Bean is activated. You can specify the
annotations but you cannot run Cosminexus because Cosminexus does not support the status change of activation and
passivation.

(2) Element

@PostActivate does not have any elements.

2417 @PrePassivate

(1) Description

Set in a method that is called back immediately before Stateful Session Bean is passivated. You can specify the
annotations but you cannot run Cosminexus because Cosminexus does not support the status change of activation and
passivation.

(2) Element

@PrePassivate does not have any elements.

2.4.18 @Remote

(1) Description

Specify the remote business interface of Enterprise Beans. When an annotation is specified in an interface, that
interface becomes a remote business interface. When specifying in the Bean class, you need to specify the remote
business interface in the value element.

(2) Element

The following table lists the elements of @Remote:

Element name Function

value When specifying the annotation in the Bean class, specify the class of remote business interface.

The details of each element are as follows:

(a) value element
Type
Class[]

Description
When specifying the annotation in the Bean class, specify the class of remote business interface.

Default value

{1

46



2. Annotations and Dependency Injection Supported by Application Server

2.4.19 @RemoteHome

(1) Description

Specify in an Enterprise Bean class that supports the invocation using the remote home interface, and remote
component interface.

(2) Element

The following table lists the elements of @RemoteHome:

Element name Function

value Specify the remote home interface.

The details of each element are as follows:

(a) value element

Type
Class

Description
Specify the remote home interface.

Default value
None

2.4.20 @Remove

(1) Description

Specify in the business method that deletes Stateful Session Beans.

(2) Element

The following table lists the elements of @Remove:

Element name Function

retainIfException Specify whether the element description is to be deleted when the method is ended abnormally in
application exception.

The details of each element are as follows:

(a) retainlfException element
Type
boolean

Description

Specify whether the element description is to be deleted when the method is ended abnormally in application
exception.

Default value
false

47



2. Annotations and Dependency Injection Supported by Application Server

2.4.21 @Schedule

(1) Description
Specify in the timeout method in which the calendar base automatic generation timer of the EJB timer service is called

back.

(2) Attribute

The following table lists the @ Schedule attributes:

Attribute name Functionality

dayOfMonth Set a day of the month for timeout.

dayOfWeek Set a day of the week for timeout.

hour Set the hour for timeout.

info Set the optional character information related to the timer.

minute Set the minutes for timeout.

month Set the month for timeout.

persistent Set persistence of timer. Since the persistence functionality of timer is not supported, the timer
is not persistent even if you specify true and operate by considering as non persistent
(false).

second Set the seconds for timeout.

timezone Set the time zone for timeout.

year Set the year for timeout.

Details of each attribute are as follows:

(a) dayOfMonth attribute
Type
String

Description
Set a day of the month for timeout.

Default value

"k

(b) dayOfWeek attribute
Type
String

Description
Set a day of the week for timeout.

Default value

"k

(c) hour attribute

Type
String

48



Description
Set the hour for timeout.

Default value
" O "

(d) info attribute

Type
String

Description

2. Annotations and Dependency Injection Supported by Application Server

Set the optional character information related to the timer.

Default value

(e) minute attribute
Type
String

Description
Set the minutes for timeout.

Default value
" O "

(f) month attribute
Type
String

Description
Set the month for timeout.

Default value

"k

(g) persistent attribute

Type
boolean

Description

Set persistence of timer. Because the persistence functionality of timer is not supported, timer is not persistent
even if you specify true and operate by considering as non persistent (false).

Default value
true

(h) second attribute
Type
String
Description
Set the timeout seconds.

Default value
" O "

49



2. Annotations and Dependency Injection Supported by Application Server

(i) timezone attribute
Type
String

Description

Set the timeout time zone.

Default value

(i) year attribute

Type
String

Description
Set the timeout year.

Default value

"W

2.4.22 @Schedules

(1) Description

Specify multiple numbers of @Schedule in the timeout method that is called back.

(2) Attribute

The following table lists the @Schedules attributes:

Attribute name Functionality

value Set @Schedule.

Details of each attribute are as follows:

(a) value attribute

Type
Schedule[]

Description
Set @Schedule.

Default value
None

2.4.23 @Singleton

(1) Description

Specify this annotation in the Singleton Session Bean class.

(2) Attribute

The following table lists the @Singleton properties:

50



2. Annotations and Dependency Injection Supported by Application Server

Attribute name Functionality
name Specify the name of Singleton Session Bean.
mappedName Specify the optional name of Singleton Session Bean.
description Specify the description of Singleton Session Bean.

Details of each attribute are as follows:

(a) name attribute
Type
String

Description
Specify the name of Singleton Session Bean.

Default value
Class name (excluding the package name) of Singleton Session Bean.

(b) mappedName attribute
Type
String

Description
Specify the optional name of Singleton Session Bean.

Default value

(c) description attribute
Type
String

Description
Specify the description of Singleton Session Bean.

Default value

2.4.24 @Startup

(1) Description

Specify this annotation when Singleton Session Bean starts concurrently with application start up. Specify this

annotation in the Singleton Session Bean class.

(2) Attribute

@Startup attribute does not exist.

2.4.25 @Stateful

(1) Description

Set in Stateful Session Bean class.

51



2. Annotations and Dependency Injection Supported by Application Server

(2) Element

The following table lists the elements of @Stateful:

Element name Function

name Specify Stateful Session Bean name.

mappedName You can specify the element, but you cannot run elements on Cosminexus because Cosminexus does not
support elements.

description Specify the description of Stateful Session Bean.

The details of each element are as follows:

(a) name element
Type
String

Description
Specify Stateful Session Bean name.

Default value
Class name excluding Stateful Session Bean package

(b) mappedName element
Type
String

Description
Specify the alias of Stateful Session Bean.

Default value
None

(c) description element
Type
String

Description
Specify the description of Stateful Session Bean.

Default value

nn

2.4.26 @Stateless

(1) Description

Set in a Stateless Session Bean class.

(2) Element
The following table lists the elements of @Stateless:
Element name Function
name Specify the Stateless Session Bean name.

52



2. Annotations and Dependency Injection Supported by Application Server

Element name Function

mappedName You can specify the element, but you cannot run elements on Cosminexus because Cosminexus does not
support elements.

description Specify the description of Stateless Session Bean.

The details of each element are as follows:

(a) name element
Type
String

Description
Specify the Stateless Session Bean name.

Default value
Class name excluding the Stateless Session Bean package

(b) mappedName element
Type
String

Description

Specify the alias of Stateless Session Bean.

Default value
None

(c) description element

Type
String

Description

Specify the description of Stateless Session Bean.

Default value

2.4.27 @Timeout

(1) Description

Set in the timeout method that is called back when using the TimerService.

(2) Element

@Timeout does not have any elements.

2.4.28 @TransactionAttribute

(1) Description

Specify transaction attributes when Enterprise Bean operates in CMT. You can specify transaction attributes in class
and method.

53



2. Annotations and Dependency Injection Supported by Application Server

(2) Attribute

The following table lists the @TransactionAttribute:

Attribute name Functionality

value Set the transaction attributes.

Details of each attribute are as follows:

(a) value attribute
Type
TransactionAttributeType

Description

Set the transaction attributes.

Default value
REQUIRED

2.4.29 @TransactionManagement

(1) Description
Set the transaction management type of the Enterprise Bean.. Note that you can specify multiple resources only in a

class.

(2) Element

The following table lists the elements of @TransactionManagement:

Element name Function

value Specify the transaction management type.

The details of each element are as follows:

(a) value element
Type
TransactionManagementType

Description
Specify the transaction management type.

Default value
CONTAINER

54



2. Annotations and Dependency Injection Supported by Application Server

2.5 javax.faces.bean package

The following table lists the annotations included in the javax . faces.bean package:

Annotation list

Annotation name Functionality

@ManagedBean Specify the Managed Bean used by JSF.

For annotations other than this, see the JSF specification document.

2.5.1 @ManagedBean

(1) Description
Specify the Managed Bean used by JSF.

(2) Attribute

The following table lists the @ManagedBean attributes:

Attribute name Functionality

eager Specify whether a Managed Bean is to be generated when the Web application starts.

name Specify the name of ManagedBean.

Details of each attribute are as follows:

(a) eager attribute

Type
boolean
Description
Specify whether a Managed Bean is to be generated when Web application starts. If t rue is set, Bean scope
should be within the application scope.
Default value
false

(b) name attribute

Type
String
Description
Specify the name of ManagedBean.

If unspecified or Null, use the class name starting with a lower case character for the class that specifies
annotation.

Example : For java.examlpes.Bean, the name becomes bean.

Default value

55



2. Annotations and Dependency Injection Supported by Application Server

2.6 javax.interceptor package

The following table lists the annotations included in the javax.interceptor package:

List of annotations

Annotation name Function
@AroundInvoke Specity invocation of the business method in a method that intercepts.
@ExcludeClassInterceptors Set in a method to which the class interceptor is not applied.
@ExcludeDefaultInterceptors Specify in a class to which a default interceptor is not applied, and method.
@Interceptors Specify the interceptor class to be applied. Note that you can specify the interceptor class
in a class and method.

2.6.1 @Aroundinvoke

(1) Description

Specify invocation of the business method in a method that intercepts.

(2) Element

@AroundInvoke does not have any elements.

2.6.2 @ExcludeClassinterceptors

(1) Description

Set in a method to which the class interceptor is not applied.

(2) Element

@ExcludeClassInterceptors does not have any elements.

2.6.3 @ExcludeDefaultinterceptors

(1) Description

Specify in a class to which a default interceptor is not applied, and method.

(2) Element

@ExcludeDefaultInterceptors does not have any elements.

2.6.4 @Interceptors

(1) Description

Specify the interceptor class to be applied. Note that you can specify the interceptor class in a class and method.

56



2. Annotations and Dependency Injection Supported by Application Server

(2) Element
The following table lists the elements of @Interceptors:
Element name Function
value Specity the interceptor class to be applied.

The details of each element are as follows:

(a) value element
Type
Class[]

Description

Specify the interceptor class to be applied.

Default value
None

57



2. Annotations and Dependency Injection Supported by Application Server

2.7 javax.persistence package

This section describes the list of annotations included in the javax.persistence package and the precautions to
be taken when specifying annotations.

You can also specify the mapping information in an O/R mapping file instead of the annotations. For details on the
correspondence between the annotations and the O/R mapping files, see 2.7.64 Correspondence between the
annotations and O/R mapping.

Precautions when specifying an annotation

¢ With the Cosminexus JPA, the annotations included in the javax.persistence package are not
supported in the attributes related to the DDL output functionality.

* When specifying the same column name more than once in an annotation, arrange the upper case and lower
case characters.

* If field names or method names are allocated in the column name, character strings are considered as upper
case characters strings and used with Cosminexus JPA. If you want to specify a column name in the supported
annotation, use upper case characters.

* The access type is decided according to the location at which the annotation is provided. However, if the
access type exists in both, the field and property, the settings of the field will be enabled.

* The property name is decided as follows depending on the character string acquired by removing get or set
(is) from the access method:
- If the first two characters are in upper case, the string is used as it is.

- If the first two characters are not in upper case, the first character is converted into lower case, and the string
is used.

- For a single character, the first character is converted into lower case, and the string is used.

List of annotations

Annotation classification Annotation name Overview
Entity annotation @Entity Indicates that the class is an entity.
Annotations related to the tables or @Column Specifies the mapping between the persistence
columns field or the persistence property, and the

columns of the database.

@JoinColumn Specifies the external key column for the
binding table or a column of the binding--
destination table that is referenced from the
external key column by correlating the entity
classes.

@JoinColumns Used when multiple @ JoinColumns are
coded concurrently.

@JoinTable This annotation specifies the binding table set
up in the following classes:

e Owner side class when ManyToMany
relationship is specified.

¢ Class with single-sided OneToMany
relationship.

@PrimaryKeyJoinColumn Specifies the column used as the external key,
when binding with other tables.

@PrimaryKeyJoinColumns Used when multiple
@PrimaryKeyJoinColumns are coded
concurrently.

@SecondaryTable Specifies a secondary table in the entity class.

58



2. Annotations and Dependency Injection Supported by Application Server

Annotation classification

Annotation name

Overview

Annotations related to the tables or
columns

@SecondaryTables Used when multiple @SecondaryTables
are coded concurrently.
@Table Specifies a primary table in the entity class.

@UniqueConstraint

If you want to generate CREATE sentences
for the primary table or secondary table,
include the unique constraints, and then
specify.

Note that this annotation is not supported with
Cosminexus JPA provider CJPA provider.

Annotations related to the ID

@EmbeddedId Specifies the compound primary key of a class
that can be embedded.

@GeneratedvValue Specifies the method for automatically
generating and allotting a unique value to the
primary key column.

@Id Specities the properties or fields of the
primary key of the entity class.

@IdClass Specifies the compound primary key class

mapped to multiple fields or properties of the
entity class.

@SequenceGenerator

Specifies the settings of the sequence
generator that creates the primary key.

@TableGenerator

Specifies the settings of the generator that
creates the primary key.

Lock annotation

@Version

Specifies the version field or the version
property for using the optimistic lock
functionality.

Annotations related to mapping

@Basic

Indicates the type of mapping to the simplest
database column.

@Embeddable

Specifies an embedded class.

@Embedded

Specifies the persistence property or the
persistence field indicating the instance value
of the embedded class within the entity class
at the embedding destination.

@Enumerated

Specifies the persistence field or the
persistence property as the enumeration type.

@Lob

Specifies the persistence field or the
persistence property of the 1arge object type
supported by the database.

@MapKey

Specitfies the map key used for object
identification within the map, when a non--
owner entity class is indicated by the
java.util.Map type in the OneToMany
relationship or the ManyToMany relationship.

@0rderBy

Specifies the order in which the collection is
evaluated when the entity information is
acquired.

@Temporal

Specifies in the persistence property or
persistence field having the type that expresses
the time (Java.util.Date and
java.util.Calendar).

59



2. Annotations and Dependency Injection Supported by Application Server

Annotation classification

Annotation name

Overview

Annotations related to mapping

@Transient

Specifies the field or property of a non--
persisting entity class, mapped superclass, or
embedded class.

Annotations related to the relationship

@ManyToMany

Indicates that the specified class has a
ManyToMany relationship, and also specifies
the multiple relationships from the owner
entity class to the non--owner entity class.

@ManyToOne

Indicates that the specified class has the
ManyToOne relationship, and also specifies
the relationship to the non--owner entity class.

@OneToMany

Indicates that the specified class has the
OneToMany relationship, and also specifies
the multiple relationships from the owner
entity class to the non--owner entity class.

@OneToOne

Indicates that the specified class has the
OneToOne relationship, and also specifies the
single relationship between entity classes.

Annotations related to inheritance and
overriding

@AssociationOverride

Overrides the settings used in the
ManyToOne relationship or the OneToOne
relationship specified in a mapped superclass
and embedded class.

@AssociationOverrides

Used when multiple
@AssociationOverrides are coded
concurrently.

@AttributeOverride Opverrides the following mapping information:
¢ Properties or fields specified by @Basic
(or applied by default)
¢ Properties or fields specified by @Id
@AttributeOverrides Used when multiple @ElementOverrides

are coded concurrently.

@DiscriminatorColumn

Specifies the column used for identification in
the SINGLE_TABLE strategy or JOINED
strategy.

This annotation is added to an entity class that
becomes a superclass by inheriting an entity
class.

@DiscriminatorValue

Specifies the value of the column used for
identification in the SINGLE TABLE strategy
or JOINED strategy.

@Inheritance

Specifies the inheritance mapping strategy
used in the entity class hierarchy.

@MappedSuperclass Specifies a mapped superclass.
Annotations related to queries @ColumnResult Specifies the column for mapping the query
results of an SQL to the entity class.
@EntityResult Specifies the entity class in which the query
results of the SQL are to be mapped.
@FieldResult Specifies the field in which the query results

of the SQL are to be mapped.

60



2. Annotations and Dependency Injection Supported by Application Server

Annotation classification

Annotation name

Overview

Annotations related to queries

@NamedNativeQueries

Used when multiple
@NamedNativeQueries are coded
concurrently.

@NamedNativeQuery Specifies a named query in the SQL.

@NamedQueries Used when multiple @NamedQueries are
coded concurrently.

@NamedQuery Specifies a named query of JPQL.

@QueryHint Specifies a database--specific query hint.

@SglResultSetMapping Specifies the result set mapping of an SQL

query.

@SglResultSetMappings

Used when multiple
@SglResultSetMappings are coded
concurrently.

Annotations related to event callback”

@EntityListeners

Specifies the callback listener class used in the
entity class or mapped superclass.

@ExcludeDefaultListeners

This annotation excludes the default listener
for the following classes:

* Entity class

¢ Mapped superclass

¢ Subclass of the entity class or mapped
superclass

@ExcludeSuperclassListeners

This annotation excludes the superclass
listener for the following classes:
 Entity class
¢ Mapped superclass

¢ Subclass of the entity class or mapped
superclass

@PostLoad

This annotation indicates the callback method
invoked after the SELECT statement is issued
in the database.

@PostPersist

This annotation indicates the callback method
invoked after the INSERT statement is issued
in the database.

@PostRemove

This annotation indicates the callback method
invoked after the DELETE statement is issued
in the database.

@PostUpdate

This annotation indicates the callback method
invoked after the UPDATE statement is issued
in the database.

@PrePersist

This annotation indicates the callback method
invoked before the INSERT statement is
issued in the database.

@PreRemove

This annotation indicates the callback method
invoked before the DELETE statement is
issued in the database.

@PreUpdate

This annotation indicates the callback method
invoked before the UPDATE statement is
issued in the database.

61



2. Annotations and Dependency Injection Supported by Application Server

Annotation classification Annotation name Overview
Annotations related to the reference of @PersistenceContext Defines the container--managed
EntityManager and EntityManager.
EntityManagerFactory
@PersistenceContexts Used when multiple
@PersistenceContexts are coded
concurrently.
@PersistenceProperty Sets up properties in the container--managed
EntityManager.
@PersistenceUnit Defines the persistence unit for the
EntityManagerFactory.
@PersistenceUnits Used when multiple @PersistenceUnits
are coded concurrently.

# For details on the callback method, see 6.15 How to specify the callback method in the uCosminexus Application Server
Common Container Functionality Guide.

2.7.1 @AssociationOverride

(1) Description

This annotation overrides the settings used in the ManyToOne relationship or the OneToOne relationship specified
in a mapped superclass and an embedded class.

When @AssociationOverride is not specified, the external key column is mapped in the same way as the
original mapping.

The applicable targets are class, method, and field.

(2) Element

The following table lists the elements of @AssociationOverride:

Element name Optional/Required Element description

name Required This element specifies the name of the field or property having the related mapping
that is to be overridden.

joinColumns Required This element specifies an array of @JoinColumn.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String

Description
This element specifies the name of the field or property having the related mapping that is to be overridden.

Default value
None

(b) joinColumns element

Type
JoinColumn[]

Description
This element specifies an array of @JoinColumn.

62



2. Annotations and Dependency Injection Supported by Application Server

The definition of the mapped superclass or embedded class is applied as the mapping type.

You can specify the value within the specifiable range of the arrays of @ JoinColumn. For details, see 2.7.24
@JoinColumn.

Default value
None

2.7.2 @AssociationOverrides

(1) Description
This annotation is specified when multiple @AssociationOverrides are coded concurrently.

The applicable targets are class, method, and field.

(2) Element

The following table lists the elements of @AssociationOverrides:

Element name Optional/Required Element description

value Required This element specifies an array of @AssociationOverride.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element
Type
AssociationOverride[ ]

Description
This element specifies an array of @AssociationOverride.

You can specify the value within the specifiable range of the arrays of @AssociationOverride. For details,
see 2.7.1 @AssociationOverride.

Default value
None

2.7.3 @AttributeOverride

(1) Description
This annotation overrides the following mapping information:

» Properties or fields specified by @Basic (applied by default)

¢ Properties or fields applied by default

* Properties or fields specified by @Id
To override the settings of @Column defined in the mapped superclass and embedded class, apply the field or
property of the entity class and embedded class in which the mapped superclass is inherited.
If GAttributeOverride is not specified, the column is mapped with the original mapping before override.

If @AttributeOverride is defined in the entity class of a unit that does not have an inheritance relationship, the
operation is performed; however, the operation cannot be guaranteed.

The applicable targets are class, method, and field.

63



2. Annotations and Dependency Injection Supported by Application Server

(2) Element

The following table lists the @AttributeOverride attributes.

Element name Optional/Required Element description
name Required This element specifies the name of the field or property in which the mapping is
overridden.
column Required This element specifies the @Column to be overridden.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String

Description
This element specifies the name of the field or property in which mapping is overridden.

Default value
None

(b) column element
Type
Column

Description
This element specifies the @Column to be overridden.
The definition of the embeddable class or mapped superclass is applied as the mapping type.
You can specity the value within the specifiable range of @Column. For details, see 2.7.6 @Column.

Default value
None

2.7.4 @AttributeOverrides

(1) Description
The annotation to be specified when you want to code multiple GAttributeOverride concurrently.

Applicable elements are class, method, and field.

(2) Element

The following table lists the @AttributeOverrides attributes:

Element name Optional/Required Element description

value Required This element specifies an array of @ElementOverride.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
AttributeOverride[]

64



2. Annotations and Dependency Injection Supported by Application Server

Description
Attribute that specifies the array of @At tributeOverride.

Specifiable values are within the range of the specifiable values for @At tributeOverride array. For details,
see 2.7.3 @AttributeOverride.

Default value
None

2.7.5 @Basic

(1) Description
This annotation indicates the type of mapping to the simplest database column.
This annotation can be applied to the properties or instance variables of the following persistence types:
 Java primitive type
* Primitive type wrapper class
¢ java.lang.String
* java.math.BigInteger
* java.math.BigDecimal
* java.util.Date
* java.util.Calendar
* java.sgl.Date
* java.sqgl.Time
* java.sgl.Timestamp
* byte[]
* Bytel]
e char[]
e Character|[]
* enums

* User--defined serialize type

The applicable targets are method and field.

(2) Element

The following table lists the elements of @Basic:

Element name Optional/Required Element description
fetch Optional This element specifies the specification value of the fetch strategy.
optional Optional This element specifies whether or not a null value can be used in the field or
property.

Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) fetch element

Type
FetchType

65



2. Annotations and Dependency Injection Supported by Application Server

Description
This element specifies the specification value of the fetch strategy.
FetchType.EAGER or FetchType.LAZY can be specified.

Furthermore, the fetch attribute is ignored in Cosminexus JPA provider CJPA provider, and the default
FetchType.EAGER is usually applied. For details on the fetch attribute, see 6.4.5 Synchronization with the
database in the uCosminexus Application Server Common Container Functionality Guide.

Default value
FetchType .EAGER

2.7.6 @Column

(1) Description

This annotation specifies the mapping between the persistence field or persistence property, and the columns of the
database.

Even when @Column is not specified explicitly in the persistence property or persistence field, the persistence
property or persistence field is handled as if @Column were specified. In such a case, the default values will be
applied in each element value of @Column.

The applicable targets are method and field.

(2) Element

The following table lists the elements of @Column:

Element name Optional/Required Element description
name Optional This element specifies the column name.
unique Optional This element specifies whether or not the property is a unique key.

Note that Cosminexus JPA provider does not support this attribute.

nullable Optional This element specifies whether or not a null value can be specified in the
database column.

Note that Cosminexus JPA provider does not support this attribute.

insertable Optional This element specifies whether or not to include the column specified by
@Column in the INSERT statement of the SQL.

updatable Optional This element specifies whether or not to include the column specified by
@Column in the UPDATE statement of the SQL.

columnDefinition Optional This element is used to describe the constraints added to the column in the
DDL, when the CREATE statement is output.

Note that Cosminexus JPA provider does not support this attribute.

table Optional This element specifies the table name that includes the column.

length Optional This element specifies the length of a column.

Note that Cosminexus JPA provider does not support this attribute.

precision Optional This element specifies the accuracy of a column. This element is specified
when the column is numeric type.

Note that Cosminexus JPA provider does not support this attribute.

scale Optional This element specifies the scale of a column. This element is specified when
the column is numeric type.

Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

66



2. Annotations and Dependency Injection Supported by Application Server

(a) name element

Type

String
Description

This element specifies the column name.

The column name that can be specified depends on the database specifications.
Default value

Property name or field name in which this annotation is specified

(b) insertable element

Type
boolean

Description

This element specifies whether or not to include the column specified by @Column in the INSERT statement of
the SQL. You can specify either true or false.

These values imply the following meaning:
true: The column specified by @Column is included in the INSERT statement of the SQL.
false: The column specified by @Column is not included in the INSERT statement of the SQL.

