
uCosminexus Application Server

Expansion Guide

3020-3-Y08-20(E)

■ Relevant program products
See the manual uCosminexus Application Server Overview.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law, and USA export
control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
Active Directory is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.

AX2000 is a product name of A10 Networks, Inc.

F5, F5 Networks, BIG-IP and iControl are trademarks or registered trademarks of F5 Networks, Inc. in the U.S. and certain other countries.

All Borland brand and product names are trademarks or registered trademarks of Borland Software Corporation in the United States and other
countries.

BSAFE is a registered trademark or a trademark of EMC Corporation in the United States and/or other countries

CORBA is a registered trademark of Object Management Group, Inc. in the United States.

HP-UX is a product name of Hewlett-Packard Development Company, L.P. in the U.S. and other countries.

IIOP is a trademark of Object Management Group, Inc. in the United States.

Linux(R) is a registered trademark or trademark of Linus Torvalds in the U.S. and/or other countries.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

MyEclipse is a product name of Genuitec Company in the United States.

OMG, CORBA, IIOP, UML, Unified Modeling Language, MDA and Model Driven Architecture are either registered trademarks or
trademarks of Object Management Group, Inc. in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates.

RSA is a registered trademark or a trademark of EMC Corporation in the United States and/or other countries.

SOAP is an XML-based protocol for sending messages and making remote procedure calls in a distributed environment.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc., in the United States
and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

SQL Server is a registered trademark or a trademark of Microsoft Corporation in the United States and other countries. UNIX is a registered
trademark of The Open Group in the United States and other countries.

VisiBroker is a trademark or registered trademark of Micro Focus IP Development Limited or its subsidiaries or affiliated companies in the
United Kingdom, United States and other countries.

Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

The other company names and product names are either trademarks or registered trademarks of the respective companies.

Eclipse is an open development platform for tools integration provided by Eclipse Foundation, Inc., an open source community for
development tool providers.

Other product and company names mentioned in this document may be the trademarks of their respective companies.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this document
Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used by the manufacturer,
or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use of a trademark in this
document should not be regarded as affecting the validity of the trademark.

■ Microsoft product screen shots
Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names:

Abbreviation Full name or meaning

Active Directory Microsoft(R) Active Directory(R)

Microsoft IIS Microsoft IIS 7.0 Microsoft(R) Internet Information Services 7.0

Microsoft IIS 7.5 Microsoft(R) Internet Information Services 7.5

SQL Server SQL Server 2005 Microsoft(R) SQL Server 2005

SQL Server 2008 Microsoft(R) SQL Server 2008

Microsoft(R) SQL Server 2008 R2

SQL Server 2012 Microsoft(R) SQL Server 2012

JDBC driver of
SQL Server

SQL Server JDBC Driver Microsoft(R) SQL Server JDBC Driver 3.0

Microsoft(R) JDBC Driver 4.0 for SQL Server

Windows Windows Server
2008

Windows Server
2008 x86

Microsoft(R) Windows Server(R) 2008 Standard 32-bit

Microsoft(R) Windows Server(R) 2008 Enterprise 32-bit

Windows Server
2008 x64

Microsoft(R) Windows Server(R) 2008 Standard

Microsoft(R) Windows Server(R) 2008 Enterprise

Windows Server
2008 R2

Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server
2012

Windows Server
2012 Standard

Microsoft(R) Windows Server(R) 2012 Standard

Windows Server
2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Datacenter

Windows XP Microsoft(R) Windows(R) XP Professional Operating System

Windows Vista Windows Vista
Business

Microsoft(R) Windows Vista(R) Business(32 bit)

Windows Vista
Enterprise

Microsoft(R) Windows Vista(R) Enterprise(32 bit)

Windows Vista
Ultimate

Microsoft(R) Windows Vista(R) Ultimate(32 bit)

Windows 7 Windows 7 x86 Microsoft(R) Windows(R) 7 Professional(32 bit)

Microsoft(R) Windows(R) 7 Enterprise(32 bit)

Microsoft(R) Windows(R) 7 Ultimate(32 bit)

Windows 7 x64 Microsoft(R) Windows(R) 7 Professional(64 bit)

Microsoft(R) Windows(R) 7 Enterprise(64 bit)

Microsoft(R) Windows(R) 7 Ultimate(64 bit)

Windows 8 Windows 8 x86 Windows(R) 8 Pro(32 bit)

Windows(R) 8 Enterprise(32 bit)

Windows 8 x64 Windows(R) 8 Pro(64 bit)

Windows(R) 8 Enterprise(64 bit)

Windows Server Failover Cluster Windows Server(R) Failover Cluster

Note that Windows 32 bit and Windows 64 bit are sometimes respectively referred to as Windows x86 and Windows x64.

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The software
described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of the terms and
conditions governing your use of the software and documentation, including all warranty rights, limitations of liability, and disclaimers of
warranty.

Material contained in this document may describe Hitachi products not available or features not available in your country.

No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in Japan.

■ Issued
Aug. 2015: 3020-3-Y08-20(E)

■ Copyright
All Rights Reserved. Copyright (C) 2013, 2015, Hitachi, Ltd.

Summary of amendments

The following table lists changes in this manual (3020-3-Y08-20(E)) and product changes related to this manual.

Changes Location

Using the CTM, it was able to scheduling and load balancing requests. 3

The following table lists changes in the manual 3020-3-Y08-10(E) for uCosminexus Application Server 09-50,
uCosminexus Application Server(64) 09-50, uCosminexus Client 09-50, uCosminexus Developer 09-50,
uCosminexus Service Architect 09-50, uCosminexus Service Platform 09-50, and uCosminexus Service
Platform(64) 09-50 and product changes related to that manual:

Additions and Changes

The execution of a batch job integrated with JP1/Advanced Shell is now supported.

The RAR file of SQL Server has been changed to DBConnector_SQLServer_CP.rar, which is a RAR file common to the SQL
Server versions.

Invoking Enterprise Bean of EJB3.0 or later has been added to requests, which you cannot schedule in CTM.

The EADs session failover functionality, which implements the session failover functionality by integrating with EADs has been added.

The following functionality, which control migration of objects based on the reference relation with the explicit management heap
functionality have been added.

• Functionality that controls object movement to the Explicit memory block

• Functionality for specifying classes for which application of the explicit management heap functionality is to be excluded

Functionality that you can use to execute release processing of the Explicit memory block by using the javagc command has been
added.

The description on notes has been moved from the release notes.

In addition to the above changes, minor editorial corrections have been made.

Preface
For details on the prerequisites before reading this manual, see the manual uCosminexus Application Server Overview.

■ Non-supported functionality
Some functionality described in this manual is not supported. Non-supported functionality includes:

• Audit log functionality

• Compatibility functionality

• Cosminexus DABroker Library

• Cosminexus Reliable Messaging

• Cosminexus TPBroker and VisiBroker

• Cosminexus Web Service - Security

• Cosminexus XML Security - Core functionality

• JP1 linkage functionality

• Management portal functionality

• Migration functionality

• SOAP applications complying with specifications other than JAX-WS 2.1

• uCosminexus OpenTP1 linkage functionality

• Virtualized system functionality

• XML Processor high-speed parse support functionality

■ Non-supported compatibility functionality
"Compatibility functionality" in the above list refers to the following functionality:

• Basic mode

• Check of JSP source compliance (cjjsp2java) with JSP1.1 and JSP1.2 specifications

• Database connection using Cosminexus DABroker Library

• EJB client application log subdirectory exclusive mode

• J2EE application test functionality

• Memory session failover functionality

• Servlet engine mode

• Simple Web server functionality

• Switching multiple existing execution environments

• Using EJB 2.1 and Servlet 2.4 annotation

I

Contents

1 Application Server Functionality 1

1.1 Classification of functionality 2

1.1.1 Functionality as an application execution platform 4

1.1.2 Functionality for operating and maintaining an application execution platform 5

1.1.3 Functionality and corresponding manuals 5

1.2 Functionality corresponding to the purpose of the system 8

1.2.1 Functionality used when executing batch applications 8

1.2.2 Functionality for scheduling Enterprise Beans using CTM 10

1.2.3 Other extended functionality 11

1.3 Description of the functionality described in this manual 13

1.3.1 Meaning of classification 13

1.3.2 Example of tables describing the classification 13

1.4 Main updates in the functionality of Application Server 09-50 15

2 Executing Applications by Using Batch Servers 19

2.1 Organization of this chapter 20

2.2 Overview of the execution environment of batch applications 21

2.2.1 Systems executing batch applications 21

2.2.2 Procedure for operating batch servers and batch applications 22

2.2.3 Setup and operation of the batch application execution environment 25

2.2.4 Using multibyte characters 28

2.3 Batch application execution functionality 29

2.3.1 Overview of the batch application execution functionality 29

2.3.2 Executing batch applications 32

2.3.3 Forcefully stopping a batch application 34

2.3.4 Displaying list of batch application information 36

2.3.5 Log output of a batch application 37

2.3.6 Executing commands used in a batch application 37

2.3.7 Implementing a batch application (Batch application creation rules) 39

2.3.8 Implementing a batch application (When connecting to resources) 41

2.3.9 Implementing a batch application (when accessing EJB) 44

2.3.10 Settings in the execution environment (batch server settings) 45

2.3.11 Points to be considered when creating a batch application 46

2.4 EJB access functionality 51

2.4.1 Functionality that you can use with EJB access 51

2.4.2 Settings in the execution environment (Batch server settings) 52

2.5 Naming management functionality 53

i

2.5.1 Naming management functionality that you can use on a batch server 53

2.5.2 Settings in the execution environment (Batch server settings) 54

2.6 Overview of resource connections and transaction management 56

2.7 Resource connection functionality 57

2.7.1 Databases that can be connected 57

2.7.2 How to connect to resources 58

2.7.3 Types of DB Connector (RAR file) 58

2.7.4 How to use a resource adapter 59

2.7.5 How to set up resource adapters 62

2.7.6 Procedure for setting a resource adapter 63

2.7.7 Settings in the execution environment 64

2.8 Transaction management 67

2.8.1 Overview of transaction management when connecting to resources 67

2.8.2 Settings in the execution environment (Batch server settings) 67

2.9 Garbage collection control functionality 68

2.9.1 Overview of garbage collection control functionality 68

2.9.2 Flow of garbage collection control processing 69

2.9.3 Settings in the execution environment (batch server settings) 72

2.10 Container extension libraries 73

2.10.1 Overview of container extension libraries 73

2.10.2 Settings in the execution environment (Batch server settings) 73

2.11 JavaVM functionality 75

2.11.1 Overview of JavaVM functionality 75

2.11.2 Settings in the execution environment (Batch server settings) 76

2.12 Migrating from Java applications 77

2.12.1 Implementing batch applications (Migrating from Java applications) 77

2.12.2 Settings of the execution environment (Setting batch servers) 78

2.13 Integrating with JP1/AJS 80

2.13.1 Settings for integrating with JP1/AJS 80

2.13.2 Settings for integrating with JP1/AJS, BJEX, and JP1/Advanced Shell 81

3 Scheduling and Load Balancing of Requests Using CTM 83

3.1 Topics covered by this chapter 84

3.2 Overview of request scheduling using CTM 85

3.2.1 Purpose of request scheduling 85

3.2.2 Type of requests that can be controlled by CTM 85

3.2.3 Client applications that send requests 86

3.2.4 Processing performed for using CTM 86

3.2.5 Basis on which to create schedule queues and sharing schedule queues 87

3.2.6 Length of a schedule queue 90

3.3 Process configuration for using CTM 91

Contents

ii

3.3.1 Configuration and deployment of CTM processes 91

3.3.2 Guidelines for deploying processes 92

3.3.3 CTM daemon 94

3.3.4 CTM regulator 95

3.3.5 CTM domains and CTM domain managers 96

3.3.6 Global CORBA Naming Service 99

3.4 Flow-volume control of requests 102

3.4.1 Overview of flow-volume control of requests 102

3.4.2 Settings in the execution environment 103

3.5 Controlling priority of requests 105

3.6 Dynamically changing the number of concurrent executions of requests 106

3.6.1 Mechanism of dynamically changing the number of concurrent executions 106

3.6.2 Values that can be specified for the number of concurrent executions 108

3.6.3 Checking the operating status of CTM schedule queues 108

3.6.4 Changing the maximum number of concurrent executions for a CTM schedule queue 109

3.7 Locking and controlling requests 111

3.7.1 Overview of locking and controlling requests 111

3.7.2 Replacing a J2EE application while the system is online 111

3.7.3 Locking and controlling requests for a J2EE application 113

3.7.4 Locking and controlling requests for a schedule queue 114

3.7.5 Holding requests if a J2EE server terminates abnormally 116

3.7.6 Specifying settings in the execution environment 117

3.8 Load balancing of requests 118

3.8.1 Times when load balancing takes place 118

3.8.2 Watching the load status 120

3.8.3 Specifying settings in the execution environment 120

3.9 Monitoring and retaining request queues 121

3.9.1 Overview of monitoring requests remaining in a schedule queue 121

3.9.2 Example of monitoring a schedule queue 121

3.9.3 Specifying settings in the execution environment 123

3.9.4 Notes 123

3.10 Connection with the TPBroker/OTM client by using the gateway functionality in CTM 124

4 Scheduling of Batch Applications 127

4.1 Organization of this chapter 128

4.2 Overview of the scheduling functionality 129

4.2.1 Advantages of scheduling batch applications 129

4.2.2 Prerequisites for using the scheduling functionality 130

4.2.3 Procedure for executing the batch applications using the scheduling functionality 130

4.3 Systems using the scheduling functionality 133

4.3.1 Configuring a system using the scheduling functionality 133

Contents

iii

4.3.2 Processes required for the scheduling functionality 133

4.4 Setting and operating the batch application execution environment when using the scheduling
functionality 135

4.5 Executing batch applications by using the scheduling functionality 136

4.5.1 Status transition of batch applications using the scheduling functionality 136

4.5.2 Executing batch applications 136

4.5.3 Forced stopping of batch applications 137

4.5.4 Displaying a list of batch application information 137

4.5.5 Executing the commands used in batch applications 139

4.6 Migrating to the environment using the scheduling functionality 141

4.7 Settings of the execution environment 142

4.8 Points to be considered when using the scheduling functionality 144

5 Inheriting Session Information Between J2EE Servers 145

5.1 Organization of this chapter 146

5.2 Overview of the session failover functionality 147

5.2.1 Benefits of using the session failover functionality 147

5.2.2 Types of session failover functionality 148

5.3 Session management using a global session 150

5.3.1 Global session information 150

5.3.2 Information included in the global session information 150

5.3.3 HTTP session attributes that are inherited as global session information 151

5.4 Prerequisites 154

5.4.1 Prerequisite configuration 154

5.4.2 Prerequisite settings 156

5.5 Types of session failover functionality and the differences between the types 159

5.5.1 Overview of the database session failover functionality 159

5.5.2 Overview of the EADs session failover functionality 162

5.5.3 Differences between session failover functionality 165

5.6 Functionality that you can set when using the session failover functionality 169

5.6.1 Inhibiting the session failover functionality 169

5.6.2 Defining refer-only requests of an HTTP session 172

5.7 Functionality executed when using a session failover functionality 175

5.7.1 Concurrent execution with the same session ID 175

5.7.2 Inheriting global session information when starting a web application 175

5.7.3 Reducing an HTTP session 176

5.8 Estimating memory 179

5.8.1 Estimating memory used in serialize processing 179

5.8.2 Estimating size of HTTP session attribute information 179

5.8.3 Estimating disk space of a database 182

5.8.4 Estimating memory of an EADs server 184

Contents

iv

5.9 Precautions 185

5.9.1 HTTP session that is implicitly created in JSP 185

5.9.2 Processing considering that the same objects are registered in different HTTP sessions 185

5.9.3 Handling authentication information when inheriting session information 186

5.9.4 Impact on servlet API 186

6 Database session failover functionality 189

6.1 Organization of this chapter 190

6.2 Application procedures 191

6.3 Selecting a mode in which performance is important (disabling integrity mode) 194

6.3.1 Operations performed when disabling integrity mode 194

6.3.2 Deleting global session information 194

6.3.3 Notes 195

6.4 Processing implemented in the database session failover functionality 196

6.4.1 Processing when starting an application 196

6.4.2 Processing when executing a request 199

6.4.3 Processing when validity of global session information expires 204

6.4.4 Listeners that operate in association with events occurring in the database session failover functionality 205

6.4.5 Locking global session information (when integrity mode is enabled) 206

6.4.6 Operations performed when a failure occurs during global session information operation 209

6.5 Definitions in cosminexus.xml 226

6.6 J2EE server settings 227

6.7 Web application settings 233

6.8 Database settings 234

6.8.1 Permissions required for connecting to a database 234

6.8.2 Creating database tables 234

6.8.3 Creating Application information table 235

6.8.4 Creating session information storage tables and blank record information tables 236

6.8.5 Environment settings of database 237

6.9 DB Connector settings 239

6.9.1 Setting transaction support level 239

6.9.2 Specifying optional name of DB Connector 239

6.9.3 Environment settings of DB Connector 239

6.10 Changing settings related to the database session failover functionality 244

6.10.1 Changing settings of a J2EE server and application 245

6.10.2 Initializing a database table 245

6.10.3 Deleting global session information (destroying HTTP sessions) 247

6.11 Deleting database tables 249

6.11.1 Deleting application information tables 249

6.11.2 Deleting session information storage table and blank record information table 250

6.12 Precautions to be taken when using database session failover functionality 252

Contents

v

7 EADs Session Failover Functionality 253

7.1 Organization of this chapter 254

7.2 Preparations for using the EADs session failover functionality 255

7.2.1 Application procedures 255

7.2.2 Setting up a timeout 257

7.2.3 Settings of number of concurrent connections, number of concurrent executions, and connection pool
size 259

7.3 Processing implemented in the EADs session failover functionality 262

7.3.1 Processing when starting an application 262

7.3.2 Processing when executing a request 265

7.3.3 Processing when validity of global session information expires 269

7.3.4 Operations performed when a failure occurs during global session information operation 269

7.3.5 Listeners that operate in association with events occurring in the EADs session failover functionality 279

7.4 Definitions in cosminexus.xml 280

7.5 J2EE server settings 281

7.6 Preparations for EADs server 289

7.6.1 Setting up the EADs server environment 289

7.6.2 Starting the EADs server 294

7.6.3 Creating a cache 295

7.6.4 Unlocking clusters 296

7.7 Changing settings related to the EADs session failover functionality 297

7.7.1 Changing J2EE server and application settings 297

7.7.2 Initializing application information 298

7.7.3 Destroying an HTTP session 298

7.8 Deleting data on the EADs server 299

7.8.1 Deleting global session information on the EADs server (session information storage destination server) 299

7.8.2 Deleting global session information remaining on the EADs server (the session information copy
destination server) 300

7.8.3 Deleting a cache on the EADs server 301

7.9 Procedure for analyzing log that uses the performance analysis trace 302

7.10 Log output of EADs operations 303

7.10.1 Output of the message log 303

7.10.2 Output of the exception information to the message log and exception log 303

7.10.3 EADs client output log 303

8 Inhibiting Full Garbage Collection by Using Explicit Memory Management 305

8.1 Organization of this chapter 306

8.2 Overview of the Explicit Memory Management functionality 307

8.2.1 Objectives of using the Explicit Memory Management functionality 307

8.2.2 Mechanism of inhibiting full garbage collection by using the Explicit Memory Management functionality 307

8.2.3 Prerequisites for using the Explicit Memory Management functionality 312

Contents

vi

8.3 Overview of memory space used in the Explicit Memory Management functionality 313

8.4  When using J2EE server objects placed in Explicit heap 315

8.4.1 Objects related to HTTP session 315

8.4.2 Objects for communication with redirector 317

8.5 Objects that you can optionally place in the Explicit heap in the application 319

8.5.1 Conditions for objects that you can place in the Explicit heap 319

8.5.2 Life cycle and state transition of objects 320

8.6 Life cycle of Explicit memory block and executed processes 321

8.6.1 Life cycle and states of Explicit memory blocks 321

8.6.2 Initializing the Explicit memory block 323

8.6.3 Directly generating objects in the Explicit memory block 324

8.6.4 Extending the Explicit memory block 325

8.6.5 Moving the objects from the Java heap to the Explicit memory block based on a reference relation 326

8.6.6 Event log output at each stage in the life cycle 328

8.7 Releasing Explicit memory blocks when the automatic release functionality is enabled 330

8.7.1 Explicit release reserving of the Explicit memory block when the automatic release functionality is
enabled 330

8.7.2 Automatic release reserving of the Explicit memory block when the automatic release functionality is
enabled 331

8.7.3 The process of releasing the Explicit memory block when the automatic release functionality is enabled 331

8.8 Releasing Explicit memory blocks when the automatic release functionality is disabled 333

8.8.1 Explicit release reserving of the Explicit memory block when the automatic release functionality is
disabled 333

8.8.2 The process of releasing the Explicit memory block when the automatic release functionality is disabled 333

8.9 Releasing Explicit memory blocks by using the javagc command 336

8.10 Reducing time required for automatic release processing of Explicit memory blocks 337

8.10.1 Checking whether the application is effective 337

8.10.2 Mechanism of reducing time required for automatic release processing 338

8.10.3 Using object release rate information of the Explicit memory block 343

8.10.4 Notes on reducing the time required for automatic release processing 346

8.11 Reducing memory usage of the Explicit heap that is used in an HTTP session 348

8.11.1 Checking whether the application is effective 348

8.11.2 Mechanism of reducing memory usage 348

8.11.3 Points to be considered when using the memory saving functionality of the Explicit heap that is used
in an HTTP session 350

8.12 Implementing the Java program that uses the Explicit Memory Management functionality API 352

8.12.1 Implementing to place objects in the Explicit heap 352

8.12.2 Implementing to obtain statistics of the Explicit Memory Management functionality 354

8.13 Settings in the execution environment 358

8.13.1 Common settings for using the Explicit Memory Management functionality (setting JavaVM options) 358

8.13.2 Using the Explicit Memory Management functionality by using the automatic placement configuration
file 362

8.13.3 Controlling application target of the Explicit Memory Management functionality by using a
configuration file 364

Contents

vii

8.13.4 Settings for using the function on the J2EE server 367

8.14 Precautions for using the Explicit Memory Management functionality 370

9 User Log Output for Applications 373

9.1 Organization of this chapter 374

9.2 Overview of the user log output 376

9.2.1 Overview of the user log output 376

9.2.2 Mechanism of the user log output 376

9.3 Log format 378

9.4 Methods used in the user log output 379

9.5 Implementation for user log output 380

9.6 Creating and setting loggers and handlers 381

9.6.1 Creating and setting loggers 381

9.6.2 Creating and setting handlers 381

9.6.3 Guidelines for creating and setting loggers and handlers 381

9.7 How you can use your own Filter/ formatter/ handler 383

9.7.1 Using library JAR 383

9.7.2 Using container extension library 383

9.8 Setting the user log output of J2EE applications 385

9.8.1 J2EE server settings 385

9.8.2 Setting security policy 386

9.8.3 Examples of the user log output of applications 388

9.9 Setting the user log output of batch applications 394

9.10 Setting the user log output of EJB client applications (When using the cjclstartap command) 395

9.11 Implementing and setting the user log output of EJB client applications (When using the vbj
command) 396

9.11.1 Overview of processing when using the vbj command 396

9.11.2 Preparing for use 396

9.11.3 Procedure for the user log output processing 396

9.11.4 Extending the user log output in EJB client applications 398

9.11.5  How to use Filter/ Formatter/ Handler independently created by the user 398

9.12 Notes for using the user log functionality 399

10 Asynchronous Parallel Processing of Threads 401

10.1 Organization of this chapter 402

10.2 Overview of the asynchronous parallel processing of threads 403

10.2.1 Procedure for the asynchronous parallel processing of threads 403

10.2.2 Java EE functionality that you can use in the asynchronous parallel processing of threads 404

10.2.3 Compatibility with Timer and Work Manager for Application Server 407

10.3 Asynchronous timer processing by using TimerManager 410

10.3.1 Methods of scheduling threads by using TimerManager 410

Contents

viii

10.3.2 Life cycle of TimerManager 412

10.3.3 State transition of TimerManager 413

10.3.4 Multiple schedules of TimerManager 413

10.3.5 Developing applications by using TimerManager 414

10.4  Asynchronous thread processing by using WorkManager 417

10.4.1 Daemon Work and non-daemon Work 417

10.4.2 Thread pool and queues used in non-daemon Work 417

10.4.3 Life cycle of WorkManager, daemon Work and non-daemon Work 418

10.4.4 Developing applications by using WorkManager 421

10.4.5 Settings in the execution environment 425

Appendixes 427

A. Main Updates in the Functionality of Each Version 428

A.1 Main updates in the functionality of 09-00 428

A.2  Main updates in the functionality of 08-70 431

A.3 Main updates in the functionality of 08-53 433

A.4 Main updates in the functionality of 08-50 435

A.5 Main updates in the functionality of 08-00 438

B. Terminology Used in this Manual 441

Index 443

Contents

ix

1 Application Server Functionality
This chapter describes the classification and the purpose of the functionality of
Application Server and the manuals corresponding to the functionality. This chapter
also describes the functionality that is changed in this version.

1

1.1 Classification of functionality
Application Server is a product used for building an environment to execute applications mainly on a J2EE server
compliant with Java EE 6 and to develop the applications that run in the execution environment. You can use a variety
of functionality such as the functionality compliant with the Java EE standard specifications and the functionality
independently expanded on Application Server. By selecting and using the functionality according to the purpose and
intended use, you can build and operate a highly reliable system with an excellent processing performance.

The following are the broad classifications of the Application Server functionality:

• Functionality that serves as an execution platform for applications

• Functionality that is used for operating and maintaining an execution platform for applications

The above-mentioned functionality can be further classified according to the positioning and the intended usage of the
functionality. The Application Server manuals are provided according to the classification of the functionality.

The following figure shows the classification of the Application Server functionality and the set of manuals
corresponding to each functionality.

1. Application Server Functionality

2

Figure 1‒1: Classification of the Application Server functionality and the set of manuals corresponding to
each functionality

#1
uCosminexus Application Server has been omitted from the manual names.

#2
With Application Server, you can execute SOAP Web Services and RESTful Web Services. Depending on the
purpose, see the following manuals except the uCosminexus Application Server Web Services Development Guide.

When developing and executing SOAP applications

• uCosminexus Application Server SOAP Application Development Guide

When ensuring security for SOAP Web Services and SOAP applications

• uCosminexus Application Server XML Security - Core User Guide

• uCosminexus Application Server Web Service Security Users Guide

For details on the XML processing

• uCosminexus Application Server XML Processor User Guide

1. Application Server Functionality

3

The following subsections describe the classification of functionality and the manuals corresponding to the respective
functionality.

1.1.1 Functionality as an application execution platform
This functionality works as a platform for executing the online businesses and batch businesses implemented as
applications. You choose a functionality that you want to use according to the intended use of the system and your
requirements.

You must examine whether you want to use the functionality that serves as an execution platform for applications,
even before you perform the system building or application development.

This subsection describes the functionality that serves as a platform for executing applications, according to their
classification.

(1) Basic functionality to operate applications (Basic development functionality)
This functionality includes the basic functionality for operating the applications (J2EE applications). This
functionality is mainly a J2EE server functionality.

Application Server provides a Java EE6-compliant J2EE server. The J2EE server provides a functionality that is
compliant with the standard specifications and provides a functionality unique to Application Server.

The basic development functionality can be further classified into three types according to the types of J2EE
applications for which you use the functionality. The manuals for the Application Server functionality have been
divided according to this classification.

The following is an overview of each classification:

• Functionality for executing Web applications (Web containers)
This classification includes the Web container functionality that serves as an execution platform for Web
applications, and the functionality executed by linking Web containers and Web servers.

• Functionality for executing Enterprise Beans (EJB containers)
This classification includes the EJB container functionality that serves as a platform for executing Enterprise
Beans. This classification also includes the EJB client functionality for invoking Enterprise Beans.

• Functionality used in both Web applications and Enterprise Beans (Common container functionality)
This classification includes the functionality that can be used in the Web applications and the Enterprise Beans
running on the Web and EJB containers respectively.

(2) Functionality for developing Web Services
This classification includes the functionality that serves as an execution environment and a development environment
of Web Services.

Application Server provides the following engines:

• A JAX-WS engine that binds the SOAP messages in accordance with the JAX-WS specifications

• A JAX-RS engine that binds RESTful HTTP messages in accordance with the JAX-RS specifications

(3) Functionality unique to Application Server, which are extended for improving reliability and
performance (Extended functionality)

This classification includes the functionality that is independently extended on Application Server. This classification
also includes the functionality implemented by using the non-J2EE server processes such as a batch server, CTM, and
a database.

With Application Server, various functionality are extended to improve the reliability of the system and to execute
operations in a stable way. Furthermore, the functionality is also extended to operate applications other than J2EE
applications (batch applications) in the Java environment.

1. Application Server Functionality

4

(4) Functionality for ensuring the security of a system (Security management functionality)
This classification includes the functionality for ensuring the security of an Application Server-based system. This
classification includes the functionality such as the authentication functionality used for preventing unauthorized
access and the encryption functionality used for preventing information leakage from communication channels.

1.1.2 Functionality for operating and maintaining an application execution
platform

This functionality is used for effectively operating and maintaining an application execution platform. You use this
functionality, after starting the system operations, as and when required. However, depending on the functionality, you
are required to implement the settings and applications in advance.

This subsection describes the functionality for operating and maintaining an application execution platform, according
to their classification.

(1) Functionality used for daily operations, such as starting and stopping a system (Operation
functionality)

This classification includes the functionality used in daily operations, such as starting or stopping systems, starting or
stopping applications, and replacing applications.

(2) Functionality for monitoring the system usage (Watch functionality)
This classification includes the functionality used for monitoring the system usage and the resource depletion. This
classification also includes the functionality that is used to output the information used in monitoring the system
operation history.

(3) Functionality for operating the system by linking with other products (Linkage
functionality)

This classification includes the functionality that is implemented by linking with other products, such as JP1 and
cluster software.

(4) Functionality for troubleshooting (Maintenance functionality)
This classification includes the functionality used for troubleshooting. This classification also includes the
functionality used to output the information that is referenced during troubleshooting.

(5) Functionality for migrating from products of older versions (Migration functionality)
This classification includes the functionality used for migrating from an older Application Server to a new Application
Server.

(6) Functionality for compatibility with products of earlier versions (Compatibility functionality)
This classification includes the functionality used for maintaining the compatibility with older versions of Application
Server. For the compatibility functionality, we recommend the migration with the corresponding recommended
functionality.

1.1.3 Functionality and corresponding manuals
The functionality guides for Application Server are divided according to the classification of functionality.

The following table describes the classification of functionality and the manuals corresponding to the functionality.

1. Application Server Functionality

5

Table 1‒1: Classification of functionality and corresponding manuals

Classification Functionality Reference manual#1

Basic development
functionality

Web container Web Container
Functionality Guide

Using JSF and JSTL

Web server linkage

In-process HTTP server

Servlet and JSP implementation

EJB container EJB Container
Functionality Guide

EJB client

Points to be considered when implementing Enterprise Beans

Naming management Common Container
Functionality Guide

Managing resource connection and transactions

Invoking Application Server from OpenTP1 (TP1 inbound integrated function)

Using JPA on Application Server

Cosminexus JPA provider

Cosminexus JMS provider

Using JavaMail

Using CDI with Application Server

Using Bean Validation with Application Server

Managing application attributes

Using annotations

Format and deployment of J2EE applications

Container extension library

Extended functionality Executing applications using batch servers Expansion Guide#2

Scheduling and load balancing requests using CTM

Scheduling batch applications

Inheriting the session information between J2EE servers (Session failover
functionality)

The database session failover functionality

The EADs session failover functionality

Output of application user logs

Asynchronous parallel processing of threads

Security management
functionality

Authentication using integrated user management Security Management
Guide

Authentication using application settings

Using TLSv1.2 in the SSL/TLS communication

Controlling with the management functionality of load balancers that use API-
based direct connections

1. Application Server Functionality

6

Classification Functionality Reference manual#1

Operation
functionality

Starting and stopping systems Operation, Monitoring,
and Linkage Guide

Operating J2EE applications

Watch functionality Monitoring statistics (Statistics collection functionality)

Monitoring resource exhaustion

Audit log output functionality

Database audit trail linkage functionality

Output of statistical information using management commands

Reporting of Management event and auto execution of process by management
action

Collecting statistics of CTM

Output of console logs

Linkage functionality Operation of systems linked with JP1

Centralized monitoring of the system (integrating with JP1/IM)

Automatic operation of the system by using jobs (integrating with JP1/AJS)

Collecting and consolidating audit logs (integrating with JP1/Audit Management
- Manager)

Linking with cluster software

BASIC authentication (integrating with cluster software)

Mutual node switching system (integrating with cluster software)

N-to-1 recovery system (integrating with cluster software)

Node switching system for host unit management models (integrating with
cluster software)

Maintenance
functionality

Troubleshooting related functionality Maintenance and
Migration Guide

Analyzing the performance using performance analysis trace

Product JavaVM (Hereafter, it might be abbreviated as JavaVM) functionality

Migration
functionality

Migrating from an older version of Application Server

Migrating to a recommended functionality

Compatibility
functionality

Basic mode Compatibility Guide

Servlet engine mode

Compatibility functionality for the basic development functionality

Compatibility functionality for the extended functionality

#1
uCosminexus Application Server has been omitted from the manual names.

#2
This manual.

1. Application Server Functionality

7

1.2 Functionality corresponding to the purpose of the
system

With Application Server, you must choose the applicable functionality according to the purpose of the system to be
built and operated.

This subsection describes which functionality, from among the functionality extended on Application Server, is best
used in which system. The functionality-wise mapping is described on the basis of the following points:

• Reliability
This functionality is best used in a system, from which high reliability is expected.
This category includes the functionality for enhancing the system availability (stable operations) and fault
tolerance, and the functionality for enhancing the security such as user authentication.

• Performance
This functionality is best used in a system, which adds value to the performance.
This category includes the functionality used for the performance tuning of a system.

• Operation and Maintenance
This functionality is best used when efficient operation and maintenance is to be performed.

• Scalability
This functionality is best used when a system is to be flexibly expanded or reduced, and when the system
configuration is to be flexibly changed.

• Others
This functionality is used to comply with other individual purposes.

The functionality expanded on Application Server include the Java EE standard functionality and the functionality
independently expanded on Application Server. When you choose the functionality, you confirm the compliance with
the Java EE standards, as and when required.

1.2.1 Functionality used when executing batch applications
The following table describes the functionality used when executing batch applications. Select the functionality
according to the purpose of the system. For details on the functionality, see Reference location in the table.

Table 1‒2: Corresponding functionality used when executing batch applications and the purpose of
systems

Functionality

Purpose of system
Compliance with

Java EE
Standard

Referen
ce

locationReliabi
lity

Perfor
mance

Operat
ion
and

mainte
nance

Scalab
ility

Oth
ers

Stand
ard

Exten
ded

Functionality
for executing
batch
applications

Executing batch applications -- -- -- -- -- -- Y 2.3.1,

2.3.2

Forcefully stopping batch
applications

-- -- Y -- -- -- Y 2.3.3

Displaying a list of the batch
application information

-- -- Y -- -- -- Y 2.3.4

Output of batch application
logs

-- -- Y -- -- -- Y 2.3.5

1. Application Server Functionality

8

Functionality

Purpose of system
Compliance with

Java EE
Standard

Referen
ce

locationReliabi
lity

Perfor
mance

Operat
ion
and

mainte
nance

Scalab
ility

Oth
ers

Stand
ard

Exten
ded

EJB access
functionality

Invoking Enterprise Beans -- -- -- Y -- Y Y 2.4

Lookup of EJB home objects
and references of business
interfaces by using JND

-- -- -- Y -- Y Y

Implementing transactions -- -- -- Y -- Y Y

Timeout for the RMI-IIOP
communication

-- -- -- Y -- Y Y

Acquiring RMI-IIOP stubs and
interfaces

-- -- -- Y -- Y Y

Functionality
provided by
naming
management

Lookup and binding of the
objects to the JNDI name
space

-- -- -- Y -- Y Y 2.5#

Assigning optional names to
J2EE resources (user
specification name space
functionality)

-- -- -- Y -- -- Y

Searching CORBA Naming
Service by using the round-
robin policy

-- -- -- Y -- -- Y

Caching with the naming
management functionality

-- Y -- -- -- -- Y

Switching CORBA Naming
Service

-- -- -- Y -- -- Y

Functionality
provided by
resource
connections
and
transaction
management

Connection pooling -- Y -- -- -- Y Y 2.7,

2.8Warming up of connection
pool

-- Y -- -- -- -- Y

Functionality for adjusting the
number of connection pools

-- Y -- -- -- -- Y

Connection sharing and
association

-- Y -- -- -- Y --

Statement pooling -- Y -- -- -- -- Y

Light transactions -- Y -- -- -- -- Y

Caching the DataSource object -- Y -- -- -- -- Y

Optimizing sign-on for the
container management of DB
Connector

-- Y -- -- -- -- Y

Detecting connection failure Y -- -- -- -- Y Y

Waiting for acquiring a
connection when connections
exhaust

Y -- -- -- -- -- Y

1. Application Server Functionality

9

Functionality

Purpose of system
Compliance with

Java EE
Standard

Referen
ce

locationReliabi
lity

Perfor
mance

Operat
ion
and

mainte
nance

Scalab
ility

Oth
ers

Stand
ard

Exten
ded

Functionality
provided by
resource
connections
and
transaction
management

Retrying for acquiring a
connection

2.7,

2.8

Y -- -- -- -- -- Y

Displaying information of a
connection pool

Y -- -- -- -- -- Y

Functionality
provided by
resource
connections
and
transaction
management

Clearing connection pool Y -- -- -- -- -- Y

Cancelling the transaction
timeout and statements

Y -- -- -- -- Y --

Output of SQL for the failure
investigation

-- -- Y -- -- -- Y

Automatic closing of object Y -- -- -- -- Y --

Cluster connection pool
functionality (temporarily
stopping, restarting, and
displaying state of connection
pool)

Y -- -- -- -- -- Y

Testing the connection with
resources

-- -- Y -- -- -- Y

Functionality for controlling the garbage
collection

-- Y -- -- -- -- Y 2.9

Container extension library -- -- -- Y -- -- Y 2.10

JavaVM functionality -- -- Y -- -- -- Y 2.11

Legend:
Y: Supported
--: Not supported

#
The functionality, for which Y is specified in both the Standard and Extended columns of the Compliance with Java EE Standard
column, indicates that the functionality unique to Application Server has been extended to the Java EE standard functionality.
The functionality, for which Y is specified only in the Extended column, indicates the functionality unique to Application Server.

Note
In the case of batch applications, you can assign optional names only to J2EE resources. The description of Enterprise Beans is
not applicable.

1.2.2 Functionality for scheduling Enterprise Beans using CTM
The following table describes the functionality for scheduling Enterprise Beans using CMT. Select the functionality
according to the purpose of the system. For details on the functionality, see Reference location in the table.

1. Application Server Functionality

10

Table 1‒3: Correspondence between the Enterprise Bean scheduling functionality using CTM and the
purpose of systems

Functionality

Purpose of system Compliance with
Java EE Standard

Reference
locationReliabili

ty
Perfor
mance

Operati
on and
Mainten

ance

Scalab
ility Others Standar

d
Exten
ded

Flow-volume control of requests Y Y -- -- -- -- Y 3.4

Controlling priority of requests Y Y -- -- -- -- Y 3.5

Dynamically changing the number of
concurrent executions of requests

Y Y Y -- -- -- Y 3.6

Locking and controlling requests Y -- Y -- -- -- Y 3.7

Load balancing of requests Y Y -- Y -- -- Y 3.8

Monitoring and retaining request
queues

Y -- Y -- -- -- Y 3.9

Connection with the TPBroker/OTM
client by using the gateway
functionality in CTM

-- -- -- Y -- -- Y 3.10

Legend:
Y: Supported
--: Not supported

#
The functionality, for which Y is specified only in the Extended column of the Compliance with Java EE Standard column,
indicates the functionality unique to Application Server.

1.2.3 Other extended functionality
The following table describes the other extended functionality. Select the functionality according to the purpose of the
system. For details on the functionality, see Reference location in the table.

Table 1‒4: Correspondence between other extended functionality and the purpose of systems

Functionality

Purpose of the system Compliance with
Java EE Standard

Reference
locationReliabili

ty
Perfor
mance

Operati
on and
Mainten

ance

Scalab
ility Others Perform

ance

Operat
ion
and

Mainte
nance

Scheduling of batch applications Y Y -- -- -- -- Y Chapter 4

Session failover functionality Y -- Y -- -- -- Y Chapter 5,
Chapter 6,
Chapter 7

Inhibiting full garbage collection by
using the Explicit Memory
Management functionality

Y -- -- -- -- -- Y Chapter 8

Output of application user logs -- -- Y -- -- -- Y Chapter 9

Asynchronous parallel processing of
threads

-- Y -- -- Y -- -- Chapter 10

1. Application Server Functionality

11

Legend:
Y: Supported
--: Not supported

#
The functionality, for which Y is specified in both the Standard and Extended columns of the Compliance with Java EE Standard
column, indicates that the functionality unique to Application Server has been extended to the Java EE standard functionality.
The functionality, for which Y is specified only in the Extended column, indicates the functionality unique to Application Server.

1. Application Server Functionality

12

1.3 Description of the functionality described in this
manual

This section describes the meaning of the classification used for describing the functionality in this manual, and also
provides an example of the tables used for describing classification.

1.3.1 Meaning of classification
The description of the functionality in this manual is classified into the following five categories. You can select and
read the required location depending on the purpose for referencing this manual.

• Description
This part describes the functionality. This describes the purpose, characteristics, and mechanism of the
functionality. Read the description, if you want to get an overview of the functionality.

• Implementation
This part describes how to perform coding and how to describe a DD. Read this when you develop applications.

• Setup
This part describes how to set up the properties required for building systems. Read this when you build systems.

• Operation
This part describes how to perform operations. This part describes the procedure for performing operations and
also the execution examples of the commands to be used. Read this when you operate the system.

• Notes
This part describes the overall points to be considered when using the functionality. Make sure to read the
description of the points to be considered.

1.3.2 Example of tables describing the classification
The classification of the functionality is described in a table. The title of the table is Organization of this chapter or
Organization of this section.

The following is an example of a table describing the classification of the functionality.

Example of a table describing the classification of the functionality

Table X-1: Organization of this chapter (XX functionality)

Category Title Reference location

Description What is the XX functionality? X.1

Implementation Implementing an application X.2

Definitions in a DD and cosminexus.xml# X.3

Setup Settings in the execution environment X.4

Operation Performing operations by using the XX functionality X.5

Notes Points to be considered when using the XX functionality X.6

#
For details on cosminexus.xml, see 11. Managing Application Properties in the uCosminexus Application Server
Common Container Functionality Guide.

Tip
Setting up the properties of an application that does not include cosminexus.xml

1. Application Server Functionality

13

For an application that does not include cosminexus.xml, you set up or change the properties after importing
the application into the execution environment. You can also change the already specified properties in the
execution environment.

You specify the application settings in the execution environment using the server management commands and
property files. For details on how to set up applications by using the server management commands and property
files, see 3.5.2 Procedure for setting up J2EE application properties in the uCosminexus Application Server
Application Setup Guide.

The tags specified in the property files correspond to either a DD or cosminexus.xml. For details on the
mapping between a DD or cosminexus.xml and the tags in the property files, see 2.1 Specifications used in
Cosminexus application property file (cosminexus.xml) in the uCosminexus Application Server Application and
Resource Definition Reference Guide.

Note that the properties specified in a property file can also be specified in HITACHI Application Integrated
Property File.

1. Application Server Functionality

14

1.4 Main updates in the functionality of Application
Server 09-50

This section describes the main updates in the functionality of Application Server 09-50 and the purpose of each
update.

The following contents are described in this section:

• This section gives an overview of the main updates in the functionality of Application Server 09-50. For details on
the functionality, see Reference location. Reference manual and Reference location describe the main features of a
particular functionality.

• uCosminexus Application Server is omitted from the manual names mentioned in the Reference manual column.

(1) Improving development productivity
The following table describes the items that have been changed for improving development productivity.

Table 1‒5: Changes made for improving development productivity

Item Overview of changes Reference manual
Referenc

e
location

Simplifying the Eclipse setup The Eclipse environment can now be set up by using a GUI. Application
Development Guide

1.1.5, 2.4

Supporting the debugging by
using the user extended
performance analysis trace

A user extended performance analysis trace configuration
file can now be created in the development environment.

Application
Development Guide

1.1.3, 6.5

(2) Simplifying implementation and setup
The following table describes the items that are changed to simplify implementation and setup.

Table 1‒6: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual
Referenc

e
location

Expanding system
configuration patterns in a
virtual environment

The types of tiers (http-tier, j2ee-tier, and ctm-
tier) that you can use in a virtual environment have been
increased. Due to this, you can now set up the following
system configuration patterns:

• A pattern in which a Web server and J2EE server are
placed on separate hosts

• A pattern in which front end (Servlet, JSP) and back
end (EJB) are divided and deployed

• A pattern in which CTM is used

Virtual System Setup
and Operation Guide

1.1.2

(3) Supporting standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

1. Application Server Functionality

15

Table 1‒7: Changes made for supporting standard and existing functionality

Item Overview of changes Reference manual
Referenc

e
location

Supporting JDBC 4.0
specifications

HiRDB Type4 JDBC Driver of the JDBC 4.0 specifications
and JDBC Driver of SQL Server with DB Connector is now
supported.

Common Container
Functionality Guide

3.6.3

Modifying the naming
conventions in the Portable
Global JNDI names

The characters that can be used in the Portable Global JNDI
names have been added.

Common Container
Functionality Guide

2.4.3

Supporting Servlet 3.0
specifications

The changes in the HTTP Cookie name and URL path
parameter name in Servlet 3.0 can now be used also in
Servlet 2.5 or earlier.

Web Container
Functionality Guide

2.7

Expanding applications of an
application which can be
integrated with Bean Validation

Validation with CDI and user applications by using Bean
can now be performed.

Common Container
Functionality Guide

Chapter
10

Supporting JavaMail The mail send and receive functionality that uses the
JavaMail 1.4 compliant API can now be used.

Common Container
Functionality Guide

Chapter 8

Expanding application of OS
on which you can use the
javacore command

Enabled acquisition of Windows thread dump by using the
javacore command

Command Reference
Guide

javacore
(acquiring
thread
dump/in
Windows)

(4) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table 1‒8: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual
Referenc

e
location

Avoiding exhaustion of the
code cache area

Area exhaustion can now be avoided by checking the size of
the code cache area used in the system and changing the
threshold value before the area is exhausted.

System Design Guide 7.1.2

Maintenance and
Migration Guide

5.7.2,
5.7.3

Definition Reference
Guide

16.1, 16.2,
16.4

Supporting efficient application
of the Explicit Memory
Management functionality

Added a functionality that controls the objects to be moved
to an Explicit heap as a functionality to reduce the
automatic release processing time and efficiently apply the
Explicit Memory Management functionality.

• A functionality that controls object movement to
Explicit memory blocks

• A functionality for specifying classes for which
application of the Explicit Memory Management
functionality is to be excluded

• A functionality to output the object release rate
information to Explicit heap information

System Design Guide 7.13.6

This manual 8.2.2,
8.6.5,
8.10,
8.13.1,
8.13.3

Maintenance and
Migration Guide

5.5

Expanding output range of
class-wise statistical
information

A reference relation based on the static field can now be
output to the extended thread dump containing class-wise
statistical information.

Maintenance and
Migration Guide

9.6

1. Application Server Functionality

16

(5) Maintaining and improving the operation performance
The following table describes the items that are changed for maintaining and improving operation performance.

Table 1‒9: Changes made for maintaining and improving operation performance

Item Overview of changes Reference manual
Referenc

e
location

Supporting EADs session
failover functionality

The EADs session failover functionality, which implements
session failover functionality by integrating with EADs is
now supported.

This manual Chapter
5,
Chapter 7

Operation using WAR A WAR application that consists of only WAR files can now
be deployed on the J2EE server.

Web Container
Functionality Guide

2.2.1

Common Container
Functionality Guide

13.9

Command Reference
Guide

cjimportw
ar
(importin
g WAR
applicatio
n)

Starting and stopping by
synchronous execution of the
operation management
functionality

An option which executes synchronous start and stop of the
operation management functionality (Management Server
and Administration Agent) has been added.

Operation, Monitoring,
and Linkage Guide

2.6.1,
2.6.2,
2.6.3,
2.6.4

Command Reference
Guide

adminage
ntctl
(starting
and
stopping
Administr
ation
Agent),
mngautor
un (setup
and
unsetup of
automatic
start and
automatic
restart),
mngsvrctl
(starting,
stopping
and
setting up
Managem
ent
Server)

Forcefully releasing Explicit
memory blocks in the Explicit
Memory Management
functionality

The releasing of Explicit memory blocks can now be
executed with the javagc command at any timing.

This manual 8.6.1, 8.9

Command Reference
Guide

javagc
(forced
generatio
n of
garbage
collection
)

1. Application Server Functionality

17

(6) Other purposes
The following table describes the items that are changed for other purposes.

Table 1‒10: Changes made for other purposes

Item Overview of changes Reference manual
Referenc

e
location

Acquiring definition
information

Only the definition file can now be collected with the
snapshot (collecting snapshot log) command.

Maintenance and
Migration Guide

2.3

Command Reference
Guide

snapshotl
og
(collectin
g
snapshot
log)

Log output of cjenvsetup
command

Execution information of setup (cjenvsetup command)
of Component Container Administrator can now be output
to the message log.

System Setup and
Operation Guide

4.1.4

Maintenance and
Migration Guide

4.20

Command Reference
Guide

cjenvsetup
(setup of
Compone
nt
Container
Administr
ator)

Supporting BIG-IP v11 BIG-IP v11 has been added to the available load balancers
types.

System Setup and
Operation Guide

4.7.2

Virtual System Setup
and Operation Guide

2.1

Performing output of the CPU
time to the event log of the
Explicit Memory Management
functionality

The CPU time taken for Explicit memory block release
processing can now be output to the event log of the
Explicit Memory Management functionality.

Maintenance and
Migration Guide

5.11.3

Extending the user extended
performance analysis trace
functionality

Added the following functionality to the user extended
performance analysis trace:

• Functionality to enable the specification of trace target
in package unit or class unit in addition to the usual
method units.

• Functionality to extend the range of available event IDs

• Functionality to release the restriction on the number of
rows that can be specified in the user extended
performance analysis trace configuration file.

• Functionality to enable the specification of the trace
acquisition level in the user extended performance
analysis trace configuration file

Maintenance and
Migration Guide

7.5.2,
7.5.3,
8.28.1

Improving the information
analysis when using
asynchronous invocation of
Session Bean

The requests at the invocation source and invocation
destination can now be compared by using root application
information of the PRF trace.

EJB Container
Functionality Guide

2.17.3

Legend:
--: Reference the entire manual.

1. Application Server Functionality

18

2 Executing Applications by Using
Batch Servers
A batch server is a server used for executing batch applications. This chapter
describes the functionality provided with a batch server and details on how to create
batch applications.

For details on executing the batch applications that use the scheduling functionality of
batch applications, see 4. Scheduling of Batch Applications.

19

2.1 Organization of this chapter
An application used for executing a batch job, which is developed in Java, is called a batch application. You execute
batch applications on batch servers that are the JavaVM processes of the resident type.

For an overview of executing the applications by using batch servers, see 2.2 Overview of the execution environment
of batch applications. For an overview of the resource connections of batch applications, see 2.6 Overview of resource
connections and transaction management.

The following table describes the batch server functionality that is provided by Application Server and the reference
location for each functionality.

Table 2‒1: Batch server functionality provided by Application Server

Functionality Reference location

Batch application execution functionality 2.3

EJB access functionality 2.4

Naming management functionality 2.5

Resource connection functionality 2.7

Transaction management 2.8

Garbage collection control functionality 2.9

Container extension library 2.10

JavaVM functionality 2.11

Migrating from Java applications 2.12

Integrating with JP1/AJS 2.13

In addition to the functionality mentioned in Table 2-1, the scheduling functionality of batch applications are provided
with batch servers. Hereafter, this functionality is called the scheduling functionality. For details on the scheduling
functionality, see 4. Scheduling Batch Applications.

2. Executing Applications by Using Batch Servers

20

2.2 Overview of the execution environment of batch
applications

This section gives an overview of the execution environment of batch applications.

A batch application is a Java application with the implemented batch processing. The execution environment of batch
applications is an environment used for executing batch applications. The execution environment is configured from a
batch server that is a JavaVM process of the resident type. With Application Server, you execute the batch
applications on the batch server by using commands. You can concurrently execute only one batch application on a
batch server.

With batch servers, batch services are provided as the functionality to execute batch applications. If you execute a
batch execution command (cjexecjob command), the batch service starts the execution of batch applications based
on information of the batch applications. If you execute a batch forced stop command (cjkilljob command), the
batch service forcefully stops batch applications being executed. If you execute a batch list display command
(cjlistjob), the batch service outputs information of batch applications.

You can integrate the execution environment of batch applications with JP1/AJS. You can execute a batch application
from JP1/AJS by defining the batch execution command as a JP1/AJS job in advance. You can also define the batch
forced stop command as a JP1/AJS job.

The following figure shows the flow of executing batch applications.

Figure 2‒1: Flow of executing batch applications

2.2.1 Systems executing batch applications
The systems executing batch applications require batch servers. You can also integrate the systems that execute batch
applications, with the following products:

• JP1/AJS
• BJEX or JP1/Advanced Shell

If you integrate the systems with these products, you can define the start and stop of batch servers and the start of
batch applications as jobs, for automatic execution of the batch applications. Also, if you integrate the system with
BJEX or JP1/Advanced Shell you can use the functionality with the conditional execution of job steps that uses return
values of batch application execution commands and automatically stop the batch application when you forcefully
stop the job.

This subsection describes the structure of a system that executes batch applications. For details on the system that uses
the scheduling functionality, see 4. Scheduling Batch Applications.

The following figure shows the configuration example of a system that executes batch applications.

2. Executing Applications by Using Batch Servers

21

Figure 2‒2: Configuration example of a system that executes batch applications

In this figure, the system that executes batch applications is integrated with the following products:

• JP1/AJS
• BJEX or JP1/Advanced Shell

If the system is not integrated with these products, you do not require Administration Client, JP1 job Management
Server, BJEX, JP1/Advanced Shell, JP1/AJS - Agent, and the JP1/Base of the batch server shown in the figure.

2.2.2 Procedure for operating batch servers and batch applications
This subsection describes the procedure for operating batch servers and batch applications for each system structure.

(1) Systems integrated with JP1/AJS
With a system that is integrated with JP1/AJS, you can start a batch server, or execute and forcefully stop a batch
application with JP1/AJS. With JP1/AJS, you define the operations of batch servers and batch applications as jobs, in
advance.

The following figure shows the flow of operations of batch servers and batch applications.

2. Executing Applications by Using Batch Servers

22

Figure 2‒3: Flow of operations of batch servers and batch applications (Integrated with JP1/AJS)

The batch server is started from JP1/AJS via Management Server of Application Server. On the other hand, you can
directly execute and forcefully stop batch applications from JP1/AJS. With JP1/AJS, you define these operations as
the UNIX jobs or PC jobs in advance.

For details on the job definition in JP1/AJS, see 2.13.1 Settings for integrating with JP1/AJS.

Reference note
You can also configure without deploying Management Server. However, if you configure without deploying Management
Server, and if an attempt to forcefully stop a batch application fails, you must manually restart the batch server. If you
monitor the batch server by using Management Server, the batch server automatically restarts when trouble occurs. Hence,
we recommend the operations using Management Server.

(2) Systems integrated with JP1/AJS, BJEX and JP1/Advanced Shell
With a system that is integrated with the following products, you can start a batch server, or execute and forcefully
stop a batch application from JP1/AJS, BJEX or JP1/Advanced Shell.

• JP1/AJS
• BJEX or JP1/Advanced Shell

With JP1/AJS, BJEX and JP1/Advanced Shell, you define the operations of batch servers or batch applications as jobs
in advance.

! Important note

When you want to integrate a system with BJEX, you must also integrate the system. When you use JP1/AJS and want to
integrate a system with JP1/Advanced Shell, you do not need to integrate the system with JP1/AJS.

The following figure shows the flow of operations of batch servers and batch applications.

2. Executing Applications by Using Batch Servers

23

Figure 2‒4: Flow of operations of batch servers and batch applications (integrating with JP1/AJS, BJEX,
and JP1/Advanced Shell)

The batch server is started from JP1/AJS via Management Server of Application Server. Execute batch applications
and forced stop of batch applications from JP1/AJS via BJEX or JP1/Advanced Shell. Therefore, in JP1/AJS, BJEX,
and JP1/Advanced Shell, you define the following operations as jobs in advance:

• Starting a batch server
You define as a UNIX job or a PC job of JP1/AJS.

• Executing a batch application
Specify a job definition XML file of BJEX or job definition script file of JP1/Advanced Shell as a UNIX job or a
PC job of JP1/AJS. Define execution of batch applications in the job definition XML file of BJEX or job
definition script file of JP1/Advanced Shell.

• Forced stop of the batch application
If you forcefully stop the running UNIX job or PC job from JP1/AJS, BJEX or JP1/Advanced Shell that receives
the instruction, this automatically stops the batch application.

For details on the job definition of JP1/AJS, BJEX, and JP1/Advanced Shell, see 2.13.2 Settings for integrating with
JP1/AJS, BJEX, and JP1/Advanced Shell.

Reference note

• You can also configure without deploying Management Server. However, if you configure without deploying
Management Server, and if an attempt to forcefully stop a batch application fails, you must manually restart the batch
server. If you monitor the batch server by using Management Server, the batch server restarts automatically when
trouble occurs. Hence, we recommend the operations using Management Server.

• You can use the job log output functionality of BJEX with the batch server. However, the CPU operating time and
memory usage of the cjexecjob command are output to the log that is output by using the job log output
functionality. You cannot output the CPU operating time and memory usage of a job step of Java batch application itself.

(3) Systems not integrated with JP1/AJS, BJEX, and JP1/Advanced Shell
With systems not integrated with JP1/AJS, BJEX, and JP1/Advanced Shell, you directly use commands to start batch
servers or forcefully stop batch applications.

The following figure shows the flow of operations of batch servers and batch applications.

2. Executing Applications by Using Batch Servers

24

Figure 2‒5: Flow of operations of batch servers and batch applications

A batch server is started via Management Server of Application Server by using the commands provided by the Smart
Composer functionality. On the other hand, you directly use commands (the batch execution and batch forced stop
commands) provided by the batch application execution functionality to forcefully stop the batch applications.

Reference note
You can also configure systems without deploying Management Server. However, if you configure the systems without
setting up Management Server and if and attempt to forcefully stop a batch application fails; you must manually restart the
batch server. If a batch server is monitoring using Management Server, when trouble occurs, the batch server automatically.
Hence, we recommend the operations using Management Server.

2.2.3 Setup and operation of the batch application execution
environment

This subsection describes how to set up and operate the batch application execution environment. This subsection also
describes the programs that can be integrated with the batch application execution environment.

(1) Setting up the batch application execution environment
You use the Smart Composer functionality and server management commands to set up the batch application
execution environment. The procedure for setting up the batch application execution environment is as follows:

1. Set up systems by using the Smart Composer functionality.
You define the system configuration in the Easy Setup definition file and use the commands provided with the
Smart Composer functionality to execute the batch setup of systems.

2. Set up resource adapters by using the server management commands.
You implement this process only when connecting to a database from a batch application.

For details on the Smart Composer functionality and the server management commands, see 4.6 Setting up a system
that executes batch applications in the uCosminexus Application Server System Setup and Operation Guide.

! Important note

If you want to set up multiple batch servers, you must perform changes in such a way so that the port number of TCP/IP,
used with the server, is not duplicated. For the batch server also, you use the port number of TCP/IP that is being used with a
J2EE server. If you want to concurrently start multiple batch servers, and concurrently start the batch server and the J2EE
server, set up in such a way so that no duplicate port numbers are used. For details on the port numbers, see 3.16 Port
numbers of TCP/UDP used by Application Server processes in the uCosminexus Application Server System Design Guide.

Reference note
You can also set up the batch application execution environment by using the management portal. For details on setting up
the batch application execution environment by using the management portal, see 5. Setting up and deleting a system that
executes batch applications in the uCosminexus Application Server Management Portal User Guide.

2. Executing Applications by Using Batch Servers

25

(2) Operating batch application execution environment
The procedure for operating the batch application execution environment is as follows:

1. Starting a system
You use the commands provided with the Smart Composer functionality and start the entire system including the
batch servers. You also start DB Connector, when connecting to resources from batch applications.

2. Executing a batch application
Start a batch application by using the cjexecjob command.

3. Stopping a batch server
You use the commands provided with the Smart Composer functionality and stop the entire system including the
batch server.
Reference note

For details on starting and stopping the batch application execution environment by using the management portal, see
6.1. Starting and stopping a system in the uCosminexus Application Server Management Portal User Guide.

If you integrate a system with JP1/AJS, batch servers and batch applications can start from JP1/AJS. If you integrate
the system with JP1/AJS, BJEX, and JP1/Advanced Shell, the batch servers can start from JP1/AJS and the batch
applications can start from BJEX or JP1/Advanced Shell.

For details on starting and stopping the systems, see 2.6 Setting the start and stop of systems in the uCosminexus
Application Server Operation, Monitoring, and Linkage Guide. For details on how to start the batch applications, see
2.3.2 Executing batch applications.

You can use the following operation functionality with the systems executing batch applications:

(a) Functionality that support daily operations of systems

In addition to start and stop of systems, you can monitor the operation status and resource usage status of batch
servers. This subsection gives an overview of the functionality used for supporting the daily operations of the systems.

• Monitoring statistics (statistics collection functionality)
This functionality regularly monitors the operation status of batch servers and acquires statistics for server
performance and resource information.

• Output statistics by using management commands
This functionality monitors the logical servers in management domain and acquires statistics by using
management commands.

• Monitoring resource exhaustion
This functionality monitors the resources such as memory and threads with batch servers as the target. The
information, related to the resources targeted for monitoring, is output to a file at regular intervals. An alert is
generated if the status of resources, targeted for monitoring, exceeds the specified threshold. If an alert is
generated, a message is output and the event is reported to Management Server.

• Reporting Management event and automatically executing a processing from Management action
Management events can be issued by considering all the messages output when a batch application is running, as
triggers. By defining the operations to be performed, when Management events are reported, on Management
Server machine, actions are now automatically executed when Management events occur.

• Collecting statistics of CTM
When using the functionality of scheduling batch applications, you can collect statistics output from CTM. You
can analyze processing performance of CTM on the basis of this information.

For details on the functionality that support daily operations of the systems, see 1.2.1 Functionality that support daily
operations of systems in the uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

(b) Functionality that support maintenance of systems

You can output the information of processes, started by Administration Agent, such as a batch server as console logs.
This subsection gives an overview of console log output.

• Console log output

2. Executing Applications by Using Batch Servers

26

You can output console output information such as standard output and standard error output of processes, started
by Administration Agent, to the console log. For details on the console log output, see 11. Console log output in
the uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

You can output the logs of batch application as user logs. The user log output is one of the extended functionality. This
subsection gives an overview of user log output.

• User log output
If an exception occurs in a batch application, you can output message and log in the Hitachi Trace Common
Library format. For details on user logs, see 9. Output of the user logs of applications.

(c) Functionality that support monitoring of a system

With this functionality you can output the history and the operations executed by the system architects and operators
for programs of Application Server. You can also record the accounts used when a batch application accessed a
database. This subsection given an overview of the functionality that supports the monitoring of systems.

• Output of audit logs
You can output the operations performed by system architects and operators for the programs of Application
Server and the history of program actions associated with the operations. You can use this information for
monitoring the systems.

• Integrating with the database audit trail functionality
By integrating a system with the database audit trail functionality provided by a database, you can record the
accounts that are used when a batch application access the database.

For details on the functionality that supports the monitoring of systems, see the following chapters:

• 6. Audit log output functionality in the uCosminexus Application Server Operation, Monitoring, and Linkage
Guide

• 7. Database audit trail integration functionality in the uCosminexus Application Server Operation, Monitoring,
and Linkage Guide

(d) Functionality for maintaining a system

You can acquire troubleshooting data when a batch server detects an error. This subsection gives an overview of the
functionality used for maintaining a system.

• Troubleshooting
If you use a command during error detection, you can acquire troubleshooting data when Management Server
detects the fault at the logical server. You can also output and collect the snapshot log of component software
on Application Server.
For example, if trouble occurs in a system, the snapshot log is automatically collected as troubleshooting
information.

• Performance analysis of a system by using performance analysis trace
The performance analysis trace is the functionality that collects performance analysis information output by the
functionality of Application Server. You can analyze system performance and bottlenecks on the basis of this
information.

For details on the functionality used for maintaining the systems, see the uCosminexus Application Server
Maintenance and Migration Guide.

(3) Integrating with other programs
You can integrate the following programs with the systems executing batch applications:

• Integrating with JP1

• Integrating with cluster software

For details on the integration with JP1, see 12. Operations of a system integrated with JP1 in the uCosminexus
Application Server Operation, Monitoring, and Linkage Guide. For details on the integration with cluster software,

2. Executing Applications by Using Batch Servers

27

see 16. Integrating with cluster software in the uCosminexus Application Server Operation, Monitoring, and Linkage
Guide.

(a) Overview of the management functionality by integrating with JP1

This subsection gives an overview of the management functionality by integrating with JP1.

• Centralized monitoring of systems (integrating with JP1/IM)
By performing centralized monitoring of resource status of entire business system, you can understand and
examine operation performance, detect trouble occurrences, determine causes, and take countermeasures. You can
implement this functionality by integrating with JP1/IM.

• Automatically operating a system by using jobs (integrating with JP1/AJS)
By defining and automating a schedule of starting and stopping servers and applications in advance, you can
achieve efficient resource allocation, operation efficiency, and power saving. By integrating with JP1/AJS, you
can implement automatic operations of systems by using custom jobs.

• Collecting and consolidating audit log (integrating with JP1/Audit Management - Manager)
You can automatically collect the audit logs used for monitoring systems, and manage the logs in a batch. You can
implement this functionality by integrating with JP1/Audit Management - Manager.

(b) Overview of node switching functionality by integrating with cluster software

This subsection gives an overview of the node switching functionality by integrating with cluster software. The cluster
software that can be integrated is; Windows Server Failover Cluster# (in Windows) and HA monitor (in AIX, HP-UX,
and Linux). For Solaris, you cannot operate a system integrated with the cluster software.

#
You can use Windows Server 2012 and Windows Server 2008 as an OS.

• BASIC authentication
This is a system configuration where executing node and standby node are set up in one-to-one ratio. In the case of
the batch application execution environment, the BASIC authentication operations are supported on Application
Server. When an error is detected on the executing node server or maintaining a system, this functionality is used
for continuing the business processing by automatically switching to a server that is already kept in the standby
state. As a result, you can decrease system downtime and impact on business processing of client.
In the case of the batch application execution environment, you cannot use BASIC authentication of Management
Server, because Management Server is not deployed.

• Mutual node switching system
With the BASIC authentication configuration, two servers operate as active nodes and serve as spare nodes for
each other. The operations of the mutual node switching systems on Application Server are supported.

• Node switching system that targets host unit management model
This is a system configuration where N executing nodes and one spare node of the host unit management model
are placed. The operations of node switching systems on Application Server of the host unit management model
are supported.

2.2.4 Using multibyte characters
When using multibyte characters with the following items, use the same encoding of multibyte characters for all
items:

• When using multibyte characters in the option definition file (usrconf.cfg) for batch applications

• When using multibyte characters in the option definition file (usrconf.cfg) for batch servers

• When specifying multibyte characters in the arguments of the cjexecjob command

• When output multibyte characters to java.lang.System.out or java.lang.System.err in the source
code of batch applications

Enable display of corresponding character encoding in the environment variable LANG of console, on which the batch
server and the cjexecjob command are executed.

2. Executing Applications by Using Batch Servers

28

2.3 Batch application execution functionality
The batch application execution functionality is one of the functionality provided with a batch server. The batch
application execution functionality executes batch applications and outputs the data, output by batch applications, to
the log output functionality.

This section describes the batch application execution functionality.

The following table describes the organization of this section.

Table 2‒2: Organization of this section (Batch application execution functionality)

Category Title Reference location

Description Overview of the batch application execution functionality 2.3.1

Executing batch applications 2.3.2

Forcefully stopping batch applications 2.3.3

Displaying list of batch application information 2.3.4

Log output of batch applications 2.3.5

Executing the commands used with batch applications 2.3.6

Implementation Implementing batch applications (batch application creation rules) 2.3.7

Implementing batch applications (when connecting to resources) 2.3.8

Implementing batch applications (when accessing EJB) 2.3.9

Setup Settings of the execution environment (batch server settings) 2.3.10

Notes Points to be considered when creating batch applications 2.3.11

There is no specific explanation of Operation for this functionality.

2.3.1 Overview of the batch application execution functionality
The batch application execution functionality is used for executing batch applications. A batch application is executed
on batch loader provided with the batch application execution functionality. The contents output by the batch
application that is being executed are output to the log output functionality.

The following figure shows the batch application execution functionality.

2. Executing Applications by Using Batch Servers

29

Figure 2‒6: Overview of the batch application execution functionality

You can integrate the batch application execution functionality with the EJB access functionality and the resource
connection functionality.

• If you integrate the batch application execution functionality with the EJB access functionality, you can access
EJB of other J2EE servers from a batch application.

• If you integrate this functionality with the resource connection functionality, you can connect to a database from a
batch application.

For details on the EJB access functionality, see 2.4.1 Functionality that you can use with EJB access and for details on
the resource connection functionality, see 2.7 Resource connection functionality.

The following subsections describe life cycle of a batch application and a class loader that executes the batch
application:

(1) Life cycle of a batch application
You use the cjexecjob command to start a batch application. The following figure shows the life cycle of a batch
application.

Figure 2‒7: Life cycle of a batch application

2. Executing Applications by Using Batch Servers

30

1. If you execute the cjexecjob command, batch class loader loads a batch application.

2. The batch application is executed on a batch server.

3. The batch application processing ends.
After the batch application processing ends, a garbage collection is performed for the batch class loader that which
loaded the batch application.

4. Classes of the batch application are unloaded.

! Important note
A batch application is loaded to a batch class whenever you execute the cjexecjob command and the class is
unloaded when processing is complete. We do not recommend that you operate a resident batch application on a batch
server.

(2) State transition of a batch application
The following figure shows the state transition of a batch application.

Figure 2‒8: State transition of a batch application (When the scheduling functionality is not used)

RUNNING is a state that shows that the batch application is executing on a batch server.

You can confirm the state of a batch application from the batch application information. For details on how to display
the batch application information, see 2.3.4 Displaying list of batch application information.

(3) Class loader executing a batch application
When executing a batch application, a class loader for the batch application is generated on the batch server. The batch
application is executed on the class loader. The following figure shows the configuration of a class loader for batch
applications.

Figure 2‒9: Configuration of a class loader executing batch applications

The following subsections describe the above figure:

• System class loader
A system class loader loads classes provided by the component software of Application Server and classes of the
container extension library.

• Timing of generation: When the J2EE server starts up

• Timing of destruction: When the J2EE server stops

2. Executing Applications by Using Batch Servers

31

• Connector class loader
A connector class loader loads the classes included in resource adapters. Only one connector class loader exists on
a batch server.

• Timing of generation: When the J2EE server starts up

• Timing of destrucion: When the J2EE server stops

• Batch class loader
A batch class loader loads the classes included in a batch application. A batch class loader is created for respective
executions of the cjexecjob command, and is destroyed when the batch application ends. A context class
loader of the thread, used for executing a batch application, is a batch class loader.

• Timing of generation: When a batch application is executed

• Timing of destruction: When the batch application ends

When a batch class loader is generated, a message stating that the batch class loader is generated is output
(KDJE55013-I message). A message stating that end processing of the batch class loader isexecuted is also output
(KDJE55014-I message).

For details on precautions to be taken for destroying class loader, see Appendix B.1 Configuring default class loader in
the uCosminexus Application Server Common Container Functionality Guide. Properly read the class loader
destruction timing and the message that is output when destroying the class loader.

2.3.2 Executing batch applications
You use the cjexecjob command to start batch applications. When execution of the main method of batch
applications ends, a batch server performs full garbage collection. This subsection describes how to start batch
applications, and processing for starting and ending the batch applications.

If you want to stop a running batch application, you forcefully stop the batch application. For details on how to
forcefully stop the batch applications, see 2.3.3 Forcefully stopping a batch application.

(1) How to start batch applications
This subsection describes how to start batch applications.

You use the cjexecjob command to start a batch application. You use the following three methods execute the
cjexecjob command:

1. Method for directly executing the cjexecjob command
You start a batch application by using this method, if you do not want to use JP1/AJS, BJEX, and JP1/Advanced
Shell.

2. Method for defining the cjexecjob command as a JP1/AJS job and executing from JP1/AJS
You start a batch application by using this method, if you use only JP1/AJS.

3. Method for defining the cjexecjob command as a BJEX job step and executing a BJEX job from JP1/AJS
You start a batch application by using this method, if you use JP1/AJS and BJEX.

4. Method for using and executing the adshjava command provided by JP1/Advanced Shell from the job
definition script file of JP1/Advanced Shell
Start a batch application by using this method if you want to use JP1/Advanced Shell. With this method, you can
directly execute JP1/Advanced Shell or you can also execute JP1/Advanced Shell via JP1/AJS.

For details on the definitions of JP1/AJS, BJEX and JP1/Advanced Shell jobs that are used when starting a batch
application with method 2, 3, and 4, see 2.13 Integrating with JP1/AJ S.

You start a batch server in advance for executing a batch application from JP1/AJS, BJEX, and JP1/Advanced Shell.

(2) Processing of starting a batch application
If you specify a class name and class path of a batch application in the cjexecjob command, the batch application
specified in the cjexecjob command starts. The following processing is executed when you start a batch
application:

2. Executing Applications by Using Batch Servers

32

1. Output a message (KDJE55000-I) stating that processing of a batch application starts.

2. Output a message (KDJE55001-I) stating that the main method of the batch application starts.

3. Execute the public static void main(String[]) method or the public static int
main(String[]) method.

When starting a batch application, the public static void main(String[]) method or the public
static int main(String[]) method of an execution class that is specified in the cjexecjob command is
invoked. For method arguments, you set up the arguments specified after class name of the cjexecjob command.

If an attempt to start a batch application fails
If the main method is not defined in a batch application, an attempt to start the batch application fails. If an
attempt to start the batch application fails, the batch server and the cjexecjob command operate as follows:

• Batch server operation
The batch server outputs a message, and returns the information stating failure in starting the batch application
with message string to the cjexecjob command.

• The cjexecjob command operation
The command outputs the message string received from the batch server and forcefully stops the application.
1 is returned as a return value of the command.

The following table describes the conditions when an attempt to start a batch application fails, and the messages
output by a batch server.

Table 2‒3: Conditions where an attempt to start a batch application fails

Condition where an attempt to starting batch application fails Message output by batch server

An attempt to read usrconf.properties (user property file for batch application) fails. KDJE55035-E

The class specified in the cjexecjob command does not exist. KDJE55006-E

The public static void main(String[]) method or the public static int
main(String[]) method is not defined.

Signatures of both the public static void main(String[]) method and the
public static int main(String[]) method are different.

java.lang.NoClassDefFoundError occurs when loading a class specified in the
cjexecjob command.

KDJE55007-E

A class required for invoking the public static void main(String[]) method or
the public static int main(String[]) method is not found.

An error occurs in the static{} block.

You cannot execute the main method due to a problem other than those mentioned above. KDJE55008-E

(3) Processing of ending a batch application
The batch application processing ends after execution of the main method is complete. The processing executed at the
end a batch application is as follows:

1. Output a message (KDJE55002-I) stating that the end processing of a batch application starts.

2. Output a message (KDJE55003-I) stating that the end processing of a batch application is complete.

3. Execute a full garbage collection.

4. Send the end code of the batch application to the cjexecjob command.

The following table describes the end conditions of batch applications and operations of batch servers and the
cjexecjob command during that time.

2. Executing Applications by Using Batch Servers

33

Table 2‒4: End conditions of batch applications

End condition of batch application Batch server operation cjexecjob command operation

The main method is executed until end. Outputs the KDJE55002-I message and
ends the execution of the batch application.
Outputs the KDJE55003-I message after
ending the application.

Ends normally.

Return value: 0The return statement is executed using
the public static void
main(String[]) method.

return end-code is executed using the
public static int
main(String[]) method.

Ends normally.

Return value: end code specified in
return

A class that inherits
java.lang.Throwable or
java.lang.Throwable is thrown
outside the main method.

Outputs the KDJE55009-E message.
Outputs exception stack trace to exception
log. Ends execution of the batch
application.

Outputs exception stack trace to standard
error output. Abnormally ends execution of
the batch application.

Return value: 1

Batch server terminated (forced
termination of batch server or unexpected
down of JavaVM).

None. Outputs the KDJE55021-E message and
abnormally ends execution of the batch
application.

Return value: 1

An execution of a batch application does not end even if you end the cjexecjob command by using Ctrl+C or
signal during the execution of the batch application. Execute cjkilljob if you want to forcefully stop execution of
a batch application. However, if you forcefully stop using the cjkilljob command, the end code of the
cjexecjob command is indefinite. For details on the batch forced stop command, see 2.3.3 Forcefully stopping a
batch application.

(4) Points to be considered when executing batch applications
If you invoke and use EJB or DB Connector from batch applications, existence of EJB and DB Connector to be used
is not checked when you start the batch applications. If EJB or DB Connector referenced from the batch applications
do not exist, a runtime error occurs during the execution of the batch applications. Before starting a batch application,
check whether EJB at the reference location exists or not. When connecting to a database from a batch application by
using DB Connector, keep the DB Connector started on the batch server.

2.3.3 Forcefully stopping a batch application
You can stop a running batch application as and when required. This is called Forced Stop of a batch application. This
subsection describes Forced Stop of a batch application.

(1) How to forcefully stop a batch application
You use the cjkilljob command to forcefully stop a batch application. You use the following three methods to
execute the cjkilljob command:

1. Method to directly execute the cjkilljob command
You execute the command by using this method if you do not want to use JP1/AJS.

2. Method to define the cjkilljob command as a recovery job of JP1/AJS and to execute with extension of
forced stop of a job or a jobnet
You execute the command by using this method when using JP1/AJS irrespective of the usage status of BJEX or
JP1/Advanced Shell.
For details on the definition of JP1/AJS job when forcefully stopping a batch application as a recovery job of
JP1/AJS with method 2, see 2.13 Integrating with JP1/AJS.

3. Method for forcefully stopping a batch application by extending forced stop of BJEX or JP1/Advanced Shell

2. Executing Applications by Using Batch Servers

34

If you execute a batch application by using BJEX or JP1/Advanced Shell, the batch application executed with
these products is also automatically stopped when BJEX or JP1/Advanced Shell is forcefully stopped. You do not
need to define recovery jobs of JP1/AJS in this method.

Note that if an attempt to forcefully stop a batch application fails, the batch server is forcefully stopped. As a result,
when executing multiple applications in continuation, you must restart the batch server. We recommend that you
tperform settings in advance, in such a way so that the batch server automatically restarts, when an attempt to
forcefully stop the batch application fails. You can implement automatic restart of a batch sever by using operation
monitoring of Management Server. For details, see 2.4. Automatic restart when failure occurs in the uCosminexus
Application Server Operation, Monitoring, and Linkage Guide.

(2) Processing of forced stop of a batch application
You use the cjkilljob command to forcefully stop a running batch application. When using the cjkilljob
command, you execute the method cancellation for the thread that executes the batch application, and forcefully stop
the batch application.

The method cancellation is a functionality that cancels the running methods. However, you may or may not cancel a
method, depending on the area where you are executing the method. The area where you can cancel a method is called
a non-protected area and the area where you cannot cancel a method is called a protected area. A method is canceled
if the method under execution is in a non-protected area. The same method cancellation is performed during the forced
stop of a batch application that is performed by the functionality of monitoring the J2EE application execution time.
For details on the method cancellation processing, see 5.3.4 Method cancellation in the uCosminexus Application
Server Operation, Monitoring, and Linkage Guide.

The following processes are executed when you forcefully stop a batch application.

1. Output a message (KDJE55004-I) stating that the processing to forcefully stop a batch application starts.

2. Execute the method cancellation for the public static void main(String[]) method or the public
static int main(String[]) method.
If an attempt to cancel a method fails, an attempt to execute forced stop fails, KDJE55017-E is output, and the
batch server forcefully stops. If an attempt to execute forced stop fails, restart the batch server.

3. Output a message (KDJE55005-I) stating that the processing of forcefully stopping the batch application is
complete.

4. Execute a full garbage collection.

5. Send the end code of batch application to the cjexecjob command.

The following table describes the conditions where a batch application is forcefully stopped:

Table 2‒5: Conditions for forced stop of a batch application

Condition for forced stop of batch
application Batch server operation cjexecjob command operation

Batch forced stop command is executed
during the execution of a batch application.

Outputs KDJE55004-I message and starts
forced stop of the batch application.
Outputs KDJE55005-I message when
forced stop is complete. Outputs
KDJE55017-E message, if an attempt to
execute forced stop fails.

Normal path when performing batch forced
termination

Return value: 1

If you execute a batch application by using the adshjava command of JP1/Advanced Shell, JP1/Advanced Shell
automatically executes the cjkilljob command and forcefully stops the batch application when you forcefully stop
a job of JP1/Advanced Shell.

(3) Points to be considered when forcefully stopping a batch application
If an attempt to forcefully stop a batch application fails, the batch server is forcefully stopped. When executing
multiple batch applications in continuation, you must restart the batch server before starting a batch application that is
to be executed after forcefully stopping the batch server. Hence, set up in such a way so that the batch server
automatically restarts by using Management Server. For details, see 5.3.4 Method cancellation in the uCosminexus
Application Server Operation, Monitoring, and Linkage Guide.

2. Executing Applications by Using Batch Servers

35

2.3.4 Displaying list of batch application information
You can display a list of information such as state of the running batch applications and start time of batch execution
commands as batch application information. This subsection describes the list display of batch application
information.

(1) How to display a list of batch application information
To display a list of batch application information, you directly execute the cjlistjob command irrespective of
whether JP1/AJS is used.

You can acquire the batch application information in the unit of a batch server. In arguments of the cjlistjob
command, you specify the batch server name for which you want to acquire the batch application information.

(2) Processing of displaying a list of batch application information
If you execute the cjlistjob command, you can acquire information of batch applications running on the batch
server that is specified in the argument. The batch application information is output to the standard output format.

The following table describes the batch application information that you can acquire.

Table 2‒6: Batch application information that you can acquire

Item of batch application information that you can
acquire Contents

State of batch application running is output. running shows the RUNNING state of a batch
application. For details, see 2.3.1(2) State transition of a batch application.

Batch application name Class name of batch application specified in the cjexecjob command is
output.

Root application information of performance analysis
trace

Communication number of root application of performance analysis trace is
output.

You can check the state of batch application by comparing with the root
application information that is output to the performance analysis trace file.

Execution time of batch execution command The time, at which cjexecjob is executed, is output in the following format.
 shows a single byte space.

yyyy/mm/dd hh:mm:ss.ssssss
yyyy: Western calendar year, mm: Month, dd: Day, hh: hour, mm: Minute, ss:
Second, ssssss: Microsecond

If there is no batch application, nothing is output even if you execute the cjlistjob command. In such case, the
cjlistjob command ends normally.

The following example shows the output format and the output example of the cjlistjob command. shows a
single byte space.

Output format of cjlistjob command

State-of-batch-application?Batch-application-name?Root-application-information-of-
performance-analysis-trace?Execution-time-of-batch-execution-command

Output example of cjlistjob command

running com.hitachi.mypackage.batchApp1 0x0000000000123456 2008/04/14
17:27:35.689012

This example shows that a batch application that started on 2008/4/14 17:27:35.689012, on the batch server
specified in argument of the cjlistjob command is being executed.

2. Executing Applications by Using Batch Servers

36

2.3.5 Log output of a batch application
On a batch server, execution logs of batch applications are output. In the execution logs, the output contents that are
output by the running batch applications are output as the standard output or standard error output, for each batch
execution command. You can use this information for investigation when a fault occurs.

A batch server outputs the data, written by batch applications in java.lang.System.out and
java.lang.System.err to the respective following locations:

• Data written to java.lang.System.out by batch applications
This data is output to the following locations by standard output transfer functionality of batch server:

• User output log of batch server

• Standard output of batch server

• Standard output of cjexecjob command

• Data written to java.lang.System.err by batch application
This data is output to the following locations by the standard error output transfer functionality of batch server:

• User error log of batch server

• Standard error output of batch server

• Standard error output of cjexecjob command

The messages output by the cjexecjob, cjkilljob, and cjlistjob commands are output to the respective
following locations according to the message level:

I (Information)
Output to standard output. However, the messages (KDJE55029-I, KDJE55030-I, and KDJE55052-I) that show
usage method of commands are output to the standard error output.

E (Error) and W (Warning)
Output to the standard error output.

For details on the commands used for executing the batch applications, see 3.3 Commands used in batch applications
in the uCosminexus Application Server Command Reference Guide. For details on the message levels, see 7.1 Format
for describing messages in the manual uCosminexus Application Server Messages.

2.3.6 Executing commands used in a batch application
This subsection describes the execution of commands used in a batch application.

You can use the following three types of commands in a batch application:

• cjexecjob command (batch execution command)
This command is used for executing a batch application.

• cjkilljob command (batch forced stop command)
This command is used to forcefully stop a running batch application.

• cjlistjob command (batch list display command)
This command is used for displaying a list of batch application information.

You might not be able to execute these commands depending on the state of the batch server. The following
subsections describe batch server states and execution of commands. For details on the commands, see 3.3 Commands
used in a batch application in the uCosminexus Application Server Command Reference Guide.

(1) States of batch server and execution of commands
You might not be able to execute the cjexecjob, cjkilljob, and cjlistjob commands depending on the
state of a batch server. The following figure shows the state of a batch server and availability of the commands for
execution.

2. Executing Applications by Using Batch Servers

37

Figure 2‒10: States of a batch server and availability of commands for execution

You cannot execute the cjexecjob, cjkilljob, and cjlistjob commands after stopping a batch server. The
KDJE55010-E message is output.

If another command is processing on the batch server, you might not be able to execute the commands, depending on
the type of the command. The following table describes availability of the commands for execution, when a command
is processing on a batch server.

Table 2‒7: Availability of the commands for execution when a command is processing on a batch server

Command to be executed

Command under processing

cjexecjob cjkilljob cjlistjob
Server

management
command

cjexecjob N N Y Y

cjkilljob Y N Y Y

cjlistjob Y Y Y Y

Server management
command

cjstoprar N N Y #1

Command other than
cjstoprar

Y Y Y #1

cjstopsv or cmx_stop_target Y#2 Y#2 Y#2 #1

2. Executing Applications by Using Batch Servers

38

Command to be executed

Command under processing

cjexecjob cjkilljob cjlistjob
Server

management
command

cjdumpsv Y Y Y Y

Legend:

Y: Can be executed

N: Cannot be executed

: Varies as per command type

#1: Operations vary as per the type of the server management command. For details, see 3.2.2 Exclusive access control of server
management commands in the uCosminexus Application Server Application Setup Guide.

#2: In the case of a running batch application, outputs the KDJE55033-I message and waits for the end of the batch application.

(2) If a batch server terminates abnormally during a command processing
When processing of the cjexecjob, cjkilljob, or cjlistjob command is executing on a batch server and if
the batch server terminates abnormally, the KDJE55021-E message is output. Confirm the state of the batch server and
execute the command again.

(3) Points to be considered when executing commands
Consider the following when executing commands:

• If there is no batch server when executing the cjexecjob, cjkilljob, or cjlistjob command, the
command outputs the KDJE55010-E message and ends abnormally.

• If the ejbserver.ctm.enabled parameter in the Easy Setup definition file and the value specified in the
batch.ctm.enabled key in usrconf.cfg (option definition file for batch application) do not match, an
error might occur when executing the following commands:

• When executing the cjexecjob command, the command might output the KDJE55067-E message and end
abnormally.

• When executing the cjlistjob command, the batch application information might not be output.

2.3.7 Implementing a batch application (Batch application creation rules)
A batch application is a Java application with the implemented contents of batch processing. This subsection describes
the rules for creating batch applications.

(1) File format of a batch application
You set up a batch application in the class file format specified in JavaVM. When using multiple classes, you can also
perform the following:

• Include a directory with the deployed class file, in class path.

• Include a JAR file with the archived class file is archived, in class path.

(2) Processing that can be implemented in a batch application
In a batch application, you can implement the processing that can be coded in Java. However, there are some points to
be considered when using the threads that are used in file operations or batch applications. For details on the points to
be considered when creating an application, see 2.3.11 Points to be considered when creating a batch application.

(3) Starting batch processing
Define one of the following methods in the batch application, as a method to start batch processing:

2. Executing Applications by Using Batch Servers

39

• public static void main(String[])
• public static int main(String[])

You cannot execute a batch application, if the return value type of the main method and modifier are different. You
can specify throws in the main method. The arguments specified in the cjexecjob command are passed to the
arguments of the main method by a string array.

If you have enabled the use of the JavaVM end method, the batch server creates a batch application execution start
thread and registers the thread in a thread group (batchThreadGroup). You can use the JavaVM end method if
true is specified in the ejbserver.batch.application.exit.enabled parameter in the Easy Setup
definition file. For details on how to set up the ejbserver.batch.application.exit.enabled parameter,
see 2.3.10 Settings in the execution environment (batch server settings).

(4) Ending batch processing
Processing ends when the batch application state changes to one of the following states:

• Execution of the main method of the class specified in arguments of the cjexecjob command ends.

• An exception or error is thrown outside the main method.

A thread of the batch application (thread belonging to batchThreadGroup) ends when the state changes to one of
the following states.

• If you invoke the JavaVM end method.

• If the main method returns.

• If an exception occurred in the main thread is not caught.

The following table describes end processing that you can execute when ending a batch application.

Table 2‒8: End processing, that you can execute when closing a batch application

Method of closing a batch application

End processing that you can use

java.io.deleteOnExi
t Shutdown hook

Ending the application by
invoking JavaVM end
method

Ending the application by invoking
java.lang.System.exit(in
t)

Y Y

Ending the application by invoking
java.lang.Runtime.exit(i
nt)

Y Y

Ending the application by invoking
java.lang.Runtime.halt(i
nt)

Y N

Ending the application with Ctrl+C N N

Ending the application due to returning of the main method Y Y

Ending the application due to exception in the main thread Y Y

Legend:

Y: Can be used

N: Cannot be used

You can use the JavaVM end method, if true is specified in the
ejbserver.batch.application.exit.enabled parameter in the Easy Setup definition file. For details on
the settings of the ejbserver.batch.application.exit.enabled parameter, see 2.3.10 Settings in the
execution environment (batch server settings).

2. Executing Applications by Using Batch Servers

40

2.3.8 Implementing a batch application (When connecting to resources)
This subsection describes how to create a batch application to be connected to resources. This subsection also
describes how to create a batch application and how to migrate from an existing batch application.

(1) When creating a batch application
If you want to create a batch application, we recommend using DB Connector for connecting to resources. DB
Connector is a resource adapter provided on Application Server used for connecting to a database. The following
subsection describes how to connect to resources by using DB Connector.

1. Set DB Connector on batch server.
You assign an optional name to an object of DB Connector by using the user-specified name space functionality
and register the object in JNDI name space. Make sure to use the user-specified namespace functionality, when
connecting to a database from a batch application.
You deploy DB Connector on a batch server, and then set up the optional name in the HITACHI Connector
Property file. As shown in the following example, you add the <optional name> tag in the <resource-
external-property> tag of the HITACHI Connector Property file and set up an optional name.
Example of setting

<connector-runtime>
 :
 <resource-external-property>
 <optional-name>optional name of DB Connector</optional-name>
 </resource-external-property>
</connector-runtime>

For details on how to assign optional names of DB Connector, see 2.6 Assigning optional name to Enterprise Bean
or J2EE server (user-specified name space functionality) in the uCosminexus Application Server Common
Container Functionality Guide.
For details on how to set up DB Connector, see 3.3 Resource connections in the uCosminexus Application Server
Common Container Functionality Guide.

2. Perform lookup of DB Connector with the optional name specified in step 1 and acquire the connection factory
(javax.sql.DataSource interface).
Acquire java.sql.Connection from the acquired connection factory. The following example shows
coding:

String dbName = <Optional name of DB Connector>;
 InitialContext ic = new InitialContext();
 DataSource ds = (DataSource) ic.lookup(dbName);
 Connection con = ds.getConnection();

3. Connect to resources using the acquired java.sql.Connection.
java.sql.Connection provided by JDBC driver and API are the same.

! Important note
When using DB Connector, start DB Connector on a batch server, and then start the batch application.

(2) When migrating from an existing batch application
When migrating from an existing batch application (Java application), following two methods are used to connect to
resources:

• Changing to resource connections that use DB Connector provided with Cosminexus.

• Connecting to resources by using JDBC driver (without changing connection method).

When you do not use DB Connector, you need not modify code of the batch application. However, you cannot use the
functionality provided with DB Connector and the garbage collection control functionality. This section describes the
migration method of changing the resource connection method to DB Connector and the migration method of using
JDBC driver (without changing connection method).

2. Executing Applications by Using Batch Servers

41

(a) Changing to resource connections that use DB Connector

If you want to use DB Connector, change the batch application so that you can acquire java.sql.Connection
from DB Connector. You use the following method for changing batch applications:

1. Set up DB Connector on batch server.
You assign an optional name to an object of DB Connector by using the user-specified name space functionality
and register the object in JNDI name space. Make sure to use the user-specified namespace functionality, when
connecting to a database from a batch application.
You deploy DB Connector on the batch server and then set up the optional name in the HITACHI Connector
Property file. As shown in the following example, you add the <optional-name> tag in the <resource-
external-property> tag of the HITACHI Connector Property file and set up an optional name.
Example of setting

<connector-runtime>
 :
 <resource-external-property>
 <optional-name>optional name of DB Connector</optional-name>
 </resource-external-property>
</connector-runtime>

For details on how to assign optional names of DB Connector, see 2.6 Assigning optional name to Enterprise Bean
or J2EE server (user-specified name space functionality) in the uCosminexus Application Server Common
Container Functionality Guide.
For details on how to set up DB Connector, see 3.3 Resource connections in the uCosminexus Application Server
Common Container Functionality Guide.

2. Change the code of resource connection processing in batch application so as to use DB Connector.
The following example shows a batch application before processing. The underlined parts show the
Connection acquisition processing. Change this processing to the underlined processing with Batch application
after change. The underlined part of Batch application after change is the Connection acquisition processing
of DB Connector.

• Batch application before change

Class.forName("oracle.jdbc.driver.OracleDriver");
Connection con = DriverManager.getConnection(uri,"user","pass");
con.setAutoCommit(false);
Statement stmt = con.createStatement();
stmt.executeBatch();
con.commit();

• Batch application after change

String dbName = <Optional name of DB Connector>
InitialContext ic = new InitialContext();
DataSource ds = (DataSource)ic.lookup(dbName);
Connection con = ds.getConnection();
con.setAutoCommit(false);
Statement stmt = con.createStatement();
stmt.executeBatch();
con.commit();

You can use java.sql.Connection acquired from DB Connector in the same way as
java.sql.Connection of JDBC driver. Hence, if you change only the acquisition method of
java.sql.Connection, there is no need to change the code of other batch applications.

! Important note

When using DB Connector, start DB Connector on a batch server, and then execute the batch application.

(b) Connecting to resources by using JDBC driver

When using a JDBC driver, you need not modify code of a batch application. However, you must add libraries of the
JDBC driver to be used to the class path of batch server. For details, follow the settings of the JDBC driver to be used.
The following example describes how to add libraries of the JDBC driver to the class path of a batch server. To add
libraries to the class path of a batch server, you add the following code to usrconf.cfg (option definition file for
batch server):

2. Executing Applications by Using Batch Servers

42

add.class.path = full-path-of-library-of-JDBC-driver

For details on usrconf.cfg (option definition file for a batch server), see 3.2 usrconf.cfg (option definition file for
batch server) in the uCosminexus Application Server Definition Reference Guide.

(3) Notes on batch application to be connected to resources
Note the following, when creating a batch application to be connected to resources:

■ Points to be considered when executing a batch application

Do not stop or change the settings of DB Connector, when a batch application is running. You stop or change the
settings of DB Connector after the batch application ends.

■ Closing a connection

With a batch server, connection is not automatically closed. Therefore, implement in the application in such a way so
that the used connections close without fail.

■ Using local transactions of JTA

You can use local transactions of JTA in a batch application. You use local transactions of JTA with the following
methods:

1. Acquire the UserTransaction object with one of the following methods:

• Acquire by performing lookup of Naming Service.
Lookup name: HITACHI_EJB/SERVERS/Server-name/SERVICES/UserTransaction

• Acquire by using the getUserTransaction method of the
com.hitachi.software.ejb.ejbclient.UserTransactionFactory class.

2. Invoke the begin() method of the UserTransaction object and start the transaction.

3. Connect to resources.

4. Invoke the commit() or rollback method of the UserTransaction object and conclude the transaction.

For details on how to use the UserTransaction interface, see 3.4.8 Processing overview and points to be
considered when using UserTransaction interface in the uCosminexus Application Server Common Container
Functionality Guide.

The points to be considered when using UserTransaction are as follows:

• You can use only the main thread for UserTransaction. You cannot use with a user thread.

• Start and conclude the transaction with main thread.

• Transaction is not inherited when a thread is generated.

• You cannot pass connections or interface (statement) acquired from connections between threads. If you use this
interface, the operation becomes invalid.

■ Concluding a transaction

If you start a transaction in a batch application, make sure to implement conclude processing in the batch application.
If you close the batch application without implementing conclude processing of the transaction, the transaction is
rolled back after a timeout time exceeds.

In this case, depending on the specified value of ejbserver.batch.application.exit.enabled
parameter in Easy Setup definition file, behavior at the time of starting a transaction
(javax.transaction.UserTransaction#begin()) in the batch application to be executed new, varies.

If "true" is specified in ejbserver.batch.application.exit.enabled parameter
You can start the transaction in the batch application to be executed next (accepts
javax.transaction.UserTransaction#begin()).

