
uCosminexus Application Server

EJB Container Functionality Guide

3020-3-Y06-10(E)

■ Relevant program products
See the manual uCosminexus Application Server Overview.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law, and USA export
control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
Active Directory is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.

AX2000 is a product name of A10 Networks, Inc.

F5, F5 Networks, BIG-IP, and iControl are trademarks or registered trademarks of F5 Networks, Inc. in the U.S. and certain other countries.

All Borland brand and product names are trademarks or registered trademarks of Borland Software Corporation in the United States and other
countries.

BSAFE is a registered trademark or trademark of EMC Corporation in the United States and/or other countries.

CORBA is a registered trademark of Object Management Group, Inc. in the United States.

HP-UX is a product name of Hewlett-Packard Development Company, L.P. in the U.S. and other countries.

IIOP is a trademark of Object Management Group, Inc. in the United States.

Linux(R) is a registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

MyEclipse is a product name of Genuitec LLC in the United States.

OMG, CORBA, IIOP, UML, Unified Modeling Language, MDA, and Model Driven Architecture are either registered trademarks or
trademarks of Object Management Group, Inc. in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates.

RSA is a registered trademark or trademark of EMC Corporation in the United States and/or other countries.

SOAP is an XML-based protocol for sending messages and making remote procedure calls in a distributed environment.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc., in the United States
and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

SQL Server is a registered trademark or a trademark of Microsoft Corporation in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VisiBroker is a trademark or registered trademark of Micro Focus IP Development Limited or its

Subsidiaries or affiliated companies in the United Kingdom, United States, and other countries.

Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

The other company names and product names are either trademarks or registered trademarks of the respective companies.

Eclipse is an open development platform for tools integration provided by Eclipse Foundation, Inc., an open source community for
development tool providers.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this document
Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used by the manufacturer,
or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use of a trademark in this
document should not be regarded as affecting the validity of the trademark.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning

Active Directory Microsoft(R) Active Directory(R)

Microsoft IIS Microsoft IIS 7.0 Microsoft (R) Internet Information Services 7.0

Microsoft IIS 7.5 Microsoft (R) Internet Information Services 7.5

Abbreviation Full name or meaning

SQL Server SQL Server 2005 Microsoft (R) SQL Server

SQL Server 2008 Microsoft (R) SQL Server 2008

Microsoft(R) SQL Server 2008 R2

SQL Server 2012 Microsoft(R) SQL Server 2012

JDBC driver of SQL Server SQL Server JDBC Driver Microsoft (R) SQL Server JDBC Driver 3.0

Microsoft(R) JDBC Driver 4.0 for SQL Server

Windows Windows Server
2008

Windows Server
2008 x86

Microsoft (R) Windows Server (R) 2008 Enterprise 32-bit

Microsoft (R) Windows Server (R) 2008 Standard 32-bit

Windows Server
2008 x64

Microsoft (R) Windows Server (R) 2008 Enterprise

Microsoft (R) Windows Server (R) 2008 Standard

Windows Server
2008 R2

Microsoft (R) Windows Server (R) 2008 R2 Enterprise

Microsoft (R) Windows Server (R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server
2012

Windows Server
2012 Standard

Microsoft(R) Windows Server(R) 2012 Standard

Windows Server
2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Datacenter

Windows XP Microsoft (R) Windows (R) XP Professional Operating
System

Windows Vista Windows Vista
Business

Microsoft (R) Windows Vista (R) Business (32 bit)

Windows Vista
Enterprise

Microsoft (R) Windows Vista (R) Enterprise (32 bit)

Windows Vista
Ultimate

Microsoft (R) Windows Vista (R) Ultimate (32 bit)

Windows 7 Windows 7 x86 Microsoft(R) Windows(R) 7 Professional (32 bit)

Microsoft(R) Windows(R) 7 Enterprise (32 bit)

Microsoft(R) Windows(R) 7 Ultimate (32bit)

Windows 7 x64 Microsoft(R) Windows(R) 7 Professional (64 bit)

Microsoft(R) Windows(R) 7 Enterprise (64 bit)

Microsoft(R) Windows(R) 7 Ultimate (64 bit)

Windows 8 Windows 8 x86 Windows(R) 8 Pro (32 bit)

Windows(R) 8 Enterprise (32 bit)

Windows 8 x64 Windows(R) 8 Pro (64 bit)

Windows(R) 8 Enterprise (64 bit)

Note that Windows 32 bit and Windows 64 bit are sometimes respectively referred to as Windows x86 and Windows x64.

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The software
described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of the terms and

conditions governing your use of the software and documentation, including all warranty rights, limitations of liability, and disclaimers of
warranty.

Material contained in this document may describe Hitachi products not available or features not available in your country.

No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in Japan.

■ Issued
Aug. 2013: 3020-3-Y06-10(E)

■ Copyright
All Rights Reserved. Copyright (C) 2013, Hitachi, Ltd.

Summary of amendments

The following table lists changes in the manual 3020-3-Y06-10(E) for uCosminexus Application Server 09-50,
uCosminexus Application Server(64) 09-50, uCosminexus Client 09-50, uCosminexus Developer 09-50,
uCosminexus Service Architect 09-50, uCosminexus Service Platform 09-50, and uCosminexus Service
Platform(64) 09-50 and product changes related to the manual:

Additions and Changes Change Location

Precautions to be taken while executing multiple threads when you invoke a remote interface
of EJB were added.

2.13.6

You can now compare the requests at the invocation source and the invocation destination by
using the root application information of the PRF trace.

2.17.3

Notes on the remote interface for annotations while implementing asynchronous methods were
added.

2.17.8

Precautions to be taken when you start the J2EE sever by specifying the -nosecurity
option in the cjstartsv command were added.

3.7.3

Notes on multi-byte characters in the classes, which configure EJB were added. 4.2.15

Precautions to be taken when acquiring a system exception with the getCause() method
were added.

4.2.21

The description on notes was moved from the release notes. 2.17.9, 4.2.15, 4.2.17, 4.2.21, 4.2.22
and 4.2.23

In addition to the above changes, minor editorial corrections have been made.

Preface
For details on the prerequisites before reading this manual, see the manual uCosminexus Application Server Overview.

■ Non-supported functionality
Some functionality described in this manual are not supported. The non-supported functionality includes:

• Audit log functionality

• Compatibility functionality

• Cosminexus Component Transaction Monitor

• Cosminexus DABroker Library

• Cosminexus Reliable Messaging

• Cosminexus TPBroker and VisiBroker

• Cosminexus Web Service - Security

• Cosminexus XML Security - Core functionality

• JP1 linkage functionality

• Management portal functionality

• Migration functionality

• SOAP applications complying with the specifications other than JAX-WS 2.1

• uCosminexus OpenTP1 linkage functionality

• Virtualized system functionality

• XML Processor high-speed parse support functionality

■ Non-supported compatibility functionality
"Compatibility functionality" in the above list refers to the following functionality:

• Basic mode

• Check of JSP source compliance (cjjsp2java) with the JSP1.1 and JSP1.2 specifications