Default value

true

(c) updatable element

Type
boolean

Description

This element specifies whether or not to include the column specified by @ Column in the UPDATE statement of
the SQL. You can specify either true or false.

These values imply the following meaning:
true: The column specified by @Column is included in the UPDATE statement of the SQL.
false: The column specified by @Column is not included in the UPDATE statement of the SQL.

Default value
true

(d) table element
Type
String
Description
This element specifies the table name that includes the column.
The table name that can be specified depends on the database specifications.

Default value

Primary table name

2.7.7 @ColumnResult

(1) Description

This annotation specifies the column for mapping the query results of an SQL to the entity class

The applicable targets are the columns of @SgqlResultSetMapping.

67



2. Annotations and Dependency Injection Supported by Application Server

(2) Element

The following table lists the elements of @ColumnResult:

Element name

Optional/Required

Element description

name

Required

This element specifies the name or optional name of the columns of SELECT
clause.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description

This element specifies the name or optional name of the columns of SELECT clause.

The column name that can be specified depends on the database specifications.

Default value
None

2.7.8 @DiscriminatorColumn

(1) Description

This annotation specifies the column for identification used in the SINGLE_TABLE strategy or JOINED strategy.
This annotation is added to an entity class that becomes a superclass by inheriting an entity class.

The applicable target is class.

(2) Element

The following table lists the elements of @DiscriminatorColumn:

Element name Optional/Required Element description

name Optional This element specifies the name of the column for identification.

discriminatorTyp Optional This element specifies the type of the column for identification.

e

columnDefinition Optional This element is used to describe the constraints added to the column for
identification in the DDL, when the CREATE statement is output.
Note that Cosminexus JPA provider does not support this attribute.

length Optional This element specifies the length when the column for identification is a character

string.

Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description

This element specifies the name of the column for identification.

The column name that can be specified depends on the database specifications.

68



2. Annotations and Dependency Injection Supported by Application Server

Specify the same value (matching the upper case and lower case characters) for the name element as that for the
name element of @Column.

Default value
"DTYPE"

(b) discriminatorType element
Type
DiscriminatorType

Description
This element specifies the type of the column for identification.
You can specify the following values:

¢ DiscriminatorType.STRING
* DiscriminatorType.CHAR
* DiscriminatorType.INTEGER

Default value
DiscriminatorType.STRING

2.7.9 @DiscriminatorValue

(1) Description

This annotation specifies the value of the column for identification used in the SINGLE_TABLE strategy or JOINED
strategy. You can specify this annotation in a superclass or subclass.

The applicable target is class.
Note the following points:
* The settings of @DiscriminatorValue are not inherited. @DiscriminatorValue must be set up in each
entity class.

e The settings of @DiscriminatorValue must match the type specified in discriminatorType and length
specified in length of @DiscriminatorColumnmn.

e Ifthe discriminatorType of @DiscriminatorColumn is INTEGER, make note of the following points:
* In @DiscriminatorValue, specify only an integer that does not include 0 or a blank at the beginning.
¢ You cannot omit @DiscriminatorValue. If omitted, the operation will not be guaranteed.

e Ifthe discriminatorType of @DiscriminatorColumn is other than INTEGER, you can omit
@DiscriminatorValue. In such a case, the operation is performed by assuming that the value specified in
value is the class name of the entity.

(2) Element

The following table lists the elements of @DiscriminatorvValue:

Element name Optional/Required Element description

value Required This element specifies the value to be set up in the column for identification.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
String

69



2. Annotations and Dependency Injection Supported by Application Server

Description
This element specifies the value to be set up in the column for identification.
The value that can be specified depends on the type of the column for identification.

Default value
Entity name

2.7.10 @Embeddable

(1) Description
This annotation indicates an embedded class.
An embedded class is a class that can be embedded as a field within the entity class.

The applicable target is class.

(2) Element

@Embeddable does not have attributes.

2.7.11 @Embedded

(1) Description

This annotation specifies the persistence property or persistence field indicating the instance value of the embedded
class within the entity class.

If you want to override the column mapping declared within the embedded class, use either @ElementOverride or
@ElementOverrides.

The applicable targets are method and field.

(2) Element

@Embedded does not have attributes.

2.7.12 @EmbeddedId

(1) Description
This annotation specifies the compound primary key of an embedded class.
This annotation is added in the persistence property or persistence field of an embeddable class owned by the entity.
When using @EmbeddedId, you cannot specify multiple @EmbeddedIds or specify @Id besides @EmbeddedId.

When you add @Transient to a field of the embedded class, the compound primary key will not be applicable for
that field.

The applicable targets are method and field.

(2) Element

@EmbeddedId does not have attributes.

70



2. Annotations and Dependency Injection Supported by Application Server

2.7.13 @Entity

(1) Description
This annotation specifies that the class is an entity.

The class name of the entity class does not include the package name. Note the following points during specification:

¢ Make sure that the entity name is a unique name within the persistence unit.

* You cannot set up the reserved characters of JPQL. If you set up the reserved characters, the operation will not be
guaranteed.

The applicable target is class.

(2) Element

The following table lists the elements of @Entity:

Element name Optional/Required Element description

name Optional This element specifies a logical name for the entity class. It becomes an abstract
schema name in JPQL.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String

Description
This element specifies a logical name for the entity class. It becomes an abstract schema name in JPQL.
The value that can be specified depends on the specifications of JPQL.

Default value
Class name of the class in which @Ent ity is specified

2.7.14 @EntityListeners

(1) Description
This annotation specifies the callback listener class used in the entity class or mapped superclass.

The applicable target is class.

(2) Element

The following table lists the elements of @EntityListeners:

Element name Optional/Required Element description

value Required This element specifies the callback listener class.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
Class[]

71



2. Annotations and Dependency Injection Supported by Application Server

Description
This element specifies the callback listener class.
The value that can be specified is class.

Default value
None

2.7.15 @EntityResult

(1) Description
This annotation specifies the entity class in which the query results of the SQL are to be mapped.
The applicable target is the entities element of @SglResultSetMapping.

(2) Element

The following table lists the elements of @EntityResult:

Element name Optional/Required Element description
entityClass Required This element specifies the result class.
fields Optional This element specifies the arrays of @FieldResult.
discriminatorCol Optional This element specifies the name or optional name of the column for identification
umn within the SELECT clause that determines the type of the entity instance.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) entityClass element
Type
Class

Description
This element specifies the result class.
The value that can be specified is the class name.

Default value
None

(b) fields element
Type
FieldResult[]

Description
This element specifies an array of @FieldResult.

You can specify the value within the specifiable range of the arrays of @FieldResult. For details, see 2.7.79
@FieldResult.

Default value

Blank array

(c) discriminatorColumn element

Type
String

72



2. Annotations and Dependency Injection Supported by Application Server

Description

This element specifies the name or optional name of the column for identification within the SELECT clause that
determines the type of the entity instance.

The value that can be specified is the name or optional name of the column specified in the table.

Default value
Blank array

2.7.16 @Enumerated

(1) Description
This annotation specifies the persistence field or persistence property as the enumeration type.

This annotation can be used along with @Basic. You can specify ORDINAL (numeric type) and STRING (character
string type) in the enumeration type.

In the following cases, ORDINAL (numeric type) is specified as the enumeration type:

* When the enumeration type is not specified in the value element

¢ When @Enumerated is not specified

The applicable targets are method and field.

(2) Element

The following table lists the elements of @Enumerated:

Element name Optional/Required Element description

value Optional This element specifies the type used for mapping the enumeration type.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element
Type
EnumType

Description
This element specifies the type used for mapping the enumeration type.
You can specify either of the following values:

¢ EnumType.ORDINAL: Numeric type
e EnumType.STRING: Character string type

Default value
EnumType.ORDINAL

2.7.17 @ExcludeDefaultListeners

(1) Description
This annotation excludes the default listener for the following classes:

* Entity class
* Mapped superclass

» Subclass of the entity class or mapped superclass

73



2. Annotations and Dependency Injection Supported by Application Server

Note that the default listener can be specified only in the XML descriptor.
The applicable target is class.

(2) Element

@ExcludeDefaultListeners does not have attributes.

2.7.18 @ExcludeSuperclassListeners

(1) Description
This annotation excludes the superclass listener for the following classes:

* Entity class
* Mapped superclass

* Subclass of the entity class or mapped superclass

The applicable target is class.

(2) Element

@ExcludeSuperclassListeners does not have attributes.

2.7.19 @FieldResult

(1) Description
This annotation specifies the field in which the query results of the SQL are to be mapped.
The applicable target is the field element of @EntityResult.

(2) Element

The following table lists the elements of @FieldResult:

Element name Optional/Required Element description
name Required This element specifies the name of the persistence field or persistence property of
the class.
column Required This element specifies the name or optional name of the column of SELECT
clause.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String
Description
This element specifies the name of the persistence field or persistence property of the class.

Default value

None

74



2. Annotations and Dependency Injection Supported by Application Server

(b) column element
Type
String

Description
This element specifies the name or optional name of the column of SELECT clause.
The column name or optional name that can be specified depends on the database specifications.

Default value
None

2.7.20 @GeneratedValue

(1) Description

This annotation specifies the method for automatically generating and allotting a unique value to the primary key
column. This annotation is applicable to the field or property of the primary key of entity class or mapped superclass
containing @Id.

The primary key value is generated by the following four methods. Depending on the generation method selected, the
base table and database sequence object must be prepared beforehand. For details on each of the generation methods,
see the description about the strategy element.

* GenerationType. AUTO

* GenerationType.IDENTITY
¢ GenerationType.SEQUENCE
¢ GenerationType. TABLE

The applicable targets are method and field.

(2) Element

The following table lists the elements of @GeneratedvValue:

Element name Optional/Required Element description

strategy Optional This element specifies the method for generating the primary key value of the
entity class.

generator Optional This element specifies the name element set up in @SequenceGenerator or
@TableGenerator to be used.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) strategy element

Type
GenerationType
Description
This element specifies the method for generating the primary key value of the entity class.
The following four types of values can be specified:
* GenerationType.AUTO
For generating the primary key value, select the most appropriate procedure in each database.
When Oracle or HiRDB is used as the database, the processing is same as GenerationType . TABLE.
* GenerationType.IDENTITY
The primary key value is generated using the identity column of the database.

75



2. Annotations and Dependency Injection Supported by Application Server

If Oracle is used as the database, the processing is same as GenerationType.SEQUENCE.

If HIRDB is used as the database, the processing is same as GenerationType . TABLE.
* GenerationType.SEQUENCE

The primary key value is generated using the database sequence object.
If HiRDB is used as the database, the processing is same as GenerationType.TABLE.

* GenerationType. TABLE
The primary key value is generated using a table for maintaining the primary key value.

Default value
GenerationType.AUTO

(b) generator element
Type
String

Description

This element specifies the name element set up in @SequenceGenerator or @TableGenerator to be
used.

Default value
The following names are assumed depending on the value of the strategy element:

* In the case of GenerationType. AUTO
"SEQ_ GEN"

* In the case of GenerationType.SEQUENCE
"SEQ GEN_SEQUENCE"

* In the case of GenerationType.TABLE
"SEQ GEN TABLE"

2.7.21 @ld

(1) Description
This annotation specifies the properties or fields of the primary key of entity class.
@Id is applicable in the entity class or mapped superclass.

The column of the database mapped to the field or property in which @ Id is specified is assumed as the primary key
column of the primary table. When the column name of the primary key column is not specified using @Column, the
column name of the primary key column becomes the name of the field or property in which @Id is specified.

Note that if @Version is specified in a field in which @Id is specified, @ Id becomes invalid.

The applicable targets are method and field.

(2) Element

@Id does not have attributes.

2.7.22 @ldClass

(1) Description
This annotation specifies the compound primary key class mapped to multiple fields or properties of the entity class.

This annotation is applicable to the mapped superclass or entity class.

76



2. Annotations and Dependency Injection Supported by Application Server

The name and type of the field or property of the compound primary key class must match with that of the field or
property of the primary key of entity class. The name and type specified in this annotation must correspond to the
name and type of the property or field of primary key of the entity in which @Id is added.

The applicable target is class.

(2) Element

The following table lists the elements of @IdClass:

Element name Optional/Required Element description

value Required This element specifies the compound primary key class.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element
Type
Class

Description
This element specifies the compound primary key class.
The value that can be specified is the class name.

Default value

None

2.7.23 @Inheritance

(1) Description
This annotation specifies the inheritance mapping strategy used in the inheritance hierarchy of an entity.
@Inheritance is specified in the parent entity class of inheritance hierarchy.
The following are two types of inheritance mapping strategy available with Cosminexus JPA provider:

e SINGLE_TABLE (single table for each class hierarchy)
¢ JOINED (binding subclass strategy)

For details on the inheritance mapping strategy, see 6.13.2 Inheritance mapping strategy in the uCosminexus
Application Server Common Container Functionality Guide.

The applicable target is class.

(2) Element

The following table lists the elements of @ Inheritance:

Element name Optional/Required Element description

strategy Optional This element specifies the type of inheritance mapping strategy.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) strategy element

Type
InheritanceType

77



2. Annotations and Dependency Injection Supported by Application Server

Description
This element specifies the type of inheritance mapping strategy used in an entity.
The following two types of values can be specified:

* InheritanceType.SINGLE TABLE: This strategy is used to map all classes in the inheritance hierarchy
to a single table.

¢ InheritanceType.JOINED: This strategy is used to map the top most (parent class) of the inheritance
hierarchy to a single table, and map each subclass with a subclass--specific mapping.

Default value
InheritanceType.SINGLE TABLE

2.7.24 @JoinColumn

(1) Description

This annotation specifies the external key column for the binding table, or the column name of the binding--
destination table that is referenced from the external key column, when the entity classes are correlated. Always
specify the column that acts as the primary key of the binding--destination table.

When multiple external key columns exist, use @JoinColumns, and specify @JoinColumn for each relation.
When multiple @JoinColumns are specified, specify the name element and referencedColumnName element
in each annotation.

When @JoinColumn is not specified explicitly, it is assumed that a single external key column is specified in the
persistence property or persistence field that specifies the relation. Also, the default value is applied to each element
value of @JoinColumn.

Furthermore, if the changes made in a single column of the field and the changes made by correlating the cascade
operation are performed concurrently, consistency might not be achieved. Therefore, when the column specified in the
name element and the referencedColumnName element is defined in a field of the entity, the insertable
element and the updatable element must be set to false. With this, only the changes made in the field will be
applied to the database, but the changes made due to the correlation of the cascade operation will not be applied to the
database.

The applicable targets are method and field.

(2) Element

The following table lists the elements of @ JoinColumn:

Element name Optional/Required Element description
name Optional This element specifies the external key column name used to bind the target tables.
referencedColumn Optional This element specifies the column name of the binding--destination table that is
Name referenced from the external key column specified in the name element.
unique Optional This element specifies whether or not the property is a unique key.

Note that Cosminexus JPA provider does not support this attribute.

nullable Optional This element specifies whether or not a null value can be specified in the database
column.

Note that Cosminexus JPA provider does not support this attribute.

insertable Optional This element specifies whether or not to include the column specified by
@JoinColumn in the INSERT statement of the SQL.

updatable Optional This element specifies whether or not to include the column specified by
@JoinColumn in the UPDATE statement of the SQL.

columnDefinition Optional This element is used to describe the constraints added to the external column in the
DDL, when the CREATE statement is output.

78



2. Annotations and Dependency Injection Supported by Application Server

Element name Optional/Required Element description
columnDefinition Optional Note that Cosminexus JPA provider does not support this attribute.
table Optional This element specifies the table name that includes the external key column.

The details of attributes that are supported in Cosminexus JPA provider are as follows:

(a) name element

Type
String
Description
This element specifies the external key column name used to bind the target tables.

The location of existence of the external key column is different for each type of the entity relationship. The
location of existence of the external key column for each type of the entity relationship is as follows:

* In the case of OneToOne relationship or ManyToOne relationship
Within the local entity table
* In the case of ManyToMany relationship
Within the binding table of @ JoinTable
The values that can be specified depend on the specifications of the database column name.
Default value

* When a single external key column is specified in the local entity, and nothing is specified in the value of
the name element

name-of-the-related-property-or-field-within-the-local-entity name--of-the-referenced--primary--key--column
* When the related property and field that is being referenced does not exist (example: when @JoinTable
is used)

name-of-the-referenced-entity name-of-the-referenced-primary-key-column

(b) referencedColumnName element

Type
String
Description

This element specifies the column name of the binding--destination table that is referenced by the external key
column specified in the name element.

The column name of the binding--destination table exists at the following locations:
* When the relationship annotation is used
Within the referenced table
* When @JoinTable is used
Within the entity table of the owner entity

Note

When binding is defined as a part of reverse binding, the location will be within the table of the non--owner
entity class.

The column names that can be specified depend on the database specifications.

Default value

Column name of the primary key of the table referenced from the external key

Note
If a single external key column is specified, the default value will be applied.

79



2. Annotations and Dependency Injection Supported by Application Server

(c) insertable element

Type
boolean

Description

This element specifies whether or not to include the column specified by @ JoinColumn in the INSERT
statement of the SQL. You can specify either true or false.

These values imply the following meaning:

true: The column specified by @JoinColumn is included in the INSERT statement of the SQL.

false: The column specified by @JoinColumn is not included in the INSERT statement of the SQL.
Default value

true

(d) updatable element

Type
boolean

Description

This element specifies whether or not to include the column specified by @ JoinColumn in the UPDATE
statement of the SQL. You can specify either true or false.

These values imply the following meaning:

true: The column specified by @ JoinColumn is included in the UPDATE statement of the SQL.

false: The column specified by @ JoinColumn is not included in the UPDATE statement of the SQL.
Default value

true

(e) table element
Type
String
Description
This element specifies the table name that includes the external key column.
The table name that can be specified depends on the database specifications.
Default value

Primary table name

2.7.25 @JoinColumns

(1) Description

This annotation is specified when multiple @ JoinColumns that indicate the same relationship are coded
concurrently. @JoinColumns defines the mapping of the compound external key.

The applicable targets are method and field.

(2) Element
The following table lists the elements of @ JoinColumns:
Element name Optional/Required Element description
value Required This element specifies an array of @ JoinColumn.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

80



2. Annotations and Dependency Injection Supported by Application Server

(a) value element
Type
JoinColumn([]

Description
This element specifies an array of @JoinColumn.

The values can be specified within the specifiable range of the arrays of @ JoinColumn.

Default value
None

2.7.26 @JoinTable

(1) Description
This annotation specifies the binding table set up in the following classes:

e Owner class when the ManyToMany relationship is specified

¢ Class containing a single-direction OneToMany relationship

When the name element is not specified, the name of the binding table becomes as follows:
owner-table--name_non--owner-table-name

The applicable targets are method and field.

(2) Element

The following table lists the elements of @JoinTable:

Element name Optional/Required Element description
name Optional This element specifies the name of the binding table.
catalog Optional This element specifies the catalog name of the binding table.

Note that Cosminexus JPA provider does not support this attribute.

schema Optional This element specifies the schema name of the binding table.

joinColumns Optional This element specifies the external key column of the binding table that
references the primary table of the owner entity.

inverseJoinColumns Optional This element specifies the external key column of the binding table that
references the primary table of the non--owner entity.

uniqueConstraints Optional This element specifies the unique constraints of the table.

Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String
Description
This element specifies the name of the binding table.
The table name that can be specified depends on the database specifications.
Default value

owner-table-name_non-owner-table-name

81



2. Annotations and Dependency Injection Supported by Application Server

(b) schema element

Type

String
Description

This element specifies the schema name of the table.

The value that can be specified depends on the specifications of the database schema name.
Default value

Default schema of the database used

(c) joinColumns element

Type
JoinColumn(]
Description

This element specifies the external key column of the binding table that references the primary table of the owner
entity. This element specifies an array of @ JoinColumn. The external key column name of the binding table is
specified in the name element, while the referenced column name of the owner is specified in the
referencedColumnName element of @JoinColumn.

The column names that can be specified depend on the database specifications.

Default value
External key of @JoinColumn

(d) inverseJoinColumns element
Type
JoinColumn[]

Description

This element specifies the external key column of the binding table that references the primary table of the non--
owner entity. This element specifies an array of @ JoinColumn. The external key column name of the binding
table is specified in the name element, while the column of the binding--destination table that is referenced by the
external key column is specified in the referencedColumnName element of @ JoinColumn.

The values that can be specified depend on the specifications of the database column name.
Default value

External key column of @JoinColumn

2.7.27 @Lob

(1) Description

This annotation specifies the persistence field or persistence property of the 1arge object type supported by the
database. This annotation can be used together with @Basic.

@Lob contains the binary type (B1ob) and character type (C1ob). The type of @Lob is determined based on the type
of the persistence field or persistence property. For a character string and character type, the type of @Lob is Clob,
and in other cases, the type is B1ob.

The applicable targets are method and field.

(2) Element

@Lob does not have attributes.

82



2. Annotations and Dependency Injection Supported by Application Server

2.7.28 @ManyToMany

(1) Description
This annotation specifies the multiple relationships from an owner entity class having a ManyToMany relationship to
a non-owner entity class.

The ManyToMany relationship includes the owner and non-owner, irrespective of bi-direction or single direction. If
the relationship is bi-directional, the binding table can be specified in any direction.

If the Collection element type is specified using Generics, the non-owner entity class is not required to be
specified. In other cases, make sure to specify it.

Furthermore, when you specify @ManyToMany, note the settings of the following annotations:

¢ The elements of the same annotations for @OneToMany are same as that of @ManyToMany.

* If the properties or fields in which @ManyToMany is defined have the same name in the owner and non-owner
classes, do not use the default settings (when the joinColumns element and inverseJoinColumns element
is not specified) of @JoinTable.

* For the bi--directional relationship, the value of the binding table is updated based on the information of the
owner. Even if the mapping information is changed in the entity class in which the mappedBy element is
specified, the information will not be applied in the binding table.

The applicable targets are method and field.

(2) Element

The following table lists the elements of @ManyToMany:

Element name Optional/Required Element description
targetEntity Optional This element specifies the non--owner entity class.
cascade Optional This element specifies the operations to be cascaded.
fetch Optional This element specifies the specification value of the fetch strategy.
mappedBy Optional This element specifies the name of the field or property that maintains a

relationship in the owner entity class, when added in the elements of the non--
owner entity class.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) targetEntity element

Type
Class
Description
This element specifies the non-owner entity class.
The specification of this element is optional when the collection property is defined using Generics. In other
cases, you must always specify this element.
Default value
The type in which the collection contains parameters
# Set up only when the collection property is defined using Generics.

(b) cascade element

Type
CascadeTypel[]

83



2. Annotations and Dependency Injection Supported by Application Server

Description
This element specifies the operations to be cascaded.
The following table describes the specifiable values:

* CascadeType.ALL: The persist, remove, merge, and refresh operations of the owner entity class are
cascaded to the related destination.

¢ CascadeType.MERGE: The merge operation of the owner entity class is cascaded to the related destination.

* CascadeType.PERSIST: The persist operation of the owner entity class is cascaded to the related
destination.

* CascadeType.REFRESH: The refresh operation of the owner entity class is cascaded to the related
destination.

e CascadeType.REMOVE: The remove operation of the owner entity class is cascaded to the related
destination.

Default value
Not to be cascaded

(c) fetch element
Type
FetchType

Description

This attribute defines the fetch strategy of data from the database. For details on the fetch strategy, see 6.4.5
Synchronization with the database in the uCosminexus Application Server Common Container Functionality
Guide.

The following two types of values can be specified:
* EAGER strategy: Requests in which the data must be fetched eagerly
e LAZY strategy: Requests in which data is fetched lazily when accessed for the first time

Default value
FetchType.LAZY

(d) mappedBy element

Type
String
Description

This element specifies the name of the field or property that maintains a relationship in the owner entity class,
when added in the elements of the non-owner entity class.

When this element is specified, the relationship becomes bi-directional. For a bi-directional relationship, the value
of the binding table is updated based on the information of the owner. Even when the mapping information is
changed in the non--owner entity class (the entity class in which the mappedBy element is specified), the
information will not be applied in the binding table.

Default value
None

2.7.29 @ManyToOne

(1) Description

This annotation indicates that the class in which @ManyToOne is specified has a ManyToOne relationship, and also
specifies the relationship from the owner entity class to the non--owner entity class.

The applicable targets are method and field.