2. Executing Applications by Using Batch Servers

43

If "false" is specified in ejbserver.batch.application.exit.enabled parameter
You cannot start the transaction in the batch application to be executed next. In this case,
javax.transaction.NotSupportedException occurs and KDJE31009-E No nested
transaction is supported is output as detailed information.
Restart the batch server for recovering from the State in which you cannot start a transaction.

For details on the settings of the ejbserver.batch.application.exit.enabled parameter, see 2.3.10
Settings in the execution environment (batch server settings).

2.3.9 Implementing a batch application (when accessing EJB)
You can access EJBs of a J2EE application from a batch application. When creating a batch application that accesses
EJBs, you can perform lookup of EJBs to be accessed, with the following name and then use EJBs.

• Name bound automatically (name starting with Portable Global JNDI name or HITACHI_EJB)

• Optional name that uses user-specified namespace functionality

When accessing EJB, you prepare the batch application with the following procedure:

1. Preparing EJB to be accessed from the batch application
Set up a J2EE application that includes EJB to be accessed from the batch application to the start state.

2. Implementing the batch application
In the batch application, you implement the code for using EJB.

3. Executing the batch application
You execute the batch application created in step 2.

The following subsections describe the procedure:

(1) Preparing EJB
You prepare a J2EE application, including EJB to be accessed, from a batch application. Also you prepare a J2EE
server for executing the J2EE application. For details on how to set up the J2EE servers, see 4.1 Setup of a system
which improves machine performance by placing Web server on another host in the uCosminexus Application Server
System Setup and Operation Guide.

Start the J2EE application on the J2EE server that is set up. Use the cjgetstubsjar command, and acquire the
RMI-IIOP stub and interface of the started J2EE application.

If you perform lookup on an optional name, when accessing EJB from a batch application, you specify an optional
name of EJB in advance by using the user-specified namespace functionality. For details on setting the optional names
of EJBs, see 2.6 Assigning optional name to Enterprise Bean or J2EE server (user-specified name space functionality)
in the uCosminexus Application Server Common Container Functionality Guide.

(2) Implementing batch application
You implement the code for acquiring EJB that is set up in (1) Preparing EJB, in a batch application. The following
example shows coding:

String EjbName = EJB-lookup-name;
InitialContext ic = new InitialContext();
Object objref = ic.lookup(EjbName);
Home-interface-class-name home =
 (Home-interface-class-name) PortableRemoteObject.narrow(objref,
 Home-interface-class-name.class;
EJB-object-class-name ejbobj = home.create();

Prepare home interface and EJB object file in advance. You must include home interface and EJB object in class path
when compiling and executing batch applications.

2. Executing Applications by Using Batch Servers

44

(3) Executing the batch application
When executing a batch application, you specify the stub acquired in (1) Preparing EJB and the interface file used in
(2) Implementing batch application with full path, in class path.

You specify URL of Naming Service used to search EJB, as a value of java.naming.provider.url in
usrconf.properties (user property file for batch application).

However, when concurrently using the resource connection functionality and the EJB access functionality, use the
Naming Service switching functionality and specify Naming Service which performs lookup of EJB. In this case, do
not specify java.naming.provider.url in usrconf.properties (user property file for batch
application). For details on the Naming Service switching functionality, see 2.10 Switching CORBA Naming Service in
the uCosminexus Application Server Common Container Functionality Guide.

2.3.10 Settings in the execution environment (batch server settings)
You must perform batch server settings, if you want to use batch application execution functionality. Implement the
batch server settings in the Easy Setup definition file.

! Important note

By default, the scheduling functionality is not used (set to false). When not using the scheduling functionality, do not
change settings of the following parameter and key.

• ejbserver.ctm.enabled parameter of a logical J2EE server (j2ee-server) in the Easy Setup definition file.

• batch.ctm.enabled key in usrconf.cfg (object definition file for batch application)

You specify the definition of batch application execution functionality in the <configuration> tag of the logical
J2EE server (j2ee-server) of the Easy Setup definition file.

The following table describes the definition of batch application execution functionality in the Easy Setup definition
file.

Table 2‒9: Definition of batch application execution functionality in the Easy Setup definition file

Field Parameter to be specified Specification contents Required or
Optional

Setting for building a
server as a batch
server

batch.service.enabled To build a server as a batch server, make sure to
specify true.

Required

Setting for not using
SecurityManager

use.security SecurityManager is not used. Make sure to specify
false in parameter value.

Required

Setting for enabling
light transaction
functionality

ejbserver.distributedtx.XAT
ransaction.enabled

You cannot use global transactions. You use local
transactions#1. Make sure to specify false in
parameter value. Because false is set up by default,
do not change this parameter

Required

Setting of not using
the Explicit Memory
Management
functionality

add.jvm.arg If the Explicit Memory Management functionality
is not implemented in batch application, we
recommend disabling the Explicit Memory
Management functionality. To disable the Explicit
Memory Management functionality, specify -
XX:-HitachiUseExplicitMemory as a
value of parameter. In case of default settings, the
Explicit Memory Management functionality is
enabled (-XX:
+HitachiUseExplicitMemory).

Optional

Setting of real server
name

realservername Specify real server name of the batch server. If real
server name is omitted, logical server name is
specified.

Optional

2. Executing Applications by Using Batch Servers

45

Field Parameter to be specified Specification contents Required or
Optional

Setting of JavaVM
operation when
invoking JavaVM end
method

ejbserver.batch.application
.exit.enabled

If you invoke the following JavaVM end methods
in a batch application, specify whether JavaVM is
to be ended.

• java.lang.System.exit(int)
• java.lang.Runtime.exit(int)
• java.lang.Runtime.halt(int)

Default value is true (end the thread of batch
application without ending JavaVM).

If you specify true or omit the setting, when you
invoke JavaVM end method, thread of the batch
application (thread belonging to
batchThreadGroup) is ended and JavaVM is not
ended.

If you specify false, when you invoke JavaVM
end method, JavaVM is ended for each batch
server. As a result, you cannot use JavaVM end
method and shut down hook in the batch
application. #2

Optional

Legend:

Required: Must be specified

Optional: Specify as and when required

For details on the Easy Setup definition file and parameters, see uCosminexus Application Server Definition Reference Guide.

#1 In the case of a batch server, you use the light transaction functionality that provides the optimized environment in a local
transaction. The light transaction functionality is enabled, if false is specified in the
ejbserver.distributedtx.XATransaction.enabled parameter.

#2 If false is specified in the ejbserver.batch.application.exit.enabled parameter, you cannot use the JavaVM
end method and shutdown hook. Take actions as followings:

• Actions for the JavaVM end method
You code the batch processing contents in the public static int main(String[]) method. When returning end code,
you use return end-code. However, if you use return, the finally block is executed.

• Actions for shutdown hook
If you want to implement processing, when closing a batch application, code the processing in the finally block of the main
method.

2.3.11 Points to be considered when creating a batch application
This subsection describes the processing, for which you must take care when creating a batch application, and the
functionality that you cannot use in a batch application. Confirm these contents, and then create a batch application.

(1) Processes that require attention
You must take care of the following processing, when creating a batch application:

■ File and directory operations

Do not operate the following files and directories in a batch application:

• Files and directories below the Cosminexus installation directory
For details on the files and directories under the Cosminexus installation directory, see Appendix B Directory
structure after installation in the uCosminexus Application Server System Setup and Operation Guide.

• Files and directories below the work directories of batch server
For details on the work directories of a batch server, see Appendix C.2 Work directories of batch server in the
uCosminexus Application Server System Setup and Operation Guide.

2. Executing Applications by Using Batch Servers

46

When handling the files and directories in a batch application, you cannot use a relative path as a path of the files and
directories. If you want to acquire a relative path from a directory by executing the cjexecjob command, use the
value of ejbserver.batch.currentdir. For details on ejbserver.batch.currentdir, see
ejbserver.batch.currentdir property in the uCosminexus Application Server API Reference Guide.

The following example shows how to modify a batch application.

Before modification

File f = new File("DataFile.txt");

After modification

File f = new File(System.getProperty("ejbserver.batch.currentdir") +
System.getProperty("file.separator") + "DataFile.txt");

■ Using threads

A batch server does not wait for end of thread that is created or started by a batch application. When using threads in a
batch application, you implement in such a way so that all the started user threads are completed before ending the
batch application. User threads are out of scope of method cancellation.

If true is specified in the ejbserver.batch.application.exit.enabled parameter in the Easy Setup
definition file, note the following points:

• You cannot create a thread group (ThreadGroup).

• If a handler inheriting UncaughtExceptionHandler that is an interface of java.lang.Thread class
is registered in a batch application, the processing of the registered handler is executed, when invoking JavaVM
end method. In this case, the jp.co.Hitachi.soft.jvm.SpecialThrowable exception might be passed
in an argument of the uncaughtException method.

If a thread created by a batch application remains, the classes of the batch application or the used resources are not
released. As a result, when you attempt to start next batch application, the batch application might fail to start. In a
user thread, you cannot invoke the following batch server functionality:

• Batch application execution functionality

• EJB access functionality

• Functionality provided by naming management

• Functionality provided by resource connection and transaction management

• Garbage collection control functionality

• Functionality provided by container extension library

■ Automatic closing of resources when ending JavaVM

On a batch server, a batch application is executed on JavaVM of the server. Therefore, if the implementation expects
the processing of automatically closing resources, as a part of ending JavaVM, memory or file descriptor leakage
might occur. For example, leakage occurs in the following cases:

• If a ZIP file or a JAR file is open and if you do not explicitly close the file, C heap area leaks.

• If you specify ejbserver.batch.application.exit.enabled=false in usrconf.properties
on a batch server, the file is not deleted until the batch server stops even if you use
java.io.File.deleteOnExit(). C heap area leaks until the batch server stops.

To avoid these problems, implement batch applications in such a way so that the resources close properly.

If you do not explicitly close files and sockets, the timing of resource release is indefinite. This might impact the
execution of subsequent batch applications. Make sure to explicitly close files and sockets.

In the case of a batch server, you cannot use automatic closing of connection. Make sure to close connection inside
batch applications.

2. Executing Applications by Using Batch Servers

47

■ Using JavaVM end methods

If you specify true in the ejbserver.batch.application.exit.enabled parameter in the Easy Setup
definition file, you can use the following JavaVM end methods:

• java.lang.System.exit(int)
• java.lang.Runtime.exit(int)
• java.lang.Runtime.halt(int)

For details on the settings of the ejbserver.batch.application.exit.enabled parameter, see 2.3.10
Settings in the execution environment (batch server settings). For details on the points to be considered when using the
JavaVM end methods, see (3) Points to be considered when using JavaVM end method.

■ Using shutdown hook

If you specify true in the ejbserver.batch.application.exit.enabled parameter in the Easy Setup
definition file, you can use shutdown hook in the following cases:

• If you invoke JavaVM end method

• If the main method returns

• If an exception that occurs in the main thread is not caught

For details on the settings of the ejbserver.batch.application.exit.enabled parameter, see 2.3.10
Settings in the execution environment (batch server settings).

(2) Functionality that you cannot implement in batch applications
You cannot use the following functionality in a batch application. Take actions by using the procedure shown in
Action.

■ Input from standard input

You cannot perform input processing from standard input that uses java.lang.System.in.

Action
Use a file when an input processing is required.

■ Using JNI

You cannot use the execution functionality of native libraries through JNI.

Action
When using JNI, use through container extension library. In that case, load native libraries in container extension
library.

■ Replacing set of system properties

You cannot use the following method:

• java.lang.System.setProperties(java.util.Properties)

Action
Use java.lang.System.setProperty(String, String).

■ Reallocating standard output stream and standard error output stream

You cannot use the following methods:

• java.lang.System.setOut(java.io.PrintStream)
• java.lang.System.setErr(java.io.PrintStream)

2. Executing Applications by Using Batch Servers

48

Action
Do not use java.lang.System.out and java.lang.System.err. You directly use the PrintStream
object that you want to output.

(3) Points to be considered when using JavaVM end method
If you specify true in the ejbserver.batch.application.exit.enabled parameter in the Easy Setup
definition file, JavaVM is not ended even if you use the JavaVM end method in a batch application. In such case, you
can end only the thread invoked by the JavaVM end method.

This subsection describes the points to be considered when using the JavaVM end method if you have specified true
in the ejbserver.batch.application.exit.enabled parameter.

■ Differences with Java language specifications

The specifications of the JavaVM end method used in a batch application are different from the Java language
specifications. The following table describes the differences with Java language specifications.

Table 2‒10: Differences with Java language specifications

Field In Java language specification In batch application

End target JavaVM Thread which invoked JavaVM end method

java logic coded after
invocation

Processing, coded after invoking JavaVM
end method, is not executed.

Processing, coded after invoking JavaVM end method, is executed
in the following cases:

• If JavaVM end method is coded in try block, corresponding
finally block is executed. #1

• If
java.lang.Thread.UncaughtExceptionHandler
is registered in thread, UncaughtExceptionHandler is
executed. #1

Multiple invocation Cannot be used. Multiple invocation is performed in the following cases:

• If you invoke the same JavaVM end method from finally
block as in the case of the thread that invokes the JavaVM end
method

• If you invoke JavaVM end method from multiple user
threads#2, started from the batch application

#1: You might not be able to end the thread, if an exception occurs in the finally block and in the method invoked in the
finally block, and execution of the finally block is interrupted in middle without catching the exception in the finally
block.

In the following cases, the time might be required for ending a thread or you might not able to end the thread:

• If Java program processing for which the time is required is coded in the finally block and in the method invoked in the
finally block

• Java program processing for which the time is required is coded in java.lang.Thread.UncaughtExceptionHandler

An infinite loop, monitor waiting by the synchronized statement, and waiting by java.lang.wait() are processes of a Java
program that require time.

#2: User thread shows a child thread created by a batch application. Take care of the following, when using user threads:

• If interruptedException is caught in the run() method, a user thread is not ended, and remains as it is.

• If the main thread has ended even if the user thread remains, start of next application is accepted. However, memory leakage
occurs.

Reference note
If you want to end JavaVM when executing the JavaVM end method, you specify false in the
ejbserver.batch.application.exit.enabled parameter in the Easy Setup definition file. If you specify
false, JavaVM ends for each batch server when executing the JavaVM end method.

2. Executing Applications by Using Batch Servers

49

■ Processing when you invoke JavaVM end method

This subsection describes a processing, when you invoke JavaVM end method for each batch application.

If you invoke JavaVM end method in a batch application, implemented with a single thread
You end the main thread and end the execution of a batch application.
The following table describes the operations, when the JavaVM end method is invoked for multiple times.

Table 2‒11: Operations when JavaVM end method is invoked for multiple times (In the case of a batch
application implemented with a single thread)

No. Field Operation

1 End reporting to batch application
execution functionality

Report end only when you invoke first JavaVM end method.

Do not report when you invoke second or later JavaVM end method.

2 Returning end code The end code, specified in argument, is enabled when you invoke first JavaVM end
method.

The end code, specified in argument, is disabled when you invoke second or later
JavaVM end method.

3 Thread, which invoked JavaVM end
method

The thread ends irrespective of number of invocation of JavaVM end method.

If you invoke JavaVM end method in a batch application, implemented with multithread
A thread that invokes the JavaVM end method ends. The processing of other threads varies according to the
source thread, from which the JavaVM end method is invoked.

• If you invoke the JavaVM end method with the main thread, and if the main method returns or if an
exception occurred in the main thread is not caught.
Batch application execution functionality executes interrupt of java.lang.Thread class for all
running user threads.

• If you invoke JavaVM end method with user thread
The batch application execution functionality executes interrupt of the java.lang.Thread class for
all running user threads, except the following threads:
- User thread, which invoked JavaVM end method
- main thread
The batch application execution functionality executes method cancellation for the main thread that invokes a
user thread. If method cancellation is successful, the main thread ends, and then the batch application ends. If
an attempt to execute method cancellation fails, JavaVM ends for each batch server.
We do not recommend invoking the JavaVM end method in user threads because an attempt to execute
method cancellation.

In both the cases, when the main thread ends, start of next batch application is accepted irrespective of whether a
user thread remains.

2. Executing Applications by Using Batch Servers

50

2.4 EJB access functionality
You can access EJB of other J2EE application from a batch application. This functionality is called EJB access. This
section describes the functionality that you can use with the EJB access functionality.

For details on how to create a batch application that accesses EJBs, see 2.3.9 Implementing a batch application (when
accessing EJB).

The following table describes the organization of this section.

Table 2‒12: Organization of this section (EJB access functionality)

Category Title Reference location

Description Functionality that you can use with EJB access 2.4.1

Setup Settings in the execution environment (batch server settings) 2.4.2

There is no specific description of Implementation, Operation and Notes for this functionality.

2.4.1 Functionality that you can use with EJB access
The following table describes the functionality that you can use with EJB access. For details on the functionality, see
the description in Reference location.

Table 2‒13: Functionality that you can use with EJB access

Category Functionality Explanation
Reference
manual#

Reference
location

JNDI Basic
function
ality

Binding and
lookup of objects
to JNDI
namespace

You can lookup the reference of EJB home objects and
business interface from Naming Service by using
automatically bound name (Portable Global JNDI name
or name starting with HITACHI_EJB) or user-specified
namespace.

Common
Container
Functionalit
y Guide

2.3

Extende
d
function
ality

Searching
CORBA Naming
Service with
round-robin policy

For the systems, which are configured with multiple
Naming Service and J2EE servers, you can perform
lookup from a batch application with round robin.
Accordingly, you can achieve load balancing.

2.7

Caching by
naming
management
functionality

You can maintain (cache) objects, looked up from
Naming Service, on memory. You can decrease cost on
access performance to Naming Service by using cache.

2.8

EJB Executing
Enterprise Bean

You can invoke Enterprise Bean, being executed in EJB
container, from a batch application. However, you can
use only remote invocation method. You cannot perform
local invocation.

EJB
Container
Functionalit
y Guide

2.2

Invoking
Enterprise Bean

3.4

Acquiring RMI-
IIOP stub and
interface

You can invoke an application from a batch application
by using RMI-IIOP functionality of Cosminexus
TPBroker.

3.7

Invoking remote
interface of EJB

You can select send operation if communication failure
occurs when invoking EJB from a batch application.

2.13

Transaction Transaction
management

You can start and conclude transactions in a batch
application. However, you cannot use global
transactions in a batch application.

Common
Container
Functionalit
y Guide

3.4

Implementing
transactions in

You can start and conclude transactions in a batch
application by acquiring UserTransaction. The

EJB
Container

3.5

2. Executing Applications by Using Batch Servers

51

Category Functionality Explanation
Reference
manual#

Reference
location

Transaction EJB client
application

following two methods are used to acquire
UserTransaction:

1. Method in which UserTransactionFactory
class is used

2. Method in which lookup is used

Functionalit
y Guide

3.5

Others Setting timeout in
EJB container

You can set up a timeout of the RMI-IIOP
communication in communication between a batch
server and a Naming Service, and a batch server and a
J2EE server.

In a batch application, a timeout of Stateful Session
Bean, timeout of EJB object of Entity Bean, and timeout
of instance acquisition waiting are not applicable.

EJB
Container
Functionalit
y Guide

2.11

Performance
analysis of system
that uses
performance
analysis trace

You can output performance analysis trace of batch
application.

Maintenance
and
Migration
Guide

Chapter 7

Outputting user
log of an
application

You can output log of a batch application. This manual Chapter 9

uCosminexus Application Server is omitted in the manual names mentioned in Reference manual.

2.4.2 Settings in the execution environment (Batch server settings)
You must perform batch server settings, if you want to use EJB access functionality.

You implement the batch server settings in the Easy Setup definition file. You specify the definition of the EJB access
functionality in the <configuration> tag of the logical J2EE server (j2ee-server) of the Easy Setup definition file.

The following table describes the definition of the EJB access functionality in the Easy Setup definition file.

Table 2‒14: Definition of EJB access functionality in the Easy Setup definition file

Field Parameter to be specified Setting contents

Timeout of RMI-IIOP
communication

ejbserver.rmi.request.time
out

Specify a communication timeout between client and server of
the RMI-IIOP communication.

Operation of EJB client
when communication
failure occurs in remote
interface

ejbserver.container.rebind
policy

Specify reconnection operation and request resending operation
to be performed on the batch server, if communication failure
occurs when invoking the EJB method.

Fixing communication port
and IP address of batch
server

vbroker.se.iiop_tp.scm.iio
p_tp.listener.port

Specify communication port of batch server.

vbroker.se.iiop_tp.host Specify whether the IP address or host name, used by batch
server, are to be fixed.

For details on Easy Setup definition file and parameters, see uCosminexus Application Server Definition Reference Guide.

2. Executing Applications by Using Batch Servers

52

2.5 Naming management functionality
Naming management is one of the functionality provided by a J2EE service. The J2EE service is a functionality used
as a component functionality of J2EE container. With the naming management, names and storage locations of objects
(EJB home objects corresponding to Enterprise Bean, references of business interface, and J2EE resources) are
managed. By using the naming management functionality, for a batch application, you can use the required objects
from the names even if you do not know the storage location of Enterprise Beans or resources to be invoked. This
section describes the naming management functionality that you can use with batch servers, and how to set up the
naming management functionality.

The following table describes the organization of this section.

Table 2‒15: Organization of this section (Naming management functionality)

Category Title Reference location

Description Naming management functionality that you can use on a batch server 2.5.1

Setup Settings in the execution environment (batch server settings) 2.5.2

There is no specific description of Implementation, Operation and Notes for this functionality.

2.5.1 Naming management functionality that you can use on a batch
server

The following table describes the naming management functionality that you can use on a batch server. For details on
the naming management functionality, see 2. Naming management in the uCosminexus Application Server Common
Container Functionality Guide.

Table 2‒16: Naming management functionality

Functionality Explanation

Binding and lookup of objects to JNDI namespace Bind and manage objects as name of JNDI namespace. You can perform lookup
from batch applications by using bound names. In a batch application, you cannot
use lookup in java:comp/env.

Assigning optional name to Enterprise Bean or J2EE
resources (user-specified namespace functionality)

You can assign optional name to J2EE resources. You can perform lookup from a
batch application with any name set up as an optional name. When connecting to
a database from a batch application, make sure to specify optional name to J2EE
resources.

For details on J2EE resources, see 2.6 Assigning optional name to Enterprise
Bean or J2EE server (user-specified name space functionality) in the
uCosminexus Application Server Common Container Functionality Guide. In a
batch application, description of Enterprise Bean is not applicable.

Searching the CORBA Naming Service by round-
robin policy

You can perform lookup of EJB home object references having the same name
(optional name) registered on multiple CORBA Naming Service, in compliance
with round robin policy.

Caching by the naming management functionality You can perform caching of already looked up EJB home object references. You
can decrease the time required for processing when you perform lookup of the
same object from second time onwards.

Switching CORBA Naming Service You can switch JNDI namespace to be targeted for lookup by using instance
prefix judgment of the InitialContext class.

With the JNDI of naming management functionality, objects (remote objects of RMI-IIOP and objects such as JDBC
data source) other than the CORBA object reference are handled as follows:

• The objects other than the CORBA object reference are registered by converting the targeted objects to the
CORBA objects and registering the CORBA object reference to the CORBA Naming Service.

• The objects other than CORBA objects are searched by searching the CORBA object reference and acquiring
original objects by reverse conversion from the CORBA objects.

2. Executing Applications by Using Batch Servers

53

2.5.2 Settings in the execution environment (Batch server settings)
You must perform batch server settings, if you want to use naming management functionality.

You implement the batch server settings in the Easy Setup definition file. You specify the definition of the naming
management functionality in the <configuration> tag of a logical J2EE server (j2ee-server) of the Easy Setup
definition file.

The following table describes the definition of the naming management functionality in the Easy Setup definition file.

Table 2‒17: Definition of naming management functionality in the Easy Setup definition file

Field Parameter to be specified Setting contents

Basic set up ejbserver.naming.host Specify host name of the CORBA Naming Service. #1

ejbserver.naming.port Specify port number of the CORBA Naming Service. #1

Round robin search#2 ejbserver.jndi.namingservice.gr
oup.list

Specify group of the CORBA Naming Service.

ejbserver.jndi.namingservice.gr
oup.Specify-group-name.providerurls

Specify root location of the CORBA Naming Service
belonging to each group.

java.naming.factory.initial Specify class in which implementation of
InitialContextFactory is delegated.

Naming caching ejbserver.jndi.cache Specify whether the caching in naming is to be enabled.

ejbserver.jndi.cache.interval Specify cache clearing interval.

ejbserver.jndi.cache.interval.c
lear.option

Specify range of cache clearing.

Example of setting for regularly clearing cache (when
defining physical tier) is as follows:

(Example)
<configuration>
<logical-server-type>j2ee-server</
logical-server-type>
<param>
<param-name>ejbserver.jndi.cache</
param-name>
<param-value>on</param-value>
</param>
<param>
<param-
name>ejbserver.jndi.cache.interval</
param-name>
<param-value>60</param-value>
</param>
<param>
<param-
name>ejbserver.jndi.cache.interval.clea
r.option</param-name>
<param-value>check</param-value>
</param>
:
<configuration>

Communication
timeout of Naming
Service

ejbserver.jndi.request.timeout Specify timeout time for communicating with Naming
Service.

Note: For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus Application
Server Definition Reference Guide.

2. Executing Applications by Using Batch Servers

54

#1: By default, batch server automatically starts and uses the CORBA Naming Service having localhost host name and 900 port
number by inline process.

#2: For round robin search, using the user-specified namespace functionality is a prerequisite. If you want to use user-specified
namespace functionality, you must customize operation settings of server management commands. For details on how to specify the
settings, see 2.6.7 Settings in the execution environment in the uCosminexus Application Server Common Container Functionality
Guide.

2. Executing Applications by Using Batch Servers

55

2.6 Overview of resource connections and transaction
management

In a batch application, you can connect to a database by extending processing. To connect to a database from a batch
application, you deploy and use a resource adapter, corresponding to the resources to be connected. DB Connector that
is the resource adapter used for connecting to a database is provided with Application Server.

With Application Server, the connection pooling and the transaction management functionality are provided for
accessing these resources efficiently and reliably. When using the connection pooling, you can perform pooling of
connections for resources and use the connections efficiently. Properly remove the connections, in which failure
occurs, from the connection pool. When using the transaction management functionality, transaction manager properly
controls transactions of resource access, on the basis of transaction attributes specified for each method and
instructions by JTA interface (UserTransaction).

You cannot use global transactions in a batch application.

The following figure shows an example of connecting to resources by using the connection pooling and the
transaction management functionality.

Figure 2‒11: Example of connecting to resources by using connection pooling and transaction
management functionality

For details on how to create a batch application to be connected to resources, see 2.3.8 Implementing a batch
application (when connecting to resources).

2. Executing Applications by Using Batch Servers

56

2.7 Resource connection functionality
In a batch application, you can use a database as a resource. This section describes how to connect to a database from
a batch application.

The following table describes the organization of this section.

Table 2‒18: Organization of this section (Resource connection functionality)

Category Title Reference location

Description Databases that can be connected 2.7.1

How to connect to resources 2.7.2

Types of DB Connector (RAR file) 2.7.3

How to use a resource adapter 2.7.4

How to set up a resource adapter 2.7.5

Procedure for setting a resource adapter 2.7.6

Setup Settings in the execution environment 2.7.7

There is no specific description of Implementation, Operation and Notes for this functionality.

2.7.1 Databases that can be connected
You can connect to the following databases from a batch server. However, you cannot use global transactions on a
batch server.

• HiRDB

• Oracle

• SQL Server#

• XDM/RD E2

#: You can connect to SQL Server only in Windows.

For using these databases, you use a resource adapter. To use a resource adapter, you must use the server management
commands and perform operations such as setting properties of and importing resource adapters. For details on setting
the resource adapters, see 2.7.7(2) Resource adapter settings.

Before setting resources, understand the points to be considered when setting resources. When using the server
management commands, customize operation settings of the server management command as and when required. For
details on the points to be considered when setting resources and operation settings for using the server management
commands, see 3.3 Customizing operation settings of server management commands in the uCosminexus Application
Server Application Setup Guide.

For the following details on connecting to databases, see 3.6 Connecting to databases in the uCosminexus Application
Server Common Container Functionality Guide.

• Overview of connecting with DB Connector

• Mapping of databases and JDBC drivers

• JDBC specifications supported by DB Connector

• Prerequisites and points to be considered when connecting to a database #

#: See this description depending on the type of database to be connected.

2. Executing Applications by Using Batch Servers

57

2.7.2 How to connect to resources
To connect to a database form a batch application, directly use JDBC drivers or use resource adapters provided on
Application Server. Use DB Connector if you want to use a resource adapter. The following table describes the
functionality that you can use when connecting to a database from a batch application, for each connection method. If
you use DB Connector, in addition to the functionality mentioned in the table below, you can also use the functionality
provided by DB Connector. For details on the functionality provided by DB Connector, see 2.7.4(1) Resource adapter
functionality.

Table 2‒19: Functionality that you can use when connecting to a database

Functionality that you can use
How to connect

DB Connector JDBC driver

Executing SQL Y Y

Using transactions Transactions by Connection API Y Y

JTA Local transactions Y N

Global transactions N N

Garbage collection control functionality Y N

Legend:

Y: Can be used

N: Cannot be used

2.7.3 Types of DB Connector (RAR file)
When connecting to a database by using DB Connector, you use a RAR file appropriate to the JDBC driver to be used.
You use the server management commands to operate the RAR file. For details on how to operate the RAR files by
using the server management commands, see 4. Setting a resource adapter in the uCosminexus Application Server
Application Setup Guide.

The following table describes the types of JDBC driver and RAR files that you can use on a batch server:

Table 2‒20: Mapping of JDBC drivers and RAR files

JDBC driver RAR file Explanation

HiRDB Type4 JDBC Driver DBConnector_HiRDB_Type4_CP.
rar

This RAR file is used to connect to HiRDB and XDM/RD
E2. Use this file when you do not perform transaction
management or use local transactions.

Oracle JDBC Thin Driver DBConnector_Oracle_CP.rar This RAR file is used to connect to Oracle. Use this file
when you do not perform transaction management or use
local transactions.

DBConnector_CP_ClusterPool_
Root.rar

This RAR file is used to connect to Oracle.

You use the file in the following cases:

• When using a root resource adapter in cluster
connection pool functionality

• When a member resource adapter belonging to the root
resource adapter does not have local transactions or
transaction management

DBConnector_Oracle_CP_Clust
erPool_Member.rar

This RAR file is used to connect to Oracle.

You use the file in the following cases:

• When using a member resource adapter in cluster
connection pool functionality

2. Executing Applications by Using Batch Servers

58

JDBC driver RAR file Explanation

Oracle JDBC Thin Driver DBConnector_Oracle_CP_Clust
erPool_Member.rar

• When a member resource adapter belonging to the root
resource adapter does not have local transactions or
transaction management

You cannot use this file by setting to resource references of
J2EE application.

JDBC driver of SQL Server DBConnector_SQLServer_CP.ra
r

This RAR file is used to connect to SQL Server (only in
Windows). Use this file when you do not perform
transaction management or use local transactions.

When using a new RAR file of DB Connector, you can use a template file of the HITACHI Connector Property file provided with
Application Server and define properties. The template file of the HITACHI Connector Property file is provided for RAR files of all
DB Connectors. For details on the provided template files, see 4.1.14 Template files of Connector property file in the uCosminexus
Application Server Application and Resource Definition Reference Guide.

2.7.4 How to use a resource adapter
When connecting to resources by using a resource adapter, deploy the resource adapter as a J2EE resource adapter. A
J2EE resource adapter is the resource adapter deployed on a J2EE server. For details on how to deploy the resource
adapters, see 3.3.7 How to set up a resource adapter in the uCosminexus Application Server Common Container
Functionality Guide.

(1) Resource adapter functionality
The following table describes the functionality that you can use for connecting to a database, in the case of a batch
server. For details on the functionality, see description at respective Reference location.

Table 2‒21: Resource adapter functionality

Functionality Field Explanation
Reference
manual#1

Reference
location

Functionality
for
performance
tuning

Connection
pooling

You can speedily process connection requests from the
application by pooling the connections in memory.

Common
Container
Functionality
Guide

3.14.1

Warm-up of
connection pool

Create connections of the number that is specified when
you start a server or a resource adapter. By pooling the
connections, speedily process the connection requests
immediately after starting the connection pool.

3.14.2

Functionality for
adjusting number
of connections

This functionality gradually decreases unnecessary
connections in the pool, at regular intervals.

3.14.2

Connection
sharing association

By sharing connections, you can decrease the processing
time required for acquiring connections.

In connection sharing, connect logical connections and
physical connections that are the connections of the
connection destination resources, as many-to-one.

However, you cannot use connection association in a
batch application.

3.14.3

Statement pooling In the processing that uses PreparedStatement and
CallableStatement, you can pool these statements
and shorten the processing time required for creating the
same statements.

3.14.4

Caching of
DataSource
objects

When making search request of DataSource type object
by using JNDI interface, you can cache DataSource
objects.

3.14.7

Optimizing sign-
on in container

If you want to perform sign-on in container
management, you can optimize on the sign-on operation.

3.14.8

2. Executing Applications by Using Batch Servers

59

Functionality Field Explanation
Reference
manual#1

Reference
location

Functionality
for
performance
tuning

management of
DB Connector

Common
Container
Functionality
Guide

If you want to perform sign-on in container
management, you can optimize on the sign-on operation.

3.14.8

Functionality
for fault
tolerance

Detecting
connection failure

You can detect whether trouble has occurred in pooled
connections. As a result, you can return only valid
connections against connection requests from user
program.

Common
Container
Functionality
Guide

3.15.1

Waiting for
acquiring
connections when
connections
exhaust

You can set up the connection acquisition requests to
standby if connections of the specified maximum value
are pooled in the connection pool and there are no
connections that you can use.

3.15.2

Retrying
connection
acquisition

If there are no connections that you can use, in the
connection pool, or if establishing a physical connection
of connection destination resource fails, you can
automatically re-execute the processing of acquiring
connection.

3.15.3

Displaying
connection pool
information

You can display connection information in the
connection pool using a command.

3.15.4

Clearing
connection pool

If trouble occurs on a database server and the connection
is disconnected, you can delete the unnecessary
connection pools with a command.

3.15.5

Cancelling
statements

You can cancel a statement if transaction timeout occurs
when the running SQL processing has not returned.

3.15.8

Outputting SQL
for failure
investigation

If failure such as deadlock and slowdown occurs, you
can output the issued SQL to log. You can use the log for
analyzing the cause of failure.

3.15.10

Automatic closing
of objects

If you could not close the Statement objects opened by
user program, DB Connector can automatically close the
objects.

3.15.11

Cluster
connection pool

Temporary
stopping of
connection pool

If you configure a database with cluster, you can stop
and resume connection pool when failure is detected or
for maintenance. You can display states of each
connection pool.

Common
Container
Functionality
Guide

3.17.4

Resuming
connection pool

3.17.4

States of
connection pool

3.17.4

Testing
connection to
resources

Testing connection
to resources

You can check whether a resource adapter is correctly
specified during the environment setup.

3.18

Assigning
optional name
to Enterprise
Bean or J2EE
resources (user-
specified
namespace
functionality)

Assigning optional
name to J2EE
resource#2

You can assign optional name to J2EE resources. You
can perform lookup from batch application, on any name
specified as an optional name.

2.6

Performance
analysis of
system by

PRF trace of
connection ID

This functionality collects performance analysis
information output by the functionality. Based on this

Maintenance
and Migration
Guide

Chapter 8

2. Executing Applications by Using Batch Servers

60

Functionality Field Explanation
Reference
manual#1

Reference
location

using
performance
analysis trace

PRF trace of
connection ID

information, you can analyze system performance and
bottlenecks.

Maintenance
and Migration
Guide

Chapter 8

#1 uCosminexus Application Server is omitted in the manual name mentioned in the Reference manual column.

#2 For a batch server, make sure to use the optional name of the resource adapter.

The following table describes functionality that you can use for each type of resource adapter.

Table 2‒22: Functionality that you can use for each type of resource adapter

Functionality Field

Type of resource adapter

DB Connector Root resource
adapter

Member
resource
adapter

Functionality for
performance tuning

Connection pooling Y N Must be enabled

Warm-up of connection pool Y N Y

Functionality for adjusting number of
connections

Y N Y

Connection sharing association# Y N Y

Statement pooling Y N Y

Caching of DataSource objects Y Y N

Optimizing sign-on in container management
of DB Connector

Y N Y

Functionality for fault
tolerance

Detecting connection failure Y N Must be enabled

Waiting for acquiring connections when
connections exhaust

Y N Must be enabled

Retrying connection acquisition Y N N

Displaying connection pool information Y N Y

Clearing connection pool Y N Y

Cancelling statements Y N Y

Outputting SQL for failure investigation Must be enabled N Must be enabled

Automatic closing of objects Y N Y

Cluster connection pool Temporary stopping of connection pool N N Y

Resuming connection pool N N Y

States of connection pool Y N Y

Testing connection to
resources

Testing connection to resources Y Y Y

Assigning optional
name to Enterprise Bean
or J2EE resources (user-
specified namespace
functionality)

Assigning optional name to J2EE resource# Y Y N

Performance analysis of
system by using

PRF trace of connection ID Y Y Y

2. Executing Applications by Using Batch Servers

61

Functionality Field

Type of resource adapter

DB Connector Root resource
adapter

Member
resource
adapter

performance analysis
trace

PRF trace of connection ID Y Y Y

Legends:
Y: Can be used
N: Cannot be used

You cannot use connection association with a batch application.

(2) Functionality other than resource adapter
This subsection describes the functionality other than the implemented resource adapters. You can use the
functionality described here irrespective of the type of resource adapter.

The following table describes the functionality other than the implemented resource adapters. For details on the
functionality, see Reference location.

Table 2‒23: Functionality other than resource adapter

Functionality Field Explanation Reference manual# Reference location

Functionality for
performance tuning

Light transaction This functionality provides an
environment optimized with local
transactions. Make sure to enable the
light transaction functionality.

Common Container
Functionality Guide

3.14

Functionality for
fault tolerance

Transaction timeout This functions rolls back the
transactions at invoke destination
when a fixed time elapses after
transaction start time.

Common Container
Functionality Guide

3.15

uCosminexus Application Server is omitted in the manual name mentioned in Reference location.

! Important note

The transaction management functionality on a J2EE server includes the functionality for automatically concluding
transactions. However, you cannot use the functionality of automatically concluding transactions on a batch server.

(3) Notes for optional name of resource adapter
If you have deployed multiple resource adapters with the same optional name, an error message is output and an
attempt to start the resource adapters fails.

2.7.5 How to set up resource adapters
To connect to a database from a batch application, use a resource adapter called DB Connector. This subsection
describes setting of resource adapter, which is used on a batch server. On a batch server, deploy and use a resource
adapter as a J2EE resource adapter.

Reference note
If resource adapter is DB Connector, you can use template file of Connector property file provided with Application Server.
If you use the template file of Connector property file, you can edit the Connector property file before importing DB
Connector. As a result, the operation of acquiring Connector property file to be edited, by using the server management
command (cjgetrarprop or cjgetresprop command) is no more required. Templates in Connector property file are
stored in the following locations. Copy and use the template files.

• In Windows,
Cosminexus-installation-directory \CC\admin\templates\

2. Executing Applications by Using Batch Servers

62

• In UNIX,
/opt/Cosminexus/CC/admin/templates/

For details on template files of Connector property file and points to be considered when using the template files, see 4.1.14
Template files of Connector property file in the uCosminexus Application Server Application and Resource Definition
Reference Guide.

! Important note

You must perform migration of the resource adapters, if you want to use the resource adapters used by the versions earlier
than Application Server 07-10, in Application Server 07-10 or later versions. For details on how to migrate resources, see
10.9.1 Executing migration command of resource adapters in the uCosminexus Application Server Maintenance and
Migration Guide.

2.7.6 Procedure for setting a resource adapter
You use the server management commands to set up resource adapters. With a batch server, you deploy and use a
resource adapter as a J2EE resource adapter.

The following figure shows the flow of new settings of a resource adapter, to be used on a batch server.

Figure 2‒12: Flow of new settings of a resource adapter, to be used on a batch server

The following subsections describe steps from 1 through 4 of the above figure:

1. Import a resource adapter by using a server management command.
You import a resource adapter by using the cjimportres command.
For details on the resource adapters to be imported, see 2.7.3 Types of DB Connector (RAR file).

2. Deploy a resource adapter by using a server management command.
You deploy a resource adapter by using the cjdeployrar command.
If you deploy a resource adapter, you can use the resource adapter as a J2EE resource adapter. J2EE resource
adapter is a resource adapter that is deployed as a shared stand-alone module on a batch server. If you deploy the
resource adapter imported by the server management command, you can use the resource adapter on the batch
server.

3. Define resource adapter properties by using server management commands.
Acquire Connector property file with the cjgetrarprop command, edit the file and reflect edited contents with
the cjsetrarprop command.
In the case of a batch server, you specify an optional name to the resource adapter by using the user-specified
namespace functionality. You define the settings of optional names performed with the user-specified namespace
functionality in property of the resource adapters. For details on settings of the user-specified namespace
functionality, see 2.6 Assigning optional name to Enterprise Bean or J2EE resource (user-specified namespace
functionality) in the uCosminexus Application Server Common Container Functionality Guide.
For details on the contents that you can specify in the property definition of resource adapters, see 2.7.7(2)
Resource adapter settings.

4. Test connection of the resource adapter by using a server management command.

2. Executing Applications by Using Batch Servers

63

Execute the test connection of resource adapters by using the cjtestres command. For details on the
validation contents of Connection Test performed for the resources, see 3.18 Testing connection to resources in the
uCosminexus Application Server Common Container Functionality Guide.

For details on the operations with the server management commands, see 3. Basic operations of server management
commands in the uCosminexus Application Server Application Setup Guide. For details on the cjimportres
command, see cjimportres (importing resources) in the uCosminexus Application Server API Reference Guide. For
details on the cjdeployrar command, see cjdeployrar (deploying resource adapters) in the uCosminexus
Application Server API Reference Guide. For details on the cjgetrarprop command, see cjgetrarprop (acquiring
properties of RAR file) in the uCosminexus Application Server API Reference Guide. For details on the cjtestres
command, see cjtestres (testing connections of resources) in the uCosminexus Application Server API Reference
Guide. For details on the properties, see 4. Property files used for setting resources in the uCosminexus Application
Server Application and Resource Definition Reference Guide.

For details on the following procedures, see 3.3.8 Procedure for setting resource adapters (when deploying and using
as J2EE resource adapter) in the uCosminexus Application Server Common Container Functionality Guide. In that
case, read J2EE server as Batch server and J2EE application as batch application.

• Procedure for setting a resource adapter when using cluster connection pool functionality

• Procedure for changing settings of a resource adapter

• Procedure for replacing a resource adapter
Reference note

In the following cases, you can efficiently specify a resource adapter by exporting and importing:

• If you export a resource adapter, which is specified in development environment, import it to operating
environment, and then use it

• If you export a resource adapter, which is already running in operating environment, import it to add-on batch
server, and then use it

You execute export and import with cjexportrar and cjimportres.

You cannot export and import, and use resource adapters between the hosts having different version and platform of
Application Server. Set a new resource adapter when setting a resource adapter on a host, which exports resource
adapters, and a host having different version and platform of Application Server.

2.7.7 Settings in the execution environment
You must perform batch server and resource adapter settings if you use resource connection functionality. .

This subsection describes the settings for using the resource connection functionality.

(1) Batch server settings
You implement the batch server settings in the Easy Setup definition file. You specify the definition of batch
application execution functionality in the configuration tag of logical J2EE server (j2ee-server) of the Easy Setup
definition file.

The following table describes the definition of resource connection functionality in Easy Setup definition file.

Table 2‒24: Definition of resource connection functionality in Easy Setup definition file

Field Parameter to be specified Setting contents

Enabling connection
sharing outside the
transactions managed
by Application Server

ejbserver.connectionpool.sharin
gOutsideTransactionScope.enable
d

Specify operation of connection sharing to be performed when
you acquire multiple connections outside the transactions
managed by Application Server .

Caching of
DataSource objects

ejbserver.jndi.cache.reference Specify whether the caching of DataSource object is to be
enabled.

Optimizing sign-on in
container

ejbserver.connectionpool.applic
ationAuthentication.disabled

Specify whether the sign-on optimization functionality of
container management is to be enabled.

2. Executing Applications by Using Batch Servers

64

Field Parameter to be specified Setting contents

management of DB
Connector

ejbserver.connectionpool.applic
ationAuthentication.disabled

Specify whether the sign-on optimization functionality of
container management is to be enabled.

For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus Application
Server Definition Reference Guide.

(2) Resource adapter settings
In the case of a batch application to be connected to resources, you specify an optional name to resource adapters by
using the user-specified namespace functionality. To lookup resource adapters from a batch application, you use the
optional name set up with user-specified namespace functionality. For details on the settings of the user-specified
namespace functionality, see 2.3.8 Implementing a batch application (when connecting to resources).

Reference note
Before performing resource settings, understand the notes on resource settings. When using server management commands,
customize operation settings of server management commands as and when required. For notes on the resource settings and
operation settings for using the server management commands, see 3.3 Customizing operation settings of server
management commands in the uCosminexus Application Server Application Setup Guide.

You implement resource adapter settings in the HITACHI Connector Property file.

The following table describes the definition of resource connection functionality in the HITACHI Connector Property
file.

Table 2‒25: Definition of resource connection functionality in the HITACHI Connector Property file

Category Field Setting contents

General information Transaction support level Set transaction support level in the <transaction-support>
tag. You specify no transaction management (NoTransaction) or
local transaction (LocalTransaction). You cannot specify global
transaction (XATransaction) for batch servers.

Configuration properties Waiting time until database
connection is established

Specify a waiting time of a batch application until a database
connection is established, in loginTimeout of the <config-
property> tag.

Cancelling statements Specify whether the statement cancellation performed when a
transaction timeout occurs is to be enabled, in CancelStatement
of the <config-property> tag.

Pool size of PreparedStatement#1 Specify pool size of PreparedStatement, in
PreparedStatementPoolSize of the <config-property>
tag.

Pool size of CallableStatement#1 Specify pool size of CallableStatement, in
CallableStatementPoolSize of the <config-property>
tag.

Runtime properties Minimum value and maximum
value of a connection

Specify minimum value and maximum value of connections to be
pooled in the connection pool, in MinPoolSize and
MaxPoolSize of the <property> tag.

Detecting failure in a connection Specify a timing of detecting connection failure, in
ValidationType of property tag. Specify failure detection interval
in ValidationInterval
When setting a timeout when connection failure is detected, enable
the usage of connection management thread in
NetworkFailureTimeout. #2

Connection acquisition retry Specify retry count in case of connection acquisition failure, in
RetryCount of the <property> tag. Specify retry intervals in
RetryInterval.

2. Executing Applications by Using Batch Servers

65

Category Field Setting contents

Runtime properties Connection sweeper Specify an interval for automatically destroying connections
(connection sweeper) in SweeperInterval of the <property>
tag. Specify a time from last usage time of connection to judging
whether the connection is to be automatically destroyed, in
ConnectionTimeout.

Waiting for acquiring connections
when connections exhaust

Specify whether to wait for acquiring connections when connections
exhaust, in RequestQueueEnable of the <property> tag.
Specify waiting time in RequestQueueTimeout.

Warm-up of connection pool When using the warm-up functionality of connection pool, specify
Warmup in the <property> tag.

Connection management threads When using connection management threads, specify
NetworkFailureTimeout in the <property> tag.

When using connection management threads, settings for using a
timeout in the connection failure detection functionality and
functionality for adjusting number of connections are enabled.

Functionality for adjusting
number of connections

Specify an interval for operating the functionality for adjusting
number of connections, in
ConnectionPoolAdjustmentInterval of the <property>
tag.

When setting a timeout for the functionality for adjusting number of
connections, you enable the usage of connection management threads
in NetworkFailureTimeout. #2

#: For details on the HITACHI Connector Property file, see 4. Property files used for resource settings in the uCosminexus
Application Server Application and Resource Definition Reference Guide.

#1: In the case of XDM/RD E2 11-01 or earlier versions, specify 0 in these properties, because you cannot use the statement pooling
functionality.

#2: Set up with the same key. Therefore, when you use a timeout with the connection failure detection functionality, you use of a
timeout is also enabled in the functionality for adjusting number of connections. For timeout time, specify any time (default value is
5 seconds) in the key (ejbserver.connectionpool.validation.timeout), specified in a J2EE server of the Easy Setup
definition file.

For details on the definition of DB Connector properties specified when connecting to a database by using DB
Connector, see 4.1.2 Overview of items to be set up and operations in the uCosminexus Application Server Application
Setup Guide.

2. Executing Applications by Using Batch Servers

66

2.8 Transaction management
This section describes the transaction management when connecting to resources.

The following table describes the organization of this section.

Table 2‒26: Organization of this section (Transaction management)

Category Title Reference location

Description Overview of transaction management when connecting to resources 2.8.1

Setup Settings in execution environment (batch server settings) 2.8.2

There is no specific description of Implementation, Operation and Notes for this functionality.

2.8.1 Overview of transaction management when connecting to
resources

There are two methods of managing transactions when connecting to resources; managing transactions with
Application Server and directly managing transactions by a user without managing with Application Server. When
connecting to a database, you can manage transactions by using transaction manager with Application Server. For
details on the transaction management, see 3.4.1 How to manage transactions in resource connection in the
uCosminexus Application Server Common Container Functionality Guide.

A transaction that can be managed with a batch server is a local transaction. You cannot use global transactions. Make
sure to enable the light transaction functionality on a batch server. Light transaction functionality is a functionality
which provides an environment, which is optimized with local transactions. For details on the local transactions and
light transaction functionality, see 3.4.2 Local transactions and global transactions in the uCosminexus Application
Server Common Container Functionality Guide.

When invoking EJBs, if a system exception occurs at invocation destination, transactions at invocation source and
invocation destination operate as follows.

Transactions at invocation source
Transactions are not marked for rollback.

Transaction at invocation destination
Transactions are rolled back by container. These operations are defined in EJB specifications.

2.8.2 Settings in the execution environment (Batch server settings)
You must perform batch server settings, if you want to use transaction management functionality.

You implement the batch server settings in the Easy Setup definition file. You specify the definition of the transaction
management functionality in the <configuration> tag of a logical J2EE server (j2ee-server) of the Easy Setup
definition file. You specify the following parameters:

• ejbserver.jta.TransactionManager.defaultTimeOut
You specify the default value of a timeout for transactions started on a batch server.

For details on a transaction timeout, see 3.15 Functionality for fault tolerance in the uCosminexus Application Server
Common Container Functionality Guide. For details on the Easy Setup definition file and parameters, see 4.6 Easy
Setup definition file in the uCosminexus Application Server Definition Reference Guide.

2. Executing Applications by Using Batch Servers

67

2.9 Garbage collection control functionality
You can use the garbage collection control functionality on a batch server. This section gives an overview, processing
flow, and setting methods of the garbage collection control functionality.

The following table describes the organization of this section.

Table 2‒27: Organization of this section (Garbage collection control functionality)

Category Title Reference location

Description Overview of garbage collection control functionality 2.9.1

Flow of processing of garbage collection control functionality 2.9.2

Setup Settings in the execution environment (batch server settings) 2.9.3

There is no specific description of Implementation, Operation and Notes for this functionality.

2.9.1 Overview of garbage collection control functionality
A garbage collection is a technique for automatically collecting memory areas that are used by programs, and
allowing other program to use the areas. A JavaVM executes the garbage collection.

Time is required for processing the garbage collection. During execution of a garbage collection, all program
processing on JavaVM stop. Therefore, ability to properly execute garbage collection has a great impact on the
processing performance of a system.

To avoid resource exclusion for long time by batch applications, the garbage collection control functionality is
provided on batch servers. The garbage collection control functionality is the functionality that explicitly executes a
full garbage collection, when resource exclusion is not performed. By using the garbage collection control
functionality, you can avoid generation of a full garbage collection during the resource exclusion.

The garbage collection control functionality is described below with an example.

If you are not using the garbage collection control functionality, the problems shown in the following figure occur in
an environment where the batch processing and online processing are executed in parallel.

Figure 2‒13: When you are not using garbage collection control functionality

In this figure, a full garbage collection has occurred during resource exclusion in a batch application. As a result, a
batch application processing stops when performing the resource exclusion. During this time, if records under
exclusion are referenced from online processing, the online processing also stops until the full garbage collection of
batch server ends.

The following figure shows the status, if you use the garbage collection control functionality.

2. Executing Applications by Using Batch Servers

68

Figure 2‒14: If you use garbage collection control functionality

As shown in the figure, when execution request of full garbage is sent, execution of full garbage collection is put on
standby, if batch server is performing exclusion of resources.

When a record exclusion is released, a full garbage collection is executed on a batch server. The online processing is
also able to access the resources. As a result, you can avoid long time resource exclusion in a batch application.

2.9.2 Flow of garbage collection control processing
The garbage collection control is processed with the following procedure.

Figure 2‒15: Flow of garbage collection control processing

1. Monitoring memory

2. Executing Applications by Using Batch Servers

69

Monitoring timer thread monitors memory of JavaVM. If conditions described in step (1) are fulfilled, a garbage
collection execution request is sent to the garbage collection control functionality.

2. Checking resource exclusion
When a garbage collection execution request is sent, the garbage collection control functionality examines
whether resources are in exclusion.

3. Waiting for execution of full garbage collection
If resources are under exclusion, the execution of full garbage collection is put on standby.

4. Executing full garbage collection
When resource exclusion is released, a full garbage collection is executed.

The following subsections describe each process:

(1) Monitoring memory
The monitoring timer thread monitors JavaVM memory and sends a garbage collection execution request to garbage
collection control functionality, if any of the following conditions are fulfilled:

• Tenured area consumption size / Tenured area total size x 100 = threshold of
garbage collection control

• New area total size / Tenured area maximum free size x 100 = threshold of
garbage collection control

• Permanent area consumption size / Permanent area total size x 100 =
threshold of garbage collection control

(2) Checking resource exclusion
When a garbage collection execution request is generated, the garbage collection control functionality checks
connections used by the batch application. When checking the connections, the functionality confirms whether the
batch application is performing resource exclusion.

The following table describes states considered as the resources are in exclusion.

Table 2‒28: States considered as resource is under exclusion

Transaction State DB Connector JDBC

Out of
transaction

Executing SQL
statement#1

• When executing java.sql.Statement#execute
• When executing
java.sql.Statement#executeUpdate

• When executing
java.sql.Statement#executeQuery

• When executing
java.sql.Statement#executeBatch

Y N

Performing
operations for
ResultSet

• When executing java.sql.ResultSet#deleteRow
• When executing java.sql.ResultSet#insertRow
• When executing java.sql.ResultSet#updateRow

Y N

Performing
operation such as
object
acquisition#1

• When executing java.sql.Statement#addBatch
• When executing
java.sql.Connection#prepareCall

• When executing
java.sql.Connection#prepareStatement

Y N

During
transaction

• When executing transaction with Connection API#2

• When executing local transaction (JTA)#2.

Y N

When executing global transaction (JTA) -- --

Legend: Y: Handled as resource under exclusion

2. Executing Applications by Using Batch Servers

70

N: Handled as resource not under exclusion

--: Not applicable

#1: java.sql.Statement in the table -includes sub-interfaces java.sql.PreparedStatement and
java.sql.CallableStatement.

#2: Shows a status after starting a transaction (after executing setAutoCommit(false) or UserTransaction.begin), in
which execution of SQL statement or operation for ResultSet is performed one or more times, and transaction conclusion
processing is not complete.

Resource operations performed by using JDBC are handled as no resource exclusion. For example, if you execute a
program in which execution of JDBC SQL statements and transaction processing on DB Connector are mixed, only
the transaction processing on DB Connector is targeted for the garbage collection control functionality.

(3) Waiting for the execution of the full garbage collection
If it is determined that resources are in exclusion, the KDJE55024-I message is output and the state is waiting for
execution of a full garbage collection. The full garbage collection continues to be in standby state even if there is
single resource exclusion. The following figure shows an example of waiting for execution of the full garbage
collection.

Figure 2‒16: Example of waiting for execution of the full garbage collection

In this figure, two resources are accessed in a single job program. If execution of a full garbage collection is requested
during resource exclusion, the garbage collection control functionality sets execution of the full garbage collection to
standby state. When con2.commit() that ends the access of two resources is executed, the exclusion is removed.

(4) Executing full garbage collection
If there is no resource exclusion, a full garbage collection is executed.

(5) Notes

• You can concurrently execute only one batch application.

• You can execute processing to multiple resources from one batch application. However, you cannot use global
transactions.

• If there is no sufficient free memory even in the state of waiting for execution of full garbage collection, JavaVM
might perform full garbage collection. This occurs when a threshold of memory usage for executing garbage

2. Executing Applications by Using Batch Servers

71

collection is large or when exclusion interval of resource is long. See 9.4 Setting threshold used in garbage
collection control in the uCosminexus Application Server System Design Guide and tune the threshold of memory
usage.

2.9.3 Settings in the execution environment (batch server settings)
You must perform batch server settings, if you want to use garbage collection control functionality.

You implement the batch server settings in the Easy Setup definition file. You specify the definition of the garbage
collection control functionality in the <configuration> tag of a logical J2EE server (j2ee-server) of the Easy
Setup definition file. The parameter to be specified is as follows:

• ejbserver.batch.gc.watch.threshold
You specify threshold for memory usage, which is the condition for executing garbage collection.

For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

2. Executing Applications by Using Batch Servers

72

2.10 Container extension libraries
On a batch server, if you want to use common processing between applications, you can use user-created libraries.
You can extend application functionality by using user-created libraries. This section gives an overview and setting
method of container extension libraries.

The following table describes the organization of this section.

Table 2‒29: Organization of this section (Container extension libraries)

Category Title Reference location

Description Overview of container extension libraries 2.10.1

Setup Settings in the execution environment (batch server settings) 2.10.2

There is no specific description of Implementation, Operation and Notes for this functionality.

2.10.1 Overview of container extension libraries
A library that applications can commonly use is called Container extension library. You can commonly use these
libraries between applications and invoke user-created libraries. Libraries, which are set up in the container extension
library are loaded in the system class loader. For details, see 2.3.1 Overview of batch application execution
functionality.

You can use container extension libraries on a batch server. However, you cannot set up and use a batch application in
a container extension library.

You can specify an invocation of container extension libraries when stating and terminating the server by using Server
start/stop hook functionality. You can initialize the JNI functionality used in container extension libraries.

For using container extension libraries, you compile the libraries in one JAR file and define the settings for using
container extension libraries in usrconf.cfg. If the container extension libraries use JNI, you need to perform
settings for using server start/stop hook functionality.

For an overview of using the container extension libraries, see 14.2 Using container extension libraries in the
uCosminexus Application Server Common Container Functionality Guide. For details on how to implement the server
start/stop hook functionality, see 14.4.2 How to implement server start/stop hook functionality in the uCosminexus
Application Server Common Container Functionality Guide.

! Important note

The following access permission is given for container extension libraries. You cannot change the access permissions.
java.security.AllPermission
However, the access permission of setSecurityManager of java.lang.RuntimePermission is not given.

2.10.2 Settings in the execution environment (Batch server settings)
You must perform batch server settings if you want to use container extension library functionality.

You implement the batch server settings in the Easy Setup definition file. You specify the definition of container
extension library functionality in the <configuration> tag of a logical J2EE server (j2ee-server) of the Easy Setup
definition file. The parameters to be specified are as follows:

• add.class.path
Specify path of JAR file of the container extension library.

• add.library.path
Specify search path of library for JNI.

For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

2. Executing Applications by Using Batch Servers

73

For details on setting method for using container extension library functionality, see 14.3.3 Settings for using
container extension library functionality in the uCosminexus Application Server Common Container Functionality
Guide.

2. Executing Applications by Using Batch Servers

74

2.11 JavaVM functionality
This section describes JavaVM functionality.

The following table describes the organization of this section.

Table 2‒30: Organization of this section (JavaVM functionality)

Category Title Reference location

Description Overview of JavaVM functionality 2.11.1

Setup Settings in the execution environment (batch server settings) 2.11.2

#: There is no specific description of Implementation, Operation and Notes for this functionality.

2.11.1 Overview of JavaVM functionality
The processes of a batch server that operates with Application Server are executed on JavaVM.

JavaVM is an independent JavaVM provided by Cosminexus Developer's Kit for Java that is the component software.
The following table describes JavaVM functionality. For details on the functionality, see Reference location.

Table 2‒31: JavaVM functionality

Functionality Explanation Reference manual# Reference location

Explicit Memory
Management functionality

You can place Java objects, which causes full
garbage collection, in the Explicit heap area. By
using Java object used in application, you can inhibit
occurrence of a full garbage collection.

This manual Chapter 8

Class-wise statistics
functionality

You can output size of all instances in the members,
possessed by instance of each class, to extended
thread dump as class-wise statistics. If you output
class-wise statistics for multiple times, you can
investigate changes in Java objects or states of Java
objects having short life span with garbage
collection. The functionality such as instance
statistics functionality, STATIC member statistics
functionality, reference related information output
functionality, functionality for garbage collection
selection before statistics, functionality for statistics
of unnecessary objects in Tenured area, and
functionality for base object list output of the
Tenured increase factor are used as functionality to
output class-wise statistics.

Maintenance and
Migration Guide

9.3

Class-wise statistics
analysis functionality

Based on class-wise statistics output to extended
thread dump, you can output total size of instances
for each class and number of instances for each class
as two types CSV files.

9.10

Functionality for output
age distribution
information of Survivor
area

When executing copy garbage collection, you can
output age distribution of Java objects in the
Survivor area to JavaVM log file. You can check
usage status of Survivor area and use for tuning the
memory size.

9.11

hndlwrap functionality You can inhibit occurrence of logoff events of
JavaVM during logoff.

9.12

uCosminexus Application Server is omitted in the manual name mentioned in Reference manual.

In JavaVM, log output contents are extended so that you can use the contents for analyzing the causes of failures and
checking system status. This log is output to JavaVM log file. You can acquire a lot of troubleshooting information
also from standard JavaVM. The availability of a system can be improved by using this log (extended verbosegc

2. Executing Applications by Using Batch Servers

75

information) and performing appropriate tuning. For details on JavaVM log file, see 4.10 JavaVM log (JavaVM log
file) in the uCosminexus Application Server Maintenance and Migration Guide. For details on the JavaVM tuning, see
7. Memory tuning of JavaVM in the uCosminexus Application Server System Design Guide.

2.11.2 Settings in the execution environment (Batch server settings)
You must perform batch server settings if you want to use JavaVM functionality.

You implement the batch server settings in the Easy Setup definition file. You specify the definition of JavaVM
functionality in <configuration> tag of a logical J2EE server (j2ee-server) of the Easy Setup definition file.

The following table describes the definition of JavaVM functionality in Easy Setup definition file.

Table 2‒32: Definition of JavaVM functionality in the Easy Setup definition file

Field

Parameter to be specified

Setting contentsParameter
name Parameter value

Using the Explicit
Memory Management
functionality

add.jvm.ar
g

-XX:
+HitachiUseExplicitMemor
y

If the Explicit Memory Management functionality
is implemented in a batch application, you specify
the use of the Explicit Memory Management
functionality.

For details on the JavaVM options that you can
specify when using the Explicit Memory
Management functionality, see 8.13.1 Common
settings for using the Explicit Memory Management
functionality (setting JavaVM options).

Output age distribution
information of
Survivor area

add.jvm.ar
g

-XX:
+HitachiVerboseGCPrintTe
nuringDistribution

Specify outputting of age distribution information
of Java objects in the Survivor area, to JavaVM log
file, when copy garbage collection occurs.

Acquiring JavaVM log
(JavaVM log file)

add.jvm.ar
g

-XX:
+HitachiOutOfMemoryStack
Trace#

Specify output of exception information and stack
trace to JavaVM log file.

-XX:+HitachiVerboseGC# Specify output of extended verbosegc information
to JavaVM log file, when garbage collection
occurs.

-XX:
+HitachiJavaClassLibTrac
e#

Specify output of stack trace of class libraries to
JavaVM log file.

Note: For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus Application
Server Definition Reference Guide.

#: Even if you specify any one, JavaVM log file is output. If you specify -XX:+HitachiOutOfMemoryStackTrace, -XX:
+HitachiOutOfMemorySize and -XX:+HitachiOutOfMemoryCause are specified simultaneously.

2. Executing Applications by Using Batch Servers

76

2.12 Migrating from Java applications
You can execute Java applications, which you execute using the cjclstartap command provided with Application
Server, as batch applications on batch servers. If you want to execute the Java applications as batch applications on
batch servers, you might require to migrate the applications and the execution environment. This section describes the
cases where migration is required and how to migrate applications and the execution environment.

The following table describes the organization of this section.

Table 2‒33: Organization of this section (Migrating from Java applications)

Category Title Reference
location

Implementation Implementing batch applications (migrating from Java applications) 2.12.1

Setup Settings of the execution environment (setting batch servers) 2.12.2

There is no specific explanation of Description, Operation, and Precautions for this functionality.

2.12.1 Implementing batch applications (Migrating from Java
applications)

This section describes the changes required in Java applications for migrating the Java applications to batch
applications.

You must migrate the Java applications in the following cases:

• If you are implementing a process that corresponds to the points to be considered when using batch applications
You must consider the operations of files and directories while implementing with the batch applications.

How to migrate
The processes of batch applications that require attention are described in 2.3.11(1) Processes that require
attention. Reference these contents, and modify Java application.

• If you are implementing a functionality that cannot be used with batch applications
You cannot use many functionality with batch applications. For example, you cannot input from the standard input
format or use JNI.

How to migrate
For the functionality that cannot be used with batch applications and the alternative methods for using the
functionality, see 2.3.11(2) Functionality that you cannot implement in batch applications. Reference these
contents, and modify Java applications.

• If the unsupported properties are defined in usrconf.properties (user property file for batch applications)
With batch applications, you can continue to use the usrconf.properties file (user property file for Java
applications) that you use with the Java applications that are migrated.
However, in the usrconf.properties file (user property file for Java applications), if you have defined the
properties that are not supported with usrconf.properties (user property file for batch applications)# and
you are referencing the values from the batch applications, you must modify the applications.

How to migrate
Modify the batch application in such a way so that you do not reference the properties that are not supported
by usrconf.properties (user property file for batch applications).

#
This excludes the user-defined property. For details on the properties supported by usrconf.properties
(user property file for batch applications), see 3.7 usrconf.properties (User property file for batch applications) in
the uCosminexus Application Server Definition Reference Guide.

2. Executing Applications by Using Batch Servers

77

2.12.2 Settings of the execution environment (Setting batch servers)
When you want to migrate Java applications to batch applications, you might need to change the settings of batch
servers. This section describes the cases where you need to change setting of the batch servers.

You can use the following two files, which are used in the execution environment of Java applications until now, as it
is in the execution environment of a batch server:

• usrconf.cfg (option definition file for Java applications)

• usrconf.properties (user property file for Java applications)

However, you must migrate the files, if corresponding to the following conditions:

• If you set up a storage location of usrconf.cfg (option definition file for Java applications) and
usrconf.properties (user property file for Java applications) in the CJCLUSRCONFDIR environment
variable

How to migrate
Specify a storage location of usrconf.cfg (option definition file for batch applications) and
usrconf.properties (user property file for batch applications) in the CJBATCHUSRCONFDIR
environment variable with an absolute path.

• If you specify an option other than -cp, -classpath, and -D in add.jvm.arg of usrconf.cfg (option
definition file for Java applications)

How to migrate
Describe the option settings in usrconf.cfg (option definition file for batch applications). When you want
to execute multiple batch applications in a sequence, on one batch server, you must adjust the definition
settings. An example is given below. In the example, the value of application 2, for which a greater value is
specified, is set up on a batch server.
For example: If add.jvm.arg=-Xmx512m is set up in application 1 and add.jvm.arg=-Xmx768m is
set up in application 2,
specify add.jvm.arg=-Xmx768m on the batch server.

• If ejb.client.log.directory is specified in usrconf.cfg (option definition file for Java applications)
and the log output location is changed from the default value

How to migrate
Specify batch.log.directory in usrconf.cfg (option definition file for batch applications) and set
up an output location for logs other than the default location.

• If ejb.client.ejb.log or ejb.client.log.appid is specified in usrconf.cfg (option definition
file for Java applications) and the log output location is changed from the default value

How to migrate
There is no method for migration. In the case of a batch server, you cannot specify a log output location that is
specified by using ejb.client.ejb.log and ejb.client.log.appid.

• If ejb.client.directory.shareable=true is specified in usrconf.cfg (option definition file for
Java applications) and multiple applications are executing concurrently

How to migrate
You cannot concurrently execute multiple batch applications on one batch server. Therefore, prepare the same
number of batch servers as the maximum number of batch applications that will be concurrently executing.
Change the server name specified in the cjexecjob command in such a way so that the batch applications
operate on the respective batch servers.

• If the unsupported properties are defined in usrconf.properties (user property file for batch applications)
In usrconf.properties (user property file for Java applications), if you have defined the properties not
supported by usrconf.properties (user property file for batch applications)#, you must modify
usrconf.properties (user property file for Java applications).

How to migrate
Delete the definition of the properties, not supported by usrconf.properties (user property file for
batch applications), from usrconf.properties (user property file for Java applications).

2. Executing Applications by Using Batch Servers

78

#
This excludes the user-defined property. For details on the properties that are supported by
usrconf.properties (user property file for batch applications), see 3.7 usrconf.properties (User property
file for batch applications) in the uCosminexus Application Server Definition Reference Guide.

2. Executing Applications by Using Batch Servers

79

2.13 Integrating with JP1/AJS
You can operate a system that executes batch applications, by integrating with JP1/AJS. You can also operate the
system by using BJEX or JP1/Advanced Shell, besides using JP1/AJS. This section describes the settings for
integrating with JP1/AJS, BJEX, and JP1/Advanced Shell.

The following table describes the organization of this section.

Table 2‒34: Organization of this section (Integrating with JP1/AJS)

Category Title Reference
location

Setup Settings for integrating with JP1/AJS 2.13.1

Settings for integrating with JP1/AJS, BJEX, and JP1/Advanced Shell 2.13.2

There is no specific explanation of Description, Implementation, Operation, and Precautions for this functionality.

Reference note
For an overview of the systems integrated with JP1/AJS and the systems integrated with JP1/AJS, BJEX, and JP1/Advanced
Shell, see 2.2.1 Systems executing batch applications and 2.2.2 Procedure for operating batch servers and batch
applications.

2.13.1 Settings for integrating with JP1/AJS
This subsection describes the definition of JP1/AJS jobs, when systems are integrated with JP1/AJS.

Start a batch server in advance when executing a batch application from JP1/AJS.

(1) Starting a batch application
When you want to integrate the systems with JP1/AJS, you define the cjexecjob command as a UNIX job or PC
job of JP1/AJS. Specify the following contents in Script file name, Parameter, and User at the time of execution
fields on the window used for defining the properties of a JP1/AJS job.

• Script file name
Specifies the cjexecjob command. For details on the path of the cjexecjob command, see cjexecjob
(Executing batch applications) in the uCosminexus Application Server Command Reference Guide.

• Parameter
Specifies class name and arguments of the batch applications to be executed.

• User at the time of execution
Specifies the user who executes a batch server.

For details on the settings of JP1/AJS, see the JP1/Automatic Job Management System Operation Guide.

(2) Forced termination of a batch application
When the system is integrated with JP1/AJS, and you forcefully terminate a job-net or a job, you define the
cjkilljob command as a recovery job of JP1/AJS. However, when you want to forcefully stop a root job-net, the
recovery job is not executed. Therefore, the batch application that is executing on a batch server continues as it is. In
such cases, directly execute the cjkilljob command and forcefully stop the batch application.

For details on the settings of JP1/AJS, see the JP1/Automatic Job Management System Operation Guide.

2. Executing Applications by Using Batch Servers

80

2.13.2 Settings for integrating with JP1/AJS, BJEX, and JP1/Advanced
Shell

This subsection describes the definition of JP1/AJS, BJEX, and JP1/Advanced Shell jobs, when integrating with AJS,
BJEX and JP1/Advanced Shell.

Start the batch server in advance when executing the batch job applications of BJEX or JP1/Advanced Shell from JP1/
AJS.

(1) Starting a batch application
When you want to integrate the systems with JP1/AJS, BJEX and JP1/Advanced Shell, specify the following contents
for JP1/AJS, BJEX, and JP1/Advanced Shell respectively:

• Settings when integrating with BJEX
You define the execution of the cjexecjob command in a batch job of BJEX. In such cases, define the
cjexecjob command as a job step of the batch job.
In addition, you define the following contents for the job definition XML of BJEX.

• EXEC element
Sets the definition for executing the cjexecjob command.

• PGM property
Defines the cjexecjob command.

• PARM property
Defines the arguments of the cjexecjob command. However, the maximum length of an argument
conforms to the BJEX specifications.
For details on the settings in BJEX, see the uCosminexus Batch Job Execution Server Usage Guide.

• Settings when integrating with JP1/Advanced Shell
Use the adshjava command with JP1/Advanced Shell. By executing the adshjava command in the job
definition script of JP1/Advanced Shell, the cjexecjob command is invoked and batch application is executed
while processing the adshjava command. With the adshjava command, you can execute batch applications
on a specific batch server, as you can specify a batch server name and schedule group name in addition to a class
name of a batch application.
For details on the adshjava command, see the manual JP1/Advanced Shell.

• JP1/AJS settings
Defines the execution command of a batch job of BJEX or JP1/Advanced Shell as a job.
For details on the settings in JP1/AJS, see the JP1/Automatic Job Management System Operation Guide.

(2) Forced termination of a batch application
When integrating with BJEX or JP1/Advanced Shell, you can force stop the running batch application automatically
just by forcefully stopping the execution command of BJEX or JP1/Advanced Shell batch job. As a result, you do not
need to define the recovery job.

2. Executing Applications by Using Batch Servers

81

3 Scheduling and Load Balancing of
Requests Using CTM
This chapter describes the scheduling and load balancing of requests.

A business system needs to be reliable, able to maintain stable processing in the event
of a local failure, and responsive to varying business processing demands, as required.
To fulfill these requirements, the application server performs processing such as
OLTP-based request scheduling and load balancing with clustered servers.

Note that the functionality described in this chapter can be used with only the
products that include Component Transaction Monitor (CTM). For details about
products compatible with this functionality, see 2.2.1 Mapping between products and
the component software in the manual uCosminexus Application Server Overview.

83

3.1 Topics covered by this chapter
This chapter describes the scheduling and load balancing of requests that CTM can implement. CTM improves system
stability and operability by appropriately scheduling the executions of requests from clients, and then distributing
these requests to multiple J2EE servers.

For an overview of request scheduling using CTM, see 3.2 Overview of request scheduling using CTM. For the
process configuration for using CTM, see 3.3 Process configuration for using CTM.

Each section in this chapter describes a specific CTM function. The following table lists the functions described and
their respective sections.

Table 3‒1: CTM functions

Function name See

Controlling the flow volume of requests 3.4

Controlling priority of requests 3.5

Dynamically changing the number of concurrent executions of requests 3.6

Controlling and blocking requests 3.7

Load balancing of requests 3.8

Monitoring the accumulation of requests in a queue 3.9

Connection with the TPBroker/OTM client by using the gateway functionality in CTM 3.10

You can also collect statistics on CTM operations. For details about how to collect statistics on CTM operations, see
Chapter 10. Collecting CTM Statistics in the uCosminexus Application Server Operation, Monitoring, and Linkage
Guide.

3. Scheduling and Load Balancing of Requests Using CTM

84

3.2 Overview of request scheduling using CTM
This section provides an overview of request scheduling using CTM.

The application server uses a software component called Component Transaction Monitor (CTM) to schedule the
executions of requests. CTM controls requests by using a queue. The queue that CTM uses to schedule request
executions is called a schedule queue.

3.2.1 Purpose of request scheduling
In a large-scale business system, many requests might concentrate on the J2EE server that is executing a specific J2EE
application. To execute jobs smoothly with load on servers balanced and system availability maintained, the business
system needs to distribute requests to multiple destinations and control the volume of requests that flow in any given
period. In a configuration in which processing is distributed to multiple J2EE servers, to improve overall system
performance, the business system needs to send an issued request to the J2EE server that is least heavily loaded.

Request scheduling allows a system to execute the above required processing, and is key to stable system operation
and optimal use of each J2EE server. In addition, overall system availability improves because if a problem occurs in a
specific J2EE server, J2EE application, or business-processing program (Enterprise Bean), the system can continue
processing in reduced mode by isolating only the affected sections.

Request scheduling allows the application server to provide the following six functions:

• Controlling the flow volume of requests
By limiting the number of threads that can run concurrently on each J2EE server, load is balanced between J2EE
servers, for stable and high throughput.

• Controlling priority of requests
By assigning priority levels to clients, requests from clients with a high priority can be processed first.

• Dynamically changing the number of concurrent executions of requests
The maximum number of requests that can be executed concurrently can be changed temporarily without stopping
the CTM daemon.

• Controlling and blocking requests
Maintenance can be performed without stopping the system by stopping acceptance of requests for a specific J2EE
application or by stopping the dequeuing of requests. As a result, system availability is improved.

• Load balancing of requests
Processing is distributed to balance the load between J2EE servers. As a result, overall system performance and
availability can be improved.

• Monitoring the accumulation of requests in a queue
The number of requests contained in the schedule queue can be monitored.

3.2.2 Type of requests that can be controlled by CTM
The requests that can be scheduled by CTM are only calls issued to stateless session beans through a remote interface
via RMI-IIOP communication.

Note that CTM cannot schedule the requests shown below.

Requests that cannot be scheduled by CTM:

• Calls to stateful session beans and entity beans

• Calls issued through the local interface and calls to message-driven beans (These calls are not issued via RMI-
IIOP communication.)

• Calls to enterprise beans for EJB 3.0 or later

In the case where multiple business-processing programs in the same J2EE application are to be called by requests,
use a remote interface only when you want those requests to be scheduled. If the scheduling of those requests is
unnecessary, we recommend making calls by using the local interface, based on processing performance
considerations.

3. Scheduling and Load Balancing of Requests Using CTM

85

Whether requests are to be controlled by CTM can be selected for each J2EE application or for each business-
processing program (bean) in a J2EE application. For example, to exclude the business-processing programs that have
a remote interface from control by CTM, change the settings by defining the relevant properties for the J2EE
application. For details about the settings for request scheduling by CTM, see 3.4.2 Settings in the execution
environment.

3.2.3 Client applications that send requests
The following EJB clients can use CTM:

• EJB client applications

• JSP/servlets

• Other enterprise beans

Development of the above software does not require a special interface. Set them to look up the Global CORBA
Naming Service linked to the CTM daemon (the CORBA naming service specified for the -CTMINSRef option of
the ctmstart command).

Note that the software you develop must be able to switch the target CORBA naming service if a specific application
server in the system fails. Therefore, code the software so that it resumes processing from lookup of JNDI if an
exception occurs during processing of lookup, create, invoke, or remove.

3.2.4 Processing performed for using CTM
If CTM is enabled, the processing for using CTM is performed at the following times:

• At startup of a J2EE server

• At startup of a J2EE application

• At termination of a J2EE application

• At termination of a J2EE server

The following describes the processing performed at the above times.

(1) Processing performed at startup of a J2EE server
To start a J2EE application that is customized to use CTM, when the J2EE server is started, you must establish and
initialize a connection to the CTM daemon as follows:

1. Specify the settings for using CTM.

2. Start the CTM daemon.

3. Start the J2EE server.

When the J2EE server starts, it establishes and initializes a connection to the CTM daemon. Make sure that the CTM
daemon is started before you start the J2EE server.

For details about the settings for using the CTM daemon, see 3.4.2 Settings in the execution environment. For details
about how to start the CTM daemon and J2EE server, see 4.1.24 Starting the system (when using CUI) in the
uCosminexus Application Server System Setup and Operation Guide. If Smart Composer is used to start the system,
the CTM daemon is started, and then the J2EE server is started.

If establishment and initialization of a connection to the CTM daemon fails during startup of the J2EE server, startup
of the J2EE server fails. In this case, correct the cause of the failure, and then restart the J2EE server.

(2) Processing performed at startup of a J2EE application
When a J2EE application is started, the J2EE server requests the CTM daemon to activate a schedule queue with the
specified queue name. In response to the request, the CTM daemon activates the queue, and then executes create on
the J2EE server for any business-processing programs that the CTM daemon can process. The CTM daemon executes

3. Scheduling and Load Balancing of Requests Using CTM

86

as many create instances as the number of concurrent threads (Parallel Count) for each business-processing
program that is directly called by the CTM daemon.

Each time the EJB object reference that corresponds to a business-processing program is created, the EJB object
reference is returned to the CTM daemon. The CTM daemon pools the received EJB object references, and then
assigns them to requests that are input to the schedule queue. Thus requests are distributed to business-processing
programs via the EJB object references.

(3) Processing performed at termination of a J2EE application
When a J2EE application is terminated, first, the CTM daemon is requested to lock (de-activate) the schedule queue
managed by the CTM daemon to prevent the CTM daemon from distributing new requests. After de-activating the
schedule queue, the CTM daemon executes remove on the J2EE server for any business-processing programs that
the CTM daemon can process. The CTM daemon executes as many remove instances as the number of concurrent
threads (Parallel Count) for each business-processing program that is directly called by the CTM daemon.

After that, J2EE application termination processing is executed in the same way as when CTM is not used.

(4) Processing performed at termination of a J2EE server
When the J2EE server is terminated, the connection between the J2EE server and CTM daemon is closed.

3.2.5 Basis on which to create schedule queues and sharing schedule
queues

Queues can be created on a J2EE application basis or on a bean basis. This subsection describes the configuration of
schedule queues and sharing of schedule queues. This subsection also describes the advantages of sharing queues and
not sharing queues.

(1) Basis on which to create schedule queues
Execution of each request from clients is scheduled by using schedule queues managed by the CTM daemon.
Schedule queues can be created on a J2EE application basis or on a bean basis. If schedule queues are created on a
J2EE application basis, J2EE application names are used as the default queue names. If schedule queues are created on
a bean basis, bean names are used as the default queue names.

(2) Sharing schedule queues
Business-processing programs or J2EE application beans that have different interfaces can share a schedule queue that
is created on a J2EE application or bean basis. The requests controlled by using schedule queues are managed by
using a combination of the EJB home reference name (registered in the global CORBA Naming Service) and the
remote interface name (of the business-processing program).

For J2EE applications or beans to share a schedule queue, they must be associated with the same CTM daemon and
must satisfy the following conditions.

For J2EE applications to share a schedule queue:

• The queue names must be the same.

• The J2EE applications must consist of the same business-processing programs. (The J2EE applications must
contain exactly the same enterprise beans to the extent that CTM recognizes.)

For beans to share a schedule queue:

• The queue names must be the same.

• The beans must be the same.

J2EE applications for which different queue names are specified cannot share a schedule queue even if the J2EE
applications consist of the same business-processing programs. Similarly, J2EE applications consisting of different
business-processing programs cannot share a schedule queue even if the queue names specified for the J2EE
applications are the same.

3. Scheduling and Load Balancing of Requests Using CTM

87

A schedule queue can be shared across J2EE servers. To share a schedule queue across J2EE servers, use the user-
specified namespace functionality to assign an alias (optional name) to each enterprise bean (business-processing
program). For details about this functionality, see 2.3 Binding and looking up objects in the JNDI name in the
uCosminexus Application Server Common Container Functionality Guide. Make sure that you assign an optional
name as a J2EE application property.

Reference note

• If J2EE applications are imported with the default settings, the lookup names for business-processing programs are
assigned in the following format: /HITACHI_EJB/SERVERS/J2EE-server-name/EJB/J2EE-application-name/
business-processing-program-name. Because a specific J2EE server name is included in this format, J2EE applications
having lookup names in this format cannot share a schedule queue across J2EE servers.

• It is impossible to share a schedule queue by importing multiple J2EE applications with the same name on one J2EE
server.

(3) Advantages of sharing schedule queues
This subsection describes the advantages of sharing schedule queues on a J2EE application basis and on a bean basis,
separately.

(a) Sharing on a J2EE application basis

If a schedule queue is shared by J2EE applications, requests can be distributed to J2EE applications on multiple J2EE
servers.

Advantages of sharing schedule queues are as follows:

• The number of threads running concurrently can be controlled between the J2EE applications that share a queue.
Therefore, degradation of performance can be prevented when a specific J2EE application is heavily loaded. This
improves the stability of system processing.

• If a J2EE server that shares a queue fails, the system can operate in reduced mode to process requests in the queue
with the J2EE applications on other normally operating J2EE servers. This prevents business processing from
stopping.

The following figure shows an example of sharing a schedule queue.

Figure 3‒1: Example of sharing schedule queues (by J2EE applications)

The EJB client executes lookup for the global CORBA Naming Service. If a schedule queue is shared, the EJB
client can obtain a reference to the queue (in this example, a reference to queue X can be obtained). When the EJB

3. Scheduling and Load Balancing of Requests Using CTM

88

client executes create for that queue, the EJB client obtains a reference to the CTM regulator. When the EJB client
executes invoke for that reference, schedule queue X distributes processing to J2EE server 1 or J2EE server 2.

(b) Sharing on a bean basis

If a schedule queue is shared by beans, requests can be distributed to beans on multiple J2EE servers.

Advantages of sharing schedule queues are as follows:

• Queues can be assigned to specific types of beans, so as not to affect other beans in the same J2EE application.

• The number of threads running concurrently can be controlled between the beans that share a queue. Therefore,
degradation of performance can be prevented when a specific bean is heavily loaded. This improves stability of
system processing.

• If a J2EE server that shares a queue fails, the system can operate in reduced mode to process the requests in the
queue with the beans on other normally operating J2EE servers. This prevents business processing from stopping.

The following figure shows an example of sharing a schedule queue.

Figure 3‒2: Example of sharing schedule queues (by beans)

The EJB client executes lookup for the global CORBA Naming Service. If a schedule queue is shared, the EJB
client can obtain a reference to the queue (in this example, a reference to queue X can be obtained). When the EJB
client executes create for that queue, the EJB client obtains a reference to the CTM regulator. When the EJB client
executes invoke for that reference, schedule queue X distributes processing to bean A on either J2EE server 1 or
J2EE server 2.

(4) Advantages of not sharing schedule queues
If no schedule queues are shared when the same J2EE applications have been imported on different J2EE servers or
when the same beans exist on different J2EE servers, each queue individually controls requests to be executed on a
certain server.

3. Scheduling and Load Balancing of Requests Using CTM

89

No sharing of schedule queues makes it impossible to use load balancing or reduced mode. However, accumulation of
requests in a schedule queue does not affect execution of requests in other schedule queues. Therefore, requests in
each queue are processed smoothly.

For schedule queues not to be shared, specify different lookup names for the business-processing programs in each
J2EE application rather than specifying optional names.

The following figure shows an example of not sharing schedule queues.

Figure 3‒3: Example of not sharing schedule queues

The EJB client executes lookup for the global CORBA Naming Service. If no schedule queues are shared, the EJB
client can obtain a reference to the queue that controls the specified J2EE application (in this example, a reference to
queue X can be obtained). When the EJB client executes create for that queue, the EJB client obtains a reference to
the CTM regulator. When the EJB client executes invoke for that reference, processing is distributed to J2EE server
1 that is controlled by schedule queue X.

3.2.6 Length of a schedule queue
The length of a schedule queue can be set on the following bases:

• On a CTM daemon basis

• On a J2EE application basis

• On a session bean basis

For details about setting the schedule queue length on a CTM daemon basis, see 3.3.3(2) Registering requests in a
schedule queue.

To set the schedule queue length on a J2EE application basis or on a session bean basis, use the <queue-length>
element in the <scheduling> element. For details about the request scheduling settings in CTM, see 3.4.2(3) Using
server management commands to specify the settings.

Note that because a schedule queue to be shared has already been created, specification of the length for that schedule
queue does not take effect.

3. Scheduling and Load Balancing of Requests Using CTM

90

3.3 Process configuration for using CTM
This section describes the process configuration of an environment that uses CTM to schedule requests, and provides
guidelines for deploying processes. This section also describes the function of each process.

3.3.1 Configuration and deployment of CTM processes
The following figure shows an example of deploying processes for using CTM.

Figure 3‒4: Example of processes that make up CTM

The following table describes the main functionality of each process.

Table 3‒2: Processes necessary for using CTM

Process Description

CTM daemon A process that manages a schedule queue that controls requests from clients

CTM regulator A process that distributes and consolidates requests that concentrate on a CTM daemon

CTM domain manager A process that manages a CTM domain. A CTM domain is made up of multiple CTM
daemons, and is a range in which information can be shared and load can be balanced.

Global CORBA Naming Service A naming service that manages the information about the business-processing programs on
the hosts in the same CTM domain so that the information can be shared

PRF daemon

(performance tracer)

An I/O process that receives performance analysis information from a CTM daemon and then
outputs the information to a file.

For details about the PRF daemon, see 7.5 Settings of execution environment in the
uCosminexus Application Server Maintenance and Migration Guide.

Smart Agent A dynamic distributed directory service provided by TPBroker. CTM requires Smart Agent
when scheduling requests. CTM also uses Smart Agent to distribute information to the CTM
daemon in a different network segment.

3. Scheduling and Load Balancing of Requests Using CTM

91

3.3.2 Guidelines for deploying processes
This subsection provides the guidelines for deploying processes:

• Deploy one CTM daemon on one host.

• All hosts on which a J2EE server or CTM regulator is deployed require a CTM daemon.

• One CTM daemon can control multiple J2EE servers.

• Multiple CTM regulators can be deployed per CTM daemon. Note, however, that if 256 or more requests are
simultaneously sent to one CTM regulator, performance might be degraded. In this case, deploy more CTM
regulators.

• No CTM daemon is required on client hosts on which the EJB client is operating.

• Deploy one CTM domain manager on a host on which a CTM daemon is deployed. If you want multiple CTM
daemons to participate in the same CTM domain, specify the same CTM domain manager name for the relevant
hosts.

• Deploy a CTM daemon on the host to be used as the integrated naming scheduler server (although a J2EE server
is not deployed on this host). You do not need to deploy a CTM regulator on this host. For details about the
integrated naming scheduler server, see (4) Configuration in which an independent integrated naming scheduler
server is set up (integrated naming scheduler server model).

For details about how to start each process, see Chapter 2. Starting and Stopping a System in the uCosminexus
Application Server Operation, Monitoring, and Linkage Guide.

The following subsections describe the deployment patterns of processes used for CTM.

(1) Configuration in which many EJB clients call J2EE servers
The following figure shows an example of the configuration in which many EJB clients call J2EE servers on
application servers that are deployed in parallel.

Figure 3‒5: Example of the configuration in which many EJB clients call J2EE servers

(2) Configuration in which web browsers call J2EE servers (small-scale configuration)
The following figure shows an example of the configuration in which web browsers call J2EE servers via web
containers on web servers or application servers that are deployed in parallel. In this configuration, a web server and
application server are installed on the same host.

3. Scheduling and Load Balancing of Requests Using CTM

92

Figure 3‒6: Example of the configuration in which web browsers call J2EE servers (small-scale
configuration)

(3) Configuration in which web browsers call J2EE servers (large-scale configuration)
The following figure shows an example of the configuration in which web browsers call J2EE servers on application
servers via web containers on web servers. In this configuration, a web server and application server are installed on
separate hosts. Therefore, web servers and application servers can be easily combined in a many-to-many relationship.

Figure 3‒7: Example of the configuration in which web browsers call J2EE servers (large-scale
configuration)

(4) Configuration in which an independent integrated naming scheduler server is set up
(integrated naming scheduler server model)

In this configuration, the global CORBA Naming Service is deployed on a separate host. If replicas of the host are
created, availability of the naming service can be improved. A host on which the global CORBA Naming Service is
deployed is called an integrated naming scheduler server. No J2EE servers need to be installed on integrated naming
scheduler servers.

However, to register (in the global CORBA Naming Service on an integrated naming scheduler server) information
about business-processing programs on other hosts, a CTM daemon must also be deployed on the integrated naming
scheduler server.

The following figure shows an example of the configuration in which an independent integrated naming scheduler
server is set up.

3. Scheduling and Load Balancing of Requests Using CTM

93

Figure 3‒8: Example of the configuration in which an independent integrated naming scheduler server is
set up (integrated naming scheduler server model)

Note that in this configuration, requests other than create are not sent to CTM daemons on integrated naming
scheduler servers. Therefore, the CTM regulator does not need to be activated on integrated naming scheduler servers.

3.3.3 CTM daemon
A CTM daemon is a process that has scheduler functionality. It manages and schedules requests from clients.

! Important note

To start a CTM daemon as a Windows service, specify -Dvbroker.orb.isNTService=true as a startup command
option.

CTM daemons receive requests from clients via processes called CTM regulators. For details about the CTM
regulator, see 3.3.4 CTM regulator.

Note that the functionality of CTM daemons is configured by specifying arguments for the ctmstart command
executed at startup of CTM daemons. In a system set up by using the management portal, configuration can be
completed by using logical CTM beforehand.

A CTM daemon manages requests in the following sequence:

1. Distributing requests

2. Registering requests in a schedule queue

3. Calling business-processing programs

4. Returning results

The above steps are described below.

(1) Distributing requests
When a CTM daemon receives a request, it manages the request by itself or distributes the request to another CTM
daemon, based on the load status of the CTM daemons.

The CTM daemons exchange their own load information with each other. When a CTM daemon receives a request,
the CTM daemon determines which CTM daemon will manage the request based on the shared load information.

The CTM daemons in a certain range of area (called a CTM domain) share information about the business-processing
programs contained in J2EE applications that the CTM daemons manage. The shared information is registered in the
global CORBA Naming Service on the hosts on which the CTM daemons exist. If a CTM daemon receives a request
to execute a business-processing program that the CTM daemon does not manage, the shared information allows the
CTM daemon to distribute the request to the appropriate CTM daemon.

3. Scheduling and Load Balancing of Requests Using CTM

94

For details about the global CORBA Naming Service, see 3.3.6 Global CORBA Naming Service. For details about
CTM domains, see 3.3.5 CTM domains and CTM domain managers.

CTM daemons distribute requests based on the create-based selection policy or schedule policy.

Both the create-based selection policy and schedule policy allow you to select which of the following types of
distribution is used during startup of CTM daemons:

• A received request is distributed to the least heavily loaded CTM daemon.

• A received request is distributed to the CTM daemon that received the request.
Note that if the CTM daemon that received a request is in a high load state or blocked state, another CTM daemon
manages the request. The threshold that judges a high load state is calculated from the percentage of the used
capacity of queues.

For when the create-based selection policy or schedule policy is applied, see 3.8 Load balancing of requests.

The schedule policy is specified by using the -CTMDispatchPolicy argument of the ctmstart command. The
create-based selection policy is specified by using the -CTMCreatePolicy argument of the ctmstart
command.

Request transfer timeout
A timeout can be set for the request transfer processing between CTM daemons. The timeout can be specified by
using the -CTMDCSendTimeOut option of the ctmstart command.

(2) Registering requests in a schedule queue
Requests distributed based on the schedule policy are registered in the schedule queue. The maximum number of
requests that can be registered in the schedule queue is set at startup of CTM daemons. If the maximum number of
transferable requests is exceeded, an error is returned to the client. If a maximum number of requests (queue length) is
not set, 50 is set by default.

The length of the queue in which requests can be registered is specified by using the -CTMMaxRequestCount
argument of the ctmstart command at startup of CTM daemons. In a system set up by using the management
portal, the queue length can be set beforehand by using logical CTM. For details about the ctmstart command, see
ctmstart (start CTM daemon) in the uCosminexus Application Server Command Reference Guide.

(3) Calling business-processing programs
Requests registered in the schedule queue call business-processing programs on J2EE servers managed by CTM
daemons. These requests do not call business-processing programs on abnormally-terminated J2EE servers or hung
business-processing programs.

(4) Returning results
After requests are processed, replies from business-processing programs (enterprise beans) are returned to the clients
via CTM daemons. If the time period during which a request is in the schedule queue exceeds the request timeout, the
request is discarded.

3.3.4 CTM regulator
A CTM regulator is a process that solves a problem caused by request concentration on CTM daemons by regulating
(consolidating) connections or requests. A CTM regulator is deployed at the front end of a CTM daemon, and
distributes and consolidates connections or requests (invoke or remove requests) from EJB clients.

For example, in a large-scale system, if many clients issue many requests, the system might not operate stably or
system-managed resources might become insufficient, preventing the system from operating normally. These
phenomena are due to request concentration on CTM daemons that schedule requests. Request concentration increases
the number of connections, causing processes to use a larger number of resources, such as opened files and sockets.

A CTM regulator is a special process that solves problems due to request concentration. CTM regulators consolidate
connections from clients into one to control the number of connections established per CTM daemon. This control is

3. Scheduling and Load Balancing of Requests Using CTM

95

called connection regulation. CTM regulators distribute resources to processes by regulating a large number of
connections, so that a large-scale system can operate more stably.

The following figure shows how connections are regulated.

Figure 3‒9: How connections are regulated

When a CTM regulator receives a request from an EJB client, the CTM regulator transfers the request to the
corresponding CTM daemon, and then waits for a reply. Upon receiving a reply, the CTM regulator returns the reply
to the EJB client.

In CTM, multiple CTM regulators can be deployed per CTM daemon, as required. If a CTM regulator receives 256 or
more requests simultaneously, performance might be degraded. In such a case, increase the number of CTM
regulators, regardless of the number of client processes. Note that CTM regulators and the corresponding CTM
daemon must be deployed on the same host.

For the integrated naming scheduler server model in which a naming service and a J2EE server are deployed on
separate hosts, the integrated naming scheduler server does not accept any requests other than create. Therefore,
CTM regulators do not need to be activated on the integrated naming scheduler server.

3.3.5 CTM domains and CTM domain managers
A CTM domain is a range of area in which CTM daemons exchange information about registered business-processing
programs and schedule queue load status with each other to share information and perform load balancing. Each CTM
domain is identified by a CTM domain name. Requests are distributed and scheduled among the CTM daemons in the
same CTM domain. The range of each CTM domain and the information about the CTM daemons in each CTM
domain are managed by the CTM domain manager.

Tip
CTM domains are included in the management domain managed by Management Server.

3. Scheduling and Load Balancing of Requests Using CTM

96

! Important note

Adding CTM domains increases information in the file system. For CTM domains that are no longer used, use the
ctmdminfo command to delete the CTM domain information.