• Database connection using Cosminexus DABroker Library

• EJB client application log subdirectory exclusive mode

• J2EE application test functionality

• Memory session failover functionality

• Servlet engine mode

• Simple Web server functionality

• Switching multiple existing execution environments

• Using the EJB 2.1 and Servlet 2.4 annotations

I

Contents

1 Application Server Functionality 1

1.1 Classification of functionality 2

1.1.1 Functionality that serves as a platform for executing applications 3

1.1.2 Functionality for operating and maintaining a platform for executing applications 4

1.1.3 Correspondence between functionality and manuals 5

1.2 Functionality corresponding to the purpose of the system 8

1.2.1 EJB container functionality 8

1.2.2 Functionality of EJB Client 9

1.3 Explanation of the functionality described in this manual 11

1.3.1 Meaning of the classification 11

1.3.2 Example table describing the classification 11

1.4 Main updates in the functionality of Application Server 09-50 13

2 EJB Container 17

2.1 Organization of this chapter 18

2.2 Executing an Enterprise Bean 19

2.2.1 Types of Enterprise Bean 19

2.2.2 Interface for Enterprise Bean 21

2.2.3 Lifecycle of Enterprise Beans 24

2.3 Checking the compliance with EJB specifications 30

2.4 Mapping of CMP fields and data types 31

2.4.1 Range of Java data type supported in CMP 31

2.4.2 Mapping the CMP field and database 32

2.4.3 Precautions for using CMP 35

2.5 Registering a reference in the JNDI name space of the EJB container 36

2.5.1 Registering a reference in the java:comp/env name space 36

2.5.2 Defining in cosminexus.xml 36

2.5.3 Setting up in the execution environment 37

2.6 Connecting to an external resource 38

2.7 Transaction management in an Enterprise Bean 39

2.7.1 Types of transaction management methods in an Enterprise Bean 39

2.7.2 BMT 39

2.7.3 CMT 40

2.7.4 Defining in cosminexus.xml 48

2.7.5 Settings in the execution environment 49

2.8 Cache models of an Entity Bean 50

2.8.1 Types of cache models of an Entity Bean 50

i

2.8.2 Defining in cosminexus.xml 50

2.8.3 Settings in the execution environment 51

2.9 Managing the Enterprise Bean pool 52

2.9.1 Pooling of Stateless Session Beans 52

2.9.2 Pooling of Entity Beans 52

2.9.3 Pooling of Message-driven Beans 53

2.9.4 Defining in cosminexus.xml 53

2.9.5 Settings in the execution environment 53

2.10 Controlling the access to the Enterprise Beans 54

2.10.1 Preventing access control to an Enterprise Bean 54

2.10.2 Settings in the execution environment 54

2.11 Setting up a timeout in the EJB container 55

2.11.1 Types of timeouts 55

2.11.2 Timeout of a Stateful Session Bean 56

2.11.3 Timeout of the EJB objects in the Entity Beans 56

2.11.4 Timeout in awaiting instance acquisition 56

2.11.5 Timeout of RMI-IIOP communication 56

2.11.6 Defining in cosminexus.xml 58

2.11.7 Implementing a timeout for RMI-IIOP communications 58

2.11.8 Settings in the execution environment 59

2.11.9 Precautions during setup of a communication timeout 60

2.12 Timer Service functionality 62

2.12.1 Overview of the Timer Service 62

2.12.2 Operation during the generation of an EJB timer and execution of a callback 66

2.12.3 Automatically generating an EJB timer 68

2.12.4 Deleting the EJB timer 71

2.12.5 Functionality for operating the Timer Service 71

2.12.6 Operations of the EJB timer and callback 73

2.12.7 Implementing an application using the Timer Service 77

2.12.8 Precautions when using the Timer Service 80

2.12.9 Settings in the execution environment 82

2.12.10 Precautions when using the Timer Service 82

2.13 Invoking the remote interface of EJB 85

2.13.1 Optimizing local invocation in the EJB remote interface 85

2.13.2 Referencing and passing the values of the EJB remote interface 86

2.13.3 Operation during the occurrence of a communication failure in the EJB remote interface 86

2.13.4 Defining in cosminexus.xml 87

2.13.5 Settings in the execution environment 88

2.13.6 Precautions concerning invocation of the EJB remote interface 89

2.14 Fixing the communication port and IP address of the EJB container (TPBroker options) 92

2.14.1 Fixing the communication port 92

Contents

ii

2.14.2 Fixing the IP address 92

2.14.3 Settings in the execution environment 92

2.15 Using the interceptor 94

2.15.1 Overview of the usage of the interceptor 94

2.15.2 Defining in an annotation or a DD 94

2.15.3 Controlling the invocation of upper level interceptor 97

2.15.4 Execution order of the interceptors 97

2.15.5 Configuring the execution environment 101

2.15.6 Notes on inceptors 101

2.16 Omitting local business interfaces (Using No-Interface view) 102

2.16.1 Overview of No-Interface view 102

2.16.2 Definition for using No-Interface view 102

2.16.3 Methods that cannot be used 103

2.16.4 Precautions during development 103

2.17 Asynchronous invocation of Session Bean 104

2.17.1 Applicability of asynchronous invocation of Session Bean 104

2.17.2 Handling transactions in asynchronous invocation 104

2.17.3 Handling root application information in asynchronous invocation 105

2.17.4 Defining the annotation used for asynchronous invocation 105

2.17.5 Specifying return values for an asynchronous method 106

2.17.6 Operation for execution status and execution result of an asynchronous method based on Future<V>
object 106

2.17.7 Definitions in cosminexus.xml 107

2.17.8 Notes on annotation when implementing an asynchronous method 109

2.17.9 Notes on operation of an asynchronous method 109

2.18 Specifications in Session Synchronization annotation 110

2.18.1 Method of setting Session Synchronization with annotation 110

2.18.2 Rules for implementation 111

2.18.3 Notes on implementation 111

2.19 Using Singleton Session Beans 112

2.19.1 Exclusive control of Singleton Session Beans 112

2.19.2 Error handling in Singleton Session Beans 112

2.19.3 Precautions when using Singleton Session Beans 113

3 EJB Client 115

3.1 Organization of this chapter 116

3.2 Functionality that can be used in an EJB client 117

3.3 Starting EJB Client Applications 119

3.3.1 Commands used for starting an EJB client application 119

3.3.2 Using the cjclstartap command 120

3.3.3 Using the vbj command 121

Contents

iii

3.3.4 Specifying the environment variables required for executing an EJB client application 122

3.3.5 Specifying the property of an EJB client application 123

3.4 Invoking an Enterprise Bean 124

3.4.1 Flow of Enterprise Bean invocation from an EJB client application 124

3.4.2 Implementation for invoking an Enterprise Bean 124

3.5 Implementing a transaction in an EJB client application 127

3.5.1 Procedure for using a transaction in the EJB client 127

3.5.2 Obtaining UserTransaction using lookup 128

3.5.3 Precautions during the implementation of a transaction in the EJB client application 128

3.6 Implementing security in an EJB client application 130

3.6.1 Preconditions for implementing security 130

3.6.2 Sample program when security is implemented 131

3.7 Obtaining RMI-IIOP stubs and interfaces 132

3.7.1 Overview of obtaining RMI-IIOP stubs and interfaces 132

3.7.2 Manual download with server management commands 132

3.7.3 Dynamic class loading 133

3.7.4 Specifying JAR files in the class path of the EJB client application 133

3.7.5 Precautions during the use of uCosminexus Client 136

3.8 System log output of an EJB client application 137

3.8.1 Overview of the system log of an EJB client application 137

3.8.2 Output destination subdirectory of the system log 137

3.8.3 Changing the output destination and output level of the system log 138

3.8.4 Sharing the log output destination subdirectory among multiple processes 140

3.8.5 Setting up the access permission of the log output destination directory 141

4 Precautions During the Implementation of Enterprise Beans 143

4.1 Organization of this chapter 144

4.2 Common precautions for all Enterprise Beans 146

4.2.1 Rules for naming an Enterprise Bean and related classes 146

4.2.2 Acquiring and releasing a resource connection 147

4.2.3 Differentiating the use of a local interface and remote interface 147

4.2.4 Usage of the local invocation optimization functionality 147

4.2.5 Method for invoking an Enterprise Bean of another J2EE application with the component interface 148

4.2.6 Method for invoking an Enterprise Bean of another J2EE application with the business interface 148

4.2.7 Precautions concerning the acquisition of a class loader 149

4.2.8 Precautions during the use of the URLConnection class 149

4.2.9 Precautions concerning loading of the native library 150

4.2.10 About the timeout of access exclusion of an Entity Bean (common for CMP and BMP) 150

4.2.11 About the occurrence of a deadlock during the use of an Entity Bean (Common for CMP and BMP) 150

4.2.12 Precautions regarding the methods of the javax.ejb.EJBContext interface 150

4.2.13 About the <prim-key-class> tag of the Entity Bean (common for CMP and BMP) property file 151

Contents

iv

4.2.14 Precautions concerning EJB specifications 152

4.2.15 About multi-byte characters 152

4.2.16 Precautions concerning transmission of Unicode supplementary characters 152

4.2.17 Precautions concerning API of EJB 3.0 152

4.2.18 Precautions when using ejb-jar.xml of EJB 3.0 or later 153

4.2.19 Precautions related to use Generics 153

4.2.20 Precautions when using EJB 3.1 155

4.2.21 About the getCause()method 155

4.2.22 Precautions concerning the name of resource reference 155

4.2.23 Precautions concerning the libraries of Application Server 155

4.3 Precautions for each type of the Enterprise Bean 157

4.3.1 Precautions during the implementation of a Stateless Session Bean 157

4.3.2 Precautions during the implementation of a Stateful Session Bean 157

4.3.3 Precautions during the implementation of an Entity Bean (BMP) 158

4.3.4 Precautions during the implementation of an Entity Bean (CMP) 159

4.3.5 Precautions during the implementation of a Message-driven Bean 160

4.3.6 Precautions during the implementation of Singleton Session Beans 160

Appendixes 161

A. uCosminexus Client 162

A.1 Functionality of uCosminexus Client 162

A.2 Installation procedure 162

A.3 Directory configuration of uCosminexus Client 163

B. Main updates in the functionalities of each version 164

B.1 Main updates in the functionality of 09-00 164

B.2 Main updates in the functionality of 08-70 167

B.3 Main updates in the functionality of 08-53 169

B.4 Main updates in the functionality of 08-50 170

B.5 Main updates in the functionality of 08-00 173

C. Glossary 177

Index 179

Contents

v

1 Application Server Functionality
This chapter describes the classification and purpose of the functionality of
Application Server and the manuals corresponding to each functionality. This chapter
also describes the functionality that is changed in this version.

1

1.1 Classification of functionality
Application Server is a product used for building an environment to execute applications mainly on a J2EE server that
is compliant with Java EE 6 and to develop applications that run in the execution environment. You can use the
variety of functionality, such as the functionality compliant with Java EE standard specifications and the functionality
independently expanded on Application Server. By selecting and using the functionality according to the purpose and
intended use, you can build and operate a highly reliable system with excellent processing performance.

The broad classifications of Application Server functionality are as follows:

• Functionality that serves as an execution platform for the applications

• Functionality that is used for operating and maintaining an execution platform for the applications

The above-mentioned functionality can be further classified according to the positioning and the intended usage of the
functionality. Application Server manuals are provided according to the classifications of the functionality.

The following figure shows the classification of the Application Server functionality and the set of manuals
corresponding to each functionality.

Figure 1‒1: Classification of the Application Server functionality and the set of manuals corresponding to
these functionality

1. Application Server Functionality

2

#1
uCosminexus Application Server is omitted from the manual names.

#2
With Application Server, you can execute SOAP Web Services and RESTful Web Services. Depending on the
objective of usage, see the following manuals other than the uCosminexus Application Server Web Service
Development Guide.

When developing and executing SOAP applications

• uCosminexus Application Server SOAP Application Development Guide

When ensuring the security of SOAP Web Services and SOAP applications

• uCosminexus Application Server XML Security - Core User Guide

• uCosminexus Application Server Web Service Security Users Guide

For details about the XML processing

• uCosminexus Application Server XML Processor User Guide

The following subsections describe the classification of functionality and the manuals corresponding to each
functionality.

1.1.1 Functionality that serves as a platform for executing applications
This functionality works as a platform for executing online business and batch business implemented as applications.
You select the functionality that you want to use according to the intended use of the system and your requirements.

You must determine whether you want to use the functionality that serves as a platform for executing the applications
before building the system or developing the applications.

The classification-wise descriptions of the functionality that serves as the platform for executing applications are as
follows:

(1) Basic functionality to operate applications (basic development functionality)
This classification includes the basic functionality for operating applications (J2EE applications). This functionality is
mainly the J2EE server functionality.

Application Server provides a Java EE 6 compliant J2EE server. The J2EE server provides functionality that is
compliant with the standard specifications as well as functionality that is unique to Application Server.

The basic development functionality can be further classified into three types according to the types of the J2EE
applications for which you use the functionality. The Application Server functionality guide manuals have been
arranged according to this classification.

The following is an overview of each classification:

• Functionality for executing Web applications (Web containers)
This classification includes the Web container functionality that serves as an execution platform for Web
applications and the functionality executed by linking Web containers and Web servers.

• Functionality for executing Enterprise Beans (EJB containers)
This classification includes the EJB container functionality that serves as a platform for executing Enterprise
Beans. This classification also includes the EJB client functionality for invoking Enterprise Beans.

• Functionality used in both Web applications and Enterprise Beans (Container common functionality)
This classification includes the functionality that can be used in the Web applications and the Enterprise Beans
that run Web containers and EJB containers respectively.

(2) Functionality to develop Web Services
This classification corresponds to the functionality that serves as an execution environment and a development
environment for Web Services.

Application Server provides the following engines:

1. Application Server Functionality

3

• JAX-WS engine, which binds SOAP Messages according to the JAX-WS specifications

• JAX-RS engine, which binds RESTful HTTP messages according to the JAX-RS specifications

(3) Application Server unique functionality expanded for improving reliability and performance
(Expansion functionality)

This classification includes functionality that is expanded uniquely for Application Server unique . This classification
also includes the functionality executed by using non-J2EE server processes such as a batch server, CTM, or database.

Various Application Server functionality is expanded to improve the reliability of the system and to execute stable
operations. Furthermore, the functionality is also expanded to operate applications other than J2EE applications (batch
applications) in a Java environment.

(4) Functionality for ensuring the system security (Security management functionality)
This classification includes the functionality for maintaining security of a system centered around Application Server.
This classification comprises functionalities such as authentication functionality for preventing access by unauthorized
users and encryption functionality for preventing information leakage in the communication channel.

1.1.2 Functionality for operating and maintaining a platform for executing
applications

This functionality is used for effectively operating and maintaining a platform for executing applications. You use this
functionality, after starting the system operations, as and when required. However, depending on the functionality, you
might have to implement the settings and applications in advance.

The classification-wise descriptions of the functionality used for operating and maintaining the platform for executing
applications are as follows:

(1) Functionality used for daily operations, such as starting and stopping the systems
(operation functionality)

This classification includes the functionality used in daily operations, such as starting or stopping systems, starting or
stopping applications, and replacing applications.

(2) Functionality for monitoring the system usage (watch functionality)
This classification includes the functionality used for monitoring the system usage and the resource depletion. This
classification also includes the functionality to output information used in monitoring the system operation history.

(3) Functionality for operating the system by linking with other products (linkage functionality)
This classification includes the functionality to be linked and implemented with other products, such as JP1 and the
cluster software.

(4) Functionality for troubleshooting (maintenance functionality)
This classification includes the functionality used for troubleshooting. This classification also includes the
functionality used for displaying information that will be referenced during the troubleshooting.

(5) Functionality for migrating from products of older versions (migration functionality)
This classification includes the functionality used for migrating a system from an older Application Server to a new
Application Server.

1. Application Server Functionality

4

(6) Functionality for compatibility with products of older version (compatibility functionality)
This classification includes the functionality used for the compatibility with the older versions of Application Server.
For the compatibility functionality, we recommend that you migrate a system using the corresponding recommended
functionality.

1.1.3 Correspondence between functionality and manuals
The functionality guides for Application Server have been arranged according to the classifications of the
functionality.

The following table describes the classifications of the functionality and the manual corresponding to each
functionality.

Table 1‒1: Classification of functionality and the manuals corresponding to each functionality

Category Functionality Manual#1

Basic development
functionality

Web container Web Container
Functionality Guide

Using JSF and JSTL

Web server linkage

In-process HTTP server

Servlet and JSP implementation

EJB container EJB Container
Functionality Guide #2

EJB client

Precautions during Enterprise Bean implementation

Naming management Common Container
Functionality Guide

Resource connection and transaction management

Invoking Application Server from OpenTP1 (TP1 in-bound linkage functionality)

JPA usage on Application Server

Cosminexus JPA provider

Cosminexus JMS provider

Using JavaMail

Using CDI on Application Server

Using Bean Validation with Application Server

Application property management

Using annotations

Formatting and deploying J2EE applications

Container extension library

Extended
functionality

Executing applications using a batch server Expansion Guide

Scheduling and load balancing requests using CTM

Scheduling batch applications

Inheriting the session information between the J2EE servers (Session failover
functionality)

Database session failover functionality

1. Application Server Functionality

5

Category Functionality Manual#1

Extended
functionality

EADs session failover functionality Expansion Guide

Controlling full garbage collection using the explicit heap functionality

Output of application user logs

Asynchronous parallel processing of threads

Security
management
functionality

Authentication by integrated user management Security Management
Guide

Authentication by application settings

Using TLSv1.2 in SSL/TLS communication

Controlling with the operation management functionality of the load balancer that
is directly connected to API

Operation
functionality

Starting and stopping the system Operation, Monitoring,
and Linkage Guide

Managing J2EE applications

Watch functionality Monitoring the operation information (Statistics collection functionality)

Monitoring resource depletion

Database audit trail linkage functionality

Output of operation information using the management commands

Automatic execution of processing by using management event report and
management action

Collecting statistical information of CTM

Output of the console log

Linkage
functionality

Operating a JP1 integrated system

Centralized monitoring of the system (Integrating with JP1/IM)

Automatic operation of system according to job (Integrating with JP1/AJS)

Audit log collection and unitary management (Integrating with JP1/ Audit
Management - Manager)

1-to-1 node switching system (linking with cluster software)

Mutual node switching system (linking with cluster software)

Node switching system for host unit management models (integrating with cluster
software)

Maintenance
functionality

Troubleshooting related functionality Maintenance and
Migration Guide

Analyzing the performance using performance analysis trace

Hitachi-specific JavaVM (hereafter, it is also abbreviated as JavaVM) functionality

Migration
functionality

Migrating from an older version of Application Server

Migrating to a recommended functionality

Compatibility
functionality

Basic mode Compatibility Guide

Servlet engine mode

Compatibility functionality with the basic and development functionality

Compatibility functionality with the extended functionality

1. Application Server Functionality

6

#1
uCosminexus Application Server is omitted from the manual names mentioned in the Manual column.