84



2. Annotations and Dependency Injection Supported by Application Server

(2) Element

The following table lists the elements of @ManyToOne:

Element name Optional/Required Element description
targetEntity Optional This element specifies the non-owner entity class.
cascade Optional This element specifies the operations to be cascaded.
fetch Optional This element specifies the specification value of the fetch strategy.
optional Optional This element specifies whether or not a null value can be set up for all non--

primitive type fields and properties.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) targetEntity element
Type
Class

Description
This element specifies the non--owner entity class.

Default value
Type of the field and property in which the annotation is added

(b) cascade element
Type
CascadeTypel[]

Description
This element specifies the operations to be cascaded.

The following table describes the specifiable values:

* CascadeType.ALL: The persist, remove, merge, and refresh operations of the owner entity class are
cascaded to the related destination.

e CascadeType.MERGE: The merge operation of the owner entity class is cascaded to the related destination.

* CascadeType.PERSIST: The persist operation of the owner entity class is cascaded to the related
destination.

¢ CascadeType.REFRESH: The refresh operation of the owner entity class is cascaded to the related
destination.

* CascadeType.REMOVE: The remove operation of the owner entity class is cascaded to the related
destination.

Default value
Not to be cascaded

(c) fetch element

Type
FetchType
Description

This attribute defines the fetch strategy of data from the database. For details on the fetch strategy, see 6.4.5
Synchronization with the database in the uCosminexus Application Server Common Container Functionality
Guide.

The following two types of values can be specified:

* EAGER strategy: Requests in which the data must be fetched eagerly

85



2. Annotations and Dependency Injection Supported by Application Server

e LAZY strategy: Requests in which data is fetched lazily when accessed for the first time

Default value
FetchType.EAGER

(d) optional element
Type
boolean

Description

This element specifies whether or not a null value can be set up for all non-primitive type fields and properties.
The following values can be specified:

¢ true: A null value can be set up for all non-primitive type fields and properties.
e false: A null value cannot be specified for all non-primitive type fields and properties.

Default value
true

2.7.30 @MapKey

(1) Description

This annotation specifies the map key used for object identification within the map when the non--owner entity class
is indicated by the java.util.Map type, in the OneToMany relationship or ManyToMany relationship.

When the name element is not specified, the primary key of the correlated entity is used as the map key.

If mapping is done as @IdClass when the primary key is a compound primary key, the compound primary key is
used as the map key.

If a persistence field or persistence property other than the primary key is used as the map key, the unique key
constraints related to the map key can be included.

The applicable targets are method and field.

(2) Element

The following table lists the elements of @MapKey:

Element name Optional/Required Element description

name Optional This element specifies the name of the persistence field or persistence property of
the non-owner entity class that is used as the map key.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String

Description

This element specifies the name of the persistence field or persistence property of the non-owner entity class that
is used as the map key.

Default value
Name of the primary key field or property of the non-owner entity class

86



2. Annotations and Dependency Injection Supported by Application Server

2.7.31 @MappedSuperclass

(1) Description
This annotation specifies a mapped superclass.

A mapped superclass is used for inheritance. Hence, there are no tables corresponding to this class. Except for
mapping to a subclass, and the inheritance of the related mapping information, the mapped superclass is mapped to the
table in the same way as an entity.

The mapping information can be overridden in the subclass using @ElementOverride.

The applicable target is class.

(2) Element

@MappedSuperclass does not have attributes.

2.7.32 @NamedNativeQueries

(1) Description
This annotation is specified when multiple @NamedNativeQueries are coded concurrently.

The applicable target is class.

(2) Element

The following table lists the elements of @NamedNativeQueries:

Element name Optional/Required Element description

value Required This element specifies an array of @NamedNativeQuery.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element
Type
NamedNativeQuery[]

Description
This element specifies an array of @NamedNativeQuery.

The values can be specified within the specifiable range of the arrays of @NamedNativeQuery. For details, see
2.7.33 @NamedNativeQuery.

Default value
None

2.7.33 @NamedNativeQuery

(1) Description

This annotation specifies a named query in the SQL. This annotation can be applied to an entity class and mapped
superclass.

The applicable target is class.

87



2. Annotations and Dependency Injection Supported by Application Server

(2) Element

The following table lists the elements of @NamedNativeQuery:

Element name Optional/Required Element description
name Required This element specifies the name of the named query.
query Required This element specifies the SQL string.
hints Optional This element specifies an array of @QueryHint.
resultClass Optional This element specifies the class in which the SQL results are applied.
resultSetMapping Optional This element specifies the name indicated in the name element of
@SglResultSetMapping.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String
Description
This element specifies the name of the named query.
The value that can be specified is a character string.
Default value
None

(b) query element

Type

String
Description

This element specifies the SQL string.

The SQL that can be specified depends on the specifications of the database used.
Default value

None

(c) hints element

Type
QueryHint[]
Description
This element specifies an array of @QueryHint.
You can specify the value within the specifiable range of the arrays of @QueryHint. For details, see 2.7.53
@QueryHint.
Default value
Blank array

(d) resultClass element

Type
Class

Description
This element specifies the class in which the SQL results are applied.

88



2. Annotations and Dependency Injection Supported by Application Server

The resultClass element is specified when the class, in which you want to map the execution results of the
query, exists. Do not specify the resultClass element and resultSetMapping element concurrently.

The value that can be specified is the class name.

Default value
void.class

(e) resultSetMapping element
Type
String

Description
This element specifies the name indicated in the name element of @SglResultSetMapping in which the
result set is defined.

This element is specified when the SQL results are to be mapped to any result set.
Do not specify the resultClass element and resultSetMapping element concurrently.

You can specify the value within the specifiable range of the name element of @SglResultSetMapping. For
details, see 2.7.57(2)(a) name element.

Default value
Null character string

2.7.34 @NamedQueries

(1) Description
This annotation is specified when multiple @NamedQueries are coded concurrently.

The applicable target is class.

(2) Element

The following table lists the elements of @NamedQueries:

Element name Optional/Required Element description

value Required This element specifies an array of @NamedQuery.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
NamedQuery([]
Description
This element specifies an array of @NamedQuery.
You can specify the value within the specifiable range of the arrays of @NamedQuery. For details, see 2.7.35
@NamedQuery.
Default value

None

89



2. Annotations and Dependency Injection Supported by Application Server

2.7.35 @NamedQuery

(1) Description

This annotation specifies a named query of JPQL. This annotation can be applied to an entity class and mapped
superclass.

The applicable target is class.

(2) Element

The following table lists the elements of @NamedQuery:

Element name Optional/Required Element description
name Required This element specifies the name of the named query.
query Required This element specifies the query string of JPQL.
hints Optional This element specifies an array of @QueryHint.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String
Description
This element specifies the name of the named query.
The value that can be specified is a character string.
Default value
None

(b) query element

Type

String
Description

This element specifies the query string of JPQL.

The value that can be specified depends on the specifications of JPQL.
Default value

None

(c) hints element

Type
QueryHint[]
Description
This element specifies an array of @QueryHint.
You can specify the value within the specifiable range of the arrays of @QueryHint. For details, see 2.7.53
@QueryHint.
Default value
Blank array

90



2. Annotations and Dependency Injection Supported by Application Server

2.7.36 @OneToMany

(1) Description

This annotation specifies the multiple relationships from an owner entity class having the OneToMany relationship to
a non-owner entity class.

The elements of the same annotations for @OneToMany are same as that of @ManyToMany.

If the Collection element type is specified using Generics, the non-owner entity class is not required to be
specified. In other cases, make sure to specify it.

Furthermore, to achieve a bi-directional relationship, always specify the mappedBy element at the non-owner side.

The applicable targets are method and field.

(2) Element

The following table lists the elements of @OneToMany:

Element name Optional/Required Element description
targetEntity Optional This element specifies the non-owner entity class.
cascade Optional This element specifies the operations to be cascaded.
fetch Optional This element specifies the specification value of the fetch strategy.
mappedBy Optional This element specifies the name of the field or property that maintains a

relationship in the owner entity class, when added in the elements of the non--
owner entity class.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) targetEntity element

Type
Class
Description
This element specifies the non-owner entity class.
The specification of this element is optional when a collection property is defined using Generics. In other
cases, you must always specify this element.
Default value
The type in which the collection contains parameters
# Set up only when the collection property is defined using Generics.

(b) cascade element
Type
CascadeTypel[]

Description
This element specifies the operations to be cascaded.
The following table describes the specifiable values:

e CascadeType.ALL: The persist, remove, merge, and refresh operations of the owner entity class are
cascaded to the related destination.

* CascadeType.MERGE: The merge operation of the owner entity class is cascaded to the related destination.

e CascadeType.PERSIST: The persist operation of the owner entity class is cascaded to the related
destination.

91



2. Annotations and Dependency Injection Supported by Application Server

¢ CascadeType.REFRESH: The refresh operation of the owner entity class is cascaded to the related
destination.

* CascadeType.REMOVE: The remove operation of the owner entity class is cascaded to the related
destination.

Default value
Not to be cascaded

(c) fetch element
Type
FetchType

Description

This attribute defines the fetch strategy of data from database. For details on the fetch strategy, see >6.4.5
Synchronization with the database in the uCosminexus Application Server Common Container Functionality
Guide.

The following two types of values can be specified:
* EAGER strategy: Requests in which the data must be fetched eagerly
e LAZY strategy: Requests in which data is fetched lazily when accessed for the first time

Default value
FetchType.LAZY

(d) mappedBy element
Type
String

Description

This element specifies the name of the field or property that maintains a relationship in the owner entity class,
when added in the elements of the non-owner entity class.

When this element is specified, the relationship becomes bi-directional.

Default value

None

2.7.37 @OneToOne

(1) Description

This annotation indicates that the specified class has OneToOne relationship, and also specifies the single
relationship between entity classes.

Furthermore, to achieve a bi-directional relationship, always specify the mappedBy element at the non--owner side.

The applicable targets are method and field.

(2) Element

The following table lists the elements of @OneToOne:

Element name Optional/Required Element description
targetEntity Optional This element specifies the non--owner entity class.
cascade Optional This element specifies the operations to be cascaded.
fetch Optional This element specifies the specification value of the fetch strategy.

92



2. Annotations and Dependency Injection Supported by Application Server

Element name Optional/Required Element description

optional Optional This element specifies whether or not a null value can be set up for all non-
primitive type fields and properties.

mappedBy Optional This element specifies the name of the field that maintains a relationship in the
owner entity class, when added in the elements of the non-owner entity class.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) targetEntity element
Type
Class
Description
This element specifies the non--owner entity class.
Default value
Type of the field and property in which the annotation is added

(b) cascade element

Type
CascadeType[]

Description
This element specifies the operations to be cascaded.
The following table describes the specifiable values:

* CascadeType.ALL: The persist, remove, merge, and refresh operations of the owner entity class are
cascaded to the related destination.

e CascadeType.MERGE: The merge operation of the owner entity class is cascaded to the related destination.

* CascadeType.PERSIST: The persist operation of the owner entity class is cascaded to the related
destination.

¢ CascadeType.REFRESH: The refresh operation of the owner entity class is cascaded to the related
destination.

* CascadeType.REMOVE: The remove operation of the owner entity class is cascaded to the related
destination.

Default value
Not to be cascaded

(c) fetch element
Type
FetchType

Description

This attribute defines the fetch strategy of data from the database. For details on the fetch strategy, see 6.4.5
Synchronization with the database in the uCosminexus Application Server Common Container Functionality
Guide.

The following two types of values can be specified:
* EAGER strategy: Requests in which the data must be fetched eagerly
e LAZY strategy: Requests in which data is fetched lazily when accessed for the first time

Default value
FetchType.EAGER



2. Annotations and Dependency Injection Supported by Application Server

(d) optional element
Type
boolean

Description

This element specifies whether or not a null value can be set up for all non-primitive type fields and properties.
The following values can be specified:

¢ true: A null value can be set up for all non-primitive type fields and properties.
e false: A null value cannot be specified for all non-primitive type fields and properties.

Default value
true

(e) mappedBy element
Type
String

Description

This element specifies the name of the field that maintains a relationship in the owner entity class, when added in
the elements of the non-owner entity class. When this element is specified, the relationship becomes bi-
directional.

Default value
None

2.7.38 @OrderBy

(1) Description

This annotation specifies the order in which the information is maintained in the collection, when the entity
information is acquired.

The applicable targets are method and field.

(2) Element

The following table lists the elements @0rderBy:

Element name Optional/Required Element description

value Optional This element is specified when the entities are to be acquired in an order based on
the fields or properties other than the primary key.

The details of attribute for mapping with Cosminexus JPA provider are as follows:

(a) value element
Type
String

Description

This element is specified when the entities are to be acquired in an order based on the fields or properties other
than the primary key. The fields or properties for which the order is to be specified are demarcated by comma (,).

The order of collection is specified after the fields or properties. The following values can be specified. If the
order is not specified, the ascending order is assumed.

e ASC: Ascending order

* DESC: Descending order

94



2. Annotations and Dependency Injection Supported by Application Server

In the fields or properties specified in the value element, specify the column that stores the values for which you
can perform the comparative calculation.

Default value
Ascending order based on the primary key of the entity class

2.7.39 @PersistenceContext

(1) Description

This annotation defines the reference of a container-managed EntityManager. This annotation is added to the class to
be looked up.

The applicable targets are class, method, and field.

(2) Element

The following table lists the elements of @PersistenceContext:

Element name Optional/Required Element description
name Optional This element specifies the lookup name of the EntityManager.
unitName Optional This element specifies the name of the persistence unit defined in the

persistence.xmnl file.

type Optional This element specifies the type of lifecycle of the persistence context.

properties Optional This element specifies the vendor--dependent properties specified in
@PersistenceProperty.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String

Description
This element specifies the lookup name of the EntityManager.
You are not required to specify this element when using a DI.

Default value
Null character string

(b) unitName element
Type
String

Description
This element specifies the name of the persistence unit defined in the persistence.xml file.

When the unitName element is specified, set the same name for the persistence unit used by
EntityManagerFactory that can be accessed by the INDI name space.

Default value
Null character string

(c) type element

Type
PersistenceContextType

95



2. Annotations and Dependency Injection Supported by Application Server

Description
This element specifies the type of lifecycle of the persistence context.
The following two types of values can be specified:

e TRANSACTION: Persistence context of the transaction scope
¢ EXTENDED: Extended persistence context

Default value
TRANSACTION

(d) properties element
Type
PersistenceProperty[]

Description
This element specifies the vendor-dependent properties of the JPA Provider specified in
@PersistenceProperty.
You can specify the value within the specifiable range of the arrays of @PersistenceProperty. For details,
see 2.7.41 @PersistenceProperty.
When the properties element is specified, the properties that cannot be recognized are ignored.

Default value
Blank array

2.7.40 @PersistenceContexts

(1) Description
This annotation is specified when multiple @PersistenceContexts are coded concurrently.

The applicable target is class.

(2) Element

The following table lists the elements of @PersistenceContexts:

Element name Optional/Required Element description

value Required This element specifies an array of @PersistenceContext.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
PersistenceContext[]
Description
This element specifies an array of @PersistenceContext.
You can specify the value within the specifiable range of the arrays of @PersistenceContext. For details,
see 2.7.39 @PersistenceContext.
Default value
None

96



2. Annotations and Dependency Injection Supported by Application Server

2.7.41 @PersistenceProperty

(1) Description
This annotation sets up properties in the container-managed EntityManager .
Currently, no properties can be used.

The applicable target is the properties element of @PersistenceContext.

(2) Element

The following table lists the elements of @PersistenceProperty:

Element name Optional/Required Element description
name Required This element specifies the name of the property.
value Required This element specifies the value of the property.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String

Description

This element specifies the name of the property.

Default value
None

(b) value element
Type
String
Description

This element specifies the value of the property.
You can specify the value depends on the specifications of the properties specified in the name element.

Default value
None

2.7.42 @PersistenceUnit

(1) Description

This annotation defines the reference of the EntityManagerFactory. This annotation is added to the class to be looked
up.
The applicable targets are class, method, and field.

(2) Element

The following table lists the elements of @PersistenceUnit:

Element name Optional/Required Element description

name Optional This element specifies the lookup name of the EntityManagerFactory.

97



2. Annotations and Dependency Injection Supported by Application Server

Element name Optional/Required Element description

unitName Optional This element specifies the name of the persistence unit defined in the
persistence.xmnl file.

The details of attributes supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String

Description

This element specifies the lookup name of the EntityManagerFactory. This element specifies the name of the
EntityManagerFactory to be registered in the JNDI name space.

The value that can be specified is a character string.

You are not required to specify this element when using a DI.

Default value
Null character string

(b) unitName element
Type
String
Description

This element specifies the name of the persistence unit defined in the persistence.xml file.

When the unitName element is specified, set the same name for the persistence unit used by
EntityManagerFactory that can be accessed by the INDI name space.

Default value
Null character string

2.7.43 @PersistenceUnits

(1) Description
This annotation is specified when multiple @PersistenceUnits are coded concurrently.

The applicable target is class.

(2) Element

The following table lists the elements of @PersistenceUnits:

Element name Optional/Required Element description

value Required This element specifies the arrays of @PersistenceUnit.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element

Type
PersistenceUnit([]

Description
This element specifies the arrays of @PersistenceUnit.

98



2. Annotations and Dependency Injection Supported by Application Server

You can specify the value within the specifiable range of the arrays of @PersistenceUnit. For details, see
2.7.42 @PersistenceUnit.

Default value
None

2.7.44 @PostLoad

(1) Description

This annotation indicates the callback method invoked after an entity is read from the cache or after the SELECT
statement is issued in the database. This annotation is applicable in the methods of the entity class, mapped superclass,
or entity listener class.

The applicable target is method.

(2) Element

@PostLoad does not have attributes.

2.7.45 @PostPersist

(1) Description

This annotation indicates the callback method invoked after the INSERT statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

(2) Element

@PostPersist does not have attributes.

2.7.46 @PostRemove

(1) Description

This annotation indicates the callback method invoked after the DELETE statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

(2) Element

@PostRemove does not have attributes.

2.7.47 @PostUpdate

(1) Description

This annotation indicates the callback method invoked after the UPDATE statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

99



2. Annotations and Dependency Injection Supported by Application Server

(2) Element

@PostUpdate does not have attributes.

2.7.48 @PrePersist

(1) Description

This annotation indicates the callback method invoked before the INSERT statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

(2) Element

@PrePersist does not have attributes.

2.7.49 @PreRemove

(1) Description

This annotation indicates the callback method invoked before the DELETE statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

(2) Element

@PreRemove does not have attributes.

2.7.50 @PreUpdate

(1) Description

This annotation indicates the callback method invoked before the UPDATE statement is issued in the database. This
annotation is applicable in the methods of the entity class, mapped superclass, or entity listener class.

The applicable target is method.

(2) Element

@PreUpdate does not have attributes.

2.7.51 @PrimaryKeyJoinColumn

(1) Description

This annotation specifies the column used as the external key when binding with another table. This annotation is used
in the following cases:

¢ When the names of the primary key of the superclass and the primary key of the subclass of an entity are different
in the JOINED strategy of the inheritance mapping strategy

* When the primary table and secondary table are to be bound in @SecondaryTable®

¢ When the primary key of the non-owner entity class is used as an external key in the OneToOne relationship

100



2. Annotations and Dependency Injection Supported by Application Server

Here, this annotation is used within @SecondaryTable.

The applicable targets are class, method, and field.

(2) Element

The following table lists the elements of @PrimaryKeyJoinColumn:

Element name Optional/Required Element description
name Optional This element specifies the column name for binding the target tables.
referencedColumn Optional This element specifies the column name of the primary key of binding--destination
Name table that is referenced by the column specified in the name element.
columnDefinition Optional This element is used to describe the constraints added to the column in the DDL,

when the CREATE statement is output.

Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String
Description
This element specifies the column name for binding the target tables.
The column name that can be specified depends on the database specifications.
Default value
* When the JOINED strategy is used
Column name of the primary key of primary table of the superclass
* When @SecondaryTable is used
Column name of the primary key of primary table
* When the OneToOne relationship is used
Column name of the primary key of target entity table

(b) referencedColumnName element

Type
String
Description

This element specifies the column name of the primary key of binding-destination table that is referenced by the
column specified in the name element. Specify the same value as the character string of the name element of
@Column. Arrange the upper case and lower case characters in the character string to be specified.

The column name that can be specified depends on the database specifications.

Even when the unique key constraints are used instead of specifying the primary key in the column in the
OneToOne relationship, the operation will continue, but will not be guaranteed.

Default value

* When the JOINED strategy is used
Column name of the primary key of primary table of the superclass

* When @SecondaryTable is used
Column name of the primary key of primary table

* When the OneToOne relationship is used
Column name of the primary key of target entity table

101



2. Annotations and Dependency Injection Supported by Application Server

2.7.52 @PrimaryKeydJoinColumns

(1) Description
This annotation is specified when multiple @PrimaryKeyJoinColumns are coded concurrently.

The applicable targets are class, method, and field.

(2) Element

The following table lists the elements of @PrimaryKeyJoinColumns:

Element name Optional/Required Element description

value Required This element specifies an array of @PrimaryKeyJoinColumn.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element
Type
PrimaryKeyJoinColumn[]

Description
This element specifies an array of @PrimaryKeyJoinColumn.

You can specify the value within the specifiable range of @PrimaryKeyJoinColumn. For details, see 2.7.57
@PrimaryKeyJoinColumn.

Default value

None

2.7.53 @QueryHint

(1) Description
This annotation specifies a database--specific query hint.
You can set up a pessimistic lock and the cache functionality of the entity.

The applicable target is the hints element of @NamedQuery or @NamedNativeQuery.

(2) Element

The following table lists the elements of @QueryHint:

Element name Optional/Required Element description
name Required This element specifies the name of the hint.
value Required This element specifies the value of the hint.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String
Description

This element specifies the name of the hint to be used. The following value can be specified:

102



2. Annotations and Dependency Injection Supported by Application Server

cosminexus.jpa.pessimistic-lock
This is the name of the hint that specifies whether or not to use a pessimistic lock.

Default value
None

(b) value element
Type
String

Description

This element specifies the value of the hint. The following values are specified based on the name of the hint
specified in the name element:

Specification value when cosminexus. jpa.pessimistic-lock is specified in the name element
* NoLock: Specified when the pessimistic lock is not used.

¢ Lock: Specified when the pessimistic lock is used. If the target table is already locked, unlocking is
awaited. The SQLs issued at this point are specified as follows, for each used database:
In Oracle: SELECT. ... FOR UPDATE

In HiRDB: SELECT....WITH EXCLUSIVE LOCK

* LockNoWait: Specified when the pessimistic lock is used. If the target table is already locked, an
exception occurs. The SQLs issued at this point are specified as follows, for each used database:

In Oracle: SELECT. ... FOR UPDATE NO WAIT
In HiRDB: SELECT....WITH EXCLUSIVE LOCK NO WAIT

Default value

When cosminexus.jpa.pessimistic-1lock is specified in the name element
NoLock

2.7.54 @SecondaryTable

(1) Description
This annotation specifies the secondary table in the entity class.
This annotation is specified when the entity class is mapped in multiple tables of the database.

When @SecondaryTable is not specified within the entity class, all persistence properties or persistence fields of
the entity class will be mapped to the tables specified in the primary table.

The applicable target is class.

(2) Element

The following table lists the elements of @SecondaryTable:

Element name Optional/Required Element description
name Required This element specifies the secondary table name.
catalog Optional This element specifies the catalog name of the secondary table.

Note that Cosminexus JPA provider does not support this attribute.

schema Optional This element specifies the schema name of the secondary table.

pkJoinColumns Optional This element specifies the external key column used to bind the secondary table to
the primary table.

uniqueConstraint Optional This element specifies the unique key constraints in the table.

S

103



2. Annotations and Dependency Injection Supported by Application Server

Element name Optional/Required Element description

uniqueConstraint Optional Note that Cosminexus JPA provider does not support this attribute.
s

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String

Description
This element specifies the secondary table name.
The table name that can be specified depends on the database specifications.

Default value
None

(b) schema element
Type
String

Description
This element specifies the schema name of the secondary table.
The schema name that can be specified depends on the database specifications.

Default value
Default schema name of the database used

(c) pkJoinColumns element
Type
PrimaryKeyJoinColumn[]

Description
This element specifies the external key column of the secondary table. This annotation is specified in the arrays of
@PrimaryKeyJoinColumn.

When this element is not specified, the external key column of the secondary table has the same name and type as
the primary key column of the primary table. Therefore, the secondary table references the primary key column of
the primary table.

Default value
You can specify the value within the specifiable range of the arrays of @PrimaryKeyJoinColumn. For details,
see 2.7.51 @PrimaryKeyJoinColumn.