A CTM domain manager is a daemon process that manages the information about the CTM daemons that exist in the
same CTM domain. A CTM domain manager is required on each host on which CTM daemons are deployed.

The way a CTM domain manager distributes information to other CTM domain managers differs depending on
whether the other CTM domain managers are in other network segments.

Note that the functionality of CTM domain managers is configured by specifying arguments for the ctmdmstart
command executed at startup of CTM daemon managers. In a system set up by using the management portal,
configuration can be completed by using logical CTM beforehand. For details about the command, see ctmdmstart
(start CTM domain manager) in the uCosminexus Application Server Command Reference Guide.

! Important note

• To start a CTM domain manager as a Windows service, specify -Dvbroker.orb.isNTService=true as a startup
command option.

• If a CTM daemon terminates abnormally in Windows, the CTM domain manager forcibly terminates the child processes
of the CTM daemon.

• If a CTM domain manager terminates abnormally, execute the CTM domain manager normal startup command
(ctmdmstart) with the -CTMForceStart or -CTMAutoForce option.

(1) Sharing information with CTM domain managers in the same network segment
A CTM domain manager distributes information about the CTM daemons that exist on the host to the CTM domain
managers on other hosts by broadcast. The following figure shows how CTM domain managers in the same network
segment share information.

Figure 3‒10: Sharing information with CTM domain managers in the same network segment

To add a new CTM daemon to an existing CTM domain, on a host in that CTM domain, start a CTM domain manager
that has the same domain name and port number as other CTM domain managers. A new CTM daemon will then
participate in the domain. You do not need to update the environment definitions and other information in the existing
CTM domain. Therefore, you can easily scale out the system by simply copying the system environment.

3. Scheduling and Load Balancing of Requests Using CTM

97

(2) Sharing information with CTM domain managers in different network segments
Broadcast cannot send information beyond routers, and, therefore, cannot be used to share information between CTM
domain managers in different network segments. For these CTM domain managers to share information, the
information must be distributed by using Smart Agent.

The following figure shows how CTM domain managers in different network segments share information.

Figure 3‒11: Sharing information with CTM domain managers in different network segments

The following shows the settings that are necessary to create a CTM domain with multiple network segments:

• When starting a CTM domain manager, specify the host name or IP address of the CTM domain manager that
information is to be shared with.
You can specify the queue in which requests can be registered by using the -CTMSendHost argument of the
ctmdmstart command at startup of CTM domain managers. In a system set up by using the management
portal, the queue can be set beforehand by using logical CTM.

• Connect the Smart Agent in the local network segment to the Smart Agent in the other network segment.

(3) Restarting only the CTM domain manager
If a CTM domain manager terminates abnormally, you might be able to restart only the CTM domain manager when
restart is attempted. Whether restart is possible is automatically determined. If impossible, the entire system terminates
abnormally, and you must restart the entire system.

(4) Checking the operating status of CTM domain managers
A CTM domain manager checks whether the CTM domain managers on other hosts are running. The interval time at
which a CTM domain manager performs this check can be changed. To change the check interval time, use the -
CTMAliveCheckCount option of the ctmdmstart command.

If a CTM domain manager performs an operating status check and does not receive CTM node information, it judges
that the CTM domain managers on those nodes are not running. The CTM domain manager then deletes the CTM

3. Scheduling and Load Balancing of Requests Using CTM

98

information about those nodes. No requests will be distributed to the CTM daemons on those nodes. The following
figure shows how a CTM domain manager checks the operating status of other CTM domain managers.

Figure 3‒12: Checking the operating status of CTM domain managers

The host-B CTM domain manager waits for the information about the host-A CTM daemon from the host-A CTM
domain manager. The host-B CTM domain manager waits for response for the following time: CTM daemon
information transmission interval x dead-or-alive decision monitoring coefficient. If the wait times out, the host-B
CTM domain manager deletes the information about the host-A CTM daemon, and notifies the host-B CTM daemon
that the information about the host-A CTM daemon was deleted. As a result, the host-B CTM daemon will not
distribute any requests to the host-A CTM daemon.

3.3.6 Global CORBA Naming Service
CTM-based request scheduling uses the global CORBA Naming Service as the naming service.

The global CORBA Naming Service is a naming service that manages information about the business-processing
programs (stateless session beans) contained in the same CTM domain so that the information can be shared. The
global CORBA Naming Service allows the hosts in the CTM domain to share the information about the EJB home
object references registered on those hosts. The global CORBA Naming Service can be used to find J2EE servers on
which a requested business-processing program is registered if that program is not registered on the J2EE server of the
CTM daemon that received the request. With the global CORBA Naming Service, requests can be distributed to
appropriate CTM daemons in this way.

A global CORBA Naming Service is deployed for each CTM daemon. CTM daemons exchange information with
each other, including information about the business-processing programs on other hosts. Each CTM daemon registers
this information in the global CORBA Naming Service on the local host. The information of the global CORBA
Naming Services is thus shared within a CTM domain. Therefore, to obtain information about J2EE servers on other
hosts, deploy a CTM daemon that runs only a global CORBA Naming Service (without running the J2EE server) on
the integrated naming scheduler server.

The characteristics of a global CORBA Naming Service are as follows:

• System availability can be improved by minimizing the area affected by a failure.
Information can be shared within a domain by deploying a global CORBA Naming Service for each CTM
daemon. Therefore, if a problem occurs in the global CORBA Naming Service on a host, operation can continue
with the global CORBA Naming Service on another host. As a result, system availability can be improved.

• The lookup-target naming service does not need to be selected for each business-processing program.
If load balancing is implemented by clustering, the same information about business-processing programs (EJB
home object reference information) is registered in all global CORBA Naming Services in the CTM domain.

3. Scheduling and Load Balancing of Requests Using CTM

99

Therefore, the lookup-target naming service does not need to be selected for each business-processing program to
be executed. This prevents the load from concentrating on a specific naming service, thus enabling proper load
balancing.

The below figure is an example of processing in a system that uses global CORBA Naming Services.

In this example, the CTM daemons on hosts A and B are registered in the same CTM domain. Business-processing
programs A and B are registered in the J2EE server on host A. Business-processing program C is registered in the
J2EE server on host B. Note that a failure has occurred on host A. Also note that the EJB client application was started
by specifying a system property (java.naming.factory.initial key) that is set to perform a round-robin
search.

Figure 3‒13: Example of processing in a system that uses global CORBA Naming Services

The following describes the processing in the above figure:

1. For the EJB client application to start business-processing program C, first, an EJB home object reference to that
program must be looked up from a global CORBA Naming Service. In this figure, the EJB client application
executes lookup for the global CORBA Naming Service on host A, but an exception is thrown for the lookup
because of a failure on host A.

2. If a global CORBA Naming Service fails when round-robin search is enabled with the EJB client application's
system property, the application automatically switches the lookup destination to another global CORBA Naming
Service in the CTM domain. In this example, the EJB client application re-executes lookup, and obtains an EJB
home object reference to business-processing program C from the global CORBA Naming Service on host B.
Business-processing program C, which is installed on application server B, can then be executed regardless of the
failure on application server A.

3. Scheduling and Load Balancing of Requests Using CTM

100

If no failure occurs on application server A, the global CORBA Naming Service on host A returns a reference in
response to lookup in step 1. When the EJB client application uses the reference to request create, the CTM
daemons on hosts A and B determine which CTM daemon manages the request. As a result, an EJB home object
reference to business-processing program C on host B is returned to the EJB client application.

! Important note

• If a problem occurs on a host on which a global CORBA Naming Service is registered, restart the application server on
the host so that the CTM daemon re-registers schedule queue references in the global CORBA Naming Service.

• While a request is being processed, CORBA::XXXX exceptions might be sent to the standard output or standard error
output. These exceptions are harmless if processing continues without changing the status.

3. Scheduling and Load Balancing of Requests Using CTM

101

3.4 Flow-volume control of requests
The flow-volume control function of CTM limits the number of requests that can be concurrently executed on each
J2EE server to moderate the load on the J2EE servers. As a result, stable and high throughput is achieved.

The following table shows the structure of this section.

Table 3‒3: Structure of this section (flow-volume control of requests)

Topic type Title Location

Description Overview of flow-volume control of requests 3.4.1

Settings Settings in the execution environment 3.4.2

Note: This section does not provide Implementation, Operation, and Notes types of topics that are specific to this function.

3.4.1 Overview of flow-volume control of requests
This subsection describes flow-volume control of CTM.

To control the number of requests that are executed concurrently, the flow-volume control function places a preset
limit on the number of threads that can be concurrently generated on each J2EE server. This function moderates the
load on the J2EE servers, thus providing stable and high throughput. This function can also prevent contention of a
CPU or exclusive resource.

Flow-volume control of CTM is enabled by using a CTM daemon and the schedule queue managed by the CTM
daemon.

The following figure shows an overview of flow-volume control of CTM, and provides an example of schedule queue
sharing on a J2EE application basis.

Figure 3‒14: Overview of flow-volume control of CTM

A CTM daemon adds received requests to a schedule queue, and executes as many requests as the maximum number
of concurrent threads set for the schedule queue. The CTM daemon repeats this processing. If the number of requests
from clients instantaneously increases, the CTM daemon controls the flow volume so that the number of requests
executed by each J2EE server does not exceed the maximum number of concurrent threads. If the same J2EE
application is installed on multiple J2EE servers and the schedule queue is shared by each instance of that J2EE
application, the requested business-processing program can be executed in parallel. The degree of parallelism can be
determined by the number of instances of that J2EE application and the maximum number of concurrent threads for
each J2EE application. You can set the maximum number of requests that can be registered in a schedule queue. Note
that if the maximum number of requests that can be registered is not set for a schedule queue, the setting for the CTM
daemon is used by default. If the maximum is exceeded, an error is returned.

Note that the EJB container can also control the degree of parallelism for a 2EE application. The following describes
the effect of combining the parallelism control of the EJB container and the flow-volume control of CTM.

3. Scheduling and Load Balancing of Requests Using CTM

102

• If the degree of parallelism reaches the upper limit for the EJB container on a J2EE server, requests can be
transferred to another J2EE server. Even when the upper limit is not reached, if the load on the EJB container is
high, requests can be transferred to other J2EE servers.

• Message queuing by CTM might limit the number of queued requests to the preset maximum. Therefore, if more
requests than the maximum are sent to the EJB container, an error can be reported.

• Instance pooling of the EJB container can also be used simultaneously.

The maximum number of threads that can be controlled by CTM is specified by the -
CTMDispatchParallelCount argument of the ctmstart command executed when the CTM daemon is
started. The maximum number of requests that can be registered in a queue is specified by the -
CTMMaxRequestCount argument of that command. If the system was set up by using the management portal, you
can set these values in logical CTM beforehand. For details about the ctmstart command, see ctmstart (start CTM
daemon) in the uCosminexus Application Server Command Reference Guide.

! Important note

• In flow-volume control of CTM, the maximum number of concurrent threads (Parallel Count) is set for each
schedule queue. The maximum number of instances that can be pooled (maximum of Pooled Instances) can be set
for each stateless session bean called by CTM. Note that if the maximum number of instances that can be pooled is less
than the number of concurrent threads for the schedule queue, instances might be insufficient when a stateless session
bean is called.

• If CTM is used, EJB object references are registered in the local CORBA Naming Service, in addition to the global
CORBA Naming Service, on each host. In some application configurations, therefore, enterprise beans can be called by
directly executing lookup for the local CORBA Naming Service without using CTM. Note, however, that in this case,
the number of concurrent threads specified by CTM is not guaranteed. Therefore, do not operate in such a manner.

3.4.2 Settings in the execution environment
Before you can use CTM functions, you must set up the system configuration in which CTM can be used. For details
about the system configuration and setup procedure, see the uCosminexus Application Server System Design Guide
and the uCosminexus Application Server System Setup and Operation Guide.

The settings for using CTM functions to schedule requests can be specified in the Easy Setup definition file. In this
file, specify the CTM identifiers of CTM daemons, the lengths of CTM queues, and other settings for parameters
whose names begin with ejbserver.ctm.

To schedule requests by using CTM, you must perform the following operations:

• Create execution-environment directories and specifying environment variable settings

• Specify the settings by using the Easy Setup definition file

• Specify the settings by using server management commands

(1) Creating execution-environment directories and specifying environment variable settings
When you set up a system without using Management Server, to use CTM in the system, you must create the
execution-environment directories for CTM and the performance tracer, and then specify them for environment
variables.

For details about creating execution-environment directories and specifying environment variables, see Appendix H.
System Environment Variables in the uCosminexus Application Server Command Reference Guide.

Note that if you use Management Server to set up a system, you do not need to set the environment variables for using
CTM.

! Important note

In AIX, note the following points when setting environment variables:

• In the execution environment for Component Transaction Monitor, set early for the PSALLOC environment variable.
If you do not set early, correct operation cannot be guaranteed when memory becomes insufficient.

3. Scheduling and Load Balancing of Requests Using CTM

103

• The PSALLOC environment variable, which specifies early paging space allocation mode in AIX, is set to early. In
this mode, paging space estimation needs to be considered. For details, see System Management Concepts: Operating
System and Devices, which is documentation for AIX.

• In the execution environment for Component Transaction Monitor, set true for the NODISCLAIM environment
variable. If PSALLOC is early, NODISCLAIM must be true. If you do not set true, the response, throughput, and
CPU usage rate might be severely degraded.

• To expand the user data area and shared memory area used by Component Transaction Monitor, set
MAXDATA=0x40000000 for the LDR_CNTRL environment variable. Then, specify 1 GB as the size of memory to be
allocated.

• In the execution environment for Component Transaction Monitor, set ON for the EXTSHM environment variable. If you
do not set ON, shared memory might not be accessible.

(2) Using the Easy Setup definition file to specify the settings
To schedule requests by using CTM, in the Easy Setup definition file, set the properties shown below in the
<configuration> element for the logical J2EE server (j2ee-server). For details about the Easy Setup
definition file, see 4.6 Easy Setup definition file in the uCosminexus Application Server Definition Reference Guide.

• ejbserver.ctm.ActivateTimeOut
Specifies the time for which the J2EE server can wait before the schedule queue is activated at startup of the J2EE
application that uses CTM.

• ejbserver.ctm.DeactivateTimeOut
Specifies the time for which the J2EE server can wait before the schedule queue is de-activated (before requests
being executed are completed) at termination of the J2EE application that uses CTM.

• ejbserver.ctm.QueueLength
Specifies the length of the CTM queue generated by the J2EE server at startup of the J2EE application that uses
CTM.

• ejbserver.client.ctm.RequestPriority
Specifies the priority level of requests that the J2EE server sends to CTM.

(3) Using server management commands to specify the settings
This subsection describes the settings that can be specified by using server management commands. For details about
operations that can be performed by using server management commands, see Chapter 3. Basic Operations of Server
Management Commands in the uCosminexus Application Server Application Setup Guide.

• Settings for each J2EE application
You use the application properties file to specify the following settings:

• The <managed-by-ctm> element can be used to set whether to use CTM.

• The <scheduling> element can be used to set the name, length, and other attributes of the schedule queue.

• The <scheduling-unit> element can be used to select the schedule queue deployment basis (on a J2EE
application basis or bean basis).

• Settings for each stateless session bean
You use the session bean properties file to specify the following settings:

• The <enable-scheduling> element can be used to specify the scheduling-target stateless session bean
included in the J2EE application.

• The <maximum> or <minimum> element in the <pooled-instance> element in the <stateless>
element can be used to set the maximum or minimum number of instances to be pooled. Note that to
dynamically change the degree of parallelism of CTM during operation, you must set 0 (indefinite) as the
maximum.

• The <scheduling> element can be used to set the name, length, and other attributes of the schedule queue.

After you use the cjgetappprop command to obtain a properties file, edit the file, and then use the
cjsetappprop command to apply the new contents to the J2EE applications.

3. Scheduling and Load Balancing of Requests Using CTM

104

3.5 Controlling priority of requests
This section describes the CTM function that controls the priority of requests.

Priority levels can be assigned to requests controlled by CTM. If EJB clients are assigned priority levels, requests
from EJB clients with a higher priority level are dequeued and processed earlier than requests from EJB clients with a
lower priority level.

The priority of requests is set as a property of a J2EE server operating as an EJB client, a web container server, or an
EJB client application. CTM processes requests from EJB clients with a smaller priority value earlier.

3. Scheduling and Load Balancing of Requests Using CTM

105

3.6 Dynamically changing the number of concurrent
executions of requests

When CTM performs flow-volume control of requests, it can also dynamically change the number of concurrent
executions of requests for a schedule queue without stopping CTM daemons. This function can temporarily increase
or decrease the number of concurrent executions according to the processing of services managed by schedule queues.

The following table shows the structure of this section.

Table 3‒4: Structure of this section (dynamically changing the number of concurrent executions of
requests)

Topic type Title Location

Description Mechanism of dynamically changing the number of concurrent executions 3.6.1

Settings Values that can be specified for the number of concurrent executions 3.6.2

Operation Checking the operating status of CTM schedule queues 3.6.3

Changing the maximum number of concurrent executions for a CTM schedule
queue

3.6.4

Note: This section does not provide Implementation and Notes types of topics that are specific to this function.

Dynamic change of the number of concurrent executions in CTM is executed by using the ctmchpara command.
For details about changing the number of concurrent executions for a schedule queue, see 3.6.4 Changing the
maximum number of concurrent executions for a CTM schedule queue. For details about the ctmchpara command,
see ctmchpara (change the number of concurrent executions for schedule queues) in the uCosminexus Application
Server Command Reference Guide.

Tip
The number of concurrent executions for a schedule queue changed by the ctmchpara command is effective until the
CTM daemon is terminated. The change is not applied to parallel count set for an individual J2EE application. If a
J2EE application is restarted by restarting the CTM daemon, the value of parallel count set for that J2EE application
takes effect.

3.6.1 Mechanism of dynamically changing the number of concurrent
executions

The following figure shows an overview of dynamically changing the number of concurrent threads in CTM.

3. Scheduling and Load Balancing of Requests Using CTM

106

Figure 3‒15: Overview of dynamically changing the number of concurrent executions in CTM

The following subsections describe Figure 3-15.

(1) Initial status (number of concurrent executions is 5)
This subsection describes the status existing when a J2EE server is started before the number of concurrent executions
is changed dynamically. The schedule queue managed by the CTM daemon is shared by the J2EE applications on
J2EE servers 1 and 2.

For the J2EE application on J2EE server 1, the number of concurrent executions (parallel count) is set to 3 as a
stateless session bean property. For the J2EE application on J2EE server 2, the number of concurrent executions
(parallel count) is set to 2 as a stateless session bean property. In this case, the number of concurrent executions
for the schedule queue is 5 (3 + 2).

When the CTM daemon receives a request, threads for executing the request are generated as needed on both J2EE
servers. No more threads than the value set by parallel count for the J2EE application can be generated. The
generated threads are made resident in memory (not deleted).

3. Scheduling and Load Balancing of Requests Using CTM

107

Note that the parallel count value can be set or changed by using server management commands.

(2) After the number of concurrent executions changes dynamically (from 5 to 8)
This subsection describes how the system behaves if the number of concurrent executions for a schedule queue
dynamically changes to 8.

If the number of concurrent executions for a schedule queue increases dynamically, the number of resident threads that
process the requests for each J2EE application increases accordingly.

Note that if the number of resident threads changes, the number of resident threads for each J2EE application that
shares the schedule queue is balanced. This process is called balancing the number of resident threads. For example,
assume that three J2EE servers contain J2EE application instances whose parallel count values are 40, 30, and
60, and as many resident threads as those values have been generated. In this case, if the number of concurrent
executions for a schedule queue is changed to 120, the number of resident threads for each J2EE server changes to 40
as a result of balancing (120 / 3).

For the case in Figure 3-15, because there are 2 J2EE servers when the number of concurrent executions for a
schedule queue is 8, 4 resident threads are generated for each J2EE server.

(3) After the number of concurrent executions changes dynamically (from 5 to 1)
This subsection describes how the system behaves if the number of concurrent executions for a schedule queue is
reduced from 5 to 1.

As in the case where the number of concurrent executions increases, when the number of concurrent executions
decreases, the number of resident threads that process the requests for each J2EE application also decreases
accordingly. In this case, the number of resident threads for each J2EE application is balanced.

However, if the number of concurrent executions for a schedule queue decreases to fewer than the number of J2EE
application instances that share the schedule queue, simple balancing causes some J2EE servers to not receive
requests. To prevent this, at least one resident thread is generated for each instance.

For the case in Figure 3-15, because there are 2 J2EE servers when the number of concurrent executions is 1, a
minimum of 1 resident thread is generated for each J2EE server. Even in this case, however, no more requests than the
number of concurrent executions can be processed concurrently. Therefore, the thread for J2EE server 1 does not
execute processing until processing with the thread for J2EE server 2 finishes.

3.6.2 Values that can be specified for the number of concurrent
executions

This subsection describes the value that can be specified for the number of concurrent executions if the number of
concurrent executions dynamically changes.

The value that can be specified for the number of concurrent executions is an integer from 1 to the number of J2EE
application instances that share the schedule queue x 127. 127 is the maximum value for the number of concurrent
executions for a J2EE application (parallel count).

Note, however, that you cannot specify a value larger than the value that was specified for -
CTMDispatchParallelCount when the CTM daemon was started.

You cannot specify the following values. If you specify one of the following values, an error is output, and the number
of concurrent executions does not change.

• 0

• Value larger than the number of J2EE application instances that share the schedule queue x 127

• Value larger than the value specified for -CTMDispatchParallelCount of the ctmstart command

3.6.3 Checking the operating status of CTM schedule queues
This subsection describes how to check the operating status of CTM schedule queues. The operating status of CTM
schedule queues can be checked by using the mngsvrutil management command.

3. Scheduling and Load Balancing of Requests Using CTM

108

To check the operating status of CTM schedule queues, execute the management command by specifying the get
subcommand with the queueApps argument. When this command is executed, you can obtain information such as
the number of concurrent executions specified at startup of a J2EE application and the number of resident threads
currently generated for a J2EE application.

The following shows the format and an execution example of the above command.

Format:

mngsvrutil -m Management-Server-host-name[:port-number] -u management-user-ID -p management-
password -t logical-server-name get queueApps

Execution example:
mngsvrutil -m mnghost -u user01 -p pw1 -t myServer get queueApps

For details about the mngsvrutil command, the subcommands of that command, and the information that can be
obtained by using that command, see mngsvrutil (Management Server management command) in the uCosminexus
Application Server Command Reference Guide.

3.6.4 Changing the maximum number of concurrent executions for a
CTM schedule queue

This subsection describes how to change the maximum value for the dynamically changed number of concurrent
executions of a J2EE application for a schedule queue.

The procedure for changing the maximum value for the dynamically changed number of concurrent executions of a
J2EE application for a CTM schedule queue is as follows:

1. Check the current value for the maximum number of concurrent executions for the target CTM schedule queue.
To do this, use the ctmlsque CTM command. For details, see (1) Checking the maximum operating status of
CTM schedule queues.

2. Change the maximum number of concurrent executions for the target CTM schedule queue.
To do this, use the ctmchpara CTM command. For details, see (2) Checking the number of concurrent
executions for a CTM schedule queue.

3. Check the new value for the maximum number of concurrent executions for the target CTM schedule queue.
To do this, use the ctmlsque CTM command. For details, see (1) Checking the operating status of CTM
schedule queues.

Note that you can change the maximum number of concurrent executions for a CTM schedule queue when the state of
the schedule queue is one of the following:

• A: Scheduling is possible.

• H: Schedule queue is locked.

• C: Locked but scheduling is possible.

(1) Checking the operating status of CTM schedule queues
To check the operating status of CTM schedule queues, execute the ctmlsque command with -CTMAppInfo
specified. This command outputs the information about the J2EE applications that share schedule queues. The
following shows the format and an execution example of the above command.

Format:

ctmlsque -CTMDomain CTM-domain-name -CTMID CTM-identifier -CTMAppInfo

Execution example:
ctmlsque -CTMDomain domain01 -CTMID CTM01 -CTMAppInfo

For details about the ctmlsque command and the information output by the command, see ctmlsque (output
schedule queue information) in the uCosminexus Application Server Command Reference Guide.

3. Scheduling and Load Balancing of Requests Using CTM

109

(2) Checking the maximum number of concurrent executions for a CTM schedule queue
To change the maximum number of concurrent executions for a CTM schedule queue, execute the ctmchpara
command. The following shows the format and an execution example of the above command.

Format:

ctmchpara -CTMDomain CTM-domain-name -CTMID CTM-identifier -CTMQueue registered-schedule-
queue-name -CTMChangeCount number-of-concurrent-executions

Execution example:
ctmchpara -CTMDomain domain01 -CTMID CTM01-CTMQueue que01 -CTMChangeCount 10

After executing the command, confirm that the change has been applied. For details about how to check the status of
schedule queues, see (1) Checking the operating status of CTM schedule queues.

For details about the ctmchpara command and the information output by the command, see ctmchpara (change the
number of concurrent executions for schedule queues) in the uCosminexus Application Server Command Reference
Guide.

3. Scheduling and Load Balancing of Requests Using CTM

110

3.7 Locking and controlling requests
Locking and controlling requests (service lock) is a function that improves system availability by stopping reception
of requests to a specific J2EE application, or by enabling replacement or restart of a J2EE application without
stopping the entire system.

The following table shows the structure of this section.

Table 3‒5: Structure of this section (locking and controlling requests)

Topic type Title Location

Description Overview of locking and controlling requests 3.7.1

Replacing a J2EE application while the system is online 3.7.2

Locking and controlling requests for a J2EE application 3.7.3

Locking and controlling requests for a schedule queue 3.7.4

Holding requests if a J2EE server terminates abnormally 3.7.5

Settings Specifying settings in the execution environment 3.7.6

Note: This section does not provide Implementation, Operation, and Notes types of topics that are specific to this function.

3.7.1 Overview of locking and controlling requests
While CTM is scheduling requests, it can lock and control requests for a specific schedule queue. Locking and
controlling requests for a schedule queue enables service lock, which allows you to replace a specific J2EE application
without stopping the system.

Locking and controlling requests of CTM provide the following functions:

• Replacing a J2EE application while the system is online
You can replace a J2EE application without clearing requests from the schedule queue.

• Locking and controlling requests for a J2EE application
The system waits for requests to finish before locking a J2EE application.

• Locking and controlling requests for a schedule queue
The system immediately locks a schedule queue. At this time, the user can select whether to discard the requests in
the queue.

• Holding requests if a J2EE server terminates abnormally
The system holds requests in the schedule queue for a certain length of time if the J2EE server terminates
abnormally.

To perform locking and controlling requests, use the mngsvrutil management command. For details about this
command, see mngsvrutil (Management Server management command) in the uCosminexus Application Server
Command Reference Guide.

3.7.2 Replacing a J2EE application while the system is online
You can replace a J2EE application while the system is online.

This subsection provides an overview of replacement and describes the replacement procedure.

(1) Overview of replacement
Replace a J2EE application after the CTM daemon closes the exit of the schedule queue. While the exit is closed,
requests from clients can be added to the schedule queue. Therefore, system operation can continue without causing
the requests for the relevant application to fail. However, if an attempt is made to add a request to the schedule queue
when the schedule queue is full, an error is returned to the relevant client.

3. Scheduling and Load Balancing of Requests Using CTM

111

The following figure shows an overview of replacing a J2EE application while the system is online.

Figure 3‒16: Overview of replacing a J2EE application while the system is online

(2) Replacement procedure
Before you can replace a J2EE application while the system is online, the exit of the schedule queue for the J2EE
application must be closed. To close the exit and replace the J2EE application, use the mngsvrutil management
command.

In addition to replacing a specific J2EE application, you can also replace J2EE applications on a host basis or on a
management domain basis.

To close the exit of a schedule queue, execute the mngsvrutil command with the hold subcommand specified.
While the exit of a schedule queue is closed, requests from clients can be added to the schedule queue. However, if an
attempt is made to add a request when the schedule queue is full, an error is returned to the relevant client.

When you have replaced a J2EE application, unlock the schedule queue. To unlock the schedule queue, execute the
mngsvrutil command with the release subcommand specified. When the schedule queue is unlocked, the J2EE
application restarts processing the queued requests.

The following procedure shows how to replace a J2EE application while the system is online by using CTM.

1. Close the exit of the CTM schedule queue for the J2EE application that you want to replace.
The following shows the format and an execution example of the mngsvrutil command that is executed when
a J2EE application is replaced.

Format:

mngsvrutil -m Management-Server-host-name[:port-number] -u management-user-ID -p management-
password -t CTM-name hold queue queue-name out

Execution example:
mngsvrutil -m mnghost -u user01 -p pw1 -t ctm01 hold queue App1 out

2. Replace the J2EE application.
Stop the J2EE application, and then replace it with a new one. After that, start the new J2EE application.
For details about how to replace a J2EE application, 5.6.3 Replacing and Maintaining a J2EE Application in the
uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

3. Scheduling and Load Balancing of Requests Using CTM

112

3. Unlock the CTM schedule queue by executing the mngsvrutil command with the release subcommand
specified.
The following shows the format and an execution example of the mngsvrutil command executed in this step.

Format:

mngsvrutil -m Management-Server-host-name[:port-number] -u management-user-ID -p management-
password -t CTM-name release queue queue-name

Execution example:
mngsvrutil -m mnghost -u user01 -p pw1 -t ctm01 release queue App1

For details about the mngsvrutil command, see mngsvrutil (Management Server management command) in the
uCosminexus Application Server Command Reference Guide.

3.7.3 Locking and controlling requests for a J2EE application
When you stop a J2EE application, the system can wait until all requests in the schedule queue are processed. If the
J2EE application that you stop is the last of the J2EE applications that share the schedule queue, there might be
requests in the schedule queue. If the system waits, these requests will be processed successfully.

This subsection provides an overview of locking and controlling requests for a J2EE application, and describes the
procedure for locking a schedule queue.

(1) Overview of locking and controlling requests for a J2EE application
When the last of the J2EE applications that share a schedule queue stops, the CTM daemon closes the entrance of the
schedule queue to perform a service lock so that the queue receives no more requests. After that, the system waits until
all requests in the schedule queue are processed, and then stops the J2EE application.

The following figure shows an overview of locking and controlling requests for a J2EE application.

Figure 3‒17: Overview of locking and controlling requests for a J2EE application

When CTM executes the locking and controlling of requests for a J2EE application, the following operations take
place:

• Reception of new requests stops.

• Processing of already-queued requests that have been distributed to J2EE servers continues.

• For already-queued requests that have not yet been distributed to J2EE servers, a
java.rmi.RemoteException error is returned.

(2) Procedure for locking schedule queues
Use the management command to lock schedule queues.

The following shows the format and execution examples of the management command executed when all J2EE
applications on a specific host are stopped. For details about the management command, see mngsvrutil (Management
Server management command) in the uCosminexus Application Server Command Reference Guide.

3. Scheduling and Load Balancing of Requests Using CTM

113

Format:

mngsvrutil -m Management-Server-host-name[:port-number] -u management-user-ID -p management-
password -t host-name -k host hold queues in:request-completion-wait-time-(sec.)

Execution examples:

• To perform a service lock and wait for all requests to be processed, execute the following command:
mngsvrutil -m mnghost -u user01 -p pw1 -t host01 -k host hold queues in:0

• To perform a service lock, continue processing of requests for 5 minutes, and discard requests that are still
running, execute the following command:
mngsvrutil -m mnghost -u user01 -p pw1 -t host01 -k host hold queues in:
300

• To perform a service lock and immediately discard requests, execute the following command:
mngsvrutil -m mnghost -u user01 -p pw1 -t host01 -k host hold queues
in:-1

To unlock schedule queues, execute the mngsvrutil command with the release subcommand specified. The
following shows the format and an execution example of the mngsvrutil command.

Format:

mngsvrutil -m Management-Server-host-name[:port-number] -u management-user-ID -p management-
password -t host-name -k host release queues

Execution example:
mngsvrutil -m mnghost01 -u user01 -p pw1 -t host01 -k host release queues

3.7.4 Locking and controlling requests for a schedule queue
There are the following two types of locking and controlling requests for a schedule queue:

• Forced locking

• Timeout-triggered locking

This subsection provides an overview of locking and controlling requests for a schedule queue. This subsection also
describes the procedures for performing a forced locking and timeout-triggered locking.

(1) Overview of locking and controlling requests for a schedule queue
You can directly lock a schedule queue. This allows you to simultaneously stop all J2EE applications that share the
schedule queue. You can select whether to discard requests remaining in the schedule queue immediately, or continue
processing them for a certain length of time. If you choose to continue processing, you can specify the timeout value
to forcibly discard the requests that are not processed in the specified time. Processing of requests that are being
executed on J2EE servers continues.

In response to a request to lock a schedule queue, the CTM daemon closes the exit of the schedule queue to perform a
service lock so that the queue receives no more requests. Already-queued requests are handled (discarded or
processed) as pre-specified, and then the lock of the schedule queue is completed. If queued requests are discarded,
they are returned to the clients as errors. If queued requests are processed, after processing continues for a preset time,
any requests whose processing does not end within the time are returned as errors.

The following figure shows an overview of locking and controlling requests for a schedule queue.

3. Scheduling and Load Balancing of Requests Using CTM

114

Figure 3‒18: Overview of locking and controlling requests for a schedule queue

In a back-end system that uses CTM, to simultaneously stop all J2EE applications on a host or all J2EE applications
that share a schedule queue, directly lock the schedule queue for those J2EE applications. You can then stop the J2EE
applications.

If you use the management command to directly lock schedule queues for J2EE applications, you can stop J2EE
applications for each schedule queue that is shared by J2EE applications, for each host, or for each management
domain. When you do so, you can select whether queued requests are to be discarded immediately or processed for a
certain length of time. Any queued requests that you choose to discard are returned to the clients as errors. If you
choose to process queued requests for a certain length of time, requests whose processing does not end in the specified
time are returned to the clients as errors.

How you can use the management command to perform a CTM service lock is described below. The following
subsections describe two types of locks: forced locking and timeout-triggered locking. Use forced locking in cases
such as when you must lock a queue immediately because the CTM daemon is in a high load state.

(2) Forced locking of a schedule queue
You can lock a schedule queue without it communicating with the CTM daemon. This is called forced locking of a
schedule queue. Forced locking can be used to immediately lock a queue in such a case where the load on the CTM
daemon is high. If you use normal locking, the schedule queue communicates with the CTM daemon, and then
discards the requests in the queue. In this case, if the CTM daemon is in a high-load state, communication with the
CTM daemon takes time. Therefore, time is also needed before the queue is locked.

If you use forced locking, you can immediately lock the queue because communication between the queue and the
CTM daemon is skipped. Note that discarding of queued requests takes place the next time the CTM daemon
exchanges the load information with other CTM daemons.

To perform forced locking, execute the mngsvrutil management command with the hold subcommand and
queue force argument specified. When you perform forced locking of a schedule queue, the requests in the queue
are discarded after a certain length of time. If you do not want to discard the requests, execute the ctmholdque
command with the -CTMRequestLeave option specified.

You can unlock a schedule queue locked by forced locking in the same way as you unlock a schedule queue locked in
the ordinary manner. For details about the mngsvrutil command, see mngsvrutil (Management Server management
command) in the uCosminexus Application Server Command Reference Guide.

The following shows the format and an execution example of the mngsvrutil command executed to perform
forced locking.

Format:

mngsvrutil -m Management-Server-host-name[:port-number] -u management-user-ID -p management-
password -t host-name -k host hold queues force

Execution example:
mngsvrutil -m mnghost -u user01 -p pw1 -t host01 -k host hold queues force

(3) Timeout-triggered locking of a schedule queue
The CTM daemon of a schedule queue monitors EJB client timeouts at regular intervals, and locks the schedule queue
when the number of timeout occurrences exceeds a preset value. This is called timeout-triggered locking of a schedule
queue.

3. Scheduling and Load Balancing of Requests Using CTM

115

The following describes timeout occurrences. First, see the following figure.

Figure 3‒19: How timeout-triggered locking of a schedule queue occurs

In the above figure, the number of timeout occurrences is watched every 10 seconds. Counting of timeout occurrences
continues only within each watcher interval. When a watcher interval ends, the counter is reset, and the next watcher
interval starts.

For example, assume that the timeout count threshold is set to 10. In this case, if 10 or more timeouts occur in a 10-
second watcher interval, the queue is locked. Note that if 10 timeout occurrences are detected, locking of a queue
takes place when the next watcher interval starts. In the above figure, 11 timeouts are detected 30 seconds after the
start of watching. Therefore, the queue is locked after 30 seconds has elapsed since watching started.

Timeout-triggered locking for a schedule queue is set by using an option specified during startup of the CTM daemon.
Specify the -CTMWatchRequest option when executing the ctmstart command.

3.7.5 Holding requests if a J2EE server terminates abnormally
If a J2EE server terminates abnormally, the requests in the schedule queue are held for a certain length of time.

For this reason, errors are not immediately returned to users when a J2EE server terminates abnormally. In addition,
the schedule queue continues to receive requests from clients until the J2EE server restarts. The schedule queue can
receive requests while it is not full. Therefore, if a J2EE server fails, you can continue operation without clients
noticing the failure by restarting the J2EE server immediately. Note, however, that errors are returned to the clients if
the number of queued requests exceeds the maximum.

To set this function, specify the -CTMQueueDeleteWait option when executing the ctmstart command. For
details about this command, see ctmstart (start CTM daemon) in the uCosminexus Application Server Command
Reference Guide.

The following figure shows an overview of holding requests if a J2EE server terminates abnormally.

Figure 3‒20: Overview of holding requests if a J2EE server terminates abnormally

3. Scheduling and Load Balancing of Requests Using CTM

116

3.7.6 Specifying settings in the execution environment
Before you can use timeout-triggered locking of a schedule queue, you must specify the necessary CTM daemon
settings.

To specify the CTM daemon settings, use the Easy Setup definition file. Timeout-triggered locking is related to load-
balancing of requests. The location in which to define load-balancing of requests is the <configuration> element
for logical CTM (component-transaction-monitor) in the Easy Setup definition file.

The following table describes the parameters related to timeout-triggered locking for a schedule queue in the Easy
Setup definition file.

Table 3‒6: Parameters related to timeout-triggered locking for a schedule queue in the Easy Setup
definition file

Parameter Description

ctm.RequestCount Specifies the number of timeouts that can occur before the queue is locked.

ctm.RequestInterval Specifies the time interval in which the number of timeouts that occurred is
counted.

ctm.WatchRequest Specifies whether to lock the queue when transmission of a request to the J2EE
server times out.

For details about the Easy Setup definition file and the parameters that can be specified in the file, see 4.6 Easy Setup
definition file in the uCosminexus Application Server Definition Reference Guide.

3. Scheduling and Load Balancing of Requests Using CTM

117

3.8 Load balancing of requests
Load balancing is a function that improves overall system availability by equally distributing processing to parallel
J2EE servers (typically seen in a cluster configuration). Load balancing can distribute create and invoke requests
from clients to servers, processes, and threads.

The following table shows the structure of this section.

Table 3‒7: Structure of this section (load balancing of requests)

Topic type Title Location

Description Times when load balancing takes place 3.8.1

Watching the load status 3.8.2

Settings Specifying settings in the execution environment 3.8.3

Note: This section does not provide Implementation, Operation, and Notes types of topics that are specific to this function.

Load balancing can be performed across J2EE applications that share a schedule queue. By exchanging load
information among CTM daemons, load balancing can also be performed for business-processing programs included
in J2EE applications controlled by different schedule queues.

3.8.1 Times when load balancing takes place
CTM performs load balancing at the following two times:

• When an EJB object reference is obtained by a create request
If load balancing takes place at this time, the create-based selection policy decides whether processing is
assigned preferentially to the CTM daemon that received the request, or to the CTM daemon that is least loaded.

• When a business method is executed through a remote interface by an invoke request
If load balancing takes place at this time, the schedule policy decides whether processing is assigned preferentially
to the CTM daemon that received the request, or to the CTM daemon that is least loaded.

The following figure shows an overview of how a client calls business-processing programs and the times when load
balancing takes place.

3. Scheduling and Load Balancing of Requests Using CTM

118

Figure 3‒21: How an EJB client calls business-processing programs and the times when load balancing
takes place

The following describes the processing illustrated in the above figure.

1. The EJB client executes lookup for one of the global CORBA Naming Services deployed on hosts.
In the above figure, lookup is executed for host A.
In each global CORBA Naming Service, references to schedule queues are registered. In the above figure, host A
returns a registered schedule queue reference.

2. The EJB client uses the obtained reference to execute create.
In the above figure, create is executed for the CTM daemon on host A.
At this time, the first load balancing takes place.
The create-based selection policy decides how to balance the load.
The CTM daemon that received the create request returns either of the following references to the EJB client
based on the create-based selection policy:

• Reference to the CTM regulator that corresponds to the CTM daemon on the host that received the create
request

• Reference to the CTM regulator that corresponds to the CTM daemon that is least loaded in the CTM domain

In the above figure, a reference to the CTM regulator on host B is returned.

3. The EJB client uses the obtained reference to execute the invoke or remove request defined in the remote
interface.

3. Scheduling and Load Balancing of Requests Using CTM

119

In the above figure, the invoke request is executed for the CTM regulator on host B. The CTM regulator then
sends the request to the CTM daemon.
At this time, the second load balancing takes place.
The schedule policy decides how to balance the load when the invoke request is executed.#

In the above figure, processing is assigned to the CTM daemon on host A, which received the request. The request
is then registered in the schedule queue. When the request is executed, it is associated with the already-pooled
reference to an EJB object, and the relevant business-processing program on the J2EE server is called. At this
time, a J2EE server that was terminated abnormally or a business-processing program that timed out due to a hang
is never called.

#
The schedule policy is not used for execution of remove.

A reply from a business-processing program is returned to the EJB client via the CTM daemon that received the
request.

3.8.2 Watching the load status
CTM can watch the load status of schedule queues. CTM performs watching of the load status at an interval specified
for each J2EE server. Use an argument to specify the interval when executing the ctmstart command to start a
CTM daemon. If the system you are using is a system that was set up by using the management portal, you can set the
interval in logical CTM beforehand. For details about the ctmstart command, see ctmstart (start CTM daemon) in
the uCosminexus Application Server Command Reference Guide.

3.8.3 Specifying settings in the execution environment
Before you can use load balancing of requests, you must specify the necessary CTM daemon settings.

To specify the CTM daemon settings, use the Easy Setup definition file. Load-balancing of requests is defined by the
<configuration> element for logical CTM (component-transaction-monitor) in the Easy Setup definition file.

The following table describes the parameters for load balancing of requests in the Easy Setup definition file.

Table 3‒8: Parameters for load balancing of requests in the Easy Setup definition file

Type Parameter Description

Times when load
balancing takes
place

ctm.CreatePolicy Specifies the CTM node selection policy for the create
request. This policy is used at the first load balancing.

ctm.DispatchPolicy Specifies the request schedule policy. This policy is used
at the second load balancing.

Watching the load
status

ctm.LoadCheckInterval Specifies the time interval at which to watch the load
status of the schedule queue.

For details about the Easy Setup definition file and the parameters that can be specified in the file, see 4.6 Easy Setup
definition file in the uCosminexus Application Server Definition Reference Guide.

3. Scheduling and Load Balancing of Requests Using CTM

120

3.9 Monitoring and retaining request queues
The following table shows the structure of this section.

Table 3‒9: Structure of this section (monitoring and retaining request queues)

Topic type Title Location

Description Overview of monitoring requests remaining in a schedule queue 3.9.1

Example of monitoring a schedule queue 3.9.2

Settings Specifying settings in the execution environment 3.9.3

Notes Notes 3.9.4

Note: This section does not provide Implementation and Operation types of topics that are specific to this function.

On a J2EE server, if it takes time for the CTM daemon to dequeue requests from the schedule queue, requests might
remain in the queue for a long time. These requests are monitored by using the schedule queue monitoring function.
This function is described below.

3.9.1 Overview of monitoring requests remaining in a schedule queue
The schedule queue monitoring function monitors the number of requests in a schedule queue. If the number of
queued requests exceeds a certain percentage, the CTM daemon outputs a message and terminates abnormally.

A schedule queue is monitored as follows:

1. The schedule queue monitoring function starts when the preset threshold percentage value of used capacity of the
queue is exceeded.

2. When the function starts, it checks the filling status of the schedule queue at the specified time interval.

3. When the function performs a check, if the following expression is true, the CTM daemon terminates abnormally:

Schedule queue monitoring expression:
(P / Cn - 1) < (M1 / 100)
P: Number of requests processed during the period from the previous check to the current time
Cn - 1: Number of queued requests at the check before the last check (Cn)
M1: Threshold for stopping the system (system processing percentage)

To use the schedule queue monitoring function, specify the -CTMWatchQueue option when executing the
ctmstart command. For details about the ctmstart command, see ctmstart (start CTM daemon) in the
uCosminexus Application Server Command Reference Guide.

3.9.2 Example of monitoring a schedule queue
This subsection provides an example to explain the monitoring of a schedule queue.

The example in this subsection assumes that the following settings have been specified:

• Queue filling percentage triggering schedule queue monitoring: 60%

• Threshold for stopping the system: 70%

• Schedule queue check interval: 1 second

3. Scheduling and Load Balancing of Requests Using CTM

121

Figure 3‒22: Example of schedule queue monitoring

In this example, the threshold of the system processing percentage for stopping the system is set to 70%. Therefore,
the right side of the schedule queue monitoring expression (M1 / 100) is 70 / 100 (= 0.7). Therefore, the expression in
this example is as follows:

Schedule queue monitoring expression in this example:
(P / Cn - 1) < 0.7

In this case, the CTM daemon terminates abnormally when the left side (P / Cn - 1) is less than 0.7.

This example also assumes that the maximum number of requests that can be contained in the schedule queue is 50.
Therefore, 60% of schedule queue filling percentage means 30 queued requests. Therefore, monitoring of the schedule
queue starts when the number of queued requests exceeds 30.

The following describes the processing of schedule queue monitoring for each check point:

C1

At check point C1, 31 requests are in the schedule queue. Because the schedule queue filling percentage exceeds
60% (or, 30 requests), monitoring of the schedule queue starts.

C2

At check point C2, P (number of requests processed from C1 to C2) = 22. Therefore, the left side of the schedule
queue monitoring expression (P / Cn - 1) is as follows:
(P / C1) = 22 / 31 = 0.7
Because the resulting value (0.7) is equal to the threshold for stopping the system (70%), the CTM daemon does
not stop.
Also, the number of queued requests at C2 is 45. Because this number exceeds the queue filling percentage
triggering schedule queue monitoring, 60% (or, 30 requests), monitoring of the schedule queue continues.

C3

At check point C3, P (number of requests processed from C2 to C3) = 32. Therefore, the left side of the schedule
queue monitoring expression (P / Cn - 1) is as follows:
(P / C2) = 32 / 45 = 0.71
Because the resulting value (0.71) is greater than the threshold for stopping the system (70%), the CTM daemon
does not stop.
Also, the number of queued requests at C3 is 35. Because this number exceeds the queue filling percentage
triggering schedule queue monitoring, 60% (or, 30 requests), monitoring of the schedule queue continues.

3. Scheduling and Load Balancing of Requests Using CTM

122

C4

At check point C4, P (number of requests processed from C3 to C4) = 35. Therefore, the left side of the schedule
queue monitoring expression (P / Cn - 1) is as follows:
(P / C3) = 35 / 35 = 1
Because the resulting value (1) is greater than the threshold for stopping the system (70%), the CTM daemon does
not stop.
Also, the number of queued requests at C4 is 30. Because this number is equal to the queue filling percentage
triggering schedule queue monitoring, 60% (or, 30 requests), monitoring of the schedule queue stops.

C5

At check point C5, P (number of requests processed from C4 to C5) = 5. Therefore, the left side of the schedule
queue monitoring expression (P / Cn - 1) is as follows:
(P / C4) = 5 / 30 = 0.16
Although this value is less than 0.7 (70%), the threshold for stopping the system, the CTM daemon does not stop
because the schedule queue is not monitored at C5.

C6

At check point C6, 31 requests are in the schedule queue. Because the queue filling percentage triggering schedule
queue monitoring, 60% (or, 30 requests), is exceeded, monitoring of the schedule queue starts.

C7

At check point C7, P (number of requests processed from C6 to C7) = 2. Therefore, the left side of the schedule
queue monitoring expression (P / Cn - 1) is as follows:
(P / C6) = 2 / 31 = 0.06
Because this value is less than 0.7 (70%), the threshold for stopping the system, the CTM daemon terminates
abnormally.

3.9.3 Specifying settings in the execution environment
Before you can monitor the number of requests in a schedule queue, you must specify the necessary CTM daemon
settings.

To specify the CTM daemon settings, use the Easy Setup definition file. Schedule queue monitoring is related to load-
balancing of requests. The location in which to define load-balancing of requests is the <configuration> element
for logical CTM (component-transaction-monitor) in the Easy Setup definition file. For the ctm.QueueRate
parameter, specify the queue filling percentage as the threshold that triggers start of schedule queue monitoring.

For details about the Easy Setup definition file and the parameters that can be specified in the file, see 4.6 Easy Setup
definition file in the uCosminexus Application Server Definition Reference Guide.

3.9.4 Notes
• For a request queue that is monitored, if the queue locking command (ctmholdque) is used to discard queued

requests, they are treated as requests that were already processed.

• If the queue locking command (ctmholdque) is executed for a monitored request queue, the monitoring state
changes as follows:

• If the queue is locked normally (ctmholdque without options)
Because all requests in the queue are discarded, the number of queued requests decreases. As a result,
monitoring of the queue ends.

• If the entrance of the queue is locked (ctmholdque with the -CTMRequestLeave option)
Because all requests in the queue are processed by servers, monitoring of the queue continues.

• If the exit of the queue is locked (ctmholdque with the -CTMChangeServer option)
The requests in the queue are not processed. Because the system processing percentage is 0, the system stops.
As a result, monitoring of the queue ends.

3. Scheduling and Load Balancing of Requests Using CTM

123

3.10 Connection with the TPBroker/OTM client by using
the gateway functionality in CTM

CTM provides gateway functionality, which allows the following types of clients to call J2EE applications that
operate on application servers:

• TPBroker clients
Client applications developed by using TPBroker Version 5 or later.

• TPBroker OTM clients
Client applications developed by using TPBroker Object Transaction Monitor.

Also, CTM can output analysis information about the gateways that send and receive requests. This information can
be converted into CSV format. The converted information can then be used for further analysis with analysis
information output by other J2EE server functions. For details about performance analysis trace output, see the
description of performance trace analysis in Chapter 7. Performance Analysis by Using Trace based Performance
Analysis in the uCosminexus Application Server Maintenance and Migration Guide.

The following figure shows an overview of calling J2EE applications from a TPBroker client or TPBroker OTM client
by using the CTM gateway functionality.

Figure 3‒23: Overview of calling J2EE applications from a TPBroker client or TPBroker OTM client

When the TPBroker client sends a request to the J2EE application on a J2EE server, the request passes through an
ORB gateway. When the TPBroker OTM client sends a request to the J2EE application on a J2EE server, the request
passes through an OTM gateway. The ORB and OTM gateways are processes provided by CTM, and are started when
the CTM daemon is started.

The following describes how TPBroker and TPBroker OTM clients can send requests to J2EE applications, and how
references can be resolved.

• For TPBroker clients
If 1 is specified for the -CTMAgent or -CTMIDLConnect option of the ctmregltd command, the CTM
regulator enables the ORB gateway functionality. If 1 is specified for -CTMAgent, a CORBA reference is
registered in the smart agent by using the EJB lookup name as an object name. Therefore, the TPBroker client
resolves the reference destination by specifying the EJB lookup name as an argument for _bind(). If 1 is
specified for -CTMIDLConnect, the TPBroker client resolves the reference destination by using the
ctmgetior command to obtain the IOR string.

• For TPBroker OTM clients

3. Scheduling and Load Balancing of Requests Using CTM

124

If 1 or a larger value is specified for the -CTMTSCGwStart option of the ctmstart command, the OTM
gateway starts. On the TPBroker OTM client, specify the EJB lookup (registration) name as a TSC acceptor name
for an argument of the constructor that generates a TSC user proxy. Note that the TSC acceptor name cannot be
omitted. Select TSC regulator as the connection protocol.

You might want to develop client applications that allow TPBroker clients or TPBroker OTM clients to call
applications on J2EE servers. For details about how to develop such applications, see the documentation for TPBroker
or TPBroker Object Transaction Monitor.

3. Scheduling and Load Balancing of Requests Using CTM

125

4 Scheduling of Batch Applications
If you use the scheduling functionality of batch applications, you can control the
execution requests of batch applications. As a result, you can receive multiple
execution requests for batch applications without changing the number of batch
servers. This chapter gives an overview of how to schedule batch applications. This
chapter describes how to execute batch applications by using the scheduling
functionality and the settings required for using the scheduling functionality.

You can use the scheduling functionality only in the products that contain
Cosminexus Component Transaction Monitor in the component software. For details
on the products that you can use, see 2.2.1 Mapping between products and the
component software in the manual uCosminexus Application Server Overview.

127

4.1 Organization of this chapter
The batch application scheduling functionality is the functionality that uses CTM to control the execution requests of
batch applications to be executed on batch servers. Hereafter, this functionality is called scheduling functionality.

The following table describes the organization of this chapter.

Table 4‒1: Organization of this chapter (Scheduling of batch applications)

Classification Title Reference location

Description Overview of the scheduling functionality 4.2

Systems using the scheduling functionality 4.3

Setting and operating the batch application execution environment when using the
scheduling functionality

4.4

Executing batch applications by using the scheduling functionality 4.5

Migrating to the environment using the scheduling functionality 4.6

Setup Settings of the execution environment 4.7

Notes Points to be considered when using the scheduling functionality 4.8

#
There is no specific description of Setup and Operation for this functionality.

For details on the functionality provided with batch servers and the generation of batch applications, see 2. Executing
Applications by Using Batch Servers.

4. Scheduling of Batch Applications

128

4.2 Overview of the scheduling functionality
This section gives an overview of the scheduling functionality.

With Application Server, use CTM for scheduling batch applications. The CTM uses a queue to control the execution
of batch applications. This queue is called a schedule queue.

4.2.1 Advantages of scheduling batch applications
This subsection describes the advantages of using the scheduling functionality.

With a batch server, you can execute one batch application at a time. You use the batch execution commands provided
with Application Server to start batch applications. The batch server after receiving a batch application execution
request from the batch execution command, starts the batch application.

If you do not use the scheduling functionality, the batch application execution requests, exceeding the number of batch
servers, cannot be received. In such cases, the requests that are not received, give error. Moreover, in the batch
execution command, you are required to define the batch server on which you want to execute an application.

If you use the scheduling functionality, the batch application execution requests, exceeding the number of batch
servers, are accumulated in a schedule queue by using CTM, and an error does not occur. The accumulated requests
are distributed to batch servers by using CTM. As a result, you can execute the batch execution commands
irrespective of the number of batch servers. Also, the CTM distributes the batch application execution requests to
batch servers, so you need not define the batch server on which you want to execute an application, in the batch
execution command.

The following figure shows the flow of execution of batch applications when you use and do not use the scheduling
functionality.

4. Scheduling of Batch Applications

129

Figure 4‒1: Flow of execution of batch applications when using and not using the scheduling functionality

This figure shows an example in which batch servers concurrently execute the batch execution commands from the
JP1/AJS jobs or a direct machine, for two systems.

If you do not use the scheduling functionality, you cannot concurrently execute the batch execution commands shown
in steps 2 and 3, in the above figure. If you use the scheduling functionality, you can concurrently execute the batch
execution commands shown in steps 2 and 3, because the batch application execution requests are distributed to batch
servers by using CTM.

4.2.2 Prerequisites for using the scheduling functionality
This subsection describes the prerequisites for using the scheduling functionality.

If you use the scheduling functionality, using CTM is a prerequisite. For details on the CTM, see 3. Scheduling and
Load Balancing of Requests Using CTM.

To use CTM, you must build a system which is configured to use CTM. For details on the configuration for using the
CTM, see 4.3 Systems using the scheduling functionality.

4.2.3 Procedure for executing the batch applications using the
scheduling functionality

This subsection describes the procedure for executing batch applications.

If you use the scheduling functionality, the batch applications executed on batch servers are differentiated by job IDs.
A Job ID is a string used for differentiating execution requests for the batch applications to be executed. You can

4. Scheduling of Batch Applications

130

specify any value when executing a command. If you omit a job ID while executing a command, the scheduling
functionality automatically generates a job ID. This Job ID is managed by CTM.

A batch server group, to which batch applications are distributed using CTM, is called a schedule group. A schedule
queue is created for respective schedule groups. Specify the schedule group, if you want to control the number of
concurrent operations for respective business classifications of batch applications. Set up a unique schedule group in a
system. You must set up the schedule groups separately even if CTM is different for each machine. When specifying
the schedule groups, you must specify with the batch execution commands and on the batch servers. For details on
how to perform settings, see 4.7 Settings of the execution environment.

Even when you use the scheduling functionality, you can integrate the execution environment of batch applications
with JP1/AJS.

The following figure shows the flow of execution of batch applications by using the scheduling functionality.

Figure 4‒2: Flow of execution of batch applications by using the scheduling functionality

In this figure, the batch application execution requests are distributed from batch server 1 through batch server 3,
which belong to the same schedule group, by using CTM. The batch application execution requests which overflow
from the schedule queue give an error.

The following figure shows the flow of execution of batch applications by using multiple schedule groups.

4. Scheduling of Batch Applications

131

Figure 4‒3: Flow of execution of batch applications by using multiple schedule groups

This figure shows an example where two schedule groups GroupA and GroupB are specified, and two schedule
queues are created. You use a command to define the schedule group to be used. The batch applications are distributed
to schedule queues according to the schedule group settings of the command. In this figure, batch applications are
running on batch servers of schedule groups, so the batch applications received by CTM are on standby in a schedule
queue.

4. Scheduling of Batch Applications

132

4.3 Systems using the scheduling functionality
This section describes the system configuration and processes required for a system using the scheduling functionality.

4.3.1 Configuring a system using the scheduling functionality
This subsection describes the configuration of a system using the scheduling functionality.

The following figure shows an example of configuring a system using the scheduling functionality.

Figure 4‒4: Example of configuring a system using the scheduling functionality

In this figure, the system that is executing batch applications is integrated with JP1/AJS. If you do not integrate the
system with JP1/AJS, the management client, JP1 Job Management Server, and JP1/AJS - Agent and JP1/Base of
Application Server, shown in the above figure, are not required. For the operation procedures of batch servers and
batch applications, see 2.2.2(1) System integrated with JP1/AJS and 2.2.2(3) System not integrated with JP1/AJS,
BJEX, and JP1/Advanced Shell.

4.3.2 Processes required for the scheduling functionality
This subsection describes the processes required for the scheduling functionality.

When using the scheduling functionality, you use CTM. The following figure shows an example of the process
configuration of Application Server using the scheduling functionality.

4. Scheduling of Batch Applications

133

Figure 4‒5: Example of process configuration of Application Server (For using the scheduling functionality)

The following table gives an overview of the processes used in CTM.

Table 4‒2: Overview of the processes used in CTM (For using the scheduling functionality)

Process Explanation

CTM daemon This process manages the schedule queues for controlling the batch application execution requests.

CTM regulator This process distributes and consolidates the batch application execution requests accumulated in a
CTM daemon.

CTM domain manager This process manages the information of CTM daemons in the same CTM domain.

Global CORBA Naming
Service

This Naming Service shares and manages the batch application information on the hosts that are
included in the same CTM domain.

Smart Agent This process provides the dynamically distributed directory services that are provided with
Cosminexus TPBroker. This process is used when distributing the information to CTM daemons in
different network segments. For details, see the Borland(R) Enterprise Server VisiBroker(R)
Developers Guide.

For details on the guidelines to arrange the processes and for the respective processes, see 3. Scheduling and Load
Balancing of Requests Using CTM.

The PRF daemon (performance tracer) is also used in CTM as an I/O process to output the performance analysis
information, which is output by the CTM daemon. For details, see 7.2.1 Overview of performance analysis trace of
Application Server in the uCosminexus Application Server Maintenance and Migration Guide.

4. Scheduling of Batch Applications

134

4.4 Setting and operating the batch application
execution environment when using the scheduling
functionality

This section describes how to set up and operate an execution environment for batch applications.

Even if you use the scheduling functionality, you use the Smart Composer functionality and server management
commands to build an execution environment for batch applications. In this case, the same operation procedures and
usable operation functionality of the batch application execution environment are used as when the scheduling
functionality is not used.

For the procedure of building a batch application execution environment, see 2.2.3(1) Setting up a batch application
execution environment. However, when using the scheduling functionality, you are required to set up an environment
and build CTM and Smart Agent in addition to defining and setting up a batch server. You also use the Smart
Composer functionality when building CTM and Smart Agent. For details, see 4.6 Building systems for executing
batch applications in the uCosminexus Application Server System Setup and Operation Guide. For details on the
operations that can be performed in a batch application execution environment and the operation procedures, see
2.2.3(2) Operation of batch application execution environment.

You can integrate with JP1 and cluster software even in a system that uses the scheduling functionality. For details, see
2.2.3(3) Integration with other programs.

4. Scheduling of Batch Applications

135

4.5 Executing batch applications by using the scheduling
functionality

This section describes the execution of batch applications by using the scheduling functionality. For details on the
batch application execution functionality, see 2.3.1 Overview of batch application execution functionality.

The same execution logs of batch applications are output by batch servers as those that are output when using the
scheduling functionality. For details on the execution logs of batch applications, see 2.3.5 Log output of batch
applications.

4.5.1 Status transition of batch applications using the scheduling
functionality

This subsection describes the status transition of batch applications using the scheduling functionality.

The following figure shows the status transition of batch applications.

Figure 4‒6: Status transition of batch applications (Using the scheduling functionality)

The following table describes the respective status of batch applications.

Table 4‒3: Description of the respective status of batch applications

Status of batch application Explanation

WAITING This is a standby status in a schedule queue because another batch application is running on the
batch sever.

RUNNING In this status, a batch application is running on a batch server.

FORCESTOPPING In this status, the batch application, which is in the schedule key, is reserved for deletion by the
batch forced stop command.

You can confirm the status of batch applications from the batch application information. For details on how to display
the batch applications information, see 4.5.4 Displaying a list of batch application information.

4.5.2 Executing batch applications
You use the cjexecjob command to start batch applications. You can use the following two methods to execute the
cjexecjob command:

1. Directly executing the cjexecjob command
If you do not use JP1/AJS, you can use this method to start a batch application.

4. Scheduling of Batch Applications

136

2. Defining the cjexecjob command as a JP1/AJS job, and executing from JP1/AJS
If you use JP1/AJS, you can use this method to start a batch application.

For details on the definition of JP1/AJS jobs when starting batch applications by using the method 2, see 2.13
Integrating with JP1/AJS. Start a batch server in advance when you want to execute a batch application from JP1/AJS.

The same points are to be considered when starting, ending and executing the batch applications which are considered
when the scheduling functionality is not used. For details, see 2.3.2 Executing batch applications.

4.5.3 Forced stopping of batch applications
You use the cjkilljob command for forced stopping of batch applications. If you use the scheduling functionality,
you specify a job ID in the cjkilljob command.

If a batch application execution request specified by a job ID is on standby status in a schedule queue, the request is
reserved for deletion. The batch application execution request, which is reserved for deletion, is deleted when the
request is removed from a schedule queue by using CTM.

If the batch application execution request specified by the job ID is running on a batch server, the application is
forcefully stopped.

You use the same method to forcefully stop batch applications and consider the same points when forcefully stopping
and executing batch applications as in the case of not using the scheduling functionality. For details, see 2.3.3
Forcefully stopping batch applications.

4.5.4 Displaying a list of batch application information
You can display a list of items such as the status of batch applications (running or standby) and the start time of
batch execution commands as the batch application information. This subsection describes the list display of the batch
application information.

(1) How to display a list of batch application information
To display a list of batch application information, directly execute the cjlistjob command, irrespective of whether
you are using JP1/AJS.

You can acquire the batch application information in the following units:

• Schedule groups specified in the command argument

• All schedule groups

In the argument of the cjlistjob command, you specify the schedule group name, to which the batch server (for
which you want to acquire the batch application information) belongs, or the -all option. You can specify multiple
schedule group names. If you specify the -all option, you can acquire the batch application information of all the
schedule groups that are used by the batch servers of the same machine.

(2) Processing for displaying a list of batch application information
If you execute the cjlistjob command, you can acquire information of the running batch applications in the
schedule group, specified in the argument or in batch.schedule.group.name key of usrconf.cfg
(option definition file for batch applications). The batch application information is output to the standard output.

The following table describes the batch application information that you can acquire.

Table 4‒4: Batch application information that you can acquire

Item in batch application information that can be
acquired Content

Schedule group name The name of a schedule group, in which the batch application execution
requests are distributed, is output.

4. Scheduling of Batch Applications

137

Item in batch application information that can be
acquired Content

Status of batch application running, waiting, or forceStopping is output. running, waiting,
and forceStopping indicate that the status of batch applications is
RUNNING, WAITING, and FORCESTOPPING respectively. For details on the
status of batch applications, see 4.5.1 State transition of batch applications
using the scheduling functionality.

Batch application name The class name of a batch application, specified in the cjexecjob command,
is output.

Root application information of the performance
analysis trace

The communication number of a root application of the performance analysis
trace is output.

You can check the status of batch applications by mapping with the root
application information output to the performance analysis trace file.

Execution time of the batch execution commands The time of the cjexecjob command execution is output in the following
format. Note that indicates a single byte space.

yyyy/mm/dd hh:mm:ss.ssssss
yyyy: Christian year, mm: Month, dd: Date, hh: Hour, mm: Minute, ss:
Second, ssssss: Microsecond

Standby start time, execution start time, and forced
stop reception time of batch applications

For every status of batch applications, the time at which the status of a batch
application starts is output with the following format. Note that indicates a
single byte space.

yyyy/mm/dd hh:mm:ss.ssssss
yyyy: Christian year, mm: Month, dd: Date, hh: Hour, mm: Minute, ss:
Second, ssssss: Microsecond

Job ID The job Id of a batch application is output.

Batch server name on which batch applications are
running

The name of the batch server, on which batch applications are running, is
output. When the status of a batch application is waiting, "-" is output.

If a batch application does not exist, nothing is output even if you execute the cjlistjob command. In this case,
the cjlistjob command ends successfully.

The following example describes the format and the output of the cjlistjob command. Note that indicates a
single byte space.

Output format of the cjlistjob command

Schedule-group-name State-of-batch-application Batch-application-name
Root-application-information-of-performance-analysis-trace Execution-time-of-
batch-execution-command Standby-start-time-,-execution-start-time-and-forced-
stop-reception-time-of-batch-application Job-ID Batch-server-name-on-which-
batch-application-is-running
Schedule-group-name State-of-batch-application Batch-application-name
Root-application-information-of-performance-analysis-trace Execution-time-of-
batch-execution-command Standby-start-time-,-execution-start-time-and-forced-
stop-reception-time-of-batch-application Job-ID Batch-server-name-on-which-
batch-application-is-running
:

Output example of the cjlistjob command

JOBGROUP running com.hitachi.mypackage.batchApp1 0x0000000000123456 2008/04/14
17:27:35.689012 2008/04/14 17:27:37.182777 HOGE MybatchServer1
JOBGROUP running com.hitachi.mypackage.batchApp2 0x00000000002345678 2008/04/14
17:45:20.123456 2008/04/14 19:21:56.271354 102 MybatchServer2
JOBGROUP running com.hitachi.mypackage.batchApp3 0x000000000034567890 2008/04/14
18:15:54.397890 2008/04/14 19:00:00.123447 #5HL390_G3CV7 MybatchServer3
JOBGROUP waitting com.hitachi.mypackage.batchApp4 0x000000000045678901 2008/04/14
18:30:24.125444 2008/04/14 18:30:25.006220 112345 -

This example shows that in the schedule group JOBGROUP, batch applications are running on
MybatchServer1, MybatchServer2, and MybatchServer3. Also, an execution request of the batch
application batchApp4 is on standby.

4. Scheduling of Batch Applications

138

4.5.5 Executing the commands used in batch applications
The same types of commands used in batch applications, status of batch servers and execution of commands are used
as in the case when a scheduling functionality is not used, except the points described below. The differences are:

• You can execute the cjexecjob command even when you are processing the cjexecjob command on a batch
server.

• When the status of a batch server is any one of the following, and if you execute the cjexecjob, cjkilljob,
or cjlistjob command, the KDJE55046-E message is output:

• When a batch server is starting

• When a batch server is stopping

• After the batch server is stopped

• Between the cjexecjob command and the batch server, you can set up a time until a timeout occurs between
the cjkilljob or cjlistjob command and CTM. Set up a timeout by using the
batch.request.timeout key in usrconf.cfg (option definition file for batch applications). For details
on how to set up a timeout, see 4.7(3) Settings of commands used in batch applications.

For the points other than these differences, see 2.3.6 Executing the commands used in batch application.

This subsection describes the countermeasures that you need to take in the case of an abnormal end during the
processing of a command used in a batch application, and the points to be considered when executing the commands.

(1) When a batch server ends abnormally while processing a command
When the cjexecjob, cjkilljob, or cjlistjob command is processing on a batch server, if the batch server
ends abnormally, the KDJE55021-E message is output. Confirm the status of the batch server and re-execute the
command.

(2) When a CTM daemon or a CTM regulator ends abnormally while processing a command
When the cjexecjob, cjkilljob, or cjlistjob command is processing, if the CTM daemon or the CTM
regulator ends abnormally, the KDJE55047-E message is output. This message is output if a process ends abnormally
while communicating with the CTM daemon or the CTM regulator, after acquiring the schedule group name from
Smart Agent. Confirm the status of the CTM daemon and the CTM regulator, and re-execute the command.

(3) Points to be considered when executing commands
The following points are to be considered when executing the commands:

• On a machine having multiple IP addresses, if an IP address is not specified in usrconf.cfg (option definition
file for batch applications) or in an environment variable, the IP address to which the ORB gateway connects is
automatically determined.

• If you use the scheduling functionality, you execute batch applications on the batch server to which CTM
distributes the applications. As a result, you cannot directly execute the cjexecjob command for batch servers.

• If you execute the cjkilljob command for a standby batch application, CTM reserves the batch application for
deletion. The batch application, which is reserved for deletion, is deleted when removed from the schedule queue.
In such cases, the batch application, which is reserved for deletion, remains in the schedule queue, so consider the
following points:

• You cannot use a job ID that duplicates with the batch application reserved for deletion.

• Due to execution of the cjexecjob command, if the number of batch application execution requests
exceeds the number that you can register in a schedule queue, the KDJE55060-E message is output and the
batch server ends abnormally.

• If you execute the cjkilljob command for a standby batch application, the cjexecjob command does not
end until the batch application is taken out from the schedule queue.

4. Scheduling of Batch Applications

139

• If no batch server exists, when you execute the cjexecjob, cjkilljob, or cjlistjob command, a
message is output and the command ends abnormally. An output message varies according to the specification of
the batch.ctm.enabled key in usrconf.cfg (option definition file for batch applications).

• If true is specified,
The KDJE55010-E or KDJE55046-E message is output.

• If false is specified,
The KDJE55010-E message is output.

• When executing the cjexecjob command, the command might end abnormally depending on the specification
in the Easy Setup definition file and usrconf.cfg (option definition file for batch applications).

• If true is specified in the ejbserver.ctm.enabled parameter of the Easy Setup definition file, and if
false is specified using the batch.ctm.enabled key in usrconf.cfg (option definition file for
batch applications), the KDJE55067-E message is output, and the command ends abnormally.

• If false is specified in the ejbserver.ctm.enabled parameter of the Easy Setup definition file, and if
true is specified using the batch.ctm.enabled key in usrconf.cfg (option definition file for batch
applications), the KDJE55046-E message is output, and the command ends abnormally.

• When executing the cjlistjob command, if false is specified in the ejbserver.ctm.enabled
parameter of the Easy Setup definition file, and if true is specified using the batch.ctm.enabled key in
usrconf.cfg (option definition file for batch applications), the command is not received on the batch server. In
such cases, the batch application information is not output.

4. Scheduling of Batch Applications

140

4.6 Migrating to the environment using the scheduling
functionality

This section describes how to migrate from an environment where the scheduling functionality is not used. When
migrating an execution environment of batch applications, from an environment that does not use the scheduling
functionality to an environment that uses the scheduling functionality, you cannot use the environment in use, as it is.

In the environment which is in use, you must edit the definition files. The following table describes the files, for which
you need to edit the settings, when migrating the environment.

Table 4‒5: Files for which you need to edit the settings, when migrating the environment

File Main key to be edited Settings Required
or optional

usrconf.properties (User
property file for batch servers)

ejbserver.ctm.enabled true Required

vbroker.agent.enableLocator true# Optional

ejbserver.batch.schedule.group
.name

A schedule group name Optional

ejbserver.batch.queue.length The length of the created schedule
queue

Optional

usrconf.cfg (option
definition file for batch
applications)

batch.ctm.enabled true Required

batch.schedule.group.name A schedule group name Optional

batch.request.timeout A timeout between a batch
execution command and a batch
sever, and a timeout between a
batch forced stop command or a
batch list display command and
CTM

Optional

batch.vbroker.agent.port A port number being used by Smart
Agent

Optional

Legend:
Required: You must specify
Optional: Specify as and when required

Note: This section describes the main keys to be edited when migrating to an environment that uses the scheduling functionality. For
details on the usrconf.properties file (user property file for batch servers) and the keys, see 3.3 usrconf.properties (user
property file for batch servers) in the uCosminexus Application Server Definition Reference Guide.

For details on the usrconf.cfg file (option definition file for batch applications) and the keys, see 3.6 usrconf.cfg (option
definition file for batch applications) in the uCosminexus Application Server Definition Reference Guide.

#: false is specified by default. However, when integrating with CTM, true is specified automatically.

For details on the parameters to be edited in respective files, see the uCosminexus Application Server Definition
Reference Guide.

4. Scheduling of Batch Applications

141

4.7 Settings of the execution environment
You are required to perform the following settings for using the scheduling functionality:

• Batch servers

• CTM

• Commands to be used with batch applications

This section describes the respective settings. Note that you also need to specify the definition of the batch application
execution functionality for using the scheduling functionality. For details on the definition of the batch application
execution functionality, see 2.3.10 Settings of the execution environment (Setting batch servers).

(1) Settings of batch servers
You execute the batch server settings in the Easy Setup definition file. You specify the definitions of the scheduling
functionality in the <configuration> tag of logical J2EE servers (j2ee-server) in the Easy Setup definition
file.

The following table describes the definitions of the scheduling functionality in the Easy Setup definition file.

Table 4‒6: Definitions of scheduling functionality in Easy Setup definition file

Item Parameter to be specified Settings Required or
optional

Settings for using
the scheduling
functionality

ejbserver.ctm.enabl
ed

Specify whether the scheduling functionality is to be used.
true is specified by default. If you specify ctm-tier in the
tier-type tag, true is automatically specified when
building a system.

Optional

Settings for using
Smart Agent

vbroker.agent.enabl
eLocator

Specify that Smart Agent is to be used. false is specified by
default. However, true is automatically specified when
integrating with CTM. Therefore, you need not change the
parameter value to true.

Optional

Settings for the
schedule group
name

ejbserver.batch.sch
edule.group.name

Specify the schedule group name of a batch server group
managed by CTM. JOBGROUP is specified by default.

CTM schedules the execution of batch applications for
respective schedule groups.

If you divide a schedule queue by using multiple schedule
groups, specify the schedule group names for respective batch
servers.

Optional

Settings for the
length of a schedule
queue

ejbserver.batch.que
ue.length

Specify the length of a schedule queue that is created by CTM.
50 is specified by default.

Optional

Legend:
Optional: Specify as and when required

Note: This section describes the main parameters to be specified when using the scheduling functionality. When using the scheduling
functionality, you can also optionally specify the following parameters starting with ejbserver.ctm:

• ejbserver.ctm.ActivateTimeOut
• ejbserver.ctm.CTMDomain
• ejbserver.ctm.CTMID
• ejbserver.ctm.CTMMyHost
• ejbserver.ctm.DeactivateTimeOut

For details on the Easy Setup definition file and parameters, see the uCosminexus Application Server Definition Reference Guide.

4. Scheduling of Batch Applications

142

(2) Settings of CTM
You execute the CTM settings with the Easy Setup definition file. You specify the definition of the scheduling
functionality in the configuration tag of the logical CTM (componenttransaction-monitor) in the Easy
Setup definition file. The following parameters are to be specified. Specify these parameters without fail.

• ctm.Agent
When using the scheduling functionality, you use the ORB gateway functionality of the CTM regulator. Specify
the value of parameter as 1 without fail.

For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(3) Settings for the commands to be used with batch applications
You execute the settings of the commands to be used with batch applications, in usrconf.cfg (option definition
file for batch applications). You specify command options in usrconf.cfg for definitions of the scheduling
functionality.

The following table describes the definitions of the scheduling functionality in usrconf.cfg.

Table 4‒7: Definitions of the scheduling functionality in usrconf.cfg

Item Key to be specified Settings
Required

or
optional

Settings for using the
scheduling functionality

batch.ctm.enabled Specify whether the scheduling functionality is to be
used. Specify the parameter value as true without
fail.

Required

Settings for the schedule
group name

batch.schedule.group.n
ame

Specify the schedule group name of a batch server
group managed by CTM. JOBGROUP is specified by
default.

CTM schedules the execution of batch applications
for respective schedule groups.

Optional

Setting the maximum time
for connecting to CTM

batch.request.timeout Specify a timeout between the batch execution
command and a batch sever, and a timeout between
the batch forced stop command or the batch list
display command and CTM. 0 (no timeout) is
specified by default.

Optional

Settings for a port number
used by Smart Agent

batch.vbroker.agent.po
rt

Specify a port number used by Smart Agent. 14000
is specified by default.

Optional

Legend:
Required: You must specify
Optional: Specify as and when required

Note: This section describes the main keys to be specified when using the scheduling functionality. For details on usrconf.cfg
(option definition file for batch applications) and the keys, see 3.6 usrconf.cfg (option definition file for batch applications) in the
uCosminexus Application Server Definition Reference Guide.

4. Scheduling of Batch Applications

143

4.8 Points to be considered when using the scheduling
functionality

You consider the following points when using the scheduling functionality:

• With the CTM daemon used for the scheduling functionality, do not perform load balancing of the requests from
clients for J2EE servers.

• Do not perform load balancing of requests for batch servers between multiple CTM daemons. Specify different
schedule group names on the batch servers connected to multiple CTM daemons.
If you execute the load balancing of requests for batch servers between multiple CTM daemons, though the batch
application execution requests are accepted, the following problems might occur:

• You cannot view the list of batch application information (you cannot acquire the batch application
information).

• Forced stopping of batch applications fails.

• If you execute the batch forced stop command while passing a batch application execution request from a schedule
queue to a batch server, the KDJE55016-W message is output and you cannot forcefully stop the batch
application. In such cases, you execute the batch list display command and confirm the status of the batch
application. If the batch application state is running, re-execute the batch forced stop command.

• If a timeout occurs between CTM and a batch server, the KDJE55061-E message is output. In such cases, CTM
does not manage the batch application execution requests and the running batch applications. In such cases, when
performing the list display or forced stopping for the running batch applications, execute commands by specifying
batch server names. Execute the batch list display command after changing the settings for not using the
scheduling functionality. To specify the settings for not using the scheduling functionality, specify false in the
batch.ctm.enabled key in usrconf.cfg (option definition file for batch applications).
You can identify the batch server names specified in commands, in the message (KDJE55066-I) for the batch
execution commands.

• Before a batch application starts on a batch server, if the batch execution command is terminated using Ctrl+C or
a timeout, the KDJE55007-E message is output to a message log, and an attempt to start the batch application
fails. In such cases, the KDJE40062-E message might be output to the standard error output.

4. Scheduling of Batch Applications

144

5 Inheriting Session Information
Between J2EE Servers
This chapter describes the overview, prerequisites, and memory estimation of the
session failover functionality, which is functionality for inheriting session information
between J2EE servers. This chapter also describes the types of the session failover
functionality and the differences between the types.

145

5.1 Organization of this chapter
Use the session failover functionality for inheriting session information between J2EE servers. This section gives an
overview of the session failover functionality, types of the session failover functionality, and the differences between
the types.

The following table describes the organization of this chapter.

Table 5‒1: Organization of this chapter (the session failover functionality)

Category Title Reference location

Description Overview of the session failover functionality 5.2

Session management by using a global session 5.3

Prerequisites 5.4

Types of the session failover functionality and differences between the types 5.5

A functionality that you can set when using the session failover functionality 5.6

A functionality executed when using the session failover functionality 5.7

Estimating the memory 5.8

Notes Notes 5.9

There is no specific description on the Implementation, setup, and operations for this functionality.

5. Inheriting Session Information Between J2EE Servers

146

5.2 Overview of the session failover functionality
The session failover functionality inherits objects registered in the HttpSession object on a J2EE server when a
software failure, hardware failure, or network failure occurs on a J2EE sever or a Web server.

If you use the session failover functionality and if a failure occurs on a specific J2EE server in a system, you can
continue the operations on another J2EE server by inheriting session information before failure. Thus, you can
improve the availability of the system.

The following subsections describe the benefits of using the session failover functionality and the types of
functionality.

5.2.1 Benefits of using the session failover functionality
The HttpSession object is retained in the memory of a J2EE server. The HttpSession object is lost if a failure
occurs on the J2EE server. In the case of a system configured from multiple J2EE servers, if a failure occurs on one
J2EE server, requests are transferred to another J2EE server. However, because the HttpSession object is lost, the
information registered in the HttpSession object (Session information) is not inherited. As a result, the session is
treated as a new session in a J2EE application on the J2EE server to which the requests are transferred. For example, if
a failure occurs on a window after user authentication processing, you must login again.

If you use the session failover functionality, you can manage the session information and if a failure occurs on a J2EE
server, you can pass the managed information to another J2EE server. As a result, even when a failure occurs on a
J2EE server and requests are transferred to another J2EE server, you can continue operations in the state before
failure.

You can also inherit the login state on other J2EE servers by using the session failover functionality even if you are
using integrated user management.

The following figure shows the flow of processing when using and not using the session failover functionality.

5. Inheriting Session Information Between J2EE Servers

147

Figure 5‒1: Flow of processing when using and not using the session failover functionality

If a failure occurs on a server when you are not using the session failover functionality, you must login again because
the session information is lost.

If you use the session failover functionality, session information is inherited between servers, and hence you can
continue the processing without noticing a failure on a server when performing user operations in a browser.

5.2.2 Types of session failover functionality
The following are the two types of the session failover functionality depending on the storage location of session
information:

• The database session failover functionality
This functionality stores the session information in a database and manages the information.
For details on the overview of the database session failover functionality, see 5.5.1 Overview of the database
session failover functionality.

5. Inheriting Session Information Between J2EE Servers

148

For details on the application procedure, flow of processing, and settings, see 6. Database session failover
functionality.

• The EADs session failover functionality
This functionality stores the session information in the memory area of an EADs server and manages it.
For details on the overview of the EADs session failover functionality, see 5.5.2 Overview of the EADs session
failover functionality.
For details on the application procedure, flow of processing, and settings, see 7. EADs session failover
functionality.

5. Inheriting Session Information Between J2EE Servers

149

5.3 Session management using a global session
This section describes the global session information managed by using the session failover functionality. This section
also describes the conditions and precautions for the attributes of HTTP sessions, which are inherited as the global
session information.

5.3.1 Global session information
With the session failover functionality, a J2EE server can inherit the information of the objects registered in the
HttpSession object on another J2EE server.

Invoke a session that you can inherit and use between multiple J2EE servers as a global session. An HTTP session is
lost if a failure occurs on the J2EE server, which handles that session. On the other hand, because a global session is
managed by a process (a database or EADs server) other than the J2EE server, it is not lost even if a failure occurs on
the J2EE server. As a result, if a failure occurs on one J2EE server, you can create an HTTP session on another J2EE
server and inherit the global session information.

If you are using a global session, the information of the HttpSession object that is inherited on another J2EE
server, is called the global session information.

For details on the scope of the HTTP session and global session, see the following figure.

Figure 5‒2: Scope of HTTP session and global session

With the session failover functionality, because the global session information is inherited when a failure occurs on a
J2EE server, you can continue operations in the state before the failure occurrence without reporting an error to the
user.

5.3.2 Information included in the global session information
If you use the database session failover functionality, the global session information is stored in records of the session
information storage table created in a database. When the global session information is stored, one record is assigned
to each HTTP session.

On the other hand, if you use the EADs session failover functionality, the global session information is stored in a
session information cache on the EADs server.

5. Inheriting Session Information Between J2EE Servers

150

The information described in the following table is included in the global session information.

Table 5‒2: Information included in the global session information

No. Replication target Explanation

1 Session ID A session ID that manages the global session information.

2 HTTP session attribute information Information that converts the objects of an attribute name and
attribute value into serialized byte arrays for the attributes
registered in an HTTP session and all the associated attributes.

3 Creation time of an HTTP session The time of creating an HTTP session. When inheriting a global
session, the creation time of an HTTP session before inheritance
is used as is.

4 Expiration date of an HTTP session An expiration date set in an HTTP session.

5 Last access time The time when requests using an HTTP session are sent for the
last time.

6 Identifier of J2EE server which owns HTTP session A server ID of the J2EE server that creates or inherites an HTTP
session.

Reference note

• Database tables used in the database session failover functionality include an application information table that stores
the setting information of Web applications, a session information storage table that stores the global session
information, and a blank record information table that manages unused records in the session information storage table.

• The cache of an EADs server used in an EADs session failover includes a session information cache that stores the
global session information and an application information cache that stores the setting information of Web applications.

5.3.3 HTTP session attributes that are inherited as global session
information

This subsection describes the following items related to the HTTP session attributes that can be inherited when a
failure occurs.

• Conditions for the HTTP session attributes that can be inherited

• Objects supported as target for inheriting

• Can or cannot inherit the session information depending on object contents

• Notes on serialize processing when inheriting HTTP session attributes

• Notes on deserialize processing when inheriting HTTP session attributes

(1) Conditions for the HTTP session attributes that can be inherited
In the session failover functionality, serialization of objects occurs in update processing of the global session
information and deserialization of objects occurs in inherit processing. Hence, attributes to be registered in an HTTP
session must satisfy the following condition:

• It is an object of serializable class that has implemented the java.io.Serializable interface.

(2) Objects supported as targets for inheriting
With the session failover functionality, the following objects of serializable classes are supported as targets for
inheriting:

• Objects of the classes provided by a J2EE application.

• Objects of the classes provided on J2SE.

5. Inheriting Session Information Between J2EE Servers

151

However, with inheritance processing, it is not checked whether an object of a serializable class, which is registered in
an HTTP session, is supported by the session failover functionality.

(3) Conditions for inheriting the session information depending on object contents
The following table describes whether you can or cannot inherit the session information depending on the contents of
objects registered in an HTTP session.

Table 5‒3: Conditions for inheriting the session information depending on the contents of objects registered
in an HTTP session

No.

Contents of objects registered in an
HTTP session

Can or cannot inherit the session information Storing global
session information

Implementation
status of the

java.io.Serializable
interface

Serialization
successful/failed

1 The
java.io.Serial
izable interface
implemented

Serialization
successful

Can be inherited. Information after
serialization is stored
in a database or on an
EADs server.

2 Serialization failed Cannot be inherited because HTTP sessions
containing attributes, which failed in serialization,
are not targeted for inheriting a global session.

The KDJE34318-E
or KDJE34411-E
message is output
and the global
session information
is not stored in a
database or an EADs
server.

After completing
request processing
the next time, the
global session
information is stored
in a database or on an
EADs server when
objects registered in
an HTTP session
become serializable.

3 The
java.io.Serial
izable interface
not implemented

(Cannot be
serialized)

Cannot be inherited because attributes that cannot be
serialized cannot be targeted for inheriting the global
session.

If there are objects
that cannot be
serialized, the
KDJE34317-W or
KDJE34410-W
message is output
and the global
session information
that is created with
the attributes
excluding attributes
that cannot be
serialized, is stored in
a database or on an
EADs server.

(4) Notes on serialize processing when inheriting HTTP session attributes
Notes on serialize processing are as follows:

5. Inheriting Session Information Between J2EE Servers

152

(a) Impact of serialize processing on performance

The serialize processing is executed not only for the objects targeted for inheriting but also for all the objects that are
referenced from the objects targeted for inheriting. Hence, if you register a class containing information, which need
not be inherited, in an HTTP session, performance might deteriorate.

(b) When the java.lang.OutOfMemoryError error occurs

In the serialize processing, data after serialization is temporarily created exceeding the number of HttpSession
objects set in the application. As a result, if you register huge objects in an HTTP session, the
java.lang.OutOfMemoryError error might occur while creating the global session information.

(c) When serialization fails and its measures

In the following cases, the KDJE34317-W, KDJE34318-E, KDJE34410-W, or KDJE34411-E message is output
and serialization fails.

• If objects referenced from the objects registered in an HTTP session (objects of serializable classes) include the
objects for which classes other than serializable classes are implemented.

• If the writeObject (java.io.OutputStream out) method is implemented in objects and if an exception
occurs when serializing.

If serialization fails, processing for updating and inheriting the global session information is not executed. To execute
the processing, you must take one of the following actions:

• Cancel the registration of objects that failed in serialization, in an HTTP session.

• Change the objects that failed in serialization and eliminate the cause of failure.

(5) Notes on deserialize processing when inheriting HTTP session attributes
Deserialization fails in the following cases:

• If you add changes that cause failure in deserialization in a Web application and if the Web application is different
than in the case of serialization.

• If the readObject (java.io.OutputStream out) method is implemented in objects and if an exception
occurs when deserializing.

If deserialization of session information fails when receiving a request or in the processing of inheriting global session
information when starting a Web application, global session information and session information is deleted, and
KDJE34326-E or KDJE34413-E is output. Because inheriting of the session fails, the request is processed in the
absence of an HTTP session.

5. Inheriting Session Information Between J2EE Servers

153

5.4 Prerequisites
This section describes the prerequisites for using the session failover functionality.

5.4.1 Prerequisite configuration
If you want to use the session failover functionality, a system configuration that uses a load balancer and distributes
requests on multiple J2EE servers, is a prerequisite. Moreover, it is necessary to deploy a database or an EADs server
for storing HTTP session information that is created on each J2EE server.

The following figure shows the prerequisite configuration for using the database session failover functionality or the
EADs session failover functionality.

Figure 5‒3: Prerequisite configuration for the session failover functionality

• Load balancer
For using the session failover functionality, use of a load balancer is a prerequisite.
If you are using the load balancer of a redirector, you cannot use the session failover functionality. If you
concurrently use the session failover functionality and load balancer of a redirector, the following problems occur:

• You cannot balance a load of the J2EE server itself with a load balancer.

• You cannot send a health check of the load balancer to any J2EE server. Even when a failure occurs on a J2EE
server, redirector transfers requests to the normal J2EE server. As a result, you cannot detect the failure on the
J2EE server with the load balancer.

5. Inheriting Session Information Between J2EE Servers

154

Reference note
Distributing a request with a load balancer

Requests are distributed with a load balancer. This distributes the load, achieving stable operations of the system
and improving processing performance.

The load balancing performed by using a load balancer has the advantage that the load related to the load balancing
processing is not applied to the Web server and J2EE server. Methods for the request distribution vary according to
the load balancer.

The following figure shows an example of distributing requests by using a load balancer.

Figure 5‒4: Example of request distribution by using a load balancer

• The J2EE server or Web server
For using the session failover functionality, arrange one or more J2EE servers and Web servers in one system. We
recommend that you arrange two or more servers in the preparation for a J2EE server failure.

• EADs client
When using the EADs session failover functionality, an EADs client is required on the J2EE server for operating
data on the EADs sever from a J2EE server. The following table describes the software required for an EADs
client.

Table 5‒4: Software required for an EADs client

Category Product name

EADs Client Elastic Application Data store Client for Application Server 02-00

• Database
When using the database session failover functionality, a database is required as a storage location of session
information. The following table describes mapping of the databases, which you can use as a storage destination
of session information, JDBC drivers, and resource adapters.

Table 5‒5: Mapping of databases, JDBC drivers, and resource adapters which you can use

Database JDBC driver Resource adapter#

HiRDB HiRDB Type4 JDBC Driver DBConnector_HiRDB_Type4_CP.rar

Oracle Oracle JDBC Thin Driver DBConnector_Oracle_CP.rar

DBConnector_CP_ClusterPool_Root.rar

DBConnector_Oracle_CP_ClusterPool_Member.rar

DB Connector is the resource adapter used in the database session failover functionality. For details on the settings required for
DB Connector used in the database session failover functionality, see 6.9 DB Connector Settings.

5. Inheriting Session Information Between J2EE Servers

155

For details on the system configuration for using the database session failover functionality, see 3.10.1
Configuration that uses a database (the database session failover functionality) in the uCosminexus Application
Server System Design Guide.
If the configuration that uses the database session failover functionality satisfies the conditions described here, you
need not redesign from the system configuration. You can use the database session failover functionality if you
implement the functionality settings and perform parameter tuning.

• EADs server
When using the EADs session failover functionality, an EADs server, which you can use to store session
information, is required. Use the EADs server used in the EADs session failover functionality only in the EADs
session failover functionality. You can also improve availability by increasing the number of EADs servers. A set
of multiple EADs servers is called an EADs cluster.
The following table describes the software required for EADs server.

Table 5‒6: Software required for an EADs server

Category Product name

EADs server Elastic Application Data store for Application Server 02-00

For details on the system configuration for using the EADs session failover functionality, see 3.10.2 Configuration
in which EADs server is placed on a different machine from the J2EE server (the EADs session failover
functionality) or 3.10.3 Configuration in which the EADs server is placed on the same machine as the J2EE server
(the EADs session failover functionality) in the uCosminexus Application Server System Design Guide.
Note that you cannot use an EADs application in the EADs session failover environment.

5.4.2 Prerequisite settings
This subsection describes the prerequisite settings for using the session failover functionality.

(1) Common prerequisite settings of the session failover functionality
The following settings are required when using the database session failover functionality and EADs session failover
functionality.

• Adding a server ID to a session ID by using the server ID addition functionality of HttpSession
This functionality adds a server ID to a session ID of HTTPSession. This functionality must be enabled if you
want to use the database session failover functionality (disabling integrity mode) or EADs session failover
functionality. Set different server IDs for each replicated J2EE server.
If you disable the server ID addition functionality of HttpSession, the KDJE34371-E or KDJE34404-E error
message is output to the message log when starting the Web application, and the Web application fails to start. If
you do not set a different server ID for each replicated J2EE server, global session information might be inherited
on an unintended J2EE server and the integrity of global session information might be lost.
For details on the functionality of adding server ID to session ID of HttpSession, see 2.7.6 Adding server ID to
session ID and Cookie in the uCosminexus Application Server Web Container Functionality Guide.

• Setting sticky of an HTTP session
To use the session failover functionality in the environment used by the load balancer, you must set sticky for the
HTTP session.
If you do not set sticky for the HTTP session, distribution destination of the requests that retain HTTP session is
not fixed. As a result, an HTTP session is inherited every time you receive a request that retains an HTTP session,
and this might result in the performance deterioration.

• Setting the host time
For using the session failover functionality, set the same time on each host, on which the J2EE servers in the
system run.
Information such as the creation time and last access time of an HTTP session is included in the session
information to be stored in a database or on an EADs server. If the time set on each host is different, the
information that is different from the setting time of local host is included in the session information. As a result,
if you inherit a session, problems might occur when controlling the HTTP session.

5. Inheriting Session Information Between J2EE Servers

156

(2) Prerequisite settings of the database session failover functionality
The following settings are required when using the database session failover functionality.

• Deleting invalid session IDs retained by the Web client
This functionality deletes the information of HTTP Cookie, which is retained in the Web client when disabling an
HTTP session, and inhibits sending of a session ID to disabled HTTP sessions. For using the database session
failover functionality, you must enable this functionality.
If you have disabled deletion of HTTP Cookie that indicates the session ID of an HTTP session, the
KDJE34339-E error message is output to the message log when starting a Web application, and the Web
application fails to start. For details on deleting HTTP Cookie that indicates the session ID of an HTTP session,
see 2.7.4 Deleting invalid session IDs retained by a Web client in the uCosminexus Application Server Web
Container Functionality Guide.

• Specifying the upper limit of the number of HttpSession objects
This functionality sets the upper limit of the number of a valid HttpSession object. Set this functionality
when enabling the integrity mode.
If you have set to cancel the Web application start process in the case of failure in the negotiation processing that
is executed when an application starts a, you must set a valid value (1 or above) as an upper limit If you have not
specified the upper limit of the number of HttpSession objects, the KDJE34303-E error message is output to
the message log when starting an application, and the application fails to start.
However, if you have set to continue the Web application start process in the case of failure in the negotiation
process, setting the upper limit of the number of HttpSession objects is optional. You can also specify -1
(unlimited) as the upper limit. If you set -1 (unlimited) as the upper limit of the number of HTTPSession objects
or if you specify a value greater than the number of records in the session information storage table of the
database, the operation performed when the number of HttpSession objects exceeds the number of records in
the session information storage table is as follows:

When an integrity mode is disabled (optional)
The corresponding HTTP sessions reduce and request processing continues.

When an integrity mode is enabled
The KDJE34380-E error message is output to the message log and corresponding HTTP session is not
created.

For details on settings of the upper limit of the number of HttpSession objects, see 2.7.5 Setting upper limit of
the number of HttpSession objects in the uCosminexus Application Server Web Container Functionality Guide.
For details on negotiation processing, see 6.4.1 Processing when starting the application.
For details on integrity mode, see 5.5.1(4) Operation mode of the database session failover functionality.
For details on reduction of HTTP sessions when an integrity mode is disabled, see 5.7.3 Reducing an HTTP
session.

• Setting default pending queues and pending queues in the Web application unit, and pending queues in the
URL group unit
If the functionality for controlling the number of concurrently executed threads in an Web application unit is
enabled, and if vacancies in the default pending queue, pending queues in the Web application unit, and pending
queues in the URL group unit become insufficient, specify whether the 503 error is to be returned to the client, in
the webserver.dbsfo.thread_control_queue.enabled parameter in the Easy Setup definition file.
Note that by default the 503 error is returned to the client.
If you set not to return the 503 error to client, set a sufficiently large value in the pending queue size.
If you set to return the 503 error to client, do not perform the following HTTP session updates on the error page
specified in web.xml.