#2
This manual.

1. Application Server Functionality

7

1.2 Functionality corresponding to the purpose of the
system

With Application Server, you must select the applicable functionality according to the purpose of the system to be
built and operated.

This subsection describes each functionality for executing Enterprise Beans and describes which functionality is best
used for which system. The functionality-wise support is described for the following:

• Reliability
This functionality is best used for a system from which high reliability is recommended.
This functionality includes functionality for enhancing the system availability (stable operations) and fault
tolerance, and functionality for enhancing the security such as user authentication.

• Performance
This functionality is best used for a system that adds value to performance.
This functionality is used for performance tuning of the system.

• Operation and maintenance
This functionality is best used when efficient operation and maintenance is to be performed.

• Extendibility
This functionality is best used when a system is to be flexibly expanded or reduced, and when the system
configuration is to be changed.

• Others
The functionality is used to comply with other individual purposes.

The functionality for executing Enterprise Beans includes the Java EE standard functionality and the functionality
uniquely expanded on Application Server. When you select the functionality, also confirm the compliance with the
Java EE standard, as and when required.

1.2.1 EJB container functionality
The following table describes the functionality of an EJB container. Select the functionality according to the purpose
of the system. For details on the functionality, see the Reference location column.

Table 1‒2: Correspondence between the EJB container functionality and the purpose of the system

Functionality

Purpose of the system
Compliance
with the Java
EE Standard

Reference
location

Reliab
ility

Perform
ance

Operatio
n and

Mainten
ance

Extendi
bility Others Stand

ard
Exten
ded

Executing an Enterprise Bean -- -- -- -- -- Y Y 2.2

Checking the compliance with EJB
specifications

-- -- -- -- -- Y Y 2.3

Mapping of CMP field and data
types

-- -- -- -- -- Y Y 2.4

Registering a reference in the JNDI
name space of the EJB container#

-- -- -- Y -- Y Y 2.5

Connecting to an external resource -- -- -- Y -- Y -- 2.6

Transaction management in an
Enterprise Bean

-- -- -- -- -- Y Y 2.7

1. Application Server Functionality

8

Functionality

Purpose of the system
Compliance
with the Java
EE Standard

Reference
location

Reliab
ility

Perform
ance

Operatio
n and

Mainten
ance

Extendi
bility Others Stand

ard
Exten
ded

Cache models of an Entity Bean
(Specifying the commit option)

-- Y -- -- -- Y -- 2.8

Managing the Pool of Stateless
Session Bean, Entity Bean

-- Y -- -- -- Y Y 2.9

Controlling the access to the
Enterprise Beans

Y -- -- -- -- Y -- 2.10

Setting up a timeout in the EJB
container

-- Y -- -- -- Y Y 2.11

Timer Service functionality -- -- -- -- -- Y Y 2.12

Invoking the remote interface of EJB -- Y -- -- -- Y Y 2.13

Fixing the communication ports and
IP address of the EJB container
(TPBroker options)

Y -- -- -- -- -- Y 2.14

Using the default interceptor -- -- -- -- -- Y Y 2.15

Omitting the local business interface
(using No-Interface view)

-- -- -- -- -- Y -- 2.16

Asynchronous invocation of a
Session Bean

-- -- -- -- -- Y -- 2.17

Specifying in the annotation of the
Session Synchronization

-- -- -- -- -- Y -- 2.18

Using a Singleton Session Bean -- -- -- -- -- Y -- 2.19

Legend:
Y: Supported
--: Not supported

Note:
The functionality for which Y is specified in both the Standard and Extended columns of the Compliance with the Java EE
Standard column indicates that functionality unique to Application Server has been added to extend the functionality beyond the
Java EE standard functionality. The functionality for which Y is specified only in the Extended column indicates functionality
unique to Application Server.

#
This is implemented by using naming management.

1.2.2 Functionality of EJB Client
The following table describes the functionality of EJB clients. Select the functionality according to the purpose of the
system. For details on the functionality, see the Reference location column.

1. Application Server Functionality

9

Table 1‒3: EJB client functionality and the purpose of the system

Functionality

Purpose of the system
Compliance
with the Java
EE Standard

Reference
location

Relia
bility

Perfor
manc

e

Operatio
n and

mainten
ance

Extendi
bility Others Stand

ard
Exten
ded

Starting EJB client applications -- -- -- Y -- Y Y 3.3

Invoking an Enterprise Bean -- -- -- Y -- Y Y 3.4

Implementing a transaction in an
EJB client application

-- -- -- Y -- Y Y 3.5

Implementing security in an EJB
client application

-- -- -- Y -- Y Y 3.6

Acquiring RMI-IIOP stubs and
interfaces

-- -- -- Y -- Y Y 3.7

System log output of an EJB client
application

-- -- -- Y -- Y Y 3.8

Legend:
Y: Supported
--: Not supported

Note:
The functionality for which Y is specified in both the Standard and Extended columns of the Compliance with the Java EE
Standard column indicates that functionality unique to Application Server has been added to expand the functionality beyond the
Java EE standard functionality. The functionality for which Y is specified only in the Extended column indicates functionality
unique to Application Server.

1. Application Server Functionality

10

1.3 Explanation of the functionality described in this
manual

This section describes the meaning of the classification that is used for describing the functionality in this manual and
also provides an example table describing the classification.

1.3.1 Meaning of the classification
In this manual, each functionality is described by divided into the following five classifications. Depending on the
purpose for referencing the manual, you can select and read the required section.

• Description
This part describes the functionality. This describes the purpose, characteristics, and mechanism of the
functionality. Read the description, if you want to understand an overview of the functionality.

• Implementation
This part describes how to perform coding and how to describe a DD. Read this, when you develop applications.

• Setup
This part describes how to set up the property required for building systems. Read this, when you build a system.

• Operation
This part describes how to perform operations. This part describes the procedure for performing operations and
also the execution examples of the commands to be used. Read this, when you operate the system.

• Notes
This part describes the overall precautions to be taken when using the functionality. Make sure to read the
descriptions of the precautions to be taken.

1.3.2 Example table describing the classification
The classification of the functionality is described in a table. The title of the table is Organization of this chapter or
Organization of this section.

The following is an example table describing the classification of the functionality:

Example table describing the classification of the functionality

Table X-1 Organization of this chapter (xx functionality)

Category Title Reference location

Description What is the xx functionality? X.1

Implementation Implementing an application X.2

Defining in the DD and cosminexus.xml# X.3

Setup Setting up in the execution environment X.4

Operation Performing the operation using the xx functionality X.5

Notes Precautions when using the xx functionality X.6

#
For details on cosminexus.xml, see 11. Managing Application Properties in the uCosminexus Application Server
Common Container Functionality Guide.

Tip
Setting up the property of an application that does not include cosminexus.xml

1. Application Server Functionality

11

For an application that does not include cosminexus.xml, set up or change the property after importing the
application into the execution environment. You can also change the already specified property in the execution
environment.

An application is set up in the execution environment using the server management commands and property files.
For details on how to set up applications by using the server management commands and property files, see 3.5.2
Procedure for setting up J2EE application properties in the uCosminexus Application Server Application Setup
Guide.

The tags specified in the property files correspond to either DD or cosminexus.xml. For details on the
correspondence between DD or cosminexus.xml and the tags of the property files, see 3. Property Files used
for Setting up J2EE Applications in the uCosminexus Application Server Application and Resource Definition
Reference Guide.

Note that the property specified in each property file can also be specified in the HITACHI Application Integrated
Property File.

1. Application Server Functionality

12

1.4 Main updates in the functionality of Application
Server 09-50

This section describes the main updates in the functionality of Application Server 09-50 and the purpose of each
update.

The following contents are described in this section:

• This section gives an overview of the main updates in the functionality of Application Server 09-50. For details on
the functionality, check the description in the references. Reference manual and Reference location columns
describe the main features of a particular functionality.

• uCosminexus Application Server is omitted from the manual names mentioned in the Reference manual column.

(1) Improving development productivity
The following table describes the items that have been changed for improving development productivity.

Table 1‒4: Changes made for improving development productivity

Item Overview of changes Reference manual Reference
location

Simplifying Eclipse setup Enabled the setup of the Eclipse environment by using GUI. Application
Development Guide

1.1.5, 2.4

Debugging support using the
user extended performance
analysis trace

Enabled the creation of the user extended performance
analysis trace configuration file in a development
environment.

Application
Development Guide

1.1.3, 6.5

(2) Simplifying implementation and setup
The following table describes the items that have been changed to simplify implementation and setup:

Table 1‒5: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Reference
location

Expanding the system
configuration pattern in a
virtual environment

The types of tier (http-tier, j2ee-tier and ctm-tier) that can be
used in a virtual environment have increased. This enables
the set up of the following system configuration patterns:

• A pattern in which the Web server and J2EE server are
placed on separate hosts

• A pattern in which the front-end (Servlet, JSP) and
back-end (EJB) are deployed separately

• A pattern in which CTM is used

Virtual System
Setup and
Operation Guide

1.1.2

(3) Supporting standard and existing functionality
The following table describes the items that are changed to support standard and existing functionality:

Table 1‒6: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Reference
location

Supporting the JDBC 4.0
specifications

DB Connector now supports the HiRDB Type4 JDBC
Driver with JDBC 4.0 specifications and the JDBC Driver
of SQL Server.

Common Container
Functionality Guide

3.6.3

1. Application Server Functionality

13

Item Overview of changes Reference manual Reference
location

Modifying naming conventions
in the Portable Global JNDI
names

Added characters that can be used in the Portable Global
JNDI names.

Common Container
Functionality Guide

2.4.3

Supporting the Servlet 3.0
specifications

Updates of the HTTP Cookie name of Servlet 3.0 and the
path parameter name of URL can now be used even in
versions earlier than Servlet 2.5

Web Container
Functionality Guide

2.7

Expanding the applicability of
an application which can be
integrated with Bean Validation

Enabled validation using Bean Validation with CDI and user
applications.

Common Container
Functionality Guide

Chapter 10

Supporting JavaMail Enabled the use of the mail sending and receiving
functionality that uses APIs, and is compliant with JavaMail
1.4.

Common Container
Functionality Guide

Chapter 8

Expanding the applicability of
OSs on which you can use the
javacore command

Enabled acquisition of a thread dump of Windows by using
the javacore command

Command
Reference Guide

javacore
(acquiring
thread dump /
in Windows)

(4) Maintaining and improving reliability
The following table describes the items that have been changed for maintaining and improving reliability:

Table 1‒7: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Reference
location

Preventing exhaustion of the
code cache area

Enabled prevention of area exhaustion by checking the size
of the code cache area used in the system and changing the
threshold value before the area is exhausted.

System Design
Guide

7.1.2

Maintenance and
Migration Guide

5.7.2, 5.7.3

Definition
Reference Guide

16.1, 16.2,
16.4

Supporting an effective
application of the explicit heap
functionality

Added functionality that can control the objects to be moved
to the Explicit heap as functionality to shorten the automatic
release processing time and efficiently apply the explicit
heap functionality.

• Functionality that controls the object movement to the
Explicit memory blocks

• Functionality for specifying classes for which
application of the explicit heap functionality is to be
excluded

• Output of the object release rate information to the
Explicit heap information

System Design
Guide

7.13.6

Expansion Guide 8.2.2, 8.6.5,
8.10, 8.13.1,
8.13.3

Maintenance and
Migration Guide

5.5

Expanding the output range of
the class-wise statistical
information

Enabled the output of reference relations based on the static
field to the extended thread dump, that includes the class-
wise statistical information.

Maintenance and
Migration Guide

9.6

(5) Maintaining and improving the operation performance
The following table describes the items that have been changed for maintaining and improving operation performance:

1. Application Server Functionality

14

Table 1‒8: Changes made for maintaining and improving operation performance

Item Overview of changes Reference manual Reference
location

Supporting the EADs session
failover functionality

Supported the EADs session failover functionality, which
implements the session failover functionality by integrating
with EADs.

Expansion Guide Chapter 5,
Chapter 7

Operation using WAR Enabled deploying of the WAR application that consists of
only the WAR files, on the J2EE server.