2.7.55 @SecondaryTables

(1) Description
This annotation is specified when multiple @SecondaryTables are coded concurrently.

The applicable target is class.

(2) Element

The following table lists the elements of @SecondaryTables:

104



2. Annotations and Dependency Injection Supported by Application Server

Element name Optional/Required Element description

value Required This element specifies an array of @SecondaryTable.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element
Type
SecondaryTable[]

Description
This element specifies an array of @SecondaryTable.

You can specify the value within the specifiable range of the arrays of @SecondaryTable. For details, see
2.7.54 @SecondaryTable.

Default value
None

2.7.56 @SequenceGenerator

(1) Description
This annotation specifies the settings of the sequence generator that creates the primary key. The following settings
are required when using @SequenceGenerator:
* Specify GenerationType.SEQUENCE in the strategy element of @Generatedvalue.

¢ Set up the name specified in the generator element of @GeneratedvValue to the name element of
@SequenceGenerator.

The sequence generator is specified in the fields or properties of the entity class or primary key. The scope of the
sequence generator name is enabled in the persistence unit.

When creating a sequence object, specify a positive integer in the increment interval INCREMENT BY) between
sequential numbers, and in the initial value (START WITH) of the generated sequential number. When 1 is specified
in the initial value (START WITH), the primary key is generated from 1. The operation will not be guaranteed if a
negative value is specified.

The applicable targets are class, method, and field.

(2) Element

The following table lists the elements of @SequenceGenerator:

Element name Optional/Required Element description

name Required This element specifies the name specified in the generator element of the
@GeneratedValue annotation.

sequenceName Optional This element specifies the name of the database sequence object for acquiring an
existing primary key value, or an already defined primary key value.

initialvalue Optional This element specifies the initial value when the generation of the primary key
value by the sequence object is started.

Note that Cosminexus JPA provider does not support this attribute. Ignore when
the value is specified.

allocationSize Optional This element specifies the size of allocating the primary key value from the
sequence.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

105



2. Annotations and Dependency Injection Supported by Application Server

(a) name element

Type
String
Description
This element specifies the name specified in the generator element of the @GeneratedValue annotation.

The value that can be specified is a character string.

Default value
None

(b) sequenceName element

Type
String
Description

This element specifies the name of the database sequence object for acquiring an existing primary key value, or an
already defined primary key value.

The sequence object name that can be specified depends on the database specifications.
Default value

Specified value of the generator element of @Generatedvalue

(c) allocationSize element

Type
int
Description

This element specifies the allocation size of the primary key value from the sequence. The sequence object name
that can be specified depends on the database specifications.

The size that can be specified is a numeric value that is at least one more than the int type. Specify a value same
as the increment interval of the sequence object. The operation will not be guaranteed if you specify a different
value.

Note that in this element, you can specify the maximum value used during execution. If you specify a large value
for acquiring the management area of the sequence number, the java.lang.OutOfMemoryError exception
will occur during the execution.

Default value
50

2.7.57 @SqlResultSetMapping

(1) Description
This annotation specifies the result set mapping of an SQL query.
The applicable target is class.

(2) Element

The following table lists the elements of @SglResultSetMapping:

Element name Optional/Required Element description
name Required This element specifies the name of the result set mapping.
entities Optional This element specifies an array of @EntityResult.

106



2. Annotations and Dependency Injection Supported by Application Server

Element name Optional/Required Element description

columns Optional This element specifies an array of @ColumnResult.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element
Type
String
Description

This element specifies the name of the result set mapping.

The value that can be specified is a character string.

Default value
None

(b) entities element
Type
EntityResult[]

Description
This element specifies an array of @EntityResult.

You can specify the value within the specifiable range of the arrays of @EntityResult. For details, see 2.7.15
@EntityResult.

Default value
Blank array

(c) columns element
Type
ColumnResult[]

Description
This element specifies an array of @ColumnResult.

You can specify the value within the specifiable range of the arrays of @ColumnResult. For details, see 2.7.7
@ColumnResult.

Default value

Blank array

2.7.58 @SqlResultSetMappings

(1) Description
This annotation is specified when multiple @SglResultSetMappings are coded concurrently.

The applicable target is class.

(2) Element

The following table lists the elements of @SglResultSetMappings:

Element name Optional/Required Element description

value Required This element specifies an array of @SgqlResultSetMapping.

107



2. Annotations and Dependency Injection Supported by Application Server

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) value element
Type
SqlResultSetMapping|]
Description
This element specifies an array of @SglResultSetMapping.

You can specify the value within the specifiable range of the arrays of @SglResultSetMapping. For details,
see 2.7.57 @SqlResultSetMapping.

Default value
None

2.7.59 @Table

(1) Description
This annotation specifies the primary table in the entity class.

Even when @Table is not specified explicitly in the entity class, the entity class is handled as if @ Table were
specified. In such a case, the default value will be applied in each element of @Table.

If more than one table is specified for mapping the entities, use either @SecondaryTable or
@SecondaryTables.

The applicable target is class.

(2) Element

The following table lists the elements of @Table:

Element name Optional/Required Element description
name Optional This element specifies the table name.
catalog Optional This element specifies the catalog name of the table.

Note that Cosminexus JPA provider does not support this attribute.

schema Optional This element specifies the schema name of the table.

uniqueConstraint Optional This element specifies the unique key constraints in the table.

s Note that Cosminexus JPA provider does not support this attribute.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type

String
Description

This element specifies the table name.

The table name that can be specified depends on the database specifications.
Default value

Entity name

108



(b) schema element

Type
String

Description

2. Annotations and Dependency Injection Supported by Application Server

This element specifies the schema name of the table.

The schema name that can be specified depends on the database specifications.

Default value

Default schema name of the database used

2.7.60 @TableGenerator

(1) Description

This annotation specifies the settings of the generator that creates the primary key.

The following settings are required when using @TableGenerator:

e Specify GenerationType.TABLE in the strategy element of @Generatedvalue.
pecity yp gy

¢ Set up the name specified in the generator element of @GeneratedvValue to the name element of
@TableGenerator.

The table generator is specified in the fields or properties of the entity class or primary key. The scope of the generator

name is enabled in the persistence unit.

Use the rows of the generator table when generating the primary key value in an entity.

When creating a table for managing the sequence, specify a positive integer in the initial value. If 0 is specified in the
initial value, the primary key will be generated from 1.

The applicable targets are class, method, and field.

(2) Element

The following table lists the elements of @TableGenerator:

Element name

Optional/Required

Element description

name Required This element specifies the generator name for the primary key value.

table Optional This element specifies the name of the table that maintains the generated primary
key values.

catalog Optional This element specifies the catalog name of the table that maintains the generated
primary key values.
Note that Cosminexus JPA provider does not support this attribute.

schema Optional This element specifies the schema name of the table that maintains the generated
primary key values.

pkColumnName Optional This element specifies the primary key column name of the table that maintains the
generated primary key values.

valueColumnName Optional This element specifies the column name that maintains the final generated value.

pkColumnValue Optional This element specifies the primary key value of the table that maintains the
generated primary key values.

initialvalue Optional This element specifies the value used for initializing the column that maintains the

recent generated values.

Note that Cosminexus JPA provider does not support this attribute. Ignore when
the value is specified.

109



2. Annotations and Dependency Injection Supported by Application Server

Element name Optional/Required Element description
allocationSize Optional This element specifies the size of allocating the primary key value from the
generator.
uniqueConstraint Optional This element specifies the unique key constraints in the table that maintains the
s generated primary key values.

Note that Cosminexus JPA provider does not support this attribute. Ignore when
the value is specified.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

(a) name element

Type
String

Description
This element specifies the generator name for the primary key value.
The value that can be specified is a character string.

Default value
None

(b) table element
Type
String
Description
This element specifies the name of the table that maintains the generated primary key values.
The table name that can be specified depends on the database specifications.

Default value
"SEQUENCE"

(c) schema element
Type
String
Description

This element specifies the schema name of the table that maintains the generated primary key values.
The schema name that can be specified depends on the database specifications.

Default value
Default schema name of the database used

(d) pkColumnName element
Type
String
Description

This element specifies the primary key column name of the table that maintains the generated primary key values.

The column name that can be specified depends on the database specifications.

Default value
"SEQ NAME"

110



2. Annotations and Dependency Injection Supported by Application Server

(e) valueColumnName element
Type
String

Description
This element specifies the column name that maintains the final generated value.
The column name that can be specified depends on the database specifications.

Default value
"SEQ COUNT"

(f) pkColumnValue element
Type
String

Description
This element specifies the primary key value of the table that maintains the generated primary key values.
The value that can be specified depends on the type of column of the generated primary key.

Default value
Character string specified in the name element

(g) allocationSize element
Type
int

Description
This element specifies the allocation size of the primary key value from the generator.
The value that can be specified is a numeric value that is at least one more than the int type.

Note that you can specify the maximum value used during the execution in this element. If you specify a large
value for acquiring the management area of the sequence number, the java.lang.OutOfMemoryError
exception will occur during the execution.

Default value
50

2.7.61 @Temporal

(1) Description

This annotation is specified in the persistence property or persistence field having the type that expresses the time
(Java.util.Date and java.util.Calendar). This annotation can be used along with @Basic.

However, @Version and @Temporal cannot be specified concurrently. Specify either of these annotations.

The applicable targets are method and field.

(2) Element

The following table lists the elements of @Temporal:

Element name Optional/Required Element description

value Required This element is specified in the TemporalType enumeration type corresponding
to the database type.

The details of attributes that are supported with Cosminexus JPA provider are as follows:

111



2. Annotations and Dependency Injection Supported by Application Server

(a) value element
Type
Temporal Type

Description
This element is specified in the TemporalType enumeration type corresponding to the database type.

The following three types of values can be specified:
* TemporalType.DATE: Same as java.sqgl.Data.
* TemporalType.TIME: Same as java.sqgl.Time.
* TemporalType.TIMESTAMP: Same as java.sgl.Timestamp.

Default value
None

2.7.62 @Transient

(1) Description
This annotation specifies the fields or properties of the following non--persisting classes:

* Entity class
¢ Mapped superclass
¢ Embedded class

The applicable targets are method and field.

The value of a field, in which @Transient is defined, is not persisted. However, since this value is stored in the
persistence context, you can acquire the setup value. Howeachou cannot acquire the value from another
EntityManager.

(2) Element

@Transient does not have attributes.

2.7.63 @Version

(1) Description

This annotation specifies the version field or version property used to make use of the optimistic lock
functionality.

The following types are supported by the version field or version property:
e int

* java.lang.Integer

* short

* java.lang Short

* long

* java.lang Long

* java.sgl.Timestamp
Make note of the following points when using this annotation:

¢ You cannot specify @Version and @Temporal concurrently. Specify either of these annotations.

112



2. Annotations and Dependency Injection Supported by Application Server

* Do not specify the version property in a table other than the primary table.

* In some applications, the field or property specified in @Version must not be updated.

¢ For bulk update, when multiple records are updated at once using SQL, the version field or version property
is not updated automatically. Therefore, when you use the optimistic lock for performing bulk update, you must

reference and update manually.

¢ You can set up only a single version field or version property for an entity class. If you set up multiple
version fields or version properties, only a single will be enabled. The sequence for enabling the settings is

not fixed.

The applicable targets are method and field.

(2) Element

@Version does not have attributes.

2.7.64 Correspondence between the annotations and O/R mapping

The following table describes the correspondence between the annotations and O/R mapping files:

Table 2-30: Correspondence between the annotations and O/R mapping files

Annotation

O/R mapping elements

@AssociationOverride

<association-override>

@AssociationOverrides

@ElementOverride <element-override>
@ElementOverrides -

@Basic <basic>

@Column <column>
@ColumnResult <column-result>

@DiscriminatorColumn

<discriminator-column>

@DiscriminatorValue

<discriminator-value>

@Embeddable <embeddable>
@Embedded <embedded>
@EmbeddedId <embedded-id>
@Entity <entity>
@EntityListeners <entity-listeners>
@EntityResult <entity-result>
@Enumerated <enumerated>

@ExcludeDefaultlListeners

<exclude-default-listeners>

@ExcludeSuperclassListeners

<exclude-superclass-listeners>

@FieldResult <field-result>
@GeneratedvValue <generated-value>
@Id <id>

@IdClass <id-class>

113



2. Annotations and Dependency Injection Supported by Application Server

Annotation O/R mapping elements
@Inheritance <inheritance>
@JoinColumn <join-column>
@JoinColumns --
@JoinTable <join-table>
@Lob <lob>
@ManyToMany <many-to-many>
@ManyToOne <many-to-one>
@MapKey <map-key>
@MappedSuperclass <mapped-superclass>

@NamedNativeQueries -

@NamedNativeQuery <named-native-query>
@NamedQueries -

@NamedQuery <named-query>
@OneToMany <one-to-many>
@OneToOne <one-to-one>
@OrderBy <order-by>
@PersistenceContext A
@PersistenceContexts _#
@PersistenceProperty _#

@PostLoad <post-load>
@PostPersist <post-persist>
@PostRemove <post-remove>
@PostUpdate <post-update>
@PrePersist <pre-persist>
@PreRemove <pre-remove>
@PreUpdate <pre-update>
@PrimaryKeyJoinColumn <primary-key-join-column>

@PrimaryKeyJoinColumns -

@QueryHint <hint>
@SecondaryTable <secondary-table>
@SecondaryTables —
@SequenceGenerator <sequence-generator>
@SglResultSetMapping <sql-result-set-mapping>

@SglResultSetMappings -

@Table <table>

114



2. Annotations and Dependency Injection Supported by Application Server

Annotation O/R mapping elements

@TableGenerator <table-generator>
@Temporal <temporal>
@Transient <transient>
@UnigqueConstraint <unique-constraint>
@Version <version>

Legend:

--: Not applicable.
#

Not an annotation for O/R mapping.

115



2. Annotations and Dependency Injection Supported by Application Server

2.8 javax.servlet.annotation package

This section describes the list of annotations included in the javax.servlet.annotation package.

Annotation list

Annotation name

Functionality

@HandlesTypes This annotation specifies the class type that deals with the implementation class of the
ServletContainerInitializer interface.
@HttpConstraint This annotation specifies the default security constraint.

@HttpMethodConstraint

This annotation specifies the security constraints of the HTTP method.

@MultipartConfig This annotation specifies the settings for the Servlet that deals with multipart/form-data
requests.

@ServletSecurity This annotation specifies the Servlet security constraints.

@WebInitParam This annotation specifies the initial parameters of Servlet or filter.

@WebFilter This annotation specifies the filer.

@WebListener This annotation specifies the listener.

@WebServlet This annotation specifies the Servlet.

2.8.1 @HandlesTypes

(1) Description

This annotation specifies the class type that deals with the Implementation class of the
ServletContainerInitializer interface.

(2) Attributes

The following table lists the @HandlesTypes attributes:

Attribute name

Functionality

value

This attribute specifies the type of class or annotation that deals with the Implementation class
of the ServletContainerInitializer interface. The class list that is attached with the

class that extends or implements the specified class or annotation, is passed to the
Implementation class of the ServletContainerInitializer interface.

Details of each attribute are as follows:

(a) value attribute

Type
Class|[]

Description

This attribute specifies the type of class or annotation that deals with the implementation class of the

ServletContainerInitializer interface. The class list that is attached with the class that extends or

implements the specified class or annotation, is passed to the Implementation class of the
ServletContainerInitializer interface.

Default value

{1

116



2. Annotations and Dependency Injection Supported by Application Server

2.8.2 @HttpConstraint

(1) Description

This annotation specifies the default security constraints.

(2) Attribute

The following table lists the @Ht tpConstraint attributes:

Attribute name Functionality
value This attribute specifies the behavior when role is not specified.
rolesAllowed This attribute specifies the list of user names used for authentication.
transportGuarantee This attribute specifies the method to communicate between the client and server.

Details of each attribute are as follows:

(a) value attribute
Type
ServletSecurity.EmptyRoleSemantic

Description
This attribute specifies the behavior when the role is not specified.

Default value
javax.servlet.annotation.ServletSecurity.EmptyRoleSemantic.
PERMIT

(b) rolesAllowed attribute
Type
Stringl[]

Description
This attribute specifies the list of user names used for authentication.

Default value
{}

(c) transportGuarantee attribute

Type
ServletSecurity.TransportGuarantee
Description
This attribute specifies the method to communicate between the client and server.
Default value
javax.servlet.annotation.ServletSecurity.
TransportGuarantee.
NONE

117



2. Annotations and Dependency Injection Supported by Application Server

2.8.3 @HttpMethodConstraint

(1) Description

This annotation specifies the security constraints of the HTTP method.

(2) Attribute

(a) The following table lists the @HttpMethodConstraint attributes.

Attribute name Functionality
value This attribute specifies the HTTP method that applies security constraints.
emptyRoleSemantic This attribute specifies the behavior when the role is not specified.
rolesAllowed This attribute specifies the list of user names used for authentication.
transportGuarantee This attribute specifies the method to communicate between the client and server.

Details of each attribute are as follows:

(b) value attribute
Type
String
Description
This attribute specifies the HTTP method that applies security constraints.

Default value
None

(c) emptyRoleSemantic attribute
Type
ServletSecurity.EmptyRoleSemantic
Description
This attribute specifies the behavior when the role is not specified.

Default value
javax.servlet.annotation.ServletSecurity.
EmptyRoleSemantic.

PERMIT

(d) rolesAllowed attribute
Type
Stringl[]

Description

This attribute specifies the list of user names used for authentication.

Default value

{1

(e) transportGuarantee attribute

Type
ServletSecurity.TransportGuarantee

118



2. Annotations and Dependency Injection Supported by Application Server

Description
This attribute specifies the method to communicate between the client and server.

Default value
javax.servlet.annotation.ServletSecurity.

TransportGuarantee.
NONE

2.8.4 @MultipartConfig

(1) Description
This annotation performs settings for the Servlet that deals with multipart/form-data requests.

The following table lists the @MultipartConfig attributes:

Attribute name Functionality
fileSizeThreshold This attribute sets the threshold size of the uploaded file written on the disk.
location This attribute specifies the directory that stores the uploaded file.
maxFileSize This attribute specifies the maximum size of the uploaded file.
maxRequestSize This attribute specifies the maximum size of multipart/form-data requests.

Details of each attributes are as follows:

(2) Attributes

(a) fileSizeThreshold attributes
Type
int
Description
This attribute specifies the threshold size of the uploaded file written on disk.

Default value
0

(b) location attribute
Type
String

Description
This attribute specifies the directory that stores the uploaded file.

Default value

nn

(c) maxFileSize attribute
Type
long

Description
This attribute specifies the maximum size of the uploaded file.

Default value
-1L (limitless)

119



2. Annotations and Dependency Injection Supported by Application Server

(d) maxRequestSize attribute

Type
long

Description

This attribute specifies the maximum size of multipart/form-data requests.

Default value
-1L (limitless)

2.8.5 @ServletSecurity

(1) Description

This annotation specifies the Servlet security constraints.

(2) Attribute

The following table lists the @ServletSecurity attributes:

Attribute name Functionality
httpMethodConstraints This attribute specifies the security constraints for each Servlet HTTP method.
value This attribute specifies the default security constraints of the Servlet.

Details of each attribute are as follows:

(a) httpMethodConstraints attributes
Type
HttpMethodConstraint[]

Description
This attribute specifies the security constraints for each Servlet HTTP method.

Default value

{}

(b) value attribute

Type
HttpConstraint

Description
This attribute specifies the default security constraints of Servlet.

Default value
@javax.servlet.annotation.HttpConstraint

2.8.6 @WeblnitParam

(1) Description

This annotation specifies the initial parameters of Servlet or filter.

120



2. Annotations and Dependency Injection Supported by Application Server

(2) Attribute

The following table lists the @WebInitParam attributes:

Attribute name Functionality
description This attribute specifies the parameter description.
name This attribute specifies the parameter name.
value This attribute specifies the parameter value.

Details of each attributes are as follows:

(a) description attributes
Type
String
Description
This attribute specifies the parameter description.

Default value

(b) name attribute
Type
String

Description
This attribute specifies the parameter name.

Default value

nn

(c) value attribute

Type
String

Description
This attribute specifies the parameter value.

Default value
None

2.8.7 @WebFilter

(1) Description

This annotation specifies the filter.

(2) Attributes

The following table lists the @WebFilter attributes:

Attribute Name Functionality
description This attribute specifies the filter description.
dispatcherTypes This attribute specifies the filter adjustment conditions.

121



2. Annotations and Dependency Injection Supported by Application Server

Attribute Name Functionality
displayName This attribute specifies the display name
filterName This attribute specifies the filter name.
initParams This attribute specifies the initial parameters for filter.
largeIcon This attribute specifies the large icons used on the GUI tool.
servletNames This attribute specifies the Servlet name of Servlet that performs mapping.
smallIcon This attribute specifies the small icons used on the GUI tool.
urlPatterns This attribute specifies the URL patterns to be mapped.
value This attribute specifies the URL patterns to be mapped. Ignored if specified concurrently with
urlPatterns.

Details of each attribute are as follows:

(a) description attribute
Type
String

Description
This attribute specifies the filter description.

Default Value

(b) dispatcherTypes attribute
Type
DispatcherType[]

Description
This attribute specifies the filter adjustment conditions.

Default value
javax.servlet.DispatcherType.REQUEST

(c) displayName attribute
Type
String

Description
This attribute specifies the display name.

Default value

nn

(d) filterName attribute
Type
String

Description
This attribute specifies the filter name.

Default value

122



2. Annotations and Dependency Injection Supported by Application Server

(e) initParams attribute
Type
WebInitParam(]

Description

This attribute specifies the initial parameters for filter.

Default value
{}

(f) largelcon attribute
Type
String
Description
This attribute specifies the large icons used on the GUI tool.

Default value

nn

(g) servletNames attribute
Type
Stringl[]

Description
This attribute specifies the Servlet name of Servlet that performs mapping.

Default value

{}

(h) smalllcon attribute
Type
String
Description
This attribute specifies the small icons used on the GUI tool.

Default value

(i) urlPatterns attribute
Type
Stringl[]
Description
This attribute specifies URL patterns to be mapped.

Default Value
{}

() value attribute
Type
Stringl[]
Description
This attribute specifies the URL patterns to be mapped. Ignored if specified concurrently with urlPatterns.

Default Value
{}

123



2. Annotations and Dependency Injection Supported by Application Server

2.8.8 @WebListener

(1) Description

This annotation specifies the listener.

(2) Attributes

The following table lists the @WebListener attributes:

Attribute Name Functionality

value This attribute specifies the description of listener.

(a) value attributes

Type
String

Description
This attribute specifies the description of listener.

Default Value

2.8.9 @WebServlet

(1) Description

This annotation specifies Servlet.

(2) Attribute

The following table lists the @WebServlet attributes:

Attribute Name Functionality
description This attribute specifies the Servlet description.
displayName This attribute specifies the display name.
initParams This attribute specifies the initial parameters for Servlet.
largeIcon This attribute specifies the large icons used on GUI tool.
loadOnStartup This attribute specifies the start order of Servlet.
name This attribute specifies the Servlet name.
smallIcon This attribute specifies the small icons used on the GUI tool.
urlPatterns This attribute specifies the URL patterns to be mapped.
value This attribute specifies the URL patterns to be mapped. Ignored if specified concurrently with

urlPatterns.

Details of each attribute are as follows:

124



2. Annotations and Dependency Injection Supported by Application Server

(a) description attributes
Type
String
Description
This attribute specifies the Servlet description.

Default value

(b) displayName attributes
Type
String
Description
This attribute specifies the display name.

Default value

nn

(c) initParams attributes
Type
WebInitParam[]

Description
This attribute specifies the initial parameters for Servlet.

Default value

{}

(d) largelcon attributes
Type
String

Description
This attribute specifies the large icons used on the GUI tool.

Default value

(e) loadOnStartup attributes
Type
int

Description
This attribute specifies the start order of Servlet.

Default value
-1

(f) name attributes
Type
String

Description
This attribute specifies the Servlet name.

Default value

125



2. Annotations and Dependency Injection Supported by Application Server

(g) smallicon attributes
Type
String

Description

This attribute specifies the small icons used on the GUI tool.

Default value

(h) urlPatterns attributes
Type
Stringl[]

Description
This attribute specifies the URL patterns to be mapped.

Default value

{}

(i) value attributes
Type
Stringl[]

Description
This attribute specifies the URL patterns to be mapped. Ignored if specified concurrently with urlPatterns.

Default value

{}

126



2. Annotations and Dependency Injection Supported by Application Server

2.9 Dependency Injection supported on Cosminexus
Application Server

The Dependency Injection (DI) is a functionality for the EJB container to automatically set the reference to EJB and
resource by specifying annotations (@EJB, @Resource and @Inject) in a field or the set method of the target
class.