• Creating an HTTP session
If the Web application creates an HTTP session, the
com.hitachi.software.web.dbsfo.SessionOperationException exception is thrown at the
invocation source of the getSession method in the javax.servlet.http.HttpServletRequest
interface and an HTTP session is not created.

• Changing the expiration date of an HTTP session (invoking the setMaxInactiveInterval method in
the javax.servlet.http.HttpSession interface)

5. Inheriting Session Information Between J2EE Servers

157

If the Web application changes the expiration date of an HTTP session, the expiration date of the global
session on the database does not change. If the global session is inherited, the expiration date returns to the
state before change.

• Changing the attribute information of the HTTP session
If the Web application changes the HTTP session attribute information, the global session information on the
database does not change. If the global session is inherited, the attribute information returns to the state before
change.

• Disabling an HTTP session (invoking the invalidate method in the
javax.servlet.http.HttpSession interface)
If theWweb application invokes the invalidate method in the
javax.servlet.http.HttpSession interface, the
com.hitachi.software.web.dbsfo.SessionOperationException exception is thrown.

• The user-specified namespace functionality
When using the database session failover functionality, the system considers that the look up of J2EE resources in
optional names that are given by using the user-specified name space functionality, is already performed.
Hence, if you have specified the following parameter in the properties of the J2EE server and are using the round-
robin search functionality, you cannot use the database session failover functionality.
java.naming.factory.initial=com.hitachi.software.ejb.jndi.GroupContextFactor
y
If you have specified this parameter, the KDJE34305-E error message is output to the message log when starting
a Web application, and the Web application fails to start.
If round-robin search is required in the J2EE application to be operated on the J2EE server, do not specify the
classes delegated to implement the InitialContextFactory, in the properties of the J2EE server. You must
specify the classes in an argument when generating InitialContext for each application. For details on the
round-robin search functionality, see 2.7 Searching CORBA naming services by using round-robin policy in the
uCosminexus Application Server Common Container Functionality Guide.

5. Inheriting Session Information Between J2EE Servers

158

5.5 Types of session failover functionality and the
differences between the types

The database session failover functionality and EADs session failover functionality are used for inheriting session
information between J2EE servers. This section describes an overview of each functionality and the differences
between the functionalities.

5.5.1 Overview of the database session failover functionality
The database session failover functionality manages session information in a database and inherits session information
between J2EE servers when a failure occurs. When a failure occurs, you can re-create the session based on the session
information stored in the database and can continue the normal operations.

This subsection describes an overview and the operation mode of the processing of the database session failover
functionality.

(1) Procedure for storing the session information
If you use the database session failover functionality and a session creation processing is generated by a request, the
processing is extended and the session information is stored in a database.

The following figure shows the flow of storing session information.

Figure 5‒5: Flow of storing session information (the database session failover functionality)

No. corresponds to the numbers in the figure.

1. If the Web server receives a request requiring the creation of a session, from the client, a session is created on the
J2EE server.

2. The session information is created for the session.

3. The session information is stored in the database.

If a failure occurs in the Web server 1 or J2EE server 1, the session information stored in the database is inherited by
the web server 2 or J2EE server 2, and you can continue the operations in the state before failure.

(2) Flow of processing when a failure occurs on a Web server or a J2EE server
If a failure occurs on a Web server or a J2EE server, you can re-create a session on another J2EE server based on the
session information stored in the database and continue the normal operations.

5. Inheriting Session Information Between J2EE Servers

159

The following figure shows the flow of processing when a failure occurs on a Web server or a J2EE server:

Figure 5‒6: Flow of processing when a failure occurs on a Web server or a J2EE server (the database
session failover functionality)

1. If a failure occurs on the Web server 1, the load balancer transfers the request to the Web server 2.

2. Because the session associated with the request does not exist when processing the request on the J2EE server at
the transfer destination, it inherits the session information from the database.

3. The session is re-created.

The session is successfully inherited and you can continue operations in the state before failure.

When you restart the J2EE server 1 and Web server 1 recovering from failure, the requests are again sent to the Web
server 1.

(3) Flow of processing when a failure occurs in a database
If a failure occurs in a database, you can continue operations by operating only the session information on the J2EE
server. When the database recovers from the failure and you can access the database in session operations after that,
the functionality updates the database with the session information operated on the J2EE server.

As a result, the client can continue operations without recognizing the database failure.

(4) Operation mode of the database session failover functionality
If multiple requests with the same session ID for the global session information that is stored in the database are
concurrently sent, you can concurrently process multiple requests by default. Thus, you can control the degradation of
the processing performance caused by the use of the database session failover functionality.

However, a prerequisite of this operation is that processing such as concurrently updating global session information
of the same session ID from multiple replicated J2EE servers should not occur. If global session information with the
same session ID is updated from multiple J2EE servers, consistency of global session information might be lost. You
must enable a mode for maintaining consistency of global session information in the systems in which such cases
cannot be allowed.

The mode that maintains consistency of global session information is called Integrity mode. If you enable this mode, a
lock is set to the database whenever you update a global session. If multiple requests with the same session ID are
concurrently sent, the requests are serially processed and the global session information does not become inconsistent.
However, request processing performance might be affected because multiple requests cannot be concurrently
executed and the lock set up and release processing occurs whenever global session information is stored.

As a result, when using the database session failover functionality, you need to examine the mode to perform the
operations depending on the purpose and characteristics of the system.

The following table describes the main differences depending on enabling or disabling the integrity mode.

5. Inheriting Session Information Between J2EE Servers

160

Table 5‒7: Main differences depending on enabling or disabling the integrity mode

Items to be compared
Integrity mode

Disabled Enabled

Characteristics of the appropriate system Suitable for a system in which performance
is highly important.

Suitable for a system in which assured
inheriting of session information is required
even if performance reduces.

Request processing performance Performance is excellent because you can
concurrently process multiple requests with
the same session ID.

Performance degrades because it is
necessary to serially process the requests.

Integrity of global session information Integrity is not maintained if you
concurrently update global session
information with the same session ID.

Maintains the integrity.

Behavior when a failure occurs in the
database

Uses session information on the J2EE
server and continues the processing
(reduced operations of the database session
failover functionality).

Outputs an error message and stops the
processing.

The following figure shows the flow of request processing in each mode:

Figure 5‒7: Flow of request processing when the integrity mode is disabled (default setting)

If integrity mode is disabled, a database lock is acquired and released when creating global session information in the
database by extending HTTP session creation processing. However, a lock is not acquired with session acquisition
processing after you commit once. The database lock acquisition processing and release processing are not executed
with the subsequent update processing of global session information.

5. Inheriting Session Information Between J2EE Servers

161

Figure 5‒8: Flow of request processing when an integrity mode is enabled

If an integrity mode is enabled, a database lock is acquired and released when creating global session information in
the database by extending the HTTP session creation processing. In addition, a lock is acquired again in session
acquisition processing after you commit once. Thus, even if a failure occurs on a J2EE server or in a database during
execution of a Web application after creating the HTTP session, inconsistency does not occur in the database
processing. With the subsequent update processing of global session information, the processing is implemented for
acquiring a database lock whenever updating the global session informaiton and unlocking after the updation is
complete.

For details on the operations when locking global session information, see 6.4.5(1) Invocation result of lock
acquisition processing when acquiring lock.

The functionality that you can use vary depending on whether the setting of an integrity mode is enabled or disabled.

5.5.2 Overview of the EADs session failover functionality
The EADs session failover functionality manages session information on an EADs server and inherits session
information between J2EE servers when a failure occurs. When a failure occurs, you can re-create the session based
on the session information stored in the EADs server and can continue the normal operations.

However, if the global session information of the same session ID is concurrently updated from multiple J2EE servers,
consistency of global session information might be lost.

This subsection describes an overview of the processing of the EADs session failover functionality.

5. Inheriting Session Information Between J2EE Servers

162

(1) Procedure for storing session information
If you use the EADs session failover functionality and a session creation processing occurs, the processing is extended
and the session information is stored on an EADs server. The EADs server for storing the session information is
decided for each Web application.

For details on the EADs, server see the Elastic Application Data store User Guide.

The following figure shows the flow of storing the session information.

Figure 5‒9: Flow of storing the session information (the EADs session failover functionality)

No. corresponds to the numbers in the figure.

1. If the Web server receives a request requiring creation of a session from the client, a session is created on the J2EE
server.

2. Session information is created for the session.

3. The session information is stored in the session information cache on the EADs server 1 (the session information
storage destination server) through the EADs client.

4. The EADs session failover functionality automatically copies the session information stored in the session
information cache on EADs server 1 to the session information cache on the EADs server 2 (the session
information copy destination server) in the cluster.

Hereafter, the EADs server on which the session information is stored is called a session information storage
destination server. The EADs server, onto which the session information stored on the session information storage
destination server is copied, is called a session information copy destination server.

(2) Flow of processing when a failure occurs on a Web server or a J2EE server
If a failure occurs on a Web server or a J2EE server, you can re-create the session on another J2EE server on the basis
of the session information stored in the session information cache on the EADs server and continue the normal
operations.

The following figure shows the processing when a failure occurs on a J2EE server.

5. Inheriting Session Information Between J2EE Servers

163

Figure 5‒10: Processing when a failure occurs on a J2EE server (the EADs session failover functionality)

1. If a failure occurs on J2EE server 1, load balancer transfers the request to J2EE server 2.

2. Because the session associated with the request does not exist when processing the request on the J2EE server at
the transfer destination, the J2EE server inherits the session information from the EADs server 1 (the session
information storage destination server).

3. The session is recreated.

The session is successfully inherited and you can continue the operations in the state before failure.

When you restart the J2EE server 1 and J2EE server 1 recovers from failure, the requests are again sent to J2EE server
1.

(3) Flow of processing when a failure occurs on an EADs server
If a failure occurs on an EADs server, the EADs functionality automatically disconnects the EADs server on which the
failure occurred, from the cluster. If the EADs server on which the failure occurred, is a session information storage
destination server, a normal EADs server in the cluster (the session information copy destination server) switches as a
session information storage destination server. Because the EADs Sever connected from the J2EE server also
automatically switches with the switching of the session information storage destination server, you can continue the
operation as is.

If the EADs server, on which the failure occurred is a session information copy destination server, you can connect to
the session information storage destination EADs server from the J2EE server and thus continue the operation as is.

The following figure shows the processing when a failure occurs on the session information storage destination EADs
server.

5. Inheriting Session Information Between J2EE Servers

164

Figure 5‒11: Flow of processing when a failure occurs on an EADs server

5.5.3 Differences between session failover functionality
This subsection describes the differences between the database session failover functionality and EADs session
failover functionality. When there are differences in the functionality when an integrity mode in the database session
failover functionality is enabled and disabled, the differences are described separately.

(1) Comparing superiority of session failover functionality
The following table describes a comparison of the superiority of the database session failover functionality (when an
integrity mode is enabled or disabled) and EADs session failover functionality. This table describes a comparison of
the superiority when an integrity mode of the database session failover functionality is disabled.

5. Inheriting Session Information Between J2EE Servers

165

Table 5‒8: Comparing superiority of the session failover functionality

No. Item to be compared

The database
session failover
functionality (as
per the setting of
integrity mode)

The EADs
session
failover

functionali
ty

Causes

Enabl
ed

Disabl
ed

1 Request processing
performance

W -- B In the case of the EADs session failover functionality,
global session information is stored in memory because
the memory can be accessed faster than disk.

2 Availability of system B -- W Because availability of the EADs session failover
functionality depends on the number of EADs servers
(multiplicity), if you compare the same number of
servers, there is a lower possibility of loss of global
session information in the database session failover
functionality that manages global session information in a
database than the EADs session failover functionality that
manages global session information in memory on the
EADs server.

3 Integrity of global session
information

B -- -- Integrity of global session information is ensured only
when an integrity mode of the database session failover
functionality is enabled.

Legend:
B: Better than the standard value in functional requirements.
W: Worse than the standard value in functional requirements.
--: Standard value

(2) Available session failover functionality
The following table describes the available session failover functionality.

Table 5‒9: Available session failover functionality

No. Functionality Overview

Usage status in
the database

session failover
functionality (as
per the setting of

an integrity
mode)

Usage
status in
the EADs
session
failover

functionalit
y

Reference
location

Enable
d

Disabl
ed

1 The session failover
inhibition functionality

This functionality prevents degradation of
request processing performance by
inhibiting the session failover
functionality in th ecase of requests that
do not use an HTTP session

Y Y Y 5.6.1

2 Defining refer-only requests
of an HTTP session

This functionality prevents degradation of
the request processing performance by
accessing the database or the EADs
server by not letting update the global
session information in the case of refer-
only requests of an HTTP session

N Y Y 5.6.2

3 Concurrent execution of the
same session ID

This functionality reduces impact on the
request processing performance by
concurrently executing requests of the
same session ID

N Y Y 5.7.1

5. Inheriting Session Information Between J2EE Servers

166

No. Functionality Overview

Usage status in
the database

session failover
functionality (as
per the setting of

an integrity
mode)

Usage
status in
the EADs
session
failover

functionalit
y

Reference
location

Enable
d

Disabl
ed

4 Inheriting global session
information when stating a
Web application

This functionality automatically inherits
global session information when stating a
Web application

N Y Y 5.7.2

5 Reducing an HTTP session This functionality continues request
processing only with HTTP sessions on
the J2EE server when a failure occurs in
the database or on the EADs server that
stores global session information

N Y Y 5.7.3

6 Estimating the size of HTTP
session attribute information

This functionality estimates the size when
storing the attributes registered in an
HTTP session, in a database or on an
EADs server

Y Y Y 5.8.2

7 Deleting global session
information

This functionality deletes global session
information in a database or on an EADs
server by using an SQL file or a
command.

N Y Y 6.10.3, 7.8.1

Legend:
Y: Can be used.
N: Cannot be used.

For details on operations, functionality that you can use, and the precautions to be taken when you disable an integrity
mode of the database session failover functionality, see 6.3 Selecting a mode in which performance is highly important
(disabling an integrity mode).

For details on settings of an integrity mode, see 6.6 J2EE server settings.

(3) Operations in the case of a failure occurrence
Because storage locations of session information are different in the database session failover functionality and EADs
session failover functionality, the operations when a failure occurs are different. The following table describes the
operations of each functionality in the case of a failure occurrence.

Table 5‒10: Operations in the case of failure occurrence

No. Failure occurrence
location

Operation of the database session failover
functionality (as per the setting of an integrity mode) Operation of the EADs session

failover functionality
Enabled Disabled

1 J2EE server You can resume the operations from the state immediately before the failure, on the J2EE server on
which failure has not occurred.

2 Session
information
storage
destination
(database or
EADs server)

Contin
uing
operati
ons

You cannot continue
operations.

You can reduce and
continue operations.

You cannot continue operations#.

You can reduce and continue the
operations even if all EADs servers,
on which the session information is
stored (including the session
information copy destination EADs
server), are down.

Resumi
ng

You can resume operations
from the state immediately

You can resume
operations from the state

If a failure occurs on all EADs
servers on the system, the session

5. Inheriting Session Information Between J2EE Servers

167

No. Failure occurrence
location

Operation of the database session failover
functionality (as per the setting of an integrity mode) Operation of the EADs session

failover functionality
Enabled Disabled

2 Session
information
storage
destination
(database or
EADs server)

operati
ons
after
recover
y

before the failure if you
interrupt the operations and
perform recovery.

immediately before the
failure if you interrupt the
operations and perform
recovery.

information is lost and hence you
cannot recover to the state before
the failure even if you interrupt the
operations and perform recovery.

#
Even if a failure occurs on an EADs server on which session information is stored, data is secured until the reducing number of
EADs servers reaches the number of multiplicity defined in EADs minus one. For details on multiplicity, see the Elastic
Application Data store User Guide.

5. Inheriting Session Information Between J2EE Servers

168

5.6 Functionality that you can set when using the
session failover functionality

This section describes the following functionality that you can set when using the session failover functionality. You
can use the functionality as and when required.

• Inhibiting session failover

• Defining refer-only requests of an HTTP session#

You cannot use the functionality that defines refer-only requests of an HTTP session when you enable the
integrity mode of the database session failover functionality.

5.6.1 Inhibiting the session failover functionality
If you enable the session failover functionality and receive requests for which an HTTP session is acquired, processing
such as accessing a database or an EADs server, and serializing the HTTP session are executed. If the same session ID
as the request for which an HTTP session is acquired is sent even for the requests related to the static contents or
contents that do not require an HTTP session, the session failover functionality operates and performs unnecessary
processing such as accessing a database or an EADs server or serializing the HTTP sessions.

If you set a URl pattern that inhibits the session failover functionality in a URI or an extension, the processing of the
session failover functionality for the requests of the set URL patterns is inhibited. Hence, unnecessary processing does
not occur and processing performance improves. Thus, if you have set the session failover functionality, the
functionality which inhibits the session failover only for the specific URL patterns is called session failover
inhibitionion functionality.

The following figure shows the differences in the executed processing when a session failover inhibitionion
functionality is enabled or disabled with an example of the database session failover functionality. In the case of the
EADs session failover functionality, the global session information storage destination (the session information
storage table) shown in the figure changes to the session information cache on the EADs server.

5. Inheriting Session Information Between J2EE Servers

169

Figure 5‒12: Differences in the processing when the session failover inhibition functionality is enabled or
disabled (the database session failover functionality)

You can use the session failover inhibitionion functionality not only for improving performance but also for the
following purposes:

The database session failover functionality when you enable the integrity mode, executes the exclusive processing for
requests of the same session ID. For example, if you invoke a servlet or JSP, for which the processing continues for a
long time, such as the servlet or JSP that you must make resident for performing the PUSH delivery, from one of the
HTML frames, all the requests sent from the same frame are not executed until processing of that servlet or JSP is
complete. This happens because all the requests sent from one frame are the requests that send the same session ID.

For preventing such situations, you must inhibit the session failover functionality for particular requests that do not
use the HTTP session.

The following figure shows the differences in processing executed when you enable or disable the session failover
inhibitionion functionality when using the database session failover functionality by enabling the integrity mode. Note
that the request 1 and request 2 in the figure send the same session ID.

5. Inheriting Session Information Between J2EE Servers

170

Figure 5‒13: Differences in the processing when the session failover inhibitionion functionality is enabled
or disabled (the database session failover functionality)

You can set enabling or disabling of the session failover inhibitionion functionality in the J2EE server unit or Web
application unit.

For details on the settings in J2EE server unit when using the database session failover functionality, see 6.6 J2EE
server settings and for details on settings in the Web application unit, see 6.5 Definitions in cosminexus.xml.

For details on the settings in J2EE server unit when using the EADs session failover functionality, see 7.5 J2EE server
settings and for details on settings in the Web application unit, see 7.4 Definitions in cosminexus.xml.

■ Notes

This subsection describes the precautions to be taken when using the session failover inhibitionion functionality.

• If you invoke the getSession() method or getSession(boolean create) method in the
javax.servlet.http.HttpServletRequest interface during a request processing for which the session
failover inhibitionion functionality has disabled the session failover functionality, the
com.hitachi.software.web.dbsfo.SessionOperationException exception or

5. Inheriting Session Information Between J2EE Servers

171

com.hitachi.software.web.eadssfo.SessionOperationException exception is thrown. As a
result, you cannot apply the session failover inhibition functionality for the requests that invoke this method.
For details on the com.hitachi.software.web.dbsfo.SessionOperationException exception
and com.hitachi.software.web.eadssfo.SessionOperationException exception, see 3.1
Exception classes in the uCosminexus Application Server API Reference Guide.

• As the requests for which the session failover inhibitionion functionality has disabled the session failover
functionality are not the requests that use an HTTP session, the access time of the HTTP session is not updated.
Impacts of the functionality are:

• The getLastAccessedTime() method in the javax.servlet.http.HttpSession interface
returns the time of executing the request that used the previous HTTP session.

• If the difference between the current time and the access time of an HTTP session exceeds the timeout time,
the HTTP session times out. As a result, after creating an HTTP session, if you continue sending only the
requests for which the session failover functionality is disabled, the HTTP session might time out.

• With JSP, an HTTP session is implicitly created by default. As a result, when applying the session failover
inhibitionion functionality to JSP for which an HTTP session is not required, you must explicitly use session
attributes of the page directive and set such that the HTTP session is not created.

• If you use the FORM authentication as a login authentication functionality provided by the Web container, an
HTTP session is implicitly created. If you use the FORM authentication in the requests for which the session
failover inhibitionion functionality has disabled the session failover functionality, you cannot create an HTTP
session. As a result, com.hitachi.software.web.dbsfo.SessionOperationException exception
or com.hitachi.software.web.eadssfo.SessionOperationException exception occurs and
authentication is not performed. However, if you have already created a session, exception does not occur and
authentication is performed even for a request for which the session failover inhibitionion functionality has
disabled the session failover functionality.

5.6.2 Defining refer-only requests of an HTTP session
The functionality for defining refer-only requests in HTTP session sets the URL patterns of the requests that are only
to be referenced and not to be updated (refer-only requests), and thus deters the serialization of HTTP sessions or
access to the database or EADs server, for requests of those URL patterns.

You can use this functionality when you disable the database session failover functionality and in the case of the
EADs session failover functionality.

The following figure shows the flow of processing when you define refer-only requests for using the EADs session
failover functionality. In the case of the database session failover functionality, the global session information storage
destination in the figure changes to the session information storage table in the database.

5. Inheriting Session Information Between J2EE Servers

172

Figure 5‒14: Processing of refer-only requests (the EADs session failover functionality)

With processing of refer-only requests, a response is returned after executing a Web application that refers to the
session. Processing of the global session information updation that is executed in the case of the requests that update
the HTTP session, indicated by the dotted line arrows in the figure is not executed.

Note that you can use the session failover inhibition functionality in the case of the requests, which not only update
but also not refer to the HTTP session. The requests corresponding to both the refer-only requests and the requests
targeted for session failover inhibition functionality, processing are executed as the requests targeted for the session
failover inhibitionion functionality. For details on the session failover inhibitionion functionality, see 5.6.1 Inhibiting
the session failover functionality.

You can set the functionality of defining refer-only requests of an HTTP session in the J2EE server unit or Web
application unit.

For details on the settings in the J2EE server unit in the case of the database session failover functionality, see 6.6
J2EE server settings.

For details on the settings in the J2EE server unit in the case of the EADs session failover functionality, see 7.5 J2EE
server settings and for details on settings in the Web application unit, see 7.4 Definitions in cosminexus.xml.

■ Notes

This subsection describes the precautions to be taken when defining refer-only requests of an HTTP session.

• You cannot disable an HTTP session with a refer-only request. If you invoke the invalidate() method in the
javax.servlet.http.HttpSession interface that disables an HTTP session with a refer-only request,
com.hitachi.software.web.dbsfo.SessionOperationException exception or
com.hitachi.software.web.eadssfo.SessionOperationException exception is thrown in a
Web application.

• Even in the case of refer-only requests, for the first request for which an HTTP session does not exist, an HTTP
session is created, updated, and deleted. At that time, the global session information in the database or on the
EADs server is also updated.
For the second and subsequent requests for which an HTTP session does not exist, the global session information
in the database or on the EADs sever is not updated even if the Web application updates the HTTP session. As a
result, when inheriting the global session, attribute information of the HTTP session returns to the state before
update.

• If you change the expiration date of an HTTP session (invoking the setMaxInactiveInterval() method in
the javax.servlet.http.HttpSession interface) in refer-only request processing, an expiration date of a

5. Inheriting Session Information Between J2EE Servers

173

global session does not change. As a result, when inheriting the global session, the expiration date of the session
returns to the state before change.

• If you change the attribute information of an HTTP session in refer-only request processing, global session
information does not change. As a result, when inheriting the global session, attribute information of the HTTP
session returns to the state before change. Changes refer to the following changes in attribute information:

• Registering a new attribute information in an HTTP session or replacing the registered session attributes by
using the setAttribute() method or the putValue() method in the
javax.servlet.http.HttpSession interface.

• Deleting the attribute information registered in an HTTP session by using the removeAttribute()
method or the removeValue() method in the javax.servlet.http.HttpSession interface.

• Changing the contents of attribute information registered in an HTTP session.

The following is an example of changing the contents of attribute information of a session:

java.util.Hashtable table = (java.util.Hashtable)session.getAttribute("attr1");
table.put("key1", "value1");

In this example, session is a variable that stores HttpSession objects. The java.util.Hashtable
object is registered as attribute information of a session in HttpSession objects with the attr1 name in another
request.

5. Inheriting Session Information Between J2EE Servers

174

5.7 Functionality executed when using a session failover
functionality

This section describes the functionality that are automatically executed when using the session failover functionality.
The functionality described here are applied when you disable the integrity mode of the database session failover
functionality and in the case of the EADs session failover functionality. This functionality are not applied when the
integrity mode in the database session failover functionality is enabled.

5.7.1 Concurrent execution with the same session ID
The functionality of concurrent execution with the same session ID concurrently executes multiple requests when
multiple requests of the same session ID are sent to multiple replicated J2EE servers or to one J2EE server. Global
session information is not locked/released because multiple request processing are concurrently executed.

■ Notes

If you want to concurrently execute multiple requests processing by using concurrent execution of the same session
ID, processing order of Servlet API issued by the web application will be uncertain.

For the same HTTP session, if you concurrently send a request that registers attributes (the setAttribute()
method in the javax.servlet.http.HttpSession interface) and a request that disables the session (the
invalidate() method in the javax.servlet.http.HttpSession interface), or if you send duplicate
requests that disable a session, the attributes for HTTP sessions, which are already disabled, might be registered or
disabled depending on the processing order of Servlet API. In this case, Servlet API throws
java.lang.IllegalStateException exception. As a result, implement web applications by considering that
Servlet API throws java.lang.IllegalStateException exception.

5.7.2 Inheriting global session information when starting a web
application

If you stop a web application or a J2EE server, or if a J2EE server becomes process down due to a failure, an HTTP
session on the J2EE server is destroyed. The functionality that inherits global session information when restarting a
web application is called Inhibiting global session information when starting a web application.

The following is the procedure of inheriting global session information when restarting a web application after a J2EE
server is down due to a failure.

1. Obtain the list of session IDs of the global session information to be inherited from a database or an EADs server.
Obtain the list of session IDs of the global session information to be inherited from a database or an EADs server
when starting a web application.

2. Execute the processing of inheriting the global session information.
When you obtain the list of session IDs, output KDJE34344-I or KDJE34429-I message to the message log
and start the processing of inheriting global session information.
With processing of inheriting the global session information, inherit the global session information of the session
IDs included in the list one by one from the database or the EADs server to the J2EE server.
If you cannot inherit the global session information, a message corresponding to the cause of the failure is output.

3. End the processing of inheriting.
When the processing of inheriting all global session information present in the list of session IDs completes,
KDJE34349-I or KDJE34430-I message is output to the message log.

Note that global session information is not inherited in the case of the conditions described in the following table.

5. Inheriting Session Information Between J2EE Servers

175

Table 5‒11: Conditions and operations when global session information is not inherited

No. Condition Operation

1 If you cannot obtain the list of session IDs of the global session
information to be inherited from a database or an EADs server
due to a network failure.

KDJE34345-W or KDJE34431-W# message is output to
the message log and processing of inheriting the global
session information ends.

2 If the global session information to be inherited already exists
on the J2EE server (the information is already inherited on the
J2EE server by receiving a request).

KDJE34347-I or KDJE34432-I message is output to
the message log and processing of inheriting the global
session information is skipped.

3 If the global session information to be inherited is already
inherited on another replicated J2EE server by using the
database session failover functionality.

KDJE34348-I message is output to the message log and
processing of inheriting the global session information is
skipped.

4 If you cannot obtain the global session information from a
database or an EADs server due to a network failure.

KDJE34346-W or KDJE34434-W# message is output to
the message log and processing of inheriting the global
session information is skipped.

5 If you could not inherit because the number of HTTP sessions
on the J2EE server reached the upper limit set by using the
functionality of specifying the upper limit of number of
HttpSession objects.

KDJE34370-W or KDJE34435-W# message is output to
the message log and processing of inheriting the global
session information is skipped.

6 If deserialization of the global session information fails. KDJE34328-E or KDJE34436-E message is output to
the message log and global session information is not
inherited and deleted from the database or the EADs
server.

7 If you are using the database session failover functionality and
you change the server ID set by the functionality of adding
server ID of HttpSession.

KDJE34348-I message is output to the message log and
processing of inheriting the global session information is
skipped.

If this message is output, again start the web application by eliminating the cause of the failure or the global session information
continues to remain in the session information cache on the EADs server until a request is received and inherited. For details on the
procedure of deleting remaining global session information, see 7.8.1 Deleting global session information on an EADs server
(session information storage destination server).

5.7.3 Reducing an HTTP session
Reducing HTTP session is functionality that continues request processing by using HTTP session on the J2EE server
without interrupting the processing, if a failure described in the following table occurs in a database or on an EADs
server.

Table 5‒12: Contents of failures for which HTTP session reduction works

Failure occurrence location Used functionality Failure contents

Database The database session failover
functionality

• Blank records do not exist in the database when creating global
session information

• A database failure occurs while operating global session
information

EADs server The EADs session failover
functionality

• Fails to update data on the EADs server

• Successfully updates data on the EADs server, but fails to
update data on all other replicated EADs servers

The table describes operations when reducing an HTTP session due to a failure, for each used functionality.

• The database session failover functionality

5. Inheriting Session Information Between J2EE Servers

176

Table 5‒13: Operations when reducing an HTTP session (in the case of the database session failover
functionality)

Occurred failure Reduction operation
Message output

at the time of
reduction#

Timing for releasing
reduction

Inheriting a reduced
HTTP session

Blank records do not
exist in the database
when creating global
session information.

Creates only HTTP
sessions on the J2EE
server.

KDJE34367-W If there are blank records in
the database in subsequent
HTTP session operations
and if you could create
global session information.

Not inherited because
global session information
does not exist in the
database.

A database failure
occurs while operating
global session
information.

Operates only HTTP
sessions on the J2EE
server.

KDJE34368-W If you successfully access
the database in subsequent
HTTP session operations.

• If global session
information does not
exist in the database:
Not inherited.

• If global session
information exists in
the database: Old
global session
information might be
inherited.

#
This message is output for each occurred failure when a session is reduced for the first time. Thereafter, the message is not
output after all reduced sessions disappear until you perform session reduction once again. Note that KDJE34369-I
message is output if all reduced HTTP sessions disappear.

• The EADs session failover functionality

Table 5‒14: Operations when reducing an HTTP session (in the case of the EADs session failover
functionality)

Occurred failure Reduction operation
Message output

at the time of
reduction#1

Timing for releasing
reduction

Inheriting a released
HTTP session

Fails to update data on
global session
information storage
destination server.

Operates only HTTP
sessions on the J2EE
server.

KDJE34427-W If you could create or update
the global session
information on the global
session information storage
destination server and all
copy destination servers in
subsequent HTTP session
operations.

• When creating global
session information:
Not inherited because
global session
information does not
exist on the global
session information
storage destination
server.

• When updating global
session information:
Old global session
information on the
global session
information storage
destination server is
inherited.

Successfully updates
data on the global
session information
storage destination
server, but fails to
update data on the
copy destination
server.

Operates only HTTP
sessions on the J2EE
server.

KDJE34420-W • When creating global
session information:
Not inherited, if global
session information
does not exist on the
global session
information storage
destination server. #2

• When updating global
session information:

5. Inheriting Session Information Between J2EE Servers

177

Occurred failure Reduction operation
Message output

at the time of
reduction#1

Timing for releasing
reduction

Inheriting a released
HTTP session

Successfully updates
data on the global
session information
storage destination
server, but fails to
update data on the
copy destination
server.

Operates only HTTP
sessions on the J2EE
server.

KDJE34420-W If you could create or update
the global session
information on the global
session information storage
destination server and all
copy destination servers in
subsequent HTTP session
operations.

Old global session
information on the
global session
information storage
destination server
might be inherited#3.

#1
This message is output for each occurred failure when a session is reduced for the first time. Thereafter, the message is not
output after all reduced sessions disappear until you perform session reduction once again. Note that KDJE34428-I
message is output if all reduced HTTP sessions disappear.

#2
If a failure occurs on the global session information storage destination server and if a copy destination server, on which
global session information is not created, is set as the global session information storage destination server, thestate changes
to the state where global session information does not exist.

#3
If a failure occurs on the global session information storage destination server and if a copy destination server, on which
global session information is not updated, is set as the global session information storage destination server, the state
changes to the state where old global session information exists.

5. Inheriting Session Information Between J2EE Servers

178

5.8 Estimating memory
If you want to use the session failover functionality, estimate the following memory sizes as a preparation for
environment setup.

• The database session failover functionality

• Memory used in serialize processing

• Size of HTTP session attribute information

• Table capacity of database

• The EADs session failover functionality

• Memory used in serialize processing

• Size of HTTP session attribute information

• Memory of EADs server

This section describes how to estimate the size of each memory.

5.8.1 Estimating memory used in serialize processing
With the session failover functionality, memory is temporarily allocated for serializing HTTP session attribute
information when completing the request processing. You must consider the memory space required for this memory
allocation when performing JavaVM tuning.

In tuning, estimate the increased amount of memory (maximum increased amount) considering the case if memory
allocation processing duplicates in multiple threads. The formulas for calculating maximum increased amount of
memory used for request processing, in web application unit and in J2EE server unit, are as follows:

Maximum increased amount of memory used in web application unit (bytes)=
Max Threads#1 x maximum size of HTTP session attribute information#2 + 1024#3

Maximum increased amount of memory used in J2EE server unit (bytes)=
Total maximum increased amount of memory used in web application unit=
Maximum increased amount of memory used in web application 1
+ Maximum increased amount of memory used in web application 2
:
+ Maximum increased amount of memory used in web application n

#1
If you have set the number of concurrent execution threads in web application unit, indicates the value of Max Threads in web
application unit. If you have not set the number of concurrent execution threads in web application unit, indicates the value of
Max Threads in web container unit.

#2
Indicates the value estimated by using the functionality of estimating size of HTTP session attribute information.

#3
It is maximum size of the global session information excluding the HTTP session attribute information. Include +1024 in the
calculation formula only when using the EADs session failover functionality. You need not add it when using the database
session failover functionality.

Execute JavaVM tuning on the basis of the value obtained with the above formulas.

5.8.2 Estimating size of HTTP session attribute information
Maximum size of attribute information of an HTTP session is required when allocating disk space of the database
used by the session failover functionality or allocating memory space of EADs server used by the EADs session
failover functionality.

It is difficult to calculate and obtain the size of attribute information of an HTTP session from the contents of a web
application. Therefore, the functionality for estimating size of HTTP session attribute information is provided with

5. Inheriting Session Information Between J2EE Servers

179

Application Server. If you use the functionality for estimating the size of HTTP session attribute information, you can
actually execute the application and output the size information of the attributes registered in the HTTP session, after
serialization, as a message.

This subsection describes the functionality for estimating HTTP session attribute information size and calculation
formulas used to obtain the size of attribute information of an HTTP session.

This subsection also describes memory allocation when inhibiting a full garbage collection.

(1) Functionality for estimating HTTP session attribute information size
If you use the functionality for estimating HTTP session attribute information size, you can estimate the optimum
maximum size of attribute information of an HTTP session by referring to the output size information.

This functionality is used for estimation. Because global information is not stored to a database or an EADs server,
database or EADs server are not connected.

! Important note

Do not use the functionality for estimating HTTP session attribute information size in operating environment. If you use this
functionality, the database session failover functionality or EADs session failover functionality become disabled and the
global session information is not replicated to the database or the EADs server.

(a) Settings for enabling the functionality for estimating HTTP session attribute information size

Specify on in the following parameters in configuration tag of logical J2EE server (j2ee-server) in Easy Setup
definition file.

For the database session failover functionality
webserver.dbsfo.check_size.mode parameter

For the EADs session failover functionality
webserver.eadssfo.check_size.mode parameter

For details on Easy Setup definition file and parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

If you enable the functionality for estimating HTTP session attribute information size, all other settings related to the
database session failover functionality or EADs session failover functionality become disabled.

If you use the functionality for estimating HTTP session attribute information size, the functionality of specifying
upper limit of the number of HttpSession objects and functionality of deleting HTTP Cookie that indicates session
ID of HTTP session described in 5.4.2 Prerequisite settings operate even if you disable it.

(b) Messages reporting the size of attribute information of an HTTP session

If you enable the functionality for estimating HTTP session attribute information size, the following messages
reporting the attribute information of an HTTP session are output at Error level when the request processing of web
application completes.

Table 5‒15: Messages reporting the size of attribute information of an HTTP session

Message ID Contents Contents included in size information

KDJE34330-I or
KDJE34416-I

Size of HTTP session attribution
information created for each request

Total size of the result of serializing the attributes registered in
the HTTP session (Total of the sizes output by KDJE34331-I
or KDJE34417-I)#1

KDJE34331-I or
KDJE34417-I

Size of one attribute for which
serialization is completed

• Size of the result of serializing attribute name (byte array)

• Size of the result of serializing attribute value (byte array)

• Magic number written by
java.io.ObjectOutputStream class#2

• Size of version information data written by
java.io.ObjectOutputStream class#2

5. Inheriting Session Information Between J2EE Servers

180

#1
If attributes are not registered in an HTTP session, it is the size of a magic number written by
java.io.ObjectOutputStream class and version information data written by java.io.ObjectOutputStream
class.

#2
It is included only in the size of attribute, which is serialized first.

The following is an example of message output when you create HTTP session attribute information from an HTTP
session in which the registered attributes are "Attribute 1" and "Attribute 2" (in the case of the database session
failover functionality).

KDJE34331-I An attribute was serialized. (J2EE application = App01, context root = /test,
request URL = http://host01/test/TestServlet, attribute name = Attribute1, class name =
app.MyObject1, size(bytes) = 36, HTTP session ID = 01234567aaaabbbbccccddddeeeeffff)
KDJE34331-I An attribute was serialized. (J2EE application = App01, context root = /test,
request URL = http://host01/test/TestServlet, attribute name = Attribute2, class name =
app.MyObject2, size(bytes) = 25, HTTP session ID = 01234567aaaabbbbccccddddeeeeffff)
KDJE34330-I The attribute information was created. (J2EE application = App01, context root
= /test, request URL = http://host01/test/TestServlet, size(byte) = 61, HTTP session ID =
01234567aaaabbbbccccddddeeeeffff)

(2) Calculation formulas for determining the size of HTTP session attribute information
You can determine the maximum size of HTTP session attribute information by using the following formulas.

Here, the size is calculated by considering that serialization is performed for one HTTP session by using one
java.io.ObjectOutputStream object.

Maximum size of HTTP session attribute information (bytes)=
Total number of bytes of byte arrays that have serialized attribute names of all attributes
registered in the HTTP session
+ Total number of bytes of byte arrays that have serialized attribute values of all
attributes registered in the HTTP session

If you register n objects as attributes in an HTTP session and name the registered attributes from attribute 1 to attribute
n, you can determine the maximum size of HTTP session attribute information with the following formula:

Maximum size of HTTP session attribute information (bytes)=
Number of bytes of byte array that has serialized attribute name of attribute 1
+ Number of bytes of byte array that has serialized attribute value of attribute 1
+ Number of bytes of byte array that has serialized attribute name of attribute 2
+ Number of bytes of byte array that has serialized attribute value of attribute 2
: (omitted)
+ Number of bytes of byte array that has serialized attribute name of attribute n
+ Number of bytes of byte array that has serialized attribute value of attribute n

You can determine the number of bytes of a byte array that has a serialized attribute name and the number of bytes of
a byte array that has a serialized attribute value by the following formulas:

Number of bytes of a byte array that has serialized attribute name

Number of bytes of a byte array that has serialized attribute name=
Number of characters in attribute name x 3 x 1.2

Number of bytes of a byte array that has serialized attribute value

Number of bytes of a byte array that has serialized attribute value=
Total number of bytes of the values of all fields, possessed by the objects of attribute
value x 1.2

5. Inheriting Session Information Between J2EE Servers

181

You can determine the number of bytes of field values by using the following formulas:

• In the case of String objects: Number of characters 3

• In the case of other objects: Total number of bytes of the values of all fields, possessed by the object

• In the case of primitive type: Number of bytes required for storing each primitive type

! Important note
The value, which you can calculate by using the calculation formula that determines the size of HTTP session
attribute information, is a roughly estimated value. If you want to determine the conclusive maximum value of
HTTP session attribute information, use the functionality for estimating HTTP session attribute information size.

(3) Allocating memory when inhibiting a full garbage collection
Because the size of the HTTP session attribute information is the size after serialization, the size is different from the
size of attribute objects, which are registered in the HTTP session, in the memory. As a result, you must separately
estimate the memory size of external heap area required for inhibiting a full garbage collection and set an appropriate
value.

For details on inhibiting a full garbage collection, see 8. Inhibiting Full Garbage Collection by Using Explicit Memory
Management .

5.8.3 Estimating disk space of a database
With the database session failover functionality, create three types of tables (application information table, session
information table, and blank record information table). Estimate the size of disk space to be allocated by referring to
the of each database on the basis of table and index information. Note that this information might change in version
upgrade or modification patch of Component Container.

(1) Table information
This subsection describes the elements of column for each table and number of rows.

• Application information table

The following table describes the elements of a column.

Table 5‒16: Elements of a column in application information table

No. Column name HiRDB type ORACLE type Index existence
status

1 APP_INFO_KEY CHAR(128) PRIMARY KEY VARCHAR2(128) PRIMARY KEY None

2 APP_INFO_VALUE CHAR(512) VARCHAR2(512) None

The number of rows is as follows:

13 + Number of definitions of refer-only requests

• Session information storage table
The following table describes the elements of a column.

Table 5‒17: Elements of a column in session information storage table

No. Column name HiRDB type ORACLE type Index existence
status

1 RECORD_NO INTEGER PRIMARY KEY NUMBER(10,0) PRIMARY KEY None

2 SESSIONID CHAR(112) VARCHAR2(112) Yes

3 CREATION_TIME DECIMAL(23,0) NUMBER(23,0) None

4 MAX_INACTIVE_INTERVAL INTEGER NUMBER(10,0) None

5. Inheriting Session Information Between J2EE Servers

182

No. Column name HiRDB type ORACLE type Index existence
status

5 THIS_ACCESSED_TIME DECIMAL(23,0) NUMBER(23,0) None

6 ATTRIBUTES_DATA BINARY (maximum size of
HTTP session attribute
information)#1

BLOB#2 None

7 STATUS CHAR(16) VARCHAR2(16) None

8 OWNER_SERVER CHAR(512) VARCHAR2(512) None

9 NEXT_FREE_RECORD_NO INTEGER NUMBER(10,0) None

#1
For details on estimating size of HTTP session attribute information, see 5.8.2 Estimating size of HTTP session attribute
information.

#2
Maximum size of the values stored in BLOB column is the maximum size of HTTP session attribute information. For details
on estimating size of HTTP session attribute information, see 5.8.2 Estimating size of HTTP session attribute information.

The number of rows is as follows:

• If you set to continue the start processing of web applications when negotiation processing fails
Number of global session information stored in the database

• If you set to discontinue the start processing of web applications when negotiation processing fails
Maximum value of the number of HttpSession objects

• Blank record information table

The following table describes the elements of a column.

Table 5‒18: Elements of a column in blank record information table

No. Column name HiRDB type ORACLE type Index existence
status

1 BLOCK_NO INTEGER PRIMARY KEY NUMBER(10,0) PRIMARY KEY None

2 FREE_RECORD_NO INTEGER NUMBER(10,0) None

The number of rows is fixed to 10.

(2) Index information
The following table describes the index of session information storage table.

No. Index name UNIQUE attribute Column name

1 Application-identifier_SESSIONS_IDX None SESSIONID

Reference note
If you use HiRDB, performance might be improved if you satisfy the following conditions:

• The tables and indexes used in the database session failover functionality are placed in RD area#.

• Global buffer is set for each table and index placed in RD area.

For details on design of RD area and global buffer, see the HiRDB Installation and Design Guide.

#
If you place tables and indexes in RD area, you must edit the SQL file.

5. Inheriting Session Information Between J2EE Servers

183

5.8.4 Estimating memory of an EADs server
With the EADs session failover functionality, use two caches (application information cache and session information
cache).

For estimating the memory size of an EADs server, number of data records, size of key and size of value are required.
This subsection describes how to calculate the data unit, and the size of the key and value to be stored in the
application information cache and session information cache used in the EADs session failover functionality.

For details on estimating memory of an EADs server, see the Elastic Application Data store User's Guide.

(1) Application information cache

Unit of data stored in cache
Store one data (application information) in application information cache for each web application.

Formula for estimating key size

Size (bytes) of key in application information cache
= (number of characters in application identifier 3 + 24) 1.2
= (128 3 + 24) 1.2

490

Formula for estimating value size

Size (bytes) of value in application information cache
= ((Number of characters in J2EE application name + Number of characters in context root
name
+ Number of characters in the URL pattern that inhibits EADs session failover functionality
+ Number of characters in the URL pattern of refer-only requests) 3
+ 20) 1.2

(2) Session information cache

Unit of data stored in cache
Store one data (session information) in session information cache for each session.

Formula for estimating key size

Size (bytes) of key in session information cache
= ((Number of characters in application identifier + Number of characters in session ID)
3 + 3) 1.2
=((128 + 112) 3 + 3) 1.2

870

Formula for estimating value size

Size (bytes) of value in session information cache
= Size of HTTP session attribute information + (Number of characters in J2EE server
identifier 3 + 68) 1.2
= Size of HTTP session attribute information + (64 3 + 68) 1.2
= Size of HTTP session attribute information + 312

For details on the size of HTTP session attribute information, see 5.8.2 Estimating size of HTTP session attribute information.

5. Inheriting Session Information Between J2EE Servers

184

5.9 Precautions
This section describes precautions to be taken when using the session failover functionality and executing an
application.

5.9.1 HTTP session that is implicitly created in JSP
Set not to implicitly create HttpSession objects with the processing that does not require session inheriting.

With the application for which you enabled the session failover functionality, global session information is created and
processing of updating global session information occurs even when creating an HTTP session without registering
attributes.

With JSP specifications, HttpSession objects are created by default. As a result, unnecessary processing might
increase memory usage and generate load due to communication with a database or an EADs server.

Use session attribute of page directive for performing settings related to creating HttpSession objects.

5.9.2 Processing considering that the same objects are registered in
different HTTP sessions

Global session information is created in HTTP session unit.

If you have shared the same objects as session information in different HttpSession objects, the objects are not
shared when inheriting the global session information. The objects are created as separate objects.

The following figure shows an example of inheriting when you have registered the same object in different
HttpSession objects.

Figure 5‒15: An example of inheriting when you have registered the same object in different HttpSession
objects.

In this figure, session information C of the same object is shared in HttpSession object 1 and HttpSession object 2 on
J2EE server 1. If a failure occurs on J2EE server 1 and the session information is inherited on J2EE server 2, the

5. Inheriting Session Information Between J2EE Servers

185

shared session information C is respectively created in HttpSession object 1 and HttpSession object 2 on J2EE server
2 as separate session information C-1 and session information C-2. Instances of session information C-1 and session
information C-2 differ, but the contents are same.

5.9.3 Handling authentication information when inheriting session
information

With Application Server, Form authentication, Basic authentication, and the authenticate/login/logout
method of the HttpServletRequest are used as login authentication functionality. If you use this login
authentication functionality in an application that uses the session failover functionality, the operations are as follows:

If you use Form authentication
If a failure occurs on the J2EE server and the session is to be inherited, you must once again perform
authentication with Form authentication even if the session is successfully inherited.

If you use Basic authentication
You can continuously access without once again performing Basic authentication regardless of whether the
session is to be inherited due to a failure on the J2EE server.

If you use the authenticate/login/logout method of the HttpServletRequest
If a failure occurs on the J2EE server and the session is to be inherited, you must once again perform
authentication with the method even if the session is successfully inherited.

For details on Basic authentication and Form authentication, see 6.2 User authentication of web container
depending on DD settings in the uCosminexus Application Server Security Management Guide.

5.9.4 Impact on servlet API
This subsection describes the following items as an impact on servlet API when using the session failover
functionality.

• Operating servlet API related to HttpSession objects after inheriting a session

• Communicating with a database or an EADs server by invoking a servlet API

(1) Operating servlet API related to HttpSession objects after inheriting a session
The following table describes the notes on servlet API related to HttpSession objects after inheriting a session.

Table 5‒19: Notes on servlet API related to HttpSession objects

No. API name Notes

1 getCreationTime() If an HttpSession object is created by inheriting, the information of the
HttpSession object before inheriting is inherited.

2 getLastAccessedTime()

3 getId() If an HttpSession object is created by inheriting, you can obtain the same ID
as the HttpSession object before inheriting.

4 isNew() Even if an HttpSession object is created by inheriting, return value true is not
returned.

The servlet AIPs that are not described in this table are not impacted when the session failover functionality is used.

(2) Communicating with a database or an EADs server by invoking a servlet API
If you implement the servlet APIs described in the following table, communication with a database or an EADs server
occurs as the extension of API invocation. As a result, performance is affected.

5. Inheriting Session Information Between J2EE Servers

186

Table 5‒20: Communication with a database or an EADs server

No. Class Method

1 javax.servlet.http.HttpServletRequest getSession()#1

2 javax.servlet.http.HttpServletRequest getSession(boolean create)#1

3 javax.servlet.http.HttpSession invalidate()#2

#1
Performance is affected only if you create new HttpSession object.

#2
Performance is affected only if you invoke the invalidate() method in an enabled the HttpSession object.

5. Inheriting Session Information Between J2EE Servers

187

6 Database session failover
functionality
This chapter describes the database session failover functionality.

189

6.1 Organization of this chapter
This section describes the database session failover functionality.

If you use this functionality, information of a session that is running on the application is stored in the database. If a
failure occurs on a Web server or a J2EE server, stored session information is passed to another J2EE server. As a
result, even if requests are transferred to another J2EE server when a failure occurs, you can continue operations in the
state before failure.

For details on the types, functionality differences, prerequisites, memory estimation, and notes related to the session
failover functionality, see 5. Inheriting session information between J2EE servers.

The following table describes the organization of this chapter.

Table 6‒1: Organization of this chapter (the database session failover functionality)

Category Title Reference location

Description Application procedure 6.2

Selecting a mode in which performance is important (disabling integrity mode) 6.3

Processing implemented in the database session failover functionality 6.4

Implementation Definitions in cosminexus.xml 6.5

Setup J2EE server settings 6.6

Web application settings 6.7

Database settings 6.8

DB Connector settings 6.9

Changing the settings related to the database session failover functionality 6.10

Deleting database tables 6.11

Notes Precautions to be taken when using the database session failover functionality 6.12

#
This functionality does not have any specific explanation in the Operation.

6. Database session failover functionality

190

6.2 Application procedures
This section describes preparations and various settings in environment setup required for using the database session
failover functionality. The following figure shows the application procedures for the database session failover
functionality.

Figure 6‒1: Application procedures (the database session failover functionality)

Start a J2EE application after implementing preparations and various settings in environment setup in accordance with
the application procedures shown in this figure.

(1) Preparing environment setup
The following table describes implementation contents and reference locations of the items to be implemented as
preparations of environment setup when using the database session failover functionality.

Table 6‒2: Implementation contents and reference locations of items to be implemented as preparations of
environment setup when using the database session failover functionality

Imple
mentat

ion
seque
nce

Implementation item Implementation contents Reference location

1 Checking prerequisites Check configuration and settings that are
prerequisites.

5.4

2 Estimating the size of HTTP session
attribute information

Estimate the size of HTTP session attribute
information. The estimated value is required for
environment settings of a database.

5.8.2

(2) Settings of the database session failover functionality
The following table describes settings and reference locations of the settings of the database session failover
functionality.

6. Database session failover functionality

191

Table 6‒3: Settings and reference locations of the database session failover functionality

Settin
g

seque
nce

Setting item Settings Reference
location

1 J2EE server settings Perform the following:

• Specifying the database session failover
functionality (J2EE server unit)

• Specifying an optional name of DB Connector

• Specifying the integrity mode

• Setting up the memory used in serialize processing

• Specifying the session failover inhibition
functionality (extension or URI unit)

• Specifying the refer-only request

• Specifying the server ID addition functionality of
HttpSession

• Specifying if pending queues are insufficient when
using a functionality for controlling the number of
concurrent execution threads

• Setting up the Web application start processing
when negotiation fails

• Specifying the exceptions when executing the
getSession method in the requests targeted for
inhibiting the database session failover
functionality

6.6

2 Web application settings# Specify the following:

• Specifying the database session failover
functionality (Web application unit)

• Specifying the upper limit of the number of
HttpSession objects

• Specifying the application identifier

• Specifying the maximum size of HTTP session
attribute information

• Specifying the database session failover inhibition
functionality by using an extension

6.7

Implement the settings of a Web application in a development environment. If you want to perform settings of a Web application in
the execution environment by using server management commands, see 6.7 Web application settings.

(3) Preparing a database
The following table describes implementation contents and reference locations of the items to be implemented as
preparations of a database when using the database session failover functionality.

Table 6‒4: Implementation contents and reference locations of items to be implemented as preparations of
a database

Imple
mentat

ion
seque

nce

Implementation item Implementation contents Reference
location

1 Creating tables • Allocating a disk space of a database

• Creating an application information table

• Creating a session information storage table

• Creating a blank record information table

5.8.3,
6.8.2,
6.8.3, 6.8.4

6. Database session failover functionality

192

Imple
mentat

ion
seque
nce

Implementation item Implementation contents Reference
location

2 Environment setup of database Specify the following:

• Specifying a timeout of a database

6.8.5

(4) DB Connector settings
The following table describes settings and reference locations of DB Connector settings required for using the
database session failover functionality.

Table 6‒5: Settings and reference locations of DB Connector

Settin
g

seque
nce

Setting item Settings Reference
location

1 DB Connector settings Soecify the following:

• Specifying the transaction support level

• Environment settings of DB Connector

• Specifying an optional name of DB Connector

6.9

6. Database session failover functionality

193

6.3 Selecting a mode in which performance is important
(disabling integrity mode)

This section describes the operations, functionality that you can use (deleting global session information), and
precautions to be taken if you select a mode that emphasizes performance.

For selecting a mode that emphasizes performance, disable the setting of integrity mode (default). If you disable the
integrity mode, you can concurrently execute the request processing of the same session ID (concurrent execution of
the same session ID).

6.3.1 Operations performed when disabling integrity mode
For details on operations when you disable the integrity mode, see 5.7 Functionality executed when using a session
failover functionality.

6.3.2 Deleting global session information
Validity of global session information is monitored by monitoring HTTP sessions on a J2EE server. As a part of
monitoring validity, the global session information on the database is deleted for HTTP sessions for which the validity
of has expired. However, if a J2EE server stops due to a failure, the global session information used on that server is
inherited on another J2EE server or the validity is not monitored until you restart the J2EE server. If the state of not
monitoring the validity continues for a long time, the global session information, which is not deleted even if validity
has elapsed, continues using records in the session information storage table.

Therefore, you must appropriately delete the global session information remaining in the database.

The following subsection describes how to delete global session information by using a command:

■ For deleting the global session information

Use the cjclearsession command for deleting the global session information. Execute the command before
restarting a J2EE server or a Web application after the J2EE server or a Web application stops, and time exceeding the
validity of the HTTP session has elapsed.

In a Web application, if you have set validity for each HTTP session by using Sevlet API, execute the command in
accordance with longest validity.

The following are the procedures for deleting global session information:

1. In the environment variable CLASSPATH, set the path of a JDBC driver to be used.
When using the cjclearsession command for the first time, specify a path of the JDBC driver to be used in
the environment variable CLASSPATH.

2. Execute the cjclearsession command for deleting the global session information.
Specify the application identifier, server ID, and information of a JDBC driver to be used, and information
required for accessing the database with the command, and execute. All the global session information possessed
by the J2EE server specified in the server ID of a Web application that is specified in application identifier, is
deleted.

3. Restart the J2EE server or a Web application if required.

If you specify the -count option in the cjclearsession command and execute the command, you can view the
number of global session information possessed by the J2EE server.

The timeout for connection tries to database and execution timeout of SQL that acquires or deletes the global session
information of database is eight seconds.

If an error occurs during database access while executing the command, stop the command execution at the point at
which the error occurred.

For details on the cjclearsession command, see cjclearsession (deleting global session information (the
database session failover functionality)) in the uCosminexus Application Server Command Reference Guide.

6. Database session failover functionality

194

■ Notes

Notes for deleting global session information:

• Deleting information when the J2EE server, which owns the HTTP session to be deleted, is running
If the J2EE server is running, request processing might be performed and the global session information might be
newly created. As a result, if the J2EE server, which owns the HTTP session to be deleted, is running, the
information might be deleted before the validity of the global session expires. When deleting global session
information, stop the J2EE server, which owns the HTTP session to be deleted, and then execute the command.

• Deleting before validity expires
If you delete the global session information by executing the cjclearsession command before the validity of
the global session expires, the operations are as follows.

Sr.
No. Integrity mode Existence status of HTTP

session on the J2EE server Operation

1 Disables None You cannot inherit the global session.

2 Yes Thereafter, the deleted global session information is not stored in the
database and a Web application operates only with the HTTP session
on the J2EE server.

• Deleting when integrity mode is enabled
Operation is not guaranteed if the integrity mode is enabled.

• If using Oracle JDBC Thin Driver
The cjclearsession command implements timeout when executing an SQL by using the
setQueryTimeout method of the JDBC driver. For details on the points to be considered when connecting to
Oracle by using Oracle JDBC Thin Driver, see 3.6.6 Prerequisites and notes when connecting to Oracle in the
uCosminexus Application Server Common Container Functionality Guide.

6.3.3 Notes
This subsection describes the points to be considered when you disable integrity mode.

■ Switching integrity mode

If you switch integrity mode from disabled to enabled, initialize the session information storage table and the
application information table in the database as described in the following procedure:

1. Stop all replicated J2EE servers.

2. Destroy the HTTP session.
For details on the procedures for destroying an HTTP session, see 6.10.3 Deleting global session information
(destroying HTTP session).

3. Initialize the preference information stored in the database.
For details on the procedures for initializing the preference information stored in a database, see 6.10.2 Initializing
a database table.

■ Monitoring validity of global session information when stopping a J2EE server

If you stop a Web application or J2EE server, or if a process goes down due to a failure on a J2EE server, the validity
of global session information is not monitored. Monitoring of validity starts when you start a Web application or when
global session information is inherited on a J2EE server by receiving a request.

If integrity mode is enabled and when a J2EE server stops, another J2EE server monitors the validity. For details on
validity monitoring processing, see 6.4.3 Processing when validity of global session information expires.

■ Operations performed when the amount of global session information reaches the upper limit

Reduce an HTTP session if the amount of global session information in a database reaches the upper limit when
creating global session information. For details on reducing an HTTP session, see 5.7.3 Reducing an HTTP session.

6. Database session failover functionality

195

6.4 Processing implemented in the database session
failover functionality

With the database session failover functionality, respective processing is executed at the following points of time:

• When starting an application
Application negotiation processing is executed.

• When executing a request
Global session information is stored, updated, and deleted.

This section describes the processing executed in the database session failover functionality.

This section also describes the processing when the validity of global session information expires, listeners that
operate in association with events that occur in the database session failover functionality, the processing of locking
global session information executed only in the case of integrity mode, and the operations performed when a failure
occurs during global session information operations.

6.4.1 Processing when starting an application
This subsection describes the application negotiation processing executed when an application starts and the
application identifiers used in application negotiation processing.

(1) Application negotiation processing
With a Web application that uses the database session failover functionality, negotiation processing is executed when
you start an application.

With negotiation processing, the following contents are checked:

• Web applications are matching

• Settings of each Web application are matching

• J2EE server settings are matching

• Database settings are correct

The result of negotiation processing determines whether a Web application will start.

The following table describes the relation between the result of negotiation processing and the Web application states.

Table 6‒6: Relation between the result of negotiation processing and the Web application states

Result of negotiation
processing Web application state Cause of negotiation failure Output message

Successful (no problem in
checked contents)

Started -- KDJE34306-I

Failed (there is a problem in
checked contents)

Not started Web application is not matching. KDJE34340-E

Not started# Web application settings are not
matching.

KDJE34307-E

Started# KDJE34358-I

Not started J2EE server settings are not
matching.

KDJE34307-E

Not started Required tables do not exist in the
database.

KDJE34308-W

Not started Contents of the existing table are
not the contents of the table for the

KDJE34309-E

6. Database session failover functionality

196

Result of negotiation
processing Web application state Cause of negotiation failure Output message

Failed (there is a problem in
checked contents)

Not started database session failover
functionality.

KDJE34309-E

Not started Existing table is used by another
application.

KDJE34340-E

Legend:
--: Not applicable

#
For the following confirmation items, if you have set different values in a Web application to be started and the same Web
application on another J2EE server, you can select whether to continue or stop the processing of starting a Web application by
specifying the webserver.dbsfo.negotiation.high_level parameter in the configuration tag of a logical
J2EE server (j2ee-server) in the Easy Setup definition file.

• Upper limit of the number of HttpSession objects

• Validity of HTTP sessions defined in DD (web.xml)

If other confirmation contents are not matching, Web applications do not start.

If you set to stop the processing of starting a Web application, make sure to specify a valid value (1 or greater) as the upper limit of
the number of HttpSession objects.

If an error occurs while accessing the database during negotiation processing, the KDJE34312-W message is output
to the message log.

(a) Contents checked in negotiation processing (the database session failover functionality)

This subsection describes the contents checked in negotiation.

• Web applications are matching
It is determined that Web applications are matching when all confirmation items match. The following table
describes the confirmation items.

Table 6‒7: Items used for confirming whether web applications are matching

Sr. No. Confirmation item

1 Application identifier#

2 J2EE application name

3 Web application name (context root name)

For details on application identifier, see (2) Application identifier.

• Settings of each Web application are matching
Whether the settings of each replicated Web application are matching is checked for the confirmation items
described in the following table.

Table 6‒8: Items used for confirming whether the settings of each Web application are matching

Sr. No. Confirmation item

1 Upper limit of the number of HttpSession objects

2 Maximum size of HTTP session attribute information that you can include in global session information

3 Validity of HTTP sessions defined in DD (web.xml)

4 Extensions that inhibit the database session failover functionality

• J2EE server settings are matching
Whether the settings of each replicated J2EE server are matching is checked for the confirmation items described
in the following table.

6. Database session failover functionality

197

Table 6‒9: Items used for confirming whether the settings of each J2EE server are matching

Sr. No. Confirmation item

1 Settings of integrity mode

2 Settings of refer-only requests

3 Settings if pending queues are insufficient when using the functionality for controlling the number of concurrent execution
threads

4 Settings of exception when executing the getSession method in the requests targeted for inhibiting the database session
failover functionality

• Database settings are correct
Whether the conditions described in the following table are satisfied is checked.

Table 6‒10: Conditions for checking that the database settings are correct

Sr. No. Condition

1 Required tables exist in the database.

2 Contents of existing table are the contents of the table used for the database session failover functionality.

3 Existing tables are not used in other applications.

(b) Settings of a Web application that are checked in negotiation

First of all, settings of a Web application that succeeds in negotiation processing are stored in the application
information table in the database. Stored settings are treated as correct preference information used in negotiation
confirmation.

Therefore, if you want to change the settings of a Web application, you must delete the preference information already
stored in the database that is related to a Web application targeted to make changes. For details on the procedures for
changing the settings, see 6.10. Changing settings related to the database session failover functionality.

(2) Application identifier
The Application identifier is a name used for recognizing clustered Web applications when using the database session
failover functionality. By default, the system automatically generates application identifiers.

An application identifier is used in negotiation for checking whether Web applications are matching. Therefore, an
application identifier must satisfy the following conditions:

• An application identifier matches the same Web application that operates on the replicated J2EE servers.

• An application identifier is a unique value in the system.

If an application identifier, which is automatically generated by the system, does not satisfy a condition, you need to
define values that satisfy the conditions. For details on how to define an application identifier, see 6.5 Definitions in
cosminexus.xml.

The following subsections describe the rules for automatically generating an application identifier and examples of
automatically generated application identifiers.

! Important note

If the same application identifier is set to different Web applications, the second Web application fails in negotiation when
starting and does not start.

(a) Rules for automatically generating an application identifier

By default, a string based on context root name is automatically set in application identifiers. If an application
identifier is automatically generated, the applicable value is output to the message log with the KDJE34302-I
message, when starting a Web application.

The following rules are applied when automatically generating an application identifier on the basis of context root
name:

6. Database session failover functionality

198

• Delete a forward slash (/) at the beginning.

• If the length of the string exceeds 16 characters, excluding the forward slash (/) at the beginning, use a string up to
16 characters.

• If characters, which cannot be used in an application identifier, are used in the context root name, replace the
characters with underscores (_).
You can use only alphanumeric characters (A - Z, a - z, and 0 - 9) and underscores (_) in an application identifier.
Set values are case-sensitive.

• In root context, change to ROOT and not to a blank string.

If you apply the rules for automatic generation, an application identifier might not remain unique in the system. In that
case, the second Web application, to which the same application identifier is set, fails in negotiation when starting and
does not start. Therefore, it is essential to set an application identifier that unique in the system, for Web applications.

(b) Examples of automatically generated application identifiers

The following table shows examples of default application identifiers, which are automatically generated from context
root name.

Table 6‒11: Examples of automatically generated default application identifiers

Sr. No. Context root name Application identifier Rules applied when creating

1 /examples examples Delete forward slash (/) at the beginning

2 /App01/test1 App01_test1 • Delete forward slash (/) at the beginning

• Replace a forward slash (/) in between with an
underscore (_)

3 /
WebApplication
_001

WebApplication_0 • Delete forward slash (/) at the beginning

• Delete 17th and later characters

4 /examples/
WebApplication

examples_WebAppl • Delete forward slash (/) at the beginning

• Replace a forward slash (/) in between with an
underscore (_)

• Delete 17th and later characters

5 / ROOT Because it is root context, change to ROOT

6.4.2 Processing when executing a request
This subsection describes creating, updating, and deleting a global session when executing a request, and inheriting a
global session.

If processing is executed in a Web application, processing for global session information occurs as an extension to the
processing. The following table describes examples of processing executed in Web applications, processing executed
for global session information at the time of executing requests corresponding to the example, and reference locations.

Table 6‒12: Examples of processing in Web applications and mapping of processing executed for global
session information

Sr.
No
.

Example of processing executed in Web
applications

Processing executed for global session
information

Reference
location

1 Login Creating global session information (1)

2 Executing work (page transition/update) Updating global session information (2)

3 Logout Deleting global session information (3)

4 Logout due to timeout Deleting global session information due to expiry of
validity

6.4.3

6. Database session failover functionality

199

Sr.
No
.

Example of processing executed in Web
applications

Processing executed for global session
information

Reference
location

5 Executing work after inheriting a global session on
another J2EE server

(when a failure occurs on a J2EE server)

Inheriting session information that uses global session
information

(4)

For processing results when a failure occurs during global session information operation, see 6.4.6 Operations
performed when a failure occurs during global session information operation.

(1) Creating global session information
When a new HTTP session is created on a J2EE server, global session information is created in the database.

The following figure shows the flow of processing executed when creating global session information.

Figure 6‒2: Creating global session information (the database session failover functionality)

1. If an HTTP session receives the necessary request, a new HTTP session is created. An HTTP session is created
when the HttpSession object is newly acquired by using the getSession() method or the
getSession(true) method of the javax.servlet.http.HttpServletRequest interface in a Web
application.
Because HttpSession objects are also created in the following cases, a new HTTP session is created:

• If you use the Form authentication

6. Database session failover functionality

200

• If you specify true in the session attribute of the page directive in JSP

• If you omit specification of the session attribute of the page directive in JSP

2. The Global session information is created in the database as an extension to the HTTP session creation processing.
Created global session information is stored in the session information storage table.
The global session information is locked at the time of creation.

3. Blank record information is updated with the creation of global session information.

4. Created global session information is committed once.
If integrity mode is enabled, a lock is acquired again. This is performed to avoid generation of inconsistency
between the session information storage table and blank record information tables due to occurrence of a failure
on a J2EE server or in a database, on which a Web application is running, after the HTTP session is created.

5. The HTTP session is updated when the processing in a Web application completes.

6. Global session information is updated as an extension to HTTP session update processing. If integrity mode is
enabled, the lock is released after completing the update.

! Important note

Operations performed when the amount of global session information reaches the upper limit
Reduce the HTTP session if the amount of global session information in the database reaches the upper limit when
creating global session information. For details on reducing an HTTP session, see 5.7.3 Reducing an HTTP session.
If the amount of global session information in the database reaches the upper limit when integrity mode is enabled,
java.lang.IllegalStateException is thrown and acquiring the HTTP session fails.
If you specify true in the webserver.session.max.throwHttpSessionLimitExceededException
parameter in the configuration tag of a logical J2EE server (j2ee-server) in the Easy Setup definition file,
com.hitachi.software.web.session.HttpSessionLimitExceededException is thrown
instead of java.lang.IllegalStateException. For details on
HttpSessionLimitExceededException, see 3.1 Exception classes in the uCosminexus Application Server
API Reference Guide.

(2) Updating global session information
When a session is updated during execution of a Web application, the HTTP session is updated on the J2EE server. At
the same time, global session information in the database is also updated.

The following figure shows the flow of processing executed when updating global session information.

6. Database session failover functionality

201

Figure 6‒3: Updating global session information (the database session failover functionality)

1. Receive the request having an HTTP session.
If integrity mode is enabled, global session information in the database is locked before executing a Web
application.

2. Along with updating of the session in a Web application, the HTTP session is updated.

3. The global session information in the database is updated to the latest information when the HTTP session is
updated.
If integrity mode is enabled, the lock is released.

For details on the Operations performed when global session information is locked, see 6.4.5(1) Result of invoking
lock acquisition processing when acquiring a lock.

(3) Deleting global session information
If you implement the invalidate() method of the javax.servlet.http.HttpSession interface in
session deletion processing in a Web application and explicitly delete an HTTP session, global session information in
the database is deleted as an extension to that processing.

The following figure shows the flow of processing executed when deleting global session information.

6. Database session failover functionality

202

Figure 6‒4: Deleting global session information (the database session failover functionality)

1. Receive a request indicating that an HTTP session needs to be deleted.
If integrity mode is enabled, global session information in the database is locked before executing a Web
application.

2. Along with deleting the session in a Web application, the HTTP session is deleted.

3. The global session information and the blank record information in the database are deleted when the HTTP
session is deleted.
If integrity mode is enabled, the lock is released.

(4) Inheriting session information that uses global session information
If an HTTP session, associated with the received request, does not exist on the J2EE server, an HTTP session is
created again by using the global session information in the database. This inherits the session.

The following figure shows the flow of processing executed when inheriting session information that uses global
session information.

6. Database session failover functionality

203

Figure 6‒5: Inheriting session information that uses global session information (the database session
failover functionality)

1. If an HTTP session, associated with the received request, does not exist on the J2EE server, an HTTP session is
created again on the J2EE server by invoking the global session information in the database.
The re-created HTTP session inherits the session and executes session update processing in a Web application.
The HTTP session is updated as an extension to session update processing.

2. Along with updating of the HTTP session, global session information is updated.

If inheriting of the global session information is successful, the KDJE34321-I message is output to the message log.
If global session information could not be inherited because the global session information corresponding to the
session ID, which is received from the client, does not exist in the database, the KDJE34325-W message is output to
the message log.

6.4.3 Processing when validity of global session information expires
Each HTTP session has a validity set to it. HTTP sessions that have exceeded validity, found as a result of checking
validity on the basis of the information of the last access time, are deleted. When an HTTP session has deleted because
it exceeded validity, corresponding global session information is also deleted as an extension of that processing.

Validity monitoring threads existing in web container periodically monitor the validity of HTTP sessions. Validity
monitoring threads exist for every Web application.

The following figure shows the flow of processing executed when deleting global session information due to expiry of
validity.

6. Database session failover functionality

204

Figure 6‒6: Processing when validity of global session information expires (the database session failover
functionality)

1. If integrity mode is enabled, the global session information corresponding to the session, the validity of which is
determined to have expired by using validity monitoring threads, is locked.

2. The HTTP session is deleted as an extension of session deletion processing. The global session information and
the blank record information in the database are deleted when the HTTP session is deleted.
If integrity mode is enabled, the lock is released.

6.4.4 Listeners that operate in association with events occurring in the
database session failover functionality

When using the database session failover functionality, the sessionDidActivate() method in the
javax.servlet.http.HttpSessionActivationListener interface is invoked when inheriting of a
global session occurs. In that case, the sessionCreated() method in the
javax.servlet.http.HttpSessionListener interface is not invoked.

With processing using an HTTP session, the listeners associated with the HTTP session corresponding to events
stipulated in Java EE operate. Listeners associated with an HTTP session are the classes that implement the following
interfaces:

• javax.servlet.http.HttpSessionListener
• javax.servlet.http.HttpSessionActivationListener
• javax.servlet.http.HttpSessionAttributeListener
• javax.servlet.http.HttpSessionBindingListener

When using the database session failover functionality, listeners associated with an HTTP session operate with events
in the database session failover functionality as key factors.

The following table describes mapping among events stipulated in Java EE, events that occur in the database session
failover functionality, and listeners that operate with events as key factors.

6. Database session failover functionality

205

Table 6‒13: Events that occur in the database session failover functionality and listeners to be operated

Sr.
No
.

Event stipulated in
Java EE

Corresponding event
(when using the

database session
failover functionality)

Listener that operates

1 Creating an HTTP
session

Creating an HTTP
session

The sessionCreated() method in the
javax.servlet.http.HttpSessionListener interface

2 Disabling an HTTP
session

• Disabling an HTTP
session

• Stopping a Web
application

• The sessionDestroyed() method in the
javax.servlet.http.HttpSessionListener interface

• The attributeRemoved() method in the
javax.servlet.http.HttpSessionAttributeListene
r interface#

• The valueUnbound() method in the
javax.servlet.http.HttpSessionBindingListener
interface#

3 Adding HTTP session
attributes

Adding HTTP session
attributes

• The attributeAdded() method in the
javax.servlet.http.HttpSessionAttributeListene
r interface

• The valueBound() method in the
javax.servlet.http.HttpSessionBindingListener
interface

4 Changing HTTP session
attributes

Changing HTTP session
attributes

The aattributeReplaced() method in the
javax.servlet.http.HttpSessionAttributeListener
interface

5 Deleting HTTP session
attributes

• Deleting HTTP
session attributes

• Stopping a Web
application

• The attributeRemoved() method in the
javax.servlet.http.HttpSessionAttributeListene
r interface

• The valueUnbound() method in the
javax.servlet.http.HttpSessionBindingListener
interface

6 Activating a session Inheriting global session The sessionDidActivate() method in the
javax.servlet.http.HttpSessionActivationListener
interface

7 Deactivating a session (no corresponding event) (No listener operates)

Case when attributes were added when the event occurred.

Other listeners operate in the same way as cases in which the database session failover functionality is not used.

6.4.5 Locking global session information (when integrity mode is
enabled)

This subsection describes locking of global session information executed only when integrity mode is enabled. The
operation is not executed when integrity mode is disabled.

With a system in which a J2EE server is replicated, requests having the same session ID might be concurrently sent to
a different J2EE server. For example, if you access a page of frame structure or a page containing multiple images
(image tag), browser functionality sends requests to the servers with multi-threads.

If information of the same global session is updated on different J2EE servers, the integrity of global session
information is lost. As a result, with the database session failover functionality, acquire and control the exclusion of
records, in which global session information under updating are stored, so that the records cannot be used on another
server. This processing of acquiring exclusion is called locking of global session information. The processing of
releasing the exclusion is called releasing lock.

The following figure shows locking of global session information by performing record exclusion.

6. Database session failover functionality

206

Figure 6‒7: Locking global session information by performing record exclusion

This subsection describes the processing executed when locking global session information by performing record
exclusion. Sr. No. corresponds to the numbers in the figure.

1. On receiving a request from the client, global session information in the database is locked.

2. Web application processing is executed after locking.

3. Global session information is unlocked when the processing of a Web application is complete.

Thus, the global session information in the database is locked during the Web application operation and this assures
that requests having the same session ID in the system do not process concurrently.

When a request is sent to a J2EE server, global session information is locked irrespective of whether the HTTP session
is to be used in the Web application. However, global session information is not locked for the following requests:

• Requests for which an HTTP session is not created

• Requests having URL containing extensions or URIs that have inhibited the database session failover functionality
By default, txt, htm, html, jpg, gif, and js are the extensions targeted for inhibiting. There are no URIs to be
inhibited by default. For details on inhibiting the database session failover functionality, see 5.6.1 Inhibiting a
session failover functionality.

With the database session failover functionality, the lock of global session is enabled also between the threads sent to
one J2EE server and not to different J2EE servers. If you send multiple requests having the same session ID to one
J2EE server, requests are processed one by one in the order of receiving. Processing of a request received later starts
after waiting for completion of processing of the request sent earlier.

! Important note

A Web client might send multiple requests having the same session ID because contents that use frames and combine
multiple dynamic pages that use HTTP sessions are updated. In this case, requests are processed one by one in the order of
receiving. As a result, processing performance might degrade compared with the case of not using the database session
failover functionality.

(1) Result of invoking lock acquisition processing when acquiring a lock
The result of invoking lock acquisition processing varies depending on the state of global session information in the
database. The following table describes the relation between global session information state and the result of
invoking lock acquisition processing.

6. Database session failover functionality

207

Table 6‒14: Relation between global session information state and the result of invoking lock acquisition
processing

Sr. No. State of global session information
in the database Result of invoking lock acquisition processing Output message

1 Exists and not locked (in normal cases). Global session information in the database is locked (ends
successfully).

Not output

2 Does not exist. It is determined that a session disabled due to timeout or a
session having invalid session ID is targeted. Hence,
HTTP session in the J2EE server is deleted.

As a result, a Web application is executed in the state of
not having an HTTP session.

KDJE34315-W

3 Session exists, but it is updated on
another J2EE server and is newer than
the information of the HTTP session on
the J2EE server.

It is determined that it is global session information used
on another J2EE server. Hence, the contents of global
session information in the database are inherited
(inheriting a session#1 occurs).

KDJE34322-I#2

4 Exists and locked because it is being
used.

Waiting for lock #3 occurs. A lock is acquired after
processing of the request that uses an HTTP session ends
and the Web application starts.

Not output

#1
For details on inheriting a session, see 6.4.2 (4) Inheriting session information that uses global session information.

#2
Output at Warning level.

#3
For details on waiting for lock, see (2) Waiting for lock.

(2) Waiting for lock
If you receive a request that uses an HTTP session in a global session that is targeted for locking, you must wait for
acquiring the lock. The state of waiting for acquiring a lock is called waiting for lock in global session information.
The timeout that results because of waiting for a lock is called a lock timeout.

The following table describes the relation between global session information states after waiting for a lock occurs and
as a result of invoking lock acquisition processing.

Table 6‒15: Relation between global session information states after waiting for lock occurs and as a result
of invoking lock acquisition processing

Sr.
No
.

State of global session information after
waiting for lock occurs

Result of invoking lock acquisition processing after
waiting for lock occurs Output message

1 Request processing, which was using the
session earlier, ends and the lock is released.

Global session information in the database is locked (ends
successfully).

Not output

2 Timeout time elapsed, but the lock is not
released (lock timeout occurred)#1.

When session acquisition processing is executed in a Web
application,
com.hitachi.software.web.dbsfo.DatabaseA
ccessException#2 is thrown.

KDJE34312-W

3 A failure occurred in the database while
waiting for lock and lock is not released.
(lock timeout occurred).

When session acquisition processing is executed in a Web
application,
com.hitachi.software.web.dbsfo.DatabaseA
ccessException#2 is thrown.

KDJE34312-W

#1
This state includes the case when an SQL statement used for locking is sent to the database and a timeout occurs due to a failure
in the communication path.

6. Database session failover functionality

208

#2
The DatabaseAccessException class inherits the java.lang.IllegalStateException class. For details on the
DatabaseAccessException class, see 3.1 Exception classes in the uCosminexus Application Server API Reference Guide.

(3) Locking global session information when a failure occurs on a J2EE server
If an OS hangs or a network failure occurs on a J2EE server, on which a Web application is running, the global session
information, which is locked in the database, might be temporarily locked.

For recovering the session information from the locked state, you need to take one of the following measures:

• Perform settings in the database for monitoring connections from a client and recovering by detecting
disconnection.
If you perform these settings, the database functionality detects disconnection from a J2EE server and
automatically releases the lock after a certain period of time. Also, the state is returned to the state before
acquiring the lock when a disconnection is detected. If you use HiRDB, set the functionality for monitoring UAP
processing time. For details on the functionality for monitoring UAP processing time, see the uCosminexus
Application Server HiRDB UAP Development Guide.

• Perform regular maintenance of the database.

For details on setup and operation of a database, see the manual of the database used.

6.4.6 Operations performed when a failure occurs during global session
information operation

This section describes the operations performed when a failure occurs during global session information operations.
This section describes the points of failure, state of session, impact on other requests, and output messages for every
operation of global session information.

(1) Operations performed when a failure occurs while creating global session information
This subsection describes the operations performed when a J2EE server failure or database failure occurs while
creating global session information.

The following figure shows the flow of processing for creating global session information and points of failure.

6. Database session failover functionality

209

Figure 6‒8: Flow of processing of creating global session information and points of failure

In the description below, numbers (failure points of the J2EE server) and alphabets (failure points of the database) in
the figure are mapped with numbers or alphabets of failure points in the table.

(a) Operations performed when a failure occurs on a J2EE server (process down)

The following table describes the operations performed when a J2EE server failure occurs and process goes down
while creating global session information.

Table 6‒16: Operations performed when a failure occurs on a J2EE server (process down)

Failure point

State of session

Impact on other requestsHTTP session on J2EE
server Global session information

1 Not created Not created None

2 Not created Not created (rolled back)#1 You cannot newly create all HTTP sessions until
the database detects client connection

3 Not created Created#2 None

6. Database session failover functionality

210

Failure point

State of session

Impact on other requestsHTTP session on J2EE
server Global session information

4 Disappears due to process
down

Created#2 None

#1
SQLException occurs and rolls back to the state before receiving the request.

#2
You cannot inherit global session information in this state. If validity expires, validity monitoring deletes the session information.

(b) Operations performed when a failure occurs in a database (if SQLException occurs)

The following table describes the operations performed when a database failure occurs and SQLException occurs
while creating global session information. Operations vary when integrity mode is enabled and disabled.

Table 6‒17: Operations performed when a database fails and SQLException occurs (when integrity mode
is disabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Reduced and
created#1

Not created None Ends successfully KDJE34368-W

B - F Reduced and
created#1

Not created
(rolled back)#2

None Ends successfully KDJE34368-W

G -- -- -- -- --

H -- -- -- -- --

Legend:
--: Not applicable

#1
The reduced HTTP session is updated in the database in the processing of updating global session information at the time of
receiving a request for the next time.

#2
SQLException occurs and rolls back to the state before receiving the request.

Table 6‒18: Operations performed when a database failure and SQLException occurs (when integrity
mode is enabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Not created Not created None An exception occurs
while acquiring HTTP
session#1

KDJE34314-W

B - F Not created Not created
(rolled back)#2

None An exception occurs
while acquiring HTTP
session#1

KDJE34312-W

G Not created Created#3 None An exception occurs
while acquiring HTTP
session#1

KDJE34312-W

H Not created
(deleted)

Created#3 None -- KDJE34312-W

6. Database session failover functionality

211

Legend:
--: Not applicable

#1
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the getSession
method in the javax.servlet.http.HttpServletRequest interface in case of Servlet and before executing user code
in the case of JSP.

#2
SQLException occurs and rolls back to the state before receiving the request.

#3
You cannot inherit global session information in this state. If validity expires, validity monitoring deletes the session information.

(c) Operations performed when a failure occurs in a database (when a database is not responding or slows
down)

The following table describes the operations performed when a database failure occurs, and the database is not
responding or slows down while creating global session information. Operations vary when integrity mode is enabled
and disabled.

Table 6‒19: Operations performed when a database failure occurs and the database is not responding or
slows down (when integrity mode is disabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Reduced and
created#1

Not created None Ends successfully KDJE34368-W

B - F Reduced and
created#1

Not created
(rolled back)#2

You cannot newly create all
HTTP sessions until a
timeout occurs by waiting
for lock release.

Ends successfully KDJE34368-W

G -- -- -- -- --

H -- -- -- -- --

Legend:
--: Not applicable

#1
The reduced HTTP session is updated in the database in the processing of updating global session information at the time of
receiving a request for the next time.

#2
A timeout occurs because of waiting for database lock release and the state rolls back to the state before receiving the request.

Table 6‒20: Operations performed when a database failure occurs and the database is not responding or
slows down (when integrity mode is enabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Not created Not created None An exception occurs
while acquiring HTTP
session#1

KDJE34314-W

B - F Not created Not created
(rolled back)#2

You cannot newly create all
HTTP sessions until a
timeout occurs by waiting
for lock release.

An exception occurs
while acquiring HTTP
session#1

KDJE34312-W

6. Database session failover functionality

212

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

G Not created Created#3 None An exception occurs
while acquiring HTTP
session#1

KDJE34312-W

H Not created
(deleted)

Created#3 None -- KDJE34312-W

Legend:
--: Not applicable

#1
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the getSession
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and before executing user
code in the case of JSP.

#2
A timeout occurs because of waiting for database unlocking and rolls back to the state before receiving the request.

#3
You cannot inherit global session information in this state. If validity expires, validity monitoring deletes the session information.

(2) Operations performed when a failure occurs while updating global session information
This subsection describes the operations performed when a J2EE server failure or database failure occurs while
updating global session information.

The following figure shows the flow of processing of updating global session information and points of failure.

Figure 6‒9: Flow of processing of updating global session information and points of failure

6. Database session failover functionality

213

(a) Operations performed when a failure occurs on a J2EE server (process down)

The following table describes the operations performed when a J2EE server failure occurs and a process goes down
while updating global session information.

Table 6‒21: Operations performed when a failure occurs on a J2EE server (process down)

Failure point

State of session

Impact on other requestsHTTP session on J2EE
server Global session information

1 Disappears due to process
down

Not updated None

2 Disappears due to process
down

Not updated (rolled back)#1 You cannot perform operations of the relevant
HTTP sessions until the database detects client
connection

3 Disappears due to process
down

Not updated (rolled back)#1 You cannot perform operations of the relevant
HTTP sessions until the database detects client
connection

4 Disappears due to process
down

Not updated (rolled back)#1 You cannot perform operations of the relevant
HTTP sessions until the database detects client
connection

#
SQLException occurs and rolls back to the state before receiving the request.

(b) Operations performed when a failure occurs in a database (if SQLException occurs)

The following table describes the operations performed when a database failure occurs and SQLException occurs
while updating global session information. Operations vary when integrity mode is enabled and disabled.

Table 6‒22: Operations performed when a database failure and SQLException occurs (when integrity
mode is disabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Reduced and
updated#

Not updated None Ends successfully KDJE34368-W

B -- -- -- -- --

C Reduced and
updated#

Not updated None -- KDJE34368-W

D -- -- -- -- --

Legend:
--: Not applicable

#
The reduced HTTP session is updated in the database in the process of updating global session information at the time of
receiving a request for the next time.

6. Database session failover functionality

214

Table 6‒23: Operations performed when a database failure and SQLException occurs (when integrity
mode is enabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Not updated Not updated None An exception occurs
while acquiring HTTP
session#1

KDJE34314-W

B Not updated
(deleted)

Not updated
(rolled back)#2

None An exception occurs
while acquiring HTTP
session#1

KDJE34312-W

C Not updated
(deleted)

Not updated
(rolled back)#2

None -- KDJE34312-W

D Not updated
(deleted)

Not updated
(rolled back)#2

None -- KDJE34312-W

Legend:
--: Not applicable

#1
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the getSession
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and before executing user
code in the case of JSP.

#2
SQLException occurs and rolls back to the state before receiving the request.

(c) Operations performed when a failure occurs in a database (when database is not responding or slows down)

The following table describes the operations performed when a database failure occurs, and the database is not
responding or slows down while updating global session information. Operations vary when integrity mode is enabled
and disabled.

Table 6‒24: Operations performed when a database failure occurs and the database not responding or
slows down (when integrity mode is disabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Reduced and
updated#

Not updated None Ends successfully KDJE34368-W

B -- -- -- -- --

C Reduced and
updated#

Not updated
(rolled back)#2

You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

-- KDJE34368-W

D -- -- -- -- --

Legend:
--: Not applicable

#1
Reduced HTTP session is updated in the database in the processing of updating global session information at the time of
receiving a request for the next time.

#2
A timeout occurs because of waiting for database unlocking and rolls back to the state before receiving the request.

6. Database session failover functionality

215

Table 6‒25: Operations performed when a database failure occurs and the database is not responding or
slows down (when integrity mode is enabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Not updated Not updated None An exception occurs
while acquiring HTTP
session#1

KDJE34314-W

B Not updated
(deleted)

Not updated
(rolled back)#2

You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

An exception occurs
while acquiring HTTP
session#1

KDJE34312-W

C Not updated
(deleted)

Not updated
(rolled back)#2

You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

-- KDJE34312-W

D Not updated
(deleted)

Not updated
(rolled back)#2

You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

-- KDJE34312-W

Legend:
--: Not applicable

#1

com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the getSession method in
the javax.servlet.http.HttpServletRequest interface in the case of Servlet and before executing user code in the case
of JSP.

#2
A timeout occurs because of waiting for database lock release and rolls back to the state before receiving the request.

(3) Operations performed when a failure occurs while deleting global session information
This subsection describes the operations performed when a J2EE server failure or database failure occurs while
deleting global session information.

The following figure shows the flow of processing of deleting global session information and points of failure.

6. Database session failover functionality

216

Figure 6‒10: Flow of processing of deleting global session information and points of failure

(a) Operations performed when a failure occurs on a J2EE server (process down)

The following table describes the operations performed when a J2EE server failure occurs and process goes down
while deleting global session information.

Table 6‒26: Operations performed when a failure occurs on a J2EE server (process down)

Failure point

State of session

Impact on other requestsHTTP session on J2EE
server Global session information

1 Disappears due to process
down

Not deleted None

2 Disappears due to process
down

Not deleted (rolled back)# You cannot perform operations of the relevant
HTTP sessions until the database detects client
connection

3 Disappears due to process
down

Not deleted (rolled back)# You cannot perform operations of the relevant
HTTP sessions until the database detects client
connection

4 Disappears due to process
down

Deleted None

6. Database session failover functionality

217

#
SQLException occurs and rolls back to the state before receiving the request.

(b) Operations performed when a failure occurs in a database (if SQLException occurs)

The following table describes the operations performed when a database failure occurs and SQLException occurs
while deleting global session information. Operations vary when integrity mode is enabled and disabled.

Table 6‒27: Operations performed when a database failure and SQLException occurs (when integrity
mode is disabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Deleted Not deleted None An exception occurs
while acquiring HTTP
session#1

KDJE34377-E#2

B -- -- -- -- --

C - F Deleted Not deleted
(rolled back)#3

None An exception occurs
when disabling HTTP
session#4

KDJE34377-E#2

Legend:
--: Not applicable

#1
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the getSession
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and before executing user
code in the case of JSP.

#2:
A message is output only when the first failure occurs. Thereafter, messages are not output for the same failure until you restart
the Web application.

#3
SQLException occurs and rolls back to the state before receiving the request.

#4
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the invalidate
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and when invoking the
invalidate method of implicit object session in the case of JSP.

Table 6‒28: Operations performed when a database failure and SQLException occurs (when integrity
mode is enabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Not deleted Not deleted None An exception occurs
while acquiring HTTP
session#1

KDJE34314-W

B Deleted Not deleted
(rolled back)#2

None An exception occurs
while acquiring HTTP
session#1

KDJE34312-W

C - F Deleted Not deleted
(rolled back)#2

None An exception occurs
when disabling HTTP
session#3

KDJE34312-W

6. Database session failover functionality

218

#1
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the getSession
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and before executing user
code in the case of JSP.

#2
SQLException occurs and rolls back to the state before receiving the request.

#3

com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the invalidate method in
the javax.servlet.http.HttpServletRequest interface in case of Servlet and when invoking the invalidate method
of implicit object session in case of JSP.

(c) Operations performed when a failure occurs in a database (when database is not responding or slows down)

The following table describes the operations performed when a database failure occurs, and database is not responding
or slows down while deleting global session information. Operations vary when integrity mode is enabled and
disabled.

Table 6‒29: Operations performed when a database failure occurs, and database is not responding or
slows down (when integrity mode is disabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Deleted Not deleted None An exception occurs
while acquiring HTTP
session#1

KDJE34377-E#2

B -- -- -- -- --

C - F Deleted Not deleted
(rolled back)#3

You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

An exception occurs
when disabling HTTP
session#4

KDJE34377-E#2

Legend:
--: Not applicable

#1
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the getSession
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and before executing user
code in the case of JSP.

#2:
A message is output only when the first failure occurs. Thereafter, messages are not output for the same failure until you restart
the Web application.

#3
A timeout occurs because of waiting for database unlocking and rolls back to the state before receiving the request.

#4
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the invalidate
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and when invoking the
invalidate method of implicit object session in the case of JSP.

6. Database session failover functionality

219

Table 6‒30: Operations performed when a database failure occurs and the database is not responding or
slows down (when integrity mode is enabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Not deleted Not deleted None An exception occurs
while acquiring HTTP
session#1

KDJE34314-W

B Deleted Not deleted
(rolled back)#2

You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

An exception occurs
while acquiring HTTP
session#1

KDJE34312-W

C - F Deleted Not deleted
(rolled back)#2

You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

An exception occurs
when disabling HTTP
session#3

KDJE34312-W

#1
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the getSession
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and before executing user
code in the case of JSP.

#2
A timeout occurs because of waiting for database lock release and the state rolls back to the state before receiving the request.

#3
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the invalidate
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and when invoking the
invalidate method of implicit object session in the case of JSP.

(4) Operations performed when a failure occurs while deleting global session information due
to expiry of validity

This subsection describes the operations performed when a J2EE server failure or database failure occurs while
deleting global session information due to the expiration of validity.

The following figure shows the flow of processing of deleting global session information due to expiry of validity and
points of failure.

6. Database session failover functionality

220

Figure 6‒11: Flow of processing of deleting global session information due to expiry of validity and points
of failure

(a) Operations performed when a failure occurs on a J2EE server (process down)

The following table describes the operations performed when a J2EE server failure occurs and process goes down
while deleting global session information due to expiry of validity.

Table 6‒31: Operations performed when a failure occurs on a J2EE server (process down)

Failure point

State of session

Impact on other requestsHTTP session on J2EE
server Global session information

1 Disappears due to process
down

Not deleted None

2 and 3 Disappears due to process
down

Not deleted (rolled back) You cannot perform operations of the relevant
HTTP sessions until the database detects client
disconnection

(b) Operations performed when a failure occurs in a database (if SQLException occurs)

The following table describes the operations performed when a database failure occurs and SQLException occurs
while deleting global session information due to expiry of validity. Operations vary when integrity mode is enabled
and disabled.

6. Database session failover functionality

221

Table 6‒32: Operations performed when a database failure and SQLException occurs (when integrity
mode is disabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A -- -- -- -- --

B - E Deleted Not deleted
(rolled back)

None -- KDJE34377-E#

Legend:
--: Not applicable

#
A message is output only when the first failure occurs. Thereafter, messages are not output for the same failure until you restart
the Web application.

Table 6‒33: Operations performed when a database failure and SQLException occurs (when integrity
mode is enabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Deleted Not deleted
(rolled back)

None -- KDJE34336-W

B - E Deleted Not deleted
(rolled back)

None -- KDJE34312-W

Legend:
--: Not applicable

(c) Operations performed when a failure occurs in a database (when database is not responding or slows down)

The following table describes the operations performed when a database failure occurs and the database is not
responding or slows down while deleting global session information due to expiry of validity. Operations vary when
integrity mode is enabled and disabled.

Table 6‒34: Operations performed when a database failure occurs and the database is not responding or
slows down (when integrity mode is disabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A -- -- -- -- --

B - E Deleted Not deleted
(rolled back)

You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

-- KDJE34377-E#

Legend:
--: Not applicable

#
A message is output only when the first failure occurs. Thereafter, messages are not output for the same failure until you restart
the Web application.

6. Database session failover functionality

222

Table 6‒35: Operations performed when a database failure occurs and the database is not responding or
slows down (when integrity mode is enabled)

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

A Deleted Not deleted
(rolled back)

You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

-- KDJE34336-W

B - E Deleted Not deleted
(rolled back)

You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

-- KDJE34312-W

Legend:
--: Not applicable

(5) Operations performed when a failure occurs while inheriting global session by using
global session information

This subsection describes the operations performed when a J2EE server failure or database failure occurs while
inheriting global session by using global session information.

The following figure shows the flow of processing of inheriting global session by using global session information
and points of failure.

6. Database session failover functionality

223

Figure 6‒12: Flow of processing of inheriting global session by using global session information and points
of failure

(a) Operations performed when a failure occurs on a J2EE server (process down)

The operations performed when a J2EE server failure occurs and process goes down while inheriting global session by
using global session information are the same as when a J2EE server failure occurs while updating global session
information.

For details on operations performed when a J2EE failure occurs while updating a global session information, see the
operations performed when a J2EE failure occurs described in (2) Operations performed when a failure occurs while
updating global session information.

(b) Operations performed when a failure occurs in a database (if SQLException occurs)

The following table describes the operations performed when a database failure occurs and SQLException occurs
during C processing in the figure while inheriting a global session by using global session information. The operations
performed when a failure occurs during A, B, D, and E processing in the figure are the same as the operations
performed when SQLException occurs in a database while updating global session information.

For details on the operations performed when a database failure and SQLException occurs while updating global
session information, see the operations performed when a database failure occurs (if SQLException occurs)
described in (2) Operations performed when a failure occurs while updating global session information.

6. Database session failover functionality

224

Table 6‒36: Operations performed when a database failure and SQLException occurs

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

C Not inherited Not inherited None An exception occurs
while acquiring HTTP
session#

KDJE34314-W

#
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the getSession
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and before executing user
code in the case of JSP.

(c) Operations performed when a failure occurs in a database (when database is not responding or slows down)

The following table describes the operations performed when a database failure occurs and the database is not
responding or slows down during C processing in the figure while inheriting global session by using global session
information. The operations performed when a failure occurs during A, B, D, and E processing in the figure are the
same as the operations performed when a database is not responding or slows down while updating global session
information.