Web Container
Functionality Guide

2.2.1

Common Container
Functionality Guide

13.9

Command
Reference Guide

cjimportwar
(Importing
WAR
application)

Starting and stopping by
synchronous execution of the
operation management
functionality

Added an option that executes the synchronous starting and
stopping of the operation management functionality
(Management Server and Administration Agent).

Operation,
Monitoring, and
Linkage Guide

2.6.1, 2.6.2,
2.6.3, 2.6.4

Command
Reference Guide

adminagentctl
(start or stop
Administratio
n Agent),
mngautorun
(set up/
canceling the
set up of
autostart and
autorestart),
mngsvrctl
(start, stop, or
set up
Management
Server)

Forcefully releasing the
Explicit memory blocks in the
explicit management heap
functionality

Enabled the execution of the process of releasing the
Explicit memory blocks with the javagc command at any
timing.

Expansion Guide 8.6.1, 8.9

Command
Reference Guide

javagc (Force
generation of
garbage
collection)

(6) Other purposes
The following table describes the items that have been changed for other purposes:

Table 1‒9: Changes made for other purposes

Item Overview of changes Reference manual Reference
location

Acquiring the definition
information

Enabled collection of only the definition file with the
snapshot (snapshot log collection) command.

Maintenance and
Migration Guide

2.3

Command
Reference Guide

snapshotlog
(collecting
snapshot log)

Log output of the
cjenvsetup command

Enabled output of the execution information of the setup
(cjenvsetup command) of Component Container
Administrator to the message log.

System Setup and
Operation Guide

4.1.4

Maintenance and
Migration Guide

4.20

1. Application Server Functionality

15

Item Overview of changes Reference manual Reference
location

Log output of the
cjenvsetup command

Enabled output of the execution information of the setup
(cjenvsetup command) of Component Container
Administrator to the message log.

Command
Reference Guide

cjenvsetup
(setup of
Component
Container
Administrator
)

Supporting BIG-IP v11 Added BIG-IP v11 to the types of the available load
balancers

System Setup and
Operation Guide

4.7.2

Virtual System
Setup and
Operation Guide

2.1

Performing the output of the
CPU time to the event log of
the explicit heap functionality

Enabled the output of the CPU time taken for the Explicit
memory block release processing, to the event log of the
explicit heap functionality.

Maintenance and
Migration Guide

5.11.3

Extending the user extended
performance analysis trace
functionality

Added the following functionality to the user extended
performance analysis trace:

• Enabled the specification of the trace target in a package
unit or class unit in addition to the usual method unit.

• Extended the range of the available event IDs.

• Released the restriction on the number of rows that can
be specified in the user extended performance analysis
trace configuration file.

• Enabled the specification of the trace acquisition level in
the user extended performance analysis trace
configuration file.

Maintenance and
Migration Guide

7.5.2, 7.5.3,
8.28.1

Improving the information
analysis when using an
asynchronous invocation of
Session Bean

Enabled the comparison of the requests of the invocation
source and invocation destination by using the root
application information of the PRF trace.

This manual 2.17.3

1. Application Server Functionality

16

2 EJB Container
This chapter explains the functionality that can be used in an EJB container that is the
execution base of the Enterprise Beans. You use the EJB container functionality
during the execution of J2EE applications that use Enterprise Beans.

Note that among the EJB container functionality, the JNDI name space functionality
and the functionality for Enterprise Bean transaction setting and access control, use
the J2EE service functionality. Also, see 3. Resource Connection and Transaction
Management in the uCosminexus Application Server Common Container
Functionality Guide.

17

2.1 Organization of this chapter
The EJB container is an execution environment that controls the execution of Enterprise Beans and provides various
services to the Enterprise Beans.

The following table describes the functionality and reference locations for the EJB container.

Table 2‒1: Functionality of EJB container and the section describing each functionality

Functionality Reference
location

Executing an Enterprise Bean 2.2

Checking the compliance with EJB specifications 2.3

Mapping of CMP fields and data types 2.4

Registering a reference in the JNDI name space of the EJB container#1 2.5

Connecting to an external resource 2.6

Transaction management in an Enterprise Bean#2 2.7

Cache models of an Entity Bean 2.8

Managing the Enterprise Bean pool 2.9

Controlling the access to the Enterprise Beans 2.10

Setting up a timeout in the EJB container 2.11

Timer Service functionality 2.12

Invoking the remote interface of EJB 2.13

Fixing the communication ports and IP address of the EJB container (TPBroker options) 2.14

Using the interceptor 2.15

Omitting the local business interface (using No-Interface view) 2.16

Asynchronous invocation of a Session Bean 2.17

Specifying in Session Synchronization annotation 2.18

Using a Singleton Session Bean 2.19

#1
This functionality is implemented based on the use of the naming management functionality of the J2EE service. For an
overview of the management functionality, see 2. Naming Management in the uCosminexus Application Server Common
Container Functionality Guide.

#2
This functionality is implemented based on the use of the transaction management functionality of the J2EE service. For an
overview of the transaction management of J2EE services, see 3. Resource Connection and Transaction Management in the
uCosminexus Application Server Common Container Functionality Guide.

Note that the EJB container functionality provided by Application Server includes Application Server-specific
functionality extended beyond the functionality provided by J2EE and Application Server-specific functionality. To
determine whether the functionality is unique to Application Server, see 1. Application Server Functionality.

For details on the functionality that you can use in EJB clients, see 3. EJB Client.

2. EJB Container

18

2.2 Executing an Enterprise Bean
This section describes the functionality used for executing Enterprise Beans.

An Enterprise Bean is a program in which the business logic is created based on the EJB architecture. It is applicable
to business-processing programs. An Enterprise Bean runs in an EJB container.

The following table describes the organization of this section:

Table 2‒2: Organization of this section (Executing an Enterprise Bean)

Category Title Reference location

Description Types of Enterprise Bean 2.2.1

Interface for Enterprise Bean 2.2.2

Lifecycle of Enterprise Beans 2.2.3

Note:
There is no specific description of Implementation, Setup, Operation, and Notes for this functionality.

2.2.1 Types of Enterprise Bean
The following table describes the Enterprise Beans that you can execute in the EJB container provided with
Application Server:

Table 2‒3: Classification of Enterprise Bean that can be executed in EJB container

Major classification Minor classification

Session Bean Stateless Session Bean

Stateful Session Bean

Singleton Session Bean

Entity Bean BMP (Bean Managed Persistence)

CMP (Container-Managed Persistence)

Message-driven Bean None

The characteristics of Enterprise Beans are as follows:

(1) Session Bean
A Session Bean is an Enterprise Bean that is generated for each session from the client and expires when the client
exits. The lifecycle of the Session Bean does not exceed the range from the beginning until the end of the usage of the
system by the user. Session Beans are classified into Stateless Session Beans, Stateful Session Beans, and Singleton
Session Beans.

(a) Stateless Session Bean

This is a model in which the state of the session is not managed. Each session from the client needs to be concluded in
one invocation of the Bean business method.

(b) Stateful Session Bean

This is a model in which the state of the session is managed. The EJB container manages the state of the session. Even
when one session from the client invokes multiple EJB business methods, the state of each session is saved in between
the invocation of the business methods.

2. EJB Container

19

(c) Singleton Session Bean

This is a model in which the state of the session is shared among multiple clients. One instance which is shared among
all the sessions is created for an application. You must determine the Bean lifecycle according to the application.

For details on Singleton Session Beans that you can use with Application Server, see 2.19 Using Singleton Session
Beans.

(2) Entity Bean
An Entity Bean expresses the entity, and as a prerequisite, must be stored (persisted) in the database. As a result, even
when the client exits, the state of the Entity Bean continues to exist in the database. The lifecycle of this Enterprise
Bean is longer as compared to that of a Session Bean. The following two management models are defined in the EJB
specifications:

(a) BMP (Bean Managed Persistence)

This is a model for managing the data persistence of Enterprise Bean business methods. The developer of the
Enterprise Bean must implement processes such as connecting to the database, assembling and executing SQL
statements.

(b) CMP (Container-Managed Persistence)

This is a model in which the EJB container manages the data persistence. The EJB container executes processes, such
as connecting to the database and storing data, therefore, these processes need not be executed by the business
methods of the Enterprise Bean. Use the method provided by the EJB container to define the mapping of the
Enterprise Bean data and the tables and columns of the database in which the data is to be stored. At the same time,
define the connection information, such as the host name and port number of the database to which you will connect,
in a resource adapter or a data source. The EJB container references this definition information, assembles the SQL
statements, and references and stores the data in the tables of the database to which you will connect.

Note that since EJB QL has been implemented in CMP 2.0 added in EJB 2.0, the process of searching the database
can be coded in the DD with syntax such as SQL, independent of the database to be used. In addition, CMR
(Container-Managed Relationship) has been implemented to establish a relationship between the Entity Beans,
therefore, the relationship between the Entity Beans can be specified in the DD and managed by the EJB container.

For details on the Java data type of the Entity Bean of the CMP functionality in the EJB container provided by
Application Server and the SQL data type of the database, see 2.4.2 Mapping the CMP field and database.

(3) Message-driven Bean
A Message-driven Bean is a bean that integrates with JMS. The EJB container invokes a Bean, when a JMS message
is received from the JMS Destination. Unlike a Session Bean or an Entity Bean, since the Message-driven Bean does
not have a home interface and a component interface, it cannot be invoked directly from the client.

For a Message-driven Bean, the interfaces used for implementation in the EJB version 2.0 are different from the
interfaces used for implementation in the EJB version 2.1 or later versions.

• In EJB 2.0, the following interfaces are implemented:

• javax.ejb.MessageDrivenBean interface

• javax.jms.MessageListener interface

• In EJB 2.1 or later versions, the following interfaces are implemented:

• javax.ejb.MessageDrivenBean interface

• Interface of any message listener provided by EIS

The versions of the corresponding connector are different in EJB 2.0 and in EJB 2.1 or later versions. The following
table describes the correspondence between the versions of EJB and the connector:

2. EJB Container

20

Table 2‒4: Correspondence between the EJB and connector versions

EJB version
Connector version

Connector 1.0 Connector 1.5

EJB 2.0 Y N

EJB 2.1 or later Y --

Legend:
Y: Messages sent from Cosminexus Reliable Messaging or TP1/Message Queue - Access can be received.
--: Messages sent by using the listener interfaces of any format can be received.
N: Messages sent from the corresponding resource adapter cannot be received.

Furthermore, the following table describes the functionality that is different in EJB 2.0 and EJB 2.1 or later versions:

Table 2‒5: Functionality that is different in EJB 2.0 and EJB 2.1 or later versions

Functionality EJB 2.0

EJB 2.1 or later

When using the functionality
of Connector 1.0

When using the
functionality of Connector

1.5

Connectable resource adapters Resource adapter in compliance
with the Connector 1.0
specifications.

Resource adapter in compliance
with the Connector 1.0
specifications.

Resource adapter that is
compliant with the Connector
1.5 specifications, and in
which Inbound has been
defined.

Usable EIS • Cosminexus Reliable
Messaging

• TP1/Message Queue -
Access

• Cosminexus Reliable
Messaging#2

• TP1/Message Queue -
Access#2

Any EIS (including JMS) that
supports Connector 1.5.#1

Defining a queue Define in queue definition file. Define in queue definition file. Define in the objects to be
managed within the DD of
resource adapters (ra.xml).

JMS version JMS1.0.2b JMS1.0.2b JMS1.1

Managing a connection in a
message listener

Specify in the application
attribute (pooled-instance).
Same as the method-ready pool
of the Message-driven Bean.

Specify in the application
attribute (pooled-instance).
Same as the method-ready pool
of the Message-driven Bean.

Differ depending on the used
resource adapters.

#1
Cosminexus Reliable Messaging or TP1/Message Queue - Access does not support the Connector 1.5 specifications. Therefore,
you cannot use the functionality of Connector 1.5.

#2
You cannot specify a message-selector tag in the Deployment Descriptor of EJB2.1. When using the message selector, make
changes to receive messages from the Cosminexus JMS provider.

2.2.2 Interface for Enterprise Bean
This subsection describes the interfaces that you can use for implementing an Enterprise Bean. The following table
describes the list of usable interfaces:

2. EJB Container

21

Table 2‒6: List of usable interfaces

Interface name Description

Remote home interface#1 This interface that is specified in EJB specifications 1.1 or later versions
inherits javax.ejb.EJBHome and is used for a remote client. This
interface is mainly used for acquiring Enterprise Bean instances.

Remote component interface#2 This interface that is specified in EJB specifications 1.1 or later versions
inherits javax.ejb.EJBObject and is used for a remote client. This
interface mainly defines the business methods.

Remote business interface This interface is used to define the business methods for invoking the
Enterprise Beans from a remote client. The defined interface need not be
inherited.