Among the classes running on the EJB container, following are the classes that become target classes:

* Enterprise Bean

* Interceptor
Among the classes running on the Web container, following are the classes that become target classes:

¢ Servlet
e Filter
e Listener

e Tag handler

When executing DI for referencing the Enterprise Bean home interface or business interface, specify @EJB.

When specifying @Resource, you can execute DI for the types of resources described in the following table.

Table 2-31: Resource types for which DI can be executed with @Resource

Resource type Permission of DI#!
java.lang.String™? N
java.lang.Character®? N
java.lang.Integer#2 N
java.lang.Boolean'? N
java.lang.Double? N
java.lang. Byte#2 N
java.lang.Short#? N
java.lang.Long"? N
java.lang.Float#? N
javax.xml.rpc.Service N
javax.xml.ws.Service N
javax.jws.WebService N
javax.sqgl. DataSource® Y
javax.jms.ConnectionFactory Y
javax.jms. QueueConnectionFactory#4 Y
javax.jms.TopicConnectionFactory Y
javax.mail.Session Y
java.net.URL N
javax.resource.cci.ConnectionFactory™® Y

127



2. Annotations and Dependency Injection Supported by Application Server

Resource type Permission of DI*!
org.omg.CORBA 2 3.0RB y#o
javax.jms .Queue’ #7 Y
javax.jms.Topic#7 Y
javax.resource.cci.InteractionSpec N
javax.transaction.UserTransaction y#8
javax.ejb.EJBContext Y#9
javax.ejb.SessionContext Y#9
javax.ejb.TimerService y#9, #10
JavaBeans resource Y
Interface unique to the object to be managed Y

Legend:
Y: Can be used
N: Cannot be used
#1

The correlation to the object to be managed is established with the mappedName element irrespective of the Java Type. Use ! #
to demarcate the display name of the resource adapter and the name of the object to be managed.

#2
You cannot specify in <env-entry--value>, therefore, you cannot specify a value acquired in DI, lookup.
#3
Applicable to DB Connector.
#4
Applicable to TP1/Message Queue-Access, Cosminexus RM.
#5
Applicable to uCosminexus TP1 Connector.
#6
Runs considering true is specified for ORB shareable element. Note that the ORB object to be injected is a shared instance
that is used even with other components.
#7

When using a resource adapter conforming to Connector 1.5, the object to be managed (javax.jms.Destination interface
or sub interface) that is defined in JMS is specified in the <connector>-<resourceadapter>-<adminobject>-
<adminobject--interface> tag of the standard DD (ra.xml) of resource adapter.

#8
You cannot use in Enterprise Beans or interceptors that run on CMT.

#9
You cannot use in a class that runs on the Web container.

#10
You cannot use in a Stateful Session Bean and an interceptor applied to Stateful Session Bean.

128



APIs Used in the Web Container

This chapter describes the APIs used in the Web Container. This section describes the
exception classes unique to the Web container of Application Server.

129



3. APIs Used in the Web Container

3.1 Exception classes

Among the APIs of the Web container, this section describes the exception classes provided by Application Server.

The following table describes the exception classes of the Web container:

Table 3-1: Exception classes of the Web container

Exception name

Contents

com.hitachi.software.web.
dbsfo.DatabaseAccessExcep
tion

This exception class reports that an attempt to access the database using the database session
failover functionality has failed.

When this exception is output, make sure that the database is operating properly, and there is no
problem in the communication path between the database and the J2EE server. After that take
the following countermeasures:

‘When an error occurs in the database
Take action against the cause according to the database recovery procedure.

When there is a problem in the communication path between the database and the J2EE server
Resolve the problem in the communication path. If a problem occurs in the communication
path, the mutual exclusion of the database might not be released. Before restarting a
business, check the disabled connections, and release the unreleased mutual exclusion.

When the database session failover functionality is disabled

Do not operate the Ht tpSession object in a request process where the database session
failover functionality is disabled due to extension or URI.

This exception is thrown if you operate an HTTP session with a URL for which the database
session failover functionality is disabled when true is specified in the
webserver.dbsfo.exception type backcompat property of the J2EE server. If this
exception occurs when there is no problem in the database or the communication path, check
whether the HTTP session is operated by the URL for which the database session failover
functionality is disabled.

The DatabaseAccessException class inherits the
java.lang.IllegalStateException class.

HttpSessionLimitExceededE
xception class

This exception class reports that the HttpSession object has exceeded the upper limit.

This exception is applicable to the J2EE server mode in which you can specify the upper limit
for the number of HttpSession objects. This exception class is not applicable in the servlet
engine mode in which you cannot specify the upper limit for the number of HttpSession objects.
This exception class is also not applicable to the exception that occurs when the number of
global sessions in an SFO server exceeds the upper limit.

If you are using the
com.hitachi.software.web.session.HttpSessionLimitExceededExcepti
on class, add the CosminexusApplication Server-installation-directory\CC\1ib
\ejbserver. jar to the class path, and compile the Java program.

The HttpSessionLimitExceededException class inherits the
java.lang.IllegalStateException class.

com.hitachi.software.web.
dbsfo.SessionOperationExc
eption

This is an exception that reports the status in which you cannot operate the HttpSession.

This exception is thrown in the following cases:

* When the database session failover disable functionality is disabled depending on the
extension or URL, you cannot operate the Ht tpSession object in the request processing
in which the database session failover disable functionality is disabled. This exception is
thrown if you invoke
javax.servlet.http.HttpServletRequest#getSession () or
getSession (boolean create) to acquire the HttpSession object.

¢ You cannot disable the HTTP session in the reference specific request of the HTTP session.
If you invoke javax.servlet.http.HttpSession#invalidate () inthe
reference request, this exception is thrown.

¢ Ifyou perform settings to return error 503 by using the pending queue of the number of the
concurrent threads for the Web application unit, you cannot create or disable the HTTP
session on an error page specified in DD (web . xm1). If you create an HTTP session on an

130



3. APIs Used in the Web Container

Exception name Contents
com.hitachi.software.web. error page specified in DD (web . xm1) or invoke
dbsfo.SessionOperationExc javax.servlet.http.HttpSession#invalidate (), this exception is thrown.
eption

If this exception is thrown, check the following points:

* If you are using disabling of the database session failover disable functionality, check
whether there is a problem in the settings of the extension or URL that is disabled. If there is
no problem in the settings, check the Web applications, and check whether the HTTP session
operation is performed by the URL that is disabled for the database session failover disable
functionality.

» Ifyou are using the reference specific request definition functionality of the HTTP session,
check whether there is any problem in the URL of the reference request of the HTTP
session. If there is no problem in the settings, check the Web application and check whether
the HTTP session is disabled in the reference specific request.

¢ Ifyou have done a setting to return error 503 by using a pending queue, check whether the
HTTP session is created or disabled in error page specified in DD (web . xm1).

SessionOperationException class is inherited from the
java.lang.IllegalStateException class.

com.hitachi.software.web. This exception reports that the operations of HttpSession cannot be performed.
eadss ,fo -SessionOperationk This exception is thrown in the following cases:
xception
¢ When you use the EADs session failover disable functionality, you cannot operate the
HttpSession object in the request processing in which the session failover disable
functionality is disabled. The system throws this exception, when you invoke
javax.servlet.http.HttpServletRequest#getSession () or

getSession (boolean create) for getting the HttpSession object.

¢ You cannot disable the HTTP session in the reference specific requests. The system throws
this exception if you invoke javax.servlet.http.HttpSessionf#invalidate ()
in the reference specific request.

Confirm the following, when this exception is thrown:

¢ When you use the EADs session failover disable functionality, confirm that there is no
problem with the settings of the URL pattern to be disabled. When there is no problem with
the settings, check the Web application and check whether the HTTP session operates with
the URL that is the target for the EADs session failover disable functionality.

* When you use the reference specific request definition functionality, confirm that there is no
problem with the settings of the URL pattern of the reference specific request. When there is
no problem with the settings, check the Web application and confirm that the HTTP session
is not disabled in the reference specific request.

The SessionOperationException class inherits the
java.lang.IllegalStateException class.

131






APls Used by EJB Client
Applications

This chapter describes the APIs and exception classes used by EJB client
applications.

133



4. APIs Used by EJB Client Applications

4.1 List of APIs used by EJB client applications

The APIs used by EJB client applications include the APIs that set security functions and communication timeouts.

The following table lists the APIs.

Table 4-1: List of APIs used by EJB client applications

Class name

Function

EJBClientInitializer Class

Initializes J2EE services for an EJB client.

LoginInfoManager class

Sets the security functionality. For details on this API, see /7.1LoginInfoManager
class in the uCosminexus Application Server Security Management Guide.

RequestTimeoutConfigFactory Class

Acquires the RequestTimeoutConfig object required for setting the RMI-IIOP
timeout.

RequestTimeoutConfig Class

Sets the RMI-IIOP timeout.

UserTransactionFactory class

Acquires the UserTransaction object required for using a transaction in an
EJB client.

134



4. APIs Used by EJB Client Applications

4.2 EJBClientlnitializer Class

Description
Initializes J2EE services for an EJB client.
The package name of the EJBClientInitializer classis

com.hitachi.software.ejb.ejbclient.EJBClientInitializer.

List of methods

Method name Function

initialize method Initializes J2EE services for an EJB client.

Initialize method

Description

This method initializes J2EE services for an EJB client application. When an EJB client is stopped during a
transaction, this method restarts the EJB client and starts the recovery of a global transaction.

Invoke the initialize method from the user code of an EJB client, immediately after starting the EJB client
process.

Note that if the Javax.naming.InitialContext is generated or if the getUserTransaction method of
the UserTransactionFactory class is invoked before invoking the initialize method, the initialization
process is performed at that time.

Format

public static void initialize ()
throws InitializeFailedException;

Parameters

None

Exceptions
com.hitachi.software.ejb.ejbclient.InitializeFailedException:

An attempt to initialize services failed.

Return value

None
Caution

If an exception occurs while initializing the services, the EJB client runtime system properties may not have been set
properly. Take an action based on the exception message.

135



4. APIs Used by EJB Client Applications

4.3 RequestTimeoutConfigFactory Class

Description
This is a factory for acquiring the RequestTimeoutConfig object that sets the RMI-IIOP communication
timeout. Use the getRequestTimeoutConfig method to acquire the RequestTimeoutConfig object,
and then use the method of the RequestTimeoutConfig object to set the timeout.

The package name of the RequestTimeoutConfigFactory classis
com.hitachi.software.ejb.ejbclient.

List of methods

Method name Function

getRequestTimeoutConfig method Acquires the RequestTimeoutConfig object.

getRequestTimeoutConfig method

Description

Acquires the RequestTimeoutConfig object.

Format

public static RequestTimeoutConfig getRequestTimeoutConfig() ;

Parameters

None

Exceptions

None

Return value

RequestTimeoutConfig:

This method returns the RequestTimeoutConfig object.

136



4. APIs Used by EJB Client Applications

4.4 RequestTimeoutConfig Class

Description
This object sets an RMI-IIOP communication timeout.

The package name of the RequestTimeoutConfig class is
com.hitachi.software.ejb.ejbclient.

List of methods
Method name Function

setRequestTimeout method (format 1) Sets an RMI-IIOP communication timeout.
Sets a timeout for the object.

setRequestTimeout method (format 2) Sets an RMI-IIOP communication timeout.
Sets a timeout for the thread.

unsetRequestTimeout method Resets the RMI-IIOP communication timeout set by the
setRequestTimeout method (format 2) to its default settings.

setRequestTimeout method (format 1)

Description

Sets an RMI-IIOP communication timeout. This method generates a copy of the obj parameter and returns an object
in which the sec parameter is set as the timeout value. The timeout set by this method is valid for the returned object.

Format

public java.rmi.Remote setRequestTimeout (java.rmi.Remote obj,
int sec)
throws IllegalArgumentException,
IllegalStateException;

Parameters
obij:
Specify the object (EJBHome or EJBObject) for which the timeout is set.

sec:

Specify an integer in the range of 0 to 86400 for the timeout period (unit: seconds). The timeout is not set when 0
is specified.

Exceptions

java.lang.IllegalArgumentException:

This exception is thrown when an invalid object is specified as the target for setting timeout or an invalid value is
specified for timeout period.

java.lang.IllegalStateException:

An attempt to set the timeout failed.

Return value

This method returns the object that is set with a timeout value.

137



4. APIs Used by EJB Client Applications

Caution

When you set a timeout with this method, it takes more time for processing as compared to the time taken to set the
timeout by using the setRequestTimeout method (format 2).

setRequestTimeout method (format 2)

Description

Sets an RMI-IIOP communication timeout. This method sets the parameter sec as the timeout value for running
threads. The timeout set by this method is valid for threads that are currently being executed. At the end of the
processing, make sure to cancel the timeout settings using the unset method. When this method is invoked more
than once in the same thread, the value set for timeout gets overwritten.

Format

public void setRequestTimeout (int sec)
throws IllegalArgumentException,
IllegalStateException;

Parameters

sec:
Specify an integer in the range of 0 to 86400 for the timeout period (unit: seconds). The timeout is not set when 0
is specified.

Exceptions

java.lang.IllegalArgumentException:

This exception is thrown when an invalid object is specified as the target for setting timeout or an invalid value is
specified for timeout period.

java.lang.IllegalStateException:

An attempt to set the timeout failed.

Return value

None

Caution

When you set the timeout by this method, make sure to invoke the unsetRequestTimeout method and cancel the
timeout settings at the end of the processing. If you do not cancel the timeout settings and if the corresponding thread
is used while invoking from other clients, an unexpected communication timeout may occur for these clients.

unsetRequestTimeout method

138

Description

Cancel the RMI-IIOP communication timeout. Cancel the timeout set by the setRequestTimeout (format 2),
corresponding to the thread that is being executed. Note that when the timeout is set in the thread with the
setRequestTimeout (format 2) method; make sure to cancel the timeout settings using this method at the end of
processing. When this method is invoked without invoking the setRequestTimeout (format 2), or even when this
method is invoked more than once in the same thread, an exception does not occur.



Format

public void unsetRequestTimeout ()
throws IllegalStateException;

Parameters

None

Exceptions
java.lang.IllegalStateException:

An attempt to cancel timeout failed.

Return value

None

4. APIs Used by EJB Client Applications

139



4. APIs Used by EJB Client Applications

4.5 UserTransactionFactory class

Description
This factory acquires the UserTransaction object to use a transaction in an EJB client.
The package name of the UserTransactionFactory class is
com.hitachi.software.ejb.ejbclient.UserTransactionFactory.

List of methods

Method name Function

getUserTransaction method Acquires the UserTransaction object.

getUserTransaction method

Description

Acquires the UserTransaction object.

Format

public static UserTransaction getUserTransaction();

Exceptions

java.lang.IllegalStateException:

The API is published from a client other than the EJB client or an attempt to acquire the UserTransaction
object failed.

Return value

javax.transaction.UserTransaction object

140



4.6 Exception Class

4. APIs Used by EJB Client Applications

This subsection describes the classes provided by Application Server from among the exception classes used by the

APIs of EJB client applications.

The following table describes the exception classes used by the APIs of EJB client applications:

Table 4-2: Exception classes used by the APIs of EJB client applications

Exception name

Contents

com.hitachi.software.ejb.security.base.authe
ntication.NotFoundServerException

This exception is output when you cannot connect to the J2EE
server to be logged in and when you try to log in using the 1ogin
method of the LoginInfoManager class.

Check whether the J2EE server name specified in the
ejbserver.serverName property is the same as that of the
J2EE server name to be logged in. Also, confirm whether the J2EE
server to be logged in is running.

com.hitachi.software.ejb.security.base.authe
ntication.InvalidUserNameException

This exception is thrown when you try to log in using the 1ogin
method of the LoginInfoManager class and the user name is
invalid.

Confirm whether the user name is correct.

com.hitachi.software.ejb.security.base.authe
ntication.InvalidPasswordException

This exception is thrown when you try to log in using the 1ogin
method of the LoginInfoManager class and the password is
invalid.

Confirm whether the password is correct.

141






APls Used When Using the TP1
Inbound Adapter to Link with

OpenTP1(INTENTIONALLY
DELETED)

(INTENTIONALLY DELETED)

143



5. APIs Used When Using the TP1 Inbound Adapter to Link with OpenTP1(INTENTIONALLY DELETED)

5.1 (INTENTIONALLY DELETED)

(INTENTIONALLY DELETED)

144



APls Used in the Asynchronous
Parallel Processing of Threads

This chapter describes the APIs used in the asynchronous parallel processing of
threads. This chapter also describes Cosminexus Application Server APIs that differ
in operations from the APIs defined by the specifications of Timer and Work
Manager for Application Servers.

145



6. APIs Used in the Asynchronous Parallel Processing of Threads

6.1 List of Cosminexus APls that differ in operation from
Timer and Work Manager for Application Servers
specifications

The following table describes the names and operations of Cosminexus Application Server APIs that differ in
operation from the APIs defined by the specifications of Timer and Work Manager for Application Servers.

Table 6-1: List of Cosminexus Application Server APIs with operations that differ from the Timer and Work
Manager for Application Servers specifications

Class name

Method name

Operations in Cosminexus Application Server

commonj.timers.TimerMan
ager class

schedule (TimerListener
listener,Date time)
method

schedule (TimerListener
listener,long delay)
method

schedule (TimerListener
listener, Date
firstTime, long period)
method

schedule (TimerListener
listener, long
delay, long period) method

scheduleAtFixedRate (Tim
erListener

listener, Date
firstTime, long period)
method

scheduleAtFixedRate
(TimerListener

listener, long

delay, long period) method

Returns I1legalArgumentException, when the
listener inherits javax.ejb.EnterpriseBean.

commonj .work.WorkManage
r class

schedule (Work work)
method

Throws WorkException, when work is null.

schedule (Work
work,WorkListener wl)
method

Returns WorkException, when work is null.

Returns I1legalArgumentException, when
WorkListener inherits
javax.ejb.EnterpriseBean

146



APls Used in the User Log
Functionality

This chapter describes the APIs used in the user log functionality.

147



7. APIs Used in the User Log Functionality

7.1 List of APIs used in the user log functionality

The following table lists and describes the APIs used when logs (user logs) are output by J2EE applications, batch
applications, or EJB client applications in the Hitachi trace common library format.

Table 7-1: List of APIs used in user log functionality

Class name Function

CJLogRecord Class Adds the MsgID and AppName parameter in the LogRecord class.
You can also output the field value of the MsgID and AppName with
the value specified during execution by passing the LogRecord
object (CJLogRecord object), created using the methods of this
class, to the Logger.log method.

148



7. APIs Used in the User Log Functionality

7.2 CJLogRecord Class

Description

This class adds the MsgID and AppName parameters in the java.util.logging.LogRecord class. This
class provides a static method for creating the LogRecord object (hereafter, called CdLogRecord), when the
MsgID and AppName are specified.

The package name of the CJLogRecord class is
com.hitachi.software.ejb.application.userlog.

List of methods

Method name Function

create Method (Format 1)

Passes the Level, Message, and MsgID, and creates the CJLogRecord
object.

create Method (Format 2)

Passes the Level, Message, AppName, and MsgID, and creates the
CJLogRecord object.

create Method (Format 3)

Passes the Level, Message, Object, and MsgID, and creates the
CJLogRecord object.

create Method (Format 4)

Passes the Level, Message, Object, AppName, and MsgID, and creates the
CJLogRecord object.

create Method (Format 5)

Passes the Level, Message, Thrown, and Msg1D, and creates the
CJLogRecord object.

create Method (Format 6)

Passes the Level, Message, Thrown, AppName, and MsgID, and creates the
CJLogRecord object.

create Method (Format 7) Passes the Level, Message, Object array, and MsgID, and creates the
CJLogRecord object.

create Method (Format 8) Passes the Level, Message, Object array, AppName, and MsgID, and
creates the CJLogRecord object.

create Method (Format 9) Passes the Level, Message, Thrown, Object array, and MsgID, and creates

the CJLogRecord object.

create Method (Format 10)

Passes the Level, Message, Thrown, Object array, AppName, and MsgID,
and creates the CJLogRecord object.

createp Method (Format 1)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), Message, and MsgID, and creates the CdLogRecord
object.

createp Method (Format 2)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), Message, AppName, and MsgID, and creates the
CJLogRecord object.

createp Method (Format 3)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), Message, Object, and MsgID, and creates the
CJLogRecord object.

createp Method (Format 4)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), Message, Object, AppName, and MsgID, and creates the
CJLogRecord object.

createp Method (Format 5)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), Message, Thrown, and MsgID, and creates the
CJLogRecord object.

createp Method (Format 6)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), Message, Thrown, AppName, and MsgID, and creates the
CJLogRecord object.

149



7. APIs Used in the User Log Functionality

Method name

Function

createp Method (Format 7)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), Message, Object array, and MsgID, and creates the
CJLogRecord object.

createp Method (Format 8)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), Message, Object array, AppName, and MsgID, and
creates the CJLogRecord object.

createp Method (Format 9)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), Message, Thrown, Object array, and MsgID, and
creates the CJLogRecord object.

createp Method (Format 10)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), Message, Thrown, Object array, AppName, and
MsgID, and creates the CdJLogRecord object.

createrb Method (Format 1)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), resource bundle name (bundleName), message and
MsgID, and creates the CJLogRecord object.

createrb Method (Format 2)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), resource bundle name (bundleName), Message,
AppName, and MsgID, and creates the CJLogRecord object.

createrb Method (Format 3)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), resource bundle name (bundleName), Message,
Object, and MsgID, and creates the CJLogRecord object.

createrb Method (Format 4)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), resource bundle name (bundleName), Message,
Object, AppName, and MsgID, and creates the CTLogRecord object.

createrb Method (Format 5)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), resource bundle name (bundleName), Message,
Thrown, and MsgID, and creates the CJLogRecord object.

createrb Method (Format 6)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), resource bundle name (bundleName), Message,
Thrown, AppName, and MsgID, and creates the CJLogRecord object.

createrb Method (Format 7)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), resource bundle name (bundleName), Message, Object
array, and MsgID, and creates the CdLogRecord object.

createrb Method (Format 8)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), resource bundle name (bundleName), Message, Object
array, AppName, and MsgID, and creates the CJLogRecord object.

createrb Method (Format 9)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), resource bundle name (bundleName), Message,
Thrown, Object array, and MsgID, and creates the CJLogRecord object.

createrb Method (Format 10)

Passes the Level, source class name (sourceClass), source method name
(sourceMethod), resource bundle name (bundleName), Message,
Thrown, Object array, AppName, and MsgID, and creates the
CJLogRecord object.

Note that the LogRecord class that is the source of inheritance of the CJLogRecord class and the Level to
be specified in the parameters of each method are classes that belong to the java.util.logging package.

150



7. APIs Used in the User Log Functionality

create Method (Format 1)

Description

Passes the Level, Message, and MsgID, and creates the CdLogRecord object.

Format

public static CJLogRecord create(Level level,
String msg,
String msglID);

Parameters
level:
Specify a message level identifier (for example, SEVERE)

msg:
Specify a string message or key of the message catalog.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

create Method (Format 2)

Description

Passes the Level, Message, AppName, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord create(Level level,
String msg,
String appName,
String msglID);

Parameters
level:
Specify a message level identifier (for example, SEVERE)

msg:
Specify a string message or key of the message catalog.

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

151



7. APIs Used in the User Log Functionality

create Method (Format 3)

Description

Passes the Level, Message, Object, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord create (Level level,
String msg,
Object paraml,
String msgID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)
msg:

Specify a string message or key of the message catalog.

paraml:

Specify an object to be set in the LogRecord.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

create Method (Format 4)

152

Description

Passes the Level, Message, Object, AppName, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord create (Level level,
String msg,
Object paraml,
String appName,
String msgID);

Parameters

level:
Specify a message level identifier (for example, SEVERE)
msg:
Specify a string message or key of the message catalog.
paraml:
Specify an object to be set in the LogRecord.
appName:
Specify a value (application distinguished name) to be output to the AppName field.



7. APIs Used in the User Log Functionality

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

create Method (Format 5)

Description

Passes the Level, Message, Thrown, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord create(Level level,
String msg,
Throwable thrown,
String msglD);

Parameters
level:

Specify a message level identifier (for example, SEVERE)
msg:

Specify a string message or key of the message catalog.

thrown:

Specify an exception object to be set in the LogRecord.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

create Method (Format 6)

Description

Passes the Level, Message, Thrown, AppName, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord create(Level level,
String msg,
Throwable thrown,
String appName,
String msglID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)

153



7. APIs Used in the User Log Functionality

msg:
Specify a string message or key of the message catalog.
thrown:

Specify an exception object to be set in the LogRecord.