For details on the operations performed when a database failure occurs and the database is not responding or slows
down while updating global session information, see the operations performed when a database failure occurs (when
database is not responding or slows down) described in (2) Operations performed when a failure occurs while
updating global session information.

Table 6‒37: Operations performed when a database failure occurs and the database is not responding or
slows down

Failure
point

State of session

Impact on other requests Web application
operation MessageHTTP session on

J2EE server
Global session

information

C Not inherited Not inherited You cannot perform
operations of the relevant
HTTP sessions until a
timeout occurs by waiting
for lock release

An exception occurs
while acquiring HTTP
session#

KDJE34314-W

#
com.hitachi.software.web.dbsfo.DatabaseAccessException occurs when invoking the getSession
method in the javax.servlet.http.HttpServletRequest interface in the case of Servlet and before executing user
code in the case of JSP.

6. Database session failover functionality

225

6.5 Definitions in cosminexus.xml
Specify definitions for using the database session failover functionality in the war tag in cosminexus.xml.

The following table describes the definitions of the database session failover functionality in cosminexus.xml.

Table 6‒38: Definitions of the database session failover functionality in cosminexus.xml

Item Tag to be specified Settings

Setting of the
database session
failover
functionality

http-session-dbsfo-enabled In the unit of a Web application, set whether to enable
the database session failover functionality.

Upper limit of the
number of
HttpSession
objects

http-session-http-session-max-number Set upper limit of the number of HttpSession
objects.

Application
identifier

http-session-dbsfo-application-id Set application identifier.

Maximum size of
HTTP session
attribute
information

http-session-dbsfo-attribute-data-
size-max

Set maximum size of HTTP session attribute
information included in global session information.

Inhibiting the
database session
failover
functionality by
using extension

http-session-dbsfo-exclude-extensions If you enable the database session failover functionality
in the unit of a Web application, set extensions that
inhibit the database session failover functionality.

For details on the tags to be specified, see 2.2.6 Details of War property in the uCosminexus Application Server
Application and Resource Definition Reference Guide.

6. Database session failover functionality

226

6.6 J2EE server settings
Implement the settings of J2EE server in Easy Setup Definition file. Specify the definitions of the database session
failover functionality in the configuration tag of a logical J2EE server (j2ee-server) in the Easy Setup definition
file.

The following table describes the definitions of the database session failover functionality in Easy Setup definition
file.

Table 6‒39: Definitions of the database session failover functionality in Easy Setup definition file

Item Parameter to be specified Settings
Referen

ce
location

Setting of the database
session failover functionality

webserver.dbsfo.enabled Set in the unit of J2EE server whether to use the
database session failover functionality.

--

Specifying optional name of
DB Connector

webserver.dbsfo.connecto
r.name

Specify optional name of DB Connector to be set in
DB Connector.

For details on setting optional name of DB
Connector, see 6.9.2 Specifying optional name of DB
Connector.

--

Setting maximum size of
HTTP session attribute
information that you can
include in global session
information

webserver.dbsfo.attribut
e_data_size.max

Set maximum size of HTTP session attribute
information that you can include in global session
information.

--

Setting of functionality for
estimating the size of HTTP
session attribute information

webserver.dbsfo.check_si
ze.mode

Set whether to use functionality for estimating the
size of HTTP session attribute information.

--

Setting integrity mode webserver.dbsfo.integrit
y_mode.enabled#1

Set whether to enable integrity mode of the database
session failover functionality.

--

Setting memory used in
serialize processing

-- Consider the memory used in serialize processing
and perform tuning of JavaVM#2.

--

Setting of inhibiting the
database session failover
functionality by using
extension

webserver.dbsfo.exclude.
extensions

If you want to use the database session failover
functionality in the unit of J2EE server, set the
extensions that inhibit database session failover
functionality.

--

Setting of Inhibiting the
database session failover
functionality in the unit of
URI

webserver.dbsfo.exclude.
uris

If you want to use the database session failover
functionality in the unit of J2EE server, set the URIs
that inhibit the database session failover
functionality.

(1)

Setting refer-only requests webserver.dbsfo.session_
read_only.uris

Set URI to be treated as refer-only requests. (2)

Setting server ID addition
functionality of
HttpSession

• webserver.session.ser
ver_id.enabled

• webserver.session.ser
ver_id.value

Set server ID addition functionality of
HttpSession. Set different values as server IDs
for each replicated J2EE server.

--

Setting if pending queues are
insufficient when using the
functionality for controlling
the number of concurrent
execution threads

webserver.dbsfo.thread_c
ontrol_queue.enabled

When the functionality that controls the number of
concurrent execution threads in the unit of a Web
application is enabled, set operations to be performed
when free space in pending queues is insufficient.

--

Setting of processing of
starting a Web application
when negotiation fails

webserver.dbsfo.negotiat
ion.high_level

Set whether to continue or cancel the processing of
starting a Web application when negotiation fails.

--

6. Database session failover functionality

227

Item Parameter to be specified Settings
Referen

ce
location

Setting of exceptions thrown
when using HTTP session in
the requests targeted for
inhibiting the database
session failover functionality

webserver.dbsfo.exceptio
n_type_backcompat

Set exceptions to be thrown when using HTTP
session in the requests targeted for inhibiting the
database session failover functionality.

--

Legend:
--: Not applicable

#1
If you specify false in the webserver.dbsfo.integrity_mode.enabled parameter in the setting of integrity mode,
you must specify the webserver.session.server_id.enabled parameter and
webserver.session.server_id.value parameter in the setting of server ID addition functionality of HttpSession.

#2
For details on how to estimate the size of memory used in serialize processing, see 5.8.1 Estimating memory used in serialize
processing. For details on JavaVM tuning, see 7. Memory tuning of JavaVM in the uCosminexus Application Server System
Design Guide.

For details on the Easy Setup definition file and parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(1) Settings for inhibiting th database session failover functionality
This subsection describes how to specify a URI when inhibiting the database session failover functionality in the unit
of URI.

■ For specifying URI

Specify a URI, which includes the context path and starts with a forward slash (/). Do not include path parameter,
query, or fragment. Note that you cannot use a semicolon (;) in URI of set values.

If you want to specify multiple URIs, separate them with semicolons (;).

■ Exact match specification and prefix match specification

You can specify by using one of the following methods:

Exact match specification

The specified URI is targeted for inhibiting the database session failover functionality only if it exactly matches with
the request URI.

Specification example (in the case of Easy Setup definition file)

:
configuration
 logical-server-typej2ee-server/logical-server-type
 param
 param-namewebserver.dbsfo.exclude.uris</param-name>
 param-value/examples/test/TestServlet;/examples/test2/TestServlet2/param-
value
 /param
configuration
:

In this example, the following request URIs are targeted for inhibiting the database session failover functionality:

• http://host/examples/test/TestServlet
• http://host/examples/test/TestServlet?name=value
• http://host/examples/test/TestServlet;gsessionid=XXXXXXXXXX

Prefix match specification

If request URI and prefix match, it is targeted for inhibiting the database session failover functionality.

6. Database session failover functionality

228

Specification example (in the case of Easy Setup definition file)

:

• configuration

• logical-server-typej2ee-server/logical-server-type

• param

• param-namewebserver.dbsfo.exclude.uris/param-name

• param-value/examples/*/param-value

• /param

• configuration

:

In this example, the following request URIs are targeted for inhibiting the database session failover functionality:

• http://host/examples/test/TestServlet
• http://host/examples/dbsfo/DbsfoServlet?name=value

Note that URI specification must end with a forward slash and an asterisk (/*) in the case of prefix match
specification. For example, if you specify the following URI, it is considered for exact match specification and not for
prefix match specification.

• /examples/test*

■ Normalizing URI

URIs to be targeted for inhibiting the database session failover functionality must be specified after normalizing. If
you specify a URI that is not normalized, the KDJE34341-W message is output and the corresponding URI is not
targeted for inhibiting.

An example of normalized URI is:

• /examples/test/servlet/TestServlet

Examples of URIs that are not normalized, are as follows. These URIs are not targeted for inhibiting.

• /examples/test/jsp/../servlet/TestServlet
• /examples/test/./servlet/TestServlet

■ Mapping with URL encode

If you specify a URL encoded URI as a target for inhibiting, requests of URL encoded URL that match with the
specified URI, are targeted for inhibiting the database session failover functionality. Similarly, if you specify a URI for
which URL encoding is not performed, requests of URL, for which URL encoding is not performed, are targeted for
inhibiting the database session failover functionality.

However, if you use URI decode functionality, whether the target URL is to be targeted for inhibiting the database
session failover functionality according to URI is determined after decoding is performed. Hence, if a URL encoded
URL matches with the URI specified as a target of inhibiting, the URL is targeted for inhibiting the database session
failover functionality in the unit of URI.

The following table describes URLs that are targeted for inhibiting depending on enabled/disabled status of URI
decode functionality.

6. Database session failover functionality

229

Table 6‒40: URL that are targeted for inhibiting depending on enabled or disabled state of the URI decode
functionality

Property

set value

Request URL

URI decode function enabled URI decode function disabled

Encoded Not encoded Encoded Not encoded

Encoded Does not inhibit Does not inhibit Inhibits Does not inhibit

Not encoded Inhibits Inhibits Does not inhibit Inhibits

Legend:
Inhibits: Inhibits the database session failover functionality (the database session failover functionality is disabled).
Does not inhibit: Does not inhibit the database session failover functionality (the database session failover functionality is
enabled).
Encoded: URI that includes URL encoded string.
(Example: /examples/%61/Servlet)
Not encoded: URI that does not include URL encoded string.
(Example: /examples/a/Servlet)

For details of URI decode functionality, see 2.22 URI decode functionality in the uCosminexus Application Server Web
Container Functionality Guide.

■ Notes on URI specification

URIs that are set for inhibiting the database session failover functionality by URI, are not checked in negotiation.
Therefore, check that URIs set on each J2EE server are the same.

(2) Specifying refer-only requests
This subsection describes how to specify a URI when setting refer-only requests.

■ Specifying URI

Specify a URI that includes the context path and starts with a forward slash (/). Do not include path parameter, query,
or fragment. You can specify up to 512 characters. Note that you cannot use a semicolon (;) in URI of set values.

If you want to specify multiple URIs, separate them with semicolons (;).

■ Exact match specification and prefix match specification

You can specify by using one of the following methods:

Exact match specification

Only if the specified URI exactly matches with the request URI, it becomes a refer-only request.

Specification example (in the case of Easy Setup definition file)

:
configuration
 logical-server-typej2ee-server/logical-server-type
 param
 param-namewebserver.dbsfo.session_read_only.uris/param-name
 param-value/examples/test/TestServlet;/examples/test2/TestServlet2/param-
value
 /param
configuration
:

In this example, the following request URIs become refer-only requests:

http://host/examples/test/TestServlet
http://host/examples/test/TestServlet?name=value
http://host/examples/test/TestServlet;gsessionid=XXXXXXXXXX

Prefix match specification

6. Database session failover functionality

230

If the prefix matches with the request URI, it becomes a refer-only request.

Specification example (in the case of Easy Setup definition file)

:
<configuration>
 logical-server-typej2ee-server/logical-server-type
 param
 param-namewebserver.dbsfo.session_read_only.uris/param-name
 param-value/examples/*/param-value
 /param
configuration
:

In this example, the following request URIs become refer-only requests:

• http://host/examples/test/TestServlet
• http://host/examples/dbsfo/DbsfoServlet?name=value

Note that URI specification must end with a forward slash and an asterisk (/*) in the case of prefix match
specification. For example, if you specify the following URI, it is considered for exact match specification and not for
prefix match specification.

• /examples/test*

■ Normalizing URI

A URI that you want to make a refer-only request, must be normalized and specified. If you specify a URI that is not
normalized, the KDJE34357-W message is output and the corresponding URI does not become a refer-only request.

An example of normalized URI is:

• /examples/test/servlet/TestServlet

Examples of URIs that are not normalized, are shown below. These URIs do not become refer-only requests.

• /examples/test/jsp/../servlet/TestServlet
• /examples/test/./servlet/TestServlet

■ Mapping with URL encode

If you specify a URL encoded URI as a refer-only request, the request of URL encoded URL tjat matches with the
specified URI, becomes a refer-only request. Similarly, if you specify a URI that is not to be URL encoded, the
request of URL that is not URL encoded becomes a refer-only request.

However, if you use URI decode functionality, whether the target URL is a refer-only request according to URI is
determined after decoding is performed. As a result, if a URL encoded URL matches with the URI specified as a
refer-only request, the URL becomes a refer-only request in URI unit.

The following table describes URLs that become refer-only requests depending on enabled/disabled status of URI
decode functionality.

Table 6‒41: URLs that become refer-only requests depending on enabled/disabled status of URI decode
functionality

Property

set value

Request URL

URI decode function enabled URI decode function disabled

Encoded Not encoded Encoded Not encoded

Encoded Does not become a
refer-only request

Does not become a
refer-only request

Becomes a refer-only
request

Does not become a
refer-only request

Not encoded Becomes a refer-only
request

Becomes a refer-only
request

Does not become a
refer-only request

Becomes a refer-only
request

6. Database session failover functionality

231

Legend:
Becomes a refer-only request: The request URL becomes a refer-only request.
Does not become a refer-only request: The request URL does not become a refer-only request.
Encoded: URI that includes URL encoded string.
(Example: /examples/%61/Servlet)
Not encoded: URI that does not include URL encoded string.
(Example: /examples/a/Servlet)

For details of URI decode functionality, see 2.22 URI decode functionality in the uCosminexus Application Server Web
Container Functionality Guide.

6. Database session failover functionality

232

6.7 Web application settings
Perform the Web application settings in execution environment by using server management commands and property
file. For definition of the database session failover functionality, use WAR property files.

The tags to be specified in WAR property file map with cosminexus.xml. For details on definitions in
cosminexus.xml, see 6.5 Definitions in cosminexus.xml.

6. Database session failover functionality

233

6.8 Database settings
This section describes table creation and environment setup required for using the database session failover
functionality.

! Important note

When creating a table, if you make any changes in the template file that are not described here, the operations of the
database session failover functionality are not guaranteed.

6.8.1 Permissions required for connecting to a database
You must have permissions to operate database tables. Also, the conditions must be met. This subsection describes
permissions and conditions required for operating tables of each database. Here, a user connected to a database is
called a user connected to database.

■ In HiRDB

Here, it is assumed that the user connected to a database performs all operations related to tables used in the database
session failover functionality. The user connected to database must have the following permissions and satisfy the
following conditions:

• User must own the schema.

• User must have CONNECT permissions.

• In the schema of the user connected to a database, create tables, indexes, and stored procedures used in the
database session failover functionality.

For details on creating database tables, see 6.8.2 Creating database tables. For details on deleting database tables, see
6.11 Deleting database tables.

■ In Oracle

Here, it is assumed that the database administrator creates or deletes database tables used in the database session
failover functionality, and that the user connected to a database of the database session failover functionality performs
other usual database operations. The user connected to a database must have the following permissions and satisfy the
following conditions:

• User must have CREATE SESSION system permissions.

• In the schema of the user connected to a database, create tables, indexes, and stored procedures used in the
database session failover functionality.

For details on creating database tables, see 6.8.2 Creating database tables. For details on deleting database tables, see
6.11 Deleting database tables.

6.8.2 Creating database tables
With the database session failover functionality, you must create three types of tables in a database. The following
table describes tables to be created and reference location of creation procedure.

Table 6‒42: Tables to be created and reference locations of creation procedure

Table name Physical name in the database

Reference
location of
creation

procedure

Application information table SFO_APPLICATION_ID_APP_INFO 6.8.3

Session information storage table SFO_APPLICATION_ID_SESSIONS 6.8.4

6. Database session failover functionality

234

Table name Physical name in the database

Reference
location of
creation

procedure

Blank record information table 6.8.4SFO_APPLICATION_ID_REC_INFO

Template files for creating database tables, which are used in the database session failover functionality, are stored in
the following locations:

In Windows:
Application-Server-installation-directory\CC\sfo\sql\

In UNIX:
/opt/Cosminexus/CC/sfo/sql/

There are two types of template files for table creation for each database used. The following table describes mapping
of databases to be used, files, and types of tables to be created.

Table 6‒43: Template files for table creation and tables to be created

Database to
be used Template file

Types of table to be created

Application
information table

Session
information

storage table

Blank record
information table

HiRDB hirdb_create_apptbl.sql Y --

hirdb_create_sessiontbl.sql -- Y

Oracle oracle_create_apptbl.sql Y --

oracle_create_sessiontbl.sql -- Y

Legend:
Y: Can be created
--: Cannot be created

The following subsections describe details on template files for each used database.

Register the creator of the table in the user set in DB Connector.

6.8.3 Creating Application information table
Application information table stores settings related to the database session failover functionality set in a Web
application.

The procedures for creating the application information table are as follows:

1. Copy the template file to any location.
A template file is provided as an SQL file used for creating a table. The storage locations of template files for each
database used are:

• Storage location of template files when using HiRDB
In Windows: Application-Server-installation-directory\CC\sfo\sql\hirdb_create_apptbl.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/hirdb_create_apptbl.sql

• Storage location of template files when using Oracle
In Windows: Application-Server-installation-directory\CC\sfo\sql\oracle_create_apptbl.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/oracle_create_apptbl.sql

2. Edit the template file.
Edit the template file in accordance with the preference information of a Web application and create an SQL file
used for creating a table.

6. Database session failover functionality

235

The following table describes change locations and change contents in a template file.

Table 6‒44: Change locations and change contents in a template file

Change location
Change target Change contents

HiRDB Oracle

• First line

• Fifth line

• First line

• Fifth line

APPLICATION_ID Change the application identifier of the
application to be used.

None • First line

• Fifth line

SCHEMA_NAME Change the schema name of user connected to
database.

Sixth line Sixth line HTTP_SESSION_NO Change the number of global session information
stored in the database.

3. Execute the created SQL file for table creation.
For executing the SQL file, use SQL Executer when using HiRDB and SQL*Plus when using Oracle.

6.8.4 Creating session information storage tables and blank record
information tables

Session information storage table stores global session information. The blank record information table manages the
unused records in the session information storage table. The session information storage table and blank record
information table are concurrently created by executing one SQL file for table creation.

The procedures for creating the session information storage table and blank record information table is as follows:

1. Copy the template file to any location.
A template file is provided as an SQL file used for creating a table. The storage locations for template files for
each database used are:

• Storage location of template files when using HiRDB:
In Windows: Application-Server-installation-directory\CC\sfo\sql
\hirdb_create_sessiontbl.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/hirdb_create_sessiontbl.sql

• Storage location of template files when using Oracle
In Windows: Application-Server-installation-directory\CC\sfo\sql
\oracle_create_sessiontbl.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/oracle_create_sessiontbl.sql

2. Edit the template file.
Edit the template file in accordance with the preference information of a Web application and create an SQL file
used for creating a table.
The following table describes change locations and change contents for each database used in a template file.

Table 6‒45: Change locations and change contents in a template file

Change location
Change target Change contents

HiRDB Oracle

• First line

• 13th line

• 18th line

• 19th line

• 23rd line

• 48th line

• 50th line

• 57th line

• First line

• 13th line

• 18th line

• 19th line

• 23rd line

• 49th line

• 51st line

• 58th line

APPLICATION_ID Change the application identifier of the application
to be used.

6. Database session failover functionality

236

Change location
Change target Change contents

HiRDB Oracle

• 60th line

• 74th line

• 61st line

• 74th line

APPLICATION_ID Change the application identifier of the application
to be used.

None • First line

• 13th line

• 18th line

• 19th line

• 23rd line

• 49th line

• 51st line

• 58th line

• 60th line

• 74th line

SCHEMA_NAME Change the schema name of user connected to
database.

Seventh line None ATTRIBUTE_DATA_SIZE_MAX Change the maximum size (units: bytes) of HTTP
session attribute information.

74th line 74th line HTTP_SESSION_NO Change the amount of global session information
stored in the database.

3. Execute the created SQL file for table creation.
For executing the SQL file, use SQL Executer when using HiRDB and SQL*Plus when using Oracle.

6.8.5 Environment settings of database
If you want to use the database session failover functionality, set a timeout in database (for HiRDB, UAP processing
time monitoring functionality).

If the database session failover functionality is enabled, table records of the database that are targeted for operation
during functionality processing, are exclusively controlled. As a result, when problems such as a failure on a J2EE
server host occur, records targeted for operation might remain in exclusion state. In this case, creation of new HTTP
sessions or connection between J2EE servers and database might fail.

If you set a timeout, such situations are detected, the transaction is rolled back, and you return to the state before
records are exclusively controlled when a timeout occurs. Therefore, there is no impact on the system.

For preventing malfunctioning, set a timeout value for the database that is greater than the timeout value set in DB
Connector. For details on database settings and procedure, see the uCosminexus Application Server HiRDB UAP
Development Guide when using HiRDB and Oracle manuals when using Oracle.

The following table describes the processing in which records are exclusively controlled, tables targeted for operation
in the processing, impact on the system when a failure occurs on a J2EE server during a processing, and the messages
are output.

Table 6‒46: Processing in which records are exclusively controlled and impact on the system when a
failure occurs on a J2EE server during a processing

Sr.
No
.

Processing that
exclusively controls

records

Table targeted for
operation Impact on the system when a failure occurs Output message

1 Negotiation processing
when starting a Web
application

Application
information table

Because application negotiation fails, the Web
application that uses the database session failover
functionality fails to start.

Not output

2 Processing of creating
global session information

Blank record
information table

The system can only create a total of 90% of the
HTTP sessions. After this, HTTP session creation
or deletion processing might fail.

• When integrity
mode is disabled:
KDJE34368-W

6. Database session failover functionality

237

Sr.
No
.

Processing that
exclusively controls

records

Table targeted for
operation Impact on the system when a failure occurs Output message

2 Processing of creating
global session information

Blank record
information table

The system can only create a total of 90% of the
HTTP sessions. After this, HTTP session creation
or deletion processing might fail.

• When integrity
mode is enabled:
KDJE34312-W

3 Processing of deleting
global session information

Blank record
information table

The system can only create a total of 90% of the
HTTP sessions. After this, HTTP session creation
or deletion processing might fail.

• When integrity
mode is disabled:
KDJE34377-E

• When integrity
mode is enabled:
KDJE34312-W

4 Processing of updating
global session information

Session
information
storage table

The number of HTTP sessions that you can create
in the system reduces by one. After this, if you
receive a request that operates the reduced HTTP
session, HTTP session acquisition fails.

• When integrity
mode is disabled:
KDJE34368-W

• When integrity
mode is enabled:
KDJE34312-W

5 Processing of monitoring
validity of global session
information

Application
information table

Validity of global session information in the
database is not monitored.

• When integrity
mode is disabled:
Do not execute
exclusion
processing

• When integrity
mode is enabled:
KDJE34336-W

6. Database session failover functionality

238

6.9 DB Connector settings
When using the database session failover functionality, create a new DB Connector apart from the one used in an
application. You need to create one DB Connector for each J2EE server. Use the same DB Connector for all
applications that use the database session failover functionality.

For details on the procedures from importing to starting a DB Connector, see 4.2 Settings for connecting to a database
in the uCosminexus Application Server Application Setup Guide.

This section describes the following settings required for DB Connector to be used in the database session failover
functionality:

• Specifying the transaction support level

• Specifying an optional name of DB Connector

• Environment settings of DB Connector

6.9.1 Setting transaction support level
With the database session failover functionality, you must set transaction support levels. Specify NoTransaction
in the transaction-support tag under the hitachi-connector-property-resourceadapter-
outbound-resourceadapter tag in the Connector property file.

6.9.2 Specifying optional name of DB Connector
With the database session failover functionality, you must specify an optional name for DB Connector. By default
COSMINEXUS_SFO_DBCONNECTOR is specified as the optional name for DB Connector.

If you want to change the name to be specified from the default name, specify any name in the optional-name tag
under the hitachi-connector-property-resourceadapter-outbound-resourceadapter-
connection-definition-connector-runtime-resource-external-property tag in Connector
property file. For details on specifying optional name of DB Connector, see 2.6 Assigning optional name to Enterprise
Bean or J2EE server (user-specified name space functionality) in the uCosminexus Application Server Common
Container Functionality Guide.

You must also change the optional name of DB Connector to be defined in a J2EE server to the same value. For details
on specifying the optional name of DB Connector for J2EE servers, see 6.6 J2EE server settings.

6.9.3 Environment settings of DB Connector
The database session failover functionality is used for implementing 24-hour continuous operation. In order to ensure
that there is no impact on the system even if a failure occurs in a database, you must perform settings such as
connection failure detection for implementing continuous operation. Consider the time required for recovery and set
the value.

For details on connection failure detection, see 3.15.1 Detecting a connection failure in the uCosminexus Application
Server Common Container Functionality Guide.

For details on properties to be set in DB Connector and setting methods, see 4.2.2 Defining properties of DB
Connector in the uCosminexus Application Server Application Setup Guide.

This subsection describes the properties required to be set in a DB Connector.

(1) Properties to be set in config-property tag
This subsection describes the properties set in config-property for each database used. Settings of the database session
failover functionality are not required for the properties that are not described in this section.

6. Database session failover functionality

239

! Important note

If you want to use the database session failover functionality, you must set statement pooling. Statement pooling greatly
affects memory usage of J2EE servers. Therefore, consider the connection pooling settings also and determine the value to
be specified in the PreparedStatementPoolSize property.

For details on statement pooling, see 3.14.4 Statement pooling in the uCosminexus Application Server Common Container
Functionality Guide. For details on connection pooling, see 3.14.1 Connection pooling in the uCosminexus Application
Server Common Container Functionality Guide. For details on the values that you can specify in
PreparedStatementPoolSize, see 4.1.10 Properties that you can specify in config-property tag to be set in DB Connector in
the uCosminexus Application Server Application and Resource Definition Reference Guide. For details on memory size to
be used per statement, see JDBC related documents.

(a) Properties to be set when using HiRDB

The following table describes properties to be set when using HiRDB.

Table 6‒47: Properties to be set when using HiRDB

Value to be specified in the
config-property-name tag

Value to be specified in the
config-property-type

tag

Contents or value to be
specified in the config-
property-value tag

Mandatory/
Optional

description java.lang.String Specify connection addition
information required for connecting
to a database.

Mandatory

DBHostName java.lang.String Specify host name of HiRDB to be
connected.

Mandatory

loginTimeout java.lang.Integer Specify maximum waiting time
(seconds) for establishing physical
connection with HiRDB server
when acquiring Connection objects
by using the getConnection
method.

Optional

LONGVARBINARY_Access java.lang.String Specify LOCATOR. Mandatory

PreparedStatementPoolSize java.lang.Integer Specify the numeric value
determined by 30 x number-of-
Web-applications -on-a-J2EE-
server-that-use -the-database-
session-failover -functionality.

Mandatory

CancelStatement java.lang.Boolean Specify true. Mandatory

logLevel java.lang.String Specify any level for the levels of
log trace output by DB Connector.

Optional

Legend:
Mandatory: Must be specified
Optional: Specify if required

! Important note

When using the database session failover functionality, if you set the following client environment definitions, you cannot
continue normal operations. Use the default values as is.

• PDISLLVL (Default value: 2)

• PDFORUPDATEEXLOCK (Default value: NO)

For details on settings of client environment definitions, see the uCosminexus Application Server HiRDB UAP Development
Guide.

(b) Properties to be set when using Oracle

The following table describes properties to be set when using Oracle.

6. Database session failover functionality

240

Table 6‒48: Properties to be set when using Oracle

Value to be specified in the
config-property-name tag

Value to be specified the in the
config-property-type tag

Contents or value to be
specified in the config-
property-value tag

Mandatory/
Optional

databaseName java.lang.String Specify a specific database name
(SID) on Oracle server.

Mandatory#

serverName java.lang.String Specify host name or IP address of
Oracle server.

Mandatory#

portNumber java.lang.Integer Specify a port number that listens
to requests from Oracle server.

Mandatory#

url java.lang.String Specify JDBC URL required by
Oracle JDBC Thin Driver for
connecting to a database.

Mandatory#

loginTimeout java.lang.Integer Specify a timeout (units seconds)
for connection trial to database.

Optional

PreparedStatementPoolSize java.lang.Integer Specify the numeric value
determined by 30 x <number of
Web applications on a J2EE server
that uses the database session
failover functionality>.

Mandatory

logLevel java.lang.String Specify any level for the levels of
log trace output by DB Connector.

Optional

Legend:
Mandatory: Must be specified
Optional: Specify if required

#
Specify all values of databaseName, serverName, and portNumber, or specify the value of url.

(2) Properties to be specified in property tag
The following table describes the properties to be set in the property tag. Settings of the database session failover
functionality are not required for the properties that are not described in this section.

Table 6‒49: Properties to be specified in the property tag

Value to be specified in
the property-name

tag

Value to be specified
in the property-

type tag

Value of the
property-default-

value tag

Contents or value to be
specified in the property-

value tag

Mandatory
/Optional

MaxPoolSize int 10 Specify maximum value of
connection pool#1.

Mandatory

MinPoolSize int 10 Specify minimum value of
connection pool#1.

Mandatory

LogEnabled boolean true Specify true. Mandatory

User#2 String -- Specify a user name. Mandatory

Password String -- Specify a password. Mandatory

ValidationType int 1 Specify 1. Mandatory

RetryCount int 0 Specify connection acquisition
retry count.

Specify a value, in accordance
with the database settings and
network environment that enables

Optional

6. Database session failover functionality

241

Value to be specified in
the property-name

tag

Value to be specified
in the property-

type tag

Value of the
property-default-

value tag

Contents or value to be
specified in the property-

value tag

Mandatory
/Optional

RetryCount int 0 recovery of a database when a
failure occurs.

Optional

RetryInterval int 10 Specify connection acquisition
retry interval.

Specify a value, in accordance
with the database settings and
network environment that enables
recovery of a database when a
failure occurs.

Optional

RequestQueueEnable boolean true Specify true. Mandatory
#3

RequestQueueTimeou
t

int 30 Specify maximum value that can
stop the queue waiting for
connection acquisition when
connections exhaust.#4

Mandatory
#3

WatchEnabled boolean true Specify whether you want to
enable connection pool
monitoring.

Optional

WatchInterval int 30 Specify connection pool
monitoring interval.

Optional

WatchThreshold int 80 Specify threshold value that
monitors connection pool use
status.

Optional

WatchWriteFileEnab
led

boolean true Specify true. Optional

Legend:
Mandatory: Must be specified
Optional: Specify if required
--: None

#1
Calculate the value of the connection pool by using the formulas given below. Set the same value as the maximum
and minimum value of the connection pool.

If you set number of concurrent execution threads in Web application unit or URL unit:
Sum of number of concurrent execution threads in a Web application that uses the database session failover
functionality on a J2EE server + 2

If you set number of concurrent execution threads in J2EE server unit,
Number of concurrent execution threads in J2EE server + 2
If a J2EE server receives requests exceeding the maximum value of connection pools, those requests go to the
state of waiting in a queue for acquiring connection, when connections exhaust.

#2
Register the creator of the table in the user set in DB Connector.

#3
These settings are not required if the functionality that controls the number of concurrent execution threads in the
Web application unit, is disabled.

#4
Specify a value in the following range.

If you are using Web server integrated functionality,
1 < RequestQueueTimeout < A-timeout-for-receiving-data-from-the-Web-container-set-at-redirector-side

6. Database session failover functionality

242

The timeout for receiving data from the Web container set at redirector side is the value specified in the
worker. worker- name.receive_timeout key in the worker definition file.

If you are using in-process HTTP server functionality,
1 < RequestQueueTimeout

6. Database session failover functionality

243

6.10 Changing settings related to the database session
failover functionality

This section describes the changes in settings related to the database session failover functionality. With the database
session failover functionality, store preference information such as application information and global session
information in database tables. When changing the settings of a once started Web application to check that there is no
error in settings by using negotiation processing executed when starting a Web application, you must initialize the
preference information of a Web application stored in a database. For details on negotiation processing, see 6.4.1
Processing when starting an application.

The following figure shows the flow of changing settings related to the database session failover functionality.

Figure 6‒13: Flow of changing settings related to the database session failover functionality

Points to be considered when changing settings related to the database session failover functionality are:

• Notes related to scope of stopping when changing settings
If you want to change the following settings, stop all other replicated J2EE servers or applications.

• Setting integrity mode

• Setting the amount of global session information in the database

• Notes related to changing the maximum size of HTTP session attribute information
If you change the maximum size of HTTP session attribute information to a smaller value, when you inherit the
global session information created before the change, the maximum size after the change might be exceed. If the
maximum size exceeds, the KDJE34320-E message is output while serializing attribute information and global
session information is not stored in the database. Therefore, if you change the maximum size of HTTP session

6. Database session failover functionality

244

attribute information to a smaller value, destroy the HTTP session. For details on destroying an HTTP session, see
6.10.3 Deleting global session information (destroying HTTP session).

This section describes the changes in settings of a J2EE server and an application, and initialization of a database.

Reference note
For starting and stopping an application, use server management commands or the management portal. For details on
starting an application, see cjstartapp (starting a J2EE application) in the uCosminexus Application Server Command
Reference Guide. For details on stopping an application, see cjstopapp (stopping a J2EE application) in the uCosminexus
Application Server Command Reference Guide. For details on operating the management portal, see 12.3 Managing a J2EE
application in the uCosminexus Application Server Management Portal User Guide.

6.10.1 Changing settings of a J2EE server and application
This subsection describes the procedure for changing settings of a J2EE server and a Web application. If you change
the settings, you must initialize the information stored in the database. For details on initialization of the information
stored in a database, see 6.10.2 Initializing a database table.

(1) Stopping an application and changing settings
For changing settings of an application, stop a J2EE application and change the settings of a Web application.

After completing changes in the settings of Web applications on one J2EE server, change the settings of Web
applications on other replicated J2EE servers. By changing the settings of the same Web applications one by one for
replicated J2EE servers, you can change the settings of the entire system without stopping the entire system.

For details on setting items, see 6.5 Definitions in cosminexus.xml and for details on changing the settings of a Web
application, see 6.7 Web application settings.

(2) Stopping a J2EE server and changing settings
For changing the J2EE server settings, execute the following procedures:

1. Stop J2EE applications.
Stop all J2EE applications on the J2EE server.

2. Stop the J2EE server.
Stop the J2EE server.

3. Change the settings of J2EE server in Easy Setup definition file.
Change the settings in the Easy Setup definition file. For details on setting items on the J2EE server, see 6.6 J2EE
server settings.

4. Change settings of other replicated J2EE servers.
Serially execute steps 1 to 3 for other replicated J2EE servers and specify the same changes to the settings of all
replicated J2EE servers.

6.10.2 Initializing a database table
If you change the information used in a Web application or the information related to a Web application, you must
initialize the preference information of the Web application stored in the database. This subsection describes the
procedures for initializing preference information stored in the database. This subsection also describes the procedures
for changing the amount of global session information in a database and changing the maximum size of HTTP session
attribute information in a database.

(1) Initializing preference information stored in a database
If you change the settings of a once started Web application, you must initialize the preference information stored in
the database.

This subsection describes the procedure for initializing preference information stored in a database.

6. Database session failover functionality

245

1. Copy the template file to any location.
A template file is provided as an SQL file used for initializing the preference information stored in a database. The
storage locations of template files for each database used are:

• Storage location of template files when using HiRDB
In Windows: Application-Server-installation-directory\CC\sfo\sql\hirdb_reset_apptbl.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/hirdb_reset_apptbl.sql

• Storage location of template files when using Oracle
In Windows: Application-Server-installation-directory\CC\sfo\sql\oracle_reset_apptbl.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/oracle_reset_apptbl.sql

2. Edit the template file.
Edit the template file in accordance with the preference information of the Web application and create an SQL file
for initializing the preference information stored in the Web application. The following table describes change
locations and change contents in template files.

Table 6‒50: Change locations and change contents in template files

Change location Change target Change contents

First line APPLICATION_ID Change application identifier of the application to be used.

3. Execute the SQL file for initializing the preference information stored in the created database.
For executing the SQL file, use SQL Executer when using HiRDB and SQL*Plus when using Oracle.

(2) Changing the amount of global session information in a database
Change the amount of global session information in the database in accordance with the upper limit of the number of
HTTPsession objects. However, if negotiation processing executed when starting an application fails, the amount of
global session information in the database and the setting of upper limit of the number of HTTPsession objects can be
different if you have set to continue the processing of starting a Web application.

This subsection describes the procedure for changing the amount of global session information in a database. If you
change the amount of global session information in a database, all session information in the database is deleted.

1. Stop the J2EE applications and J2EE servers.
Stop all applications in the J2EE server and all replicated J2EE servers.

2. Copy the template file to any location.
A template file is provided as an SQL file for changing the amount of global session information in a database.
The storage locations of template files for each used database are:

• Storage location of template files when using HiRDB
In Windows: Application-Server-installation-directory\CC\sfo\sql
\hirdb_change_session_num.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/hirdb_change_session_num.sql

• Storage location of template files when using Oracle
In Windows: Application-Server-installation-directory\CC\sfo\sql
\oracle_change_session_num.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/oracle_change_session_num.sql

3. Edit the template file.
Edit the template file in accordance with the preference information of the Web application and create an SQL file
for changing the amount of global session information in the database. The following table describes change
locations and change contents in template files.

Table 6‒51: Change locations and change contents in template files

Change location
Change target Change contents

HiRDB Oracle

• First line • First line APPLICATION_ID Change the application identifier of the
application to be used.

6. Database session failover functionality

246

Change location
Change target Change contents

HiRDB Oracle

• Second line

• Third line

• Sixth line

• Seventh line

• Second line

• Third line

• Sixth line

APPLICATION_ID Change the application identifier of the
application to be used.

• Fourth line

• Seventh line

• Fourth line

• Sixth line

HTTP_SESSION_NO Change the amount of global session
information stored in the database.

4. Execute the SQL file created for changing the amount of global session information in the database.
For executing the SQL file, use SQL Executer when using HiRDB and SQL*Plus when using Oracle.

(3) Changing the maximum size of HTTP session attribute information in a database (only in
the case of HiRDB)

If you change the maximum size of HTTP session attribute information that you can include in global session
information that is set in a Web application after creating a session information storage table, you must change the
maximum size of the HTTP session attribute information in the database. Set a value for the maximum size of HTTP
session attribute information in the database that is greater than the maximum size of HTTP session attribute
information that you can include in the global session information set in a Web application. For details on setting the
maximum size of HTTP session attribute information that you can include in global session information set in a Web
application, see 6.5 Definitions in cosminexus.xml.

This subsection describes the procedures for changing the maximum size of HTTP session attribute information in a
database. These procedures are required only when using HiRDB.

1. Stop the J2EE applications and J2EE servers.
Stop all applications in the J2EE server and all replicated J2EE servers.

2. Copy the template file to any location.
A template file is provided as an SQL file for changing maximum size of HTTP session attribute information in a
database. The storage locations of template file are:
In Windows: Application-Server-installation-directory\CC\sfo\sql
\hirdb_change_attributes_size.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/hirdb_change_attributes_size.sql

3. Edit the template file.
Edit the template file in accordance with preference information of a Web application and create an SQL file used
for changing the maximum size of HTTP session attribute information in a database. The following table
describes the change locations and change contents in template files.

Table 6‒52: Change locations and change contents in template files

Change
location Change target Change contents

First line APPLICATION_ID Change the application identifier of the application
to be used.

Second line ATTRIBUTE_DATA_SIZE_MAX Change size (units: bytes) of the column that stores
HTTP session attribute information.

4. Execute the SQL file created for changing the amount of global session information in a database.
For executing the SQL file, use SQL Executer.

6.10.3 Deleting global session information (destroying HTTP sessions)
You might have to destroy HTTP sessions existing in a system when upgrading the version of an application during
system operation.

6. Database session failover functionality

247

With the database session failover functionality, because global session information is stored in a database, you cannot
destroy an HTTP session with stopping the J2EE application or J2EE sever. Destroy an HTTP session by deleting
global session information from the database.

Execute the following procedures for deleting global session information:

1. Stop the J2EE applications.
Stop all J2EE applications on the J2EE server.

2. Delete global session information in the database.
Delete global session information in the procedures for changing global session information in a database. At this
time, do not change the amount of global session information and execute only the change procedure. For details
on the change procedure, see 6.10.2(2) Changing the amount of global session information in a database.

3. Start the J2EE application.

6. Database session failover functionality

248

6.11 Deleting database tables
When changing the settings of an application that uses the database session failover functionality, deleting database
tables might be required. This section describes deleting database tables.

The following table describes tables to be deleted and reference locations for the procedure of deleting.

Table 6‒53: Tables to be deleted and reference location of the procedure of deleting

Table name Physical name in a database

Reference
location for the
procedure of

deleting

Application information table SFO_APPLICATION_ID_APP_INFO 6.11.1

Session information storage table SFO_APPLICATION_ID_SESSIONS 6.11.2

Blank record information table SFO_APPLICATION_ID_REC_INFO

Template files for deleting database tables that are used in the database session failover functionality, are stored in the
following location:

In Windows:
Application-Server-installation-directory\CC\sfo\sql\

In UNIX:
/opt/Cosminexus/CC/sfo/sql/

There are two types of template files for table deletion for each database used. The following table describes mapping
of databases to be used, files, and types of tables to be deleted.

Table 6‒54: Template files for table deletion and tables to be deleted

Database to
be used Template file

Types of table to be deleted

Application
information table

Session
information

storage table

Blank record
information table

HiRDB hirdb_delete_apptbl.sql Y -- --

hirdb_delete_sessiontbl.sql -- Y Y

Oracle oracle_delete_apptbl.sql Y -- --

oracle_delete_sessiontbl.sql -- Y Y

Legend:

Y: Can be deleted

--: Cannot be deleted

The following subsection describes details on template files for each database used.

6.11.1 Deleting application information tables
Application information tables store settings related to the database session failover functionality set in a Web
application.

The procedures for deleting the application information table are as follows:

1. Copy the template file to any location.
A template file is provided as an SQL file used for deleting a table. The storage locations of the template files for
each used database are:

6. Database session failover functionality

249

• Storage location of template files when using HiRDB
In Windows: Application-Server-installation-directory\CC\sfo\sql\hirdb_delete_apptbl.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/hirdb_delete_apptbl.sql

• Storage location of template files when using Oracle
In Windows: Application-Server-installation-directory\CC\sfo\sql\oracle_delete_apptbl.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/oracle_delete_apptbl.sql

2. Edit the template file.
Edit the template file in accordance with the preference information for a Web application and create an SQL file
used for deleting a table. The following table describes change locations and change contents in a template file.

Table 6‒55: Change locations and change contents in a template file

Change location
Change target Change contents

HiRDB Oracle

First line First line APPLICATION_ID Change the application identifier of the application
to be used.

None First line SCHEMA_NAME Change the schema name of user connected to
database.

3. Execute the SQL file created for table deletion.
For executing the SQL file, use SQL Executer when using HiRDB and SQL*Plus when using Oracle.

6.11.2 Deleting session information storage table and blank record
information table

The session information storage table stores global session information. The blank record information table manages
the unused records in the session information storage table.

This subsection describes the procedures for deleting the session information storage table and blank record
information table.

1. Copy the template file to any location.
A template file is provided as an SQL file used for deleting a table. The storage locations of template file for each
used database are:

• Storage location of template files when using HiRDB
In Windows: Application-Server-installation-directory\CC\sfo\sql
\hirdb_delete_sessiontbl.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/hirdb_delete_sessiontbl.sql

• Storage location of template files when using Oracle
In Windows: Application-Server-installation-directory\CC\sfo\sql
\oracle_delete_sessiontbl.sql
In UNIX: /opt/Cosminexus/CC/sfo/sql/oracle_delete_sessiontbl.sql

2. Edit the template file.
Edit the template file in accordance with preference information of a Web application and create an SQL file used
for deleting a table. The following table describes change locations and change contents in template files.

Table 6‒56: Change locations and change contents in template files

Change location
Change target Change contents

HiRDB Oracle

• First line

• Second line

• Third line

• First line

• Second line

• Third line

APPLICATION_ID Change the application identifier of the application to
be used.

6. Database session failover functionality

250

Change location
Change target Change contents

HiRDB Oracle

• Fourth line • Fourth line APPLICATION_ID Change the application identifier of the application to
be used.

None • First line

• Second line

• Third line

• Fourth line

SCHEMA_NAME Change the schema name of user connected to the
database.

3. Execute the SQL file created for table deletion.
For executing the SQL file, use SQL Executer when using HiRDB and SQL*Plus when using Oracle.

6. Database session failover functionality

251

6.12 Precautions to be taken when using database
session failover functionality

This section describes the points to be considered when using the database session failover functionality.

• If you operate the contents of tables used in the database session failover functionality, you cannot correctly keep
the system information and hence you cannot continue the normal operation.
You can execute only the following operations as the operations that accompany changes made in the tables in a
database, which are to be used in the database session failover functionality. Even when executing the following
operations, follow the procedures described in reference locations.

• Changing settings of the database session failover functionality (see 6.10)

• Initializing a table (see 6.10.2)

• Destroying an HTTP session (see 6.10.3)

Do not execute any other operations.

• If the size of HTTP session attribute information exceeds maximum size, the information of the HTTP session is
not replicated in the database.

6. Database session failover functionality

252

7 EADs Session Failover
Functionality
This chapter describes an overview of the EADs session failover functionality.

253

7.1 Organization of this chapter
This section describes the EADs session failover functionality.

If you use this functionality, session information that is being executed in an application is stored on an EADs server.
The stored session information is passed to another J2EE server when a failure occurs on a Web server or a J2EE
server. As a result, when a failure occurs, even if a request is transferred to another J2EE server, you can continue
operations in the state before failure.

For details on types, functionality differences, prerequisites, memory estimation, and precautions of the session
failover functionality, see 5. Inheriting session information between J2EE servers.

The following table describes the organization of this chapter:

Table 7‒1: Organization of this chapter (EADs session failover functionality)

Category Title Reference location

Description Preparations for using the EADs session failover functionality 7.2

Processing implemented in the EADs session failover functionality 7.3

Implementation Definitions in cosminexus.xml 7.4

Setup J2EE server settings 7.5

Preparations for the EADs server 7.6

Changing settings related to the EADs session failover functionality 7.7

Operation Deleting data on the EADs server 7.8

Procedures for the log analysis that uses the performance analysis trace 7.9

Performing the log output of EADs operations 7.10

#
Precautions are described in the section 5.9 Precautions.

7. EADs Session Failover Functionality

254

7.2 Preparations for using the EADs session failover
functionality

This section describes the application procedures for using the EADs session failover functionality. The section also
describes the following settings on the systems on which the EADs session failover functionality is to be used:

• Timeout settings

• Settings of number of concurrent connections, number of concurrent executions, and connection pool size

7.2.1 Application procedures
This subsection describes the preparations for setting up the required environment and various settings for using the
EADs session failover functionality. The following figure describes the application procedure of the EADs session
failover functionality:

Figure 7‒1: Application procedure (the EADs session failover functionality)

Perform the preparations for setting up the environment and various settings in accordance with the application
procedures described above and then start a J2EE application.

(1) Preparations for setting up the environment
The following table describes items to be implemented as preparations for building the environment when using the
EADs session failover functionality, implementation contents, and reference locations:

7. EADs Session Failover Functionality

255

Table 7‒2: Items to be implemented as preparations for building the environment when using the EADs
session failover functionality, implementation contents, and reference locations

Imple
mentat

ion
order

Implementation item Implementation contents Reference location

1 Confirming prerequisites Confirm prerequisite configuration and settings. 5.4

2 Estimating the size of HTTP session
attribute information

Estimate the size of HTTP session attribute
information. The estimated value is required for
environment settings of the EADs server.

5.8.2

(2) Settings of the EADs session failover functionality
The following table describes contents and reference locations of the settings of the EADs session failover
functionality:

Table 7‒3: Setting contents and reference locations of the EADs session failover functionality

Settin
g

order
Setting item Setting contents Reference

location

1 J2EE server settings Perform the following settings:

• Settings of the EADs session failover functionality

• Settings of the EADs client

• Settings of the container extension library

7.5

2 Web application settings# Perform the following settings:

• Settings of the EADs session failover functionality
(for a Web application)

• Settings of application identifier

• Settings of the EADs session failover inhibition
functionality

• Settings of refer-only requests

7.4

#
Perform Web application settings in the development environment.

(3) Preparations for the EADs server
The following table describes implementation contents and reference locations of the items to be implemented as
preparations of the EADs server when using the EADs session failover functionality:

Table 7‒4: Implementation contents and reference locations of the items to be implemented as
preparations of the EADs server

Imple
mentat

ion
order

Implementation item Implementation contents Reference
location

1 Setting up the EADs server environment • Use the definition file provided by EADs and set
up the EADs server.

• Place the JAR file that executes the EADs session
failover functionality processing on the EADs
server.

7.6.1

2 Starting the EADs server Start the EADs server after setting up the environment
of the EADs server.

7.6.2

7. EADs Session Failover Functionality

256

Imple
mentat

ion
order

Implementation item Implementation contents Reference
location

3 Creating a cache Create application information cache and session
information cache that are to be used in the EADs
session failover functionality.

7.6.3

4 Unlocking a clusters Unlock EADs clusters in order to receive requests
from the EADs client.

7.6.4

7.2.2 Setting up a timeout
To use the EADs session failover functionality, you need to perform tuning of the entire system including the timeout
to be set for EADs clients and EADs servers. This section describes the points for which a timeout can be set in a
system on which the EADs session failover functionality is used. It also describes the guidelines for setting up a
timeout.

For details on performance tuning of a system, see 7. Memory tuning of JavaVM or 8. Performance tuning (J2EE
application execution infrastructure) in the uCosminexus Application Server System Design Guide.

(1) Points for which a timeout can be set
The following figure describes the points for which a timeout can be set in a system on which the EADs session
failover functionality is used:

7. EADs Session Failover Functionality

257

Figure 7‒2: Points for which a timeout can be set (inheriting a session)

Table 7‒5: Timeout contents to be set in setting points

Setti
ng

point
Timeout setting location Timeout contents Operation when a timeout occurs

1 Redirector Timeout for the time from the moment
redirector sends a request to a J2EE
server until it is received.

Execution threads and connections of the
Web server are released and an error is
reported to the Web browser. However,
processing on the J2EE server continues.

2 Web application Timeout for the time from the moment a
method in a servlet or a JSP is invoked
until it ends.

Methods running on the J2EE server are
forcefully canceled. If cancellation is
successful, an exception is thrown to the
servlet or the JSP. However, EADs client
processing is not targeted for method
cancellation.

7. EADs Session Failover Functionality

258

Setti
ng

point
Timeout setting location Timeout contents Operation when a timeout occurs

3 EADs client Specifying in the
webserver.eads
sfo.eads.conne
ction.timeout
property (Easy Setup
definition file)

Timeout for the time of confirming
connection to the EADs server.

The EADs client throws an exception to
the EADs session failover functionality.

4 Specifying in the
webserver.eads
sfo.eads.conne
ction.timeout
property (Easy Setup
definition file)#

Timeout for the time from the moment a
request is sent to the EADs server until
it is received.

The EADs client throws an exception to
the EADs session failover functionality.
However, processing on the EADs server
continues.

5 EADs
server

Specifying in the
eads.connectio
n.timeout
parameter (EADs
server definition file)

Timeout for the time of confirming
connection to other EADs servers
existing in the EADs cluster.

An exception is thrown to the EADs
session failover functionality through the
EADs client.

6 Specifying in the
eads.connectio
n.timeout
parameter# (EADs
server definition file)

Timeout for the time from the moment a
request is sent to other EADs server
existing in the EADs cluster until it is
received.

An exception is thrown to the EADs
session failover functionality through the
EADs client. However, processing on the
other EADs server continues.

Set a timeout for the time of confirming connection and a timeout for the time from the moment a request is sent until it is received,
in the same property or parameter. However, separate timeouts are set for the time of confirming connection and for the time from the
moment a request is sent until it is received. A timeout is not set for the total time of confirming connection and from the moment a
request is sent until it is received.

(2) Timeout settings recommended for the EADs session failover functionality
We recommend that you set timeout values depending on your closeness to the invocation source (Web browser side)
(the closer you are, the higher the value), in the same way as when you do not use the EADs session failover
functionality. The following table describes the timeout settings recommended in the case of Figure 7-2:

Table 7‒6: Recommended timeout settings

Setting
point Recommended timeout setting Impact if you do not set the recommended timeout setting

1 A value larger than point 2 + (point 3 +
point 4) 2

If you specify a value that is smaller than the recommended value, a timeout
might occur on redirector before processing of the request. This is stored in
the J2EE server queue, and ends.

2 A value smaller than point 1, and larger
than point 3 + point 4

If you specify a value that is smaller than the recommended value, the
method might be canceled before processing of the servlet or JSP ends.

3 - 6 # --

Legend:
--: Not applicable

#
For the recommended timeout settings for setting points 3 to 6, see the Elastic Application Data store User Guide.

7.2.3 Settings of number of concurrent connections, number of
concurrent executions, and connection pool size

For using the EADs session failover functionality, you need to perform tuning of the entire system including the
number of maximum concurrent connections, number of maximum concurrent executions, and connection pool size to

7. EADs Session Failover Functionality

259

be set for EADs clients and EADs servers. This section describes the points for which the number of concurrent
connections, number of concurrent executions, and connection pool size can be set in a system on which the EADs
session failover functionality is used.

(1) Points for which the number of concurrent connections, number of concurrent executions,
and connection pool size can be set

The following figure describes the points for which the number of concurrent connections, number of concurrent
executions, and connection pool size can be set in a system on which the EADs session failover functionality is used:

Figure 7‒3: Points for which the number of concurrent connections, number of concurrent executions, and
connection pool size can be set

Table 7‒7: Number of concurrent connections, number of concurrent executions, and connection pool size
contents to be set in setting points

Setting
point Setting location Setting target Setting contents

(1) Web server Number of maximum
concurrent
connections

Maximum number of concurrent connections to a Web server.

(2) Redirector Connection pool size Pool size of the connection that is used to communicate with a J2EE
server.

(3) Web container Threads Maximum number of threads that concurrently process requests on a J2EE
server.

(4) EADs client Connection pool size Pool size of the connection that is used to communicate with the EADs
server.

(5) EADs server Number of maximum
concurrent
connections

Maximum number of concurrent connections to the EADs server.

(6) Number of maximum
concurrent
executions

Maximum number of threads that concurrently process requests on the
EADs server.

(7) Connection pool size Pool size of the connection that is used to communicate with other EADs
servers in the EADs cluster.

7. EADs Session Failover Functionality

260

(2) Settings for number of concurrent connections, number of concurrent executions, and
connection pool size recommended for the EADs session failover functionality

The following table describes the settings for the number of concurrent connections, number of concurrent executions,
and connection pool size recommended in the case of Figure 7-3:

Table 7‒8: Recommended settings of number of concurrent connections, number of concurrent executions,
and connection pool size

Setting
point

Recommended settings of number of
concurrent connections, number of

concurrent executions, and connection
pool size

Impact if you do not set the recommended settings of number of
concurrent connections, number of concurrent executions and,

connection pool size

(1) - (3) -- --

(4) The same value as (3) If you specify a value that is smaller than the recommended value, pooled
connections become insufficient because the J2EE server threads are
exceeded. As a result, connections might get established and broken
whenever there is a request.

(5) (1) Number of Web servers 1.2 If you specify a value that is smaller than the recommended value,
connections with the EADs server fail because the maximum number of
concurrent connections to the EADs server are exceeded. As a result, global
session operations on the EADs server might fail.

(6) The same value as (5) --

(7) (6) (Multiplicity of EADs data - 1)# If you specify a value that is smaller than the recommended value, pooled
connections become insufficient because of access concentration from
EADs clients and other EADs servers. As a result, connections might get
established and broken whenever there is a request.

Legend:
--: No recommended value for the EADs session failover.

#
If the value of Multiplicity of EADs data is 1 (not copying the data stored on the EADs server to another EADs server), the result
of this formula is 0. We recommend that you set 1 for EADs commands.

7. EADs Session Failover Functionality

261

7.3 Processing implemented in the EADs session
failover functionality

With the EADs session failover functionality, respective processing is implemented at the following time:

• When starting an application
Application negotiation processing is implemented.

• When executing a request
Processing of storing, updating, and deleting global session information is implemented.

This section describes the processing implemented in the EADs session failover functionality.

This section also describes the processing implemented when the validity of global session information expires,
operations when failures occur during global session information operations, and Listeners that operate in association
with events generated in the EADs session failover functionality.

7.3.1 Processing when starting an application
This subsection describes the application negotiation processing implemented when starting an application and
application identifiers used in the application negotiation processing.

(1) Application negotiation processing
Negotiation processing is a process that confirms whether preference information of the Web application to be started
matches with the information stored on the EADs server at the time of starting a Web application that uses the EADs
session failover functionality.

If result of the negotiation processing indicates that the preference information matches, the Web application is started.
If the preference information does not match, one of the following processes is executed:

• KDJE34453-E, KDJE34406-E, or KDJE34407-E, indicating that the preference information did not match in
the negotiation processing that was output, and that starting of the Web application was canceled. Take actions as
per the output message.

• KDJE34409-I, indicating that the preference information did not match in the negotiation processing is output,
and processing of starting the Web application continues.

If application information acquired from the EADs server is invalid, KDJE34452-E is output and starting of the Web
application is canceled. Take action as per the output message.

(2) Contents confirmed in negotiation
This subsection describes the contents confirmed in negotiation.

(a) Web applications are matching

If all of the confirmation items in the table below match with the information saved in the application cache, it is
determined that the applications are matching. The following table describes the confirmation items and operations
performed when the confirmation items do not match, and output messages:

Table 7‒9: Items used to confirm matching of Web applications

No. Confirmation item Operation when items do not match Message output when
items do not match

1 Application identifier# Starting of the Web application continues
(handled as a different application).

--

2 J2EE application name Starting of the Web application is canceled. KDJE34453-E

3 Web application name (context root name)

7. EADs Session Failover Functionality

262

Legend:
--: Not applicable

#
For details on application identifiers, see (4) Application identifiers.

(b) Settings of all web applications are matching

The processing checks whether settings of all replicated Web applications match with the information saved in the
application cache, with regard to the confirmation items described in the table below. The following table describes
the confirmation items, operations performed when the confirmation items do not match, and output messages:

Table 7‒10: Items used to confirm matching of settings of all Web applications

No. Confirmation item Operation when items do not match Message output when
items do not match

1 Upper limit of the number of HttpSession
objects

Starting of the Web application continues. KDJE34409-I

2 Validity of HTTP session defined in DD
(web.xml)

3 URL pattern that inhibits the EADs session
failover functionality

Starting of the Web application is canceled. KDJE34406-E

4 URL pattern of refer-only requests

(c) J2EE server settings are matching

The processing checks whether settings of all replicated J2EE servers match, with regard to the confirmation items
described in the table below. The following table describes the confirmation items, operations performed when the
confirmation items do not match, and output messages:

Table 7‒11: Items used to confirm matching of settings of all J2EE servers

No. Confirmation item Operation when items do not match Message output when
items do not match

1 URL pattern that inhibits the EADs session
failover functionality

Starting of the Web application is canceled. KDJE34406-E

2 URL pattern of refer-only requests

(d) EADs server settings are correct

The processing checks whether the conditions described in the table below are satisfied. The following table describes
the confirmation items, operations performed when the confirmation items do not match, and output messages:

Table 7‒12: Conditions used to confirm whether EADs server settings are correct

No. Condition Operation when items do not match Message output when
items do not match

1 Required cache is available on theEADs server. Starting of the Web application is canceled. KDJE34407-E

(3) Preference information of Web application, which is confirmed with negotiation processing
First, preference information of the Web applications, which were successful in the negotiation processing, is saved in
the application information cache on the EADs server. Then, with negotiation, preference information of the Web
applications and preference information saved in the application information cache are compared, and it is confirmed
whether the contents match.

Therefore, if you want to change preference information of a Web application, you need to delete preference
information related to the change target Web application that is already saved in the application information cache on
the EADs server. For details on how to delete preference information, see 7.7.2 Initializing application information.

7. EADs Session Failover Functionality

263

(4) Application identifiers
Application identifiers are names used for identifying the clustered Web applications when using the EADs session
failover functionality. By default, the system automatically generates application identifiers.

Application identifiers are used in negotiation processing to confirm whether Web applications are matching.
Therefore, an application identifier must meet the following conditions:

• An application identifier matches with the same Web application, which operates on replicated J2EE servers.

• An application identifier is a unique value in the system.

If an application identifier that is automatically generated by the system does not satisfy a condition, you need to
define a value that satisfies the conditions. For details on how to define an application identifier, see 7.4 Defining with
cosminexus.xml.

The following subsections describe the rules for automatically generating application identifiers and examples of
automatically generated application identifiers:

! Important note

If the same application identifier is set to different Web applications, the second Web application fails in negotiation when
starting and does not start.

(a) Rules for automatically generating an application identifier

By default, a string based on context root name is automatically set in application identifiers. If an application
identifier is automatically generated, the applicable value is output to the message log with the KDJE34402-I
message when starting the Web application.

The following rules are applied when automatically generating an application identifier on the basis of context root
name:

• Delete forward slash (/) at the beginning.

• If the length of the string exceeds 128 characters, excluding the forward slash (/) at the beginning, use a string of
up to 128 characters.

• If characters that cannot be used in an application identifier are used in the context root name, replace the
characters with underscores (_).
You can use only alphanumeric characters (A - Z, a - z, and 0 - 9) and underscores (_) in an application identifier.
Set values are case-sensitive.

• In root context, change to ROOT and not to a blank string.

If you apply the rules for automatic generation, application identifiers might not remain unique in the system. In that
case, the second Web application, to which the same application identifier is set, fails in the negotiation processing
when starting and does not start. Therefore, it is essential to set an application identifier that is unique in the system
for a Web application.

(b) Examples of automatically generated application identifiers

The following table shows examples of default application identifiers, which are automatically generated from context
root name:

Table 7‒13: Examples of automatically generated default application identifiers

No. Context root name Application identifier Rules applied when creating

1 /examples Examples Delete forward slash (/) at the beginning

2 /App01/test1 App01_test1 • Delete forward slash (/) at the beginning

• Replace forward slashes (/) in between with
underscores (_)

3 / ROOT Because this is root context, change to ROOT

7. EADs Session Failover Functionality

264

7.3.2 Processing when executing a request
This section describes creating, updating, and deleting a global session when executing a request and inheriting a
global session.

If processing is executed in a Web application, the processing for global session information occurs as an extension to
the processing. The following table describes examples of processing executed in Web applications, processing
executed for global session information at the time of execution of the request corresponding to the example, and
reference locations:

Table 7‒14: Examples of processing in Web applications and mapping of processing executed for global
session information

No
.

Example of processing executed in a Web
application

Processing executed for global session
information

Reference
location

1 Login Creating global session information (1)

2 Executing work (page transition/update) Updating global session information (2)

3 Logout Deleting global session information (3)

4 Logout due to timeout Deleting global session information due to expiry of
validity

7.3.3

5 Executing work on another J2EE server that inherited
the global session

(when a failure occurs on a J2EE server)

Inheriting session information that uses global session
information

(4)

For the results of processing when a failure occurs during global session information operations, see 7.3.4 Operations
performed when a failure occurs during global session information operation.

(1) Creating global session information
When a new HTTP session is created on a J2EE server, global session information is created on the EADs server.

The following figure shows the flow of processing executed when creating global session information:

Figure 7‒4: Creating global session information (EADs session failover functionality)

7. EADs Session Failover Functionality

265

1. The HTTP session receives the necessary request and obtains a session. In the Web application, newly acquire the
HttpSession object by using the getSession() method or the getSession(true) method of the
javax.servlet.http.HttpServletRequest interface.
An HttpSession object is created in the following cases also:

• If you use Form authentication

• If you specify true in the session attribute of the page directive in JSP

• If you omit specification of the session attribute of the page directive in JSP

2. A session ID is generated and an HTTP session is created. Global session information is created as an extension to
HTTP session creation processing.
Newly created global session information includes session ID and use status. NEW, which indicates that HTTP
session attribute information is not stored, is set for the usage status immediately after creating new information.

3. Created global session information is stored in the session information cache on the EADs server.

(2) Updating global session information
When a session is updated during execution of a Web application, the HTTP session is updated on the J2EE server. At
the same time, global session information on the EADs server is also updated.

The following figure shows the flow of processing executed when updating global session information:

Figure 7‒5: Updating global session information (EADs session failover functionality)

1. The request in which the HTTP session exists is received and the session is updated in the Web application.

2. Along with updating of the session in the Web application, the HTTP session and global session are updated.

3. Global session information in the session information cache on the EADs server is updated.

(3) Deleting global session information
If you implement the invalidate() method of the javax.servlet.http.HttpSession interface in
session deletion processing in a Web application and explicitly delete an HTTP session, global session information on
the EADs server is deleted as an extension to that processing.

The following figure shows the flow of processing executed when deleting global session information:

7. EADs Session Failover Functionality

266

Figure 7‒6: Deleting global session information (EADs session failover functionality)

1. The HTTP session is disabled in the Web application.

2. HTTP session and global session information are deleted.

3. User functions provided by the EADs session failover functionality are executed on the EADs server.

4. The contents of the J2EE server identifier, owned by the HTTP session, are checked on the EADs sever. If the
contents match with the identifier of the J2EE server in operation, the global session information is deleted.

(4) Inheriting session information that uses global session information
If an HTTP session associated with the received request does not exist on the J2EE server, the HTTP session is created
again by using the global session information on the EADs server. This enables obtaining an HTTP session equivalent
to the contents at the point of time when the previous request processing ended, with the Web application, and work
can be continued.

The following figure shows the flow of processing executed when inheriting session information that uses global
session information:

7. EADs Session Failover Functionality

267

Figure 7‒7: Inheriting session information that uses global session information (EADs session failover
functionality)

1. If an HTTP session associated with the received request does not exist on the J2EE server, the HTTP session is
created again on the J2EE server by using the global session information stored in the session information cache
on the EADs server.#

2. User functions provided by the EADs session failover functionality (obtaining global session information and
changing J2EE server identifier owned by the HTTP session) are executed on the EADs server.

3. Global session information is obtained and the J2EE server identifier owned by the HTTP session is changed on
the EADs server.

4. The HTTP session is updated in the Web application.

5. The global session information is updated after execution of the Web application.

6. Global session information that is stored in the session information cache on the EADs server is updated.

However, if the use status is NEW (attribute information of the HTTP session is not stored) or SERIALIZE_FAIL
(HTTP session serialization has failed in previous request), the global session information is not inherited.

If inheriting of the global session information is successful, the KDJE34424-I message is output to the message log.
If global session information could not be inherited because the global session information corresponding to the
session ID, which is received from the client, does not exist in the session information cache on the EADs server, the
KDJE34426-W message is output to the message log.

7. EADs Session Failover Functionality

268

7.3.3 Processing when validity of global session information expires
Each HTTP session has a validity set to it. HTTP sessions that have exceeded validity, found as a result of checking
validity on the basis of the information of last access time, are deleted. When an HTTP session is deleted because it
exceeds validity, the corresponding global session information is also deleted as an extension of that processing.

Validity monitoring threads existing in the Web container periodically monitor the validity of HTTP sessions. A
validity monitoring thread exists for every Web application.

The following figure shows the flow of processing executed when deleting global session information due to expiry of
validity:

Figure 7‒8: Processing when validity of global session information expires (EADs session failover
functionality)

1. HTTP sessions that are determined to have expired by the validity monitoring thread are disabled.

2. HTTP session and global session information are deleted.

3. User functions provided by the EADs session failover functionality are executed on the EADs server.

4. The contents of the J2EE identifier, owned by the HTTP session, are checked on the EADs sever. If the contents
match with the identifier of the J2EE server under operation, the global session information is deleted.

7.3.4 Operations performed when a failure occurs during global session
information operation

This section describes the operations performed when a failure occurs during global session information operation.
The section describes the points of failure, state of session, impact on other requests, and output messages for every
operation of global session information.

7. EADs Session Failover Functionality

269

(1) Operations performed when a failure occurs while creating global session information
This subsection describes the operations performed when a J2EE server failure or an EADS client or EADs server
failure occurs while creating global session information.

The following figure shows the flow of processing for creating global session information and points of failure:

Figure 7‒9: Flow of processing for creating global session information and points of failure (EADs session
failover functionality)

The numbers and letters (failure points of J2EE server and failure points of the EADs client or the EADs server) in the
figure are mapped with numbers or letters of failure points in the table.

(a) Operations performed when a failure occurs on a J2EE server

The following table describes the operations performed when a J2EE server failure occurs and process goes down
while creating global session information:

Table 7‒15: Operations performed when a failure occurs on a J2EE server (creating global session
information)

Failure point

State of session
Inheriting global session information on

other replicated J2EE serversHTTP session on J2EE
server Global session information

1: Before
storing global
session
information

Not created Not created Not targeted for inheriting because global
session information is not created

2: In the
process of
storing global
session
information:
Before

None

7. EADs Session Failover Functionality

270

Failure point

State of session
Inheriting global session information on

other replicated J2EE serversHTTP session on J2EE
server Global session information

sending of
data to the
EADs server
is complete

Not created Not created None

3: In the
process of
storing global
session
information

Created Global session information is created. But
because the use status is NEW (attribute
information of the HTTP session is not stored),
it is not targeted for inheriting.

However, with inheritance of global session
information at the time of starting a Web
application, it is targeted for inheriting even
though the use status is NEW.

4: After
storing global
session
information

Disappears due to process
down

(b) The EADs client or EADs server failures

The following table describes the operations performed when an EADs client or EADs server failure occurs and
CacheException occurs while creating global session information:

Table 7‒16: Operations performed when an EADs client or EADs server failure occurs (creating global
session information)

Failure point Failure contents

State of session
Web

application
operation

MessageHTTP session
on J2EE
server

Global
session

information

A: Storing global
session information

Data creation on copy
destination server fails

Reduced and
created#1

Created#2 Ends
successfully

KDJE34420-W

Other than the above Reduced and
created#1

Not created Ends
successfully

KDJE34427-W

#1
Reduced HTTP session is reflected in the session information cache on the EADs server in the processing of updating global
session information at the time of receiving a request the next time.

#2
Although global session information is created on the storage destination server of global session information, it is not created on
all or some of the copy destination servers.

(2) Operations performed when a failure occurs while updating global session information
This subsection describes the operations performed when a J2EE server failure or an EADS client or EADs server
failure occurs while updating global session information.

The following figure shows the flow of processing of updating global session information and points of failure:

7. EADs Session Failover Functionality

271

Figure 7‒10: Flow of processing of updating global session information and points of failure (the EADs
session failover functionality)

(a) Operations performed when a J2EE server failure occurs

The following table describes the operations performed when a J2EE server failure occurs and process goes down
while updating global session information:

Table 7‒17: Operations performed when a J2EE server failure occurs (updating global session information)

Failure point

State of session
Inheriting global session information on

other replicated J2EE serverHTTP session on J2EE
server Global session information

1: Before
updating
global session
information

Disappears due to process
down

Not updated Global session information before updating is
inherited

2: In the
process of
updating
global session
information
(before
sending of
data to the
EADs server
is complete)

3: In the
process of
updating
global session
information

Updated Global session information after updating is
inherited

7. EADs Session Failover Functionality

272

Failure point

State of session
Inheriting global session information on

other replicated J2EE serverHTTP session on J2EE
server Global session information

(after sending
of data to the
EADs server
is complete)

Disappears due to process
down

Updated Global session information after updating is
inherited

4: After
updating
global session
information

(b) Operations performed when an EADs client or EADs server failure occurs

The following table describes the operations performed when an EADs client or EADs server failure occurs and
CacheException occurs while updating global session information:

Table 7‒18: Operations performed when an EADs client or EADs server failure occurs (updating global
session information)

Failure point Failure contents

State of session
Web

application
operation

MessageHTTP session
on J2EE
server

Global
session

information

A: Updating global
session information

Failure to update data on
session information copy
destination server

Reduced and
created#1

Created#2 Ends
successfully

KDJE34420-W

Other than the above Reduced and
created#1

Not created Ends
successfully

KDJE34427-W

#1
Reduced HTTP session is reflected in the session information and the cache on the EADs server in the processing of creating or
updating global session information at the time of receiving a request the next time.

#2
Although global session information on the session information storage destination server is updated, it is not updated on all or
some of the copy destination servers.

(3) Operations performed when a failure occurs while deleting global session information
This subsection describes the operations performed when a J2EE server failure or an EADs client or EADs server
failure occurs while deleting global session information.

The following figure shows the flow of processing of deleting global session information and points of failure:

7. EADs Session Failover Functionality

273

Figure 7‒11: Flow of processing of deleting global session information and points of failure (EADs session
failover functionality)

(a) Operations performed when a J2EE server failure occurs

The following table describes the operations performed when a J2EE server failure occurs and process goes down
while deleting global session information:

Table 7‒19: Operations performed when a J2EE server failure occurs (deleting global session information)

Failure point

State of session
Inheriting global session information on

other replicated J2EE serverHTTP session on J2EE
server Global session information

1: Before
deleting global
session
information

Disappears due to process
down

Not deleted Inherited because global session information is
not deleted

2: In the
process of
deleting global
session
information
(before
sending of
data to the

7. EADs Session Failover Functionality

274

Failure point

State of session
Inheriting global session information on

other replicated J2EE serverHTTP session on J2EE
server Global session information

EADs server
is complete)

Disappears due to process
down

Not deleted Inherited because global session information is
not deleted

3: In the
process of
deleting global
session
information
(after sending
of data to the
EADs server
is complete)

Deleted Not inherited because global session information
is deleted

4: After
deleting global
session
information

(b) Operations performed when an EADs client or EADs server failure occurs

The following table describes the operations performed when an EADs client or EADs server failure occurs and
CacheException occurs while deleting global session information:

Table 7‒20: Operations performed when an EADs client or EADs server failure occurs (deleting global
session information)

Failure point Failure contents

State of session

Web application
operation MessageHTTP

session on
J2EE server

Global session
information

A: Deleting
global session
information

Fails to delete the data
on session information
copy destination server

Deleted Deleted#1 Ends successfully KDJE34422-E

Other than the above Not deleted#2 Ends successfully KDJE34423-E#3

#1
Although global session information on the session information storage destination server is deleted, global session information
on all or some of copy destination servers is not deleted and remains. For impact in such cases and measures, see 2.5.4 If trouble
occurs in the EADs session failover functionality in the uCosminexus Application Server Maintenance and Migration Guide.

#2
Global session information on session information storage destination servers and all copy destination servers is not deleted and
remains. For impact in such cases and measures, see the Elastic Application Data store User Guide.

#3
A message is output only when the first failure occurs. Thereafter, messages are not output for the same failure until you restart
the Web application.

(4) Operations when a failure occurs while deleting global session information due to expiry
of validity

This subsection describes the operations performed when a J2EE server failure or an EADs client or EADs server
failure occurs while deleting global session information due to expiry of validity.

The following figure shows the flow of processing of deleting global session information due to expiry of validity and
points of failure:

7. EADs Session Failover Functionality

275

Figure 7‒12: Flow of processing of deleting global session information due to expiry of validity and points
of failure (EADs session failover functionality)

(a) Operations performed when a J2EE server failure occurs

The following table describes the operations performed when a J2EE server failure occurs and processing shuts down
while deleting global session information due to expiry of validity:

Table 7‒21: Operations performed when a J2EE server failure occurs (deleting global session information
due to expiry of validity)

Failure point

State of session Inheriting global
session information on
other replicated J2EE

server
HTTP session

on J2EE server
Global session

information

1: Standby of the processing of checking validity Disappears due to
process down

Not deleted Inherited because global
session information is not
deleted2: In the process of deleting global session information

(before sending of data to the EADs server is complete)

3: In the process of deleting global session information (after
sending of data to the EADs server is complete)

Deleted Not inherited because
global session
information is deleted

(b) Operations performed when an EADs client or EADs server failure occurs

The following table describes the operations performed when an EADs client or EADs server failure occurs and
CacheException occurs while deleting global session information due to expiry of validity:

7. EADs Session Failover Functionality

276

Table 7‒22: Operations performed when an EADs client or EADs server failure occurs (deleting global
session information due to expiry of validity)

Failure point Failure contents

State of session
Web

application
operation

MessageHTTP session
on J2EE
server

Global
session

information

A: Deleting global
session information

Fails to delete the data on
session information copy
destination server

Deleted Deleted#1 -- KDJE34422-E

Other than the above Not deleted#2 -- KDJE34423-E#3

Legend:
--: Not applicable

#1
Although global session information on the session information storage destination server is deleted, global session information
on all or some of the copy destination servers is not deleted and remains. For impact in such cases and measures, see 2.5.4 In
case a trouble occurs in the EADs session failover functionality in the uCosminexus Application Server Maintenance and
Migration Guide.

2
Global session information on session information storage destination server and all copy destination servers is not deleted and
remains. For impact in such case sand measures, see 2.5.4 In case a trouble occurs in the EADs session failover functionality in
the uCosminexus Application Server Maintenance and Migration Guide.

#3
A message is output only when the first failure occurs. Thereafter, messages are not output for the same failure until you restart
the Web application.

(5) Operations performed when a failure occurs while inheriting global session by using
global session information

This subsection describes the operations performed when a J2EE server failure or an EADS client or EADs server
failure occurs while inheriting global session by using global session information.

The following figure shows the flow of processing of inheriting global session by using global session information
and points of failure:

7. EADs Session Failover Functionality

277

Figure 7‒13: 13Flow of processing of inheriting global session by using global session information and
points of failure (EADs session failover functionality)

(a) Operations performed when a J2EE server failure occurs

The following table describes the operations performed when a J2EE server failure occurs and process goes down
while inheriting a global session by using global session information:

Table 7‒23: Operations performed when a J2EE server failure occurs (inheriting global session by using
global session information)

Failure point

State of session
Inheriting global session information on

other replicated J2EE serverHTTP session on
J2EE server

Global session
information

1: Before executing user function Disappears due to
process down

Not updated Global session information before updating is
inherited#

7. EADs Session Failover Functionality

278

Failure point

State of session
Inheriting global session information on

other replicated J2EE serverHTTP session on
J2EE server

Global session
information

2: In the process of executing user
function

Disappears due to
process down

Only J2EE server
identifier, which
owns HTTP
session, is updated

Global session information before updating is
inherited#

3: Before updating global session
information

4: In the process of updating global
session information (before sending
of data to the EADs server is
complete)

5: In the process of updating global
session information (after sending
of data to the EADs server is
complete)

Updated Global session information after updating is
inherited

6: After updating global session
information

#
If the use status is NEW (attribute information of the HTTP session is not stored) or SERIALIZE_FAIL (HTTP session
serialization has failed in previous request), it is not targeted for inheriting. However, with inheritance of global session
information at the time of starting a Web application, it is targeted for inheriting even though the use status is NEW.

(b) EADs client or EADs server failures

The following table describes the operations performed when an EADs client or EADs server failure occurs and
CacheException occurs while inheriting global session information:

Table 7‒24: Operations performed when an EADs client or EADs server failure occurs (inheriting global
session by using global session information)

Failure point State of session Web application
operation Message

A: Executing API for user
application execution

Not inherited Ends successfully KDJE34425-W

B: Updating global session
information

7.3.5 Listeners that operate in association with events occurring in the
EADs session failover functionality

Listeners that operate in association with events occurring in the EADs session failover functionality are the same as
the database session failover functionality. For content, see 6.4.4 Listeners that operate in association with events
occurring in the database session failover functionality.

7. EADs Session Failover Functionality

279

7.4 Definitions in cosminexus.xml
Specify definitions for using the EADs session failover functionality in the war tag in cosminexus.xml.

The following table describes the definitions of the EADs session failover functionality in cosminexus.xml:

Table 7‒25: Definitions of the EADs session failover functionality in cosminexus.xml

Item Tag to be specified Settings

Setting of the
EADs session
failover
functionality

http-session-eadssfo-enabled Set whether to enable EADs session failover
functionality in the unit of a Web application.

Setting of
application
identifier

http-session-eadssfo-application-id Set the application identifier.

Setting of the
EADs session
failover inhibition
functionality

http-session-eadssfo-exclude-url-patterns Set URL patterns that inhibit the EADs session failover
functionality.

For details on how to specify URL patterns, see 7.5 (1)
Settings of the EADs session failover inhibition
functionality.

Settings of refer-
only requests

http-session-eadssfo-session-read-only-url-patterns Set the URL pattern of refer-only requests. For details
on how to specify a URL pattern, see 7.5 (2) Settings of
refer-only requests.

For details on the tags to be specified, see 2.2.6 Details of War property in the uCosminexus Application Server
Application and Resource Definition Reference Guide.

Note that the contents set in cosminexus.xml are preferred over settings in the unit of J2EE server (Easy Setup
definition file). If you omit the settings in cosminexus.xml, settings of the Easy Setup definition file are applied
as default values.

7. EADs Session Failover Functionality

280

7.5 J2EE server settings
Implement J2EE Server settings in the Easy Setup Definition file. Specify the definitions of the EADs session failover
functionality in the configuration tag of the logical J2EE Server (j2ee-server) in the Easy Setup definition file.

The following table describes the definitions of the EADs session failover functionality in the Easy Setup definition
file:

Table 7‒26: Definitions of the EADs session failover functionality in the Easy Setup definition file

Category Item Parameter to be
specified EADs parameter Settings

Specifying the
EADs session
failover
functionality

Specifying the
EADs session
failover
functionality

webserver.eadssfo
.enabled

-- Specify whether to use the EADs
session failover functionality in the
unit of J2EE server.

Specifying a cache
name for the
application
information cache

webserver.eadssfo
.application.cach
e.name

-- Specify a cache name for the
application information cache on the
EADs server.

Specifying a cache
name for the
session
information cache

webserver.eadssfo
.session.cache.na
me

-- Specify a cache name for the session
information cache on the EADs server.

Specifying
functionality for
estimating the size
of the HTTP
session attribute
information

webserver.eadssfo
.check_size.mode

-- Specify whether to use the
functionality for estimating the size of
HTTP session attribute information.

Specifying the
EADs session
failover inhibition
functionality

webserver.eadssfo
.exclude.url_patt
erns

-- Specify the URL pattern to inhibit the
EADs session failover functionality, in
the unit of J2EE server.

For details on how to set, see (1)
Settings of the EADs session failover
inhibition functionality.

Specifying the
refer-only requests

webserver.eadssfo
.session_read_onl
y.url_patterns

-- Specify the URL pattern to be set as a
refer-only request, in the unit of J2EE
server.

For details on how to set, see (2)
Settings of refer-only requests.

Specifying the
retry count for
connecting to the
EADs server

webserver.eadssfo
.client.retry.cou
nt

-- Specify the count of retries to be
performed when access to the EADs
server fails.

Specifying the
retry interval for
connecting to the
EADs server

webserver.eadssfo
.client.retry.int
erval

-- Specify the retry interval
(milliseconds) when access to the
EADs server fails.

Specifying the
EADs client#1

Specifying the
connection
destination EADs
server name

webserver.eadssfo
.eads.client.node
.list

eads.client.no
de.list

Specify a name for identifying the
EADs server, which is to be connected
in initial settings of the EADs client
when starting a Web application.

Specifying the host
name of
connection
destination EADs
server

webserver.eadssfo
.eads.client-
connection-destination-
EADs-server-name-
address

eads.client-
connection-
destination-EADs-
server-name-
address

Specify the IP address or host name of
the EADs server, which is to be
connected in initial settings of the
EADs client when starting a Web
application.

7. EADs Session Failover Functionality

281

Category Item Parameter to be
specified EADs parameter Settings

Specifying the
EADs client#1

Specifying the port
count of the
connection
destination EADs
server

webserver.eadssfo
.eads.client-
connection-destination-
EADs-server-name-port

eads.client-
connection-
destination-EADs-
server-name-port

Specify the port of the EADs server,
which is to be connected in initial
settings of the EADs client when
starting a Web application.

Specifying the
message log output
destination of the
EADs client

webserver.eadssfo
.eads.logger.dir

eads.logger.di
r

Specify the output destination
directory for the message log, which is
output by the EADs client.

Specifying the size
of the message log
file of the EADs
client

webserver.eadssfo
.eads.logger.mess
age.filesize

eads.logger.me
ssage.filesize

Specify the file size (bytes) of one file
of the message log, which is output by
the EADs client.

Specifying the
number of
message log files
of the EADs client

webserver.eadssfo
.eads.logger.mess
age.filenum

eads.logger.me
ssage.filenum

Set the number of files of the message
log, which is output by the EADs
client.

Specifying the
message log and
standard log output
of the EADs client

webserver.eadssfo
.eads.logger.mess
age.console.enabl
e

eads.logger.me
ssage.console.
enable

Specify whether to output the message
log, which is output by EADs client, to
the standard output

Specifying the
output of the
message dump of
the EADs client

webserver.eadssfo
.eads.logger.comm
Dump.enable

eads.logger.co
mmDump.enable

Specify whether to output the message
dump, which is output by the EADs
client.

Specifying the size
of the
communication
trace file of the
EADs client

webserver.eadssfo
.eads.logger.comm
Trace.filesize

eads.logger.co
mmTrace.filesi
ze

Specify the file size (bytes) of one file
of the communication trace, which is
output by the EADs client.

Specifying the
number of
communication
trace files of the
EADs client

webserver.eadssfo
.eads.logger.comm
Trace.filenum

eads.logger.co
mmTrace.filenu
m

Specify the number of files of the
communication trace, which is output
by EADs client.

Specifying the
output of the
communication
trace of the EADs
client

webserver.eadssfo
.eads.logger.comm
Trace.enable

eads.logger.co
mmTrace.enable

Specify whether to output the
communication trace, which is output
by the EADs client.

Specifying the size
of the data sending
and receiving
buffer of the
connection

webserver.eadssfo
.eads.connection.
buffersize

eads.connectio
n.buffersize

Specify the sending and receiving
buffer size (bytes) of the read and
written data of connection.

Specifying the
maximum number
of the connections
to be pooled

webserver.eadssfo
.eads.connectionP
ool.poolsize

eads.connectio
nPool.poolsize

Specify the maximum number of
connections to be pooled for the same
connection destination EADs server.

Specifying the
connection timeout

webserver.eadssfo
.eads.connection.
timeout

eads.connectio
n.timeout

Specify the connection confirmation
with the EADs server and monitoring
time for data sending and receiving
(milliseconds).

7. EADs Session Failover Functionality

282

Category Item Parameter to be
specified EADs parameter Settings

Specifying the
EADs client#1

Specifying the
retry count for
connection
confirmation

webserver.eadssfo
.eads.connection.
retry

eads.connectio
n.retry

Specify the count of retries to be
performed when access fails during
confirmation of the connection with
the EADs server.

Specifying the
container
extension
library#2

Specifying the
container
extension library

add.class.path -- Specify the JAR file, which is
provided by the EADs client, as the
container extension library for using
the EADs client in the EADs session
failover functionality.

For details on how to specify the JAR
file, see (3) Specifying the
container extension
library.

Legend:
--: Not applicable

#1
If values specified in the properties for the EADs client are invalid or if connection is not possible to all the specified EADs
servers, the EADs session failover functionality fails to initialize the EADs client when starting a valid Web application. In such
a case, the KDJE34454-E message is output and starting of the Web application is canceled.

#2
If you do not specify the JAR file, which is provided by the EADs client, or if you specify an incorrect file path, the EADs
session failover functionality fails to initialize the EADs client when starting a valid Web application. In such a case, the
KDJE34454-E message is output and starting of the Web application is canceled.

For details on the Easy Setup definition file and parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(1) Setting of the EADs session failover inhibition functionality
If you want to use the EADs session failover inhibition functionality, specify a URL pattern to inhibit the functionality
in the Easy Setup definition file (J2EE server unit) or in cosminexus.xml (Web application unit).

The URL pattern specified in the Easy Setup definition file is the default value when setting in cosminexus.xml.
The value specified in cosminexus.xml is preferred over the value specified in the Easy Setup definition file.
However, if you omit specification of the tag value or specify a blank tag in cosminexus.xml, no URL pattern is
set to inhibit the EADs session failover functionality. In that case, the URL pattern specified in the Easy Setup
definition file is also not applied.

For details on the EADs session failover inhibition functionality, see 5.6.1 Inhibiting the session failover functionality.

(a) How to specify a URL pattern

There are three ways in which you can specify a URL pattern - exact match specification, prefix match specification,
and extension match specification. Specify URI in exact match specification and prefix match specification. If you
want to specify multiple URIs or extensions, separate the values with semicolons (;).

If you specify an invalid URL pattern in the Easy Setup definition file, KDJE34437-W is output when starting the
J2EE server and the corresponding URL pattern is disabled. If you specify an invalid URL pattern in the property in
cosminexus.xml, KDJE34437-W is output when starting the Web application and the corresponding URL pattern is
disabled.

■ Exact match specification

The specified URI is targeted for the EADs session failover inhibition functionality only if it exactly matches the
request URI.

In exact match specification, specify a URI that does not include the context path and starts with a forward slash (/).
Do not include path parameter, query, or fragment. Also, specify a normalized URI. Note that you cannot use
semicolons (;) in URI of set values.

An example of specifying values in the Easy Setup definition file is as follows:

7. EADs Session Failover Functionality

283

:
configuration
 logical-server-type-j2ee-server/logical-server-type
 param
 param-name-webserver.eadssfo.exclude.url_patterns/param-name
 param-value/test/TestServlet;/test2/TestServlet2/param-value
 /param
configuration
:

In this example, the following request URI are targeted for the EADs session failover inhibition functionality:

• http://host/examples/test/TestServlet
• http://host/examples/test/TestServlet?name=value
• http://host/examples/test/TestServlet;gsessionid=XXXXXXXXXX

■ Prefix match specification

The specified URI is targeted for the EADs session failover inhibition functionality if its prefix matches with the
prefix of the request URI.

In prefix match specification, specify a URI that does not include the context path, starts with a forward slash (/), and
ends with a forward slash and an asterisk (/*). Do not include path parameter, query, or fragment. Also, specify a
normalized URI. Note that you cannot use semicolons (;) in URI of set values.

An example of specifying values in the Easy Setup definition file is as follows:

:
configuration
 logical-server-type-j2ee-server/logical-server-type
 param
 param-name-webserver.eadssfo.exclude.url_patterns/param-name
 param-value/test/param-value
 /param
configuration
:

In this example, the following request URI are targeted for the EADs session failover inhibition functionality:

• http://host/examples/test/TestServlet
• http://host/examples/test/EadssfoServlet?name=value

Note that if you specify a URI, such as the following URI, that does not end with a forward slash and an asterisk (/*),
the URI is considered for exact match specification and not for prefix match specification.

/examples/test*

■ Extension match specification

A URI is targeted for the EADs session failover inhibition functionality only if the specified extension exactly
matches the request URI. In extension match specification, the extension specification must begin with an asterisk and
a period (*.).

An example of specifying values in the Easy Setup definition file is as follows:

:
configuration
 logical-server-type-j2ee-server/logical-server-type
 param
 param-name-webserver.eadssfo.exclude.url_patterns/param-name
 param-value-*.html;*.jpg/param-value
 /param
configuration
:

In this example, the following request URI are targeted for the EADs session failover inhibition functionality:

• http://host/examples/index.html
• http://host/examples/test/sample.jpg

7. EADs Session Failover Functionality

284

(b) Normalizing URI

URL patterns to be targeted for the EADs session failover inhibition functionality must be specified in normalized
URI.

An example of a normalized URI is:

• /examples/test/servlet/TestServlet

Examples of URI that are not normalized are shown below. These URI are not targeted for inhibiting.

• /examples/test/jsp/../servlet/TestServlet
• /examples/test/./servlet/TestServlet

(c) Mapping with URL encode

If you specify a URI that includes a URL encoded string, URI targeted for the EADs session failover inhibition
functionality vary according to the enabled or disabled status of the URI decode functionality. The following table
describes whether request URL are targeted for inhibition functionality according to the enabled/disabled status of the
URI decoding functionality:

Table 7‒27: Enabled/disabled status of URI decode functionality and targets of inhibition functionality

Property

set value

Request URL

URI decode function enabled URI decode function disabled

Encoded Not encoded Encoded Not encoded

Encoded Does not inhibit Does not inhibit Inhibits Does not inhibit

Not encoded Inhibits Inhibits Does not inhibit Inhibits

Legend:
Inhibits: Inhibits the EADs session failover functionality.
Does not inhibit: Does not inhibit the EADs session failover functionality.
Encoded: URI that include URL encoded strings.
(Example: /examples/%61/Servlet)
Not encoded: URI that do not include URL encoded strings.
(Example: /examples/a/Servlet)

For details on URI decode functionality, see 2.22 URI decode functionality in the uCosminexus Application Server
Web Container Functionality Guide.

(2) Setting of refer-only requests
To set a refer-only request, specify a URL pattern to be handled as a refer-only request in the Easy Setup definition file
(J2EE server unit) or in cosminexus.xml (Web application unit).

The URL pattern specified in the Easy Setup definition file is the default value when setting in cosminexus.xml.
The value specified in cosminexus.xml is preferred over the value specified in the Easy Setup definition file.
However, if you omit specification of the tag value or specify a blank tag in cosminexus.xml, no URL pattern is
set for the refer-only request. In that case, the URL pattern specified in the Easy Setup definition file is also not
applied.

For details on refer-only requests, see 5.6.2 Defining refer-only requests of HTTP session.

(a) How to specify a URL pattern

There are three ways in which you can specify a URL pattern - exact match specification, prefix match specification,
and extension match specification. Specify URI in exact match specification and prefix match specification. If you
want to specify multiple URI or extensions, separate the values with semicolons (;).

If you specify an invalid URL pattern in the Easy Setup definition file, KDJE34438-W is output when starting the
J2EE server and the corresponding URL pattern is disabled. If you specify an invalid URL pattern in the property in

7. EADs Session Failover Functionality

285

cosminexus.xml, KDJE34438-W is output when starting the Web application and the corresponding URL pattern
is disabled.

■ Exact match specification

The specified URI becomes a refer-only request only if it exactly matches with the request URI.

In exact match specification, specify a URI that does not include the context path and starts with a forward slash (/).
Do not include path parameter, query, or fragment. Also, specify a normalized URI. Note that you cannot use
semicolons (;) in URI of set values.

An example of specifying values in the Easy Setup definition file is as follows:

:
configuration
 logical-server-typej2ee-server/logical-server-type
 param
 param-name-webserver.eadssfo.session_read_only.url_patterns /param-name
 param-value/test/TestServlet;/test2/TestServlet2/param-value
 /param
configuration
:

In this example, the following request URI become refer-only requests:

• http://host/examples/test/TestServlet
• http://host/examples/test/TestServlet?name=value
• http://host/examples/test/TestServlet;gsessionid=XXXXXXXXXX

■ Prefix match specification

If the prefix of the specified URI matches with the prefix of the request URI, it becomes a refer-only request.

In prefix match specification, specify a URI that does not include the context path, starts with a forward slash (/), and
ends with a forward slash and an asterisk (/*). Do not include path parameter, query or fragment. Also, specify a
normalized URI. Note that you cannot use semicolons (;) in URI of set values.

An example of specifying values in the Easy Setup definition file is as follows:

:
configuration
 logical-server-type-j2ee-server/logical-server-type
 param
 param-name-webserver.eadssfo.session_read_only.url_patterns /param-name
 param-value/test/*/param-value
 /param
configuration
:

In this example, the following request URI become refer-only requests:

• http://host/examples/test/TestServlet
• http://host/examples/test/EadssfoServlet?name=value

Note that if you specify a URI that does not end with a forward slash and an asterisk (/*) as the following URI, it is
considered for exact match specification and not for prefix match specification:

/examples/test*

■ Extension match specification

The specified extension only becomes a refer-only request if it exactly matches with the request URI. In extension
match specification, extension specification must begin with an asterisk and a period (*.).

An example of specifying values in the Easy Setup definition file is as follows:

:
configuration
 logical-server-type-j2ee-server/logical-server-type

7. EADs Session Failover Functionality

286

 param
 param-name-webserver.eadssfo.session_read_only.url_patterns /param-name
 param-value-*.html;*jpg/param-value
 /param
configuration
:

In this example, the following request URI are targeted for the EADs session failover inhibition functionality:

• http://host/examples/index.html
• http://host/examples/test/sample.jpg

(b) Normalizing URI

A URI that you want to make a refer-only request must be normalized and specified. If you specify a URI that is not
normalized, the KDJE34357-W message is output and the corresponding URI does not become a refer-only request.

An example of normalized URI is:

• /examples/test/servlet/TestServlet

Examples of URI that are not normalized are shown below. These URI do not become refer-only requests.

• /examples/test/jsp/../servlet/TestServlet
• /examples/test/./servlet/TestServlet

(c) Mapping with URL encode

If you specify a URL encoded URI as a refer-only request, a request of URL encoded URL that matches with the
specified URI becomes a refer-only request. Similarly, if you specify a URI that is not to be URL encoded, a request
of URL that is not URL encoded becomes a refer-only request.

However, if you use URI decode functionality, whether the target URL is a refer-only request according to URI is
determined after decoding is performed. As a result, if the URL encoded URL matches with the URI specified as a
refer-only request, it becomes a refer-only request in the URI unit.

The following table describes URLs that become refer-only requests according to the enabled/disabled status of URI
decode functionality:

Table 7‒28: URLs that become refer-only requests according to enabled/disabled status of URI decode
functionality

Property

set value

Request URL

URI decode function enabled URI decode function disabled

Encoded Not encoded Encoded Not encoded

Encoded Does not become a
refer-only request

Does not become a
refer-only request

Becomes a refer-only
request

Does not become a
refer-only request

Not encoded Becomes a refer-only
request

Becomes a refer-only
request

Does not become a
refer-only request

Becomes a refer-only
request

Legend:
Becomes a refer-only request: The request URL becomes a refer-only request.
Does not become a refer-only request: The request URL does not become a refer-only request.
Encoded: URI that include URL encoded strings.
(Example: /examples/%61/Servlet)
Not encoded: URI that do not include URL encoded strings.
(Example: /examples/a/Servlet)

For details on URI decode functionality, see 2.22 URI decode functionality in the uCosminexus Application Server
Web Container Functionality Guide.

7. EADs Session Failover Functionality

287

(3) Settings of container extension library
You must specify the JAR file, which is provided by the EADs client, as the container extension library in the Easy
Setup definition file for using the EADs client in the EADs session failover functionality.

An example of coding the Easy Setup definition file is as follows:

add.class.path=directory-in-which-EADs-client-is-placed\javaclient\lib\eads-
client.jar
add.class.path=directory-in-which-EADs-client-is-placed\javaclient\lib\eads-
common.jar
add.class.path=directory-in-which-EADs-client-is-placed\javaclient\lib
\hntrlib2-eads-j.jar

7. EADs Session Failover Functionality

288

7.6 Preparations for EADs server
This section describes the preparations for the EADs server for using the EADs session failover functionality.