Local home interface This interface that is specified in EJB specifications 2.0 or later versions
inherits javax.ejb.EJBLocalHome and is used for a local client.
This interface is mainly used for acquiring Enterprise Bean instances.

Local component interface This interface that is specified in EJB specifications 2.0 or later versions
inherits javax.ejb.EJBLocalObject and is used for a local client.
This interface mainly defines the business methods.

Local business interface This interface is used to define the business methods for invoking the
Enterprise Beans from a local client. The defined interface need not be
inherited.

#1
This interface is called a home interface in EJB specifications 1.1.

#2
This interface is called a remote interface in EJB specifications 1.1.

In this manual, multiple interfaces are grouped together and are given a general name. The following table describes
the general names for the interfaces that are used in the descriptions of this manual:

Table 2‒7: General names of interfaces

General name of the interface Description

Home interface This is the general name for the following interfaces:

• Remote home interface

• Local home interface

Component interface This is the general name for the following interfaces:

• Remote component interface

• Local component interface

Business interface This is the general name for the following interfaces:

• Remote business interface

• Local business interface

Remote interface This is the general name for the following interfaces:

• Remote home interface

• Remote component interface

• Remote business interface

This name may, however, indicate only the remote component interface and the remote business
interface.

Local interface This is the general name for the following interfaces:

• Local home interface

2. EJB Container

22

General name of the interface Description

Local interface • Local component interface

• Local business interface

This name may, however, indicate only the local component interface and the local business
interface.

These interfaces are implemented for a Session Bean or an Entity Bean. A Message-driven Bean does not have these
interfaces.

With a Session Bean, you can use the No-Interface view to invoke from the local interface. In such cases, you can
omit the implementation of the interface. For details on the No-Interface view, see 2.16 Omitting local business
interfaces (Using No-Interface view).

(1) Remote interface
In a remote interface, the Enterprise Beans are invoked by RMI-IIOP communication, based on the provisions in the
Java RMI interface. The Enterprise Beans existing in a JavaVM of another client can be invoked, but that causes a
communication overhead at run time. The arguments and the return values during execution of the method are passed
by value.

(2) Local interface
In a local interface, the Enterprise Beans are invoked by invoking the Java methods and communication does not
occur. This interface can be used only when the clients exist in the same J2EE application. Furthermore, when using a
local interface, unlike a remote interface, the arguments and the return values during execution of the method are
passed by reference.

(3) Functionality supporting a business interface
The following functionality can be used even when you use a business interface:

• Functionality for optimizing local invocation
For details on the functionality, see 2.13.1 Optimizing local invocation in the EJB remote interface.

• Pass by reference functionality of remote interface values
For details on the functionality, see 2.13.2 Referencing and passing the values of the EJB remote interface.

• Timeout during RMI-IIOP communication
For details on the functionality, see 2.11.5 Timeout of RMI-IIOP communication.
Specify the communication timeout in the definition file or in API. The precautions while setting the timeout,
when a business interface is used, are described below:

• When specifying in the definition file
When using the DI functionality, the communication timeout property of JNDI is also enabled, since JNDI is
used in the EJB container.

• When specifying in API
You can specify in the thread, but not in the object.

When a timeout occurs, exception java.rmi.RemoteException (org.omg.CORBA.TIMEOUT) is thrown
if the business interface inherits java.rmi.Remote, and exception javax.ejb.EJBException
(RemoteException (org.omg.CORBA.TIMEOUT)) is thrown if the business interface does not inherit
java.rmi.Remote.

• EJB check functionality
For details on the functionality, see 2.3 Checking the compliance with EJB specifications.

• Method timeout functionality for monitoring the J2EE application execution time
For details on the functionality, see 5.3.2 Monitoring the execution time of the J2EE applications in the
uCosminexus Application Server Operation, Monitoring, and Linkage Guide.
When invoking the EJB methods with annotation specified, you can apply the timeout value for each method as
described in the table below:

2. EJB Container

23

Table 2‒8: Applicability of a timeout for Enterprise Bean

Interface Method
Stateless

SessionBean

Stateful

SessionBean
Singleton

Session Bean
Message

DrivenBean

Persistence

API

Business interface Business
method#1

Y Y Y N/A N/A

Home or
component
interface#2

create N Y N/A N/A N/A

Business
method

Y Y N/A N/A N/A

remove N Y N/A N/A N/A

javax.ejb.Tim
ed Object

ejbTimeout Y N/A Y N/A N/A

Legend:
Y: Applied
N: Not applied
N/A: Not applicable

#1
Includes methods, wherein the @Timeout annotation and the @Remove annotation are appended.

#2
Indicates interfaces that use @RemoteHome or @LocalHome.

(4) Invoking the Enterprise Bean of a business interface
The case of invoking a business interface running in another J2EE application on the same J2EE server and that of
invoking a business interface running in another J2EE server are explained below:

In either case, the invoking EJB-JAR file or the WAR file contains the business interface of the invoked Enterprise
Bean as well as the user-created classes used in the interface. Furthermore, lookup is performed by using either the
name that is bound automatically to the JNDI name space (Portable Global JNDI name or a name starting with
HITACHI_EJB) or the optional name set up in the user-specified name space functionality. For details on the names
used for lookup, see 2.5 Look up by the name starting with HITACHI_EJB in the uCosminexus Application Server
Common Container Functionality Guide.

• When invoking the Enterprise Bean of a business interface running in another J2EE application on the
same J2EE server
Include the business interface of the invoked Enterprise Bean as well as the user-created classes used in the
interface in the invoking EJB-JAR file or the WAR file.
If the ejbserver.rmi.localinvocation.scope key of the user property file for the J2EE server is
"None", acquire the stubs by using the cjgetstubsjar command for the invoked Enterprise Bean and include
these stubs in the invoking EAR file. #

• When invoking the Enterprise Bean of a business interface running in another J2EE server
Acquire the stubs by using the cjgetstubsjar command for the invoked Enterprise Bean and include these
stubs in the invoking EAR file.#

#
If you use the dynamic class loading functionality for invoking the business interface between applications,
you need not include the stubs. However, from the performance perspective, Hitachi does not recommend the
use of the dynamic class loading functionality.

2.2.3 Lifecycle of Enterprise Beans
The lifecycle for various types of Enterprise Beans is explained below:

2. EJB Container

24

(1) Lifecycle of Session Beans
The lifecycle of a Session Bean is different for a Stateless Session Bean and for a Stateful Session Bean.

(a) In the case of a Stateless Session Bean

The following figure illustrates the lifecycle of a Stateless Session Bean.

Figure 2‒1: Lifecycle of a Stateless Session Bean

does not exist:
State when the Stateless Session Bean does not exist

method-ready pool:
State when the Stateless Session Bean exists in an executable state in the method-ready pool

(b) In the case of a Stateful Session Bean

The following figure illustrates the lifecycle of a Stateful Session Bean.

2. EJB Container

25

Figure 2‒2: Lifecycle of a Stateful Session Bean

does not exist:
State when the Stateful Session Bean does not exist

method-ready:
State when the Stateful Session Bean is activated and exists in an executable state (no transaction) in the method-
ready pool

method-ready in TX:
State when the Stateful Session Bean is activated and exists in an executable state (transaction exists) in the
method-ready pool

(c) In the case of a Singleton Session Bean

The following figure illustrates the lifecycle of a Singleton Session Bean.

2. EJB Container

26

Figure 2‒3: Lifecycle of a Singleton Session Bean

does not exist:
A state when the Singleton Session Bean does not exist

method-ready:
A state when the Singleton Session Bean is ready for execution

An EJB container initializes Singleton Session Bean. Note that you can explicitly define the initialization time during
an application development, by specifying the annotation.

• To initialize a Singleton Session Bean in the starting process of an application, specify the @Startup annotation
in the Singleton Session Bean class. With this, the initialization process is executed before a request is sent from
an external client.

• By specifying the @DependsOn annotation, you can define the creation order of a Singleton Session Bean and
other components of the Singleton Session Bean.

Once initialized, the Singleton Session Bean instance exists until the application stops. Operations of an EJB
container, when a Singleton Session Bean is destroyed, are as follows:

• If the callback interceptor method that executes the PreDestroy process exists, it invokes the appropriate
method. During the invocation of this method, the state is maintained so that the EJB container can use all the
Beans for which the dependency is defined using DependOn.

• On the completion of the PreDestroy process, the EJB container deletes the instances of the Singleton Session
Bean.

(2) Lifecycle of Entity Beans
The following figure shows the lifecycle of an Entity Bean:

2. EJB Container

27

Figure 2‒4: Lifecycle of a Entity Bean

does not exist:
State when the Entity Bean does not exist

pool:
State when the Entity Bean is passivated and exists in the passive pool

ready:
State when the Entity Bean is activated and exists in the ready pool

(3) Lifecycle of Message-driven Beans
The following figure shows the lifecycle of a Message-driven Bean.

2. EJB Container

28

Figure 2‒5: Lifecycle of a Message-driven Bean

does not exist:
State when the Message-driven Bean does not exist

method-ready pool:
State when the Message-driven Bean is in the method-ready state and exists in the ServerSession pool

2. EJB Container

29

2.3 Checking the compliance with EJB specifications
In the EJB container, whenever a J2EE application is started, a check is performed to see whether each Enterprise
Bean conforms to the specifications of EJB. As a result of this check, if a J2EE application contains an Enterprise
Bean that does not conform to the specifications, the J2EE application fails to start. At this point, an error message is
displayed.

The EJB checking process runs at the following times:

• When a J2EE application is imported for the first time on a J2EE server and started.

• When the configuration of a J2EE application is changed (including changes by using the redeploy functionality)
and then the application is started.

• When a J2EE server is started for the first time after upgrade installation.

If the J2EE application starts successfully at these times, the EJB check does not run during the subsequent start and
stop operation of the J2EE application.

2. EJB Container

30

2.4 Mapping of CMP fields and data types
This section describes the mapping of the CMP fields and data types.

In a CMP field, the specifiable range and the availability to specify in the primary key is fixed for each Java data type.
Furthermore, the support for the Java data type and the SQL data type of the database will differ for each type of the
database.

The following table describes the organization of this section:

Table 2‒9: Organization of this section (Mapping CMP field and data type)

Category Title Reference location

Description Range of Java data type supported in CMP 2.4.1

Mapping the CMP field and database 2.4.2

Notes Precautions for using CMP 2.4.3

Note:
There is no specific explanation of Implementation, Setup, and Operation for this functionality.

2.4.1 Range of Java data type supported in CMP
The following table describes the range of Java data types supported in the CMP Entity Bean of an EJB container and
also describes the availability of specifications for the primary key:

Table 2‒10: Range of Java data types supported in CMP

Java data type Range of values Specification to the primary key

boolean true, false N

java.lang.Boolean Y

byte -128 to 127 N

java.lang.Byte Y

char '\u0000' to '\uffff'(0 to 65535) N

java.lang.Character Y

short -32768 to 32767 N

java.lang.Short Y

int -2147483648 to 2147483647 N

java.lang.Integer Y

long -9223372036854775808 to 9223372036854775807 N

java.lang.Long Y

float# 1.40239846e-45 to 3.40282347e38 N

java.lang.Float# Y

double# 4.94065645841246544e-324 to 1.79769313486231570e308 N

java.lang.Double# Y

byte[] 1Byte to 2147483647Byte N

java.lang.String -- Y

2. EJB Container

31

Java data type Range of values Specification to the primary key

java.math.BigDecimal -- N

java.sql.Date -- N

java.sql.Time 00:00:00 to 23:59:59 N

java.sql.TimeStamp -- N

Serializable type -- N

Legend:
Y: Can be specified for the primary key
N: Cannot be specified for the primary key
--: Not applicable

#
The floating points might be rounded off.

2.4.2 Mapping the CMP field and database
This section describes the mapping of the CMP field and database. The mapping will differ for each type of database.

(1) Mapping for HiRDB
The following table describes the mapping of the CMP field and database for HiRDB.

In the following table, Java data type is the data type of Java supported by CMP, JDBC data type is the
java.sql.Types. data type of the JDBC corresponding to the data type of Java, and SQL data type is the DB
column type recommended for mapping with the Java data type:

Table 2‒11: Mapping of the CMP field and database (when using HiRDB)

Java data type JDBC data type SQL data type

boolean SMALLINT SMALLINT

java.lang.Boolean

byte SMALLINT SMALLINT

java.lang.Byte

char#1 CHAR CHAR(4)

java.lang.Character#

1

short SMALLINT SMALLINT

java.lang.Short

int INTEGER INTEGER

java.lang.Integer

long DECIMAL DECIMAL(22)

java.lang.Long

float REAL REAL, SMALLFLT

java.lang.Float

double FLOAT DOUBLE PRECISION

2. EJB Container

32

Java data type JDBC data type SQL data type

java.lang.Double FLOAT DOUBLE PRECISION

byte[]#2 LONGVARBINARY BLOB

java.lang.String#1 VARCHAR VARCHAR(m)

CHAR(n)

MVARCHAR(m)

MCHAR(n)

NVARCHAR(x)

NCHAR(y)#3

java.math.BigDecimal DECIMAL DECIMAL(m,n)#4

java.sql.Date DATE DATE#5

java.sql.Time TIME TIME

java.sql.TimeStamp#6 CHAR CHAR(29)

Serializable type#2 LONGVARBINARY BLOB

#1
For details on the precautions to be taken when using the Fixed-length string SQL type, see 2.4.3 Precautions for using CMP.