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

create Method (Format 7)

Description

Passes the Level, Message, Object array, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord create (Level level,
String msg,
Object[] params,
String msglID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)
msg:

Specify a string message or key of the message catalog.
params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log
method) used by the user.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

create Method (Format 8)

Description

Passes the Level, Message, Object array, AppName, and MsgID, and creates the CdLogRecord object.
Format

public static CJLogRecord create (Level level,
String msg,

154



7. APIs Used in the User Log Functionality

Object[] params,
String appName,
String msglD);

Parameters

level:

Specify a message level identifier (for example, SEVERE)
msg:

Specify a string message or key of the message catalog.

params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log
method) used by the user.

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

create Method (Format 9)

Description

Passes the Level, Message, Thrown, Object array, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord create(Level level,
String msg,
Throwable thrown,
Object[] params,
String msglID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)
msg:

Specify a string message or key of the message catalog.
thrown:

Specify an exception object to be set in the LogRecord.
params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log
method) used by the user.

msglD:
Specify a value (message string) to be output to the MsgID field.

155



7. APIs Used in the User Log Functionality

Return value

This method returns the CJLogRecord object.

create Method (Format 10)

Description

Passes the Level, Message, Thrown, Object array, AppName, and MsgID, and creates the CJLogRecord
object.

Format

public static CJLogRecord create (Level level,
String msg,
Throwable thrown,
Object[] params,
String appName,
String msgID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)
msg:

Specify a string message or key of the message catalog.

thrown:

Specify an exception object to be set in the LogRecord.

params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log
method) used by the user.

appName:
Specity a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createp Method (Format 1)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), Message, and
MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createp(Level level,
String sourceClass,
String sourceMethod,
String msg,
String msglD);

156



7. APIs Used in the User Log Functionality

Parameters

level:

Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.
msg:

Specify a string message or key of the message catalog.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createp Method (Format 2)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), Message,
AppName, and MsgID, and creates the CdLogRecord object.

Format

public static CJLogRecord createp(Level level,
String sourceClass,
String sourceMethod,
String msg,
String appName,
String msglD) ;

Parameters

level:

Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.
msq:

Specify a string message or key of the message catalog.

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglID:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

157



7. APIs Used in the User Log Functionality

createp Method (Format 3)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), Message,
Object, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createp(Level level,
String sourceClass,
String sourceMethod,
String msg,
Object paraml,
String msglD);

Parameters

level:
Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.

msg:
Specify a string message or key of the message catalog.

paraml:
Specify an object to be set in the LogRecord.

msglID:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createp Method (Format 4)

158

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), Message,
Object, AppName, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createp(Level level,
String sourceClass,
String sourceMethod,
String msg,
Object paraml,
String appName,
String msglID) ;



7. APIs Used in the User Log Functionality

Parameters

level:
Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.

msg:
Specify a string message or key of the message catalog.

paraml:

Specify an object to be set in the LogRecord.

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createp Method (Format 5)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), Message,
Thrown, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createp(Level level,
String sourceClass,
String sourceMethod,
String msg,
Throwable thrown,
String msglD);

Parameters

level:
Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.
msgq:

Specify a string message or key of the message catalog.

thrown:

Specify an exception object to be set in the LogRecord.

msglD:
Specify a value (message string) to be output to the MsgID field.

159



7. APIs Used in the User Log Functionality

Return value

This method returns the CJLogRecord object.

createp Method (Format 6)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), Message,
Thrown, AppName, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createp(Level level,
String sourceClass,
String sourceMethod,
String msg,
Throwable thrown,
String appNamnme,
String msgID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.
msg:

Specify a string message or key of the message catalog.

thrown:

Specify an exception object to be set in the LogRecord.

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createp Method (Format 7)

160

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), Message,
Object array, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createp(Level level,
String sourceClass,



7. APIs Used in the User Log Functionality

String sourceMethod,
String msg,

Object[] params,
String msglID);

Parameters

level:
Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.
msg:

Specify a string message or key of the message catalog.

params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log
method) used by the user.

msgID:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createp Method (Format 8)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), Message,
Object array, AppName, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createp(Level level,
String sourceClass,
String sourceMethod,
String msg,
Object[] params,
String appName,
String msglID);

Parameters

level:
Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.
msg:

Specify a string message or key of the message catalog.

161



7. APIs Used in the User Log Functionality

params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log
method) used by the user.

appName:
Specity a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createp Method (Format 9)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), Message,
Thrown, Object array, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createp(Level level,
String sourceClass,
String sourceMethod,
String msg,
Throwable thrown,
Object[] params,
String msglID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)
sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.
msg:

Specify a string message or key of the message catalog.

thrown:

Specify an exception object to be set in the LogRecord.

params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger . log
method) used by the user.

msgID:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

162



7. APIs Used in the User Log Functionality

createp Method (Format 10)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), Message,
Thrown, Object array, AppName, and MsgID, and creates the CdLogRecord object.

Format

public static CJLogRecord createp(Level level,
String sourceClass,
String sourceMethod,
String msg,
Throwable thrown,
Object[] params,
String appName,
String msglD) ;

Parameters

level:

Specify a message level identifier (for example, SEVERE)
sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.
msgq:

Specify a string message or key of the message catalog.

thrown:

Specify an exception object to be set in the LogRecord.

params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log
method) used by the user.

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createrb Method (Format 1)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), resource bundle
name (bundleName), message and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createrb (Level level,
String sourceClass,

163



7. APIs Used in the User Log Functionality

String sourceMethod,
String bundleName,
String msg,

String msglID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.

bundleName:
Specify a resource bundle name to regionalize the msg.

msg:
Specify a string message or key of the message catalog.

msgID:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createrb Method (Format 2)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), resource bundle
name (bundleName), Message, AppName, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createrb (Level level,
String sourceClass,
String sourceMethod,
String bundleName,
String msg,
String appName,
String msglD);

Parameters

level:

Specity a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.

bundleName:

Specify a resource bundle name to regionalize the msg.

msg:

Specify a string message or key of the message catalog.

164



7. APIs Used in the User Log Functionality

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createrb Method (Format 3)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), resource bundle
name (bundleName), Message, Object, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createrb (Level level,
String sourceClass,
String sourceMethod,
String bundleName,
String msg,
Object paraml,
String msgID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:
Specify a method name that publishes a logging request.

bundleName:
Specify a resource bundle name to regionalize the msg.

msg:
Specify a string message or key of the message catalog.

paraml:

Specify an object to be set in the LogRecord.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

165



7. APIs Used in the User Log Functionality

createrb Method (Format 4)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), resource bundle
name (bundleName), Message, Object, AppName, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createrb (Level level,
String sourceClass,
String sourceMethod,
String bundleName,
String msg,
Object paraml,
String appName,
String msglD);

Parameters

level:

Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.

bundleName:

Specify a resource bundle name to regionalize the msg.

msg:
Specify a string message or key of the message catalog.

paraml:

Specify an object to be set in the LogRecord.

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createrb Method (Format 5)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), resource bundle
name (bundleName), Message, Thrown, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createrb (Level level,
String sourceClass,
String sourceMethod,

166



7. APIs Used in the User Log Functionality

String bundleName,
String msg,
Throwable thrown,
String msglID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)
sourceClass:

Specify a class name that publishes a logging request.
sourceMethod:

Specify a method name that publishes a logging request.
bundleName:

Specify a resource bundle name to regionalize the msg.
msg:

Specify a string message or key of the message catalog.
thrown:

Specify an exception object to be set in the LogRecord.
msglID:

Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createrb Method (Format 6)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), resource bundle
name (bundleName), Message, Thrown, AppName, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createrb (Level level,
String sourceClass,
String sourceMethod,
String bundleName,
String msg,
Throwable thrown,
String appName,
String msglID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.

167



7. APIs Used in the User Log Functionality

bundleName:

Specify a resource bundle name to regionalize the msg.
msg:

Specify a string message or key of the message catalog.

thrown:

Specify an exception object to be set in the LogRecord.

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createrb Method (Format 7)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), resource bundle
name (bundleName), Message, Object array, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createrb (Level level,
String sourceClass,
String sourceMethod,
String bundleName,
String msg,
Object[] params,
String msglID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)
sourceClass:

Specify a class name that publishes a logging request.
sourceMethod:

Specify a method name that publishes a logging request.
bundleName:

Specify a resource bundle name to regionalize the msg.
msg:

Specify a string message or key of the message catalog.
params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log
method) used by the user.

msglD:
Specify a value (message string) to be output to the MsgID field.

168



7. APIs Used in the User Log Functionality

Return value

This method returns the CJLogRecord object.

createrb Method (Format 8)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), resource bundle
name (bundleName), Message, Object array, AppName, and MsgID, and creates the CJLogRecord object.

Format

public static CJLogRecord createrb (Level level,
String sourceClass,
String sourceMethod,
String bundleName,
String msg,
Object[] params,
String appName,
String msgID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.
bundleName:

Specify a resource bundle name to regionalize the msg.
msq:

Specify a string message or key of the message catalog.

params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log
method) used by the user.

appName:
Specify a value (application distinguished name) to be output to the AppName field.

msglD:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createrb Method (Format 9)

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), resource bundle
name (bundleName), Message, Thrown, Object array, and MsgID, and creates the CJLogRecord object.

169



7. APIs Used in the User Log Functionality

Format

public static CJLogRecord createrb (Level level,
String sourceClass,
String sourceMethod,
String bundleName,
String msg,
Throwable thrown,
Object[] params,
String msgID);

Parameters

level:

Specify a message level identifier (for example, SEVERE)
sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.
bundleName:

Specify a resource bundle name to regionalize the msg.
msg:

Specify a string message or key of the message catalog.

thrown:

Specify an exception object to be set in the LogRecord.

params:

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log
method) used by the user.

msglID:
Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

createrb Method (Format 10)

170

Description

Passes the Level, source class name (sourceClass), source method name (sourceMethod), resource bundle
name (bundleName), Message, Thrown, Object array, AppName, and MsgID, and creates the CJLogRecord
object.

Format

public static CJLogRecord createrb (Level level,
String sourceClass,
String sourceMethod,
String bundleName,
String msg,
Throwable thrown,
Object[] params,
String appName,
String msgID);



Parameters

level:

Specify a message level identifier (for example, SEVERE)

sourceClass:

Specify a class name that publishes a logging request.

sourceMethod:

Specify a method name that publishes a logging request.

bundleName:

Specify a resource bundle name to regionalize the msg.
msg:
Specify a string message or key of the message catalog.

thrown:

Specify an exception object to be set in the LogRecord.

params:

7. APIs Used in the User Log Functionality

Specify a user-specific Object array (planned to be passed directly to an Object array of the Logger. log

method) used by the user.

appName:

Specify a value (application distinguished name) to be output to the AppName field.

msglD:

Specify a value (message string) to be output to the MsgID field.

Return value

This method returns the CJLogRecord object.

171






APls Used to Output Audit Logs
(INTENTIONALLY DELETED)

(INTENTIONALLY DELETED)

173



8. APIs Used to Output Audit Logs (INTENTIONALLY DELETED)

8.1 (INTENTIONALLY DELETED)

(INTENTIONALLY DELETED)

174



APls Used in Performance Analysis
Trace

This chapter describes the APIs used in the functionality of performance analysis
trace for acquiring root application information.

175



9. APIs Used in Performance Analysis Trace

9.1 List of APIs used in performance analysis trace

The following table lists the APIs used in performance analysis trace.

Table 9-1: List of APIs used in performance analysis trace functionality

Class name Function

CprfTrace Class Provides functionality related to performance analysis trace.

176



9. APIs Used in Performance Analysis Trace

9.2 CprfTrace Class

Description
Provides functionality related to performance analysis trace.
The package name of the CprfTrace classis com.hitachi.software.ejb.application.prf.

List of methods
Method name Function
getRootApInfo Method Returns a character string expression for the root application information of
performance analysis trace stored by an existing thread.
Caution

When using this class, compile the class by specifying the following JAR files in the class path:

e In Windows
application-server-installation-directory\CC\1ib\ejbserver. jar

¢ In UNIX
/opt/Cosminexus/CC/lib/ejbserver.jar

getRootApinfo Method

Description

Returns a character string expression for the root application information of performance analysis trace stored by an
existing thread.

The character string expression of the root application information contains the IP address, process ID, and
communication number configuring the root application information demarcated with a forward slash (/) (maximum
length is 45).

Example "10.209.15.130/1234/0x0000000000000001"

By registering the character string expression of the root application information in the log file, you can compare it
with the performance analysis trace file at any time and consequently use it for troubleshooting.

See 7.4 Implementation for collection of root application information of trace based performance analysis in the
uCosminexus Application Server Maintenance and Migration Guide for acquiring the root application information
trace based performance analysis. For checking the log by using the root application information, see7.7.7
Investigating the Log Using the Root Application Information in the uCosminexus Application Server Maintenance
and Migration Guide.

Format

public static final String getRootApInfo();

Parameters

None

Exceptions

None

Return value

A character string expression of the root application information.

This method returns null in the following cases:

177



9. APIs Used in Performance Analysis Trace

¢ When Cosminexus Performance Tracer is not installed, and root application information with current threads is
not available.

¢ When invoked from outside the EJB container and Web container

¢ When invoked from the EJB client

178



APls Used with JavaVM

This chapter describes the APIs used in the product JavaVM (hereafter called
JavaVM).

JavaVM is compliant to Java SE 6. For details, see the manual uCosminexus
Application Server Overview. For details on APIs available in JDK 6, see the JDK 6
documentation provided by Oracle Corporation.

179



10. APIs Used with JavaVM

10.1 List of APIs used

with JavaVM

The following table lists the APIs used with JavaVM.

Table 10-1: List of APIs used by JavaVM

Class name

Function

BasicExplicitMemory Class

This is a class that indicates the Explicit memory block. Note that you cannot use
this class for other JDK products.

ExplicitMemory Class

This is an abstract class that indicates the Explicit memory block.

This class defines the contents to be processed in the BasicExplicitMemory class
that is an inherited class. Note that you cannot use this class for other JDK
products.

MemoryArea Class

This is an abstract class that indicates the Explicit memory block or the Java heap.
Note that you cannot use this class for other JDK products.

MemoryInfo Class

Acquires the memory information of garbage collection. Note that you cannot use
this class for other JDK products.

Exception classes

This is an exception class that expresses exceptions that occur in the APIs used by
JavaVM. Note that you cannot use this class for other JDK products.

Omission of the package name

Note that in this chapter, the class names of the classes belonging to the java.lang and MemoryArea

packages are mentioned only with the
Example:
For java.lang.Object: Object

180

class names instead of the complete names.



10. APIs Used with JavaVM

10.2 BasicExplicitMemory Class

Description
This is a class that indicates the Explicit memory block created by the Application Server. This class inherits the
ExplicitMemory class.
The package of the BasicExplicitMemory classis JP.co.Hitachi.soft.jvm.MemoryArea.

List of constructor and methods

Constructor and method name Function
BasicExplicitMemory constructor Initializes the Explicit memory block.
(Format 1)
BasicExplicitMemory constructor Initializes the Explicit memory block, and then sets up a name.
(Format 2)
getName method Returns the Explicit memory block name.

BasicExplicitMemory constructor (Format 1)

Description
Initializes the Explicit memory block. Through initialization, the object can be arranged in the Explicit heap.

After initializing the Explicit memory block, the instance name is set to BasicExplicitMemory-Explicit-
memory-block-ID. However, the memory area of the Explicit memory block is not reserved.

For the following conditions, disable the Explicit memory block:

* When the option HitachiUseExplicitMemory is OFF (when -XX:+HitachiUseExplicitMemory is
not specified)

* When the maximum number of Explicit memory blocks is exceeded

Format

public BasicExplicitMemory () ;

Parameters

None

Exceptions

None

Return value

None

BasicExplicitMemory constructor (Format 2)

Description
Initializes the Explicit memory block, and simultaneously sets up a name for the Explicit memory block.

The name of the instance will become the parameter name. However, if the parameter name is nul1l, the instance
name will become BasicExplicitMemory-Explicit-memory-block-ID.

181



10. APIs Used with JavaVM

For the following conditions, disable the Explicit memory block:

e When the option HitachiUseExplicitMemory is OFF (when -XX:+HitachiUseExplicitMemory is
not specified)

¢ When the maximum number of Explicit memory blocks is exceeded

Format

public BasicExplicitMemory (String name)

Parameters

name:
Specifies the String that indicates the name.

Exceptions

None

Return value

None

getName method

Description

Returns the name of the Explicit memory block indicated by this object.

Format

public String getName () ;

Parameters

None

Exceptions

None

Return value

This method acquires the name of the Explicit memory block indicated by the object from the instance field that
indicates the name of the object, and then returns the reference.

Caution

The uniqueness of the Explicit memory block ID that is added to the name set up by default has been assured.
However, when the instance that contains this ID is discarded, the same Explicit memory block ID will be reused. In
such cases, the different instances that do not coexist have the same default name.

182



10.3 ExplicitMemory Class

10. APIs Used with JavaVM

Description

This is an abstract class that indicates the Explicit memory block. This class defines the processing in

BasicExplicitMemory.

The package of the ExplicitMemory classis JP.
List of methods

co.Hitachi.soft.jvm.MemoryArea.

Method name

Function

countExplicitMemories Method

Returns the number of Explicit memory blocks.

freeMemory method

Returns the usable size of Explicit memory blocks.

getMemoryUsage Method

Returns the usage state of the Explicit heap.

isActive Method

Returns whether or not the Explicit memory block can be
processed.

isReclaimed Method

Returns whether or not the Explicit memory block is in the
reserved for release state or released state.

newArray method (format 1)

newArray method (format 2)

Creates array objects in Explicit memory blocks.

newInstance method (format 1)

newInstance method (format 2)

newInstance method (format 3)

Creates objects in Explicit memory blocks.

reclaim Method (Format 1)

reclaim Method (Format 2)

reclaim Method (Format 3)

reclaim Method (Format 4)

Reserves the Explicit memory blocks for release.

setName method

Sets up the Explicit memory block name in name.

toString method

Returns the Explicit memory block name.

totalMemory method

Returns the reserved size of Explicit memory blocks.

usedMemory method

Returns the used memory size of Explicit memory blocks.

countExplicitMemories Method

Description

Returns the number of Explicit memory blocks in the Explicit heap. If an Explicit memory block is already released or

is disabled, that Explicit memory block is not counted.

Format

public static int countExplicitMemories();

Parameters

None

183



10. APIs Used with JavaVM

Exceptions

None

Return value

This method counts the number of Explicit memory blocks in the Explicit heap, and then returns the number in the
int type.

Caution

* Even when the Explicit memory blocks are not operated explicitly for counting the number of blocks that are
already reserved for release, the number might change over time.

¢ This method is not used to count the number of ExplicitMemory instances, but instead it counts the actual number
of Explicit memory blocks.

freeMemory method

Description

Returns the memory size that can be used by Explicit memory blocks.

Format

public long freeMemory() ;

Parameters

None

Exceptions

InaccessibleMemoryAreaException:

This functionality is not supported.

Return value

The common error check is performed and then this method returns either of the following values. For details on
common error check, see 10.6 Error check (common error check) of the process that controls the Explicit memory
block.

0:
Returned when the API processing cannot be performed.

The memory size (number of bytes) that can be used for the Explicit memory block indicated by this object:

When you can perform API processing, the memory size that can be used for the Explicit memory block, indicated
by the object, is returned in the 1ong type.

getMemoryUsage Method

Description

Returns the usage state of the Explicit heap.

184



10. APIs Used with JavaVM

Format

public static java.lang.management.MemoryUsage getMemoryUsage () ;

Parameters

None

Exceptions

None

Return value

This method returns the reference to the java.lang.management .MemoryUsage instance that maintains the
usage state of the Explicit heap as a field, in the form of the following values:

init:
This is the initial value of the Explicit heap. This value is always 0.

used:
This is the memory size (number of bytes) being used in the Explicit heap.

committed:
This is the reserved size (number of bytes) of the Explicit heap.

max:

This is the value (number of bytes) of the maximum Explicit heap size specified by —
XX:HitachiExplicitHeapMaxSize. However, when the option HitachiUseExplicitMemory is
OFF (when -XX:+HitachiUseExplicitMemory is specified), O is returned.

Caution

The value contained in the MemoryUsage instance is the value at the point of time when getMemoryUsage () is
invoked. This value might be different from the actual value when each field is read out from the MemoryUsage
instance.

isActive Method

Description

Returns whether or not the Explicit memory block indicated by the object can be processed.

Format

public boolean isActive();

Parameters

None

Exceptions

None

Return value

This method returns the state of the Explicit memory block indicated by the object, in the following Boolean types:

185



10. APIs Used with JavaVM

true:

The Explicit memory block can be processed. This value is returned for an enabled Explicit memory block, when
the substate is Enable.

false:
The Explicit memory block cannot be processed. This value is returned in either of the following cases:

¢ A disabled Explicit memory block

* An enabled Explicit memory block, when the substate is Disable

Caution

Once the ExplicitMemory is disabled, it cannot be enabled again.

isReclaimed Method

Description

Returns whether or not the Explicit memory block indicated by the object is in the reserved for release state or the
released state.

Format

public boolean isReclaimed();

Parameters

None

Exceptions

None

Return value

This method returns the state of the Explicit memory block indicated by the object, in the following boolean types:

true:
This value is returned when the Explicit memory block indicated by the object is either in the reserve for release
state or the released state.

false:
This value is returned when the Explicit memory block indicated by the object is in the enabled state.

newArray method (format 1)

186

Description

Directly creates an array instance of the length specified in the parameter 1length of the class that is specified in the
parameter type of the Explicit memory block indicated by the object.

Format

public Object newArray(Class type, int length);



10. APIs Used with JavaVM

Parameters
type:
This parameter specifies the class of the array instance to be created directly.

length:
This parameter specifies the length of the array instance to be created directly.

Exceptions

NullPointerException:
The parameter type is null.

NegativeArraySizeException:

The parameter length is 0 or less than 0.

Illegal ArgumentException:
An array class for which the parameter Length is more than 0 and the parameter t ype is more than 255
dimensions or the array class having the type Void.TYPE.

InaccessibleMemoryAreaException:
This functionality is not supported.

Return value

This method directly creates an array of the type type in the Explicit memory block indicated by the object, and then
returns the reference. The length of the array is as specified in length.

If it is judged that processing cannot be executed by performing the common error check, invoke
java.lang.reflect.Array.newlInstance (Class<?>, componentType, int length) by the
parameter type and parameter length, and return that result. For details on common error check, see /0.6 Error check
(common error check) of the process that controls the Explicit memory block .

newArray method (format 2)

Description

Directly creates an array instance with a dimension dimensions. length in the Explicit memory block indicated

by the object. Note that the number of elements of the nth dimension of the class indicated by the parameter type is
dimensions[n-1].

Format

public Object newArray(Class type, 1nt[] dimensions);

Parameters

type:
This parameter specifies the class of the array instance to be created directly.

dimensions:
This parameter specifies the number of dimensions and elements of the array instance to be created directly.

Exceptions

NullPointerException:
The value of either one or both the parameters dimensions and type is null.

187



10. APIs Used with JavaVM

NegativeArraySizeException:
The parameter dimension has an element with a negative value.
Illegal ArgumentException:
This exception is thrown in any of the following cases:
* When dimensions. length of the parameter dimensions is less than O or more than 255

* When the total of the number of dimensions of the parameter t ype and dimensions.length of the
parameter dimensions is more than 255

e When the parameter type is Void.TYPE

InaccessibleMemoryAreaException:
This functionality is not supported.

Return value

This method directly creates an array object with the dimension dimensions. length and the type type, wherein
the number of elements of the n® dimension is dimensions [n-11], in the Explicit memory block indicated by the
object, and then returns the reference.

If it is judged that processing cannot be executed by performing the common error check, invoke
java.lang.reflect.Array.newlInstance (Class<?> componentType,int[] dimensions) by
the parameter type and parameter dimensions, and return that result. For details on common error check, see /0.6
Error check (common error check) of the process that controls the Explicit memory block .

newlnstance method (format 1)

188

Description

Directly creates the instances of the class indicated by the parameter t ype in the Explicit memory block indicated by
the object. Only the instances of the class specified in the parameter are created in the Explicit memory block. The

objects created through the initialization by the constructor of the instances of the class specified in the parameter are
created in the Java heap. type is same as Class.newInstance () for this object, however some part is different.