With preparations for the EADs server, set up the EADs server environment and create a cache on the EADs server.
Then, release the lock of the EADs cluster so that requests from the EADs clients can be received.

7.6.1 Setting up the EADs server environment
With setting up the EADs server environment, place the JAR file used for setup of the EADs server and EADs session
failover.

(1) Setup of the EADs server
Set the server definition file, cluster definition file, and startup configuration file provided by EADs. The table below
describes the EADs parameters to be set, default values, and recommended values for each definition file. In the
EADs parameters described in the table, set values by considering that the EADs server is used only in the EADs
session failover functionality, as a prerequisite.

For details on setup procedures, see the Elastic Application Data store User Guide.

■ Server definition file

The following table describes the properties in the server definition file provided by EADs:

Table 7‒29: EADs server settings recommended for the EADs session failover functionality (server
definition file)

No
.

Properties of EADs Recommended values and operation of
the EADs session failover functionality

Parameter
name Contents Default

value
Recommended

value

Operation
performed if you
specify a value

other than
recommended

value

1 eads.serve
r.address

Specify the IP address or host name of the
EADs server. Make sure to specify this
parameter.

The value to be specified must match with the
IP address or host name specified in the
webserver.eadssfo.eads.client.co
nnection-destination-EADs-server-
name.address key, which is set in the Easy
Setup definition file. If you specify a different
value, you cannot connect to the EADs server
from the EADs client. As a result, initialization
of the EADS client fails.

None -- None

2 eads.serve
r.port

Specify the port number to be used to
communicate with EADs clients.

The value to be specified must match with the
port number specified in the
webserver.eadssfo.eads.client.co
nnection-destination-EADs-server-
name.port key, which is set in the Easy
Setup definition file. If you specify a different
value, you cannot connect to the EADs server
from the EADs client. As a result, initialization
of the EADS client fails.

24600 -- None

7. EADs Session Failover Functionality

289

No
.

Properties of EADs Recommended values and operation of
the EADs session failover functionality

Parameter
name Contents Default

value
Recommended

value

Operation
performed if you
specify a value

other than
recommended

value

3 eads.serve
r.max_conn
ections

Specify the number of maximum concurrent
connections to the EADs server.

10 For details on
recommended
values, see 7.2.3
Setting up number
of concurrent
connections,
number of
concurrent
executions, and
connection pool
size.

None

4 eads.serve
r.cache.ma
x_execute_
threads

Specify the number of maximum concurrent
executions of cache operation.

Value of
eads.se
rver.ma
x_conne
ctions

For details on
recommended
values, see 7.2.3
Setting up number
of concurrent
connections,
number of
concurrent
executions, and
connection pool
size.

None

5 eads.serve
r.function
_container
.max_execu
te_threads

Specify the number of maximum concurrent
executions of all user functions.

Value of
eads.se
rver.ma
x_conne
ctions

For details on
recommended
values, see 7.2.3
Setting up number
of concurrent
connections,
number of
concurrent
executions, and
connection pool
size.

None

6 eads.prf.e
nable

Specify whether to output to the performance
analysis trace.

true: Output.

false: Do not output.

false true If you specify false,
the performance
analysis trace of the
EADs server is not
output. As a result,
you cannot check a
series of access
from EADs session
failover
functionality to the
EADs server.

7 eads.prf.k
eyInfo.ena
ble

Specify whether to include key information in
the performance analysis trace.

true: Include.

false: Do not include.

false true If you specify false,
key information is
not output to the
performance
analysis trace of the
EADs server. As a
result, you cannot
check whether
correct key
information is

7. EADs Session Failover Functionality

290

No
.

Properties of EADs Recommended values and operation of
the EADs session failover functionality

Parameter
name Contents Default

value
Recommended

value

Operation
performed if you
specify a value

other than
recommended

value

7 eads.prf.k
eyInfo.ena
ble

Specify whether to include key information in
the performance analysis trace.

true: Include.

false: Do not include.

false true inherited on the
EADs server.

8 eads.conne
ction.buff
ersize

Specify the read and write buffer size (bytes) of
connection.

4096 4096 None

9 eads.conne
ctionPool.
poolsize

Specify the maximum number of connections
to be pooled for the same connection
destination. For details, see 7.2.3 Setting up
number of concurrent connections, number of
concurrent executions, and connection pool
size.

10 -- None

10 eads.conne
ction.time
out

Specify the monitoring time for connection
confirmation and data transmission
(milliseconds). For details, see 7.2.2 Setting up
a timeout.

3000 -- None

11 eads.clust
er.failure
Detector.r
etry

Specify the count of retries to be performed
when connection for the survival check times
out.

In this property, you must set an appropriate
value according to the network environment.
For details, see the Elastic Application Data
store User Guide.

0 -- None

12 eads.clust
er.failure
Detector.p
ort

Specify the port number to be used for survival
check between EADs servers.

In this property, you must set an appropriate
value according to the network environment.
For details, see the Elastic Application Data
store User Guide.

24631 -- None

13 eads.clust
er.asserti
ve.thresho
ld.percent
s

Specify the percentage of number of EADs
servers that determines that an EADs server is
down.

If the number of EADs servers is less than one,
round up to one. In the case of any other value,
discard the numbers after the decimal point.

The value specified in this property affects the
minimum number of servers required for
continuing operations on EADs.

50 1

You can continue
the operations until
the last normal
EADs server.

However, depending
on the failure, it
might be divided
into multiple
clusters and data
consistency might
be lost when
updating the session
thereafter.

For maintaining
data consistency,
monitor messages#

of changing cluster
configurations.

--

7. EADs Session Failover Functionality

291

No
.

Properties of EADs Recommended values and operation of
the EADs session failover functionality

Parameter
name Contents Default

value
Recommended

value

Operation
performed if you
specify a value

other than
recommended

value

13 eads.clust
er.asserti
ve.thresho
ld.percent
s

Specify the percentage of number of EADs
servers that determines that an EADs server is
down.

If the number of EADs servers is less than one,
round up to one. In the case of any other value,
discard the numbers after the decimal point.

The value specified in this property affects the
minimum number of servers required for
continuing operations on EADs.

50 If a configuration is
divided in multiple
clusters, you must
stop EADs servers
in other clusters so
as to make one
cluster.

For details on
measures for EADs
servers, see 2.5.4 In
case trouble occurs
in the EADs session
failover
functionality in the
uCosminexus
Application Server
Maintenance and
Migration Guide.

--

14 eads.clust
er.heartbe
at.interva
l

Specify the interval for sending heartbeats
(milliseconds).

In this property, you must set an appropriate
value according to the network environment.
For details, see the Elastic Application Data
store User Guide.

400 -- None

15 eads.clust
er.heartbe
at.timeout

Specify the heartbeat timeout time
(milliseconds).

In this property, you must set an appropriate
value according to the network environment.
For details, see the Elastic Application Data
store User Guide.

2000 -- None

Legend:
--: No recommended value for the EADs session failover functionality.

#
If you change cluster configuration, the KDEA04524-I message of the EADs server is output.

■ Cluster definition file

The following table describes the properties of the cluster definition file provided by EADs:

7. EADs Session Failover Functionality

292

Table 7‒30: EADs server settings recommended for the EADs session failover functionality (cluster
definition file)

No
.

Properties of EADs Recommended values and operation of
EADs session failover functionality

Parameter
name Contents Default

value
Recommended

value

Operation
performed if you
specify a value

other than
recommended

value

1 eads.repli
cation.fac
tor

Specify multiplicity of data. If multiplicity is
more than the number of EADs servers that
configure a cluster, the number of EADs
servers that configure a cluster is set as
multiplicity.

For this property, you must set an appropriate
value by considering the availability of the
system, required memory size, and
communication overhead between EADs
servers. For details, see the Elastic Application
Data store User Guide.

2 -- None

Legend:
--: No recommended value for the EADs session failover functionality.

■ Startup configuration file

The following table describes the properties of the startup configuration file provided by EADs:

Table 7‒31: EADs server settings recommended for the EADs session failover functionality (startup
configuration file)

No
.

Properties of EADs Recommended values and operation of
the EADs session failover functionality

Parameter
name Contents Default

value
Recommended

value

Operation
performed if you
specify a value

other than
recommended

value

1 eads.prf.l
evel

Specify the output level of prf trace. Detail level
(0x400000
00)

Detail level
(0x40000000)

If you specify the
standard level
(0x00000000), a
part of the
performance
analysis trace of the
EADs server is not
output. As a result,
you cannot examine
a series of access
from the EADs
session failover
functionality to the
EADs server.

2 eads.java.
heapsize

Specify the size of the Java heap (megabytes)
in which the key is stored.

3072 A value, which is
calculated with a
calculation formula
that estimates the
Java heap size
provided by EADs.
For details, see the
Elastic Application

If you specify a
value smaller than
the recommended
value, operation of
application
information or
global session
information on the

7. EADs Session Failover Functionality

293

No
.

Properties of EADs Recommended values and operation of
the EADs session failover functionality

Parameter
name Contents Default

value
Recommended

value

Operation
performed if you
specify a value

other than
recommended

value

2 eads.java.
heapsize

Specify the size of the Java heap (megabytes)
in which the key is stored.

3072 Data store User
Guide.

For details on the
size of the key and
value used when
using the EADs
server, see 5.8.4
Estimating EADs
server memory.

EADs server might
fail due to
insufficient memory.

3 eads.java.
external.h
eapsize

Specify the size of the Explicit heap
(megabytes) in which the value is stored. 3% of
the size of the specified Explicit heap (rounded
up after the decimal point) is used as the
management area.

1024 A value, which is
calculated with a
calculation formula
that estimates the
Explicit heap size
provided by EADs.
For details, see the
Elastic Application
Data store User
Guide.

For details on the
size of the key and
value used when
using the EADs
server, see 5.8.4
Estimating the
EADs server
memory.

If you specify a
value smaller than
the recommended
value, operation of
application
information or
global session
information on the
EADs server might
fail due to
insufficient memory.

(2) Placing JAR file for EADs session failover
For executing the processing of the EADs session failover functionality on an EADs server, place sfo-
function.jar, which is stored in Application-Server-installation-directory\CC\sfo\eads\lib directory, in
the following directory on all EADs servers existing in the EADs cluster.

EADs-server-installation-directory\servers\-EADs-server-name-\app

7.6.2 Starting the EADs server
Start the EADs server after setting up the environment of the EADs server.

For details on commands used when starting an EADs server, see the Elastic Application Data store User Guide.

Start the EADs server with the following procedures:

1. Execute the ezstart command for starting the EADs server.
If you execute the ezstart command provided by EADs, the EADs server starts on the host on which you
executed the command.

Execution example:
ezstart

2. Execute the eztool status command for checking the status of the EADs server.
If you execute the eztool status command provided by EADs, the status of all EADs servers is output. From
the output contents, confirm that all EADs servers are started and initialized.

7. EADs Session Failover Functionality

294

Execution example:
eztool status

For details on the procedures for starting the EADs server, see the Elastic Application Data store User Guide.

After starting an EADs server, check with the following procedures that the sfo-function.jar file is correctly
embedded in the EADs server:

1. Execute the eztool listfunc command for displaying the ability to execute user functions.
If you execute the eztool listfunc command provided by EADs,
com.hitachi.software.web.eadssfo.func.EadssfoFunction0100 displays in FunctionName.

Execution example:
eztool listfunc

2. Check that Enable is displayed and confirm that the sfo-function.jar file is embedded on the EADs server.
If the Enable value of the FunctionName com.hitachi.software.web.eadssfo.func.EadssfoFunction0100 is the same
as the number of EADs servers in the cluster, consider that the sfo-function.jar file is correctly embedded
on the EADs server.

7.6.3 Creating a cache
Create a cache (application information cache and session information cache) that is to be used in the EADs session
failover functionality, on the EADs server.

For details on commands used when creating a cache, see the Elastic Application Data store User Guide.

(1) Creating the application information cache
Create the application information cache with the following procedures:

1. Execute the eztool createcache command for creating the application information cache on the EADs
server.
If you execute the eztool createcache command provided by EADs, the application information cache of
the name specified on the EADs server is created.

Execution example:
eztool createcache EADsSFO_APP_INFO

In this example, the EADsSFO_APP_INFO cache is created.
If you have specified a cache name other than the default value in the
webserver.eadssfo.application.cache.name key in 7.5 J2EE server settings, appropriately change
the cache name to be specified in the command.

2. Execute the eztool listcache command for checking that a cache is created on the EADs server.
If you execute the eztool listcache command provided by EADs, a list of cache existing on the EADs
server is output. Check that the cache name specified in step 1 is included in the output contents.

Execution example:
eztool listcache

(2) Creating the session information cache
Create the session information cache with the following procedures:

1. Execute the eztool createcache command for creating the session information cache on the EADs server.
If you execute the eztool createcache command provided by EADs, the session information cache of the
name specified on the EADs server is created.

Execution example:
eztool createcache EADsSFO_SESSIONS

In this example, the EADsSFO_SESSIONS cache is created.

7. EADs Session Failover Functionality

295

If you specify a cache name other than the default value in the
webserver.eadssfo.session.cache.name key in 7.5 J2EE server settings, appropriately change the
cache name to be specified in the command.

2. Execute the eztool listcache command for checking that a cache is created on EADs server.
If you execute the eztool listcache command provided by EADs, a list of cache existing on the EADs
server is output. Check that the cache name specified in step 1 is included in the output contents.

Execution example:
eztool listcache

7.6.4 Unlocking clusters
Unlock a cluster of EADs with the procedures described below.

For details on commands used when unlocking a cluster of EADs, see the Elastic Application Data store User Guide.

1. Execute the eztool open command and unlock a cluster.
If you execute the eztool open command provided by EADs, the cluster unlocks and requests from EADs
clients can be received.

Execution example:
eztool open

2. Execute the eztool status command and check the status of the EADs server.
If you execute the eztool status command provided by EADs, the status of all EADs servers is output. From
the output contents, check that all EADs servers are unlocked.

Execution example:
eztool status

7. EADs Session Failover Functionality

296

7.7 Changing settings related to the EADs session
failover functionality

This section describes changing settings related to the EADs session failover functionality. With the EADs session
failover functionality, preference information such as application information and global session information is stored
in the EADs server cache. Because negotiation processing checks that there are no errors in settings when starting a
Web application, you must initialize the preference information of the Web application, which is stored in the EADs
server cache, when changing the settings of a Web application that was once started. For details on negotiation
processing, see 7.3.1 Processing when starting an application.

The following figure shows the flow for changing settings related to the EADs session failover functionality:

Figure 7‒14: Flow of changing settings related to the EADs session failover functionality

Reference note
Use the server management commands or management portal for starting and stopping an application. For details on starting
an application, see cjstartapp (starting a J2EE application) "> in the uCosminexus Application Server Command
Reference Guide. For details on stopping an application, see cjstopapp (stopping a J2EE application) in the
uCosminexus Application Server Command Reference Guide. For details on the operating management portal, see 12.3
Managing a J2EE application in the uCosminexus Application Server Management Portal User Guide.

7.7.1 Changing J2EE server and application settings
This subsection describes the procedures for changing the J2EE server and Web application settings. If you change the
settings, you must initialize the information stored in the EADs servers. For details on how to initialize the
information stored in an EADs server, see 7.7.2 Initializing application information.

(1) Stopping application and changing settings
For changing the settings of the EADs session failover functionality in the Web application unit, stop the J2EE
application and change the settings of the Web application.

7. EADs Session Failover Functionality

297

After completing the process of changing the settings of the Web application on one J2EE server, change the settings
of the Web application on other replicated J2EE servers. You can change the settings of the same Web application on
replicated J2EE servers one by one and thus change all settings without stopping the entire system.

For details on settings of Web applications, see 7.4 Definitions in cosminexus.xml.

(2) Stopping J2EE server and changing settings
For changing the settings of the EADs session failover functionality in J2EE server units, execute the following
procedures:

1. Stop the J2EE applications.
Stop all J2EE applications in the J2EE server.

2. Stop the J2EE server.
Stop the J2EE server.

3. Change the settings of the J2EE Server in the Easy Setup definition file.
Change the settings in the Easy Setup definition file. For details on J2EE server settings, see 7.5 J2EE server
settings.

4. Change the settings on other replicated J2EE servers.
Serially execute steps 1 to 3 for other replicated J2EE servers and change the same settings on all replicated J2EE
servers.

7.7.2 Initializing application information
If you change the information used in a Web application or the information related to a Web application, you must
initialize the preference information of the Web application, which is stored in the EADs server cache.

For initializing the preference information of a Web application stored in the application information cache on the
EADs server, use the eztool removekey command of EADs. An example of executing the command is as
follows:

eztool removekey EADsSFO_APP_INFO eadssfo:application1

If you execute the command, application information of the application identifier application1 is deleted from
the EADsSFO_APP_INFO cache on the EADs server. If you create a cache by specifying a cache name other than the
default value, change the cache name and execute the command.

For details on the eztool removekey command, see the Elastic Application Data store User Guide.

7.7.3 Destroying an HTTP session
You might have to destroy an HTTP sessions existing in a system when upgrading the version of an application while
operating the system.

With the EADs session failover functionality, global session information is stored in the EADs server cache. Hence,
you cannot destroy an HTTP session with stopping the J2EE application or the J2EE sever. Destroy an HTTP session
by deleting global session information from the EADs server cache.

Execute the following procedures for deleting global session information:

1. Stop the J2EE applications or J2EE server.
Stop all J2EE applications including other replicated J2EE applications or all J2EE servers.

2. Delete global session information stored in a cache on the EADs server.
Use the cjezclearsession command and delete global session information stored in a cache on the EADs
server. For details on the procedures for deleting global session information, see 7.8.1 Deleting global session
information on an EADs server (session information storage destination server) .

3. Start the J2EE application.

7. EADs Session Failover Functionality

298

7.8 Deleting data on the EADs server
This section describes about deleting data on the EADs server. The following are the types of data deletion on the
EADs server:

• Deleting global session information on the EADs server (session information storage destination server)

• Deleting global session information remaining on the EADs server (session information copy destination server)

• Deleting a cache on the EADs server

7.8.1 Deleting global session information on the EADs server (session
information storage destination server)

The validity of global session information is monitored in the process of monitoring HTTP sessions on J2EE servers.
As a part of monitoring the validity, global session information about HTTP sessions on the EADs server, the validity
of which has expired, is deleted. However, if a J2EE server stops due to a failure, the validity of global session
information used on that J2EE server is not monitored until a request having the same session ID is received or until
you restart the J2EE server. If the state of not monitoring validity continues for a long time, the global session
information, which is not deleted even if the validity is elapsed, remains in the cache on the EADs server.

Therefore, you must appropriately delete the global session information remaining on the EADs server.

This subsection describes how to delete global session information by using commands and the points to be
considered.

(1) How to delete global session information
Use the cjezclearsession command for deleting global session information. Execute the command after a J2EE
server or a Web application stops, when more time than the validity of the HTTP session has elapsed, and before
restarting the J2EE server or the Web application.

In a Web application, if you have set validity for each HTTP session by using servlet API, execute the command in
accordance with the longest validity.

The procedures for deleting global session information are as follows:

1. Set the JAR files of the EADs client on the environment variable CLASSPATH.
When using the cjclearsession command for the first time, specify the path of the JAR files (eads-
client.jar, eads-common.jar, and hntrlib2-eads-j.jar) of the EADs client to be used in the
environment variable CLASSPATH.

2. Execute the cjezclearsession command for deleting the global session information
Specify the J2EE server name, application identifier, and server ID in the cjezclearsession command, and
execute the command. When you execute the command, all global session information, which is the global session
information related to the Web applications specified in the command argument and global session information
possessed by the J2EE servers specified in the command argument, from among the global session information
stored in session information a cache on the EADs server, is deleted.

3. Restart the J2EE server or the Web application if required.

If you specify the -count option in the cjezclearsession command and execute the command, you can view
the count of global session information, which is the global session information related to the Web applications
specified in the command argument and the global session information possessed by the J2EE servers specified in the
command argument, from among the global session information stored in the session information cache on the EADs
server.

If an error occurs when accessing the EADs server while executing the command, cancel the command execution at
the point at which the error occurs.

For details on the cjezclearsession command, see cjezclearsession (deleting global session
information (the EADs session failover functionality)) in the uCosminexus Application Server Command Reference
Guide.

7. EADs Session Failover Functionality

299

(2) Notes
The notes for deleting global session information are:

• Deleting information when the J2EE server, which owns the HTTP session to be deleted, is running
If the J2EE server is running, request processing might be performed and global session information might be
newly created. As a result, if the J2EE server that owns the HTTP session to be deleted is running, the session
might be deleted before the validity of the global session expires. When deleting global session information, stop
the J2EE server that owns the HTTP session to be deleted and then execute the command.

• Deleting before validity expires
If you delete global session information by executing the cjezclearsession command before validity of the
global session expires, the resultant operations are:

No. Existence status of HTTP
session on the J2EE server Operation

1 Does not exist You cannot inherit the global session.

2 Exists Global session information is not stored in the session information cache on the EADs
server and the Web application operates only with the HTTP session on the J2EE server.

7.8.2 Deleting global session information remaining on the EADs server
(the session information copy destination server)

If you successfully delete global session information stored in a cache on the EADs server (the session information
storage destination server) and fail to delete global session information saved in a cache on other replicated EADs
servers (session information copy destination servers), global session information remains only on the copy
destination servers. In such a case, you must delete the global session information remaining on the copy destination
servers.

The procedures for deleting global session information from a cache on a session copy destination server are as
follows:

1. Check the global session information remaining on the session information copy destination server.
If you fail to delete the global session information saved in a cache on a session information copy destination
server, the KDJE34422-E message is output. Check the application identifier and session ID required for
deleting global session information in this message. The following is an example of message output:
KDJE34422-E An attempt to clear the global session information failed
because an error occurred during communication with the EADs slave server.
(J2EE application = App1, context root = application1, exception =
InternalServerException, application ID = application1, HTTP session ID =
00662F41E2EE47C1E719DC3E9D38EE01serverid10000013903dfcf47)
In this example, the application identifier is application1 and the session ID is
00662F41E2EE47C1E719DC3E9D38EE01serverid10000013903dfcf47.

2. Execute the eztool removekey command for deleting the global session information remaining on the session
information copy destination server.
Execute the eztool removekey command provided by EADs and delete global session information from the
session information cache on the EADs server. In the command argument, specify the name of the session
information cache, and the application identifier and session ID confirmed in step1 concatenated with a colon (:).

Execution example:
eztool removekey EADsSFO_SESSIONS
application1:00662F41E2EE47C1E719DC3E9D38EE01serverid10000013903dfcf47

In this execution exception, from among the global session information related to the Web application having the
application1 application identifier, the global session information having the
00662F41E2EE47C1E719DC3E9D38EE01serverid10000013903dfcf47 session ID is deleted from the
EADsSFO_SESSIONS cache on the EADs server.

For details on the eztool removekey command, see the Elastic Application Data store User Guide.

7. EADs Session Failover Functionality

300

7.8.3 Deleting a cache on the EADs server
This subsection describes about deleting a cache (the application information cache and session information cache) on
the EADs server.

(1) Deleting the application information cache on the EADs server
The procedure for deleting the application information cache on the EADs server is as follows:

1. Execute the eztool deletecache command for deleting the application information cache
Execute the eztool deletecache command provided by EADs for deleting the application information
cache from the EADs server.

Execution example:
eztool deletecache EADsSFO_APP_INFO

In this execution example, the EADsSFO_APP_INFO cache is deleted from the EADs server. If you specify a
cache name other than the default value in webserver.eadssfo.application.cache.name in 7.5
J2EE server settings, you must appropriately change the cache name to be specified in the command.

2. Execute the eztool listcache command for confirming that the application information cache is deleted.
Execute the eztool listcache command provided by EADs for confirming that the application information
cache is deleted from the EADs server.

Execution example:
eztool listcache

When you execute the command, a list of cache existing on the EADs server is output. Confirm that the cache
name specified in step1 is not included in the output contents.

For details on the eztool listcache command, see the Elastic Application Data store User Guide.

(2) Deleting the session information cache on the EADs server
The procedure for deleting the session information cache on the EADs server is as follows:

1. Execute the eztool deletecache command for deleting the session information cache.
Execute the eztool deletecache command provided by EADs for deleting the session information cache
from the EADs server.

Execution example:
eztool deletecache EADsSFO_SESSIONS

In this execution example, the EADsSFO_SESSION cache is deleted from the EADs server. If you specify a
cache name other than the default value in webserver.eadssfo.session.cache.name in 7.5 J2EE
server settings, you must appropriately change the cache name to be specified in the command.

2. Execute the eztool listcache command for confirming that the session information cache is deleted.
Execute the eztool listcache command provided by EADs for confirming that the session information
cache is deleted from the EADs server.

Execution example:
eztool listcache

When you execute the command, a list of cache existing on the EADs server is output. Confirm that the cache
name specified in step1 is not included in the output contents.

For details on the eztool listcache command, see the Elastic Application Data store User Guide.

7. EADs Session Failover Functionality

301

7.9 Procedure for analyzing log that uses the
performance analysis trace

With the EADs session failover functionality, pass the root AP information generated on the J2EE server to EADs
clients. By considering root AP information as a key, you can compare the performance analysis trace output by a
J2EE server, communication trace log of the EADs client, and performance analysis trace of the EADs server, and
track a series of access to the EADs server for which the EADs session failover functionality was a starting point.

Root AP information is output to the output performance analysis trace or communication trace log in the following
order:

1. The EADs session failover functionality outputs the performance analysis trace

2. The EADs client outputs the communication trace log

3. The EADs server outputs the performance analysis trace

7. EADs Session Failover Functionality

302

7.10 Log output of EADs operations
This section describes the log output when performing EADs operations.

7.10.1 Output of the message log
With the EADs session failover functionality, the data of the EADs server is read and written by invoking API of the
EADs client. If a failure occurs when invoking an API of the EADs client, a message is output to the message log.

7.10.2 Output of the exception information to the message log and
exception log

This section describes exception information that is output to the message log and exception log if an exception occurs
when invoking an API of the EADs client and if an exception occurs in a user function provided by the EADs session
failover functionality.

• If an exception occurs when invoking an API of the EADs client
If an exception occurs when invoking an API of the EADs client, information of the exception thrown by the API
of the EADs client is output to the message log and exception log.
If a global session information operation on the EADs server fails due to this reason,
com.hitachi.software.web.eadssfo.EadssfoException information, which contains the cause of
the exception that occurred when invoking the API of the EADs client, is output to exception information of
message, which describes that the operation of global session information failed.
For details on exception information provided by EADs, see the Elastic Application Data store User Guide.

• If an exception occurs in a user function provided by the EADs session failover functionality
If an exception occurs in a user function provided by the EADs session failover functionality,
com.hitachi.software.web.eadssfo.EadssfoException information is output to the message log
and exception log. Take action on the basis of the cause of the exception and the output message.

7.10.3 EADs client output log
The EADs client log used by the EADs session failover functionality is output to the J2EE server log output
destination directory. The EADs client log used in the cjezclearsession command, which is provided by the
EADs session failover functionality, is output to the log output destination directory of the server management
command and not to the log output destination directory of the J2EE server.

7. EADs Session Failover Functionality

303

8 Inhibiting Full Garbage Collection
by Using Explicit Memory
Management
With Application Server, you can use a memory space other than the Java heap as the
Java object placement destination when executing a Java application. The function is
called the Explicit Memory Management functionality. You can inhibit the occurrence
of a full garbage collection by effectively using the Explicit Memory Management
functionality.

This chapter describes how to inhibit a full garbage collection by using the Explicit
Memory Management functionality.

Note that you cannot use the Explicit Memory Management functionality if the -XX:
+UseParNewGC option is specified as a type of the copy garbage collection.

305

8.1 Organization of this chapter
The Explicit Memory Management functionality inhibits the occurrence of a full garbage collection by using an area
other than the Java heap (Explicit heap) as the Java object placement destination.

The following table describes the organization of this chapter.

Table 8‒1: Organization of this chapter (Inhibiting full garbage collection by using the Explicit Memory
Management functionality)

Category Title Reference
location

Explanation Overview of the Explicit Memory Management functionality 8.2

Overview of the memory space used in the Explicit Memory Management functionality 8.3

Objects placed in the Explicit heap when using a J2EE server 8.4

Objects that you can optionally place in the Explicit heap in the application 8.5

The life cycle of the Explicit memory block and executed processes 8.6

Releasing the Explicit memory block when the automatic release functionality is enabled 8.7

Releasing the Explicit memory block when the automatic release functionality is disabled 8.8

Releasing the Explicit memory block by using the javagc command. 8.9

Reducing the time required for automatic release processing of the Explicit memory blocks 8.10

Reducing the memory usage of the Explicit heap that is used in an HTTP session 8.11

Implementation Implementing a Java program that uses the Explicit Memory Management functionality API 8.12

Settings Settings in the execution environment 8.13

Notes Points to be considered when using the Explicit Memory Management functionality 8.14

#: There is no specific explanation of Operation and Precautions for this functionality.

For details on the mechanism of garbage collection, see 7. Memory Tuning of JavaVM in the uCosminexus Application
Server System Design Guide.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

306

8.2 Overview of the Explicit Memory Management
functionality

This section describes the overview of the Explicit Memory Management functionality.

8.2.1 Objectives of using the Explicit Memory Management functionality
The Explicit Memory Management functionality is a functionality that inhibits the occurrence of a full garbage
collection. By using this function, you can reduce the frequency of system halts and achieve a stable throughput.

The size of a Java heap handle on Application Server is increased by increasing the logical address space handled in
the system or by expanding the system scale. The problem faced is the garbage collection execution time increases
along with the increase in the Java heap size. The system stops when the garbage collection is being executed. In
particular, the execution time of the full garbage collection increases in proportion to the used Java heap size. The time
required for the full garbage collection might increase in accordance with the increase in the Java heap size that you
can use.

Reference note

Relationship between garbage collection algorithm and system stop time
With JavaVM the Copy algorithm for the copy garbage collection and the Mark Sweep Contact algorithm for the
full garbage collection. These algorithms are of Stop the World type. In Stop the World type, the same
execution time is required for the garbage collection and for stopping the system that uses JavaVM.

8.2.2 Mechanism of inhibiting full garbage collection by using the Explicit
Memory Management functionality

The Explicit Memory Management functionality uses an independent area called the Explicit heap as the Java object
placement destination. The Explicit heap is an area, which is out of the Java heap, and is not targeted for garbage
collection. If you are not using the Explicit Memory Management functionality, you can inhibit the occurrence of a
full garbage collection by placing the Java objects, which were earlier placed in the Java heap, in the Explicit heap.

This subsection describes the mechanism of inhibiting the full garbage collection by using the Explicit Memory
Management functionality and also the positioning of the Explicit Memory Management functionality.

(1) Mechanism of inhibiting full garbage collection
If the Eden area runs out of free space during the execution of a Java application, a garbage collection occurs. In such
a case, JavaVM executes full garbage collection, if the following formula is satisfied.

Size of memory that is used in New area > Size of free space in Tenured area

#
Because the Eden area is out of free space, the size of the memory used in the New area is almost the same as the maximum size
of the New area.

As the formula shows, the full garbage collection occurs if the size of the free space in the Tenured area becomes less
than the size of the memory that is used in the New area. The free space in the Tenured area is used by Java objects
that move (rise) from the Survivor area when the copy garbage collection occurs. In other words, if you can reduce the
rising Java objects, you can inhibit the occurrence of the full garbage collection. The objects that are not deleted
during multiple executions of the copy garbage collection and that are targeted for rising are called long-life objects.

The long-life objects are broadly categorized into two types. One type of the objects is the objects that are not
recovered by a full garbage collection. For example, the objects that should essentially be stored in the Tenured area,
and which continue to exist constantly during the application execution. Such objects are not the real cause of a full
garbage collection because they do not continue to increase. If you want to eliminate the impact of such long-life
objects, increase the size of the Tenured area.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

307

Another type of the objects is the objects that are recovered by a full garbage collection. The long-life objects that are
recovered by the full garbage collection are the objects that have a long-life to the extent of rising in the Tenured area,
but become unnecessary over a certain period of time. Such long-life objects cause a full garbage collection because
they continue to increase until the full garbage collection occurs.

The following figure shows the objects that are recovered by the full garbage collection and the objects that are not
recovered by the full garbage collection.

Figure 8‒1: Objects that are recovered by full garbage collection and the objects that are not recovered by
full garbage collection

You cannot prevent the increase of objects, which will become unnecessary over a period of time only by increasing
the size of the Tenured area. Even if you double the size of the Tenured area, the interval of occurrence of full garbage
collection is doubled and you cannot achieve the expected result.

In other words, decreasing the rise of objects, which will become unnecessary over a certain period of time, to the
Tenured area is the key to inhibit the occurrence of a full garbage collection.

On Application Server, the rise destination for the copy garbage collection of some Java objects is set to the Explicit
heap. The following figure shows the difference between rise when you are not using the Explicit Memory
Management functionality and when you are using the Explicit Memory Management functionality.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

308

Figure 8‒2: Difference between rise when you are not using Explicit Memory Management functionality
and when you are using Explicit Memory Management functionality

In both the cases, status is same at step 1. In step 2, when the objects rise, all long-life objects are moved to the
Tenured area if you are not using the Explicit Memory Management functionality. On the other hand, if you are using
the Explicit Memory Management functionality, the objects from among the long-life objects that will definitely be
destroyed after a certain period of time, are moved to the Explicit heap. Thus, only the long-life objects, which are not
planned to be destroyed, are moved to the Tenured area and the used size of the Tenured area increases slowly. As
shown in step 3, if you are using the Explicit Memory Management functionality, objects in the Explicit heap are
deleted when they become unnecessary.

For details on the target Java objects, see 8.4 When using a J2EE server objects placed in the Explicit heap. For details
on the algorithm of garbage collection, see 7. Memory Tuning of JavaVM in the uCosminexus Application Server
System Design Guide.

If you use the Explicit Memory Management functionality in an application developed that you have developed,
generate long-life objects, which will be destroyed over a certain period of time, directly in the Explicit heap. That

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

309

will prevent an increase in the memory size of the Tenured area. For details on the Java objects that can be generated
in the Explicit heap, see 8.5 Objects that you can optionally place in the Explicit heap in the application.

(2) Positioning of the Explicit Memory Management functionality
The Explicit Memory Management functionality is a functionality of JavaVM. You can use the Explicit Memory
Management functionality in the following two ways:

• By using the configuration file of the Explicit Memory Management functionality.
The following are the configuration files of the Explicit Memory Management functionality. By using these files,
you can set target objects that use the Explicit Memory Management functionality.

• A configuration file for the Explicit Memory Management functionality application exclusion or disabling the
application exclusion

• Auto allocated configuration file

• By using the Explicit Memory Management functionality API

The following figure shows the positioning of the Explicit Memory Management functionality. Note that the JavaVM
log file output functionality in the figure refers to JavaVM log file output functionality.

Figure 8‒3: Positioning of the Explicit Memory Management functionality

This subsection describes the Explicit Memory Management functionality API, automatic placement configuration
file, configuration file for the Explicit Memory Management functionality application exclusion or disabling

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

310

application exclusion, functionality for configuring the Explicit Memory Management functionality, functionality of
statistics of unnecessary objects in the Tenured area, and the Explicit heap.

Explicit Memory Management functionality API
If you want to use the Explicit Memory Management functionality from a Java program, use the Explicit Memory
Management functionality API. With this API, you can execute the operations related to the Explicit heap. You
can also collect the use status of the Explicit heap as statistics.

Automatic placement configuration file
Use the automatic placement configuration file to use the Explicit Memory Management functionality without
making changes to the Java program. Specify the objects that you want to place in the explicit management heap,
in the file.

Configuration file for Explicit Memory Management functionality application exclusion or disabling
application exclusion

The object that is referenced from objects placed in the Explicit management Heap by using automatic placement
functionality, is automatically moved to the Explicit management heap on the basis of a reference relation when a
garbage collection occurs. If you want to exclude the objects to be moved on the basis of this reference relation,
from an application of the Explicit Memory Management functionality in the unit of class, use the configuration
file for the Explicit Memory Management functionality application exclusion and configuration file for disabling
application exclusion of the Explicit Memory Management functionality.
When you want to exclude an object from an application target of the Explicit Memory Management functionality,
use the configuration file for the Explicit Memory Management functionality application exclusion. Specify
classes of the objects, which are not to be moved to the Explicit management heap, in this file.
In cases such as when all classes in the same package are excluded from an application target of the Explicit
Memory Management functionality in the configuration file for the Explicit Memory Management functionality
application exclusion, if you want to target some classes for application of the Explicit Memory Management
functionality, use the configuration file for disabling application exclusion of the Explicit Memory Management
functionality. Specify the classes, for which the setting of application exclusion of the Explicit Memory
Management functionality is to be disabled, in this file.

Functionality for configuring the Explicit Memory Management functionality
Any functionality that configures the Explicit Memory Management functionality is included in JavaVM. Such
functionality is called by API. You can execute the following processes:

• Management and control of the Explicit heap and memory blocks in the heap

• Placement of objects to the Explicit heap by changing the allocation processing integrated with a garbage
collection
The allocation process is executed by the extension of a new keyword.

• Control on movement of objects to Explicit heap memory blocks

• Output of an Explicit heap event log and the status to JavaVM log file and the thread dump

Functionality of statistics of unnecessary objects in the Tenured area
This functionality checks the unnecessary objects that are the cause of memory increase in the Tenured area. For
details on the functionality of statistics of unnecessary objects in Tenured area, see 9.8 Functionality of statistics of
unnecessary objects in Tenured area in the uCosminexus Application Server Maintenance and Migration Guide.

Explicit heap
The Explicit heap is an area where the Java objects that are not targeted for garbage collection are placed and this
area is managed by the Explicit Memory Management functionality. The Explicit heap is configured from multiple
memory blocks (Explicit memory blocks).

(3) Required memory size when using the Explicit Memory Management functionality
The Explicit heap managed by the Explicit Memory Management functionality is an area outside the Java heap. When
using an Explicit heap, the memory usage increases as compared to memory usage when not using the Explicit heap.

When using the Explicit Memory Management functionality, you need to estimate and appropriately set the maximum
size of the Explicit heap as the required memory size. For details on the flow of using the Explicit Memory
Management functionality, objects stored in the Explicit heap (objects that are the cause of memory size increase in
the Tenured area), and the estimation of the Explicit heap size, see 7.10 Explicit heap tuning in the uCosminexus
Application Server System Design Guide.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

311

8.2.3 Prerequisites for using the Explicit Memory Management
functionality

This subsection describes the prerequisites for using the Explicit Memory Management functionality. The availability
of using the Explicit Memory Management functionality varies from server to server and command to command.

The following table describes whether the Explicit Memory Management functionality is supported. For the default
settings, see 8.13.1 Common settings for using the Explicit Memory Management functionality (JavaVM option
settings).

Table 8‒2: Support for the Explicit Memory Management functionality

Server or command type Supported

J2EE server Y

Batch server Y

SFO server N

cjclstartap command Y

Legend:
Y: The functionality is supported.
N: The functionality is not supported.

Whether the Explicit Memory Management functionality can be used for the objects related to an HTTP session and
objects used for communication between a Web container and the redirector depends on the type of Web server that
you use.

The following table describes Web server types and whether the Explicit Memory Management functionality can be
used.

Table 8‒3: Web server types and whether the Explicit Memory Management functionality can be used

Web server type Objects related to HTTP session Objects used for communication
between Web container and redirector

Cosminexus HTTP Server Y Y

Microsoft IIS Y Y

In-process HTTP server Y --

Legend:
Y: The functionality can be used. The functionality is enabled by default.
--: The functionality cannot be used. Or, the functionality is not applicable.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

312

8.3 Overview of memory space used in the Explicit
Memory Management functionality

This subsection describes the structure of an Explicit heap, which is the memory space used by the Explicit Memory
Management functionality. For details on the configuration of memory space used by JavaVM, see 7.1.2
Configuration of memory spaces used by JavaVM and JavaVM options in the uCosminexus Application Server System
Design Guide.

TheExplicit heap is a memory space that is not targeted for the garbage collection. It is configured from multiple
memory blocks. Memory blocks that configure an Explicit heap are called Explicit memory blocks. The Explicit heap
is a concept that represents all Explicit memory blocks.

Execute operations such as initialization and release for each Explicit memory block unit.

The following figure shows the concept of an Explicit heap.

Figure 8‒4: Concept of Explicit heap

Set the maximum size of an Explicit heap in the JavaVM startup option -XX:HitachiExplicitHeapMaxSize.
For details on the -XX:HitachiExplicitHeapMaxSize option, see -
XX:HitachiExplicitHeapMaxSize (Maximum size specification option of the Explicit memory block) in the
uCosminexus Application Server Definition Reference Guide. You can generate (initialize) maximum 1,048,575
Explicit memory blocks. You cannot generate Explicit memory blocks more than the maximum number.

There are two types of methods to secure the memory; the method of securing memory area in a batch when starting
JavaVM and the method of securing memory area as and when required. This subsection describes both the methods.

Method of securing the memory area in a batch when starting JavaVM
This method is applicable when you are using the automatic placement functionality of the Explicit Memory
Management functionality (when you have specified -XX:+HitachiAutoExplicitMemory option) or
when you are using the 64-bit version Application Server.
The actual memory area of the maximum size of the Explicit heap, that you have specified in the -
XX:HitachiExplicitHeapMaxSize option, is secured when JavaVM is started. The area is secured as a
continued area from the Java heap and Permanent area.
If the memory required to place Java objects in the Explicit memory blocks is insufficient, the memory area for
Explicit memory blocks is secured from the area of the Explicit heap that was secured when starting JavaVM. For
this reason, the memory area in the Explicit memory blocks is divided into multiple areas.
The following figure shows the image of using the virtual memory space.

Figure 8‒5: Image of using the virtual memory space (for 64-bit version)

Although the area for an Explicit heap is a continued area, the area used in a single Explicit memory block is non-
continuous.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

313

Method of securing memory area as and when required
This method is applicable when you are not using automatic placement functionality of the Explicit Memory
Management functionality (when you have specified -XX:-HitachiAutoExplicitMemory option) and you
are using the 32-bit version Application Server.
In this case, the memory is not secured in a batch. The memory is secured when the Explicit memory block
requires memory. Therefore, the Explicit heap is a non-continuous area.
If the memory required to place objects in Explicit memory blocks is insufficient, the memory area is secured
from OS as and when required. For this reason, the memory area in Explicit memory blocks is also divided into
multiple areas.
The following figure shows the image of using the virtual memory space.

Figure 8‒6: Image of using the virtual memory space (for 32-bit version)

The area for an Explicit heap and the area used in a single Explicit memory block are non-continuous areas.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

314

8.4  When using J2EE server objects placed in Explicit
heap

This section describes the objects placed in an Explicit heap when using the J2EE server.

On a J2EE server, place the following objects in an Explicit heap to inhibit the occurrence of a full garbage collection:

• Objects related to an HTTP session

• Objects for communication with a redirector

The Web container secures the Explicit memory block area, and releases and reserves Explicit memory blocks. This
section describes the processes executed by the Web container for each object.

8.4.1 Objects related to HTTP session
The objects stored in an HTTP session are the objects that are retained when the session is active. The objects exist
from the generation of the session until the session is destroyed.

When you are not using the Explicit Memory Management functionality, many times, these objects are continued to
be used during multiple executions of a copy garbage collection. Therefore, these objects are easy to rise to the
Tenured area as long-life objects. Because objects that rise to the Tenured area are not recovered by a copy garbage
collection, these objects are not recovered even after the session is destroyed. This leads to an increase in the memory
usage of the Tenured area and a full garbage collection occurs.

The following figure shows an example of not using the Explicit Memory Management functionality

Figure 8‒7: An example of not using the Explicit Memory Management functionality

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

315

When you generate a session in step 1, the area for storing objects is secured in the New area. In step 2, objects are
stored in a session. After multiple executions of the copy garbage collection, the objects in step 1 and 2 move to the
Tenured area. Although the session deactivates in step 3, objects in the Tenured area are not recovered and the
memory usage goes on increasing.

You can inhibit the occurrence of the full garbage collection by changing the rise destination of objects related to the
HTTP session from the Tenured area to the Explicit heap.

The following figure shows an example of using the Explicit Memory Management functionality

Figure 8‒8: An example of using the Explicit Memory Management functionality

If you use the Explicit Memory Management functionality, the Tenured area does not increase due to the objects
related to an HTTP session. Thus you can inhibit the occurrence of a full garbage collection. The J2EE server
explicitly releases the Java objects placed in the Explicit heap after the session is destroyed.

This subsection describes the timing of securing and releasing the Explicit memory block area in which the HTTP
session is to be placed.

When you create an HTTP session
When you create a new HTTP session, an Explicit memory block is created in the Explicit heap area. One Explicit
memory block is allocated to one session. The HTTP session is secured inside the Explicit memory block.
However, objects are placed in the Java heap, immediately after a session is created. After multiple executions of
the copy garbage collection, when the corresponding Java object rises, the object moves to the Explicit heap.

When an object is stored in the HTTP session (when setAttribute method is executed)
The javax.servlet.http.HttpSession.setAttribute method places the objects stored in the
HTTP session, in Explicit memory blocks allocated to each session.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

316

However, when the setAttribute method is executed, the objects are placed in the Java heap. After multiple
executions of the copy garbage collection, when the corresponding Java object rises, the object moves to the
Explicit heap. At that time, all the objects that were being referenced from the object to be moved are moved to
the Explicit heap. However, the objects might not move to an Explicit heap depending on the specification of the
option of controlling object movement to the Explicit memory block.

When the object is deleted from the HTTP session (when removeAttribute method is executed)
The Explicit heap is not targeted for the garbage collection. Therefore, even if you delete an object from the HTTP
session by executing the javax.servlet.http.HttpSession.removeAttribute method, the area
that was using the object is not released.
Even if you change the attributes by using the setAttribute method, the area that was using the object is not
released because the attributes prior to change are not targeted for the garbage collection.
The memory is released in Explicit memory blocks. Note that if your Web application repeatedly and frequently
executes the setAttribute method, the area inside the Explicit memory block might get unnecessarily
consumed even if you execute the removeAttribute method.

When the HTTP session is destroyed
When the HTTP session is destroyed, the Web container reserves the release of Explicit memory blocks created at
the time of the HTTP session creation.
The Explicit memory blocks reserved for release are actually released when the copy garbage collection or full
garbage collection is executed after that. At that time, all the areas reserved for release are released.
If references to objects stored in the session are retained after the Explicit memory blocks were released, see the
following description.

• 8.7 Releasing Explicit memory blocks when the automatic release functionality is enabled

• 8.8 Releasing Explicit memory blocks when automatic release functionality is disabled

The following table describes the mapping of an operation or an action executed by a Web application and a JavaVM
action.

Table 8‒4: Mapping of operations executed by Web application (API) and JavaVM action

Operations (API) or actions executed by Web application Web container action JavaVM action

• javax.servlet.http.HttpServletRequest.getSessi
on()

• javax.servlet.http.HttpServletRequest.getSessi
on(boolean)

Generating a session Securing Explicit memory
blocks

• javax.servlet.http.HttpSession.setAttribute(St
ring, Object)

Storing objects in the
session

Placing objects in the Explicit
memory block

• Session timeout
• javax.servlet.http.HttpSession.invalidate()

Destroying the session Releasing Explicit memory
blocks

Apart from the HTTP session, the Web application + 2# Explicit memory blocks are used inside the Web container for objects for the
HTTP session management.

#: Because two objects for management are kept internally in the Web container, add that count as well.

Note that you can reduce the memory size of the Explicit heap that is used in an HTTP session, by using the memory
saving functionality of the Explicit heap. For details, see 8.11 Reducing memory usage of the Explicit heap that is used
in an HTTP session.

If you implement an application by referring to Appendix A Efficiently using Explicit heaps to be used in HTTP
session in the uCosminexus Application Server System Design Guide, you can efficiently apply the Explicit Memory
Management functionality to a HTTP session.

8.4.2 Objects for communication with redirector
The Web container secures and releases the Explicit memory block area. The objects for communication used for
communication between a Web container and a redirector are usually reused as a permanent connection, and retained
when the Web server is being started.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

317

If the connection is disconnected or reconnected due to the occurrence of failure between the Web container and the
redirector, the objects for communication are destroyed and regenerated. At that time, the destroyed objects for
communication remain in the Tenured area.

To prevent this, on a J2EE server, place the objects for communication between a Web container and a redirector in
the Explicit heap and thus prevent unnecessary objects from remaining in the Tenured area and inhibit a full garbage
collection.

This subsection describes the flow of placing Explicit memory blocks corresponding to the timing of establishing and
disconnecting communication.

When communication is established
When connection is established, one Explicit memory block is created for one connection. The objects for
communication with the redirector are placed in the created Explicit memory block.

When communication is disconnected
When communication is disconnected, release of one Explicit memory block is reserved for each object, for
communication with the redirector placed in the Explicit memory block.
The release is reserved immediately after communication is disconnected. The Explicit memory blocks reserved
for release are actually released when the copy garbage collection or full garbage collection is executed after that.
At that time, all the areas reserved for release, are released.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

318

8.5 Objects that you can optionally place in the Explicit
heap in the application

This section describes the objects that you can optionally place in the Explicit heap.

If you want to place Java objects other than the objects that are set in the J2EE server, in the Explicit heap, specify the
objects that you want to place by using the automatic placement configuration file. For details on the automatic
placement configuration file, see 8.13.2 Using the Explicit Memory Management functionality by using the automatic
placement configuration file.

For details on the automatic release functionality of the Explicit Management Heap, see 8.7 Releasing Explicit
memory blocks when the automatic release functionality is enabled.

If you are using the Explicit Memory Management functionality API, see 8.12 Implementing Java program that uses
the Explicit Memory Management functionality API.

Tip
If memory usage of the Tenured area increases even if you tune the Java heap and the Explicit heap, and if a Java object
causing a full garbage collection exists, check the option of placing the object in the Explicit heap.

8.5.1 Conditions for objects that you can place in the Explicit heap
This subsection describes the Prerequisites for objects that you can place in an Explicit heap and the objects that are
effective when placed.

(1) Prerequisites for objects that you can place
The objects that you want to place in the Explicit heap (Explicit memory block) must satisfy the following
prerequisites:

• The object must be a long-life object, which is the cause of increase in the Tenured area memory size
A certain amount of overhead is required for placing and releasing objects for Explicit memory blocks. Therefore,
reduce the placing and releasing of objects in Explicit memory blocks as much as possible.
When you are not using the Explicit Memory Management functionality and, if you place a short-life object,
which was targeted for recovery in the copy garbage collection, it does not meet the objective of inhibiting a full
garbage collection and hence causes overhead. In Explicit memory blocks, make sure to place long-life objects
that are not targeted for recovery in the copy garbage collection.
For details on how to identify long-life objects that cause an increase in the Tenured area memory size, see 9.8
Functionality of statistics of unnecessary objects in Tenured area in the uCosminexus Application Server
Maintenance and Migration Guide.

• Survival period should be known (only when you use the Explicit Memory Management functionality API)
When you use Explicit Management Heap by using the Explicit Memory Management functionality API, used
objects are not automatically recovered because the Explicit memory blocks are not targeted for garbage
collection.
The objects placed in Explicit memory blocks need to be explicitly released by an application. However, if the
survival period of the objects is not known, the objects cannot be explicitly released. Therefore, make sure to place
only those objects, the survival period of which is known.

(2) Objects that are effective when placed
From among the long-life objects, the Explicit Memory Management functionality prevents objects that are destroyed
after a fixed period and recovered in the full garbage collection, from rising to the Tenured area. Therefore, you need
not apply the functionality to objects that are not recovered even in a full garbage collection, such as the objects used
until the application stops.

The objects that are effective when placed in the Explicit heap are as follows:

• Objects that are generated and destroyed in a fixed life cycle.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

319

• Used objects, which are not properly recovered after destruction because life cycle period is longer than the period
of rising of objects due to the copy garbage collection.

You can prevent unnecessary objects from remaining in the Tenured area by placing such objects in the Explicit heap,
and thus inhibit the full garbage collection.

8.5.2 Life cycle and state transition of objects
This subsection describes the life cycle and state transition of objects to be placed in Explicit memory blocks.

You need to explicitly generate and release the objects placed in Explicit memory blocks by using the Explicit
Memory Management functionality API, on the basis of survival period. The survival period and the life duration of
objects vary according to the application processing.

The following figure shows the life cycle of objects to be placed in Explicit memory blocks.

Figure 8‒9: Life cycle of objects to be placed in Explicit memory blocks

The object is generated directly in Explicit memory block. Then, if the Explicit memory block is released by using the
Explicit Memory Management functionality API, the object is destroyed or moved to the Java heap depending on the
state. For details on the operations when release processing is executed, see 8.8.2 Releasing the Explicit memory block
when the automatic release functionality is disabled.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

320

8.6 Life cycle of Explicit memory block and executed
processes

This section describes the life cycle of Explicit memory blocks and processes that are executed at each stage.

8.6.1 Life cycle and states of Explicit memory blocks
This subsection describes the life cycle and states of Explicit memory blocks.

The Explicit Memory Management functionality includes the following two methods of releasing the Explicit memory
block:

• Automatic releasing of Explicit memory blocks (Release process executed when the automatic release
functionality is enabled)

• Explicit releasing of Explicit memory blocks (Release process executed when the automatic release functionality
is disabled)

The specification method and processing varies according to the releasing process of Explicit memory blocks. The
sections 8.7 onwards describe the releasing processes in detail.

(1) Life cycle of Explicit memory block
The following figure shows the life cycle of an Explicit memory block.

Figure 8‒10: Life cycle of Explicit memory block

Each stage in the life cycle, which is shown in the figure, is described below.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

321

Initializing and disabling the Explicit memory block
The Explicit memory block is initialized and generated.

• Web container initializes the Explicit memory block, which stores the objects related to an HTTP session or
objects for communication with the redirector.

• In an application, if you want to place any object in the Explicit heap, explicitly initialize the Explicit memory
block by using the Explicit Memory Management functionality API.

The Explicit memory block might be disabled depending on the status at the time of initialization.
The processes executed during the initialization of the Explicit memory block and the conditions by which an
Explicit memory block is disabled are described in 8.6.2 Initializing the Explicit memory block.

Generating objects in the Explicit memory block
In an application, if you want to store any object in an Explicit memory block, generate and place the object in the
Explicit memory block by using the Explicit Memory Management functionality API.
Details on generating objects in the Explicit memory block are described in 8.6.3 Directly generating objects in
the Explicit memory block.

Extending the Explicit memory block
If the area to place objects becomes insufficient during use, JavaVM expands the Explicit memory block.
Details on expanding the Explicit memory block are described in 8.6.4 Extending the Explicit memory block.

Reserving release and releasing the Explicit memory block
The behavior of the processes of reserving release and releasing the Explicit memory block varies according to
whether the automatic release functionality in the Explicit Memory Management functionality is enabled (-XX:
+HitachiExplicitMemoryAutoReclaim) or disabled (-XX:-
HitachiExplicitMemoryAutoReclaim).

If the automatic release functionality is enabled (-XX:+HitachiExplicitMemoryAutoReclaim)

• Explicit release reserving of the Explicit memory block
The release is reserved for Explicit memory blocks that are specified by the Explicit Memory
Management functionality API. For details on the explicit release reserving of the Explicit memory block
when the automatic release functionality is enabled, see 8.7.1 Explicit release reserving of the Explicit
memory block when the automatic release functionality is enabled.

• Automatic release reserving of the Explicit memory block
A Release is reserved for Explicit memory blocks processed by automatic release functionality in the
Explicit Management Heap. For details on the automatic release reserving of the Explicit memory block
when the automatic release functionality is enabled, see 8.7.2 Automatic release reserving of the Explicit
memory block when the automatic release functionality is enabled.

• Releasing of the Explicit memory block
The process releases the objects that are placed in the Explicit memory blocks reserved by the explicit
release reserving or automatic release reserving. For details on the process of releasing the Explicit
memory block when the automatic release functionality is enabled, see 8.7.3 Releasing the Explicit
memory block when the automatic release functionality is enabled.
If you use the javagc command, you can execute the release process at any time, for Explicit memory
blocks that are not released. For details on the release process of Explicit memory blocks by using the
javagc command, see 8.9 Releasing Explicit memory blocks by the javagc command.

If the automatic release functionality is disabled (-XX:-HitachiExplicitMemoryAutoReclaim)

• Explicit release reserving of Explicit memory block
The reserve release in Explicit memory blocks when the objects placed in the Explicit memory block
become unnecessary.

1. Web container reserves release of the Explicit memory block, which has stored objects related to the
HTTP session or objects for communication with the redirector.

2. In an application, if you have stored any object in the Explicit memory block, explicitly reserve the release
of the Explicit memory block by using the Explicit Memory Management functionality API.

For details on the explicit release reserving of the Explicit memory block when the automatic release
functionality is disabled, see 8.8.1 Explicit release reserving of the Explicit memory block when the automatic
release functionality is disabled. Note that when the explicit release reserving is executed, the Explicit
memory block is not yet destroyed.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

322

• Releasing of Explicit memory block
JavaVM releases Explicit memory blocks reserved for release when the copy garbage collection or the full
garbage collection occurs. It also destroys the objects placed in Explicit memory blocks at the same time.
However, some objects are not destroyed and move to the Java heap.
For details on the process of releasing the Explicit memory block when the automatic release functionality
is disabled, see 8.8.2 Releasing the Explicit memory block when the automatic release functionality is
disabled.

(2)  States of Explicit memory block
An Explicit memory block transits through the states such as enabled, released and reserved for
release at each stage in the life cycle.

Moreover, an active Explicit memory block maintains a sub-status as described in the following table.

Table 8‒5: Sub-status of Explicit memory block

Sub-status Status of Explicit memory block

Enable This is the initial status. In this status, you can use all functionality of the Explicit memory block.

Disable In this status, you cannot move Java objects to the corresponding Explicit memory block. The status might
change to this state when you extend the Explicit memory block.

8.6.2 Initializing the Explicit memory block
This section describes about the initialization and the execution of Explicit memory blocks and the processes that are
executed during initialization.

(1) Execution timing
In an application, if you want to place any object in the Explicit heap, the Explicit memory block is initialized by
invoking the following Explicit Memory Management functionality API.

• BasicExplicitMemory.BasicExplicitMemory()
• BasicExplicitMemory.BasicExplicitMemory(String name)

Besides these APIs, the Explicit memory block is also initialized when the object, which you specified in the
automatic placement configuration file, is generated. The Web container performs initialization and places the first
object in the Explicit memory block, in which the J2EE server places objects. For details on the execution timing, see
8.4 When using a J2EE server objects placed in the Explicit heap.

(2) Executed details
The Explicit memory block is initialized. However, the memory area for an Explicit memory block is not secured at
this stage.

The initialization is not performed in the following cases:

• When you try to initialize the Explicit memory block after the maximum limit is exceeded
This refers to the case when the number of existing Explicit memory blocks is 1,048,575.

• When the Explicit Memory Management functionality is OFF
This refers to the case when the -XX:-HitachiUseExplicitMemory option is not specified.

In such cases, although the constructor is successfully executed, it is handled as an invalid Explicit memory block. All
the processes related to the initialized Explicit memory block (ExplicitMemory instance) become invalid.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

323

8.6.3 Directly generating objects in the Explicit memory block
This section describes how to directly generate objects in the Explicit memory block and the processes that are
executed.

In an application, if you want to generate objects in the Explicit memory block, use the API described in (1) Execution
timing. When you execute the API, an object of the class that you specified in the argument, is generated in the
Explicit memory block. However, objects that are generated in the initialization process by the constructor of that
object are generated in the Java heap.

(1) Execution timing
If you use the Explicit Memory Management functionality in your application, you can directly generate an object in
the Explicit memory block by invoking one of the following Explicit Memory Management functionality APIs.

• ExplicitMemory.newInstance(Class type)
• ExplicitMemory.newInstance(Class type, Object... args)
• ExplicitMemory.newInstance(java.lang.reflect.Constructor cons, Object...
args)

• ExplicitMemory.newArray(Class type, int number)
• ExplicitMemory.newArray(Class type, int[] dimensions)

Besides these API, an object is also directly generated in the Explicit memory block when the object that you specified
in the automatic placement configuration file of Explicit Management Heap is generated and the Explicit memory
block is initialized.

You need not be aware of the objects placed by the J2EE server.

(2) Executed details
This subsection describes the details executed for each API.

Table 8‒6: Details executed for each API

API Executed details

ExplicitMemory.newInstance(Class type) This API instantiates the class that you specify in type
argument and places that class in the Explicit memory block
shown by receiver.ExplicitMemory.newInstance(Class type, Object...

args)

ExplicitMemory.newInstance(java.lang.reflect.Cons
tructor cons, Object... args)

This API instantiates the class shown by
java.lang.reflect.Constructor and places it in
the Explicit memory block shown by receiver.

ExplicitMemory.newArray(Class type, int number) This API instantiates the array of classes that you specify in
type argument, of the length that you specify in number
argument and places it in the Explicit memory block shown
by receiver.

ExplicitMemory.newArray(Class type, int[]
dimensions)

This API instantiates the array of classes that you specify in
type argument, of the number of dimensions that you
specify in dimensions argument and places it in the Explicit
memory block shown by receiver.

For details on APIs, see 10.3 ExplicitMemory class in the uCosminexus Application Server API Reference Guide.

However, if you cannot secure the required area in the Explicit memory block at the placement destination, the
generated objects are not placed in the Explicit memory block. The generated objects are placed in the Java heap.

For the reasons why the area cannot be secured and the executed processes, see the description of why the extension
process cannot be executed in 8.6.4 Extending the Explicit memory block.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

324

8.6.4 Extending the Explicit memory block
This section describes the process of extending Explicit memory blocks. When you execute the expansion process, the
free space in an Explicit memory block increases.

(1) Execution timing
JavaVM executes the extension at the following timings:

• When placing the first object in the Explicit memory block

• When the Explicit memory block does not have the free space required to place an object

When you try to place an object in the Explicit memory block from an application that uses the Explicit Memory
Management functionality API, if the object size exceeds the free space in the placement target Explicit memory
block, the expansion process is executed.

After initializing the Explicit memory block, when an object is placed in the Explicit memory block for the first time,
the expansion process is invariably executed.

The Web container performs initialization and places the first object in the Explicit memory block, in which the J2EE
server places objects. For details on the execution timing, see 8.4 When using a J2EE server objects placed in the
Explicit heap.

(2) Executed details
The JavaVM secures memory area from OS and the appropriate Explicit memory block is expanded. The memory
securing API is used to secure the memory area.

However, the expansion process is not executed in the following cases:

• If securing memory area from OS fails
This is the case when securing the memory area by using the memory securing API of OS fails. The sub-status of
the corresponding Explicit memory block changes to the Disable and placement of the object to the Explicit
memory block is canceled.
Objects cannot be placed thereafter in the Explicit memory block that is changed to the Disable state.
If you are using the automatic placement configuration file or the 64-bit version Application Server, the area of the
maximum size is secured from the OS at the time of the JavaVM invocation and hence securing the memory area
from the OS does not fail.

• If you try to extend beyond the maximum limit of the Explicit heap
This is the case when the value obtained by adding the size that you are trying to extend to the total size of all
Explicit memory blocks is more than the value that you specified in the -
XX:HitachiExplicitHeapMaxSize option.
The sub-status of the corresponding Explicit memory block changes to Disable and placement of the object to
the Explicit memory block is canceled.
Objects cannot be placed thereafter in the Explicit memory block that is changed to Disable state.
For details on the -XX:HitachiExplicitHeapMaxSize option, see the uCosminexus Application Server
Application and Resource Definition Reference Guide.

• If you try to extend the Explicit memory block having Disable sub-status
If you try to extend the Explicit memory block, the sub-status of which is Disable, placement of the object in
the Explicit memory block is canceled.

The following table describes the changes in sub-status when extension of the Explicit memory block fails, for each
reason.

Table 8‒7: Changes in sub-status when extension of the Explicit memory block fails

Cause of extension failure Change in sub-status

Failed to secure memory area from OS Enable -> Disable

You tried to extend beyond the maximum limit of the Explicit heap Enable -> Disable

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

325

Cause of extension failure Change in sub-status

You tried to extend the Explicit memory block having Disable sub-
status

No change

8.6.5 Moving the objects from the Java heap to the Explicit memory
block based on a reference relation

When objects move from the Java heap to the Explicit memory block, the objects in the Java heap that are being
referenced from objects in the Explicit memory block automatically move to the Explicit memory block. Therefore,
you need not set the movement from the Java heap to the Explicit memory block for the objects that have relationship
with the moving objects. However, if you specify the -XX:+ExplicitMemoryUseExcludeClass option,
objects of the classes that are coded in the configuration file for Explicit Memory Management functionality
application exclusion do not move to the Explicit memory blocks.

Note that the Explicit memory blocks, which are created by the automatic placement functionality, are targeted for
movement of objects based on a reference relationship from the Java heap to the Explicit memory block. The Explicit
memory blocks created by the Explicit Management Heap API are not targeted.

Reference note
When a full garbage collection occurs, if the following phenomena occur after a large number of objects are moved to the
Explicit heap, examine the operation, which does not let move the objects that are targeted for movement on the basis of a
reference relation to the Explicit memory block.

• The processing of automatic release of the Explicit memory blocks takes time

• Small amount of Tenured area is used

Use the following functionalities for not moving the objects to the Explicit memory block:

1. Functionality for controlling object movement to the Explicit memory block

2. Functionality for specifying classes to be excluded from an application of the Explicit Memory Management
functionality

The first functionality does not move the objects to the Explicit heap when a full garbage collection occurs. By using this
functionality, you can reduce the time required for the processing of automatic release of Explicit memory blocks. The
second functionality does not move the objects of the classes specified in the configuration file, to the Explicit heap when a
copy garbage collection occurs. You can reduce the number of objects to be moved to the Explicit heap depending on the
specified classes. If you use the second functionality, the first functionality is also enabled. Use the second functionality
when a large number of objects are to be moved to the Explicit heap and the processing of automatic release of Explicit
memory blocks takes time even if you use the first functionality.

(1) Execution timing
The objects are moved when the copy garbage collection and full garbage collection occurs.

(2) Executed details
After the copy garbage collection or full garbage collection processing is over, investigation is performed to check the
existence of the Explicit memory blocks that JavaVM has not reserved for release. Find a reference relationship from
the objects that are the basis of investigation and continue the investigation until you are done with all the reference
locations. The areas other than the Java heap are not targeted for the investigation of a reference relationship. The
objects referenced from the Explicit memory block are targeted for movement.

• When executing a copy garbage collection
If the copy garbage collection is executed, move objects in accordance with the following rules in addition to the
rules stated above:

• Move an object when the object in the Explicit memory block that is being referenced, rises.

• Do not target objects for investigation if they are referring to the Perm heap, Explicit heap and the Tenured area.

• Even if an Explicit memory block is reserved for release, consider it as targeted for moving.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

326

This case corresponds to the ones when objects cannot be moved because the area of the Explicit memory block
cannot be secured and there is no free space in the movement destination Java heap when the object moves to the
Java heap. In such cases, the full garbage collection is executed and a free space is secured in the Java heap. After
execution of the full garbage collection, the object is moved to the Java heap.

• When executing a full garbage collection
If a full garbage collection is executed, objects are moved in accordance with the following rules in addition to the
rules stated above:

• If you specify 1 in the -XX:ExplicitMemoryFullGCPolicy option, the objects targeted for movement
on the basis of a reference relation are not moved to Explicit memory blocks. The objects in the New area are
moved to the Tenured area.

Figures 8-11 and 8-12 describe the flow of the movement of objects in accordance with these rules with examples.
Specifying 0 in the -XX:ExplicitMemoryFullGCPolicy option is a prerequisite for the flow of the movement
of objects described here.

Figure 8‒11: Objects that move on the basis of a reference relationship (Example 1)

The objects in the figure move in the following sequence:

1. Object 1 is being referenced from an object in the Explicit memory block 1. Therefore, the object 1 moves to the
Explicit block 1.

2. Object 9 also moves to the Explicit memory block 1 because it is being referenced from the object 1.

3. In the same way as in points 1 and 2, the object 4, object 10, and object 11 move to the Explicit memory block 2.

4. Object 6 is being referenced from an object in the Explicit memory block 2. However, it is not an object in the
Java heap and hence it does not move.

5. In the same way as in point 4, the object 12 also does not move.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

327

Figure 8‒12: Objects that move on the basis of a reference relationship (Example 2)

The objects in the figure move in the following sequence:

1. Object 13 is in the Java heap and can be accessed from an object in the Explicit memory block 2. However, it does
not move because the investigation terminates at object 12.

2. Like object 13, the object 15 is referenced from the Perm area. However, in addition to the reference, the object
can be accessed from an object in the Explicit memory block 2 without involving the Perm area or any other
Explicit memory block. Therefore, it moves to the Explicit block 2.

3. Although the object 5 is being referenced from the Explicit memory block 1 as well as the Explicit memory block
2, it moves to the Explicit memory block 1.
Note that the object 5 is being referenced from the Explicit memory block 1 as well as the Explicit memory block
2. In such cases, although it moves to either the Explicit memory block 1 or 2, it is not defined to which Explicit
memory block it will move to.

In the case of following conditions, operation will be different than described in the example.

• In case you cannot secure free space in the Explicit memory block
This corresponds to the case when there is no free space in placement destination the Explicit memory block for
placing objects targeted for placement at the time of placing objects in the Explicit memory block. In such cases,
you cannot place object in the Explicit memory block. Objects, which cannot be placed, are placed in Java heap
area. If you are using API in an incorrect way, an API level exception might occur. For details, see 10.7 Exception
class in the uCosminexus Application Server API Reference Guide.

8.6.6 Event log output at each stage in the life cycle
An event log is output at each stage in the life cycle of the Explicit memory block. The event log is output when an
event leading to output occurs.

The following table describes the mapping of each stage in the life cycle and the timing of an event log output. An
event leading to log output varies according to the set log output level.

Table 8‒8: Mapping of each stage in the life cycle and output event log

Stage in life cycle Timing of event log output Log output
level

Initialization of the Explicit memory block Initialization of the Explicit memory block verbose

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

328

Stage in life cycle Timing of event log output Log output
level

Initialization of the Explicit memory block Initialization of the Explicit memory block (detailed information
output)

debug

Failure in initializing the Explicit memory block verbose

Extension of the Explicit memory block Change of sub-status of the Explicit memory block to Disable verbose

Explicit release reserving of the Explicit memory
block

Release reserving of the Explicit memory block by finalizer verbose

Automatic release automatic reserving of the
Explicit memory block

verbose

Automatic release explicit reserving of the
Explicit memory block

verbose

Explicit releasing process of the Explicit memory
blocks

Explicit releasing process of the Explicit memory block normal

Explicit releasing process of the Explicit memory block (detailed
information output)

verbose

Java heap overflow during explicit release processing of the Explicit
memory block

normal

Movement of object to the Java heap due to explicit release of the
Explicit memory block

debug

Automatic releasing process of the Explicit
memory block

Automatic releasing process of the Explicit memory block normal

Java heap overflow during automatic releasing process of the Explicit
memory block

normal

Direct generation of objects in the Explicit
memory block

Generation of objects in the Explicit memory block verbose

Besides these, an event log is output when the garbage collection occurs, as an event that does not map to a stage in
the life cycle.

For details on setting event log acquisition in the Explicit Memory Management functionality, see 3.3.19 Setting
acquisition of JavaVM material in the uCosminexus Application Server Maintenance and Migration Guide. For details
on the event log details of the Explicit Memory Management functionality, see 4.19 Event log in the Explicit Memory
Management functionality in the uCosminexus Application Server Maintenance and Migration Guide.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

329

8.7 Releasing Explicit memory blocks when the
automatic release functionality is enabled

This section describes the automatic release functionality of the Explicit management heap.

The functionality of automatically releasing the Explicit memory block is executed in two steps; reserving the release
and the release process. You can perform effective processing by respectively reserving multiple Explicit memory
blocks and executing the release process together.

There are two types of automatic release reserving; automatic release explicit reserving and automatic release
automatic reserving. The following figure shows the automatic releasing of Explicit memory blocks.

Figure 8‒13: Automatic releasing of the Explicit memory block

The following subsections describe the processing executed when the automatic release functionality is enabled.

8.7.1 Explicit release reserving of the Explicit memory block when the
automatic release functionality is enabled

In explicit release reserving of the Explicit memory block when the automatic release functionality is enabled,
explicitly reserve release for the Explicit memory block by using the API.

(1) Execution timing
You can reserve explicit release of the Explicit memory block when the automatic release functionality is enabled, by
invoking one of the following Explicit Memory Management functionality APIs.

• ExplicitMemory.reclaim(ExplicitMemory... areas)

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

330

• ExplicitMemory.reclaim(ExplicitMemory area)
• ExplicitMemory.reclaim(ExplicitMemory area0,ExplicitMemory area1)
• ExplicitMemory.reclaim(Iterable<ExplicitMemory> areas)
• BasicExplicitMemory.finalize()

(2) Executed details
When you invoke an API described in (1), the Explicit memory block area that you specified in the argument of the
API is reserved for release.

If you are using the API in an incorrect way, an API level exception might occur. For details, see 10.7 Exception class
in the uCosminexus Application Server API Reference Guide.

8.7.2 Automatic release reserving of the Explicit memory block when the
automatic release functionality is enabled

In automatic release reserving of the Explicit memory block when the automatic release functionality is enabled,
JavaVM automatically reserves release for the Explicit memory block. The Explicit memory blocks placed by the
automatic placement functionality are targeted.

(1) Execution timing
JavaVM executes automatic release when the garbage collection occurs.

(2) Executed details
JavaVM automatically reserves the Explicit memory block area when the garbage collection occurs.

8.7.3 The process of releasing the Explicit memory block when the
automatic release functionality is enabled

The process of releasing the Explicit memory block when the automatic release functionality is enabled, is executed
for the Explicit memory blocks that are reserved in advance by automatic release reserving and explicit release
reserving. The release processing deletes the unnecessary Explicit memory blocks from the memory.

Note that if the objects that are being referenced from outside (Explicit memory blocks which are not targeted for
releasing) exist, the objects are moved to a new Explicit memory block.

(1) Execution timing
JavaVM executes it in the same garbage collection in which reserving for release is executed by automatic release
reserving.

(2) Executed details
The executed details are same as in the case of the processing of releasing the Explicit memory block when the
automatic release functionality is disabled, except for the behavior of objects that are being referenced from the
Explicit memory blocks, which are not targeted for releasing. For the details that are executed in the process of
releasing Explicit memory blocks, see 8.8.2 The process of releasing the Explicit memory block when the automatic
release functionality is disabled.

In the case of the following conditions, the operation will be different.

• In the case you cannot secure free space in the Explicit memory block
This corresponds to the case when there is no free space in the placement destination Explicit memory block for
placing objects targeted for placement at the time of placing objects in the Explicit memory block. In such cases,

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

331

you cannot place an object in the Explicit memory block. The objects, which cannot be placed, are placed in the
Java heap area.

• If the Java heap overflows when moving objects to the Java heap
This corresponds to the case when objects cannot be moved because the area of the Explicit memory block cannot
be secured and there is no free space in the movement destination Java heap when the object moves to the Java
heap. In such cases, the full garbage collection is executed and free space is secured in the Java heap. After the
execution of the full garbage collection, the object is moved to the Java heap.
If you cannot secure the free space required to move the Java objects even after you execute the full garbage
collection, a log file is output and the objects are again placed in the Explicit memory blocks. For details on the
log files that are output, see 4.19 Event log in the Explicit Memory Management functionality in the uCosminexus
Application Server Maintenance and Migration Guide.

• If you cannot create sufficient free space with the full garbage collection
This corresponds to the case when there is no free space in the Java heap and you cannot secure free space
required to move Java objects even by executing the full garbage collection. In such cases, JavaVM aborts as it
does in the case of an insufficient C heap. However, in the case of an insufficient C heap, the required memory
size is output as nnn in the prompt request nnn bytes. When JavaVM aborts, 0 is always output as nnn.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

332

8.8 Releasing Explicit memory blocks when the
automatic release functionality is disabled

This section describes the explicit release functionality of Explicit Management Heap.

The functionality of explicitly releasing the Explicit memory block is executed by dividing into two steps of reserving
for release and release process, same as the automatic release functionality of Explicit Management Heap. Reserve
multiple Explicit memory blocks respectively and execute the release process together.

The following subsections describe the processing executed in the explicit release functionality.

8.8.1 Explicit release reserving of the Explicit memory block when the
automatic release functionality is disabled

The functionality of releasing the Explicit memory block is executed by dividing into two steps of reserving for
release and the actual release process. You can perform an effective processing by respectively reserving multiple
Explicit memory blocks and executing the release process together.

(1) Execution timing
In an application, if you place any object in the Explicit Heap, you can reserve release of the Explicit memory block
by invoking one of the following Explicit Memory Management functionality APIs.

• ExplicitMemory.reclaim(ExplicitMemory... areas)
• ExplicitMemory.reclaim(ExplicitMemory area)
• ExplicitMemory.reclaim(ExplicitMemory area0,ExplicitMemory area1)
• ExplicitMemory.reclaim(Iterable<ExplicitMemory> areas)
• BasicExplicitMemory.finalize()

Web container reserves the release of the objects placed by the J2EE server. For details on the execution timing, see
8.4 When using a J2EE server objects placed in the Explicit heap.

(2) Executed details
When you invoke an API described in (1), the Explicit memory block area that you specified in the argument of the
API is reserved for release.

If you are using the API in an incorrect way, an API level exception might occur. For details, see 10.7 Exception class
in the uCosminexus Application Server API Reference Guide.

8.8.2 The process of releasing the Explicit memory block when the
automatic release functionality is disabled

The process of releasing is executed for Explicit memory blocks that are already reserved for releasing. The release
processing actually deletes unnecessary Explicit memory blocks from the memory.

(1) Execution timing
JavaVM executes the release process at following timings:

• When the copy garbage collection occurs

• When the full garbage collection occurs

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

333

(2) Executed details
After the copy garbage collection or full garbage collection processing is over, an investigation is performed to check
the existence of the Explicit memory blocks that JavaVM has reserved for release. If one or more corresponding
Explicit memory blocks exist, those Explicit memory blocks are released. The Explicit memory blocks are released by
the memory releasing API of the OS. At that time, the objects inside the released Explicit memory blocks are
destroyed.

However, the objects, which are implementing the finalize method and which are not being referenced from anywhere,
from among the objects in Explicit memory blocks to be released, are not destroyed. The objects are registered in the
finalize queue and moved to the Java heap.

If objects in Explicit memory blocks, which are targeted for releasing, correspond to the following conditions, the
operation will be different.

(a) If the objects are being referenced from outside (from a location other than the Explicit memory blocks that
are targeted for releasing)

This corresponds to the case when the objects in the Explicit memory block, which are targeted for releasing, are
being referenced from the objects in the following areas:

• Java heap

• Permanent area

• Explicit memory block which is not targeted for releasing

Executed details in each case are described below.

If an object is being referenced from the Java heap or the Permanent area
If an object is being referenced from an object in the Java heap or the Permanent area, the object is not destroyed.
The corresponding objects are preferentially moved to a Tenured area in the Java heap However, the objects are
moved to a New area if there is no free space in the Tenured area or if the Tenured area has overflown. Even if an
object is being referred from an object in the Tenured area that is already not in use, the object is targeted for
moving.

If the objects are being referenced from Explicit memory blocks that are not targeted for releasing
If an object is being referenced from an object in the Explicit memory block, which is not targeted for releasing,
the object is not destroyed. Even if the reference source object is in the Explicit memory block that is targeted for
releasing, if the object is going to be moved in the Java heap without destroying, the object being referenced is
also not deleted.

The following figure shows the operation if an object is being referenced from outside when releasing the Explicit
memory block.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

334

Figure 8‒14: Operation if an object is being referenced from outside when releasing the Explicit memory
block

The description given below takes object X as an example. Object X is an object that is included in the Explicit
memory block targeted for releasing.

If object X is being referenced from an object in the Explicit memory block, which is targeted for releasing, object X
is deleted.

If object X is being referenced from the Java heap, Permanent area, or from an object in an Explicit memory block
that is not targeted for releasing, object X is not deleted.

Even when object X is being referenced from an object Y in an Explicit memory block that is targeted for releasing, if
the reference source object Y is being referenced from an object in the Java heap, Permanent area, or from an object in
an Explicit memory block that is not targeted for releasing, object X is not deleted. In such cases, both objects X and
Y move to the Java heap.

(b) If the Java heap overflows when moving objects to the Java heap

This corresponds to the case when an attempt is made to move objects being referenced from outside to the Java heap
and an object cannot be moved because there is no free space in the movement destination Java heap.

In such cases, full garbage collection is executed and free space is secured in the Java heap. After execution of the full
garbage collection, the object is moved to the Java heap.

(c) If you cannot create sufficient free space with the full garbage collection

This corresponds to the case when there is no free space in the Java heap and you cannot secure free space required to
move Java objects even by executing the full garbage collection. In such cases, JavaVM aborts as it does in the case of
insufficient C heap. However, in the case of an insufficient C heap, the required memory size is output as nnn in the
prompt request nnn bytes. When JavaVM aborts, 0 is always output as nnn.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

335

8.9 Releasing Explicit memory blocks by using the
javagc command

This section describes the releasing of the Explicit management heap by using the javagc command.

You can execute releasing of Explicit memory blocks by using the javagc command at any time. As a result, you
can explicitly release the Explicit memory blocks, which were not released by release processing when the automatic
release functionality is enabled.

(1) Execution timing
Release processing is executed when you specify -ehgc option and execute javagc command.

! Important note

With release processing of Explicit memory blocks by using the javagc command, a full garbage collection is executed.
Hence, it is not appropriate for the processing related to running applications. We recommend that you execute release
processing when the application is not running, such as at the time of undeploying and at night time.

(2) Executed details
When you execute the javagc command, JavaVM executes a full garbage collection and outputs the EMJavaGC
command as the cause of the garbage collection in extended the verbosegc information. After that, the following
Explicit memory blocks are released:

• Explicit memory blocks that are reserved by explicit release reservation, when automatic release functionality of
the Explicit Memory Management functionality is enabled

• Explicit memory blocks generated by the explicit management heap automatic placement configuration file or
JavaVM

• Explicit memory blocks that were not released in the previous release processing

For details on the causes of a garbage collection, see -XX:[+|-]HitachiVerboseGCPrintCause (garbage
collection cause content output option) in the uCosminexus Application Server Definition Reference Guide.

The release processing is not executed in the following cases:

• When you try to release Explicit memory blocks exceeding the maximum limit
This refers to the case when the number of existing Explicit memory blocks is 1,048,575.

• When the Explicit Memory Management functionality is OFF
This refers to the case when -XX:-HitachiUseExplicitMemory option is specified.

In this case, although the constructor is successfully executed, memory blocks are handled as invalid Explicit memory
blocks (ExplicitMemory instances).

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

336

8.10 Reducing time required for automatic release
processing of Explicit memory blocks

This section describes the functionality, which reduces the time required for the processing of automatic release of
Explicit memory blocks, when using automatic placement functionality of the Explicit Memory Management
functionality. For reducing automatic release processing time, use the functionality for controlling object movement to
Explicit memory blocks. In addition to this functionality, use the functionality for specifying classes to be excluded
from the application of the Explicit Memory Management functionality. The functionality for controlling object
movement to Explicit memory blocks is a prerequisite functionality for the functionality for specifying classes to be
excluded from the application of the Explicit Memory Management functionality.

If you use these functionality, when a garbage collection occurs, the objects that are referenced from the objects placed
by automatic placement functionality do not move from the Java heap to a Explicit memory block on the basis of a
reference relation and as a result, lesser Explicit heap area is used. Thus, you can reduce the time required for the
processing of automatic release of Explicit memory blocks. For details on movement based on reference relation of
objects, see 8.6.5 Moving the objects from the Java heap to the Explicit memory block based on a reference relation.

8.10.1 Checking whether the application is effective
The functionality for controlling object movement to the Explicit memory block does not allow the movement of
objects to an Explicit heap when a full garbage collection occurs. You can determine whether application of this
functionality is effective by checking Explicit memory block information included in the thread dump and event log of
the Explicit Memory Management functionality. If the usage of Tenured area is less and Explicit memory blocks
satisfying the following conditions are present, application of the functionality is effective. Therefore, review the use
of the functionality.

• EM_NAME in Explicit memory block information is null (it is an Explicit memory block for which automatic
release processing is executed once).

• If you compare the value of EH_TOTAL in Explicit memory block information with another Explicit memory
block, it is an extremely large Explicit memory block.

• In event log of the Explicit Memory Management functionality that is output when a full garbage collection
occurs, EH_USED_AF is found to be significantly large as compared to EH_USED_BF.

The functionality for specifying classes to be excluded from the application of the Explicit Memory Management
functionality is a functionality to specify the object, which is the cause, and not allow it to move to the Explicit heap
when the processing of automatic release of Explicit memory blocks take times even by using the functionality for
controlling object movement. If you apply the functionality for specifying classes to be excluded from the application
of the Explicit Memory Management functionality, objects of the classes specified in the configuration file are
excluded from application. You can determine whether application of this functionality is effective by checking
Explicit memory block information included in the thread dump. If the usage of Tenured area is less and the Explicit
memory block includes classes satisfying the following conditions, it means application of the functionality is
effective and hence review the use of the functionality.

• EM_NAME in Explicit memory block information is NULL (it is an Explicit memory block for which automatic
release processing is executed once).

• If you compare the value of EH_TOTAL in Explicit memory block information with other Explicit memory block,
it is an extremely large Explicit memory block.

• Objects having large value of ISIZE in object statistics and low value of FRATIO in object release rate information
in Explicit memory block information exist and its class is other than the classes provided by Java SE.

For details on the output contents of Explicit memory block information included in the thread dump, see 5.5 JavaVM
thread dump in the uCosminexus Application Server Maintenance and Migration Guide. For details on the event log
of the Explicit Memory Management functionality, see 5.11 Event log of the Explicit Memory Management
functionality in the uCosminexus Application Server Maintenance and Migration Guide.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

337

8.10.2 Mechanism of reducing time required for automatic release
processing

With the Explicit Memory Management functionality, a full garbage collection is inhibited by placing the objects from
among the long-lived objects, which become unnecessary over a certain period of time, in an Explicit heap and
recovering the objects by release processing. In this mechanism, because survival time matches easily, the objects
placed in an Explicit heap and the objects in reference relationship are moved from the Java heap to the Explicit
memory block on the basis of a reference relationship and managed collectively in an Explicit heap.

However, depending on the operation, objects, which are moved to the Explicit memory block, might greatly increase
size of the Explicit memory block and automatic release processing might take long time due to that. Because the
system stops during automatic release processing of the Explicit memory block, long time of automatic release
processing might create a problem in the system. Explicit memory blocks having large size are called huge blocks.
Depending on the movement based on a reference relationship, the objects having different life span move to one
block and repetition of this makes the block huge. When a reference relationship is complex and an application
developer cannot understand it, huge blocks will generate easily.

! Important note

The following table describes the types of Java objects. Life span of Java objects varies depending on the type and some
objects might be appropriate and some not for placing in an Explicit heap.

Table 8‒9: Types of Java object

Sr.No. Category Type of object Release timing
Appropriate

memory area for
placement

1 Short-lived
objects

Objects temporarily used in
request processing and response
processing

When copy garbage
collection occurs

Java heap (New
area)#1

2 Long-lived
objects

Objects that become unnecessary
over a certain period of time

When executing
automatic release
processing

Explicit heap

3 Objects required for operating the
application and used until the
application stops

When application stops Java heap (Tenured
area)#2

#1 If you place the objects in the Explicit heap, generation and automatic release processing of an Explicit memory block
occurs frequently and it causes overhead. Hence, an Explicit heap is not appropriate.

#2 If you place the objects in the Explicit heap, huge blocks generate and automatic release processing takes a long time.
Hence the Java heap is not appropriate.

The following subsections describe the mechanism of reducing the time required for automatic release processing, by
comparing the cases of using and not using the functionality.

(1) If not using the functionality for controlling object movement to the Explicit memory block
and functionality for specifying classes to be excluded from the application of the Explicit
Memory Management functionality

This subsection describes the mechanism if you are not using the functionality for controlling object movement to the
Explicit memory block and functionality for specifying classes to be excluded from the application of the Explicit
Memory Management functionality. The following figure shows an example of three Explicit memory blocks that
move objects on the basis of a reference relationship.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

338

Figure 8‒15: If not using the functionality for controlling object movement to the Explicit memory block and
functionality for specifying classes to be excluded from the application of the Explicit Memory
Management functionality

If you are not using the functionality for controlling object movement to the Explicit memory block and functionality
for specifying classes to be excluded from the application of the Explicit Memory Management functionality, the
objects move from the Java heap to the Explicit memory block on the basis of a reference relationship when garbage
collection occurs. In case of the Explicit memory block 1, moved object is the object, which is used until the
application stops. Because this object is not recovered in automatic release processing, it continues to remain in the
Explicit memory block. Because the total size of the object in the Explicit memory block 1 is not huge as shown in
this figure, there is no problem at this stage. However, depending on a reference relation of the object, object in
reference location moves to an Explicit memory block on the basis of a reference relationship whenever a garbage
collection occurs. Because the movement based on this reference relationship continues until the application stops,
The Explicit memory block 1 might become a huge block. In the case of the Explicit memory block 2, because the
moved object is huge, it becomes a huge block. Thus, if the objects that are not appropriate are placed in large
numbers in the Explicit heap, the Explicit memory block becomes huge block and automatic release processing takes a
long time.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

339

(2) If using the functionality for controlling object movement to the Explicit memory block
This subsection describes the mechanism if you are using the functionality for controlling object movement to the
Explicit memory block. The following figure shows an example of three Explicit memory blocks that move objects on
the basis of a reference relationship.

Figure 8‒16: If using the functionality for controlling object movement to the Explicit memory block

If you are using the functionality for controlling object movement to the Explicit memory block, the objects do not
move from the Java heap to the Explicit memory block on the basis of a reference relationship even if a full garbage
collection occurs. If you use this functionality, you might have to reset the memory size of the Java heap area because
the objects placed in the Java heap increase.

If huge blocks are generated even if you use this functionality, use the functionality for specifying classes to be
excluded from the application of the Explicit Memory Management functionality.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

340

(3) If using the functionality for specifying classes to be excluded from the application of the
Explicit Memory Management functionality in addition to the functionality for controlling
object movement to the Explicit memory block

This subsection describes the mechanism if you are using the functionality for specifying classes to be excluded from
the application of the Explicit Memory Management functionality in addition to the functionality for controlling
object movement to the Explicit memory block. The figure below shows an example of three Explicit memory blocks
that move objects on the basis of a reference relationship. Here, assume that the classes of objects, which are moved to
the Explicit memory block 1 and Explicit memory block 2, are set in the configuration file for Explicit Memory
Management functionality application exclusion.

Figure 8‒17: If using the functionality for specifying classes to be excluded from the application of the
Explicit Memory Management functionality in addition to the functionality for controlling object
movement to the Explicit memory block

If you are using the functionality for specifying classes to be excluded from the application of the Explicit Memory
Management functionality, objects of the classes specified in the configuration file for Explicit Memory Management

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

341

functionality application exclusion are excluded from the target of the Explicit Memory Management functionality
and the objects do not move to the Explicit memory block from the Java heap even if a copy garbage collection
occurs. These objects move to Tenured area at the time of rising. If you use this functionality, you might have to reset
the memory size of the Java heap area because the objects placed in the Java heap increase.

Configuration files for Explicit Memory Management functionality application exclusion used in the functionality for
specifying classes to be excluded from the application of the Explicit Memory Management functionality have the
following two types:

• Configuration file for Explicit Memory Management functionality application exclusion provided by the system
(sysexmemexcludeclass.cfg)

• Configuration file for Explicit Memory Management functionality application exclusion, for which file path is
provided in the option -XX:ExplicitMemoryExcludeClassListFile (exmemexcludeclass.cfg
or any file name)

If you perform settings (specifying -XX: ExplicitMemoryUseExcludeClass option) for using the
functionality for specifying classes to be excluded from the application of the Explicit Memory Management
functionality, the classes specified in sysexmemexcludeclass.cfg are excluded from the application of the
Explicit Memory Management functionality and the objects of those classes do not move to Explicit heap. If you want
to specify more objects to be excluded from the application of the functionality, specify classes of the objects to be
excluded from application in exmemexcludeclass.cfg or in a configuration file for Explicit Memory
Management functionality application exclusion having any file name. If you want to apply Explicit Memory
Management functionality to objects of classes specified in sysexmemexcludeclass.cfg, specify those classes
in the configuration file for disabling application exclusion of the Explicit Memory Management functionality
(exmemnotexcludeclass.cfg). Thus, you can reduce the objects to be moved to the Explicit heap depending
on the classes specified in configuration file. The classes excluded from the application of the Explicit Memory
Management functionality specify object release rate of the Explicit heap information, which is output in thread dump,
for reference. For details on object release rate, see 8.10.3 Using object release rate information of Explicit memory
block.

From among the objects, for which reference path passes through the objects excluded from the application of the
Explicit Memory Management functionality, the objects that are not referenced from the path of objects other than
Explicit Memory Management functionality application exclusion are also excluded from the application of the
Explicit Memory Management functionality. The following figure shows an example of multiple reference paths from
objects, which are targeted for exclusion from the application of the Explicit Memory Management functionality.

Figure 8‒18: Example of having multiple reference paths from objects targeted for exclusion from the
application of the Explicit Memory Management functionality

In this figure, object B is an object excluded from the application of the Explicit Memory Management functionality.
The following are the reference paths passing through object B:

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

342

• A->B->C1

• A->B->C2

• A->B->C3

Among these, because there is a reference path D->C1 for object C1 and E->C3 for object C3, these objects move to
the Explicit memory block on the basis of a reference relationship. On the other hand, because object C2 does not
have a reference path other than the path passing through object B, it is excluded from the application of the Explicit
Memory Management functionality and does not move to the Explicit memory block.

8.10.3 Using object release rate information of the Explicit memory block
The huge blocks, which cause a long time for automatic release processing of the Explicit memory block, are
generated because long-lived objects, which are used until the application stops, are generated and placed because a
user program or framework is used. For effectively using the Explicit Memory Management functionality, you must
identify the objects, which cause generation of these huge blocks, and make sure that those objects are not placed in
the Explicit heap.

(1) Outputting object release rate information of Explicit memory block
You can identify the objects that cause generation of huge blocks if you use object release rate information. The object
release rate information is the rate of objects released by automatic release processing of the Explicit memory block. It
can be understood that the objects having low release rate in huge blocks are the objects, which cause generation of
huge blocks. If you specify freeratio option in eheapprof command and execute the command, you can output
the object release rate information in the Explicit heap information of extended thread dump. Refer to this information
and specify classes of the objects in the configuration file for Explicit Memory Management functionality application
exclusion. For details on how to specify in the configuration file for Explicit Memory Management functionality
application exclusion, see 8.13.3 Controlling the application target of the Explicit Memory Management functionality
by using a configuration file.

The following figure shows an example of output of object release rate information.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

343

Figure 8‒19: Example of output of object release rate information

As shown in this figure, JavaVM executes full garbage collection and automatic release processing of Explicit
memory block for obtaining object release rate information. Because these processing might stop the application for
few seconds, we recommend that you output the object release rate information when developing the system or when
the work is stopped.

The object release rate information, which is output here, is calculated on the basis of the result of first automatic
release processing that is generated when outputting the information. Hence, we recommend that you acquire the
object release rate information multiple times for increasing the accuracy.

(2) Executed details
If you specify -freeratio option in eheapprof command and execute the command, JavaVM executes the
following processing:

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

344

1. Generation of a full garbage collection

2. Automatic release reservation of Explicit memory blocks generated by automatic placement functionality and
Explicit memory blocks, for which explicit release reservation is performed before executing eheapprof
command
- is output to object release rate of Explicit memory blocks, which were not targeted for automatic release
reservation.

3. Automatic release processing of Explicit memory blocks, for which automatic release reservation described in step
2, is performed
JavaVM obtains and retains the information of number of objects for each class in the Explicit memory block unit
before and after automatic release processing.

4. Output of the object release rate information, which is calculated from the information acquired in step 3, to
extended thread dump

The following figure shows an example of calculating object release rate information.

Figure 8‒20: Example of calculating object release rate information

If there are objects that are referred from outside (the Explicit memory block not targeted for releasing), move the
objects to a new Explicit memory block when executing automatic release processing. Similar to the Explicit memory

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

345

block 6, if multiple Explicit memory blocks exist before automatic release, calculate object release rate from the total
value of number of objects in multiple Explicit memory blocks and the number of objects in a new Explicit memory
block.

For details on how to specify eheapprof command and output contents of Explicit heap information, see
eheapprof (Outputting extended thread dump with Explicit heap details) in the uCosminexus Application Server
Command Reference Guide.

8.10.4 Notes on reducing the time required for automatic release
processing

This subsection describes points to be considered when using the functionality for controlling object movement to the
Explicit memory block and functionality for specifying classes to be excluded from the application of the Explicit
Memory Management functionality, which are used for reducing the time required for automatic release processing.

• The functionality for controlling object movement in an Explicit memory block does not let move the objects of
the Java heap, which are referenced from objects in an Explicit memory block created by using automatic
placement functionality, to an Explicit heap when a full garbage collection occurs. If you enable this functionality,
occurrence frequency of a full garbage collection might increase on systems in which a full garbage collection has
occurred earlier. If occurrence frequency of full garbage collections creates a problem in the system, once again
tune the memory size of the area used by JavaVM. For details on memory tuning, see 7. Memory tuning of
JavaVM in the uCosminexus Application Server System Design Guide.

• The functionality for specifying classes to be excluded from the application of the Explicit Memory Management
functionality does not let move objects of the classes specified in the configuration file, from among the objects of
the Java heap referenced from objects in Explicit memory blocks, which are created by using automatic placement
functionality, to Explicit heap. If you enable this functionality, because the objects that were moved to the Explicit
heap move to Tenured area, the usage of Tenured area increases. Hence, occurrence frequency of full garbage
collections might increase. If occurrence frequency of full garbage collections creates a problem in the system,
once again tune the memory size of the area used by JavaVM. For details on memory tuning, see 7. Memory
tuning of JavaVM in the uCosminexus Application Server System Design Guide.