#2
HiRDB BLOB maximum value 2147483647 bytes
However, the maximum data size that can be handled depends on the upper limit for the JDBC driver. When you use HiRDB
Type4 JDBC Driver, there are no JDBC driver-based restrictions.

#3
The following are the respective ranges of m, n, x, and y:
m: 1 to 32000, n: 1 to 30000, x: 1 to 16000, y: 1 to 15000

#4
The following are the respective ranges of m and n:
m: 1 to 29, n: 1 to 29

#5
The DATE range is from 0001/01/01 to 9999/12/31.

#6
Saved as a string with the format yyyy-mm-dd hh:mm:ss.fffffffff (JDBC date escape).

(2) Mapping list for Oracle
The following table describes the mapping of the CMP field and the database for Oracle.

In the following table, Java data type is the data type of Java supported by CMP, JDBC data type is the
java.sql.Types. data type of the JDBC corresponding to the data type of Java, and SQL data type is the DB
column type that is recommended for the mapping with the Java data type:

Table 2‒12: Mapping of the CMP field and database (when using Oracle)

Java data type JDBC data type SQL data type

boolean NUMERIC NUMBER(38)

java.lang.Boolean

byte NUMERIC NUMBER(38)

java.lang.Byte

char#1 CHAR CHAR(4)

2. EJB Container

33

Java data type JDBC data type SQL data type

java.lang.Character#

1
CHAR CHAR(4)

short NUMERIC NUMBER(38)

java.lang.Short

int NUMERIC NUMBER(38)

java.lang.Integer

long NUMERIC NUMBER(22)

java.lang.Long

float NUMERIC NUMBER

java.lang.Float

double#2 FLOAT FLOAT(126)

java.lang.Double#2

byte[]#3 LONGVARBINARY LONG RAW

java.lang.String#1 VARCHAR VARCHAR(m)

CHAR(n)

LONG#4

java.math.BigDecimal NUMERIC NUMBER(m,n)#5

java.sql.Date DATE DATE#6#7

java.sql.Time CHAR CHAR(8)#8

java.sql.TimeStamp TimeStamp DATE#7 #9

Serializable type#3 LONGVARBINARY LONG RAW

Note:
The BLOB data type mapped in java.sql.Types.BLOB and the CLOB data type mapped in java.spl.Types.CLOB
cannot be handled.

#1
For details on the precautions to be taken for using the Fixed-length string SQL type, see 2.4.3 Precautions for using CMP.

#2
Range of Oracle FLOAT(126) 1E-125 to 9.9 ... 9E125
The value might be rounded off.

#3
Oracle LONG RAW maximum value 2 gigabytes.
However, the maximum data size that can be handled depends on the upper limit for the JDBC driver.

#4
The following are the respective ranges of m and n:
m = 1 to 4000, n = 1 to 2000
Furthermore, if "" (blank string of zero length) is saved in Oracle, the value will be converted to NULL.

#5
The following are the respective ranges of m and n:
m = 1 to 38, n = -84 to 127

#6
The DATE range is from -4712/01/01 to 9999/12/31.

2. EJB Container

34

#7
The minus value cannot be handled correctly between Java-JDBC drivers for data corresponding to B.C (Before Christ).
Therefore, the value cannot be guaranteed.

#8
Saved as a string with format hh:mm:ss (JDBC date escape).

#9
The range of DATE is from -4712/01/01 00:00:00 to 9999/12/31 23:59:59.

2.4.3 Precautions for using CMP
This section describes the precautions for using CMP in the EJB container of Application Server.

• When using a fixed-length string SQL type in the CMP field
When using a fixed-length string SQL type (CHAR type of HiRDB or Oracle), the number of characters that are
less than the required number of digits might be filled up with spaces when they are saved in the database.
Therefore, the spaces might be added at the end of the data during the data creation. Pay proper attention when
using this type.

• When using a fixed-length string SQL type in the primary key
When using a fixed-length string SQL type (CHAR type of HiRDB or Oracle) in a key, the number of characters
that are less than the required number of digits will be filled up with spaces when they are saved in the database.
Therefore, the value might differ from the data during the data creation, and the target Entity Bean might not be
acquired. Pay proper attention when using this type.

• Support when an exception occurs because of the remove method
If an exception occurs while the remove method is running, data is retained on the database. Delete the data
manually.

2. EJB Container

35

2.5 Registering a reference in the JNDI name space of
the EJB container

This section describes the registration of a reference in the JNDI name space of the EJB container.

The EJB container supports registration of references in the java:comp/env name space.

The following table describes the organization of this section:

Table 2‒13: Organization of this section (Registering a reference in the JNDI name space of the EJB
container)

Category Title Reference location

Description Registering a reference in the java:comp/env name space 2.5.1

Implementation Defining in cosminexus.xml 2.5.2

Setup Setting up in the execution environment 2.5.3

Note:
There is no specific explanation of Operation and Notes for this functionality.

For details on the naming management functionality that can be used in Application Server, see 2. Naming
Management in the uCosminexus Application Server Common Container Functionality Guide.

2.5.1 Registering a reference in the java:comp/env name space
The EJB container supports registration of references in the java:comp/env name space. Hitachi recommends that you
register the corresponding reference in the name space shown within brackets (()).

• Environment entry (java:comp/env)

• EJB home object reference (java:comp/env/ejb)

• Business interface reference (java:comp/env/ejb)

• JMS (java:comp/env/jms)

• JDBC data source (java:comp/env/jdbc)

• JavaMail session (java:comp/env/mail)

• uCosminexus TP1 Connector (java:comp/env/eis)

• JavaBeans resource (java:comp/env/bean)

As a result, indirect lookup can be performed by using the JNDI name space of java:comp/env.

2.5.2 Defining in cosminexus.xml
The definition of reference mapping is specified in the <ejb-jar> tag of cosminexus.xml.

When using java:comp/env, you must define the reference mapping in the reference-source application. The tag
to be specified is different for each type of target Enterprise Bean.

The following table describes the definition of reference mapping in cosminexus.xml:

Table 2‒14: Definition of reference mapping in cosminexus.xml

Items Tag to be specified Setting contents

Resolving the references
of the resources

In the case of a Session Bean
<session>-<resource-ref> tag
<session>-<resource-env-ref> tag

• Set up the information of the
resource in the
<resource-ref> tag.

2. EJB Container

36

Items Tag to be specified Setting contents

Resolving the references
of the resources

In the case of an Entity Bean
<entity>-<resource-ref> tag
<entity>-<resource-env-ref> tag

In the case of Message Driven Bean
<message-driven>-<resource-ref> tag
<message-driven>-<resource-env-ref> tag

• Set up the information of the
resource environment in the
<resource-env-ref>
tag.

For details on the tags to be specified, see 2.2.2 Details of EJB-JAR properties in the uCosminexus Application Server
Application and Resource Definition Reference Guide.

2.5.3 Setting up in the execution environment
The reference mapping can also be set up in the execution environment. Specify the settings in the J2EE application
imported into a J2EE server, and execute the setup only when you set up or change the property of a J2EE application
that does not include cosminexus.xml.

A J2EE application is set up in the execution environment using the server management commands and the property
files. Use the following property files to define the reference mapping:

Table 2‒15: Property files used to define reference mapping

Setting target Attribute files

Session Bean Session Bean attribute file

Entity Bean Entity Bean attribute file

Message-driven Bean Message-driven Bean attribute file

The tags specified in the property files correspond to the DD or cosminexus.xml. Note that the tags to be
specified differ depending on whether the reference of the Enterprise Bean or the reference of the resource is to be
resolved.

For details on the cosminexus.xml settings, see 2.5.2 Defining in cosminexus.xml.

2. EJB Container

37

2.6 Connecting to an external resource
For details on the resources that you can use in an EJB container and also about J2EE resources, see 3. Resource
Connection and Transaction Management in the uCosminexus Application Server Common Container Functionality
Guide.

2. EJB Container

38

2.7 Transaction management in an Enterprise Bean
This section describes the transaction management in an Enterprise Bean.

The transactions of an Enterprise Bean are managed either by the Enterprise Bean or by the EJB container.

The following table describes the organization of this section:

Table 2‒16: Organization of this section (Transaction management in an Enterprise Bean)

Category Title Reference location

Description Types of transaction management methods in an Enterprise Bean 2.7.1

BMT 2.7.2

CMT 2.7.3

Implementation Defining in cosminexus.xml 2.7.4

Setup Settings in the execution environment 2.7.5

Note:
There is no specific description of Operation and Notes for this functionality.

For details on the transaction management functionality that you can use in Application Server, see 3.4 Managing
transactions in the uCosminexus Application Server Common Container Functionality Guide.

2.7.1 Types of transaction management methods in an Enterprise Bean
The following two methods of transaction management are used for the Enterprise Beans supported by the EJB
container:

• BMT (Bean Managed Transaction)

• CMT (Container-Managed Transaction)

This functionality is implemented based on the transaction management functionality of the J2EE service.

Note that the methods of transaction management are set as attributes (properties) of the Session Beans or the
Message-driven Beans included in a J2EE application. For details on the J2EE application settings, see 2.7.4 Defining
in cosminexus.xml.

For details on the transaction management, see 3. Resource Connection and Transaction Management in the
uCosminexus Application Server Common Container Functionality Guide.

2.7.2 BMT
BMT is a model that performs transaction management in an Enterprise Bean. The BMT target is the Session Beans
and the Message-driven Beans (BMT does not target the Entity Beans, the CMT target is always Entity Beans).

During BMT, use javax.transaction.UserTransaction in the business methods of the Enterprise Bean
and perform the following operations:

1. Start the transaction

2. Update the resource manager

3. Commit or roll back the transaction

In a Stateless Session Bean, one transaction needs to be concluded (committed or rolled back) in one business method.
In a Message-driven Bean, a transaction needs to be concluded (committed or rolled back) in one of the following
methods: The methods differ depending on the versions of EJB.

• onMessage method (for EJB 2.0)

2. EJB Container

39

• Method of any message listener (for EJB 2.1 or later versions)

On the other hand, in a Stateful Session Bean, many business methods can be included in a single transaction scope.
At this point, the EJB container maintains the relationship between the Bean instance and the transaction. The
following figure shows the Stateful Session Bean in BMT:

Figure 2‒6: Stateful Session Bean in BMT

Table 2‒17: Transaction control in BMT

Client-side transactions Transactions of Bean instance Transactions connected to the methods

-- -- --

T1 -- --

-- T2 T2

T1 T2 T2

Legend:
--: Either a transaction is not started or is not mapped
T1: Transaction started in the client
T2: Transaction started in the Bean

! Important note

If a transaction is not concluded and a new transaction is started by using the UserTransaction.begin method, the
EJB container throws javax.transaction.NotSupportedException.

2.7.3 CMT
CMT is a model that performs transaction management in the EJB container. The CMT target is the Session Beans,
Entity Beans, and the Message-driven Beans. In CMT, you specify the transaction attributes for each method of Bean.
Note that the transaction attributes are set as attributes (properties) of the Session Beans, Entity Beans, or the
Message-driven Beans included in a J2EE application. For details on the J2EE application settings, see 2.7.4 Defining
in cosminexus.xml.

When a transaction cannot be committed, the EJB container performs the following processing:

1. Logging of application errors

2. Transaction rollback

3. Destroying Bean instances

4. Throwing exception java.rmi.RemoteException in the client invoked by the remote component interface,
and exception javax.ejb.EJBException in the client invoked either by the local component interface or by
the business interface. If, however, the remote business interface inherits java.rmi.Remote, the exception
java.rmi.RemoteException is thrown.

(1) Types of transaction attributes and their behavior
The behavior of transaction attributes is explained in the figures below, for each type of transaction attribute:

2. EJB Container

40

■ NotSupported attribute

If the client invokes the business methods of an Enterprise Bean within the transaction scope, the transaction context
is not propagated in the Enterprise Bean. Also, if the client invokes the business methods of the Enterprise Bean
outside the transaction scope, the transaction context is again not propagated in the Enterprise Bean.