Format

public Object newlInstance (Class type);

Parameters

type:
This is the class of the array instance to be created directly.

Exceptions

NullPointerException:
Either the parameter t ype or the class indicated by the parameter type is null.

SecurityException:
This exception is thrown when SecurityManager exists, and when any of the following conditions hold true:

¢ The invocation of s.checkMemberAccess (type, Member.PUBLIC) does not allow access to this
constructor.

¢ The class loader at the calling side is different.

* The invocation of the class loader higher than the current class loader and also the invocation of
s.checkPackageAccess () do not allow access to the package of this class.



10. APIs Used with JavaVM

NoSuchMethodException:
No constructor, without a public parameter, exists in either the parameter t ype or the class indicated by the
parameter type.

ExceptionlnInitializerError:
An attempt to initialize the parameter t ype or the class indicated by the parameter t ype has failed.

InstantiationException:
The parameter t ype or the class indicated by the parameter t ype is either an abstract class or an interface.

InvocationTargetException:
An exception occurred during the execution of the parameter t ype or the constructor of the class indicated by the
parameter type.

Illegal AccessException:
The class or its nullary constructor cannot be accessed.

InaccessibleMemoryAreaException:
This functionality is not supported.

Return value

This method returns the reference to the instances created in the Explicit memory block indicated by the object.

If it is judged that processing cannot be executed by performing the common error check, invoke the
Class.newInstance () method by considering the parameter type as a receiver, and return that result. For details
on common error check, see /0.6 Error check (common error check) of the process that controls the Explicit memory
block .

Caution

We recommend that you add a public class in the parameter type.

newlnstance method (format 2)

Description

Directly creates the instances of the class indicated by the parameter t ype in the Explicit memory block. The value
specified in the parameter args is passed as an argument of the constructor that creates the instances. The objects
created through the initialization by the constructor of the instances of the class specified in the parameter are created
in the Java heap.

Format

public Object newlInstance (Class type, Object... args);

Parameters

type:
This is the class of the array instance to be created directly.

args:
This is a parameter that is passed to the constructor.

Exceptions

NullPointerException:
The value of either one of the parameters or both the parameters t ype and args is null.

189



10. APIs Used with JavaVM

190

SecurityException:
This exception is thrown when SecurityManager exists, and when any of the following conditions hold true:

¢ The invocation of s . checkMemberAccess (type, Member.PUBLIC) does not allow access to this
constructor.

* The class loader at the calling side is different.

¢ The invocation of the class loader is higher than the current class loader, and also the invocation of
s.checkPackageAccess () does not allow access to the package of this class.
NoSuchMethodException:
A public constructor having a parameter of the same type as the elements of the parameter args does not exist in
the class indicated by the parameter type.
ExceptionInlnitializerError:
An attempt to initialize the parameter type or the class indicated by the parameter t ype has failed.

InstantiationException:
The parameter t ype or the class indicated by the parameter t ype is either an abstract class or an interface.
InvocationTargetException:
An exception occurred during the execution of the parameter t ype or the constructor of the class indicated by the
parameter type.
InaccessibleMemoryAreaException:
This functionality is not supported.
llegal AccessException:

The base constructor cannot be accessed because Java language access control is executed in the Constructor
object.

Illegal ArgumentException:
This exception is thrown in each of the conditions:

* When the number of real parameters and virtual parameters is different
* When the lap release conversion of the primitive arguments fails

¢ When the parameter value cannot be converted to the corresponding virtual parameter type after lap release of
the primitive argument

e When the constructor is related to the enumeration type

Return value

This method returns the reference to the instances created in the Explicit memory block indicated by the object.

If it is judged that processing cannot be executed after performing the common error check, acquire the
java.lang.reflect.Constructor instance as type.getConstructor (arg_types#) . In this case,
consider java.lang.reflect.Constructor as areceiver, parameter args as a parameter, invoke the
java.lang.reflect.Constructor.newInstance (Object... initargs) method, and return the
result. For details on common error check, see 10.6 Error check (common error check) of the process that controls the
Explicit memory block .

#
arg_types is a class array in which the results of invocation of Object.getClass () as the object are
assumed as the elements of the parameter args.

Caution

We recommend that you add a public class in the parameter type.

You cannot invoke a constructor in which the primitive type is assumed as an argument. To invoke a constructor in
which the primitive type is assumed as an argument, use the newInstance method (format 3). A coding example in
which the newInstance method (format 3) is used is as follows:



10. APIs Used with JavaVM

import JP.co.Hitachi.soft.jvm.MemoryArea.*;
import java.lang.reflect.*;
public class testl {
public static void main(String[] args) throws Exception {
ExplicitMemory em = new BasicExplicitMemory () ;
TheClass obj = null;

Constructor cons = TheClass.class.getConstructor (new Class[]{int.class});
obj = (TheClass)em.newlInstance (cons, 1); // Execution successful
obj = (TheClass)em.newlInstance (TheClass.class, 1); //

NoSuchMethodException is thrown
}
}

public class TheClass {
public TheClass (int 1) {}
}

newlnstance method (format 3)

Description

Executes the constructor indicated by the parameter cons in the parameter args, and then directly creates the
instance in the Explicit memory block indicated by the object. Only the instances of the class specified in the
parameter are created in the Explicit memory block. The objects created through initialization by the constructor of the
instances of class specified in the parameter are created in the Java heap.

Format

public Object newlInstance (java.lang.reflect.Constructor cons, Object... args);

Parameters

cons:
This parameter specifies the constructor of the array instance to be created directly.

args:
This is a parameter that is passed to the constructor.

Exceptions

NullPointerException:
The value of either one or both the parameters cons and args is null.

ExceptionlnInitializerError:
An attempt to initialize the class with the constructor indicated by the parameter cons has failed.

InstantiationException:
The constructor indicated by the parameter cons is an abstract class.

Illegal ArgumentException:

The parameter of the constructor indicated by the parameter cons does not match the parameter args.
InvocationTargetException:

An exception occurred during the execution of the constructor indicated by the parameter cons or parameter

args.

InaccessibleMemoryAreaException:
This functionality is not supported.

191



10. APIs Used with JavaVM

Return value

This method returns the reference to the instances created in the Explicit memory block indicated by the method.

If it is judged that processing cannot be executed by performing the common error check, invoke parameter cons of
java.lang.reflect.Constructor.newInstance (Object... initargs) as this object, parameter
args as a parameter, and return that result. For details on common error check, see 10.6 Error check (common error
check) of the process that controls the Explicit memory block .

Caution

We recommend that you add the constructor of a public class in the parameter cons.

reclaim Method (Format 1)

192

Description
Reserves the release processing for all the elements of the parameter areas.

When the parameter areas is other than nul1l, execute the same processing that is executed when
ExplicitMemory.reclaim(ExplicitMemory area) isinvoked assuming the elements as the parameters,
for all the elements of the parameter areas. The order of the elements, for which the processing is performed, is not
defined. If an exception occurs during the processing for any element, that exception will be thrown. The processing is
not executed for the elements that are not processed until the exception is thrown.

Format

public static void reclaim(ExplicitMemory... areas);

Parameters

areas:

This parameter specifies the array containing the Explicit memory block for which the release processing is to be
reserved in the elements.

Exceptions

NullPointerException:

The parameter areas is null.

InaccessibleMemoryAreaException:
This functionality is not supported.

Return value

None

Caution

This method only reserves the release processing, and does not actually perform the release processing.

When the option HitachiExplicitMemoryAutoReclaimis ON (-XX:
+HitachiExplicitMemoryAutoReclaim is specified), the Explicit memory block after the automatic release
will execute the same operation as is executed by the Explicit memory block that is generated by the explicit memory
management automatic deployment settings file. If you do not want this operation to be performed, set the option
HitachiExplicitMemoryAutoReclaimto OFF (-XX:+HitachiExplicitMemoryAutoReclaim is not
specified).



10. APIs Used with JavaVM

reclaim Method (Format 2)

Description

If it is judged by the common error check that the processing can be executed when the parameter area is other than
null, execute the exclusion processing in the parameter area, and then reserve the Explicit memory block indicated
by the parameter area for the release.

The processing is not executed in the following cases:

¢ When the parameter area is null

e When it is judged by the common error check that the processing cannot be executed

Format

public static void reclaim(ExplicitMemory area);

Parameters

area:
This parameter specifies the Explicit memory block for which the release processing is to be reserved.

Exceptions

InaccessibleMemoryAreaException:
This functionality is not supported.

Return value

None

Caution
This method only reserves the release processing, and does not actually perform the release processing.

When the option HitachiExplicitMemoryAutoReclaimis ON (-XX:
+HitachiExplicitMemoryAutoReclaim is specified), the Explicit memory block after the automatic release
will execute the same operation as is executed by the Explicit memory block that is generated by the explicit memory
management automatic deployment settings file. If you do not want this operation to be performed, set the option
HitachiExplicitMemoryAutoReclaimto OFF (-XX:+HitachiExplicitMemoryAutoReclaim is not
specified).

reclaim Method (Format 3)

Description
Reserves the release processing for the Explicit memory blocks indicated by the parameter area0 and areal.

Execute the processing that is executed when ExplicitMemory.reclaim(ExplicitMemory area) is
invoked using the parameter area0 and areal as the parameters. The processing order of the parameter area0 and
areal is not defined. If an exception occurs during the processing for one parameter, that exception will be thrown.
If the other parameter is unprocessed, the processing will not be executed.

Format

public static void reclaim(ExplicitMemory areaO, ExplicitMemory areal);

193



10. APIs Used with JavaVM

Parameters

area0:
This parameter specifies the Explicit memory block 1 for which the release processing is to be reserved.

areal:
This parameter specifies the Explicit memory block 2 for which the release processing is to be reserved.

Exceptions

InaccessibleMemoryAreaException:

This functionality is not supported.

Return value

None

Caution
This method only reserves the release processing, and does not actually perform the release processing.

When the option HitachiExplicitMemoryAutoReclaimis ON (-XX:
+HitachiExplicitMemoryAutoReclaim is specified), the Explicit memory block after the automatic release
will execute the same operation as is executed by the Explicit memory block that is generated by the explicit memory
management automatic deployment settings file. If you do not want this operation to be performed, set the option
HitachiExplicitMemoryAutoReclaimto OFF (-XX:+HitachiExplicitMemoryAutoReclaim is not
specified).

reclaim Method (Format 4)

194

Description
Reserves the release processing for all the elements of the parameter areas.

When the parameter areas is other than null, execute the same processing that is executed when
ExplicitMemory.reclaim(ExplicitMemory area) is invoked assuming the elements as the parameters,
for all the elements of the parameter areas. The order of the elements for which the processing is performed is not
defined. If an exception occurs during the processing for any element, that exception will be thrown. Processing is not
executed for the elements that are not processed until the exception is thrown.

Format

public static void reclaim(Iterable<ExplicitMemory> areas);

Parameters

areas:
This parameter specifies the iterator of the Explicit memory block for which the release processing is reserved.

Exceptions
NullPointerException:
The value of the parameter areas is null.

InaccessibleMemoryAreaException:
This functionality is not supported.



10. APIs Used with JavaVM

Return value

None

Caution
This method only reserves the release processing, and does not actually perform the release processing.

When the option HitachiExplicitMemoryAutoReclaimis ON (-XX:
+HitachiExplicitMemoryAutoReclaim is specified), the Explicit memory block after the automatic release
will execute the same operation as is executed by the Explicit memory block that is generated by the explicit memory
management automatic deployment settings file. If you do not want this operation to be performed, set the option
HitachiExplicitMemoryAutoReclaimto OFF (-XX:+HitachiExplicitMemoryAutoReclaim is not
specified).

setName method

Description

Sets up a name for the Explicit memory block. The parameter name is set up in the instance field that indicates the
name of this object, as the name of the Explicit memory block indicated by the object.

This name is mainly set up for the purpose of debugging. The specified value is displayed in the event log or the
thread dump.

Format

public void setName (String name) ;

Parameters

name:
This parameter specifies the string that indicates the name to be set up.

Exceptions

NullPointerException:
The value of the parameter name is null.

Return value

None

Caution

The names are not unique because the same name can be set up in multiple ExplicitMemory.

toString method

Description

Returns the string expression of the object. This method invokes this.getName (), and then returns the results.

Format

public String toString();

195



10. APIs Used with JavaVM

Parameters

None

Exceptions

None

Return value

This method returns the reference to the St ring type object that indicates the string expression of the object.

totalMemory method

Description

Returns the total reserved size of the Explicit memory block.

Format

public long totalMemory () ;

Parameters

None

Exceptions

InaccessibleMemoryAreaException:
This functionality is not supported.

Return value
The common error check is performed, and then this method returns either of the following values:
0:

Returned when the API processing cannot be performed.

Total reserved memory size (number of bytes) of the Explicit memory block indicated by the object:

When the API processing can be performed, the memory size that can be used by the Explicit memory block
indicated by the object is returned to the 1ong type.

For details on common error check, see 10.6 Error check (common error check) of the process that controls the
Explicit memory block .

usedMemory method

Description

Returns the used memory size of the Explicit memory block.

Format

public long usedMemory() ;

196



10. APIs Used with JavaVM

Parameters

None

Exceptions

InaccessibleMemoryAreaException:
This functionality is not supported.

Return value

The used memory size (number of bytes) of the Explicit memory block indicated by the object is returned to the Llong
type.

When it is judged by the common error check that the processing cannot be executed, 0 is returned. For details on
common error check, see 10.6 Error check (common error check) of the process that controls the Explicit memory
block .

197



10. APIs Used with JavaVM

10.4 MemoryArea Class

Description

This is an abstract class that indicates the Explicit memory block or the Java heap. The package of the
MemoryArea classis JP.co.Hitachi.soft.jvm.MemoryArea.

The methods included in the MemoryArea class are the abstract methods, and therefore, do not undergo any
processing. For details on the processing of each method, see methods of the inherited classes with the same

signature. The following table describes the format of each method and the references:

Format of methods and list of methods with the same signature

Method name

Format

Method with the
same signature

freeMemory method

public abstract

long freeMemory () ;

freeMemory method

getName method

public abstract

String getName () ;

getName method

newArray method (format 1)

public abstract
type,

Object newArray(Class

int number) ;

newArray method
(format 1)

newArray method (format 2)

public abstract
type,

Object newArray(Class

int[] dimensions);

newArray method
(format 2)

newInstance method (format 1)

public abstract
type);

Object newInstance (Class

newlnstance method
(format 1)

newInstance method (format 2)

public abstract
type,

Object...

Object newInstance (Class
args) ;

newlnstance method
(format 2)

newInstance method (format 3)

public abstract

Object

newlInstance (java.lang.reflect.Constructor

cons,

Object...

args);

newlnstance method
(format 3)

setName method

public abstract

void setName (String name) ;

setName method

toString method

public abstract

String toString();

toString method

totalMemory method

public abstract

long totalMemory () ;

totalMemory method

usedMemory method

public abstract

long usedMemory () ;

usedMemory method

198



10.5 Memorylnfo Class

10. APIs Used with JavaVM

Description

You can acquire the memory information of garbage collection directly from a Java program.

For example, the space that is being currently used is calculated with the following expression:
getXXXTotalMemory () ~getXXXFreeMemory ()

The package of the MemoryInfo classis JP.co.Hitachi.soft.jvm.

List of methods

Method name

Function

getEdenFreeMemory Method

Acquires the available space in the Eden area.

getEdenMaxMemory Method

Acquires the maximum space used by the Eden area.

getEdenTotalMemory Method

Acquires the available space in the Eden area.

getPermFreeMemory Method

Acquires the available space in the Permanent area.

getPermMaxMemory Method

Acquires the maximum space used by the Permanent area.

getPermTotalMemory Method

Acquires the available space in the Permanent area.

getSurvivorFreeMemory Method

Acquires the available space in the Survivor area.

getSurvivorMaxMemory Method

Acquires the maximum space used by the Survivor area.

getSurvivorTotalMemory Method

Acquires the available space in the Survivor area.

getTenuredFreeMemory Method

Acquires the available space in the Tenured area.

getTenuredMaxMemory Method

Acquires the maximum space used by the Tenured area.

getTenuredTotalMemory Method

Acquires the available space in the Tenured area.

Usage example

The examples of method usage for acquiring memory information are as follows:

For obtaining the free size of Perm area

free memory = JP.co.Hitachi.soft.jvm.MemoryInfo.getPermFreeMemory ()

For obtaining the currently used Eden area

use memory = JP.co.Hitachi.soft.jvm.MemoryInfo.getEdenTotalMemory () -
JP.co.Hitachi.soft.jvm.MemoryInfo.getEdenFreeMemory ()

getEdenFreeMemory Method

Description

Acquires the available space in the Eden area.

Format

getEdenFreeMemory () ;

Parameters

None

199



10. APIs Used with JavaVM

Exceptions

None

Return value

This method returns the available space (number of bytes) in the Eden area as a long type.

getEdenMaxMemory Method

Description

Acquires the maximum space used by the Eden area.

Format

getEdenMaxMemory () ;

Parameters

None

Exceptions

None

Return value

This method returns the maximum space (number of bytes) used by the Eden area as a long type.

getEdenTotalMemory Method

Description

Acquires the available space in the Eden area.

Format

getEdenTotalMemory () ;

Parameters

None

Exceptions

None

Return value

This method returns the available space (number of bytes) in the Eden area as a long type.

200



10. APIs Used with JavaVM

getPermFreeMemory Method

Description

Acquires the available space in the Permanent area.

Format

getPermFreeMemory () ;

Parameters

None

Exceptions

None

Return value

This method returns the available space (number of bytes) in the Permanent area as a long type.

getPermMaxMemory Method

Description

Acquires the maximum space used by the Permanent area.

Format

getPermMaxMemory () ;

Parameters

None

Exceptions

None

Return value

This method returns the maximum space used by the Permanent area (number of bytes) as a long type.

getPermTotalMemory Method

Description

Acquires the available space in the Permanent area.

Format

getPermTotalMemory () ;

201



10. APIs Used with JavaVM

Parameters

None

Exceptions

None

Return value

This method returns the available space (number of bytes) in the Permanent area as a long type.

getSurvivorFreeMemory Method

Description

Acquires the available space in the Survivor area.

Format

getSurvivorFreeMemory () ;

Parameters

None

Exceptions

None

Return value

This method returns the available space (number of bytes) in the Survivor area as a long type.

getSurvivorMaxMemory Method

Description

Acquires the maximum space used by the Survivor area.

Format

getSurvivorMaxMemory () ;

Parameters

None

Exceptions

None

Return value

This method returns the maximum space (number of bytes) used by the Survivor area as a long type.

202



10. APIs Used with JavaVM

getSurvivorTotalMemory Method

Description

Acquires the available space in the Survivor area.

Format

getSurvivorTotalMemory () ;

Parameters

None

Exceptions

None

Return value

This method returns the available space (number of bytes) in the Survivor area as a long type.

getTenuredFreeMemory Method

Description

Acquires the available space in the Tenured area.

Format

getTenuredFreeMemory () ;

Parameters

None

Exceptions

None

Return value

This method returns the available space (number of bytes) in the Tenured area as a long type.

getTenuredMaxMemory Method

Description

Acquires the maximum space used by the Tenured area.

Format

getTenuredMaxMemory () ;

203



10. APIs Used with JavaVM

Parameters

None

Exceptions

None

Return value

This method returns the maximum space (number of bytes) used by the Tenured area as a long type.

getTenuredTotalMemory Method

Description

Acquires the available space in the Tenured area.

Format

getTenuredTotalMemory () ;

Parameters

None

Exceptions

None

Return value

This method returns the available space (number of bytes) in the Tenured area as a long type.

204



10. APIs Used with JavaVM

10.6 Error check (common error check) of the process
that controls the Explicit memory block

When an enabled Explicit memory block is not specified, many APIs that operate the Explicit heap cannot be
processed. In such a case, an error check routine common to all the APIs is defined, and it is determined whether the
processing of an API can be executed or not. The common error check is used to determine whether or not an API can
be processed depending on the state of the Explicit memory blocks that are processed by each API . The values
returned by the common error check are as follows:

true:

Determines that the processing of an API can be continued. This value is returned when the state of the Explicit
memory block that is to be processed is enabled.

false:

Determines that an API cannot be processed. This value is returned when the state of the Explicit memory block,
that is to be processed, is disabled.

InaccessibleMemoryAreaException (exception class):

This exception has been thrown when an attempt was made to execute an unsupported functionality. For details on
InaccessibleMemoryAreaException classes, see /0.7 Exception classes.

This exception has been thrown when the Explicit memory block to be processed is in the following states:
* Released
¢ Reserved for release or explicitly reserved for automatic release

¢ State other than enabled, disabled, released, and reserved for release

205



10. APIs Used with JavaVM

10.7 Exception classes

The exception class that expresses the exceptions occurring in the APIs used in JavaVM is described below.

The following table describes a list of exception classes:

Table 10-2: Exception classes occurring in APIs used with JavaVM

Exception class name Description

JP.co.Hitachi.soft.jvm.MemoryArea.MemoryManagem | This is the base class of the exception classes defined in the
entException JP.co.Hitachi.soft.jvm.MemoryArea package. This exception
class is not assumed to be created or thrown in a Java program.

The inherited class is InaccessibleMemoryAreaException.

JP.co.Hitachi.soft.jvm.MemoryArea.InaccessibleMemo = This exception class has been thrown when an attempt was made to execute an
ryAreaException unsupported functionality, for an instance of the MemoryArea class.

An example is the delete operation executed for an instance of the
ExplicitMemory class that is either already reserved for deletion or is
already deleted.

This exception class is not assumed to be created or thrown in a Java program.

The base class is MemoryManagementException.

206



Properties that can be Used During
Application Development

This chapter describes the properties that you can use while developing applications.

207



11. Properties that can be Used During Application Development

11.1 Properties that can be used in a batch application

This section describes the properties that you can use while developing the batch applications.

ejbserver.batch.currentdir property

Description

This property acquires the absolute path of the current directory in which the batch execution command
(cjexecjob) is executed.

Use this property in the batch applications.

Usage example

The following is a usage example:

File f = new File(System.getProperty("ejbserver.batch.currentdir") +
System.getProperty("file.separator") + "DataFile.txt");

208



Appendixes

209



A. JavaAPI Classes in which Leakage of the Java Heap Memory Occurs Easily

A. JavaAPI Classes in which Leakage of the Java Heap
Memory Occurs Easily

When you use a JavaAPI class, the instances of the JavaAPI class are created in the Java heap memory. However,
when the methods of the JavaAPI classes, described in Table A-1 and Table A-2, are used and the conditions
described in the tables are fulfilled, the instances other than the JavaAPI classes will also be also created in the Java
heap memory.

The created instances of the user-created classes are stored in the Java heap memory until the JavaAPI classes are
deleted. Therefore, before you realize it, the usage of the Java heap memory might increase and leakage of the Java
heap memory might occur.

However, as for the JavaAPI classes described in Table A-2, you can also delete the instances of the user-created
classes.

The classes in which leakage of the Java heap memory occurs easily are listed in separate tables below, depending on
the existence of the methods for deleting the instances. Table A-2 also describes the methods for deleting the user-
created instances.

Reference note

Some changes might be made in the version 08-00 and later versions regarding the JavaAPI classes in which leakage of the
Java heap memory occurs easily, and the conditions of leakage and the methods for deleting the instances of the user-created
classes.

Table A-1: List of classes in which leakage of the Java heap memory occurs easily (When no
deletion method exists)

JavaAPI class name Conditions for creating instances of the user-created classes in the Java heap memory

java.lang.ClassLoader When ProtectionDomain, specified in an argument of the defineClass () method, is
correlated to a user-created class.

java.net.URL When the URLStreamHander class, created by URLStreamHandlerFactory during the
creation of the URL class instances, is a user-created class.

java.text.DateFormat When super () is invoked by the constructor of a user-created class that inherits the
DateFormat class.

java.util.logging.Level When super () is invoked by the constructor of a user-created class that inherits the Level
class.

java.util.logging.LogMan When a user-created class, that inherits the Logger class in the argument of the addLogger ()

ager method, is specified.

java.util.logging.Logger When the getAnonymousLogger () method and the setParent () method are invoked by
a user-created class that inherits the Logger class.

javax.accessibility.Acce When a user class object is set up in a value of a pair that consists of a key and a value
ssibleBundle maintained in a user-implemented class corresponding to the resource bundle name specified in
the argument of the toDisplayString () method.

javax.print.attribute.st When super () is invoked by the constructor of a user-created class that inherits the
andard.MediaSize MediaSize class.

java.rmi.server.UnicastR When a user-created class is specified in the arguments (RMIClientSocketFactory and
emoteObject RMIServerSocketFactory) of the exportObject () method.