• The functionality for specifying classes to be excluded from the application of the Explicit Memory Management
functionality reads the configuration file when starting the J2EE server or the batch server. As a result, if you
specify many classes in the configuration file, starting of the J2EE server or the batch server might take longer
time. Compare the start time of the J2EE server or the batch server, and automatic release processing time, and
review the use of this functionality.

• The functionality for specifying classes to be excluded from the application of the Explicit Memory Management
functionality determines whether a class is excluded from the application of the Explicit Memory Management
functionality, when loading the class. As a result, if you specify many classes in a configuration file, class loading
time might increase.

• The functionality for specifying classes to be excluded from the application of the Explicit Memory Management
functionality excludes objects of the classes specified in the configuration file from the target of the Explicit
Memory Management functionality. As a result, if you specify class of an object, which is effective if placed in
Explicit heap, in the configuration file, you might not achieve the effect of a full garbage collection inhibition.

• Because the functionality for specifying classes to be excluded from the application of the Explicit Memory
Management functionality does not execute 8.6.5 Moving the objects from the Java heap to the Explicit memory
block based on a reference relation, consider the objects as excluded from the application of the Explicit Memory
Management functionality. As a result, if you specify direct generation of an object in an application, the object is
generated in Explicit memory block even if you specify class of that object in the classes to be excluded from the
application of the Explicit Memory Management functionality. For details on direct generation of objects in an
application, see 8.6.3 Directly generating objects in Explicit memory block.
If you specify the objects stored in an HTTP session in the classes to be excluded from the application of the
Explicit Memory Management functionality, the objects are excluded from the application of the Explicit Memory
Management functionality and they do not move to the Explicit memory block. For details on the objects stored in
an HTTP session, see 8.4.1 Objects related to HTTP session.

• You cannot execute a full garbage collection or automatic release processing while inhibiting full garbage
collection when debugging an application. Because you cannot obtain the object release rate information even if
you execute eheapprof command by specifying -freeratio option while inhibiting garbage collection, only

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

346

the object statistics in Explicit memory block is output to Explicit heap details of thread dump and the object
release rate information is not output.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

347

8.11 Reducing memory usage of the Explicit heap that is
used in an HTTP session

This section describes the functionality for reducing memory usage of the Explicit heap that is used in an HTTP
session. Use the memory saving functionality of the Explicit heap that is used in an HTTP session to reduce the
memory usage.

If you use this functionality, the relationship between an HTTP session and the Explicit memory block in Application
Server becomes many-to-one. Utilization of the Explicit memory block improves because you can share a single
Explicit memory block in multiple HTTP sessions. Thus, you can reduce memory usage of the Explicit heap that is
secured by an HTTP session.

8.11.1 Checking whether the application is effective
You can determine whether the application of the memory saving functionality of the Explicit heap, which is used in
an HTTP session, is effective by checking the Explicit memory block information included in the thread dump. The
functionality is effective in the case of multiple Explicit memory blocks meeting the conditions described below.
Therefore, review use of the functionality.

• EM_TYPE in Explicit memory block information is "R".

• EM_USED contains many Explicit memory blocks of the size smaller than those described below.

If you are using the automatic placement functionality in the Explicit Memory Management functionality
8 KB

If you are not using the automatic placement functionality in the Explicit Memory Management functionality
32 KB

For output contents of the Explicit memory block information in the thread dump, see 5.5 JavaVM thread dump in the
uCosminexus Application Server Maintenance and Migration Guide.

Estimation of the memory size of the Explicit heap area by using statistics, does not vary depending on whether this
functionality is used. For details on how to estimate the memory size, see 7.10.5 Estimating with statistics in the
uCosminexus Application Server System Design Guide.

However, output contents of the statistics file partly differ. For details on the differences, see 8.11.3 Points to be
considered when using the memory saving functionality of the Explicit heap that is used in an HTTP session.

8.11.2 Mechanism of reducing memory usage
The Explicit memory block in the Explicit heap area, in which an HTTP session is stored, is created every time the
application creates an HTTP session. Objects related to the HTTP session are placed in the created Explicit memory
block.

This subsection describes the mechanism of reducing the memory usage by comparing the cases when you do not use
this functionality and when you use this functionality.

(1) When you do not use the memory saving functionality of the Explicit heap that is used in
an HTTP session

The following figure shows an example where there are three Explicit memory blocks in which objects related to an
HTTP session are stored. From among these three blocks, B and C Explicit memory blocks are less utilized. The
Explicit memory blocks are associated with the HTTP sessions that are not used for long time.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

348

Figure 8‒21: When you are not using the memory saving functionality of the Explicit heap that is used in an
HTTP session

If you are not using the memory saving functionality of the Explicit heap that is used in an HTTP session, the Explicit
memory blocks A-C are not released even when an automatic release occurs. In this case, used size of the Explicit
memory block, in which objects related to an HTTP session are stored, matches with total bytes of the objects related
to an HTTP session. Also, the number of Explicit memory blocks matches with the number of active sessions.

However, even when you store a small-sized object, the Explicit memory block is secured with a size that is above a
fixed size. Therefore, the memory of the Explicit heap area, more than the Explicit memory size actually required, is
consumed.

(2) When you use the memory saving functionality of the Explicit heap that is used in an
HTTP session

The following figure shows an example where there are three Explicit memory blocks in which objects related to an
HTTP session are stored. From among these three blocks, B and C Explicit memory blocks are less utilized. The
Explicit memory blocks are associated with the HTTP sessions that are not used for a long time. The example also
shows D as an explicit memory block in which objects specified in an automatic placement configuration file are
stored.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

349

Figure 8‒22: When you are using the memory saving functionality of the Explicit heap that is used in an
HTTP session

If you are using the memory saving functionality of the Explicit heap that is used in an HTTP session, the memory
saving functionality of the Explicit heap that is used in an HTTP session is executed when automatic release occurs.
Explicit memory blocks B and C, which are less utilized, are released. Objects related to an HTTP session, which was
stored in this Explicit memory block, move to D.

Thus, the utilization of Explicit memory blocks improves by moving and consolidating the objects stored in the less-
utilized Explicit memory blocks to the other area and by releasing the less-utilized Explicit memory blocks.

8.11.3 Points to be considered when using the memory saving
functionality of the Explicit heap that is used in an HTTP session

This section describes the points to be considered when using the memory saving functionality of the Explicit heap
that is used in an HTTP session.

Output contents of statistics file partly differ depending on whether you are using the memory saving functionality of
the Explicit heap that is used in an HTTP session.

Reference note
Due to the differences described here, the area that allocates the memory size of the objects related to an HTTP session, that
is to be stored in the Explicit memory block to be released, changes from an area used in an HTTP session to an area used in
the application. However, the memory size used by the entire system does not change. Therefore, whether you use this
functionality does not impact the estimation of the memory size of the Explicit heap area performed using statistics.

This subsection describes the differences in the output contents.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

350

(1) Number of Explicit memory blocks obtained by an HTTP session
The number of Explicit memory blocks output in the following items differs:

• HTTPSessionEMemoryBlockCount.HighWaterMark
• HTTPSessionEMemoryBlockCount.LowWaterMark
• HTTPSessionEMemoryBlockCount.Current

If you are not using this functionality
The number of active HTTP sessions in the system is output.

If you are using this functionality
Because a value reflecting an internal operation is output, the value output is different than the number of active
HTTP sessions in the system.

(2) Size of the Explicit heap area used in the application
The size of the Explicit heap area output in the following items differs:

• ApplicationEHeapSize.HighWaterMark
• ApplicationEHeapSize.LowWaterMark

If you are not using this functionality
The size of Explicit memory used in the automatic placement functionality is output.

If you are using this functionality
The total of "size of Explicit memory that is targeted for automatic release by this functionality + size of Explicit
memory used in the automatic placement functionality" is output.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

351

8.12 Implementing the Java program that uses the
Explicit Memory Management functionality API

This section describes the implementation if you use the Explicit Memory Management functionality in your
application. Implement the Explicit Memory Management functionality by using the Explicit Memory Management
functionality API.

You can use the Explicit Memory Management functionality in classes in the
JP.co.Hitachi.soft.jvm.MemoryArea package. For details on the API, see the uCosminexus
Application Server API Reference Guide. Note that all the Explicit Memory Management functionality APIs are
thread-safe.

You can implement the following two types of processes in the Explicit Memory Management functionality API:

• Implementing to place objects in the Explicit heap

• Implementing to obtain statistics of the Explicit Memory Management functionality

8.12.1 Implementing to place objects in the Explicit heap
This subsection describes the overview of classes of the Explicit Memory Management functionality API and the
basic way using the API.

(1) Relationship between the ExplicitMemory instance and the Explicit memory block
The Explicit memory blocks in the Explicit heap map 1:1 to the instances of the ExplicitMemory class handled by the
Explicit Memory Management functionality API.

The following figure shows the relationship between the ExplicitMemory instance and the Explicit memory block.

Figure 8‒23: Relationship between ExplicitMemory instance and Explicit memory block

The Explicit memory block is initialized if you execute a constructor of the ExplicitMemory class. Thereafter, the
initialized instance becomes an interface for operating Explicit memory blocks. Instance em1 in the figure maps to the
Explicit memory block 1 while instance em2 maps to the Explicit memory block 2.

(2) Class configuration of the Explicit Memory Management functionality API
The following table describes classes in the Explicit Memory Management functionality API.

Table 8‒10: Classes in the Explicit Memory Management functionality API

Class Explanation

MemoryArea class This is an abstract class that represents the Java heap or the Explicit memory block.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

352

Class Explanation

ExplicitMemory class This is an abstract class that represents Explicit memory block. Use functionalities
of this class through the BasicExplicitMemory class, which is a derived class.

BasicExplicitMemory class This is a class that represents Explicit memory block handled in an application. In
application, implement the Explicit Memory Management functionality by using the
API of this class.

The following figure shows the class hierarchy.

Figure 8‒24: Class hierarchy in the Explicit Memory Management functionality API

(3) How to use the Explicit Memory Management functionality API
The mapping of basic operations and methods is as follows:

• Directly generating the objects in Explicit memory block
Use the newArray method or newInstance method.

• Releasing Explicit memory blocks
Use the reclaim method.

An example of using the BasicExplicitMemory class is described below. This example creates two Explicit memory
blocks.

Example of using the BasicExplicitMemory class

Line Java program

01 BasicExplicitMemory em1 = new BasicExplicitMemory();
02 BasicExplicitMemory em2 = new BasicExplicitMemory();
03
04 Object o1 = em1.newInstance(Object.class);
05
06 Object o2 = em2.newInstance(Object.class);
07
08 ExplicitMemory.reclaim(em1);

The BasicExplicitMemory instances are generated on lines 01 and 02. In this example, em1 maps to the Explicit
memory block 1 while em2 maps to the Explicit memory block 2.

Directly generate the objects in the Explicit memory block by using the newInstance method on lines 04 and 06.
On line 04, place an object of the Object class in the Explicit memory block 1 by invoking the newInstance
method from em1 instance. On line 06, place an object of the Object class in the Explicit memory block 2 by invoking
the newInstance method from em2 instance.

Destroy the Explicit memory block when it becomes unnecessary. An execution of the
ExplicitMemory.reclaim(em1) method on line 08 is a processing to release the Explicit memory block 1.
The processing releases the Explicit memory block 1 and at the same time, destroys object o1 that was generated on

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

353

line 04. Note that when releasing Explicit memory blocks, entire area corresponding to the appropriate Explicit
memory block is targeted for release and not the objects.

In this example, survival period of the Explicit memory block 1 is from line 01 to line 08.

8.12.2 Implementing to obtain statistics of the Explicit Memory
Management functionality

This section describes the implementation for obtaining statistics of the Explicit Memory Management functionality in
your application. You can debug and analyze failures by obtaining statistics.

If you have implemented the Explicit Memory Management functionality in your application, you can obtain the
following information as statistics:

• Status of using the Explicit heap

• Explicit memory block size represented by the ExplicitMemory instance

• Information of Explicit memory block

Also, you can execute the following processes as processes associated with obtaining statistics:

• Setting and obtaining name of Explicit memory block

• Determining whether Explicit memory block is processable

• Determining whether Explicit memory block can be reserved for release

This subsection describes the implementation of each process that uses the Explicit Memory Management
functionality API.

(1) Obtaining the status of using the Explicit heap
This point describes how to obtain information of the Explicit heap. The Explicit heap represents all Explicit memory
blocks. For details on how to obtain information of each Explicit memory block, see (3) Obtaining information of
Explicit memory block.

Used API
getMemoryUsage()

This API creates an instance of the java.lang.management.MemoryUsage class and returns the instance.

Information described in the following table is set in each field in the returned instance, as the information at the time
of creating the instance.

Table 8‒11: Information in each field (instance of MemoryUsage class)

Field Setting details

init 0

used Used memory size of the Explicit heap (units: bytes)

committed Secured size of the Explicit heap (units: bytes)

max Maximum Explicit heap size specified in -XX:HitachiExplicitHeapMaxSize (units: bytes)

However, the value is 0 if the Explicit Memory Management functionality is OFF (if -XX:-
HitachiUseExplicitMemory is set)

The following figure shows the values shown by each field.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

354

Figure 8‒25: Values shown by each field (instance of MemoryUsage class)

(2) Explicit memory block size represented by ExplicitMemory instance
Obtain the Explicit memory block size that is represented by the ExplicitMemory instance, as the status of using
Explicit memory block. By using the Explicit memory block size, you can check the status of using the memory in the
Explicit Memory Management functionality.

Used API

• freeMemory()
• usedMemory()
• totalMemory()

The following table describes the status of using Explicit memory block that you can obtain with each API. You can
obtain the size as a long type value.

Table 8‒12: Status of using Explicit memory block that you can obtain with each API

API Status of using Explicit memory block that you can obtain

freeMemory() Usable memory size (units: bytes)

usedMemory() Used memory size (units: bytes)

totalMemory() Total secured size (units: bytes)

The following figure shows the values that you can obtain with each API.

Figure 8‒26: Values that you can obtain with each API

(3) Obtaining information of Explicit memory block
Obtain the number of the Explicit memory blocks that have an entity in the Explicit heap. The released or invalid
Explicit memory blocks are not targeted. If you obtain the number of valid Explicit memory blocks, you can calculate
the average memory size used in each Explicit memory block.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

355

Used API
countExplicitMemories()

This API counts the number of memory blocks in the Explicit heap and returns it as a value of the int type. The
Explicit memory blocks meeting the conditions are targeted for counting.

• Valid Explicit memory blocks
Valid Explicit memory blocks are targeted irrespective of their sub-status (Enable or Disable).

• Explicit memory blocks that are reserved for releasing

(4) Setting and obtaining name of the Explicit memory block
You can set name to an instance corresponding to the Explicit memory block. You can also obtain the set name. An
Explicit memory block instance has a name for easy handling in an application. An instance becomes easy to use if
you set a name to it.

The set value is also output in an event log of the Explicit Memory Management functionality.

Used API

• setName()
This API sets name.

• getName()
This API obtains name.

If you do not set a name in your application, the following default name is set.

• BasicExplicitMemory-<ID>

ID is a value managed by JavaVM.

! Important note

When naming an Explicit memory block, do not use a name starting with "CCC#". The J2EE server uses names starting
with "CCC#".

The J2EE server uses the following Explicit memory block names:

• CCC#HttpSession
It is an Explicit memory block that places an HTTP session.

• CCC#HttpSessionManager
It is an Explicit memory block that places the objects for managing an HTTP session.

• CCC#Ajp13
It is an Explicit memory block that places the objects for communication with redirector.

(5) Determining whether the Explicit memory block is processable
The Explicit memory block might become non-processable in cases such as failure in securing memory. You can
determine whether an Explicit memory block is processable.

Used API
isActive()

The following table describes the mapping of the status of the Explicit memory block (ExplicitMemory instance),
when the API is invoked, and the return value of the API.

Table 8‒13: Mapping of the status of the Explicit memory block when isActive() is invoked and the return
value of the API

Status of Explicit memory block Sub-status Return value

Released -- false

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

356

Status of Explicit memory block Sub-status Return value

Invalid -- false

Reserved for releasing -- false

Valid Enable true

Disable false

Legend:
--: Not applicable

(6) Determining whether the Explicit memory block can be reserved for release
You can refer to the ExplicitMemory instance corresponding to an Explicit memory block even after the Explicit
memory block is reserved for releasing or released. You can check the status of the Explicit memory instance
from an application by using the API.

Used API
isReclaimed()

The following table describes the mapping of the status of the Explicit memory block (ExplicitMemory instance),
when the API is invoked, and the return value of the API.

Table 8‒14: Mapping of the status of the Explicit memory block when isReclaimed() is invoked and the
return value of the API

Status of Explicit memory block Sub-status Return value

Released -- true

Invalid -- true

Reserved for releasing -- true

Valid Enable false

Disable false

Legend:
--: Not applicable

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

357

8.13 Settings in the execution environment
This section describes the settings in the execution environment for using the Explicit Memory Management
functionality.

! Important note

On the J2EE server, objects related to an HTTP session and objects for communication with the redirector are set to be
placed in the Explicit heap area by default.

Before starting the operations, estimate the required Explicit heap memory size and tune JavaVM option (-
XX:HitachiExplicitHeapMaxSize option) to an appropriate value. For details on the tuning of the Explicit heap,
see 7.2.2 Tuning procedure in the uCosminexus Application Server System Design Guide.

8.13.1 Common settings for using the Explicit Memory Management
functionality (setting JavaVM options)

This subsection describes common settings for using the Explicit Memory Management functionality.

You need to do the following settings when using the Explicit Memory Management functionality:

• J2EE server

• Batch server

• Java application

• Automatic placement configuration file settings

If you want to control the application target of the Explicit Memory Management functionality, you need to perform
the following setting:

• Setting configuration file for Explicit Memory Management functionality application exclusion

(1) J2EE server settings
Perform the J2EE server settings in an Easy Setup definition file.

For the common settings for using the Explicit Memory Management functionality, specify the JavaVM options in the
JavaVM startup parameter (add.jvm.arg), which is inside the configuration tag of the logical J2EE server (j2ee-
server) in an Easy Setup definition file.

The following table describes the definitions of the JavaVM options in the Explicit Memory Management
functionality.

Table 8‒15: Definitions of the JavaVM options in the Explicit Memory Management functionality

JavaVM option Setting details Default value

-XX:
[+|-]HitachiUseExplicitMemor
y

The option sets whether you want to use
the Explicit Memory Management
functionality.

In the case of new installation
The value depends on the
execution environment#1.

IN the case of version upgrade
-XX:-
HitachiUseExplicitMem
ory

-XX:
[+|-]HitachiAutoExplicitMemo
ry

The option sets whether you want to use
the automatic placement functionality in
the Explicit Memory Management
functionality.

-XX:-
HitachiAutoExplicitMemor
y

-
XX:HitachiAutoExplicitMemory
File:String

This option specifies the path of the
automatic placement configuration file
that is used when using the automatic

Empty string

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

358

JavaVM option Setting details Default value

-
XX:HitachiAutoExplicitMemory
File:String

placement functionality in Explicit
Memory Management functionality.

Empty string

-XX:
[+|-]HitachiExplicitMemoryAu
toReclaim

The option specifies whether you want to
use the automatic release functionality in
the Explicit Memory Management
functionality.

-XX:
+HitachiExplicitMemoryAu
toReclaim

-XX:
[+|-]HitachiExplicitMemoryCo
mpatibleToV8

This option specifies whether to use the
same method as 08-00 for securing
Explicit memory blocks. Enable this
option if you do not want to use new
functions in 08-50 or later, and want to run
an application, which runs in 08-00, as is
in 08-50.

-XX:-
HitachiExplicitMemoryCom
patibleToV8

-
XX:HitachiExplicitHeapMaxSiz
e#2

This option sets maximum size of the
Explicit heap area. (units: bytes)

-
XX:HitachiExplicitHeapMa
xSize =64m

-
XX:HitachiExplicitMemoryLogL
evel:String

In String, set the log level of event log to
be output by the Explicit Memory
Management functionality.

Specify one of the following values:

none

normal

verbose

debug

-
XX:HitachiExplicitMemory
LogLevel:normal

-
XX:HitachiExplicitMemoryJava
Log:String

In String, specify the output destination
path name of event log to be output by the
Explicit Memory Management
functionality.

In Windows

-
XX:HitachiExplicitMemory
JavaLog:Cosminexu-
installation-directory
\CC\server\public\ejb
\<server name>\logs
In UNIX
-
XX:HitachiExplicitMemory
JavaLog:/opt/
Cosminexus/CC/server/
public/ejb/<server
name>/logs

-
XX:HitachiExplicitMemoryJava
LogFileSize=Integer value

In Integer value, specify file size of event
log. (units: bytes)

-
XX:HitachiExplicitMemory
JavaLogFileSize =4m

-
XX:ExplicitMemoryFullGCPolic
y=Numeric-value

The option specifies whether you want to
control the movement of an object from
the Java heap to the Explicit memory on
the basis of a reference relationship when
a full garbage collection occurs.

-
XX:ExplicitMemoryFullGCP
olicy=0

-XX:
[+|-]ExplicitMemoryUseExclud
eClass

The option specifies whether you want to
enable the functionality for specifying
classes to be excluded from the application
of the Explicit Memory Management
functionality.

-XX:-
ExplicitMemoryUseExclude
Class

-
XX:ExplicitMemoryExcludeClas
sListFile:String

The option specifies the path of the
configuration file for Explicit Memory
Management functionality application

Empty string

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

359

JavaVM option Setting details Default value

-
XX:ExplicitMemoryExcludeClas
sListFile:String

exclusion to be used when using the
functionality for specifying classes to be
excluded from the application of the
Explicit Memory Management
functionality.

Empty string

-
XX:ExplicitMemoryNotExcludeC
lassListFile String

The option specifies the path of
configuration file for disabling application
exclusion of the Explicit Memory
Management functionality to be used
when using the functionality for specifying
classes to be excluded from the application
of the Explicit Memory Management
functionality.

Empty string

#1
In the case of a new installation, the default value varies according to the execution environment as described below.
In the case of a J2EE server
-XX:+HitachiUseExplicitMemory
In the case of a batch server and a Java application
-XX:-HitachiUseExplicitMemory

#2
For details on the estimation, see 7.10 Tuning of Explicit heap in the uCosminexus Application Server System Design Guide.

An example of definitions in an Easy Setup definition file is given below.

<param-name>add.jvm.arg</param-name>
 <param-value>-Xms512m</param-value>
 <param-value>-Xmx512m</param-value>
 <param-value>-XX:+HitachiUseExplicitMemory</param-value>
 <param-value>-XX:HitachiExplicitHeapMaxSize=64m</param-value>

Reference note
You can also perform the J2EE server settings from the [Setting startup parameters] screen (defining the logical J2EE
server) in the management portal. For details on how to perform the settings in the management portal, see 10. 9.20 Setting
startup parameters (J2EE server) in the uCosminexus Application Server Management Portal User Guide.

For details on the JavaVM options to be specified and tags to be specified in an Easy Setup definition file, see the
uCosminexus Application Server Definition Reference Guide.

(2) Batch server settings
Perform the batch server settings in an Easy Setup definition file.

For the common settings for using the Explicit Memory Management functionality, specify the JavaVM options in the
JavaVM startup parameter (add.jvm.arg), which is inside the configuration tag of the logical J2EE server (j2ee-
server) in an Easy Setup definition file.

For the JavaVM options to be specified, see (1) J2EE server settings.

(3) Java application settings
Perform the settings of the Java application that you run using the cjclstartap command, in the option definition
file for Java applications (usrconf.cfg).

For the common settings for using the Explicit Memory Management functionality, specify the JavaVM options in the
JavaVM startup parameter (add.jvm.arg) in the option definition file for Java applications (usrconf.cfg).

For JavaVM options to be specified, see (1) J2EE server settings.

An example of definitions in the option definition file for Java application (usrconf.cfg) is given below.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

360

add.jvm.arg=-Xms512m
add.jvm.arg=-Xmx512m

add.jvm.arg=-XX:+HitachiUseExplicitMemory
add.jvm.arg=-XX:HitachiExplicitHeapMaxSize=64m

For details on the option definition file for Java applications (usrconf.cfg), see 14.2 usrconf.cfg (option
definition file for Java applications) in the uCosminexus Application Server Definition Reference Guide.

(4) Automatic placement configuration file settings
If you want to use the Explicit Memory Management functionality by using an automatic placement configuration file,
you need to specify the -XX:+HitachiAutoExplicitMemory option and set the objects that you want to place
in the Explicit heap.

Specify the objects that you want to place in the Explicit heap, in the AutoExplicitMemoryText parameter, which is
inside the configuration tag of the logical J2EE server (J2EE-Server) in an Easy Setup definition file.

An example is given below.

 :
<param>
<param-name>AutoExplicitMemoryText</param-name>
<param-value>
<![CDATA[
com.sample.*, java.util.ArrayList
com.sample.Main.main(java.lang.String[]), java.util.LinkedList
]]>
</param-value>
</param>
 :

For details on how to create an automatic placement configuration file, see 8.13.2 Using the Explicit Memory
Management functionality by using the automatic placement configuration file.

You can also perform the automatic placement configuration file settings from the [Setting startup parameters] screen
(defining logical J2EE server) in the management portal or from any user file (file specified in the -
XX:HitachiAutoExplicitMemoryFile property).

(5) Setting configuration file for Explicit Memory Management functionality application
exclusion

If you use a configuration file for Explicit Memory Management functionality application exclusion and control
application of the Explicit Memory Management functionality to the objects to be moved on the basis of a reference
relation, you must specify the following options and set the classes not to be moved to the Explicit heap.

• -XX:ExplicitMemoryFullGCPolicy=0
• -XX:+ExplicitMemoryUseExcludeClass

Code the setting of classes not to be moved to the Explicit heap in the configuration file for Explicit Memory
Management functionality application exclusion.

The following is the coding example:

com.sample.ClassA
com.sample.ClassB

If you want to move some classes from among the classes, which are coded in the configuration file for Explicit
Memory Management functionality application exclusion, to the Explicit heap, code the classes, for which the settings
of application exclusion of the Explicit Memory Management functionality are to be disabled, in configuration file for
disabling application exclusion of the Explicit Memory Management functionality.

For details on how to create a configuration file for Explicit Memory Management functionality application exclusion
and configuration file for disabling application exclusion of the Explicit Memory Management functionality, see
8.13.3 Controlling application target of theExplicit Memory Management functionality by using configuration file.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

361

8.13.2 Using the Explicit Memory Management functionality by using the
automatic placement configuration file

Set the automatic placement functionality in the Explicit Memory Management functionality by using the automatic
placement configuration file. If you use the automatic placement configuration file, you can use the Explicit Memory
Management functionality without making changes to the Java program.

In the automatic placement configuration file, specify objects that you want to place in the Explicit heap and the
location of generating the objects. Note that the objects that are being referenced from the objects that you specify in
this file (objects generated in the Explicit memory block) move to the Explicit memory block from the Java heap. For
details on the object movement, see 8.6.5 Moving the objects from the Java heap to the Explicit memory block based
on a reference relation.

This subsection describes the coding format of the automatic placement configuration file and points you need to
consider during coding, if you use the Explicit Memory Management functionality by specifying the -XX:
+HitachiAutoExplicitMemory option and by using the automatic placement configuration file.

You can code the contents of the automatic placement configuration file by using one of the following items:

• Easy Setup definition file

• [Setting startup parameters] screen (defining the logical J2EE server) in the management portal

• Any user file (file specified in the jvm.userprf.File property)

(1) Coding format of the automatic placement configuration file
Coding format of the automatic placement configuration file is as follows.

<Generation point>#, <fully classified class name of the specified object> # Comment
:
<Generation point>#, <fully classified class name of the specified object>

#
Examples of the specification of generation point are described below.

Example of generation point Meaning

* This specifies generation of the user-specified objects in all the methods that are
included in all classes in all packages, as the generation point.

com.sample.* This specifies generation of the user-specified objects in the methods that are included
in classes in all packages that start with com.sample, as the generation point.

Therefore, if lower packages (com.sample.abc or com.sample.abc.test)
exist, those are also targeted.

com.sample.Main This specifies generation of the user-specified objects in all the methods (including
constructor and static initializer) that are included in com.sample.Main class, as
the generation point.

com.sample.Main.main(java.lang.
String[])

This specifies generation of the user-specified objects in the
main(java.lang.String[]) method that is defined in the com.sample.Main
class, as the generation point.

Tip

• A single byte space (0x20) or tab (\t or 0x09) is the blank character that separates syntax elements.

• One or more line feed characters (\n or 0x0A) or return characters (\r or 0x0D) continue at end-of-line.

• Comments start with # and all characters in between # and end-of-line are considered as a comment.

• * character in generation point indicates all classes existing in same or subpackages. Meaning of * in import
declaration of Java language and * in generation point differs on the point that * in generation point targets classes
in subpackages also.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

362

(2) Example of coding the automatic placement configuration file
An example of coding the automatic placement configuration file is described below.

comment
com.sample.*, java.util.ArrayList # comment
com.sample.Main.main(java.lang.String[]), java.util.LinkedList

This point describes contents of the coding example.

1. All first lines are comments.

2. Specify in such a way that the java.util.ArrayList object, generated by the class and method, which is included in
all packages starting with com.sample. * is placed in the Explicit memory block. Text from # until end-of-line is
considered as a comment.

3. Specify in such a way that the java.util. LinkedList object generated by the
com.sample.Main.main(java.lang.String[]) method is placed in the Explicit memory block.

Reference note
You can describe the entries that specify a class in JavaVM (for example, class in packages starting with java, javax), as
a generation point for the user-specified object. However, specified entries might be treated as if they do not exist. If an
entry is treated as if it does not exist, an error message is not output in the Explicit Management Heap log.

(3) Notes for the automatic placement configuration file
The following point describes the points to be considered when you specify the automatic placement configuration
file.

• If you use the automatic placement functionality, class loading time increases. As a result, the JavaVM starting
time or application deployment time on Application Server might increase.

• If you use the automatic placement functionality, the copy garbage collection processing might take time.

• The automatic placement functionality targets only those objects that are generated with new. The functionality
does not target the objects generated with JNI or reflection.

• Describe all class names and method arguments, including classes in the java.lang package in a fully
classified class name.

For example:
Incorrect: String
Correct: java.lang.String

• You cannot describe a class name that uses generics. Describe the class names (raw type) that are not
parameterized.

For example:
Incorrect: java.util.HashMap<java.lang.String, java.lang.Object>
Correct: java.util.HashMap

• Describe nested class names separated by "$" and not ".".

For example:
Incorrect: java.util.AbstractMap.SimpleEntry
Correct: java.util.AbstractMap$SimpleEntry

• For constructor, code the same method name as the class name or init. For the constructor of MyMain class, code
as shown below.

For example:
MyMain.MyMain() or MyMain. init()

• If a method having the same name as a class exists, it is not possible to determine whether you are specifying a
constructor or a method. Therefore, it is treated as if you have specified both a constructor and method.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

363

For example:
A constructor containing an int argument of MyMain.MyMain(int) # MyMain class and a #
MyMain(int) method are both generation points

• Describe clinit for static initializer. For static initializer of the MyMain class, code as shown below.

For example:
MyMain.clinit()

• If you want to specify generation of an object, by assigning at the time of field declaration, as the generation point,
describe default constructor in generation point.

• You cannot specify an array in a fully classified class name of the user-specified object.

For example:
java.lang.String[]

• If a line containing a non-existing class name, method name or a method (native method and abstract method) not
having byte code exists, treat that line as if it does not exist

• If you specify an internal class of J2SE in class name of the user-specified object, the Explicit Memory
Management functionality might be replaced by an appropriate class name. For example,
java.util.HashMap is replaced with java.util.HashMap$Entry.

• If you specify a huge class or method, which is close to the limit of the Java language specifications, as a
generation point, automatic placement might fail. In that case, "Invalid class file format" is output as MESSAGE of
explicit management heap automatic placement error in event log of the Explicit Memory Management
functionality. In such cases, review size reduction of class or method.

8.13.3 Controlling application target of the Explicit Memory Management
functionality by using a configuration file

The objects referenced from the objects in an Explicit memory block, which is created by using automatic placement
functionality, move from the Java heap to the Explicit heap on the basis of a reference relation when a garbage
collection occurs. The functionality for specifying classes to be excluded from the application of the Explicit Memory
Management functionality excludes the objects, which are to be moved on the basis of this reference relation, from
application target of the Explicit Memory Management functionality by using a configuration file and does not let the
objects move to Explicit heap. If you use this functionality, you can exclude the objects, which are not recovered in a
full garbage collection also, such as the objects used until the application stops, from the application target of the
Explicit Memory Management functionality. For details on the movement based on reference relation of objects, see
8.6.5 Moving the objects from the Java heap to the Explicit memory block based on a reference relation.

(1) Types of configuration files
The following two types of files are used in the functionality for specifying classes to be excluded from the
application of the Explicit Memory Management functionality:

■ Configuration file for Explicit Memory Management functionality application exclusion

Specify classes of the objects, which you do not want to move to an Explicit heap. The objects of the classes specified
in this file do not move to an Explicit heap even if a garbage collection occurs. The objects move to Tenured area at
the time of rising.

A configuration file for Explicit Memory Management functionality application exclusion contains files provided by
the system. If you enable the functionality for specifying classes to be excluded from the application of the Explicit
Memory Management functionality, the configuration file for Explicit Memory Management functionality application
exclusion provided by the system is used. The following is the file path of the configuration file for Explicit Memory
Management functionality application exclusion, which is provided by the system:

In Windows
JDK-installation-directory\jre\lib\explicitmemory\sysexmemexcludeclass.cfg

In UNIX
/opt/Cosminexus/jdk/jre/lib/explicitmemory/sysexmemexcludeclass.cfg

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

364

If you want to add classes for exclusion from application target of the Explicit Memory Management functionality,
update the file in the following file path or create a new file:

In Windows
JDK-installation-directory\usrconf\exmemexcludeclass.cfg

In UNIX
/opt/Cosminexus/jdk/usrconf/exmemexcludeclass.cfg

If you create a new configuration file for Explicit Memory Management functionality application exclusion, specify
the file path in -XX:ExplicitMemoryExcludeClassListFile option.

■ Configuration file for disabling application exclusion of the Explicit Memory Management functionality

Specify the classes, for which the settings of application exclusion are to be disabled, from among the classes
specified in the configuration file for Explicit Memory Management functionality application exclusion. Objects of
the classes specified in this file move to Explicit heap if a garbage collection occurs.

If you want to disable the classes excluded from application target of the Explicit Memory Management functionality,
update the file in the file path given below or create a new file. You can also disable settings of the classes specified in
the configuration file for Explicit Memory Management functionality application exclusion, which is provided by the
system.

In Windows
JDK-installation-directory\usrconf\exmemnotexcludeclass.cfg

In UNIX
/opt/Cosminexus/jdk/usrconf/exmemnotexcludeclass.cfg

If you create a new configuration file for disabling application exclusion of the Explicit Memory Management
functionality, specify file path in -XX:ExplicitMemoryNotExcludeClassListFile option.

(2) Specifying configuration file and scope of application of the Explicit Memory Management
functionality

Priority is given to specification of configuration file for disabling application exclusion of the Explicit Memory
Management functionality than the specification of configuration file for Explicit Memory Management functionality
application exclusion.

This subsection describes specification of configuration file and scope of application of the Explicit Memory
Management functionality considering com.sample package as an example. com.sample package contains two classes
- ClassA and ClassB. Specify each configuration file as shown below.

Example of specifying a configuration file for Explicit Memory Management functionality application exclusion

com.sample.*

Example of specifying a configuration file for disabling application exclusion of the Explicit Memory Management
functionality

com.sample.ClassB

Both ClassA and ClassB are included in specification of the configuration file for Explicit Memory Management
functionality application exclusion. However, because specification of the configuration file for disabling application
exclusion of the Explicit Memory Management functionality is preferred, only ClassA is excluded from the
application of the Explicit Memory Management functionality and Explicit Memory Management functionality is
applied to ClassB, as shown in the following figure.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

365

(3) Format for coding a configuration file
The following is the format for coding a configuration file.

When using a type other than array

Fully-qualified-class-name-of-specified-class #Comment
:
Fully-qualified-class-name-of-specified-class#

You can omit the class name by using *.

When using array type

[-part-in-number-of-dimensions-of-array#L Fully-qualified-class-name-of-specified-class;

In case of a multi-dimensional array, specify [continuously for the number of dimensions. In case of three-dimensional array,
it will be [[[.

(Example) In case of one-dimensional array of aaa.bbb.Myclass class
[Laaa.bbb.Myclass;

Tip

• Code one class name on a line.

• You can code up to 1,024 characters on one line. This number includes null characters and comments. If you code
1,025 or more characters on one line, parsing fails, a warning message is output, the line is ignored, and read
processing continues.

• You can omit the class name if you specify package-name.*. Unlike import declaration * in Java language, classes
in sub-package are also targeted.

• One or more line feed characters (\n or 0x0A) or recovery characters (\r or 0x0D) are considered as the end-of-line.

• Blank characters are considered as single space character (0x20) or tab characters (\t or 0x90). If you code blank
characters in the configuration file, those are ignored.

• A comment starts with # and all characters starting from # to end-of-line are considered as a comment.

(4) Coding example of configuration file
Coding examples of the configuration file for Explicit Memory Management functionality application exclusion and
configuration file for disabling application exclusion of the Explicit Memory Management functionality are described
below.

The coding example described here is a class structure shown in the following figure having package name as
com.sample.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

366

Figure 8‒27: Example of class structure

■ When specifying in a fully qualified class name

The following is an example of a configuration file for Explicit Memory Management functionality application
exclusion when specifying in a fully qualified class name:

com.sample.aaa.ClassA
com.sample.aaa.ClassC
com.sample.ddd.ClassD

In this example, the objects of ClassA class, ClassC class, and ClassD class move to Tenured area.

■ When specifying by omitting the class name

The following are coding examples of a configuration file for Explicit Memory Management functionality application
exclusion and configuration file for disabling application exclusion of the Explicit Memory Management functionality
when specifying by omitting class name.

Coding example of configuration file for Explicit Memory Management functionality application exclusion

com.sample.*

Coding example of configuration file for disabling application exclusion of the Explicit Memory Management
functionality

com.sample.aaa.ClassB
com.sample.ddd.ClassE

In this example, not only the classes in the same package but all the classes including the classes in subpackages are
targeted to move to Tenured area because of the coding in the configuration file for Explicit Memory Management
functionality application exclusion. However, the objects of ClassB class and ClassE class are targeted to move to
the Explicit memory block because of the coding in the configuration file for Explicit Memory Management
functionality application. Hence, the objects of ClassA class, ClassC class and ClassD class move to Tenured
area.

Tip
About whether to specify in fully qualified class name or by omitting class name, we recommend that you specify in such
that the amount of coding in a configuration file is less. Both coding examples have same control. In this case, specifying by
omitting class name is preferable.

8.13.4 Settings for using the function on the J2EE server
This subsection describes settings for using the Explicit Memory Management functionality on the J2EE server. Set
whether to target the following objects for placement in the Explicit heap, as the J2EE server properties:

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

367

• Objects related to HTTP session

• Objects for communication with redirector

By default, both types of objects are set to be placed in the Explicit heap. However, if you change the settings in the
JavaVM option described in 8.13.1 Common settings for using the Explicit Memory Management functionality (setting
JavaVM options) to not to use the Explicit Memory Management functionality, property settings of the J2EE server
become invalid.

(1) How to set
Perform the J2EE server settings in an Easy Setup definition file. Specify definitions of the Explicit Memory
Management functionality in the configuration tag of the logical J2EE server (j2ee-server) in an Easy Setup definition
file.

The following table describes definitions of the Explicit Memory Management functionality in an Easy Setup
definition file.

Table 8‒16: Definitions of the Explicit Memory Management functionality in an Easy Setup definition file

Parameter to be specified Setting details

ejbserver.server.eheap.httpsession.enab
led

Specify whether to place the objects related to an HTTP session in
the Explicit heap.

ejbserver.server.eheap.ajp13.enabled Specify whether to place the objects for communication with the
redirector in the Explicit heap.

For details on the parameters to be specified, see 4.14 Parameters that you can specify on the logical J2EE server in
the uCosminexus Application Server Definition Reference Guide.

Relationship between the JavaVM options and each property is described below.

Relationship between the JavaVM options and ejbserver.server.eheap.httpsession.enabled property
The placement destination of the objects related to an HTTP session varies according to the values specified in the
prerequisite JavaVM options and the ejbserver.server.eheap.httpsession.enabled property. The
following table describes the placement destination of objects related to an HTTP session.

Table 8‒17: Placement destination of the objects related to an HTTP session according to the values of
the JavaVM options and the ejbserver.server.eheap.httpsession.enabled property

JavaVM option Value of ejbserver.server.eheap.httpsession.enabled
property Placement destination

-XX:
+HitachiUseExplicitMemory

true Explicit heap area

false Java heap area

Other value (such as an incorrect string or value not
specified)

Explicit heap area

-XX:-
HitachiUseExplicitMemory

true Java heap area

false

Other value (such as an incorrect string or value not
specified)

Not specified true Java heap area

false

Other value (such as an incorrect string or value not
specified)

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

368

Relationship between the JavaVM options and the ejbserver.server.eheap.ajp13.enabled property
The placement destination of the objects for communication with the redirector varies according to the values of
the prerequisite JavaVM options and the ejbserver.server.eheap.ajp13.enabled property. The
following table describes the placement destination of the objects for communication with the redirector.

Table 8‒18: Placement destination of the objects for communication with the redirector according to the
values of the JavaVM options and the ejbserver.server.eheap.ajp13.enabled property

JavaVM option Value of ejbserver.server.eheap.ajp13.enabled
property Placement destination

-XX:
+HitachiUseExplicitMemory

true Explicit heap area

false Java heap area

Other value (such as an incorrect string or value not
specified)

Explicit heap area

-XX:-HitachiUseExplicitMemory true Java heap area

false

Other value (such as an incorrect string or value not
specified)

Not specified true Java heap area

false

Other value (such as an incorrect string or value not
specified)

(2) An example of definitions in an Easy Setup definition file
An example of definitions in an Easy Setup definition file is given below.

An example of definitions in an Easy Setup definition file

<configuration>
<logical-server-type>j2ee-server</logical-server-type>
<param>
<param-name>ejbserver.server.eheap.httpsession.enabled</param-name>
<param-value>true</param-value>
</param>
<param>
<param-name>ejbserver.server.eheap.ajp13.enabled</param-name>
<param-value>true</param-value>
</param>
:
</configuration>

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

369

8.14 Precautions for using the Explicit Memory
Management functionality

This section describes the points to be considered when using the Explicit Memory Management functionality.

(1) Setting initial size and maximum size of the Java heap
You must specify the same value in the initial size (-Xms) and maximum size (-Xmx) of the Java heap. If the values
are different, the count of the copy garbage collection might increase.

We recommend this setting even if you do not use the Explicit Memory Management functionality.

Supplement:
If the initial size and maximum size of the Java heap are different, sizes of all areas change at the following
timings:

• When the copy garbage collection ends
The size of the New area changes dynamically.

• When the full garbage collection ends
The sizes of the Tenured area and New area change dynamically.

The size of the New area is mainly determined according to the Tenured area size and the value specified in the -
XX:NewRatio option.
If the Explicit Memory Management functionality inhibits occurrence of the full garbage collection, the timing of
changing the Tenured area size is lost. With this, size of the New area becomes almost fixed.
Therefore, even if you specify a maximum size that is larger than the initial size, the timing of the extension of the
New area is lost and the size is the value that you specified as the initial size. If the New area specified in the
initial size is small, count of occurrence of the copy garbage collection is more as compared to the case where you
do not use the Explicit Memory Management functionality.

(2) Notes on using Explicit heap in objects related to an HTTP session

• Since an HTTP session is generated, all session attributes (objects) set using the setAttribute method are not
released and remain in Explicit heap until you destroy the HTTP session. At that time, it is irrespective whether
you have set it in the HTTP session. Therefore, if you do not destroy the HTTP session and repeatedly execute the
setAttribute method, the Explicit heap overflows and inhibition of the full garbage collection might not be
effective. For confirming whether the Explicit heap overflow has occurred, see 7.13.3 Checking and handling
when an Explicit heap overflows in the uCosminexus Application Server System Design Guide.

• If you are not using the automatic release functionality (in the case of -XX:-
HitachiExplicitMemoryAutoReclaim), when deleting an HTTP session, objects stored in the session to
which there are references from outside, move from the Explicit heap to the Tenured area of the Java heap. In such
cases, the used size of the Tenured area increases and occurrence of the full garbage collection cannot be inhibited.
To prevent movement of objects from the Explicit heap to the Java heap, you must delete references to the objects
stored in an HTTP session before deleting the session.
The same applies to the case where references to objects, which are obtained by using the following API, are
remaining:

• getAttribute(String)
• getAttributeNames()

Note that if you are using the automatic release functionality (in the case of -XX:
+HitachiExplicitMemoryAutoReclaim), the objects do not move to the Tenured area of the Java heap.

• In the following cases, objects are placed in the Java heap and not in the Explicit heap:

• If you generate a new session when the number of Explicit memory blocks has reached the maximum value
and you cannot create new Explicit memory block (when 1,048,575 Explicit memory blocks are existing at the
same time)

• If the maximum size of the Explicit heap area is exceeded

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

370

• If you could not secure the Explicit memory block

In these cases, an object is created in the Java heap and hence you might not be able to inhibit occurrence of the
full garbage collection.

• In JSP, the HttpSession object is implicitly created, by default. To prevent the Explicit heap overflow caused by
generation of unnecessary HttpSession objects, perform the settings in such a way that the HttpSession
object is not explicitly created in JSPs that do not require session. Use the session attribute in page directive to
perform the setting.

• When executing a test to validate the effect of the full garbage collection inhibition, do not use a condition such as
the continuous generation of sessions without destroying the sessions. Because Explicit memory blocks are not
released, there is a high possibility of Explicit heap overflow.
The Explicit memory blocks are reserved for release when a session is destroyed and released when the garbage
collection occurs thereafter. Therefore, even if you have destroyed the session, if repetition count of session
destruction and generation is too high for one garbage collection interval, other Explicit memory blocks get
created while Explicit memory blocks reserved for release remain. As a result, the number of Explicit memory
blocks increases and the Explicit heap might overflow.
To validate the effect of the full garbage collection inhibition, execute a test using conditions that appropriately
manage the sessions.

• The objects, which you have stored in a session, are placed in the Java heap immediately after generation. After
the copy garbage collection is executed for several times, the objects move to the Explicit heap, usually at the
timing of rising to the Tenured area. Therefore, if objects are deleted in a short time or if the session is quickly
destroyed, the objects are not placed in the Explicit heap.

(3) Maximum number of characters in the name of the Explicit memory block to be output to
the thread dump

The name of the Explicit memory block is output to Explicit heap details that are output to the thread dump of
JavaVM. The maximum limit for the number of characters in the name of an Explicit memory block is 2,000
characters. If you set a name of an Explicit memory block exceeding 2,000 characters in the setName method of the
JP.co.Hitachi.soft.jvm.MemoryArea class, the name part which exceeds 2,000 characters is not output to
the thread dump.

8. Inhibiting Full Garbage Collection by Using Explicit Memory Management

371

9 User Log Output for Applications
This chapter gives an overview of the log output for J2EE applications, batch
applications, and EJB client applications. This chapter also describes the log output
methods.

373

9.1 Organization of this chapter
The logs, output by J2EE applications, batch applications, and EJB client applications, are called user logs. This
chapter describes the user logs output for applications.

When an error occurs, you collect and analyze the user log that is output, and examine the causes of the error. You can
acquire user logs in a batch as the snapshot log or acquire an individual log. For details on collecting the
snapshot log containing user logs, see 2.3.3 Collecting the snapshot log in the uCosminexus Application Server
Maintenance and Migration Guide.

The following table describes the organization of this chapter.

Table 9‒1: Organization of this chapter (User log output for applications)

Category Title Reference location

Description Overview of the user log output 9.2

Log format 9.3

Implementation Methods used in the user log output 9.4

Implementation for user log output 9.5

Setup Creating and setting loggers and handlers 9.6

How you can use your own filter/ formatter/ handler 9.7

Setting the user log output for J2EE applications 9.8

Setting the user log output for batch applications 9.9

Setting the user log output for EJB client applications (For using the cjclstartap
command)

9.10

Implementing and setting the user log output for EJB client applications (For
using the vbj command)

9.11

Notes Notes for using the user log functionality 9.12

Note: There is no specific description of Operation for this functionality.

The reference location of the user log output varies according to the type of applications. The following table
describes the reference locations.

Table 9‒2: Reference locations related to the user log output

Reference location
Type of application

J2EE application Batch application EJB client application

9.2 Overview of the user log output Y Y Y

9.3 Log format Y Y Y

9.4 Methods used in the user log output Y Y Y

9.5 Implementation for user log output Y Y N

9.6 Creating and setting loggers and handlers Y Y N

9.7 How you can use your own filter/ formatter/
handler

Y Y N

9.8 Setting the user log output for J2EE applications Y N N

9.9 Setting the user log output for batch applications N Y N

9.10 Setting the user log output for EJB client
applications (For using the cjclstartap command)

N N Y

9. User Log Output for Applications

374

Reference location
Type of application

J2EE application Batch application EJB client application

9.11 Implementing and setting the user log output for
EJB client applications (For using the vbj command)

N N Y

9.12 Notes for using the user log functionality Y Y Y

Legend:
Y: Reference
N: Do not reference

9. User Log Output for Applications

375

9.2 Overview of the user log output
This section gives an overview of the user log output.

9.2.1 Overview of the user log output
The log, output by J2EE applications, batch applications, and EJB client applications, is called user log. With
Cosminexus, you can output user logs in the Hitachi Trace Common Library format (user log functionality).
Therefore, you can handle system logs and application logs in the same format, and this results in improving the
reliability of log operations of the entire system.

The following figure shows the procedure for log output by using the user log functionality.

Figure 9‒1: Procedure of the user log functionality

You use the J2SE standard log output functionality (Java logging API) to output user logs. For using this functionality,
execute the user log output with the Java logging APIs.

Reference note
You cannot execute the user log output from a resource adapter. Note that you can execute the user log output from a
Message-driven Bean that is invoked from the resource adapter.

9.2.2 Mechanism of the user log output
You can use the Java logging APIs of J2SE for executing J2EE applications, batch applications, and EJB client
applications to output user logs. A Java logging API is a highly versatile API that can output multiple items such as
memories, consoles, and files. However, the logic is simple, so for applying the logic to a mission critical system, an
application developer must implement reliable and durable classes for log output.

If you use the user log functionality, a highly reliable user log can be output, even if the classes for the log output are
not implemented by the application developer.

You can output logs, which are output from J2EE applications, batch applications, and EJB client applications
developed by using the Java logging APIs, in a format output by a component software of another Cosminexus system
(Hitachi Trace Common Library format) by using Hitachi Trace Common Library. By using this library you can
handle user logs in the same format as the other system logs, and the log operation can be highly reliable and unified.

You execute the user log output in accordance with the mechanism of the J2SE Java logging. With the Java logging,
you use two types of elements, loggers and handlers. Note that loggers and handlers are the objects of the Logger
class and the Handler class respectively.

The following figure shows the mechanism of Java logging.

9. User Log Output for Applications

376

Figure 9‒2: Mechanism of Java logging

The following points describe the above figure:

1. Output user logs from applications by using logger.
The user logs are output by using the methods of the Logger class, when the application is processing.

2. Logger adds additional information such as levels and message strings to the log, which is output from the
application, converts to LogRecord, and passes to the handler.
At that time, you can have fine control above the control specified as a log level, by using the filter (object of the
Filter class) that is connected to the logger.

3. Based on the received LogRecord, the handler outputs logs to a file, console or a socket.
You specify the output destination and the output format as a handler property, in advance. In handler, you can
have fine control by using the filter connected to the handler. You can also use the formatter (object of the
Formatter class) to output messages formatted in any format.

With Application Server, the file handlers are provided to output logs in the Hitachi Trace Common Library format, in
a file. The following sub-sections describe the provided file handlers for respective applications.

■ For J2EE applications or batch applications

CJMessageFileHandler is provided as a file handler. You can specify the log output destination files, log levels,
number of log files, and filters and formatters to be used for CJMessageFileHandler, when setting up a system.
For details on setting the user log output of J2EE applications and batch applications, see 9.8 Setting the user log
output of J2EE applications and 9.9 Setting the user log output of batch applications.

In a user log, if you want to output the message ID corresponding to the application name and message contents that
are output by the log, you must implement the settings in J2EE applications or batch applications. In such cases,
implement the settings by using a class for the extended LogRecord provided by Application Server (CJLogRecord
class). For details on how to use the CJLogRecord class, see 9.4 Methods used in the user log output. For details on
the APIs of the CJLogRecord class, see 7. APIs used in the user log functionality in the uCosminexus Application
Server API Reference Guide.

! Important note

For directly implementing the settings of handlers and loggers in J2EE applications, you must have the security permission
LoggingPermission("control") for the application to be executed. For details on how to specify the security
permission LoggingPermission("control"), see 9.8.2 Setting the security policy.

■ For EJB client applications

CJMPMessageFileHandler is provided as a file handler. How to set up a user log of an EJB client application
varies according to the command used to start the EJB client application. For details on how to set up the user log
output for EJB client applications, see 9.10 Setting the user log output for EJB client applications (when using the
cjclstartap command) or 9.11 Implementing and setting the user log output for EJB client applications (when using the
vbj command).

9. User Log Output for Applications

377

9.3 Log format
When you use the user log functionality, log is output in the following format:

Number Date Time AppName pid tid MsgID Message text CRLF

The following table describes the output contents of items in the above format.

Table 9‒3: Log format

Field Output contents

Number The serial number of trace code (four digits) is output. The number starts from 0000 and returns to 0000,
when the number reaches 9999.

Date The date (yyyy/mm/dd format), during the output, is output.

Time The time (hh:mm:ss.nnn format), during the output, is output.

AppName The application-distinguished name is output. You specify the application-distinguished name within 16
bytes. If the length limit is exceeded, the value after that limit is truncated.

pid The process-distinguished name (hexadecimal) is output. This value differs from the value that manages
the OS.

In the case of a log output by using CJMessageFileHandler, the hash value that is assigned to the
Runtime instance by JavaVM is output.

In the case of a log output by using CJMPMessageFileHandler, the lower level 32 bits, during the
time (in milliseconds) at which Hitachi Trace Common Library is loaded by JavaVM, is output.

tid The thread-distinguished name (hexadecimal) is output. This is a hash value assigned to the Thread
instance by JavaVM. This value differs from the value that manages the OS.

MsgID The message ID is output. You specify a message ID within 21 bytes. If the length limit exceeds, the value
after that limit is truncated.

Message text This is a message body. This is a string that does not contain the control characters such as CR (0x0D),
LF (0x0A), NULL (0x00), and EOF (0x1A). You specify a length from 0 through 4,095 characters.
If the length limit exceeds, the value after that limit is truncated. Note that if you include control characters,
output contents are not guaranteed.

CRLF The record terminal code (0x0D or 0x0A) is output.

9. User Log Output for Applications

378

9.4 Methods used in the user log output
This section describes the methods of the Logger class which are used for the user log output and the package to
which the CJLogRecord class belongs. For details on the list of methods of the CJLogRecord class and the
functionality and grammar, see 7. APIs used in the user log functionality in the uCosminexus Application Server API
Reference Guide.

(1) Methods of the Logger class used in the user log output
You use the following log method for receiving and passing AppName and MsgID by using the CJLogRecord
method:

void log(LogRecord record)

(2) Package to which the CJLogRecord class belongs
You must import the following package to use the CJLogRecord class with the source program:

com.hitachi.software.ejb.application.userlog

The package is stored in:

Cosminexus-installation-directory\CC\client\lib\HiEJBClientStatic.jar

For the implementation example of programs when using the user log functionality, see 9.5 Implementation for user
log output.

9. User Log Output for Applications

379

9.5 Implementation for user log output
You code using the Java logging APIs to output logs in J2EE applications or batch applications. If you want to output
the names and message IDs of J2EE applications or batch applications to a user log, you use the CJLogRecord class
provided with Cosminexus.

The CJLogRecord class is a class that inherits the LogRecord class of the Java logging APIs. You can create a
CJLogRecord object with the specified message ID and application name. You can output any message ID and
application name to a user log by specifying the object created in this class, in the argument of a log method, in the
Logger class.

Example to output a user log having application name "UserApp" and message ID "USER10000-E":
try{
 //Execute process that outputs an error
}
catch(Error ex){
 logger.log(CJLogRecord.create(Level.SEVERE, "Catch an exception",
"UserApp", "USER10000-E"));
}

For details on APIs, see the uCosminexus Application Server API Reference Guide.

9. User Log Output for Applications

380

9.6 Creating and setting loggers and handlers
To output a user log by using the Java logging APIs, you create loggers and handlers, and specify the required settings.
You specify the parameters such as the application-distinguished name (AppName) and the message ID (MsgID),
required for the log output, in arguments of the create method in the CJLogRecord class provided with
Cosminexus. You can also create your own class to customize the log filtering and format of output contents.

Note that for a user log output, you are required to specify the properties such as the output destination of logs and
number of configuration files in the execution environment. For details on user log settings in the execution
environment, see 9.8 Setting the user log output of J2EE applications or 9.9 Setting the user log output of batch
applications.

This section gives an overview of creating and setting loggers and handlers used for the user log output of J2EE
applications or batch applications.

For details on the user log output of EJB client applications, see 9.10 Setting the user log output of EJB client
applications (When using the cjclstartap command) or 9.11 Implementing and setting the user log output of EJB client
applications (When using the vbj command).

9.6.1 Creating and setting loggers
You create a logger by specifying logger names. The contents that you specified while setting a system are used for
creating a logger.

With each application, you acquire the logger created by specified logger name and output a log by using the acquired
logger. Using the methods of the Logger class, you can create a logger and specify the log output. The specified log
is converted to LogRecord, passed to the handler, and output to a log file or a console.

In addition, you can also specify filters, log levels, and handlers used in loggers, for choosing the log in logger, as and
when required.

9.6.2 Creating and setting handlers
A handler is created and set up by using the contents that are specified when you set up a system.

When using CJMessageFileHandler, you can create multiple file handlers by changing the handler name.

You can specify the following items in the file filter created with CJMessageFileHandler:

• Log file settings such as the output destination file, number of files, and the size of user logs

• Log acquisition level

• Filters and formatters to be used

Note that when the application name and message ID of a log output by a handler can be the same, you can specify
this value as a property of CJMessageFileHandler. If you want to change application names and message IDs of
the logs output for messages, use and implement the CJLogRecord class such that you can output the application
name and message ID for each log output processing in the application.

9.6.3 Guidelines for creating and setting loggers and handlers
The following are the guidelines for creating and setting loggers and handlers:

• You can connect multiple file handlers for one logger. However, you cannot connect to the file handlers, having
the same output destination, from multiple loggers.

• If you want to change the output destination of log for each application, create a logger for each application.

• A logger can have hierarchical relationship. If a logger has hierarchical relationship, the log messages acquired by
a lower level logger are propagated to an upper level logger. Stop the propagation of a logger as and when
required. Particularly, a root logger exists by default at the top of the logger. In the case of the J2SE default
settings, ConsoleHandler is connected to the root logger. If you do not stop the propagation to the upper level
logger, all messages are output to the console from ConsoleHandler of the root logger.

9. User Log Output for Applications

381

• The handler outputs messages for each instance, and therefore if one output message is sent to multiple handlers,
the output message is output multiple times. For example, the ConsoleHandler messages of two locations are
output twice to the console.

• If you are using multiple log files in one application, create a handler for each output destination.

The following figure shows an example of creating loggers and handlers.

Figure 9‒3: Example of creating loggers and handlers

In this example, two types of loggers (com.example.userlogger1 and com.example.userlogger2) are
created for J2EE applications 1 and 2. To output two types of log files from com.example.userlogger1
depending on the output levels and the output contents of the log, two types of the CJMessageFileHandler
handlers (conf1 and conf2) are created. With this configuration, you can output important user logs on and above
the SEVERE level to the log file 1, and all the user logs on and above the INFO level to the log file 2. On the other
hand, only one type of log file is output from com.example.userlogger2. In such cases, of all the logs
specified from a J2EE application, the user logs that are up to the level specified in the logger of
com.example.userlogger2 and the conf3 handler are output to the log file 3. If you want to output the log to
the console, use the ConsoleHandler handler of the standard J2SE.

Set up the size and number of files of log files appropriately depending on the user log quantity, which is output by
applications, and the specified output level.

9. User Log Output for Applications

382

9.7 How you can use your own Filter/ formatter/ handler
This section describes the usage method for using the Filter class, Formatter class, or Handler class that you
have created on your own, with the user log functionality. In this section, the class created by the user is called the
user-created class.

You can perform log filtering or formatting of the output contents by creating a user-created class. You create a
Filter class, Formatter class, or Handler class as a user-created class, include it in a library JAR or a
container extension library, and use the class.

You can use a user-created class with the user log functionality by the following two methods:

• Using library JAR
You can use this method for J2EE applications. You cannot use this method for batch applications.

• Using container extension library
You can use this method in J2EE applications or batch applications.

The following subsections describe each method.

9.7.1 Using library JAR
In this method, you create a user-created class of the Filter class, Formatter class, or Handler class type in an
application, add it to the logger, and use the class. In such cases, the following processes are executed:

• Firstly, instantiate a Handler class in the application.

• After that, connect the instantiated Filter class and Formatter class to the instance of the Handler class.

• Finally, add the instance of the connected Handler class to the logger.

You create the user-created class in this case according to the specification of J2SE java.util.logging. You can
include the created class in the library JAR for WAR, EJB-JAR or import, in the same way as a normal user class, and
then use the class.

The creation procedure for the user-created class, when using the class by including in the library JAR, is as follows:

1. Set up security policy in security policy file (server.policy).
For details on the security policy settings, see 9.8.2 Setting security policy.

2. Create library JAR for import containing your own Handler class, Filter class, and Formatter class.

3. Specify to import the class of the created library JAR, by using the server management commands.

4. Create instances of your own class in the source program of the application.

5. Implement the processing of connecting to the Logger class and Handler class.
Note the following points when performing implementation by using the log manager (LogManager) of the
J2SE1.4 specifications.

• You cannot customize the log manager by using properties (such as java.util.logging.class and
java.util.logging.file). If you customize the log manager, creating a user log might fail.

• You cannot invoke the readConfiguration(InputStreamins) method of the log manager in a
source program. If you invoke the readConfiguration(InputStreamins) method and initialize the
configuration of the Logger class, the log system built using the user log functionality fails.

For details on the coding, see 9.12 Points to be noted when using the user log functionality.

9.7.2 Using container extension library
In this method, you specify the class name of the user-created classes of the Filter class, Formatter class, or
Handler class type in the property key of the user log functionality, build a log configuration containing the user-
created class, when starting a J2EE server, and then use the class. This method differs from the J2EE standard method.

9. User Log Output for Applications

383

You specify a JAR file, containing the user-created class, as a container extension library and specify the class path to
the created library. As a result, when you start the J2EE server, the CJMessageFileHandler class specified in the
property key, formatter and filter are created and executed, enabling you to build a log configuration.

The procedure is as follows:

1. Create a JAR file (container extension library JAR) containing the user-created classes of the Formatter class,
Filter class and Handler class type.
Here, the file name is set as myloglib.jar.

2. Place myloglib.jar at any location.
Here, the description is given based on the prerequisite that myloglib.jar is placed at the following location:

• In Windows
c:\mylib

• In UNIX
/usr/mylib

3. Specify the class path to the placed library.
For example, in the case of a J2EE server, you specify the following settings in usrconf.cfg (option definition
file):

• In Windows
add.class.path=C:\mylib\myloglib.jar

• In UNIX
add.class.path=/usr/mylib/myloglib.jar

4. In the property key for the user log functionality of usrconf.properties (user property file), you specify
the full class name containing the package name.

9. User Log Output for Applications

384

9.8 Setting the user log output of J2EE applications
This section describes the setting methods to output logs, output by J2EE applications, in the Hitachi Trace Common
Library format. This section also describes an example of a user log output for applications. If you do not want to
output the logs of J2EE applications, these settings are not required.

You must perform the following settings to output logs in the Hitachi Trace Common Library format:

• J2EE server settings

• Security policy settings

9.8.1 J2EE server settings
Edit an Easy Setup definition file and specify the log output destination, log levels, number of log files, filters and
formatters to be used, from the handler.

(1) Setting contents
In the Easy Setup definition file, you specify the settings in the <configuration> tag of a logical J2EE server
(j2ee-server), to output the user logs of a J2EE application, with the parameters starting with
ejbserver.application. The parameters starting with ejbserver.application are given below. In
handler-name, specify the handler name used to distinguish key values. In logger-name, specify the logger name,
which is specified when acquiring Logger instances.

• ejbserver.application.userlog.CJLogHandler.handler-name.appname
For every handler, specify a default value for the J2EE application name (value of the AppName field) in the
message output to a log file.

• ejbserver.application.userlog.CJLogHandler.handler-name.count
For every handler, you specify number of log files.

• ejbserver.application.userlog.CJLogHandler.handler-name.encoding
For every handler, you specify the encoding of the character string output to a log file.

• ejbserver.application.userlog.CJLogHandler.handler-name.filter
For every handler, you specify the filter name to be used.

• ejbserver.application.userlog.CJLogHandler.handler-name.formatter
For every handler, you specify the formatter name to be used.

• ejbserver.application.userlog.CJLogHandler.handler-name.level
For every handler, you specify an upper limit of the log acquisition level.

• ejbserver.application.userlog.CJLogHandler.handler-name.limit
For every handler, you specify the size of the log file.

• ejbserver.application.userlog.CJLogHandler.handler-name.msgid
For every handler, specify the default value of a message ID (value of the MsgID field) of the message output in a
log file.

• ejbserver.application.userlog.CJLogHandler.handler-name.path
For every handler, you specify the output destination and the prefix of a log file. The output log file name is Prefix
1-through-16-number.log. Specify this key without fail.

• ejbserver.application.userlog.CJLogHandler.handler-name.separator
For every handler, you specify the default value of the element separating character used to output the log file
messages in one sentence.

• ejbserver.application.userlog.loggers
Declares the logger name to be used. Specify this key without fail.

• ejbserver.application.userlog.Logger.logger-name.handlers
For every logger, you specify the handler name to be used. Specify this key without fail.

9. User Log Output for Applications

385

• ejbserver.application.userlog.Logger.logger-name.level
For every logger, you specify the log acquisition level of the logger.

• ejbserver.application.userlog.Logger.logger-name.useParentHandlers
For every logger, you specify whether the log record of the level, which passes through the logger, is to be
propagated to the handler used by the parent logger.

• ejbserver.application.userlog.Logger.logger-name.filter
For every logger, you specify the filter used for choosing a message in the logger.

You must specify at least the following three parameters to output the user logs of J2EE applications:

• ejbserver.application.userlog.CJLogHandler.handler-name.path
• ejbserver.application.userlog.loggers
• ejbserver.application.userlog.Logger.logger-name.handlers

For details on the Easy Setup definition file, see 4.6 Easy Setup definition file in the uCosminexus Application Server
Definition Reference Guide.

(2) Notes

• You can connect multiple handlers to a logger. However, you cannot connect a file handler
(CJMessageFileHandler) with the same Path settings to multiple loggers. A file handler performs
instantiation by referring to the specification of connection to a logger (value of
ejbserver.application.userlog.Logger.<logger name>.handlers). In such cases, if a
handler having the same prefix (value of ejbserver.application.userlog.CJLogHandler.handler-
name.path) as the log output destination is instantiated, opening of the log file fails.

• You can specify the settings and setup of the handler and the logger in the Easy Setup definition file. However,
when you directly create a handler or change the configuration of a logger in a J2EE application, you must have
the security permission of LoggingPermission("control") for the application to be executed. For details
on how to set up the security permissions of LoggingPermission("control"), see 9.8.2 Setting security
policy.

9.8.2 Setting security policy
This section describes the setting of the security policy.

You must set up the security policy when changing the configuration of the Logger class of the J2SE1.4
specifications, creating a FileHandler class, and directly implementing the logging functionality of the standard
J2SE in a source program of the application. You define the security polity in server.policy (security policy file
for J2EE servers) or web.policy (SecurityManager definition file).

Note that when defining the security policy in server.policy, specify the settings by using the Smart Composer
functionality command, after building the system.

You need not set up the security policy when specifying the output for a logger, which is built on the basis of the
parameters of the Easy Setup definition file. You must set up the security policy in the following cases:

• When creating a J2SE standard file handler in the source code of a user application

• When changing the configuration of a logger by invoking the addHandler method in the Logger class

In such cases, the security policy used for the Java logging API operations is required. Specify the following security
permissions as and when required.

The setting contents of server.policy are given below.

(1) When creating filters and formatters with reflection
You add the following line when creating the Filter class or the Formatter class with reflection:

permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

9. User Log Output for Applications

386

All the Handler classes acquire the properties from the log manager (LogManager) and generate the Formatter
class or Filter class by using the Reflection functionality at the time of execution. Therefore, you must have
permissions related to Reflection.

(2) When setting properties of log manager (LogManager)
You add the following line when setting the properties of a log manager:

permission java.util.PropertyPermission "*", "read, write";

A log manager must have reading and writing permissions (set** of Property) for the property values used for
log output.

(3) When using J2SE standard file handler (When using the classes (FileHandler and
CJMessageFileHandler) that output File)

You add the following line when using the classes (FileHandler and CJMessageFileHandler) that output
File:

permission java.io.FilePermission "<<ALL FILES>>", "read, write";

You must have permissions to actually output the log to a file. You must have reading and writing permissions when
you want to output the log to a file.

(4) When changing a log system by using the Logger.addHandler method of the Java logging
API

You add the following line when using the logging API of the J2SE1.4 specification:

permission java.util.logging.LoggingPermission "control";

You must specify the security permissions for using the Java logging API. You cannot use logging APIs, if this value
is not specified.

(5) Setting example
The following is an example of setting server.policy (security policy file for a J2EE server), when changing the
log system by using the Logger.addHandler method of the Java logging APIs, from Servlets of J2EE
applications.

Setting example

//
// Grant permissions to JSP/Servlet
//
grant codeBase "file:${ejbserver.http.root}/web/${ejbserver.serverName}/-" {
 permission java.lang.RuntimePermission "loadLibrary.*";
 permission java.lang.RuntimePermission "queuePrintJob";
 permission java.net.SocketPermission "*", "connect";
 permission java.io.FilePermission "<<ALL FILES>>", "read, write";
 permission java.util.PropertyPermission "*", "read";
 permission javax.security.auth.AuthPermission "getSubject";
 permission javax.security.auth.AuthPermission "createLoginContext.*";

 //For J2SE Logging Source
 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
 permission java.util.PropertyPermission "*", "read, write";
 permission java.util.logging.LoggingPermission "control";

};

For details on how to define server.policy (security policy file for J2EE servers), see 2.5 server.policy (security
policy file for J2EE servers) in the uCosminexus Application Server Definition Reference Guide.

9. User Log Output for Applications

387

9.8.3 Examples of the user log output of applications
This section describes the settings used to output the user log of J2EE applications, with specific examples.

(1) Example used for user log output
This subsection describes the settings used to output the user log of J2EE applications, with the following example.
The following figure gives an overview of the used example.

Figure 9‒4: Example of user log output of J2EE applications

In company A, the operation history of J2EE applications is output to the log file as a business history, by using the
logger functionality. Among the J2EE applications of Company A, the J2EE applications, for which operation history
is to be output, are of two types; Application1 and Application2. For each J2EE application, logs of different message
levels are output to different files. The directories of J2EE application names are created and stored in respective log
files, in the above figure.

(a) Features of "Application1"

com.example.userlogger1 is the logger name of Application1.

Application1 is a complex and large J2EE application. If a critical error of the SEVERE level occurs, a message
containing the trace information of Java Exception is retained in logfileA, to quickly identify the cause. The
messages of the INFO level and below are output to logfileB as the trace log of operations. To output two types of
log files from com.example.userlogger1, depending on the output level and the output contents of the log, two
types of CJMessageFileHandler handlers (conf1 and conf2) are created.

Details of "logfileA"

• To acquire the trace information, you use "CJSimpleFormatter" as an output formatter to logfileA.

• Only SEVERE level messages are output to logfileA, so a log file of a very large size is not required.
However, as the trace information is output, a size of approximately 40 megabytes is required to accumulate
10,000 records, with a maximum size of records per message as 4,096 bytes. Therefore, set the file size to 10
megabytes and number of files to 4.

• Set the name of the J2EE application to "my_app1" for distinguishing the messages output by
Application1.

9. User Log Output for Applications

388

Details of "logfileB"

• All the messages of the INFO level and below are output, so logfileB requires a larger file size. The log
disc capacity, calculated from the amount of messages per day and the retention period, is approximately 256
megabytes. The maximum number of files is 16, therefore set the file size to 16 megabytes and number of files
to 16.

• Set the name of the J2EE application to "my_app1" for distinguishing the messages output by
Application1.

(b) Features of "Application2"

com.example.userlogger2 is the logger name of Application2.

Application2 is built with high quality log messages and is a small J2EE application. Only the necessary
minimum messages are output to logs, so the messages of WARNING and above level are retained in "logfileC".
One log file is output from com.example.userlogger2, so the CJMessageFileHandler handler, which is
called conf3, is created.

Details of "logfileC"

• Only the WARNING level messages are output. The maximum length per message is approximately 200 bytes,
approximately 2 megabytes size is required for accumulating 10,000 records. As a result, you set the file size
to 1 megabyte and number of files to 2.

• You set the name of the J2EE application to "my_app2" for distinguishing the messages output by
Application2.

(c) Settings for debugging

You also specify the settings for debugging during development. For displaying all the message contents that are sent
to "com.example.userlogger1" and "com.example.userlogger2", you connect "ConsoleHandler"
of the java.util.logging to "com.example" logger. Because all the message contents propagated from a
child logger are to be displayed in this logger, you set the log acquisition level of the logger and the handler to ALL.

(2) Example of setting the user log output
The following example shows the settings for the user log output, with the example shown in (1) Example used for
user log output.

(a) Example of setting the Easy Setup definition file

The following example describes the settings of the Easy Setup definition file (when defining physical tier):

<configuration>
 <logical-server-type>j2ee-server</logical-server-type>
<!-- Perform settings so that you cannot propagate the log record passed -->
<!-- to logger, to handler used by parent logger (because root logger -->
<!-- exists by default). -->
 <param>
 <param-name>ejbserver.application.userlog.Logger.com.example.useParentHandlers</param-
name>
 <param-value>false</param-value>
 </param>
<!-- Specify J2EE application name, output destination, size, -->
<!-- number of files, log acquisition level -->
<!-- and formatter name to be used of "logfileA". -->
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf1.appname</param-name>
 <param-value>my_app1</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf1.path</param-name>
 <param-value>application1/logfileA</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf1.limit</param-name>
 <param-value>10485760</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf1.count</param-name>

9. User Log Output for Applications

389

 <param-value>4</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf1.level</param-name>
 <param-value>SEVERE</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf1.formatter</param-name>
 <param-value>com.hitachi.software.ejb.application.userlog.CJSimpleFormatter</param-
value>
 </param>

<!-- Specify J2EE application name, output destination, size, -->
<!-- number of files, log acquisition level of "logfileB" -->
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf2.appname</param-name>
 <param-value>my_app1</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf2.path</param-name>
 <param-value>application1/logfileB</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf2.limit</param-name>
 <param-value>16777216</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf2.count</param-name>
 <param-value>16</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf2.level</param-name>
 <param-value>INFO</param-value>
 </param>

<!-- By using settings of "conf1" and "conf2" handler names, used by-->
<!-- "com.example.userlogger1",-->
<!-- initialize and connect the file handler (CJMessageFileHandler). -->
<!-- Here, logger and handler is created. -->
 <param>
 <param-name>ejbserver.application.userlog.Logger.com.example.userlogger1.handlers</
param-name>
 <param-value>com.hitachi.software.ejb.application.userlog.CJMessageFileHandler;conf1,
 com.hitachi.software.ejb.application.userlog.CJMessageFileHandler;conf2</
param-value>
 </param>

<!-- Specify log acquisition level of "com.example.userlogger1". -->
<!-- Match it with higher level of "conf1" and "conf2", and set to "INFO". -->
 <param>
 <param-name>ejbserver.application.userlog.Logger.com.example.userlogger1.level</param-
name>
 <param-value>INFO</param-value>
 </param>

<!-- Specify output destination and log acquisition level of "logfileC". -->
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf3.appname</param-name>
 <param-value>my_app2</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf3.path</param-name>
 <param-value>application2/logfileC</param-value>
 </param>
 <param>
 <param-name>ejbserver.application.userlog.CJLogHandler.conf3.level</param-name>
 <param-value>WARNING</param-value>
 </param>

<!-- By using settings of "conf3" handler name, used by -->
<!-- "com.example.userlogger2",-->
<!-- initialize and connect the file handler (CJMessageFileHandler). -->
<!-- Here, logger and handler are created. -->
 <param>
 <param-name>ejbserver.application.userlog.Logger.com.example.userlogger2.handlers</
param-name>
 <param-value>com.hitachi.software.ejb.application.userlog.CJMessageFileHandler;conf3</
param-value>
 </param>

<!-- Specify log acquisition level of "com.example.userlogger2". -->
 <param>
 <param-name>ejbserver.application.userlog.Logger.com.example.userlogger2.level</param-

9. User Log Output for Applications

390

name>
 <param-value>WARNING</param-value>
 </param>

<!-- Perform settings for -->
<!-- debugging**-->
<!-- Specify log acquisition level of "ConsoleHandler". -->
 <param>
 <param-name>java.util.logging.ConsoleHandler.level</param-name>
 <param-value>INFO</param-value>
 </param>

<!-- Specify "ConsoleHandler" handler name to be used in "com.example" logger,-->
<!-- and connect to handler. Here, logger and handler are created. -->
 <param>
 <param-name>ejbserver.application.userlog.Logger.com.example.handlers</param-name>
 <param-value>java.util.logging.ConsoleHandler</param-value>
 </param>

<!-- Specify log acquisition level of "com.example" logger. -->
 <param>
 <param-name>ejbserver.application.userlog.Logger.com.example.level</param-name>
 <param-value>ALL</param-value>
 </param>

<!-- If debugging is not required, cancel the setting of propagation to -->
<!--parent logger. -->
<!--
 <param>
 <param-
name>ejbserver.application.userlog.Logger.com.example.userlogger1.useParentHandlers</param-
name>
 <param-value>false</param-value>
 </param>
-->
<!--
 <param>
 <param-
name>ejbserver.application.userlog.Logger.com.example.userlogger2.useParentHandlers</param-
name>
 <param-value>false</param-value>
 </param>
-->
<!-- If debugging is not required, cancel the creation of "com.example". -->
<!--
 <param>
 <param-name>ejbserver.application.userlog.loggers</param-name>
 <param-value>com.example.userlogger1, com.example.userlogger2</param-value>
 </param>
-->
<!-- ***-->

<!-- Declare the usage of logger. -->
 <param>
 <param-name>ejbserver.application.userlog.loggers</param-name>
 <param-value>com.example,com.example.userlogger1,com.example.userlogger2</param-value>
 </param>
<configuration>

(b) Example of setting Application1

The following example describes the source code of Application1:

import java.util.logging.*;
import com.hitachi.software.ejb.application.userlog.*;

public class application1{

 static Logger logger = Logger.getLogger("com.example.userlogger1");

 public static void exec(){

 logger.log(
 CJLogRecord.create(Level.INFO,
 "application1 start.","AP1_10000-I"));

 try{

 throw new Exception("Exception1!");

9. User Log Output for Applications

391

 }
 catch(Exception ex){

 logger.log(
 CJLogRecord.create(Level.SEVERE,
 "Catch an exception!", ex, "AP1_10100-E"));

 }

 logger.log(
 CJLogRecord.create(Level.INFO,
 "application1 end.","AP1_10001-I"));

 }

}

The following example describes the output of application1/logfileA1.log:

 yyyy/mm/dd hh:mm:ss.sss pid tid message-id message(LANG=ja)
0047 2003/12/06 19:51:32.265 my_app1 00EB7859 012A54F9 AP1_10100-E 2003/12/06
19:51:32|application1|exec|Fatal|Catch an exception!|java.lang.Exception:
Exception1!|application1.exec(application1.java.18)|application1.main(application1.java.64)

The following example describes of the output of application1/logfileB1.log:

 yyyy/mm/dd hh:mm:ss.sss pid tid message-id message(LANG=ja)
0046 2003/12/06 19:51:32.250 my_app1 00EB7859 012A54F9 AP1_10000-I application1 start.
0048 2003/12/06 19:51:32.265 my_app1 00EB7859 012A54F9 AP1_10100-E Catch an exception!
0049 2003/12/06 19:51:32.265 my_app1 00EB7859 012A54F9 AP1_10001-I application1 end.

The following example describes the output to the console screen:

Information: application1 start.
2003/12/06 19:51:32 application1 exec
Fatal: Catch an exception!
java.lang.Exception: Exception1!
 at application1.exec(application1.java:18)
 at application1.main(application1.java:64)
2003/12/06 19:51:32 application1 exec
Information: application1 end.

(c) Example of setting Application2

The following example describes the source code of Application2:

import java.util.logging.*;
import com.hitachi.software.ejb.application.userlog.*;

public class application2{

 static Logger logger = Logger.getLogger("com.example.userlogger2");

 public static void exec(){

 logger.log(
 CJLogRecord.create(Level.INFO,
 "application2 start.","AP2_20000-I"));

 try{

 throw new Exception("Exception2!");

 }
 catch(Exception ex){

 logger.log(
 CJLogRecord.create(Level.SEVERE,
 "Catch an exception!", ex, "AP2_20100-E"));

 }

 logger.log(
 CJLogRecord.create(Level.INFO,
 "application2 end.","AP2_20001-I"));

9. User Log Output for Applications

392

 }

}

The following example describes the output of application2/logfileC1.log:

 yyyy/mm/dd hh:mm:ss.sss pid tid message-id message(LANG=ja)
0048 2003/12/06 19:51:32.265 my_app2 00EB7859 012A54F9 AP2_20100-E Catch an exception!

(d) Example of setting Application3

This subsection describes an example of the log output of the J2EE application Application3, to the same log file as of
Application1. In such cases, Application3 must acquire the logger by using the same logger name in the same
process (thread may be different) as Application1.

The following example describes the source code of Application3:

import java.util.logging.*;
import com.hitachi.software.ejb.application.userlog.*;

public class application1{

 static Logger logger = Logger.getLogger("com.example.userlogger1");

 public static void exec(){

 logger.log(,
 CJLogRecord.create(Level.INFO,
 "application3 start.","my_app3","AP3_30000-I"));

 try{

 throw new Exception("Exception2!");

 }
 catch(Exception ex){

 logger.log(,
 CJLogRecord.create(Level.SEVERE,
 "Catch an exception!", ex, "my_app3","AP3_30100-E"));

 }

 logger.log(
 CJLogRecord.create(Level.INFO,
 "application3 end.","my_app3","AP3_30001-I"));

 }

}

The following example describes the output of application1/logfileB1.log:

 yyyy/mm/dd hh:mm:ss.sss pid tid message-id message(LANG=ja)
0046 2003/12/06 19:51:32.250 my_app1 00EB7859 012A54F9 AP1_10000-I application1 start.
0093 2003/12/06 19:51:32.265 my_app3 00EB7859 010CB027 AP3_30000-I application3 start.
0095 2003/12/06 19:51:32.265 my_app1 00EB7859 012A54F9 AP1_10100-E Catch an exception!

9. User Log Output for Applications

393

9.9 Setting the user log output of batch applications
You specify the same settings for the user log output of batch applications as for the user log output of J2EE
applications. For details on the settings, see 9.8 Setting the user log output of J2EE applications.

However, in the case of batch applications, the security policy settings are not required.

9. User Log Output for Applications

394

9.10 Setting the user log output of EJB client
applications (When using the cjclstartap command)

This section describes the settings used to output the user logs of EJB client applications.

The method of setting user logs of EJB client applications varies with the commands used to start the EJB client
applications. This section describes the settings, when starting an application using the cjclstartap command.

When using the cjclstartap command, you set up a user log in the property file (usrconf.properties) of
an EJB client application. In the keys starting with ejbserver.application, specify the output destination file
of user logs, log levels, number of log files, and filters and formatters to be used. For details on the keys that you can
specify, see 3.3 usrconf.properties (user property file for batch server) in the uCosminexus Application Server
Definition Reference Guide.

Also, you specify a JAR file for the class path in the option definition file (usrconf.cfg) of the EJB client
application. For details on setting the JAR file for a class path, see 3.7.4 Setting JAR files for class path of EJB client
applications in the uCosminexus Application Server EJB Container Functionality Guide.

9. User Log Output for Applications

395

9.11 Implementing and setting the user log output of EJB
client applications (When using the vbj command)

This section describes the settings that you need to do when starting the EJB client applications by using the vbj
command. When starting the application by using the vbj command, you must perform implementation for using the
user log functionality.

This section describes the preparations for using the user log functionality in EJB client applications and the flow of
processing until the user log is output.

9.11.1 Overview of processing when using the vbj command
CJMPMessageFileHandler is provided as a file handler of the user logs of EJB client applications. When using
the vbj command, you specify an output destination file for the CJMPMessageFileHandler log, log levels,
number of log files, and filters and formatters to be used, in the configuration file for user logs of EJB client
applications.

When implementing the user log functionality, you specify an output destination file of the
CJMPMessageFileHandler log, log levels, number of log files and filters and formatters to be used, in the
configuration file for the user logs of EJB client applications. You must perform coding in such a way that the
configuration file for a user log is read in a user application program.

When executing a command to start an EJB client application, the configuration file is read from the user application
program, and is specified in the system properties of the EJB client application.

9.11.2 Preparing for use
The following preparations are needed when you use the user log functionality in an EJB client application.

Note that you must perform the settings on the Application Server machine as a prerequisite of using the user log
functionality in EJB client applications.

• Preparing a configuration file for the user log functionality
You prepare a configuration file for the user log functionality, used for setting up system properties. You code the
configuration file in the J2SE property file format. Specifying a file name and storage directory is optional.
In the configuration file, you can specify the keys starting with ejbserver.application.userlog from
among the keys that can be specified in usrconf.properties used for J2EE servers. For details on the keys
that you can specify, see 2.4 usrconf.properties (user property files for J2EE servers) in the uCosminexus
Application Server Definition Reference Guide.

• Implementing the processing of setting system properties
You must add the processing for reading the configuration file and for setting system properties, in the source code
of EJB client applications. This processing needs to be executed before executing the initialization of the EJB
client function.

• Adding class path of JAR file
Add a class path of the JAR file corresponding to the handler to be used, in the class path when starting an EJB
client application. For details on specifying the class path, see 3.7.4 Setting a JAR file to the class path of EJB
client applications in the uCosminexus Application Server EJB Container Functionality Guide.
Reference note

When using the user log functionality in EJB client applications, you need not set the security policy.

9.11.3 Procedure for the user log output processing
The output of the user logs on EJB client applications is performed with the following procedure:

1. Setting system properties

9. User Log Output for Applications

396

The system properties are set up by using a configuration file.

2. Initializing EJB client
The log system is set up by invoking the method that initializes the EJB client functionality.

3. Executing Java logging API
The user log is output by executing the Java logging APIs.

This section describes the contents of each processing along with the procedure.

(1) Setting system properties
The system properties for the user log functionality of EJB client applications are set by using a configuration file.

The properties that can be set in the system properties are the keys starting with
ejbserver.application.userlog, from among the properties that can be specified in
usrconf.properties for J2EE servers. An example of a setting is as follows:

user-log handler function
ejbserver.application.userlog.CJLogHandler.conf1.appname=my_app1
ejbserver.application.userlog.CJLogHandler.conf1.path=application1/logfileA
ejbserver.application.userlog.CJLogHandler.conf1.limit=10485760
ejbserver.application.userlog.CJLogHandler.conf1.count=2
ejbserver.application.userlog.CJLogHandler.conf1.level=SEVERE

user-log logger function
ejbserver.application.userlog.Logger.com.example.userlogger1.handlers=com.hitachi.soft
ware.ejb.application.userlog.CJMPMessageFileHandler;conf1
ejbserver.application.userlog.Logger.com.example.userlogger1.useParentHandlers=true
ejbserver.application.userlog.Logger.com.example.userlogger1.level=INFO
ejbserver.application.userlog.loggers=com.example.userlogger1

In an EJB client application, you can specify CJMPMessageFileHandler or CJMessageFileHandler as a
handler used for the user log output. You specify the handler to be used, in the
ejbserver.application.userlog.Logger.logger-name.handlers key. In the example, the
CJMPMessageFileHandler class is specified in the userlogger1 logger.

CJMPMessageFileHandler is a handler, which contains the functionality that enables the concurrent output of
logs from multiple processes to the same file. This enables you to collect and output the user logs output by multiple
processes of an EJB client application. You can use this handler only for the EJB client application.

If you do not want to concurrently output logs from multiple processes to the same file, you can also use same
CJMessageFileHandler as in the case of the user log output of J2EE applications. If you use
CJMessageFileHandler, the log output performance is higher as compared to the case where
CJMPMessageFileHandler is used.

! Important note

If you use the CJMPMessageFileHandler class, Hitachi Trace Common Library creates a file used for the log
management in user-log-output-directory/mmap/prefix-of-log-file-name.mm. Do not change or delete this file when you are
using this user log output directory.

(2) Initializing EJB client functionality
A log system is set up by invoking the method that initializes the EJB client functionality. The EJB client functionality
is initialized at one of the following timings:

• Generating initial context of JNDI (new InitialContext method)

• Login by the security functionality API (login method of LoginInfoManager class)

• Acquiring objects for setting a communication timeout, in the communication timeout functionality API
(getRequestTimeoutConfig method of RequestTimeoutConfigFactory class)

• If initialization fails, you cannot use the functionality used to output the user logs of EJB client applications.
However, in the source code of a user application, you can specify and set up the J2SE standard Handler class
and Logger class, or Handler class and Logger class which you created on your own, and then output the
log.

9. User Log Output for Applications

397

(3) Executing Java logging API
In the processing in application, the Java logging API is executed and a user log is output. When using
CJMPMessageFileHandler, note the following points:

Points to be considered when using CJMPMessageFileHandler
When using CJMPMessageFileHandler, delay might occur until details are actually applied in the file,
because a memory mapped file is used. The details are applied in the file when the process ends. However, we
recommend the execution of flush if the operation continues for a long time or if delay in reflecting the contents
in the file is going to cause a problem.
You use the following two methods to execute flush:
Invoke the flush method for all Handlers returned by the Logger.getHandlers method.

• Specify the ejbserver.application.userlog.CJLogHandler.handler-
name.autoFlush.enabled property.

If you specify the ejbserver.application.userlog.CJLogHandler.handler-
name.autoFlush.enabled property, flush is automatically executed. Therefore, do not use the flush
method in such cases.

9.11.4 Extending the user log output in EJB client applications
To use your own created class (Formatter, Filter, and Handler), with the user log functionality of EJB client
applications, you specify your own class in the class path, when starting JavaVM of EJB client applications.

9.11.5  How to use Filter/ Formatter/ Handler independently created by
the user

To use your own created Filter class, Formatter class, or Handler class, with the user log functionality of EJB
client applications, you specify the user-created class in the class path, when starting JavaVM of EJB client
applications.

9. User Log Output for Applications

398

9.12 Notes for using the user log functionality
This section describes the notes for using the user log functionality.

(1) Customizing LogManager
You can customize LogManager of the J2SE standard by using the properties such as
java.util.logging.config.class. However, do not perform customization when using the user log
functionality provided by Application Server. In the setup of a log system, which uses properties used in the user log
functionality, the user log functionality acquires the log configuration from the properties by using LogManager,
when starting a J2EE server. As a result, if you customize LogManager, an attempt to set up a log configuration
might fail.

If you execute the readConfiguration(InputStream ins) method of LogManager and initialize the log
configuration in the source code of application, the log configuration set up using the user log functionality fails.
Therefore, do not execute this method.

However, you can use the user log functionality even after customization, if the structure is such that the customized
LogManager completely inherits the already specified log configuration (contents of LogManager) and includes
the added independent processing.

(2) Notes for using your own filters and formatters

When a log message is output, the isLoggable method#1 of handler returns true#2, if the filter created by you,
which is connected to the handler, throws an exception.

If the formatter created by you, which is connected to the handler, throws an exception, the handler cannot output a
message that is formatted by the formatter. The message specified by you is output without any formatting by the
formatter.

For details on the contents of the exceptions thrown by the filter and the formatter created by you, see
cjexception.log.

#1
The isLoggable method determines the selection of a log message.

#2
true indicates that the message is targeted for output.

(3) Connection between logger and handler
You can connect multiple handlers to a logger. However, you cannot connect a handler (CJMessageFileHandler
or CJMPMessageFileHandler) with the same settings to multiple loggers.

(4) Setting log output mode of EJB client applications
Two types of modes are used to output logs of EJB client applications. The operation mode that creates a subdirectory
of a log output destination for processes is called the subdirectory exclusive mode. The operation mode that shares a
subdirectory of log output destination with multiple processes is called the subdirectory common mode.

Because the subdirectory exclusive mode is used for compatibility with the versions earlier than 06-50, we
recommend you to use the subdirectory common mode for creating an EJB client application.

Use the subdirectory common mode, if you want to use the user log functionality of EJB client applications or if you
want to execute EJB client applications with the cjclstartap command.

For details on how to output logs of EJB applications, see 3.8 System log output of EJB client applications in the
uCosminexus Application Server EJB Container Functionality Guide. For details on the subdirectory to which logs of
EJB applications are output, see 7.6.1 Acquiring user logs of applications in the uCosminexus Application Server
Operation, Monitoring, and Linkage Guide.

9. User Log Output for Applications

399

(5) Regarding the key in which the suffix of usrconf.properties ends with .level
In usrconf.properties of the J2EE server, among the keys in which the suffix ends with .level, the
following phenomena occur if you set a key with a value other than SEVERE, WARNING, INFO, CONFIG, FINE, or
FINEST in the value range.

1. When you start the server, the java.util.logging.LogManager class checks the values of the keys, in
which the suffix ends with .level, when reading the keys. If a value is out of range,
java.util.logging.LogManager class outputs an error message to the standard error output.

(Example) If you specify, sample.level=Error
Bad level value for property : sample.level is output

2. If the value of the user log functionality key, in which the suffix ends with .level is not appropriate, an error
message is output in the same way as in case 1.

However, in both the cases, only a message is displayed and it does not affect the operation.

9. User Log Output for Applications

400

10 Asynchronous Parallel Processing
of Threads
This chapter describes the asynchronous parallel processing of threads from
TimerManager and WorkManager based on Timer and Work Manager for
Application Servers.

401

10.1 Organization of this chapter
The following table describes the functionality and reference locations of the asynchronous parallel processing of
threads.

Table 10‒1: Functionality of the asynchronous parallel processing of threads

Functionality Reference location

Overview of asynchronous parallel processing of threads 10.2

Asynchronous timer processing by using TimerManager 10.3

Asynchronous thread processing by using WorkManager 10.4

10. Asynchronous Parallel Processing of Threads

402

10.2 Overview of the asynchronous parallel processing
of threads

With Application Server, you can execute the asynchronous parallel processing of threads such as the asynchronous
timer processing or the asynchronous thread processing in a Java EE environment.

With the standard specifications of Java EE, a new thread cannot be generated from a servlet, or EJB cannot manage
threads. We basically do not recommend the asynchronous parallel processing of threads. Therefore, with Application
Server, APIs are provided based on Timer and Work Manager for Application Servers specifications defined by
CommonJ, to implement the asynchronous parallel processing of threads in the Java EE environment.

The following subsections give an overview of APIs used for implementing the asynchronous parallel processing of
threads:

• TimerManager
TimerManager is an API based on the Timer for Application Servers specifications. With this API, you can
schedule the asynchronous processing of threads by specifying an execution interval. This functionality is called
asynchronous timer processing.

• WorkManager
WorkManager is an API based on the Work Manager for Application Servers specifications. With this API, you
can perform the asynchronous processing of threads. This functionality is called asynchronous thread processing.

You can use TimerManager and WorkManager from EJBs or servlets.

For details on the compatibility with Timer and Work Manager for Application Servers on Application Server, see
10.2.3 Compatibility with Timer and Work Manager for Application Servers.

10.2.1 Procedure for the asynchronous parallel processing of threads
To execute the asynchronous parallel processing of threads, perform the lookup of TimerManager or
WorkManager from EJBs and servlets. This section describes the flow of the asynchronous timer processing by
using TimerManager and the flow of the asynchronous thread processing by using WorkManager.

Flow of the asynchronous timer processing by using TimerManager
The following figure shows the flow of the asynchronous timer processing by using TimerManager.

Figure 10‒1: Flow of the asynchronous timer processing by using TimerManager

EJBs and servlets are the sources of the schedule for invoking the asynchronous parallel processing to be
executed.
TimerManager is created when JNDI performs a lookup. You implement an entity of the processing to be
executed, in TimerListener, which is a listener provided by TimerManager. TimerListener executes
the processing by accessing JNDI or JCA, as and when required.

Flow of the asynchronous thread processing by using WorkManager
The following figure shows the flow of the asynchronous thread processing by using WorkManager.

10. Asynchronous Parallel Processing of Threads

403

Figure 10‒2: Flow of the asynchronous thread processing by using WorkManager

EJBs and servlets are the sources of the schedule for invoking the asynchronous parallel processing to be
executed.
WorkManager is created when an application starts. If a lookup is performed by JNDI, the WorkManager
created when the application starts is returned. You implement the entity of the processing to be executed, in
Work or WorkListener provided by WorkManager. Work or WorkListener executes the processing by
accessing JNDI or JCA, as and when required.

10.2.2 Java EE functionality that you can use in the asynchronous
parallel processing of threads

You can use the Java EE functionality in processes that are executed as the asynchronous parallel processing. APIs of
TimerManager and WorkManager, which can use the Java EE functionality, are as follows:

TimerManager
• TimerListener.timerExpired

This method is executed when reaching the set up time.

• StopTimerListener.timerStop
This method is executed when the TimerManager.stop method is executed or when the application stops.

• CancelTimerListener.timerCancel
The method is executed when the TimerManager.cancel method is executed.

WorkManager
• Work.run

This is a processing method, which is asynchronously executed on WorkManager.

• WorkListener.workAccepted
This method is executed when WorkManager receives the scheduled Work.