The following figure shows the behavior of the NotSupported attribute:

Figure 2‒7: NotSupported attribute

■ Required attribute

If the client invokes the business methods of an Enterprise Bean within the transaction, the transaction context is
propagated in the Enterprise Bean, and the business methods of the Enterprise Bean enter the transaction scope of the
caller. If the client invokes the business methods of the Enterprise Bean outside the transaction scope, a new
transaction is started in the Enterprise Bean.

The following figure shows the behavior of the Required attribute:

Figure 2‒8: Required attribute

2. EJB Container

41

■ Supports attribute

If the client invokes the business methods of an Enterprise Bean within the transaction, the transaction context is
propagated in the Enterprise Bean, and the business methods of the Enterprise Bean enter the transaction scope of the
caller. If the client invokes the business methods of the Enterprise Bean outside the transaction scope, the transaction
context is not propagated in the Enterprise Bean.

The following figure shows the behavior of the Supports attribute:

Figure 2‒9: Supports attribute

■ RequiresNew attribute

If the client invokes the business methods of an Enterprise Bean within the transaction scope, the EJB container starts
a new transaction. Even if the client invokes the business methods of the Enterprise Bean outside the transaction
scope, a new transaction is started by the EJB container, in the same way.

The following figure shows the behavior of the RequiresNew attribute:

2. EJB Container

42

Figure 2‒10: RequiresNew attribute

■ Mandatory attribute

If the client invokes the business methods of an Enterprise Bean within the transaction, the transaction context is
propagated in the Enterprise Bean, and the business methods of the Enterprise Bean enter the transaction scope of the
caller. If the client invokes the business methods of the Enterprise Bean outside the transaction scope, the EJB
container throws the following exceptions in the client:

• When business interface is used, exception javax.ejb.EJBTransactionRequiredException is
thrown. In the case of remote business interface that inherits java.rmi.Remote, exception
javax.transaction.TransactionRequiredException is thrown.

• When remote component interface is used, exception
javax.transaction.TransactionRequiredException is thrown.

• When local component interface is used, exception
javax.ejb.TransactionRequiredLocalException is thrown.

The following figure shows the behavior of Mandatory attribute:

2. EJB Container

43

Figure 2‒11: Mandatory attribute

■ Never attribute

If the client invokes the business methods of an Enterprise Bean within the transaction scope, the EJB container
throws the following exceptions in the client:

• When business interface is used, exception javax.ejb.EJBException is thrown. In the case of remote
business interface that inherits java.rmi.Remote, exception java.rmi.RemoteException is thrown.

• When remote component interface is used, exception java.rmi.RemoteException is thrown.

• When local component interface is used, exception javax.ejb.EJBException is thrown.

If the client invokes the business methods of the Enterprise Bean outside the transaction scope, the transaction context
is not propagated in the Enterprise Bean.

The following figure shows the behavior of the Never attribute:

2. EJB Container

44

Figure 2‒12: Never attribute

(2) Transaction attributes that can be specified for each type of Enterprise Bean
The following table describes the transaction attributes and the default values that can be specified for each type of
Enterprise Bean. The transaction attributes that can be specified for each type of Bean are defined in the EJB
specifications. CMP 2.0 is considered as optional in the EJB specifications, and other transaction attributes cannot be
specified. The default value is not defined in the EJB specifications.# For an application server, when CMT is
specified in the DD of EJB, and the transaction attribute is not specified, the default setting will be as shown in the
table below:

Table 2‒18: Transaction attributes and default values that can be specified for each type of Enterprise
Bean

Type Transaction attribute that can be specified Default value

Stateless Session Bean

Stateful Session Bean

(other than SessionSynchronization)

Entity Bean (BMP, CMP 1.1)

• Supports
• NotSupported
• Required
• RequiresNew
• Mandatory
• Never

Supports

Stateful Session Bean

(SessionSynchronization)

• Supports
• NotSupported
• Required
• RequiresNew
• Mandatory
• Never

Required

Singleton Session Bean

(Except PostConstruct/PreDestroy) #1

• Supports
• NotSupported
• Required
• RequiresNew
• Mandatory

Required

2. EJB Container

45

Type Transaction attribute that can be specified Default value

Singleton Session Bean

(Except PostConstruct/PreDestroy) #1

• Never Required

Entity Bean (CMP 2.0) • Required
• RequiresNew
• Mandatory

Required

Message-driven Bean (when using a resource adapter
in compliance with Connector 1.0)

• Required
• NotSupported

Required

Message-driven Bean (when using a resource adapter
in compliance with Connector 1.5)

• Required#2

• NotSupported
Required#2

Session Bean without a DD using annotations • Supports
• NotSupported
• Required
• RequiresNew
• Mandatory
• Never

Required

Note:
The default value (Required) is, however, defined for an Enterprise Bean that does not have a DD.

#1
With Application Server, even if you specify a transaction attribute in the lifecycle callback method (PostConstruct or
PreDestroy) of Singleton Session Bean, it is not effective.

#2
Cannot be specified for the CJMSP resource adapter or FTP inbound adapter.

(3) Transaction attributes of a Stateful Session Bean (SessionSynchronization)
SessionSynchronization is the interface used for reporting messages, when you start or stop a transaction.
According to the EJB specifications, you can specify Required, RequiresNew, or Mandatory in the transaction
attributes of Stateful Session Beans in which SessionSynchronization is implemented. Correspondingly, you
can specify Supports, NotSupported, and Never with Application Server.

This subsection describes the correspondence between the specified transaction attributes and availability of method
invocation, and also the timing of invoking callback methods. The callback methods are:

afterBegin methods
afterBegin methods are either of the following methods:

• Methods that implement the afterBegin method of the javax.ejb.SessionSynchronization
interface

• Methods in which @AfterBegin is specified

beforeCompletion methods
beforeCompletion methods are either of the following methods:

• Methods that implement the beforeCompletion method of the
javax.ejb.SessionSynchronization interface

• Methods in which @BeforeCompletion is specified

afterCompletion methods
afterCompletion methods are either of the following methods:

• Methods that implement the afterCompletion method of the
javax.ejb.SessionSynchronization interface

2. EJB Container

46

• Methods in which @AfterCompletion is specified

For details on using annotations, see 2.18 Specifications in Session Synchronization annotation.

(a) Transaction attributes and availability of method invocation

The following table describes the correspondence between transaction attributes of Stateful Session Beans in which
SessionSynchronization is implemented and the availability of the invocation of business methods or callback
methods.

Table 2‒19: Availability of method invocation for business methods or callback methods

Transaction
attribute

Client transaction
availability Business method invocation Invocation of callback method of

SessionSynchronization

Supports Yes Y#1 Y#1

No Y#1 --

NotSupporte
d

Yes Y#1 --

No Y#1 --

Required Yes Y Y

No Y Y

RequiresNew Yes Y Y

No Y Y

Mandatory Yes Y Y

No --#2 --

Never Yes --#2 --

No Y#1 --

Legend:
Y: Method is invoked.
--: Method is not invoked.

#1
This operation is unique to Application Server.

#2
An exception, specified in the EJB specifications, is thrown.

(b) Timing of invoking callback methods

If the business method of the same Enterprise Bean is invoked more than once, the afterBegin method that is a
callback method is invoked, when the Enterprise Bean first participates in the transaction.

The following is an example of invoking the afterBegin method. The following example shows the operation
when a business method participating in a transaction is executed after executing the business method that does not
participate in the transaction.

2. EJB Container

47

Figure 2‒13: Example of invoking the callback method

2.7.4 Defining in cosminexus.xml
The definition of the transaction management method of an Enterprise Bean is specified in the <ejb-jar> tag of
cosminexus.xml. The tag to be specified will differ for each type of Enterprise Bean to be set up.

The following table describes the definition of the transaction management method of an Enterprise Bean in
cosminexus.xml:

Table 2‒20: Definition of the transaction management method of an Enterprise Bean in cosminexus.xml

Items Tag to be specified Setting contents

Selecting the transaction
management method of
an Enterprise Bean (BMT
or CMT)#

In the case of a Session Bean
<session>-<transaction-type> tag

In the case of Message Driven Bean
<message-driven>-<transaction-type> tag

Specify whether to select Bean
(BMT) or Container (CMT).

Transaction attributes
allocated to the method
(for CMT)

In the case of Session Bean or Entity Bean
<assembly-descriptor>-<container-transaction>-
<trans-attribute>

In the case of Message Driven Bean
<message-driven>-<container-transaction>-
<trans-attribute>

Specify the transaction attributes
allocated to the method.

2. EJB Container

48

#
When BMT is selected, the transaction must be controlled with an API (such as a method of the
javax.transaction.UserTransaction class).

For details on cosminexus.xml, see 2. Application property file (cosminexus.xml) in the uCosminexus Application
Server Application and Resource Definition Reference Guide.

2.7.5 Settings in the execution environment
The transaction management method of an Enterprise Bean can also be set up in the execution environment. Specify
the settings in a J2EE application imported into a J2EE server, and execute the setup only to specify or change the
property of the J2EE application that does not include cosminexus.xml.

Set up the J2EE applications in the execution environment using the server management commands and property files.
Use the following property files to define the reference mapping:

Table 2‒21: Property files used to define the transaction management methods of an Enterprise Bean

Setting target Attribute files

Session Bean Session Bean attribute file

Entity Bean Entity Bean attribute file

Message-driven Bean Message-driven Bean attribute file

The tags specified in the property files correspond to either DD or cosminexus.xml. For details on the
cosminexus.xml settings, see 2.7.4 Defining in cosminexus.xml.

2. EJB Container

49

2.8 Cache models of an Entity Bean
This section describes the cache models of Entity Beans.

An Entity Bean supports three types of cache models.

The following table describes the organization of this section:

Table 2‒22: Organization of this section (Cache models of an Entity Bean)

Category Title Reference location

Description Types of cache models of an Entity Bean 2.8.1

Implementation Defining in cosminexus.xml 2.8.2

Setup Settings in the execution environment 2.8.3

Note:
There is no specific description of Operation and Notes for this functionality.

2.8.1 Types of cache models of an Entity Bean
An Entity Bean supports the following three types of caching of CMP field and status transition of Entity Bean:

• Full caching (commit option A)

• Caching (commit option B)

• No caching (commit option C)

Specify the commit options as attributes (properties) of the Entity Beans included in a J2EE application. For details on
the J2EE application settings, see 2.8.2 Defining in cosminexus.xml.

(1) Full caching (commit option A)
Full caching is the cache model for the Entity Beans of a reference node. When a transaction starts, the data is not read
from the database to the Entity Bean instance. As a result, the transaction starts with the Entity Beans in the same state
as that during the previous transaction commit.

For example, if the Entity Beans are updated by another J2EE server from the time of the previous transaction commit
until the beginning of the transaction, the consistency of the Entity Bean status cannot be maintained.

(2) Caching (commit option B)
Caching is the cache model of the Entity Beans of an update node. When a transaction starts, the data is read from the
database to the Entity Bean instance. As a result, the transaction is started with the Entity Beans in the same state as
the latest state of the database.

(3) No caching (commit option C)
No caching is the cache model of the Entity Beans of an update node. During transaction commit, the Entity Beans are
passivated. When the transaction starts, the Entity Beans are activated once and the data is read from the database to
the Entity Bean instance. As a result, the transaction is started with the Entity Beans in the same state as the latest state
of the database. This cache model is, therefore, applied while using a large number of Entity Beans in a business
application.

2.8.2 Defining in cosminexus.xml
The definition for the commit option of the cache model of an Entity Bean is specified in the <ejb-jar> tag of
cosminexus.xml.

2. EJB Container

50

Tag to be specified
<entity>-<caching-model> tag

Setting contents
Specify the cache method of the CMP field.

For details on cosminexus.xml, see 2. Application property file (cosminexus.xml) in the uCosminexus Application
Server Application and Resource Definition Reference Guide.

2.8.3 Settings in the execution environment
You can also define the commit option of the cache model of an Entity Bean in the execution environment. Specify
the settings in the J2EE application imported into a J2EE server. Execute the setup only for setting up or changing the
property of a J2EE application that does not include cosminexus.xml.

Set up the J2EE applications in the execution environment using the server management commands and the property
files. Use the Entity Bean property file to define the commit option of the Entity Bean cache model.

The tags specified in the Entity Bean property file correspond to either the DD or cosminexus.xml. For details on
the cosminexus.xml settings, see 2.8.2 Defining in cosminexus.xml.

2. EJB Container

51

2.9 Managing the Enterprise Bean pool
This section describes how to manage an Enterprise Bean pool.

In the EJB container, you create a pool for each type of Enterprise Beans and manage these pools.