Table A-2: List of classes in which leakage of the Java heap memory occurs easily (When a
deletion method exists)

Conditions for creating instances of the user- Method for deleting the instances
JavaAPI class name -
created classes in the Java heap memory of the user-created classes
java.beans.Introspector When a user-created class is specified in an argument Execute the f1ushCaches ()
(beanClass) of the getBeanInfo () method. method and the
flushFromCaches () method.

210



A. JavaAPI Classes in which Leakage of the Java Heap Memory Occurs Easily

JavaAPI class name

Conditions for creating instances of the user-
created classes in the Java heap memory

Method for deleting the instances
of the user-created classes

java.beans.PropertyEditor
Manager

When a user-created class is specified in an argument
(editorClass)ofthe registerEditor ()
method.

Specify null ineditorClass of
the registerEditor () method.

java.util.logging.Logger

When a user-created class that inherits the Handler
class is specified in an argument of the
addHandler () method.

Execute the removeHandler ()
method.

javax.imageio.ImageReader

When a user-created class that inherits the
IIOReadWarningListener class is specified in
an argument of the
addIIOReadWarningListener () method.

Execute the
removeIIOReadWarningListen
er () method.

When a user-created class that inherits the
IIOReadProgressListener class is specified in
an argument of the
addIIOReadProgressListener () method.

Execute the
removeIIOReadProgressListe
ner () method.

When a user-created class that inherits the
IIOReadUpdateListener class is specified in an
argument of the

addIIOReadUpdateListener () method.

Execute the
removeIIOReadUpdateListene
r () method.

javax.imageio.ImageWriter

When a user-created class that inherits the
IIOWriteProgressListener class is specified
in an argument of the
addIIOWriteProgressListener () method.

Execute the
removelIIOWriteProgressList
ener () method.

When a user-created class that inherits the
IIOWriteWarningListener class is specified in
an argument of the
addIIOWriteWarningListener () method.

Execute the
removeIIOWriteWarningListe
ner () method.

javax.naming.InitialConte
xt

When a user-created class is specified in an argument
(propVal) of the addToEnvironment ()
method.

Execute the
removeFromEnvironment ()
method.

javax.naming.spi.NamingMa
nager

When a user-created class is specified in an argument
of the getContinuationContext () method.

Implement close () of the acquired
Context, and then execute super ().

javax.print.attribute.Has
hAttributeSet

When a user-created class is specified in an argument
of the add () method.

Execute the remove (Attribute)
method and remove (Class)
method.

211



B. JavaAPI Classes that Implicitly Generate Threads inside JavaVM

B. JavaAPI Classes that Implicitly Generate Threads inside

B.1

JavaVM

Typically, Java SE APIs generate threads when the java.lang. Thread class or a thread-related class of the
java.util.concurrent package is used.

However, some Java SE APIs implicitly generate threads. If you are using such APIs, you must take care because the
number of threads might increase unintentionally, and the C heap area might be consumed. This section describes the
APIs and functions that generate threads inside the JavaVM of Java SE 6.0.

Thread generation process list

This subsection describes threads that are generated inside JavaVM by the following APIs and functions:

e GUI related APIs

¢ JMX related APIs

¢ JNDI related APIs

¢ RMI related APIs

* Other APIs and functions

(1) GUI related APIs

212

The following threads are generated by GUI related APIs.

No specific conditions

If you use the GUI functionality of AWT or Swing, threads are generated. The GUI related APIs generate
maximum six threads in a Java process.

java.awt.EventQueue class
One thread is generated for each EventQueue instance.

java.awt.FileDialog class

If you invoke the show () method, one thread is generated. A maximum of one thread is generated for each
FileDialog instance, when this method is invoked.

java.awt.image.renderable.RenderableImageProducer class

If you invoke the startProduction () method, one thread is generated.

java.awt.print.PrinterJob class

If you invoke the following methods, one thread is generated:
* print () (both types)
e printDialog () (both types)
* pageDialog () (both types)

java.awt.TrayIcon class
Ifthe Java.awt.TrayIcon instance is generated in a UNIX environment, one thread is generated for each
instance.

javax.swing.JEditorPane class

One thread is generated for each JEditorPane instance.
javax.swing.JFileChooser class

One thread is generated for each javax.swing.JFileChooser instance.
javax.swing.JTable class

If you invoke print () (all five types), one thread is generated.



B. JavaAPI Classes that Implicitly Generate Threads inside JavaVM

javax.swing.Timer

If you invoke the start () or restart () method, one thread is generated. A maximum of one thread is
generated for each Timer instance, when this method is invoked.

javax.swing.text.LayoutQueue Class

If you invoke the addTask () method, one thread is generated. A maximum of one thread is generated for each
LayoutQueue instance when this method is invoked.

javax.swing.text.JTextComponent class

When you invoke print () (all three types), one thread is generated.

javax.swing.text.AsyncBoxView class

If you invoke the following methods, a LayoutQueue instance is created inside the API, and a thread is
generated in its extension:

¢ preferenceChanged()
¢ replace()
e setSize ()
javax.swing.text.html.FormView class
If you invoke the submitData () method, one thread is generated.
Using Applet
If you use Applet in a UNIX environment and a warning icon is displayed, one thread is generated.

Using the Input method

If you use the Input method provided in java.awt.imand java.awt.im. spi, threads are generated.
There can be a maximum of one such thread in a Java process.

(2) JMX related APIs
The following threads are generated by APIs related with JMX.

Resource monitoring in SNMP (Simple Network Management Protocol)
If you monitor or manage resources by using SNMP, maximum nine threads are generated.

javax.management.remote.rmi. RMIConnection interface
One thread is generated for each instance of the class that implements the RMIConnection interface.
javax.management.remote.rmi.RMIConnector class
If you invoke the connect () (both types) method, two threads are generated for one established connection.

(3) JNDI related APIs
The following threads are generated by APIs related with JNDI.

No specific conditions
Two threads are generated for one JNDI context by using the naming and directory operations.

javax.naming.event.EventContext interface

If you invoke the addNamingListene () (both types) method of the class that implements the Event Context
interface, one thread is generated. Maximum one thread is generated for each directory context when this method
is invoked.

(4) RMI related APIs
The following threads are generated by RMI related APIs:

RMI server-side
The following threads are generated inside the JavaVM.

* Maximum six threads are generated, when there are no specific conditions. These threads are maintained until
the end of the JavaVM process.

213



B. JavaAPI Classes that Implicitly Generate Threads inside JavaVM

¢ When waiting for connections from the RMI client, generate the threads equal to the number of TCP ports that
have exported remote objects.

« Ifthere is a method invocation from the RMI client, one thread is generated to control that method.

* One thread is generated for invoking the unreferenced () method of the remote object that implements
the java.rmi.server.Unreferenced interface.

RMI client side
Threads equal to the number of connected RMI servers are generated.

(5) Other APIs and functions

214

The following threads are created by other APIs and functions:

HTTP/HTTPS communication
Two threads are generated to control Keep Alive in HTTP/HTTPS communication. There can be a maximum
of two such threads in a Java process.
DNS communication
If you execute the DNS communication in a Windows environment, one thread is generated.
There can be a maximum of one such thread in a Java process.
Explicit execution of finalize
If you invoke the runFinalization () method of the java.lang.System class or
java.lang.Runtime class, one thread is generated.
Creating an external processes
If you create external processes by using the java.lang.ProcessBuilder class in UNIX environment, one
thread is generated. There can be a maximum of one such thread for each java.lang.Process instance.
java.nio.channels.Selector class
If you use the Selector class in Windows environment, one thread is generated each time the number of
registrations of the channel to the Selector instance increases by 1,024.
java.util.prefs.Preferences class
If you use the Preferences class, one thread is created. There can be a maximum of one such thread in a Java
process.
javax.print.PrintServiceLookup class
When you use javax.print.PrintServiceLookup, one thread is generated. There can be a maximum of
one such thread in a Java process.
sun.security.pkcsll.SunPKCS11 class

One thread is created for each sun.security.pkcsll.SunPKCS11 instance.



Index

Symbols

@ApplicationException 39
@AroundInvoke 56
@AssociationOverride 62
@AssociationOverrides 63
@AttributeOverride 63
@AttributeOverrides 64
@Basic 65

@Column 66
@ColumnResult 67
@DeclareRoles 34
@DenyAll 34
@DiscriminatorColumn 68
@DiscriminatorValue 69
@EJB 41

@EJBs 43
@Embeddable 70
@Embedded 70
@Embeddedld 70
@Entity 71
@EntityListeners 71
@EntityResult 72
@Enumerated 73
@ExcludeClassInterceptors
@ExcludeDefaultInterceptors
@ExcludeDefaultListeners
@ExcludeSuperclassListeners
@FieldResult 74
@GeneratedValue 75
@Id 76

@IldClass 76
@Inheritance 77

@Init 43

@Interceptors 56
@JoinColumn 78
@JoinColumns 80
@JoinTable 81

@Lob 82

@Local 44
@LocalHome 45
@ManyToMany 83
@ManyToOne 84
@MapKey 86
@MappedSuperclass 87
@NamedNativeQueries 87
@NamedNativeQuery 87
@NamedQueries 89
@NamedQuery 90
@OneToMany 91
@OneToOne 92
@OrderBy 94
@PermitAll 35
@PersistenceContext 95
@PersistenceContexts 96
@PersistenceProperty 97
@PersistenceUnit 97

56

74

@PersistenceUnits 98
@PostActivate 46
@PostConstruct 28
@PostLoad 99
@PostPersist 99
@PostRemove 99
@PostUpdate 99
@PreDestroy 28
@PrePassivate 46
@PrePersist 100
@PreRemove 100
@PreUpdate 100
@PrimaryKeyJoinColumn 100
@PrimaryKeyJoinColumns 102
@QueryHint 102
@Remote 46
@RemoteHome 47
@Remove 47

@Resource 28
@Resources 33
@RolesAllowed 35
@RunAs 35
@SecondaryTable 103
@SecondaryTables 104
@SequenceGenerator 105
@SqlResultSetMapping 106
@SqlResultSetMappings 107
@Stateful 51

@Stateless 52

@Table 108
@TableGenerator 109
@Temporal 111
@Timeout 53
@TransactionAttribute 53
@TransactionManagement 54
@Transient 112
@Version 112

A

annotation 8
API
EJB client application 133
JavaVM 179
performance analysis trace 175
user log functionality 147
Web Container 129
APIs used in TP1 inbound adapter to integrate with
OpenTP1 143
APIs used to output audit logs 173

B

BasicExplicitMemory class 181
BasicExplicitMemory constructor (Format 1) 181
BasicExplicitMemory constructor (Format 2) 181

215



Index

C

cjlogrecordclass 149
com.hitachi.software.web.dbsfo.DatabaseAccessException
130

com.hitachi.software.web.dbsfo.SessionOperationExceptio
n 130

com.hitachi.software.web.eadssfo.SessionOperationExcepti
on 131

com.hitachi.software.ejb.security.base.authentication.Invali
dPasswordException 141

com.hitachi.software.ejb.security.base.authentication.Invali
dUserNameException 141

com.hitachi.software.ejb.security.base.authentication.NotFo
undServerException 141

countExplicitMemories method 183

CprfTrace class 177

create method (format 1) 151

create method (format 10) 156

create method (format 2) 151

create method (format 3) 152

create method (format4) 152

create method (format 5) 153

create method (format 6) 153

create method (format 7) 154

create method (format 8) 154

create method (format9) 155

createp method (format 1) 156

createp method (format 10) 163

createp method (format 2) 157

createp method (format 3) 158

createp method (format4) 158

createp method (format 5) 159

createp method (format 6) 160

createp method (format 7) 160

createp method (format 8) 161

createp method (format 9) 162

createrb method (format 1) 163

createrb method (format 10) 170

createrb method (format 2) 164

createrb method (format 3) 165

createrb method (format 4) 166

createrb method (format 5) 166

createrb method (format 6) 167

createrb method (format 7) 168

createrb method (format 8) 169

createrb method (format 9) 169

D

Dependency Injection 127
dependency injection supported on Cosminexus application
server 127

E

EJBClientlnitializer class 135
Error check (common error check) of the process that
controls the explicit memory block 205
exception class
API of EJB client application 141
exception class (API used with EJB client applications) 141

216

Exception classes (APIs used in Web container) 130
Exception classes (APIs used with JavaVM) 206
Exception classes of the Web container 130
ExplicitMemory class 183

F

freeMemory method 184

G

getEdenFreeMemory method 199
getEdenMaxMemory method 200
getEdenTotalMemory method 200
getMemoryUsage method 184
getName method 182
getPermFreeMemory method 201
getPermMaxMemory method 201
getPermTotalMemory method 201
getRequestTimeoutConfig method 136
getRootApInfo method 177
getSurvivorFreeMemory method 202
getSurvivorMaxMemory method 202
getSurvivorTotalMemory method 203
getTenuredFreeMemory method 203
getTenuredMaxMemory method 203
getTenuredTotalMemory method 204
getUserTransaction method 140

H

HttpSessionLimitExceededException class 130

initialize method 135
isActive method 185
isReclaimed method 186

J

JavaAPI Classes in which Leakage of Java Heap Memory
Occurs Easily 210

javax.annotation package 28

javax.annotation.security package 34

javax.ejb package 37

javax.interceptor package 56

javax.persistence package 58

JP.co.Hitachi.soft jvm.MemoryArea.InaccessibleMemoryA
reaException 206

JP.co.Hitachi.soft.jvm.MemoryArea.MemoryManagementE
xception 206

L

List of APIs used by EJB client applications 134
List of APIs used in performance analysis trace 176
List of APIs used in user log functionality = 148
List of APIs used with JavaVM 180
list of Cosminexus API that differ in operation from Timer
and Work Manager for Application Servers specification
146




M

MemoryArea class 198
Memorylnfo class 199

N

newArray method (format 1) 186
newArray method (format 2) 187
newlnstance method (format 1) 188
newlnstance method (format 2) 189
newlnstance method (format 3) 191

P

Properties that can be used in a batch application

R

208

reclaim method (format 1) 192

reclaim method (format 2) 193

reclaim method (format 3) 193

reclaim method (format 4) 194
RequestTimeoutConfig class 137
RequestTimeoutConfigFactory class 136

S

Scope for the supported annotations 8

Scope of support for the annotations included in the
javax.annotation.security package 10

Scope of support for the annotations included in the
javax.annotation package 8

Scope of support for the annotations included in the
javax.ejb package 13

Scope of support for the annotations included in the
javax.interceptor package 17

Scope of support for the annotations included in the
javax.jws package 18

scope of support for the annotations included in the
javax.persistence package 18

Scope of support for the annotations included in the
javax.xml.ws package 22

setName method 195

setRequestTimeout method (format 1) 137

setRequestTimeout method (format 2) 138

support range of annotations included in javax.xml.ws.soap

package 22

support range of annotations included in javax.xml.ws.spi

package 23

T

toString method 195
totalMemory Method 196

V)

unsetRequestTimeout method 138
usedMemory method 196
UserTransactionFactory class 140

Index

217



	API Reference Guide
	Summary of amendments
	Preface
	Contents
	1. Overview of APIs and Tag Libraries
	1.1 Types of APIs and Tag Libraries
	1.2 Format for describing annotation
	1.3 Coding Format of APIs

	2. Annotations and Dependency Injection Supported by Application Server
	2.1 Scope for the supported annotations
	2.1.1 Scope of support for the annotations included in the javax.annotation package
	2.1.2 Scope of support for the annotations included in the javax.annotation.security package
	2.1.3 Scope of support for the annotations included in the javax.ejb package
	2.1.4 Scope of support for the annotations included in the javax.interceptor package
	2.1.5 Scope of support for the annotations included in the javax.jws package
	2.1.6 Scope of support for the annotations included in the javax.persistence package
	2.1.7 Scope of support for the annotations included in the javax.servlet.annotation package
	2.1.8 Scope of support for the annotations included in the javax.xml.ws package
	2.1.9 Support range of annotations included in the javax.xml.ws.soap package
	2.1.10 Support range of annotations included in the javax.xml.ws.spi package
	2.1.11 List of supported CDI annotations
	2.1.12 List of supported JSF annotations
	2.1.13 List of supported Bean Validation annotations

	2.2 javax.annotation package
	2.2.1 @PostConstruct
	2.2.2 @PreDestroy
	2.2.3 @Resource
	2.2.4 @Resources

	2.3 javax.annotation.security package
	2.3.1 @DeclareRoles
	2.3.2 @DenyAll
	2.3.3 @PermitAll
	2.3.4 @RolesAllowed
	2.3.5 @RunAs

	2.4 javax.ejb package
	2.4.1 @AccessTimeout
	2.4.2 @AfterBegin
	2.4.3 @AfterCompletion
	2.4.4 @ApplicationExceptionn
	2.4.5 @Asynchronous
	2.4.6 @BeforeCompletion
	2.4.7 @ConcurrencyManagement
	2.4.8 @DependsOn
	2.4.9 @EJB
	2.4.10 @EJBs
	2.4.11 @Init
	2.4.12 @Local
	2.4.13 @LocalBean
	2.4.14 @LocalHome
	2.4.15 @Lock
	2.4.16 @PostActivate
	2.4.17 @PrePassivate
	2.4.18 @Remote
	2.4.19 @RemoteHome
	2.4.20 @Remove
	2.4.21 @Schedule
	2.4.22 @Schedules
	2.4.23 @Singleton
	2.4.24 @Startup
	2.4.25 @Stateful
	2.4.26 @Stateless
	2.4.27 @Timeout
	2.4.28 @TransactionAttribute
	2.4.29 @TransactionManagement

	2.5 javax.faces.bean package
	2.5.1 @ManagedBean

	2.6 javax.interceptor package
	2.6.1 @AroundInvoke
	2.6.2 @ExcludeClassInterceptors
	2.6.3 @ExcludeDefaultInterceptors
	2.6.4 @Interceptors

	2.7 javax.persistence package
	2.7.1 @AssociationOverride
	2.7.2 @AssociationOverrides
	2.7.3 @AttributeOverride
	2.7.4 @AttributeOverrides
	2.7.5 @Basic
	2.7.6 @Column
	2.7.7 @ColumnResult
	2.7.8 @DiscriminatorColumn
	2.7.9 @DiscriminatorValue
	2.7.10 @Embeddable
	2.7.11 @Embedded
	2.7.12 @EmbeddedId
	2.7.13 @Entity
	2.7.14 @EntityListeners
	2.7.15 @EntityResult
	2.7.16 @Enumerated
	2.7.17 @ExcludeDefaultListeners
	2.7.18 @ExcludeSuperclassListeners
	2.7.19 @FieldResult
	2.7.20 @GeneratedValue
	2.7.21 @Id
	2.7.22 @IdClass
	2.7.23 @Inheritance
	2.7.24 @JoinColumn
	2.7.25 @JoinColumns
	2.7.26 @JoinTable
	2.7.27 @Lob
	2.7.28 @ManyToMany
	2.7.29 @ManyToOne
	2.7.30 @MapKey
	2.7.31 @MappedSuperclass
	2.7.32 @NamedNativeQueries
	2.7.33 @NamedNativeQuery
	2.7.34 @NamedQueries
	2.7.35 @NamedQuery
	2.7.36 @OneToMany
	2.7.37 @OneToOne
	2.7.38 @OrderBy
	2.7.39 @PersistenceContext
	2.7.40 @PersistenceContexts
	2.7.41 @PersistenceProperty
	2.7.42 @PersistenceUnit
	2.7.43 @PersistenceUnits
	2.7.44 @PostLoad
	2.7.45 @PostPersist
	2.7.46 @PostRemove
	2.7.47 @PostUpdate
	2.7.48 @PrePersist
	2.7.49 @PreRemove
	2.7.50 @PreUpdate
	2.7.51 @PrimaryKeyJoinColumn
	2.7.52 @PrimaryKeyJoinColumns
	2.7.53 @QueryHint
	2.7.54 @SecondaryTable
	2.7.55 @SecondaryTables
	2.7.56 @SequenceGenerator
	2.7.57 @SqlResultSetMapping
	2.7.58 @SqlResultSetMappings
	2.7.59 @Table
	2.7.60 @TableGenerator
	2.7.61 @Temporal
	2.7.62 @Transient
	2.7.63 @Version
	2.7.64 Correspondence between the annotations and O/R mapping

	2.8 javax.servlet.annotation package
	2.8.1 @HandlesTypes
	2.8.2 @HttpConstraint
	2.8.3 @HttpMethodConstraint
	2.8.4 @MultipartConfig
	2.8.5 @ServletSecurity
	2.8.6 @WebInitParam
	2.8.7 @WebFilter
	2.8.8 @WebListener
	2.8.9 @WebServlet

	2.9 Dependency Injection supported on Cosminexus Application Server

	3. APIs Used in the Web Container
	3.1 Exception classes

	4. APIs Used by EJB Client Applications
	4.1 List of APIs used by EJB client applications
	4.2 EJBClientInitializer Class
	Initialize method

	4.3 RequestTimeoutConfigFactory Class
	getRequestTimeoutConfig method

	4.4 RequestTimeoutConfig Class
	setRequestTimeout method (format 1)
	setRequestTimeout method (format 2)
	unsetRequestTimeout method

	4.5 UserTransactionFactory class
	getUserTransaction method

	4.6 Exception Class

	5. APIs Used When Using the TP1 Inbound Adapter to Link with OpenTP1(INTENTIONALLY DELETED)
	5.1 (INTENTIONALLY DELETED)

	6. APIs Used in the Asynchronous Parallel Processing of Threads
	6.1 List of Cosminexus APIs that differ in operation from Timer and Work Manager for Application Servers specifications

	7. APIs Used in the User Log Functionality
	7.1 List of APIs used in the user log functionality
	7.2 CJLogRecord Class
	create Method (Format 1)
	create Method (Format 2)
	create Method (Format 3)
	create Method (Format 4)
	create Method (Format 5)
	create Method (Format 6)
	create Method (Format 7)
	create Method (Format 8)
	create Method (Format 9)
	create Method (Format 10)
	createp Method (Format 1)
	createp Method (Format 2)
	createp Method (Format 3)
	createp Method (Format 4)
	createp Method (Format 5)
	createp Method (Format 6)
	createp Method (Format 7)
	createp Method (Format 8)
	createp Method (Format 9)
	createp Method (Format 10)
	createrb Method (Format 1)
	createrb Method (Format 2)
	createrb Method (Format 3)
	createrb Method (Format 4)
	createrb Method (Format 5)
	createrb Method (Format 6)
	createrb Method (Format 7)
	createrb Method (Format 8)
	createrb Method (Format 9)
	createrb Method (Format 10)


	8. APIs Used to Output Audit Logs (INTENTIONALLY DELETED)
	8.1 (INTENTIONALLY DELETED)

	9. APIs Used in Performance Analysis Trace
	9.1 List of APIs used in performance analysis trace
	9.2 CprfTrace Class
	getRootApInfo Method


	10. APIs Used with JavaVM
	10.1 List of APIs used with JavaVM
	10.2 BasicExplicitMemory Class
	BasicExplicitMemory constructor (Format 1)
	BasicExplicitMemory constructor (Format 2)
	getName method

	10.3 ExplicitMemory Class
	countExplicitMemories Method
	freeMemory method
	getMemoryUsage Method
	isActive Method
	isReclaimed Method
	newArray method (format 1)
	newArray method (format 2)
	newInstance method (format 1)
	newInstance method (format 2)
	newInstance method (format 3)
	reclaim Method (Format 1)
	reclaim Method (Format 2)
	reclaim Method (Format 3)
	reclaim Method (Format 4)
	setName method
	toString method
	totalMemory method
	usedMemory method

	10.4 MemoryArea Class
	10.5 MemoryInfo Class
	getEdenFreeMemory Method
	getEdenMaxMemory Method
	getEdenTotalMemory Method
	getPermFreeMemory Method
	getPermMaxMemory Method
	getPermTotalMemory Method
	getSurvivorFreeMemory Method
	getSurvivorMaxMemory Method
	getSurvivorTotalMemory Method
	getTenuredFreeMemory Method
	getTenuredMaxMemory Method
	getTenuredTotalMemory Method

	10.6 Error check (common error check) of the process that controls the Explicit memory block
	10.7 Exception classes

	11. Properties that can be Used During Application Development
	11.1 Properties that can be used in a batch application
	ejbserver.batch.currentdir property


	Appendixes
	A. JavaAPI Classes in which Leakage of the Java Heap Memory Occurs Easily
	B. JavaAPI Classes that Implicitly Generate Threads inside JavaVM
	B.1 Thread generation process list


	Index