• WorkListener.workCompleted
This method is executed immediately after completing the run method of the scheduled Work.

• WorkListener.workRejected
This method is executed when you cannot continue the schedule processing, after WorkManager receives
the scheduled Work.

• WorkListener.workStarted
This method is executed immediately before executing the run method of the scheduled Work.

For details on APIs, see API specifications for Timer and Work Manager for Application Servers.

The following table describes the Java EE functionality that you can use in TimerManager and WorkManager.

Table 10‒2: Java EE functionality that you can use in TimerManager and WorkManager

Functionality Usage status Reference location

Invoking Enterprise Bean N --

10. Asynchronous Parallel Processing of Threads

404

Functionality Usage status Reference location

Naming Service Y# (1)

Transaction service and resource connections Y# (2)

Log and trace output Y (3)

Using container extension library Y (4)

Method cancellation N --

Legend:
Y: Can be used
N: Cannot be used
--: Not applicable

#: However, you cannot use a part of the functionality. For details on the functionality that you can use, see the information given in
the Reference location column.

The following subsections classify and describe the functionality that you can use with TimerManager and
WorkManager. The subsections also describe the points to be considered when using the functionality.

(1) Naming Service
The following table describes whether the functionality provided as Naming Service can be used with
TimerManager and WorkManager.

Table 10‒3: Usage status of Naming Service functionality

Functionality Usage status

Lookup of DB Connector by using JNDI Y

Lookup of Java Mail by using JNDI N

Lookup of JavaBeans resource by using JNDI N

Lookup of EntityManager by using JNDI N

Lookup of EntityManagerFactory by using JNDI N

Lookup of TimerManager by using JNDI N#1

Lookup of WorkManager by using JNDI N#1

Lookup of user transaction by using JNDI Y#2

Legend:
Y: Can be used
N: Cannot be used

#1: You cannot invoke TimerManager or WorkManager by extending the schedule of TimerManager or WorkManager.

#2: If the schedule source is an EJB that manages transactions in CMT, you cannot perform a lookup with java:comp/
UserTransaction. Make sure to perform a lookup by using HITACHI_EJB/SERVERS/J2EE-server-name/SERVICES/
UserTransaction.

! Important note

In WorkManager or TimerManager, do not use a DB Connector or user transaction acquired at a schedule source. Make
sure to acquire the executed processes in the implemented Timer Listener or Work.

10. Asynchronous Parallel Processing of Threads

405

(2) Transaction service and resource connections
You can only use DB Connectors for resource adapters. The following table describes the DB Connectors that you can
use with TimerManager and WorkManager.

Table 10‒4: Usage status of DB Connectors

DB Connector name Usage status

DBConnector_HiRDB_Type4_CP.rar Y

DBConnector_HiRDB_Type4_XA.rar Y

DBConnector_Oracle_CP.rar Y

DBConnector_Oracle_XA.rar Y

DBConnector_HiRDB_Type4_CP_Cosminexus_RM.rar N

DBConnector_HiRDB_Type4_XA_Cosminexus_RM.rar N

DBConnector_Oracle_CP_Cosminexus_RM.rar N

DBConnector_Oracle_XA_Cosminexus_RM.rar N

DBConnector_CP_ClusterPool_Root.rar N

DBConnector_Oracle_CP_ClusterPool_Member.rar N

Legend:
Y: Can be used
N: Cannot be used

When using a DB Connector, specify NoTransaction, LocalTransaction, or XATransaction for the
transaction support level. You must specify an optional name of a DB Connector to acquire the connection of the DB
Connector. With a lookup by JNDI, use the specified optional name and acquire the connection of the DB Connector.
For details on how to acquire the connection by using the optional name of the DB Connector, see 2.6 Assigning an
optional name to Enterprise Bean or the J2EE Server (user-specified name space functionality) in the uCosminexus
Application Server Common Container Functionality Guide.

The following table describes whether the functionality provided as a resource connection and transaction service can
be used in TimerManager and WorkManager.

Table 10‒5: Usage status of the transaction service functionality

Functionality Usage status

Transaction

(user transaction)

Local transaction Y

Global transaction Y

Automatic conclusion of transaction#1

Transaction timeout Y

Connection pooling Connection pooling by using DB Connector Y

Warm-up of connection pool Y

Adjusting number of connections Y

Connection sharing#2

Connection association N

Statement pooling of DB Connector Y

Detecting connection faults Y

Waiting for acquiring connections when connections are exhausted Y

10. Asynchronous Parallel Processing of Threads

406

Functionality Usage status

Retrying acquisition of connections Y

Automatically closing connections N

Connection sweeper Y

Output of SQL for examining faults Y

Legend:
Y: Can be used

: Some part of the functionality cannot be used
N: Cannot be used

#1: You must conclude the user transaction before returning from the Listener processing method. Otherwise, the transaction is rolled
back even when an exception does not occur, and the message (KDJE43179-W) is output.

#2: The range of connections that you can share is only the same transaction, which is set by default.

! Important note

Connections of the acquired DB Connector are not automatically closed, so make sure to set the closure of connections
inside a method.

(3) Log and trace output
The following table describes whether the functionality that outputs logs and traces can be used in TimerManager
and WorkManager.

Table 10‒6: Usage status of the log and trace functionality

Functionality Usage status

User log Y

Performance analysis trace Y

Legend:
Y: Can be used

Reference note
About the operation name of a performance analysis trace

With the performance analysis trace of TimerManager and WorkManager, you can acquire unique numbers for
schedules. This information is output to the operation name of the trace information. For details on the trace information that
you can acquire, see 8.Trace Acquisition Points and PRF Trace Acquisition Level of Performance Analysis Trace in the
uCosminexus Application Server Maintenance and Migration Guide.

(4) Using container extension library
You can use the same container extension library as in the case when TimerManager and WorkManager are not
used.

10.2.3 Compatibility with Timer and Work Manager for Application Server
The specifications stated as vendor dependent in Timer and Work Manager for Application Servers Specifications are
not supported by Application Server. Also, the specifications of APIs provided by CommonJ and APIs provided by
Application Server are different. This subsection describes both the Timer for Application Server specifications and
Work Manager for Application Server specifications not supported by Application Server, and the APIs that operate
differently with CommonJ and Application Server.

10. Asynchronous Parallel Processing of Threads

407

(1) Timer for Application Servers Specifications not supported by Application Server
The following table describes the Timer for Application Servers specifications not supported by Application Server.

Table 10‒7: Timer for Application Server specification not supported by Application Server (Vendor
dependent functionality)

Specifications not supported by Application Server Remarks

Customization of the number of maximum scheduling The number of maximum scheduling is 50. You cannot
change this number.

• Classes that implement Listener of TimerManager
• Objects (EJB or servlets) other than the general Java objects, which do not

inherit Java EE components

An error occurs if you schedule a class that inherits
javax.ejb.EnterpriseBean. The error check is
not performed for other cases.

Inherited items of the transaction context to execution threads No transaction is performed regardless of the
transaction status of the schedule source. This
corresponds to NOT_SUPPORTED of CMT.

Customization of the inherited items of the J2EE context to execution threads The items that are inherited are fixed.

The Java EE functionality that can be used in an execution thread For details on the functionality that you can use, see
10.2.2 Java EE functionality that you can use in
asynchronous parallel processing of threads.

The components that you can use with J2EE applications are not defined in the Timer for Application
Servers,. For details on the components that you can use with the TimerManager for Application Server, see
10.3.5 Developing applications using TimerManager.

(2) Work Manager for Application Servers specifications not supported by Application Server
The following table describes the Work Manager for Application Servers specifications not supported by
Application Server.

Table 10‒8: Work Manager for Application Servers specifications not supported by Application Server
(Vendor dependent functionality)

Specifications not supported by Application Server Remarks

A remote execution of asynchronous thread processing by using
WorkManager

If you remotely execute WorkItem, returns the dummy
RemoteWorkItem that is executed locally.

Customizing the number of maximum scheduling There is no limit for the number of maximum scheduling.

• Classes that implement a Listener of TimerManager
• Objects (EJB or servlets) other than general Java objects that do not

inherit Java EE components

An error occurs, if you schedule a class that inherits
javax.ejb.EnterpriseBean. The error check is
not performed in other cases.

Creating WorkManager at a timing other than the start of an application WorkManager is created only when an application
starts.

Inherited items of the transaction context to execution threads No transaction is performed regardless of the transaction
status of the source of schedule. This corresponds to
NOT_SUPPORTED of CMT.

Customizing the inherited items of the J2EE context to execution threads The inherited items are fixed.

The Java EE functionality that can be used in execution threads For details on the functionality that you can use, see
10.2.2 Java EE functionality that you can use in
asynchronous parallel processing of threads.

The components that you can use with a J2EE application are not defined with Work Manager for
Application Servers. For details on the components that you can use with Work Manager for Application
Server, see 10.4.4 Developing applications by using Work Manager.

10. Asynchronous Parallel Processing of Threads

408

(3) APIs that operate differently with CommonJ and Application Server
The following table describes the APIs that operate differently with CommonJ and Application Server.

Table 10‒9: APIs that operate differently with CommonJ and Application Server

Class Method Operation on Application Server

commonj.timers.Ti
merManager

schedule(TimerListener listener,Date
time)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException is
returned.

schedule(TimerListener listener,long
delay)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException is
returned.

schedule(TimerListener listener,Date
firstTime,long period)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException is
returned.

schedule(TimerListener listener,long
delay,long period)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException is
returned.

scheduleAtFixedRate(TimerListener
listener,Date firstTime,long period)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException is
returned.

scheduleAtFixedRate (TimerListener
listener,long delay,long period)

If the listener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException is
returned.

commonj.work.Work
Manager

schedule(Work work) If work is null, WorkException is
returned.

schedule(Work work,WorkListener wl) If work is null, WorkException is returned.

If WorkListener inherits
javax.ejb.EnterpriseBean,
IllegalArgumentException is
returned.

10. Asynchronous Parallel Processing of Threads

409

10.3 Asynchronous timer processing by using
TimerManager

This section describes the asynchronous timer processing by using TimerManager.

The following table describes the organization of this section.

Table 10‒10: Organization of this section (Asynchronous timer processing by using TimerManager)

Category Title Reference location

Explanatio
n

Threads scheduling method by using TimerManager 10.3.1

The life cycle of TimerManager 10.3.2

The state transition of TimerManager 10.3.3

Multiple schedules of TimerManager 10.3.4

Implementa
tion

Developing applications by using TimerManager 10.3.5

There is no specific description of Setup, Operation, and Notes for this functionality.

With the asynchronous timer processing performed by using TimerManager, you can schedule the asynchronous
processing of threads in a Java EE environment by specifying an execution interval. Threads managed by a container
are used in the background, and hence you can safely execute tasks.

In TimerListener, you implement the process that performs scheduling. The processing implemented in
TimerListener is scheduled by executing the method of TimerManager in EJBs or servlets, which are the
schedule sources. You can respond to the schedule or cancel the schedule by using Timer, which is returned from the
schedule method of TimerManager.

To use TimerManager, you define the information related to TimerManager in the resource-ref tag of an EJB
attribute or a servlet attribute. An EJB or a servlet uses TimerManager by performing a lookup with the name
defined in the res-ref-name tag at the time of deployment.

10.3.1 Methods of scheduling threads by using TimerManager
You use the following two methods for scheduling threads, by using TimerManager:

• Executing the process only once

• Executing and repeating the process at regular intervals

This subsection describes an overview of each scheduling method.

(1) Executing the process only once
This is a method that executes the processing only once at a specified time. After the processing is executed,
TimerManager is destroyed.

(2) Executing and repeating the process at regular intervals
You use the following two methods to repeatedly execute the process at regular intervals:

• fixed-rate (Specify the interval for starting the process, and then repeatedly execute the process)

• fixed-delay (Specify the interval from the end of process to start of the next process, and then repeatedly
execute the process)

The scheduled process continues to execute until you stop TimerManager or until the cancel method of the
corresponding Timer is executed.

10. Asynchronous Parallel Processing of Threads

410

The following subsection gives an overview of each method:

fixed-rate (Specify interval for starting the process, and then repeatedly execute the process)
This is a method which repeatedly starts the process at regular intervals. Specify the following contents in
fixed-rate:

Timing to start the first process
You use one of the following methods to specify the settings:

• When specifying the start time,
Use the Date type format to specify the firstTime argument of the scheduleAtFixedRate
method.

• When specifying the elapsed time from the start of an application until execution of the process
Use the long type format to specify the delay argument of the scheduleAtFixedRate method,.
The unit is milliseconds.

Interval from the start of the previous process to the start of the next processing
Use the long type format to specify the specify period argument of the scheduleAtFixedRate
method. The unit is milliseconds.

The following figure shows an image of fixed-rate process. In this figure, the time from the start of an
application to the start of the first process is two seconds, and the time from the start of the previous process to the
start of the next process is three seconds.

Figure 10‒3: Image of fixed-rate processing

With the fixed-rate process, if the process time executed previously is longer than the time specified in the
period, the next process is started immediately after the previously executed process ends. In this figure, the
time for the third process is longer than three seconds as specified in period, and hence, the fourth process is
started immediately after the third process ends.

fixed-delay (Specify an interval from the end of a process to the start of the next process, and then repeatedly
execute the process)

This method repeatedly starts the process at regular intervals after the previous process ends. You specify the
following contents in fixed-delay.

Timing to start the first process
Use one of the following methods to specify the timing:

• When specifying the start time
Use the Date type format to specify firstTime, an argument of the schedule method.

• When specifying elapsed time from the start of application until execution of the processing
Use the long type to specify delay, an argument of the schedule method. The unit is milliseconds.

Interval from completion of previous processing to start of next processing
Use the long type to specify period, an argument of the schedule method. The unit is milliseconds.

The following figure shows the image of the fixed-delay process. In this figure, the time from the start of an
application to the start of the first process and the time from the end of the previous process to the start of the next
process is considered as two seconds.

10. Asynchronous Parallel Processing of Threads

411

Figure 10‒4: Image of the fixed-delay process

10.3.2 Life cycle of TimerManager
This subsection describes a life cycle of TimerManager.

TimerManager is created when lookup is performed by JNDI in an application. TimerManager is created for
each lookup. We recommend that you execute the stop method in the application and explicitly stop the created
TimerManager. TimerManager can be automatically stopped without executing the stop method. However, in
that case, the application does not stop until TimerManager stops. Therefore, stopping the application might take a
longer time, depending on the stop process of TimerManager.

TimerManager is not persisted. As a result, when JavaVM ends, the created TimerManager and scheduled timer
are destroyed.

The following figure shows the life cycle of TimerManager.

Figure 10‒5: Life cycle of TimerManager

10. Asynchronous Parallel Processing of Threads

412

10.3.3 State transition of TimerManager
The status of TimerManager changes depending on the lock or stop process, by suspend and resume. You can
check the status of TimerManager at the respective time, by using the isStopped, isStopping, and
isSuspended method. The following figure shows the status transition of TimerManager.

Figure 10‒6: Status transition of TimerManager

The following table describes the details of each status.

Table 10‒11: Status of TimerManager

Number
in figure# Status Explanation

1 running It is a status indicating that TimerManager is running. You can receive and execute a new
schedule.

2 suspending It is a status indicating that suspension is in process. This status shows that a task is being executed
when suspension is executed. If no task is being executed, the status transits to suspended status.

3 suspended It is a status indicating that all the tasks are suspended. When the status is suspended, all the
scheduled tasks are not executed. The tasks with suspended status are executed when those tasks
are resumed.

4 stopping It is a status indicating that the stopping TimerManager is being executed. This status shows that
a task is being executed when stopping is TimerManager is being executed. If no task is being
executed, the status transits to stopped status.

5 stopped It is a status indicating that TimerManager is stopped. This status shows that all the tasks are
stopped and no process is executed after that. You cannot resume TimerManager, once it is
stopped.

Number indicating the number in Figure 10-6.

10.3.4 Multiple schedules of TimerManager
With the timer process scheduled by TimerManager, use the threads managed in the thread pool. When the timer
processing is scheduled, one thread, from among the threads managed in the thread pool, is assigned. If there is a
blank thread in the thread pool, the blank thread is used. If there is no blank thread in the thread pool, a thread is
generated and used. A thread generated in the thread pool is pooled until TimerManager stops.

The maximum number of threads that you can concurrently use in an instance is 50. A thread is assigned even if the
scheduled timer processing is in standby status. Therefore, the maximum number of processes that can be concurrently
scheduled is 50, irrespective of the status of timer processing.

10. Asynchronous Parallel Processing of Threads

413

If the number of already generated threads reaches the maximum number, the scheduled timer process is stored in a
queue and process waits until a blank thread is available. The timer process, stored in the queue, is executed as soon as
a blank thread is available.

Use multiple TimerManager if you want to concurrently schedule 51 or more threads.

10.3.5 Developing applications by using TimerManager
This subsection describes development of applications by using TimerManager.

The following table describes the usage status of components, which configure the application, when using
TimerManager.

Table 10‒12: Usage status of components, which configure the application, when using TimerManager

Component Usage status

EJB client N

Resource adapter N

JavaBeans resources N

Servlet/JSP# Y

EJB Stateless Session Bean EJB2.1 or earlier
versions

CMT Y

BMT Y

EJB3.0 N

Stateful Session Bean N

Entity Bean N

Message-driven Bean N

Legend:
Y: Can be used
N: Cannot be used

You can use the components also with the servlet listener or the filter.

The flow of developing an application by using TimerManager is as follows:

1. Defining the properties of EJBs or servlets, which are the schedule sources

2. Implementing the processing to be executed in the listener of TimerManager
3. Creating EJBs or servlets, which are the schedule sources

4. Compiling J2EE applications which use TimerManager

Details of each task are as follows:

(1) Defining the properties of EJBs or servlets, which are the schedule sources
Define properties of EJBs or servlets, which use TimerManager, in the DD. You cannot implement the definition
for using TimerManager, in annotation.

The following table describes the properties, which you must define to use TimerManager.

Table 10‒13: Properties, which you must define to use TimerManager

Tag name Explanation

Root tag --

10. Asynchronous Parallel Processing of Threads

414

Tag name Explanation

description Set optionally.

res-ref-name Specify the JNDI ENC name (name to be used for the JNDI lookup).

res-type Set the following value.
commonj.timers.TimerManager

res-auth The set value is ignored.

res-sharing-scope Set Unshareable. However, even if you set Shareable, the same operation as
for Unshareable is executed (new TimerManager is created whenever you
perform lookup).

mapped-name The set value is ignored.

injection-target The set value is ignored.

linked-to The set value is ignored.

The definition example of web.xml when you use TimerManager in servlet is as follows.

<web-app>
 <display-name>TimerManagerSample</display-name>
 <servlet>
 <servlet-name>SampleServlet</servlet-name>
 <display-name>SampleServlet</display-name>
 <servlet-class>SampleServlet</servlet-class>
 </servlet>
 ...
 <resource-ref>
 <res-ref-name>timer/MyTimer</res-ref-name>
 <res-type>commonj.timers.TimerManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Unshareable</res-sharing-scope>
 </resource-ref>
</web-app>

TimerManager is created whenever a lookup by JNDI is performed in an application. Created TimerManager is
destroyed when you execute the stop method or end the application. You can define multiple TimerManager, as
and when required.

(2) Implementing the processing to be executed in the listener of TimerManager
To use TimerManager, you must create a listener, with which the process to be executed is implemented. Listener
interfaces consist of- an interface that must be implemented and interfaces to be implemented as and when required.
The interface that must be implemented and the interfaces to be implemented if required are as follows:

Interface that must be implemented

• TimerListener
Interfaces to be implemented as and when required

• StopTimerListener
• CancelTimerListener

For details on APIs, see API specifications in Timer and Work Manager for Application Servers.

The example of a class where TimerListener, StopTimerListener, and CancelTimerListener are
implemented is as follows.

public class MyTimerListener
 implements TimerListener,StopTimerListener, CancelTimerListener {
 private int count = 0;

 public MyTimerListener() {
 }
 public void timerStop(Timer timer) {

10. Asynchronous Parallel Processing of Threads

415

 System.out.println("Timer stopped: " + timer);
 }

 public void timerCancel(Timer timer) {
 System.out.println("Timer cancelled: " + timer);
 }

 public void timerExpired(Timer timer) {
 System.out.println("Timer expired !");
 if(count++ > 10) {
 //Canceled because the set count is reached
 timer.cancel();
 } else {
 System.out.println("The next timer will fire at : " +
 timer.getScheduledExecutionTime());
 }
 }
}

(3) Creating EJBs or servlets, which is the schedule source
To use TimerManager, implement lookup of the JNDI name of TimerManager, which is defined in properties,
and the process scheduling of TimerManager, in EJBs or servlets, which are the schedule sources.

Lookup by using JNDI of TimerManager, which is defined in properties
Perform lookup for the JNDI name of TimerManager, which is defined in properties, to acquire
TimerManager. Use java:comp/env for lookup. The example of acquiring TimerManager is as follows:

InitialContext ic = new InitialContext();
TimerManager tm = (TimerManager)ic.lookup
 ("java:comp/env/timer/MyTimer");

Scheduling the TimerManager processes
Schedule the TimerManager processes by invoking the schedule method of TimerManager. The example
of scheduling the TimerManager processes is as follows:

InitialContext ctx = new InitialContext();
TimerManager mgr = (TimerManager)
 ctx.lookup("java:comp/env/timer/MyTimer");
TimerListener listener = new MyTimerListener();
mgr.schedule(listener, 1000*60,1000*10);
mgr.stop();

(4) Compiling J2EE applications, which use TimerManager
Include the following JAR file for compiling J2EE applications, which use TimerManager.

Cosminexus-installation-directory\CC\lib\ejbserver.jar

10. Asynchronous Parallel Processing of Threads

416

10.4  Asynchronous thread processing by using
WorkManager

This section describes the asynchronous thread processing performed by using WorkManager.

The following table describes the organization of this section.

Table 10‒14: Organization of this section (asynchronous thread processing by using WorkManager)

Category Title Reference location

Explanation The daemon Work and non-daemon Work 10.4.1

The thread pool and queues used in the non-daemon Work 10.4.2

The life cycle of WorkManager, daemon Work and the non-daemon Work 10.4.3

Implementati
on

Developing applications by using WorkManager 10.4.4

Settings Settings in the execution environment 10.4.5

There is no specific description of Operation and Notes for this functionality.

With the asynchronous thread processing performed by using WorkManager, you can execute the asynchronous
processing of threads in the Java EE environment. Because the threads managed by a container are used in the
background, you can execute tasks safely.

Implement the process to be executed asynchronously, with Work. The process implemented with Work is scheduled
when you execute the schedule method of WorkManager in EJBs or servlets, which are the schedule sources.
You can check the schedule status by using WorkItem, which is returned by the schedule method of
WorkManager.

To use WorkManager, define the information related to WorkManager, in resource-ref tag of EJB properties or
servlet properties. The EJB or servlet uses WorkManager by performing lookup with the name defined in res-ref-
name tag at the time of deployment.

10.4.1 Daemon Work and non-daemon Work
In WorkManager, you can create two types of Work such as the daemon Work (long-life Work) and the non-
daemon Work (short-life Work). An overview of each Work is as follow:

• Daemon Work(long-life Work)
The daemon Work is created when you execute the schedule method and Work continues even if the request
processing of a servlet or EJB ends. The daemon Work is destroyed when WorkManager ends. The daemon
Work is always executed with a newly created thread and not with threads in the thread pool.

• Non-daemon Work(short-life Work)
The non-daemon Work is created when you execute the schedule method and Work is destroyed when
processing of the run method ends. For the non-daemon Work, use threads and queues that are managed in the
thread pool.

10.4.2 Thread pool and queues used in non-daemon Work
The non-daemon Work is processed using the thread pool and queues. The thread pool and queues used for the
process are created in the unit of WorkManager, which is defined in the DD. Set the maximum size of threads that
can be pooled in a thread pool. The following section describes the maximum size of threads that can be pooled and
relation and operation of the number of threads in a pool, when the non-daemon Work is scheduled.

• If threads in a pool are less than the maximum number of threads in a thread pool

10. Asynchronous Parallel Processing of Threads

417

Create a thread and execute the non-daemon Work. The thread is generated irrespective of whether any blank
thread exists in thread pool.

• If a pool contains threads of the same number as the number of the maximum threads in a thread pool
Use blank threads in the thread pool and execute the non-daemon Work. If no blank thread exists, the scheduled
non-daemon Work is stored in queue. The non-daemon Work, which is stored in the queue, is executed when a
blank thread is available.

The maximum number of threads in a thread pool is 10 by default. To change the maximum number of threads, see
10.4.5 Settings in execution environment. There is no limit for a queue size.

Tip
When you attempt to stop WorkManager, the stop process starts after WorkManager being executed and all the
WorkManager processes stored in the queue end. WorkManager, which is stored in the queue is executed even if
WorkManager is stopped when storing in a queue.

10.4.3 Life cycle of WorkManager, daemon Work and non-daemon Work
This subsection describes the life cycle of WorkManager, the daemon Work and the non-daemon Work.

(1) Life cycle of WorkManager
WorkManager is created when an application starts. When lookup is performed in an application, WorkManager,
created when the application starts, is returned. The same WorkManager, created when the application starts, is
invoked even if lookup is performed for multiple times. WorkManager is destroyed when the application stops.

WorkManager is not persisted. As a result, when JavaVM ends, created WorkManager and the scheduled
asynchronous process are destroyed.

The following figure shows the life cycle of WorkManager.

10. Asynchronous Parallel Processing of Threads

418

Figure 10‒7: Life cycle of WorkManager

(2) Life cycle of daemon Work
A daemon Work is created when you execute the schedule method. The daemon Work is destroyed when you stop
WorkManager (when you stop the applications corresponding to WorkManager). When you stop WorkManager,
WorkManager waits until all daemon Work end after executing the release method of the daemon Work.

The following figure shows the life cycle of the daemon Work.

10. Asynchronous Parallel Processing of Threads

419

Figure 10‒8: Life cycle of the daemon Work

(3) Life cycle of the non-daemon Work
A non-daemon Work is created when you execute the schedule method. The non-daemon Work ends when
processing of the run method ends. If you want to stop WorkManager (stop the corresponding applications) when
non-daemon Work is being executed or is pending in a queue, wait until the non-daemon Work stops and then end
WorkManager.

The following figure shows the life cycle of the non-daemon Work.

10. Asynchronous Parallel Processing of Threads

420

Figure 10‒9: Life cycle of non-daemon Work

10.4.4 Developing applications by using WorkManager
This subsection describes development of applications by using WorkManager.

The following table describes the usage status of components, which configure an application, when using
WorkManager.

Table 10‒15: Usage status of components, which configure an application, when using WorkManager

Component Usage status

EJB client N

Resource adapter N

10. Asynchronous Parallel Processing of Threads

421

Component Usage status

JavaBeans resources N

Servlet/JSP# Y

EJB Stateless Session Bean EJB2.1 or earlier
versions

CMT Y

BMT Y

EJB3.0 N

Stateful Session Bean N

Entity Bean N

Message-driven Bean N

Legend:
Y: Can be used
N: Cannot be used

You can use the components also for the servlet listener or the filter.

The procedure for developing an application by using WorkManager is as follows:

1. Defining the properties of EJBs or servlets, which are the schedule sources

2. Implementing the processes to be executed in Work and Listener
3. Creating EJBs or servlets, which are the schedule sources

4. Compiling J2EE applications which uses WorkManager

Details of each task are as follows.

(1) Defining the properties of EJBs or servlets, which are the schedule sources
Define EJB or servlet properties, which use WorkManager, in the DD. Define the properties in property definition
file of EJBs or servlets. You cannot define the properties in an annotation.

The following table describes the properties, which you must define to use WorkManager.

Table 10‒16: Properties, which you must define to use WorkManager

Tag name Explanation

Root tag --

description Set optionally.

res-ref-name Specify the JNDI ENC name (name to be used for JNDI lookup).

res-type Set the following value.
commonj.work.WorkManager

res-auth The set value is ignored.

res-sharing-scope Set Shareable. However, even if you set Unshareable, the same operation as
for Shareable is executed (WorkManager is created when application starts
and the same WorkManager is returned when lookup is performed).

mapped-name The set value is ignored.

injection-target The set value is ignored.

linked-to The set value is ignored.

The definition example of web.xml when you use WorkManager in the servlet is as follows:

10. Asynchronous Parallel Processing of Threads

422

<web-app>
 <display-name>WorkManagerSample</display-name>
 <servlet>
 <servlet-name>SampleServlet</servlet-name>
 <display-name>SampleServlet</display-name>
 <servlet-class>SampleServlet</servlet-class>
 </servlet>
 <resource-ref>
 <res-ref-name>wm/MyWorkManager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
</web-app>

WorkManager is automatically created depending on property definitions when you start the application. The
number of WorkManager, defined in the property, is created.

(2) Implementing the processes to be executed in Work and Listener
To use WorkManager, you must create Work and the listener, with which the processing to be executed is
implemented. There are two types of interfaces - Work interface having the run method, which is a process entity,
and WorkListener interface used to execute the process at the times such as process reception, start and end.
Among these interfaces, make sure to implement Work. For details on APIs, see the API specifications in Timer and
Work Manager for Application Servers.

The following figure shows the procedure which is invoked by API of the WorkListener interface and the status
transition.

Figure 10‒10: Procedure invoked by API of the WorkListener interface and the state transition

The WorkListener method and the Work.run method are invoked in the same thread. As a result, you can use
the common Java EE context for each method.

10. Asynchronous Parallel Processing of Threads

423

The following subsection describes the flow and implementation example of the processes executed in the daemon
Work and the non-daemon Work, and also the implementation example of WorkListener.

The flow and implementation example of the processes executed in the daemon Work
To use the daemon Work, implement Work in such a way that the isDaemon method returns true.
When WorkManager ends, the container executes the release method to stop the daemon Work. Therefore,
implement in such a way that process of the run method ends when the release method is executed. Note that
if the method is not implemented properly, the daemon Work might not stop when you stop WorkManager and
continues to wait endlessly.
The implementation example of the daemon Work is as follows:

public class MyWork implements Work {
 private String name;
 private boolean isLoopContinue = true;
 public MyWork() {}

 public void release() {
 isLoopContinue = false;
 }

 public boolean isDaemon() {
 return true;
 }

 public void run() {
 while (isLoopContinue) {
 System.out.println("DaemonWork is executed");
 try {
 Thread.sleep(10000);
 } catch(InterruptedException e) {}
 }
 }
 public String toString() {
 return name;
 }
}

The flow and the implementation example of processes executed in the non-daemon Work
To use the non-daemon Work, implement Work in such a way that the isDaemon method returns false.
The processes of non-daemon Work must end during scheduled processes of EJBs or servlets. Therefore,
implement the process in such a way that the EJB or servlet process ends after waiting for the scheduled work to
end. To wait for the end of the scheduled Work, use the waitForAll or waitForAny method. If the process of
EJBs or servlets ends before the end of the scheduled Work, the Work process is executed beyond the life cycle
of the scheduled EJB or servlet. Make sure to end the process in a user program by using methods such as the
waitForAll method, so that the non-daemon Work is not executed beyond the life cycle of the scheduled
request.
The implementation example of the non-daemon Work is as follows:

public class MyWork implements Work {
 private String name;
 private String data;
 public MyWork(String name) {
 this.name = name;
}

 public void release() {}

 public boolean isDaemon() {
 return false;
 }

 public void run() {
 data = "Hello, World. name=" + name;
 }

 public String getData() {
 return data;
 }

 public String toString() {
 return name;
 }
}

10. Asynchronous Parallel Processing of Threads

424

The implementation example of WorkListener
The implementation example of WorkListener is as follows:

public class ExampleListener implements WorkListener {
 public void workAccepted(WorkEvent we) {
 System.out.println("Work Accepted");
 }

 public void workRejected(WorkEvent we) {
 System.out.println("Work Rejected");
 }

 public void workStarted(WorkEvent we) {
 System.out.println("Work Started");
 }

 public void workCompleted(WorkEvent we) {
 System.out.println("Work Completed");
 }
}

(3) Creating EJBs or servlets, which are the schedule sources
To use WorkManager, implement lookup of the JNDI name of WorkManager, which is defined in properties, and
the process scheduling of WorkManager, in EJBs or servlets, which are the schedule sources.

The JNDI name of WorkManager defined in properties
Perform lookup for the JNDI name of WorkManager, which is defined in properties, to acquire WorkManager.
Use java:comp/env for lookup. The example of acquiring WorkManager is as follows.

 InitialContext ic = new InitialContext();
 WorkManager tm = (WorkManager)ic.lookup
 ("java:comp/env/wm/MyWorkManager");

Scheduling the WorkManager process
Execute the scheduling of the WorkManager process by invoking the schedule method of WorkManager.
An example of a program which waits for of all Work to end, after scheduling multiple non-daemon Work is as
follows.

MyWork work1 = new MyWork();
MyWork work2 = new MyWork();
InitialContext ctx = new InitialContext();
WorkManager mgr = (WorkManager) ctx.lookup("java:comp/env/wm/MyWorkManager");
WorkItem wi1 = mgr.schedule(work1, new ExampleListener());
WorkItem wi2 = mgr.schedule(work2);
Collection coll = new ArrayList();
coll.add(wi1);
coll.add(wi2);
mgr.waitForAll(coll, WorkManager.INDEFINITE);

System.out.println("work1 data: " + work1.getData());
System.out.println("work2 data: " + work2.getData());

(4) Compiling the J2EE application, which uses WorkManager
Include the following JAR file when you compile the J2EE application, which uses WorkManager.

Cosminexus-installation-directory\CC\lib\ejbserver.jar

10.4.5 Settings in the execution environment
If you want to change the maximum number of threads in the thread pool, which is used in non-daemon Work, from
the default value 10, you must perform J2EE server settings.

Perform J2EE server settings in the Easy Setup definition file. Specify the definition of the maximum number of
threads in a thread pool, in the <configuration> tag of the logical J2EE Server (j2ee-server) in the Easy Setup
definition file. The following table describes the settings in the Easy Setup definition file.

10. Asynchronous Parallel Processing of Threads

425

Table 10‒17: Definition for changing the maximum number of threads in a thread pool, defined in the Easy
Setup definition file

Parameter to be specified Setting details

ejbserver.commonj.WorkManager.non_daemon
_work_threads

Set the maximum number of threads in a thread pool, which are used in
the non-daemon Work. Set the value in the range of 1 through 65535#.

The default value is 10.

#
If you specify a number, which is out of range, the KDJE34510-W message is displayed and the default value is used.

For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

10. Asynchronous Parallel Processing of Threads

426

Appendixes

427

A. Main Updates in the Functionality of Each Version
This section describes the updates in the main functionality for versions of Application Server earlier than 09-50 and
the purpose of updates. For details on the main updates in the functionality of 09-50, see 1.4 Main updates in the
functionality of Application Server 09-50.

The description is as follows:

• This section gives an overview and describes the main updates in the functionality of each version of Application
Server. For details on the functionality, you check the description in the Reference location column corresponding
to the Reference manual column. The Reference manual and Reference location columns describe the main
locations in the manuals of 09-50 used for this functionality.

• uCosminexus Application Server is omitted from the manual names mentioned in the Reference column.

A.1 Main updates in the functionality of 09-00

(1) Simplifying implementation and setup

Table A‒1: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual
Referenc

e
location

Changing the operation unit
used for setup and operation in
virtual environment

The operation unit used for setup and operation in the
virtual environment has been changed from a virtual server
to a virtual server group. You can now perform batch
registration of multiple virtual servers to management unit
by using a file, which defines the information of virtual
server group.

Virtual System Setup
and Operation Guide

1.1.2

Releasing restrictions on
environment setup by using
setup wizard

The restrictions on the environment that you can set up by
using Setup Wizard have been released. Now, you can unset
up even an environment that is set up with other
functionality and set up the environment by using Setup
Wizard.

System Setup and
Operation Guide

2.2.7

Simplifying deletion procedure
of the setup environment

The deletion procedure has been simplied by adding a
functionality (mngunsetup command) that deletes the
system environment, which is set up by using Management
Server.

System Setup and
Operation Guide

4.1.37

Management Portal
User Guide

3.6, 5.4

Command Reference
Guide

mngunset
up
(deleting
setup
environme
nt of
Managem
ent
Server)

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support standard and existing functionality.

A. Main Updates in the Functionality of Each Version

428

Table A‒2: Changes made for supporting standard and existing functionality

Item Overview of changes Reference manual
Referenc

e
location

Supporting Servlet 3.0 Servlet 3.0 is now supported. Web Container
Functionality Guide

Chapter 6

Supporting EJB 3.1 EJB 3.1 is now supported. EJB Container
Functionality Guide

Chapter 2

Supporting JSF 2.1 JSF 2.1 is now supported. Web Container
Functionality Guide

Chapter 3

Supporting JSTL 1.2 JSTL 1.2 is now supported. Web Container
Functionality Guide

Chapter 3

Supporting CDI 1.0 CDI 1.0 is now supported. Common Container
Functionality Guide

Chapter 9

Using the Portable Global
JNDI name

You can now perform the lookup of objects by using the
Portable Global JNDI name.

Common Container
Functionality Guide

2.4

Supporting JAX-WS 2.2 JAX-WS 2.2 is now supported. Web Service
Development Guide

1.1,
16.1.5,
16.1.7,
16.2.1,
16.2.6,
16.2.10,
16.2.12,
16.2.13,
16.2.14,
16.2.16,
16.2.17,
16.2.18,
16.2.20,
16.2.22,
19.1,
19.2.3,
37.2,
37.6.1,
37.6.2,
37.6.3

Supported JAX-RS 1.1 JAX-RS 1.1 is now supported. Web Service
Development Guide

1.1, 1.2.2,
1.3.2,
1.4.2,
1.5.1, 1.6,
2.3,
Chapter
11,
Chapter
12,
Chapter
13,
Chapter
17,
Chapter
24,
Chapter
39

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

A. Main Updates in the Functionality of Each Version

429

Table A‒3: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual
Referenc

e
location

Using TLSv1.2 in SSL/TLS
communication

You can now perform SSL/TLS communication in the
security protocols including TLSv1.2 by using RSA BSAFE
SSL-J.

Security Management
Guide

7.3

(4) Maintaining and improving the operation performance
The following table describes the items that are changed for maintaining and improving operation performance.

Table A‒4: Changes made for maintaining and improving operation performance

Item Overview of changes Reference manual
Referenc

e
location

Monitoring total pending
queues in the entire web
container

You can now output the pending queues in the entire web
container to statistics and monitoring the pending queues.

Operation, Monitoring,
and Linkage Guide

Chapter 3

Outputting performance
analysis trace of an application
(user extension trace)

You can now output the performance analysis trace used for
analyzing the processing performance of applications
developed by a user, without making changes to the
applications.

Maintenance and
Migration Guide

Chapter 7

Operations in a virtual
environment that use user script

You can now execute scripts created by a user (user script)
on the virtual server at any time.

Virtual System Setup
and Operation Guide

7.8

Improving the management
portal

Changes have been made to display the messages that
describe procedures, on the following management portal
windows:

• Deploying the Preference information window

• Startup window for the web server, J2EE server, and
SFO server

• Package start, package restart and startup window of the
web server cluster, and J2EE server cluster

Management Portal
User Guide

10.11.1,
11.9.2,
11.10.2,
11.11.2,
11.11.4,
11.11.6,
11.12.2,
11.13.2,
11.13.4,
11.13.6

Adding restart functionality of
operation management
functionality

You can now set automatic restart with the operation
management functionality (Management Server and
Administration Agent). You can also continue an operation
even if the operation management functionality fails. Also
the method of setting automatic start has been changed.

Operation, Monitoring,
and Linkage Guide

2.4.1,
2.4.2,
2.6.3,
2.6.4

Command Reference
Guide

mngautor
un (setting
up and
unsetting
up
automatic
start and
automatic
restart)

(5) Other purposes
The following table describes the items that are changed for other purposes.

A. Main Updates in the Functionality of Each Version

430

Table A‒5: Changes made for other purposes

Item Overview of changes Reference manual
Referenc

e
location

Changing the file switching
unit at the time of log output

You can now execute the date-wise switching of files at the
output destination when you output the log.

Maintenance and
Migration Guide

3.2.1

Changing the name of the web
server

A name of the web server included in Application Server
has been changed to HTTP Server

HTTP Server User
Guide

--

Supporting direct connection
that uses API (SOAP
architecture) of BIG-IP

A direct connection that uses API (SOAP architecture) of
BIG-IP (load balancer) is now supported.

Also the method of setting the connection environment of a
load balancer when using a direct connection that uses API
has been changed.

System Setup and
Operation Guide

4.7.3,
Appendix
K

Virtual System Setup
and Operation Guide

2.1,
Appendix
C

Security Management
Guide

8.2, 8.4,
8.5, 8.6,
18.2, 18.3,
18.4

Legend
--: See the entire manual

A.2  Main updates in the functionality of 08-70

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify the implementation and setup.

Table A‒6: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual
Referenc

e
location

Improving the management
portal

You can now specify the property that defines resource
adaptor properties (setting contents of the Connector
property file) and connection test of the properties on the
Management Portal screen. Also, enabled the uploading of
the J2EE application (ear files and zip files) to Management
Server, on the Management Portal screen.

First Step Guide 3.5

Management Portal
User Guide

--

Adding the implicit import
functionality of the import
attribute in the page/tag
directive

You can now use the implicit import functionality of the
import attribute in the page/tag directive.

Web Container
Functionality Guide

2.3.7

Supporting the automation of
environment settings for JP1
products in a virtual
environment

The environment settings of JP1 products can be
automatically specified now, for a virtual server, when
specifying the settings of Application Server on the virtual
server.

Virtual System Setup
and Operation Guide

7.7.2

Improving the integrated user
management functionality

You can now use the JDBC driver of database products to
connect to the database, when using the database in a user
information repository.

A database connection with the JDBC driver of Cosminexus
DABroker Library is now unsupported.

Enabled the settings related to the integrated user
management functionality in the Easy Setup Definition file
and on the Management Portal screen.

Security Management
Guide

Chapter
5, 14.3

Management Portal
User Guide

3.5, 10.9.1

A. Main Updates in the Functionality of Each Version

431

Item Overview of changes Reference manual
Referenc

e
location

Improving the integrated user
management functionality

In case of Active Directory, the double byte characters such
as Japanese characters with DN are now supported.

Management Portal
User Guide

3.5, 10.9.1

Expanding setting items of
HTTP Server

Enabled the direct settings of the directive (settings of
httpsd.conf) that defines the operation environment of
HTTP Server in the Easy Setup definition file and on the
Management Portal screen.

System Setup and
Operation Guide

4.1.21

Management Portal
User Guide

10.10.1

Definition Reference
Guide

4.13

Legend:
--: Reference the entire manual

(2) Supporting the standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table A‒7: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual
Referenc

e
location

Adding specification items of
ejb-jar.xml

You can now specify the settings of the class level
interceptor and method level interceptor in ejb-jar.xml.

EJB Container
Functionality Guide

2.15

Supporting the parallel copy
garbage collection

You can now select the parallel copy garbage collection. Definition Reference
Guide

16.5

Supporting global transactions
of Inbound resource adapters
based on the Connector 1.5
specifications

Enabled the usage of Transacted Delivery in
resource adapters based on the Connector 1.5 specifications.
Now EIS that invokes Message-driven Beans can also
participate in global transactions.

Common Container
Functionality Guide

3.16.3

Supporting MHP of a TP1
inbound adapter

Enabled the usage of MHP as a client of OpenTP1 that
invokes Application Server with the TP1 inbound adapter.

Common Container
Functionality Guide

Chapter 4

Supporting an FTP inbound
adapter with the
cjrarupdate command

Added the FTP inbound adapter in the resource adapter that
you can upgrade with the cjrarupdate command.

Command Reference
Guide

2.2

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table A‒8: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual
Referenc

e
location

Improving the database session
failover functionality

In a system that focuses on performance, you can now
select a mode that does not acquire the lock of the database
storing the global session information. Also, enabled the
definition of request for a reference without updating the
database.

This manual Chapter 6

Expanding the process that is
the target of the
OutOfMemory handling
functionality

Added a process that is the target of the OutOfMemory
handling functionality.

Maintenance and
Migration Guide

2.5.7

A. Main Updates in the Functionality of Each Version

432

Item Overview of changes Reference manual
Referenc

e
location

Expanding the process that is
the target of the
OutOfMemory handling
functionality

Added a process that is the target of the OutOfMemory
handling functionality.

Definition Reference
Guide

16.2

Adding a functionality for
reduction in the memory size of
the Explicit heap used in HTTP
sessions

Added a functionality to inhibit the memory usage of the
Explicit heap used in HTTP sessions.

This manual 8.11

(4) Maintaining and improving operation performance
The following table describes the items that are changed for maintaining and improving the operation performance.

Table A‒9: Changes made for maintaining and improving operation performance

Item Overview of changes Reference manual
Referenc

e
location

Supporting the user
authentication that uses JP1
products in a virtual
environment (supporting cloud
operations)

Enabled the management and authentication of users who
use the virtual server manager with the authentication server
of a JP1 product, at the time of the JP1 integration.

Virtual System Setup
and Operation Guide

1.2.2,
Chapter
3, 4, 5 and
6, 7.9

(5) Other purposes
The following table describes the items that are changed for other purposes.

Table A‒10: Changes made for other purposes

Item Overview of changes Reference manual
Referenc

e
location

Supporting a direct connection
with the load balancer with API
(REST architecture)

Supported a direct connection with API (REST architecture)
as a method of connecting to the load balancer.

Also added ACOS (AX2500) as a type of the available load
balancer.

System Setup and
Operation Guide

4.7.2,
4.7.3

Virtual System Setup
and Operation Guide

2.1

Definition Reference
Guide

4.5

Supporting a timeout when
collecting the snapshot log and
improving the collection target

Enabled the end (timeout) processing in the time specified
for the collection of snapshot logs. Changed the data
collected as primary submitted documents.

Maintenance and
Migration Guide

Appendix
A

A.3 Main updates in the functionality of 08-53

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify implementation and setup.

A. Main Updates in the Functionality of Each Version

433

Table A‒11: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual
Referenc

e
location

Configuring a virtual
environment supporting various
hypervisors

Enabled the configuration of the Application Server virtual
servers that are implemented by using various hypervisors.
Also, supported the environment including a mix of
multiple hypervisors.

Virtual System Setup
and Operation Guide

Chapter
2, 3, 5

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table A‒12: Changes made for supporting standard and existing functionality

Item Overview of changes Reference manual
Referenc

e
location

Invocation from OpenTP1
supporting the integration of
transactions

Enabled the integration of transactions when invoking
Message-driven Beans operating on Application Server
from OpenTP1.

Common Container
Functionality Guide

Chapter 4

JavaMail Enabled the usage of the receive mail functionality that uses
Javamail 1.3 compliant API by integrating with a POP3
compliant mail server.

Common Container
Functionality Guide

Chapter 8

(3) Maintenance and improvement of reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table A‒13: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual
Referenc

e
location

Improving the JavaVM
troubleshooting functionality

Enabled the usage of the following functionality as the
JavaVM troubleshooting functionality:

• Enabled the change in the operations when an
OutOfMemoryError occurs.

• Enabled the settings of the upper limit of the C heap
allocated volume when compiling JIT.

• Enabled the settings of the upper limit of the number of
threads.

• Extended the output items of the extended verbosegc
information.

Maintenance and
Migration Guide

Chapter
4, 5, 9

(4) Maintaining and improving operation performance
The following table describes the items that are changed for maintaining and improving the operation performance.

Table A‒14: Changes made for maintaining and improving operation performance

Item Overview of changes Reference manual
Referenc

e
location

Supporting JP1/ITRM Supported JP1/ITRM that is a product to centrally manage
the IT resources.

Virtual System Setup
and Operation Guide

1.3, 2.1

A. Main Updates in the Functionality of Each Version

434

(5) Other purposes
The following table describes the items that are changed for other purposes.

Table A‒15: Changes made for other purposes

Item Overview of changes Reference manual
Referenc

e
location

Supporting Microsoft IIS 7.0
and Microsoft IS 7.5

Supported Microsoft IIS 7.0 and Microsoft IIS 7.5 as a Web
server.

-- --

Supporting HiRDB Version 9
and SQL Server 2008

Supported the following products as a database:

• HiRDB Server Version 9

• HiRDB/Developer's Kit Version 9

• HiRDB/Run Time Version 9

• SQL Server 2008

Also, supported SQL Server JDBC Driver as SQL Server
2008 compliant JDBC driver.

Common Container
Functionality Guide

Chapter 3

Legend:
--: Does not support

A.4 Main updates in the functionality of 08-50

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify implementation and setup.

Table A‒16: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual
Referenc

e
location

Change in the tags for which
you must specify web.xml of
the Web service provider
machine

The specification of the listener tag, servlet tag, and
servlet-mapping tag is now changed from required
to optional in web.xml, on the Web Service provider
machine.

Definition Reference
Guide

2.4

Using the network resources of
the logical server

Added a functionality to access the network resources and
the network drive on the other hosts from the J2EE
application.

Operation, Monitoring,
and Linkage Guide

1.2.3, 5.2,
5.7

Simplification of the procedure
to execute a sample program

The procedure to execute a sample program is simplified by
providing a part of the sample program in the EAR format.

First Step Guide 3.5

System Setup and
Operation Guide

Appendix
M

Improving the operations of the
Management Portal screen

Changed the default update interval of the screen from Do
not update to 3 seconds.

Management Portal
User Guide

7.4.1

Improving the Completion
screen of the Setup wizard

Enabled the display of the Easy Setup definition file and
Connector property file used in setup, on the screen when
Setup Wizard is completed.

System Setup and
Operation Guide

2.2.6

Configuring a virtual
environment

Added a procedure to configure Application Server on
virtual servers that are implemented by using hypervisors.#

Virtual System Setup
and Operation Guide

Chapter
3, 5

#
For setting with the 08-50 mode, see Appendix D Settings when using the Virtual server manager of the 08-50 mode in the
uCosminexus Application Server Virtual System Setup and Operation Guide.

A. Main Updates in the Functionality of Each Version

435

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table A‒17: Changes made for supporting standard and existing functionality

Item Overview of changes Reference manual
Referenc

e
location

Supporting the invocation from
OpenTP1

Enabled the invocation of the Message-driven Beans
operating on Application Server from OpenTP1.

Common Container
Functionality Guide

Chapter 4

Supporting JMS Enabled the usage of the Cosminexus JMS provider
functionality that is compliant to the JMS1.1 specifications.

Common Container
Functionality Guide

Chapter 7

Supporting Java SE 6 Enabled the usage of the Java SE 6 functionality. Maintenance and
Migration Guide

5.5, 5.8.1

Support for using Generics Enabled the usage of Generics in EJB. EJB Container
Functionality Guide

4.2.19

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table A‒18: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual
Referenc

e
location

Improving the usability of the
Explicit management heap
functionality

Enabled the easy usage of the Explicit management heap
functionality with the automatic allocation setup file.

System Design Guide 7.1.1,
7.6.3,
7.10.5,
7.11.1

Expansion Guide Chapter 8

Disabling the database session
failover functionality in URI

When using the database session failover functionality, the
request that is not the target of the functionality can now be
specified in URI.

This manual 5.6.1

Fault monitoring in a virtual
environment

Enabled the detection of the fault that occurred, by
monitoring the virtual server in a virtual system.

Virtual System Setup
and Operation Guide

Appendix
D

(4) Maintaining and improving operation performance
The following table describes the items that are changed for maintaining and improving the operation performance.

Table A‒19: Changes made for maintaining and improving operation performance

Item Overview of changes Reference manual Reference location

Omitting the
management user
account

Enabled the omission of the user login
ID and password in the management
portal, Management Server commands
and, Smart Composer functionality
commands.

System Setup and
Operation Guide

4.1.15

Management Portal User
Guide

2.2, 7.1.1, 7.1.2, 7.1.3, 8.1, 8.2.1,
Appendix F.2

Command Reference
Guide

1.4, mngsvrctl (Starting/Stopping/
Setup of Management Server),
mngsvrutil(Operations management
command of Management Server),
8.3, cmx_admin_passwd(Settings of
the Management user account of
Management Server)

A. Main Updates in the Functionality of Each Version

436

Item Overview of changes Reference manual Reference location

Operations in a virtual
environment

Added a procedure to operate batch start
and batch stop, scale in and scale out for
the multiple servers in a virtual system. #

Virtual System Setup and
Operation Guide

Chapter 4, 6

#
When you set up in 08-50 mode, see Appendix D Settings when using the virtual server manager of 08-50 mode in the
uCosminexus Application Server Virtual System Setup and Operation Guide.

(5) Other purposes
The following table describes the items that are changed for other purposes.

Table A‒20: Changes made for other purposes

Item Overview of changes Reference manual
Referenc

e
location

Functionality to count the
unnecessary objects in the
Tenured area

Enabled to specify only the unnecessary objects within the
Tenured area.

Maintenance and
Migration Guide

9.8

Functionality to output the
source object list of the
Tenured area increase factor

Modified to output the information of the objects that are
the source of unnecessary objects specified by using the
functionality to count the unnecessary objects in a
Tenured area.

9.9

Functionality to analyze the
class wise statistical
information

Enabled to output the class wise statistical information in
the CSV format.

9.10

Cluster node switching
according to the automatic
restart over number detection of
the logical server

Enabled the node switching at the time when the logical
server is in an abnormal stop status (when an error is
detected if the frequency of automatic restart is over or
frequency of automatic restart is set to 0) for a cluster
configuration that is monitored for switching Management
Server.

Operation, Monitoring,
and Linkage Guide

18.4.3,
18.5.3,
20.2.2,
20.3.3,
20.3.4

Node switching system for the
host unit management model

Enabled the node switching for the host unit management
model in the system operations integrated with cluster
software.

Chapter
20

Supporting ACOS (AX2000
and BS320)

Added ACOS (AX2000 and BS320) to the type of available
load balancing functionality

System Setup and
Operation Guide

4.7.2,
4.7.3,
4.7.5,
4.7.6,
Appendix
K,
Appendix
K.2

Definition Reference
Guide

4.5, 4.6.2,
4.6.4,
4.6.5,
4.6.6,
4.10.1

Adding the transaction property
that can be specified in Stateful
Session Bean
(SessionSynchronization) when
managing a transaction in CMT

When managing a transaction in CMT, enabled to specify
Supports, NotSupported, and Never as a transaction
property in Stateful Session Bean (SessionSynchronization).

This manual 2.7.3

Terminating Administration
Agent when
OutOfMemoryError occurs

When OutOfMemoryError occurs in Java VM, enabled
to terminate Administration Agent.

Maintenance and
Migration Guide

2.5.8

A. Main Updates in the Functionality of Each Version

437

Item Overview of changes Reference manual
Referenc

e
location

Asynchronous parallel
processing of threads

Enabled to implement asynchronous timer processing and
asynchronous processing of threads by using TimerManager
and WorkManager.

Expansion Guide Chapter
10

A.5 Main updates in the functionality of 08-00

(1) Improvement in development productivity
The following table describes the items that are changed for improving the development productivity.

Table A‒21: Changes made for improving development productivity

Item Overview of changes Reference manual
Referenc

e
location

Simplifying migration from
other Application Server
products

Enabled to use the following functionality for the smooth
migration from other Application Server products:

• Enabled to judge the upper limit of an HTTP session
with an exception.

• Enabled to prevent the occurrence of a translation error
when the ID of JavaBeans is duplicate or when the
upper-case and lower-case characters are differentiated
in the attribute name of custom tags and in the TLD
definition.

Web Container
Functionality Guide

2.3, 2.7.5

Providing cosminexus.xml By coding the attributes unique to Cosminexus Application
Server in cosminexus.xml, enabled to start a J2EE
application without setting up the property, once the J2EE
application is imported to the J2EE server.

Common Container
Functionality Guide

11.3

(2) Supporting standard functionality
The following table describes the items that are changed to support the standard functionality.

Table A‒22: Changes made for supporting standard functionality

Item Overview of changes Reference manual
Referenc

e
location

Supporting Servlet 2.5 Supported Servlet 2.5. Web Container
Functionality Guide

2.2, 2.5.4,
2.6,
Chapter 6

Supporting JSP 2.1 Supported JSP 2.1. Web Container
Functionality Guide

2.3.1,
2.3.3, 2.5,
2.6,
Chapter 6

JSP debug Enabled to perform JSP debugging in a development
environment using MyEclipse.#

Web Container
Functionality Guide

2.4

Saving the tag library in the
library JAR and mapping TLD

When the tag library is saved in the library JAR, enabled to
search the TLD files in the library JAR by the Web
container when the Web application is running, and then
map theTLD files automatically.

Web Container
Functionality Guide

2.3.4

Omitting
application.xml

Enabled to omit application.xmlin J2EE applications. Common Container
Functionality Guide

11.4

A. Main Updates in the Functionality of Each Version

438

Item Overview of changes Reference manual
Referenc

e
location

Combined use of the annotation
and the DD

Enabled to use annotations together with a DD, and update
the contents specified in the annotation in the DD.

Common Container
Functionality Guide

12.5

Compliance of annotations with
the Java EE 5 standard (default
interceptor)

Enabled to save the default interceptor in the library JAR.
Also, enabled to perform DIfrom the default interceptor.

Common Container
Functionality Guide

11.4

Reference resolution of
@Resource

Enabled to perform the reference resolution of a resource
with @Resource.

Common Container
Functionality Guide

12.4

Supporting JPA Supported the JPA specifications. Common Container
Functionality Guide

Chapter
5, 6

#
In 09-00 or later, you can use the JSP debug functionality in a development environment with WTP.

(3) Maintenance and improvement of reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table A‒23: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual
Referenc

e
location

Persistence of the session
information

Enabled to save and inherit the session information of an
HTTP session in the database.

This manual Chapter
5,
Chapter 6

Preventing a full garbage
collection

Enabled to prevent the occurrence of a full garbage
collection by allocating the object that causes the full
garbage collection outside the Java heap.

This manual Chapter 8

Client performance monitor Enabled to check and analyze the time consumed in a client
processing.

-- --

Legend:
--: The function is deleted in 09-00.

(4) Maintaining and improving operation performance
The following table describes the items that are changed for maintaining and improving the operation performance.

Table A‒24: Changes made for maintaining and improving operation performance

Item Overview of changes Reference manual
Referenc

e
location

Improving the operation
performance of applications in
the management portal

For the application and resource operations, enabled to
perform mutual operations of the server management
commands and the management portal.

Management Portal
User Guide

1.1.3

(5) Other purposes
The following table describes the items changed for other purposes.

A. Main Updates in the Functionality of Each Version

439

Table A‒25: Changes made for other purposes

Item Overview of changes Reference manual
Referenc

e
location

Deleting the disabled HTTP
cookie

Enabled to delete the disabled HTTP cookie. Web Container
Functionality Guide

2.7.4

Detecting a naming service
failure

When a failure occurs in the naming service, the EJB client
can now detect the error faster.

Common Container
Functionality Guide

2.9

Connection failure detection
timeout

Enabled to specify the timeout period for a connection
failure detection timeout.

Common Container
Functionality Guide

3.15.1

Supporting Oracle11g Enabled the usage of Oracle11g as a database. Common Container
Functionality Guide

Chapter 3

Scheduling batch processing Enabled to schedule the execution of batch applications
with CTM.

This manual Chapter 4

Batch processing log Enabled to specify the size and number of log files of batch
execution commands, retry frequency, and retry interval
(when a failure occurs in the log exclusion processing).

Definition Reference
Guide

3.6

Snapshot log The collection details of the snapshot log have been
changed.

Maintenance and
Migration Guide

Appendix
A.1,
Appendix
A.2

Publication of the protected
area of the method cancellation

The contents of the protected area list to which method
cancellation is not applicable are published.

Operation, Monitoring,
and Linkage Guide

Appendix
C

Functionality for selecting
garbage collection before the
statistics output

Enabled to select whether to execute a garbage collection
before the statistical information for each class is output.

Maintenance and
Migration Guide

9.7

Functionality for the output of
the age distribution information
of the Survivor area

Enabled to output the age distribution information of Java
objects of the Survivor area in JavaVM log file.

Maintenance and
Migration Guide

9.11

Functionality for eliminating
the finalize stagnation

Enabled to eliminate the stagnation of the finalize
processing of JavaVM by monitoring the status of the
processing.

-- --

Changing the maximum heap
size of the server management
commands

The maximum heap size used by the server management
commands has been changed.

Definition Reference
Guide

5.2, 5.3

Supporting when a display
name that is not recommended
is specified

Enabled to output a message when a display name that is
not recommended in J2EE applications is specified

Messages KDJE423
74-W

Legend
--: The functionality has been deleted in version 09-00.

A. Main Updates in the Functionality of Each Version

440

B. Terminology Used in this Manual
Terminology used in this manual

For the terms used in the manual, see the uCosminexus Application Server and BPM/ESB Platform Terminology Guide.

B. Terminology Used in this Manual

441

Index

Symbols
-XX:+HitachiJavaClassLibTrace 76
-XX:+HitachiOutOfMemoryStackTrace 76
-XX:+HitachiUseExplicitMemory 76
-XX:+HitachiVerboseGC 76
-XX:+HitachiVerboseGCPrintTenuringDistribution 76

A
Acquiring JavaVM log (JavaVM log file 76
add.class.path 73
add.jvm.arg 45
add.library.path 73
advantages of scheduling batch applications 129
application identifier (database session failover

functionality) 198
application identifiers (EADs session failover functionality)

264
application information table 235
application procedure (EADs session failover functionality)

191
application procedure (EADs session failover functionality)

255
asynchronous thread processing 403
Asynchronous thread processing by using WorkManager

417
asynchronous timer processing 403
asynchronous timer processing by using TimerManager 410
automatic release reserving of Explicit memory block when

automatic release functionality is enabled 331
available session failover functionality 166

B
balancing number of resident threads 108
batch.ctm.enabled 143
batch.request.timeout 143
batch.schedule.group.name 143
batch.service.enabled 45
batch.vbroker.agent.port 143
batch application execution functionality 29
batch application scheduling functionality 128
benefits of using session failover functionality 147
blank record information table 236

C
Caching of DataSource object 64
calling J2EE applications from TPBroker client or

TPBroker OTM client, overview of 124
call issued to stateless session bean through remote

interface 85
Cancelling statements 65
CCC#Ajp13 356
CCC#HttpSession 356
CCC#HttpSessionManager 356

changing settings related to EADs session failover
functionality 297

checking
operating status of schedule queues (CTM) 108

CJLogRecord class 377
class hierarchy in Explicit Memory Management

functionality API 353
classification for describing functionality 13
classificationofapplicationserverfunctionality 3
class loader executing batch application 31
client applications that send requests 86
cluster definition file 292
common prerequisite settings of session failover

functionality 156
common settings for using Explicit Memory Management

functionality (setting JavaVM options) 358
Communication timeout of naming service 54
comparing superiority of session failover functionality 165
compatibility with Timer and Work Manager for

Application Server 407
concurrent execution functionality with same session ID175
concurrent execution with same session ID 175
conditions for objects that you can place in Explicit heap

319
configuration example of system that executes batch

applications (when not using scheduling functionality) 22
configuration file for disabling application exclusion of

Explicit Memory Management functionality 365
configuration file for explicit memory management

functionality application exclusion 364
Configuring system using scheduling functionality 133
Connection acquisition retry 65
Connection management thread 66
connection regulation 96
Connection sweeper 66
connection with TPBroker/OTM client by using gateway

functionality in CTM 124
container extension libraries 73
Container extension library 73
contents checked in negotiation processing (database

session failover functionality) 197
contents confirmed in negotiation (EADs session failover

functionality) 262
controlling priority of requests (CTM) 105
controlling requests (CTM) 111
correspondence between Enterprise Bean scheduling

functionality using CTM and purpose of systems 11
correspondence between other expanded functionality and

purpose of systems 11
corresponding functionality used when executing batch

applications and purpose of systems 8
create-based selection policy 95
creating and setting handlers 381
creating and setting loggers 381
creating cache 295
creating database tables 234
CTM 85

443

configuration and deployment of processes 91
flow-volume control, overview of 102
process configuration for using 91
processes necessary for using 91

CTM, processing performed for using 86
ctm.Agent 143
CTM daemon 94
CTM domain 96
CTM domain manager 96, 97

checking operating status 98, 99
sharing information in different network segments

98
sharing information in same network segment 97

CTM functions
connection with TPBroker/OTM client by using

gateway functionality in CTM 124
controlling priority of requests 105
dynamically changing number of concurrent

executions of requests 106
flow-volume control of requests 102
load balancing of requests 118
locking and controlling requests 111
monitoring and retaining request queues 121

CTM regulator 95
customizing LogManager 399

D
Daemon Work 417
Daemon Work and non-daemon Work 417
database session failover functionality 189, 190
database settings 234
databases that can be connected 57
defining refer-only requests of HTTP session 172
definitions of database session failover functionality 226
definitions of JavaVM options in Explicit Memory

Management functionality 358
deleting application information table 249
deleting cache on EADs server 301
deleting database tables 249
deleting data on EADs server 299
deleting global session information (database session

failover functionality) 194
deleting global session information (destroying HTTP

session) (database session failover functionality) 247
deleting global session information on EADs server

(session information storage destination server) 299
deleting global session information remaining on EADs

server (session information copy destination server) 300
deleting session information storage table and blank record

information table 250
destroying HTTP session (EADs session failover

functionality) 298
Detecting failure in a connection 65
Developing application by using WorkManager 421
difference between rise when you are not using Explicit

Memory Management functionality and when you are
using Explicit Memory Management functionality 309

differencesbetweensessionfailoverfunctionality 165
directly generating objects in Explicit memory block 324
displaying list of batch application information (when not

using scheduling functionality) 36

displaying list of batch application information (when using
scheduling functionality) 137

dynamically changing number of concurrent executions of
requests (CTM) 106

mechanism of 106
overview of 107

E
EADs client 155
EADs server 156
EADs session failover functionality 253, 254
Easy Setup definition file 120

ejbserver.client.ctm.RequestPriority 104
ejbserver.ctm.ActivateTimeOut 104
ejbserver.ctm.DeactivateTimeOut 104
ejbserver.ctm.QueueLength 104

EJB access functionality 51
EJB client

calling business-processing programs 119
ejbserver.application.userlog.CJLogHandler.handler-

name.appname 385
ejbserver.application.userlog.CJLogHandler.handler-

name.count 385
ejbserver.application.userlog.CJLogHandler.handler-

name.encoding 385
ejbserver.application.userlog.CJLogHandler.handler-

name.filter 385
ejbserver.application.userlog.CJLogHandler.handler-

name.formatter 385
ejbserver.application.userlog.CJLogHandler.handler-

name.level 385
ejbserver.application.userlog.CJLogHandler.handler-

name.limit 385
ejbserver.application.userlog.CJLogHandler.handler-

name.msgid 385
ejbserver.application.userlog.CJLogHandler.handler-

name.path 385
ejbserver.application.userlog.CJLogHandler.handler-

name.separator 385
ejbserver.application.userlog.Logger.logger-name.filter 386
ejbserver.application.userlog.Logger.logger-name.handlers

385
ejbserver.application.userlog.Logger.logger-name.level 386
ejbserver.application.userlog.Logger.logger-

name.useParentHandlers 386
ejbserver.application.userlog.loggers 385
ejbserver.batch.application.exit.enabled 46
ejbserver.batch.gc.watch.threshold 72
ejbserver.batch.queue.length 142
ejbserver.batch.schedule.group.name 142
ejbserver.client.ctm.RequestPriority 104
ejbserver.connectionpool.applicationAuthentication.disable

d 64
ejbserver.connectionpool.sharingOutsideTransactionScope.

enabled 64
ejbserver.container.rebindpolicy 52
ejbserver.ctm.ActivateTimeOut 104
ejbserver.ctm.DeactivateTimeOut 104
ejbserver.ctm.enabled 142
ejbserver.ctm.QueueLength 104
ejbserver.distributedtx.XATransaction.enabled 45

Index

444

ejbserver.jndi.cache 54
ejbserver.jndi.cache.interval 54
ejbserver.jndi.cache.interval.clear.option 54
ejbserver.jndi.cache.reference 64
ejbserver.jndi.namingservice.group.<Specify group

name>.providerurls 54
ejbserver.jndi.namingservice.group.list 54
ejbserver.jndi.request.timeout 54
ejbserver.jta.TransactionManager.defaultTimeOut 67
ejbserver.naming.host 54
ejbserver.naming.port 54
ejbserver.rmi.request.timeout 52
Enabling connection sharing outside transactions managed

by Application Server 64
environment settings of database 237
estimating disk space of database 182
estimating memory 179
estimating memory of EADs server 184
estimating memory used in serialize processing 179
estimating size of HTTP session attribute information 179
event log output at each stage in life cycle 328
events that occur and listeners to be operated 206
exact match specification 228, 230
example of configuring system using scheduling

functionality 133
examples of user log output of applications 388
executing applications by using batch servers 19
executing batch applications (when not using scheduling

functionality) 32
executing batch applications (when using scheduling

functionality) 136
executing batch applications by using scheduling

functionality 136
executing commands used in batch application (when not

using scheduling functionality) 37
executing commands used in batch applications (when

using scheduling functionality) 139
Explicit heap 307, 313
Explicit memory blocks 313
explicit memory block size represented by ExplicitMemory

instance 355
Explicit Memory Management 305
Explicit Memory Management functionality 307
Explicit Memory Management functionality API 352
explicit release reserving of Explicit memory block when

automatic release functionality is disabled 333
explicit release reserving of Explicit memory block when

automatic release functionality is enabled 330
extending Explicit memory block 325
extending user log output in EJB client applications 398

F
file and directory operations 46
file format of batch application 39
Fixing communication port and IP address of batch server

52
flow of executing batch applications (when not using

scheduling functionality) 21
flow of execution of batch applications (using scheduling

functionality) 131
flow of garbage collection control processing 69

flow of processing when failure occurs in database 160
flow of processing when failure occurs on EADs server 164
flow of processing when failure occurs on web server or

J2EE server (EADs session failover functionality) 163
flow of processing when failure occurs on web server or

J2EE server (database session failover functionality 159
flow-volume control 102
flow-volume control (CTM) 102

overview 102
flow-volume control of requests (CTM) 102
forced locking (schedule queue) 115
forced stopping of batch applications (when using

scheduling functionality) 137
forcefully stopping batch application (when not using

scheduling functionality) 34
functionality as an application execution platform 4
functionality executed when using session failover

functionality 175
Functionality for adjusting number of connections 66
functionality for controlling object movement to Explicit

memory blocks 337
functionality for operating and maintaining application

execution platform 5
functionality for specifying classes to be excluded from

application of Explicit Memory Management
functionality 337

functionality that defines refer-only request in HTTP
session 172

functionality that you cannot implement in batch
applications 48

functionality that you can set when using session failover
functionality 169

G
garbage collection algorithm 307
global CORBA Naming Service 94, 99
global session 150
global session information 150

H
handling authentication information when inheriting session

information 186
handler 381
handlers 376
Hitachi Trace Common Library 376
Hitachi Trace Common Library format 376
holding requests if J2EE server terminates abnormally 116
how to connect to resources 58
how to forcefully stop batch application (when not using

scheduling functionality) 34
how to set up resource adapters 62
How to start batch applications (whenscheduling

functionality is not used) 32
how to use filter/ formatter/ handler independently created

by user 398
how to use resource adapter 59
HTTP session attributes that are inherited as global session

information 151
HTTP session that is implicitly created in JSP 185

Index

445

I
impact of servlet API 186
Implementing batch application (batch application creation

rules) 39
implementing batch application (when accessing EJB) 44
implementing batch application (when connecting to

resources) 41
implementing batch applications (migrating from Java

applications) 77
implementing Java program that uses Explicit Memory

Management functionality API 352
implementing to obtain statistics of Explicit Memory

Management functionality 354
implementing to place objects in Explicit heap 352
information included in global session information 151
information in each field (instance of MemoryUsage class)

354
inheriting global session information when starting web

application 175
inheriting session information between J2EE servers 145
inheriting session information depending on objects

registered in HTTP session 152
inhibiting full garbage collection 305
inhibiting session failover functionality 169
initializing application information 298
initializing database table 245
Initializing Explicit memory block 323
integrating with JP1/AJS 80
integrity mode 160
items used for confirming whether web applications are

matching 197

J
J2EE application

locking and controlling requests for 113
overview of calling from TPBroker client or

TPBroker OTM client 124
J2EE application, replacing while system is online 111

overview 112
J2EE resource adapter 63
java.naming.factory.initial 54
Java EE functionality that you can use in asynchronous

parallel processing of thread 404
Java logging API 376
job ID 130

L
life cycle of batch application 30
Life cycle of daemon Work 419
life cycle of Explicit memory block 321
Life cycle of non-daemon Work 420
life cycle of TimerManager 412
Life cycle of WorkManager 418
listeners that operate in association with events occurring in

database session failover functionality 205
listeners that operate in association with events occurring in

EADs session failover functionality 279
load balancer 155
load balancing 118

times when load balancing takes place 118, 119
load balancing of requests

parameters in Easy Setup definition file 120
load balancing of requests (CTM) 118
load status, watching 120
locking and controlling requests 111

for J2EE application 113
for J2EE application (overview) 113
for schedule queue 114
for schedule queue (overview) 115

locking global session information 206
locking requests (CTM) 111
log format 378
logger 381
loggers 376
log output of batch application 37
Long-life objects 307
long-life Work 417

M
main updates in functionality of Application Server 09-50

15
mapping of each stage in the life cycle and output event log

328
mechanism of inhibiting full garbage collection 307
mechanism of inhibiting full garbage collection by using

Explicit Memory Management functionality 307
mechanism of Java logging 377
memory saving functionality of Explicit heap that is used in

HTTP session 348
method of scheduling thread by using TimerManager 410
methods of Logger class used in user log output 379
methods used in user log output 379
migrating from Java applications 77
migrating to environment using scheduling functionality141
Minimum value and maximum value of connection 65
monitoring and retaining request queues 121
Multiple schedule of TimerManager 413

N
Naming caching 54
Naming management 53
naming management functionality 53
negotiation processing (database session failover

functionality) 196
negotiation processing (EADs session failover

functionality) 262
Non-daemon Work 417
notes on batch application to be connected to resources 43
notes on servlet API related to HttpSession objects 186
notes on using Explicit heap in objects related to HTTP

session 370
number of concurrent executions (CTM)

mechanism of dynamically changing 106
value that can be specified 108

O
objectives of using Explicit Memory Management

functionality 307

Index

446

objects for communication with redirector 317
objects placed in Explicit heap 315
objects related to HTTP session 315
objects that are effective when placed in Explicit heap 319
objects that you can place in Explicit heap 319
operating batch application execution environment 26
operation if an object is being referenced from outside

when releasing Explicit memory block 335
operation mode of database session failover functionality

160
Operation of EJB client when communication failure occurs

in remote interface 52
operations performed when failure occurs during global

session information operation (database session failover
functionality) 209

operations performed when a failure occurs during global
session information operation (EADs session failover
functionality) 269

Optimizing sign-on in container management of DB
Connector 64

Outputting age distribution information of Survivor area 76
overview of asynchronous parallel processing of threads403
overview of batch application execution functionality 29
overview of container extension libraries 73
overview of execution environment of batch applications 21
overview of garbage collection control functionality 68
overview of management functionality by integrating with

JP1 28
overview of memory space used in Explicit Memory

Management functionality 313
overview of node switching functionality by integrating

with cluster software 28
overview of resource connections and transaction

management 56
overview of scheduling functionality 129

P
package to which CJLogRecord class belongs 379
parameters for load balancing of requests in Easy Setup

definition file 120
points to be considered when creating batch application 46
points to be considered when executing batch applications

34
points to be considered when forcefully stopping batch

application 35
points to be considered when using scheduling functionality

144
policies

create-based selection policy 95
schedule policy 95

Pool size of CallableStatement 65
Pool size of PreparedStatement 65
positioning of Explicit Memory Management functionality

310
positioning of Explicit Memory Management functionality

310
precautions for using Explicit Memory Management

functionality 370
precautions to be taken when using database session

failover functionality 252
prefix macth specification 228

prefix match specification 230
preparations for EADs server 289
prerequisite configuration for session failover functionality

154
prerequisite settings of database session failover

functionality 157
prerequisites for objects that you can place in Explicit heap

319
prerequisites for using Explicit Memory Management

functionality 312
prerequisites for using scheduling functionality 130
priority of requests, controlling 105
procedure for analyzing log that uses performance analysis

trace 302
procedure for asynchronous parallel processing of thread

403
procedure for executing batch applications using scheduling

functionality 130
procedure for operating batch servers and batch

applications 22
procedure for setting resource adapter 63
procedure for storing session information (database session

failover functionality) 159
procedure for storing session failover functionality (EADs

session failover functionality 163
procedure for user log output processing 396
process configuration for using CTM 91
processes necessary for using CTM 91
processes required for scheduling functionality 133
processing considering that same objects are registered in

different HTTP sessions 185
processing implemented in database session failover

functionality 196
processing implemented in EADs session failover

functionality 262
processing of ending batch application (when not using

scheduling functionality) 33
processing of forced stop of batch application (when not

using scheduling functionality) 35
processing of starting batch application (when scheduling

functionality is not used) 32
processing that can be implemented in batch application 39
process of releasing Explicit memory block when automatic

release functionality is disabled 333
process of releasing Explicit memory block when automatic

release functionality is enabled 331

Q
queue 85
queue name 87

R
realservername 45
reducing HTTP session 176
reducing memory usage of Explicit heap that is used in

HTTP session 348
reducing time required for processing of automatic release

of Explicit memory blocks 337
refer-only requests 172
regulation 95

Index

447

how connections are regulated 96
relation between result of negotiation processing and web

application states 196
relationship between ExplicitMemory instance and Explicit

memory block 352
releasing explicit memory blocks by using javagc command

336
releasing Explicit memory block when automatic release

functionality is disabled 333
releasing Explicit memory block when automatic release

functionality is enabled 330
replacing J2EE application while system is online 111

overview 112
request scheduling, purpose of 85
requests controlled by using schedule queues 87
requests that can be controlled by CTM, type of 85
request that cannot be scheduled by CTM 85
request transfer timeout 95
resident threads, balancing number of 108
resource connection functionality 57
Round robin search 54

S
schedule group 131
schedule policy 95
schedule queue 129
schedule queue 85, 87

basis on which to create 87
example of not sharing 90
example of sharing (by beans) 89
example of sharing (by J2EE applications) 88
forced locking 115
length 90
locking and controlling requests for 114
sharing 87
timeout-triggered locking 115, 116

schedule queue (CTM)
changing maximum number of concurrent

executions 109
checking operating status 108

schedule queue monitoring, example of 122
schedule queue monitoring expression 121
schedule queue monitoring function 121
scheduling of batch applications 127
server definition file 289
Server start/stop hook functionality 73
service lock 111
session failover functionality 147
session failover inhibitionion functionality 169
session information 147
session information storage table 236
session management using global session 150
set of manuals (function guides) 3
setting and operating batch application execution

environment when using scheduling functionality 135
Setting for building server as batch server 45
Setting for enabling light transaction functionality 45
Setting for not using SecurityManager 45
setting initial size and maximum size of Java heap 370
setting maximum time for connecting to CTM 143
setting of EADs session failover inhibition functionality 283

Setting of JavaVM operation when invoking JavaVM end
method 46

Setting of not using explicit management heap functionality
45

Setting of real server name 45
settings for inhibiting database session failover

functionality 228
settings for integrating with JP1/AJS 80
settings for integrating withJP1/AJS, BJEX and JP1/

Advanced Shell 81
settings for length of schedule queue (Easy Setup definition

file) 142
settings for port number used by Smart Agent 143
settings for schedule group name (Easy Setup definition

file) 142
settings for schedule group name (usrconf.cfg) 143
settings for using scheduling functionality(setting batch

server) 142
settings for using scheduling functionality(Settings of

command to be used with batch application) 143
settings for using Smart Agent 142
settings of number of concurrent connections, number of

concurrent executions, and connection pool size 259
Setting up batch application execution environment 25
setting up EADs server environment 289
setting up properties of application that does not include

cosminexus.xml 13
setting up timeout 257
setting user log output of J2EE applications 385
setup and operation of batch application execution

environment 25
sharing schedule queues, example of

by beans 89
by J2EE applications 88

short-life Work 417
starting EADs server 294
startup configuration file 293
states of Explicit memory block 323
state transition of batch application (when scheduling

functionality is not used) 31
state transition of TimerManager 413
status transition of batch applications (when using

scheduling functionality) 136
status transition of batch applications using scheduling

functionality 136
sub-status of Explicit memory block 323
systems executing batch applications 21
systems integrated with JP1/AJS 22
systems integrated with JP1/AJS, BJEX and JP1/Advanced

Shell 23
systems not integrated with JP1/AJS, BJEX and JP1/

Advanced Shell 24
systems using scheduling functionality 133

T
Thread pool and queue used in non-daemon Work 417
Timeout of RMI-IIOP communication 52
timeout-triggered locking (schedule queue) 115, 116
TimerManager 403
TPBroker client

overview of calling J2EE applications from 124

Index

448

TPBroker OTM client
overview of calling J2EE applications from 124

Transaction support level 65
Types of DB Connector (RAR file) 58
types of session failover functionality and differences

between types 159

U
unlocking clusters 296
use.security 45
user connected to database 234
user-created class 383
user log 376
user log functionality 376
user log output for applications 373
user log output of batch applications 394
user log output of EJB client applications 395, 396
Using explicit management heap functionality 76
using multibyte characters 28
using object release rate information of Explicit memory

block 343
Using threads 47

V
values shown by each field (instance of MemoryUsage

class) 355
vbroker.agent.enableLocator 142
vbroker.se.iiop_tp.host 52
vbroker.se.iiop_tp.scm.iiop_tp.listener.port 52

W
Waiting for acquiring connections when connections

exhaust 66
Waiting time until database connection is established 65
Warm-up of connection pool 66
when creating batch application 41
when migrating from existing batch application 41
when serialization fails and its measures 153
WorkManager 403

Y
your own filter/ formatter/ handler 383

Index

449

	Expansion Guide
	Summary of amendments
	Preface
	Contents
	1. Application Server Functionality
	1.1 Classification of functionality
	1.1.1 Functionality as an application execution platform
	1.1.2 Functionality for operating and maintaining an application execution platform
	1.1.3 Functionality and corresponding manuals

	1.2 Functionality corresponding to the purpose of the system
	1.2.1 Functionality used when executing batch applications
	1.2.2 Functionality for scheduling Enterprise Beans using CTM
	1.2.3 Other extended functionality

	1.3 Description of the functionality described in this manual
	1.3.1 Meaning of classification
	1.3.2 Example of tables describing the classification

	1.4 Main updates in the functionality of Application Server 09-50

	2. Executing Applications by Using Batch Servers
	2.1 Organization of this chapter
	2.2 Overview of the execution environment of batch applications
	2.2.1 Systems executing batch applications
	2.2.2 Procedure for operating batch servers and batch applications
	2.2.3 Setup and operation of the batch application execution environment
	2.2.4 Using multibyte characters

	2.3 Batch application execution functionality
	2.3.1 Overview of the batch application execution functionality
	2.3.2 Executing batch applications
	2.3.3 Forcefully stopping a batch application
	2.3.4 Displaying list of batch application information
	2.3.5 Log output of a batch application
	2.3.6 Executing commands used in a batch application
	2.3.7 Implementing a batch application (Batch application creation rules)
	2.3.8 Implementing a batch application (When connecting to resources)
	2.3.9 Implementing a batch application (when accessing EJB)
	2.3.10 Settings in the execution environment (batch server settings)
	2.3.11 Points to be considered when creating a batch application

	2.4 EJB access functionality
	2.4.1 Functionality that you can use with EJB access
	2.4.2 Settings in the execution environment (Batch server settings)

	2.5 Naming management functionality
	2.5.1 Naming management functionality that you can use on a batch server
	2.5.2 Settings in the execution environment (Batch server settings)

	2.6 Overview of resource connections and transaction management
	2.7 Resource connection functionality
	2.7.1 Databases that can be connected
	2.7.2 How to connect to resources
	2.7.3 Types of DB Connector (RAR file)
	2.7.4 How to use a resource adapter
	2.7.5 How to set up resource adapters
	2.7.6 Procedure for setting a resource adapter
	2.7.7 Settings in the execution environment

	2.8 Transaction management
	2.8.1 Overview of transaction management when connecting to resources
	2.8.2 Settings in the execution environment (Batch server settings)

	2.9 Garbage collection control functionality
	2.9.1 Overview of garbage collection control functionality
	2.9.2 Flow of garbage collection control processing
	2.9.3 Settings in the execution environment (batch server settings)

	2.10 Container extension libraries
	2.10.1 Overview of container extension libraries
	2.10.2 Settings in the execution environment (Batch server settings)

	2.11 JavaVM functionality
	2.11.1 Overview of JavaVM functionality
	2.11.2 Settings in the execution environment (Batch server settings)

	2.12 Migrating from Java applications
	2.12.1 Implementing batch applications (Migrating from Java applications)
	2.12.2 Settings of the execution environment (Setting batch servers)

	2.13 Integrating with JP1/AJS
	2.13.1 Settings for integrating with JP1/AJS
	2.13.2 Settings for integrating with JP1/AJS, BJEX, and JP1/Advanced Shell

	3. Scheduling and Load Balancing of Requests Using CTM
	3.1 Topics covered by this chapter
	3.2 Overview of request scheduling using CTM
	3.2.1 Purpose of request scheduling
	3.2.2 Type of requests that can be controlled by CTM
	3.2.3 Client applications that send requests
	3.2.4 Processing performed for using CTM
	3.2.5 Basis on which to create schedule queues and sharing schedule queues
	3.2.6 Length of a schedule queue

	3.3 Process configuration for using CTM
	3.3.1 Configuration and deployment of CTM processes
	3.3.2 Guidelines for deploying processes
	3.3.3 CTM daemon
	3.3.4 CTM regulator
	3.3.5 CTM domains and CTM domain managers
	3.3.6 Global CORBA Naming Service

	3.4 Flow-volume control of requests
	3.4.1 Overview of flow-volume control of requests
	3.4.2 Settings in the execution environment

	3.5 Controlling priority of requests
	3.6 Dynamically changing the number of concurrent executions of requests
	3.6.1 Mechanism of dynamically changing the number of concurrent executions
	3.6.2 Values that can be specified for the number of concurrent executions
	3.6.3 Checking the operating status of CTM schedule queues
	3.6.4 Changing the maximum number of concurrent executions for a CTM schedule queue

	3.7 Locking and controlling requests
	3.7.1 Overview of locking and controlling requests
	3.7.2 Replacing a J2EE application while the system is online
	3.7.3 Locking and controlling requests for a J2EE application
	3.7.4 Locking and controlling requests for a schedule queue
	3.7.5 Holding requests if a J2EE server terminates abnormally
	3.7.6 Specifying settings in the execution environment

	3.8 Load balancing of requests
	3.8.1 Times when load balancing takes place
	3.8.2 Watching the load status
	3.8.3 Specifying settings in the execution environment

	3.9 Monitoring and retaining request queues
	3.9.1 Overview of monitoring requests remaining in a schedule queue
	3.9.2 Example of monitoring a schedule queue
	3.9.3 Specifying settings in the execution environment
	3.9.4 Notes

	3.10 Connection with the TPBroker/OTM client by using the gateway functionality in CTM

	4. Scheduling of Batch Applications
	4.1 Organization of this chapter
	4.2 Overview of the scheduling functionality
	4.2.1 Advantages of scheduling batch applications
	4.2.2 Prerequisites for using the scheduling functionality
	4.2.3 Procedure for executing the batch applications using the scheduling functionality

	4.3 Systems using the scheduling functionality
	4.3.1 Configuring a system using the scheduling functionality
	4.3.2 Processes required for the scheduling functionality

	4.4 Setting and operating the batch application execution environment when using the scheduling functionality
	4.5 Executing batch applications by using the scheduling functionality
	4.5.1 Status transition of batch applications using the scheduling functionality
	4.5.2 Executing batch applications
	4.5.3 Forced stopping of batch applications
	4.5.4 Displaying a list of batch application information
	4.5.5 Executing the commands used in batch applications

	4.6 Migrating to the environment using the scheduling functionality
	4.7 Settings of the execution environment
	4.8 Points to be considered when using the scheduling functionality

	5. Inheriting Session Information Between J2EE Servers
	5.1 Organization of this chapter
	5.2 Overview of the session failover functionality
	5.2.1 Benefits of using the session failover functionality
	5.2.2 Types of session failover functionality

	5.3 Session management using a global session
	5.3.1 Global session information
	5.3.2 Information included in the global session information
	5.3.3 HTTP session attributes that are inherited as global session information

	5.4 Prerequisites
	5.4.1 Prerequisite configuration
	5.4.2 Prerequisite settings

	5.5 Types of session failover functionality and the differences between the types
	5.5.1 Overview of the database session failover functionality
	5.5.2 Overview of the EADs session failover functionality
	5.5.3 Differences between session failover functionality

	5.6 Functionality that you can set when using the session failover functionality
	5.6.1 Inhibiting the session failover functionality
	5.6.2 Defining refer-only requests of an HTTP session

	5.7 Functionality executed when using a session failover functionality
	5.7.1 Concurrent execution with the same session ID
	5.7.2 Inheriting global session information when starting a web application
	5.7.3 Reducing an HTTP session

	5.8 Estimating memory
	5.8.1 Estimating memory used in serialize processing
	5.8.2 Estimating size of HTTP session attribute information
	5.8.3 Estimating disk space of a database
	5.8.4 Estimating memory of an EADs server

	5.9 Precautions
	5.9.1 HTTP session that is implicitly created in JSP
	5.9.2 Processing considering that the same objects are registered in different HTTP sessions
	5.9.3 Handling authentication information when inheriting session information
	5.9.4 Impact on servlet API

	6. Database session failover functionality
	6.1 Organization of this chapter
	6.2 Application procedures
	6.3 Selecting a mode in which performance is important (disabling integrity mode)
	6.3.1 Operations performed when disabling integrity mode
	6.3.2 Deleting global session information
	6.3.3 Notes

	6.4 Processing implemented in the database session failover functionality
	6.4.1 Processing when starting an application
	6.4.2 Processing when executing a request
	6.4.3 Processing when validity of global session information expires
	6.4.4 Listeners that operate in association with events occurring in the database session failover functionality
	6.4.5 Locking global session information (when integrity mode is enabled)
	6.4.6 Operations performed when a failure occurs during global session information operation

	6.5 Definitions in cosminexus.xml
	6.6 J2EE server settings
	6.7 Web application settings
	6.8 Database settings
	6.8.1 Permissions required for connecting to a database
	6.8.2 Creating database tables
	6.8.3 Creating Application information table
	6.8.4 Creating session information storage tables and blank record information tables
	6.8.5 Environment settings of database

	6.9 DB Connector settings
	6.9.1 Setting transaction support level
	6.9.2 Specifying optional name of DB Connector
	6.9.3 Environment settings of DB Connector

	6.10 Changing settings related to the database session failover functionality
	6.10.1 Changing settings of a J2EE server and application
	6.10.2 Initializing a database table
	6.10.3 Deleting global session information (destroying HTTP sessions)

	6.11 Deleting database tables
	6.11.1 Deleting application information tables
	6.11.2 Deleting session information storage table and blank record information table

	6.12 Precautions to be taken when using database session failover functionality

	7. EADs Session Failover Functionality
	7.1 Organization of this chapter
	7.2 Preparations for using the EADs session failover functionality
	7.2.1 Application procedures
	7.2.2 Setting up a timeout
	7.2.3 Settings of number of concurrent connections, number of concurrent executions, and connection pool size

	7.3 Processing implemented in the EADs session failover functionality
	7.3.1 Processing when starting an application
	7.3.2 Processing when executing a request
	7.3.3 Processing when validity of global session information expires
	7.3.4 Operations performed when a failure occurs during global session information operation
	7.3.5 Listeners that operate in association with events occurring in the EADs session failover functionality

	7.4 Definitions in cosminexus.xml
	7.5 J2EE server settings
	7.6 Preparations for EADs server
	7.6.1 Setting up the EADs server environment
	7.6.2 Starting the EADs server
	7.6.3 Creating a cache
	7.6.4 Unlocking clusters

	7.7 Changing settings related to the EADs session failover functionality
	7.7.1 Changing J2EE server and application settings
	7.7.2 Initializing application information
	7.7.3 Destroying an HTTP session

	7.8 Deleting data on the EADs server
	7.8.1 Deleting global session information on the EADs server (session information storage destination server)
	7.8.2 Deleting global session information remaining on the EADs server (the session information copy destination server)
	7.8.3 Deleting a cache on the EADs server

	7.9 Procedure for analyzing log that uses the performance analysis trace
	7.10 Log output of EADs operations
	7.10.1 Output of the message log
	7.10.2 Output of the exception information to the message log and exception log
	7.10.3 EADs client output log

	8. Inhibiting Full Garbage Collection by Using Explicit Memory Management
	8.1 Organization of this chapter
	8.2 Overview of the Explicit Memory Management functionality
	8.2.1 Objectives of using the Explicit Memory Management functionality
	8.2.2 Mechanism of inhibiting full garbage collection by using the Explicit Memory Management functionality
	8.2.3 Prerequisites for using the Explicit Memory Management functionality

	8.3 Overview of memory space used in the Explicit Memory Management functionality
	8.4  When using J2EE server objects placed in Explicit heap
	8.4.1 Objects related to HTTP session
	8.4.2 Objects for communication with redirector

	8.5 Objects that you can optionally place in the Explicit heap in the application
	8.5.1 Conditions for objects that you can place in the Explicit heap
	8.5.2 Life cycle and state transition of objects

	8.6 Life cycle of Explicit memory block and executed processes
	8.6.1 Life cycle and states of Explicit memory blocks
	8.6.2 Initializing the Explicit memory block
	8.6.3 Directly generating objects in the Explicit memory block
	8.6.4 Extending the Explicit memory block
	8.6.5 Moving the objects from the Java heap to the Explicit memory block based on a reference relation
	8.6.6 Event log output at each stage in the life cycle

	8.7 Releasing Explicit memory blocks when the automatic release functionality is enabled
	8.7.1 Explicit release reserving of the Explicit memory block when the automatic release functionality is enabled
	8.7.2 Automatic release reserving of the Explicit memory block when the automatic release functionality is enabled
	8.7.3 The process of releasing the Explicit memory block when the automatic release functionality is enabled

	8.8 Releasing Explicit memory blocks when the automatic release functionality is disabled
	8.8.1 Explicit release reserving of the Explicit memory block when the automatic release functionality is disabled
	8.8.2 The process of releasing the Explicit memory block when the automatic release functionality is disabled

	8.9 Releasing Explicit memory blocks by using the javagc command
	8.10 Reducing time required for automatic release processing of Explicit memory blocks
	8.10.1 Checking whether the application is effective
	8.10.2 Mechanism of reducing time required for automatic release processing
	8.10.3 Using object release rate information of the Explicit memory block
	8.10.4 Notes on reducing the time required for automatic release processing

	8.11 Reducing memory usage of the Explicit heap that is used in an HTTP session
	8.11.1 Checking whether the application is effective
	8.11.2 Mechanism of reducing memory usage
	8.11.3 Points to be considered when using the memory saving functionality of the Explicit heap that is used in an HTTP session

	8.12 Implementing the Java program that uses the Explicit Memory Management functionality API
	8.12.1 Implementing to place objects in the Explicit heap
	8.12.2 Implementing to obtain statistics of the Explicit Memory Management functionality

	8.13 Settings in the execution environment
	8.13.1 Common settings for using the Explicit Memory Management functionality (setting JavaVM options)
	8.13.2 Using the Explicit Memory Management functionality by using the automatic placement configuration file
	8.13.3 Controlling application target of the Explicit Memory Management functionality by using a configuration file
	8.13.4 Settings for using the function on the J2EE server

	8.14 Precautions for using the Explicit Memory Management functionality

	9. User Log Output for Applications
	9.1 Organization of this chapter
	9.2 Overview of the user log output
	9.2.1 Overview of the user log output
	9.2.2 Mechanism of the user log output

	9.3 Log format
	9.4 Methods used in the user log output
	9.5 Implementation for user log output
	9.6 Creating and setting loggers and handlers
	9.6.1 Creating and setting loggers
	9.6.2 Creating and setting handlers
	9.6.3 Guidelines for creating and setting loggers and handlers

	9.7 How you can use your own Filter/ formatter/ handler
	9.7.1 Using library JAR
	9.7.2 Using container extension library

	9.8 Setting the user log output of J2EE applications
	9.8.1 J2EE server settings
	9.8.2 Setting security policy
	9.8.3 Examples of the user log output of applications

	9.9 Setting the user log output of batch applications
	9.10 Setting the user log output of EJB client applications (When using the cjclstartap command)
	9.11 Implementing and setting the user log output of EJB client applications (When using the vbj command)
	9.11.1 Overview of processing when using the vbj command
	9.11.2 Preparing for use
	9.11.3 Procedure for the user log output processing
	9.11.4 Extending the user log output in EJB client applications
	9.11.5  How to use Filter/ Formatter/ Handler independently created by the user

	9.12 Notes for using the user log functionality

	10. Asynchronous Parallel Processing of Threads
	10.1 Organization of this chapter
	10.2 Overview of the asynchronous parallel processing of threads
	10.2.1 Procedure for the asynchronous parallel processing of threads
	10.2.2 Java EE functionality that you can use in the asynchronous parallel processing of threads
	10.2.3 Compatibility with Timer and Work Manager for Application Server

	10.3 Asynchronous timer processing by using TimerManager
	10.3.1 Methods of scheduling threads by using TimerManager
	10.3.2 Life cycle of TimerManager
	10.3.3 State transition of TimerManager
	10.3.4 Multiple schedules of TimerManager
	10.3.5 Developing applications by using TimerManager

	10.4  Asynchronous thread processing by using WorkManager
	10.4.1 Daemon Work and non-daemon Work
	10.4.2 Thread pool and queues used in non-daemon Work
	10.4.3 Life cycle of WorkManager, daemon Work and non-daemon Work
	10.4.4 Developing applications by using WorkManager
	10.4.5 Settings in the execution environment

	Appendixes
	A. Main Updates in the Functionality of Each Version
	A.1 Main updates in the functionality of 09-00
	A.2  Main updates in the functionality of 08-70
	A.3 Main updates in the functionality of 08-53
	A.4 Main updates in the functionality of 08-50
	A.5 Main updates in the functionality of 08-00

	B. Terminology Used in this Manual

	Index