The following table describes the organization of this section:

Table 2‒23: Organization of this section (Managing an Enterprise Bean pool)

Category Title Reference location

Description Pooling of Stateless Session Beans 2.9.1

Pooling of Entity Beans 2.9.2

Pooling of Message-driven Beans 2.9.3

Implementation Defining in cosminexus.xml 2.9.4

Setup Settings in the execution environment 2.9.5

Note:
There is no specific description of Operation and Notes for this functionality.

2.9.1 Pooling of Stateless Session Beans
The pooling of Stateless Session Beans is a functionality to pool the Stateless Session Beans based on the access
volume from the client. In the EJB container, you create a pool for each Stateless Session Bean and manage these
pools. By specifying the maximum value#, and the minimum value, the pooling operation can be customized.

When a J2EE application is started, Stateless Session Beans equivalent to the minimum value are generated and
pooled. If the pooled Stateless Session Beans in the method-ready state are accessed from the client, they are executed
immediately. The number of pooled Stateless Session Beans will be between the maximum and minimum values,
depending upon the access volume from the client.

If the number of client requests for these Stateless Session Beans exceeds the maximum number, the execution of
Stateless Session Beans is put on hold until the instance becomes usable.

#
The maximum value of pooling in Stateless Session Beans becomes the maximum number of sessions that can be
established concurrently by the client.

2.9.2 Pooling of Entity Beans
The pooling of Entity Beans is a functionality to pool the Entity Beans based on the access volume from the client. In
the EJB container, you create a pool for each Entity Bean and manage these pools. By specifying the maximum and
minimum values, the pooling operation can be customized.

When a J2EE application is started, Entity Beans equivalent to the minimum value are generated and pooled. The
number of pooled Entity Beans will be between the maximum and minimum values, depending upon the access
volume from the client.

The pooled Entity Beans are in two states, namely the ready state and the pool state.

Ready-state Entity Beans
The data is read from the database into the instance and has the identity as an Entity Bean. The Entity Beans in the
ready state are already in the state in which they can be executed when accessed from the client.

Pool-state Entity Beans
The data is not read from the database into the instance and does not have the identity as an Entity Bean. The
Entity Beans in the pool state are activated once, change to ready state, and then to the executable state.

2. EJB Container

52

When the Entity Beans in the ready state become large in number, several of them are passivated and change to the
pool state. At this point, however, from among the Entity Beans in the ready state, those engaged in a transaction are
not passivated.

2.9.3 Pooling of Message-driven Beans
The pooling of Message-driven Beans is the functionality used for pooling the Message-driven Beans based on the
number of messages. You can specify the maximum value to customize the pooling operation.

Based on the requests from JMS, the instances equal to the value specified in the maximum number of instances
within the pool are created during the deployment.

The instances are destroyed according to the requests from JMS.

2.9.4 Defining in cosminexus.xml
The definition for the pool management of an Enterprise Bean is specified within the <ejb-jar> tag of
cosminexus.xml. The specified tag is different for each type of Enterprise Bean to be set up.

The following table describes the definition of pool management of an Enterprise Bean in cosminexus.xml:

Table 2‒24: Definition of pool management of an Enterprise Bean in cosminexus.xml

Items Tag to be specified Setting contents

Pooling of Stateless
Session Beans

<session>-<stateless>-<pooled-instance>
tag

Specify the maximum value and the minimum
value of the number of instances to be pooled.

Pooling of Entity Beans <entity>-<pooled-instance> tag

Pooling of Message-
driven Beans

<message>-<pooled-instance> tag

For details on cosminexus.xml, see 2. Application property file (cosminexus.xml) in the uCosminexus Application
Server Application and Resource Definition Reference Guide.

2.9.5 Settings in the execution environment
You can also define the pool management of an Enterprise Bean in the execution environment. Specify the settings in
the J2EE applications imported into a J2EE server. Execute the settings only to specify or change the property of the
J2EE application that does not include cosminexus.xml.

Set up the J2EE applications in the execution environment using the server management commands and the property
files. Use the following property files to define the reference mapping:

Table 2‒25: Property files used for defining the transaction management method in an Enterprise Bean

Setting target Attribute files

Session Bean Session Bean attribute file

Entity Bean Entity Bean attribute file

Message-driven Bean Message-driven Bean attribute file

The tags specified in the property files correspond to either the DD or cosminexus.xml. For details on the
cosminexus.xml settings, see 2.9.4 Defining in cosminexus.xml.

2. EJB Container

53

2.10 Controlling the access to the Enterprise Beans
This section describes how to control access to the Enterprise Beans.

In the EJB container, the access to an Enterprise Bean from the client can be controlled with the security management
functionality of the J2EE service.

The following table describes the organization of this section:

Table 2‒26: Organization of this section (Controlling access to an Enterprise Bean)

Category Title Reference location

Description Preventing access control to an Enterprise Bean 2.10.1

Setup Settings in the execution environment 2.10.2

Note:
There is no specific description of Implementation, Operation and Notes for this functionality.

For details on the security management functionality other than controlling the access to an Enterprise Bean, see 9.
Security Management in the uCosminexus Application Server Security Management Guide.

2.10.1 Preventing access control to an Enterprise Bean
In the EJB container, the access to an Enterprise Bean from the client can be controlled with the security management
functionality of the J2EE service. As per the default operations of a J2EE server, even if an application does not use
the functionality of access control, the basic processing for access control is performed.

For this, if you use the option for preventing the access control to an Enterprise Bean (Option for preventing access
control to an Enterprise Bean), you can prevent the checking of the execution permission at the invocation source
when invoking business methods. If this check is prevented, the processing for access control is not implemented at all
in the EJB container, and therefore, the invocation processing of the Enterprise Bean business methods will become
lighter. Hitachi, therefore, recommends that you use the prevention option when the functionality for access control is
not used.

However, note that if an Enterprise Bean using the access control functionality of a J2EE server is invoked from
another J2EE server that uses the option for preventing access control, the operation results in an error.

Customize the properties of a J2EE server to specify the settings for preventing access control to an Enterprise Bean.

2.10.2 Settings in the execution environment
When using access control to an Enterprise Bean, you must set up a J2EE server.

The definition for disabling the control of access to an Enterprise Bean in the Easy Setup definition file is specified in
the <configuration> tag of the logical J2EE server (j2ee-server). Specify the definition in the system
property for the JavaVM of a J2EE server in the Easy Setup definition file.

The parameter name and the settings are as follows:

Parameter to be specified
ejbserver.container.security.disabled

Setting contents
Specify whether to disable the functionality for controlling access to an Enterprise Bean.

For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

2. EJB Container

54

2.11 Setting up a timeout in the EJB container
This section describes how to set up a timeout in the EJB container.

The following types of timeout values can be set in the EJB container:

• Timeout of a Stateful Session Bean

• Timeout of the EJB objects in the Entity Beans

• Timeout of RMI-IIOP communication

• Timeout in awaiting instance acquisition

The following table describes the organization of this section:

Table 2‒27: Organization of this section (Setting up a timeout in the EJB container)

Category Title Reference location

Description Types of timeouts 2.11.1

Timeout of a Stateful Session Bean 2.11.2

Timeout of the EJB objects in the Entity Beans 2.11.3

Timeout in awaiting instance acquisition 2.11.4

Timeout of RMI-IIOP communication 2.11.5

Implementation Defining in cosminexus.xml 2.11.6

Implementing a timeout for RMI-IIOP communications 2.11.7

Setup Settings in the execution environment 2.11.8

Notes Precautions during setup of a communication timeout 2.11.9

Note:
There is no specific description of Operation for this functionality.

2.11.1 Types of timeouts
The following table describes the types of timeouts that can be set in the EJB container, the overview of timeout
functionality, and the references:

Table 2‒28: Types of timeouts

Types of timeouts Overview of timeout

Timeout of a Stateful Session Bean Specify a timeout period from the point of time a Stateful Session Bean
was last accessed. Delete the Stateful Session Beans for which the
specified time period has elapsed.

Timeout of the EJB objects in the Entity Beans Specify the timeout period in the EJB objects connected to a passivated
Entity Bean. Delete the Stateful Session Beans for which the specified
time period has elapsed.

Timeout of RMI-IIOP communication Specify the timeout period for the communication between the EJB client
and the CORBA Naming Service and between the EJB client and the
Enterprise Beans.

Timeout in awaiting instance acquisition In the Stateless Session Beans and the Entity Beans, specify the timeout
period for awaiting instance acquisition during the receipt of a request.

2. EJB Container

55

2.11.2 Timeout of a Stateful Session Bean
Timeout of Stateful Session Beans is a functionality that monitors the time that has elapsed since the Stateful Session
Bean was last accessed and uses a timer to delete the Stateful Session Beans not accessed from the client even after
the elapse of the specified time. You can specify the timeout period in the EJB container. The Stateful Session Beans
engaged in a transaction, however, are not deleted.

If a Stateful Session Bean that has been deleted due to a timeout is invoked, the following exceptions are thrown based
on the type of the interface:

• In the case of a remote component interface
Exception java.rmi.NoSuchObjectException is thrown.

• In the case of a local component interface
Exception java.ejb.NoSuchObjectLocalException is thrown.

• In the case of a business interface
Exception javax.ejb.NoSuchEJBException is thrown. If, however, the business interface inherits
java.rmi.Remote, exception java.rmi.NoSuchObjectException is thrown.

The timeout settings for the Stateful Session Bean are specified as attributes (properties) of the Session Beans
included in a J2EE application. For details on the settings, see 2.11.6 Defining in cosminexus.xml.

2.11.3 Timeout of the EJB objects in the Entity Beans
Timeout of the EJB objects is a functionality for deleting the EJB objects, from among those connected to a passivated
Entity Bean, for which the specified time period has elapsed. You can specify the timeout period in the EJB container.
Note that if an Entity Bean that deletes the EJB objects due to a timeout is invoked, an exception
(java.rmi.NoSuchObjectException) occurs.

The EJB local objects of the local interface are also similarly deleted due to a timeout. If an Entity Bean contains both
EJB objects and EJB local objects, when the passivated Entity Bean is not accessed within the specified time from
either of the interfaces, the EJB objects and the EJB local objects are deleted. If the deleted EJB local objects are
invoked, an exception (javax.ejb.NoSuchObjectLocalException) occurs.

The timeout settings for the EJB objects of an Entity Bean are specified as attributes (properties) of the Entity Beans
included in a J2EE application. For details on the settings, see 2.11.6 Defining in cosminexus.xml.

2.11.4 Timeout in awaiting instance acquisition
The EJB container allocates an instance when it receives a request. During the allocation, if the maximum value is
specified in the instance pool (the "method-ready" pool of the Stateless Session Bean and the "pool" pool of the Entity
Bean), the acquisition of an instance is awaited if another request is being processed in all instances. A timeout can be
specified for this waiting time.

If you specify a timeout value, an exception is returned to the client when the instance cannot be acquired within the
specified time.

The timeout settings for awaiting instance acquisition are specified as attributes (properties) of the Session Beans or
the Entity Beans included in a J2EE application. For details on the settings, see 2.11.6 Defining in cosminexus.xml.

2.11.5 Timeout of RMI-IIOP communication
A timeout value can be set for communication between the EJB client and the CORBA Naming Service, and between
the EJB client and the Enterprise Beans. Furthermore, if you deploy CTM in between the EJB client and a J2EE
server, you can set up a communication timeout between the EJB client and the CTM and between the CTM and a
J2EE server.

To set up a timeout for an RMI-IIOP communication, use the request timeout functionality of Cosminexus TPBroker
that is used as the RMI-IIOP communication platform by the EJB container.

Depending on the range of the timeout to be specified, you specify a timeout either using the property of the definition
file or using the APIs that Application Server provides.

2. EJB Container

56

(1) RMI-IIOP communications for which a timeout can be specified
The following figure shows the RMI-IIOP communications (for which a timeout can be specified) working with/
without CTM, and also explains the range of timeout:

Figure 2‒14: Communications for which a timeout can be specified (when CTM linkage exists)

Figure 2‒15: Communications for which a timeout can be specified (when CTM linkage does not exist)

The timeout for RMI-IIOP communications can be set up at three locations that are indicated by A, B, and C in the
figure.

• In the case of A
The timeout is enabled for all the RMI-IIOP communications from steps 1 to 6 in Figure 2-14 and Figure 2-15.
The timeout is set up in the definition file. For details on how to set up the timeout in the definition file, see 2.11.8
(1) Setting up a timeout for the RMI-IIOP communication (setting up a J2EE server and EJB client applications).

• In the case of B
The timeout is enabled for the communication with the CORBA Naming Service indicated in steps 1 and 2 in
Figure 2-14 and Figure 2-15. The timeout is set up in the definition file. For details on how to set up a timeout in
the definition file, see 2.11.8 (1) Setting up a timeout for the RMI-IIOP communication (setting up a J2EE server
and EJB client applications).

• In the case of C
The timeout is enabled for the API communication indicated in steps 4 to 6 in Figure 2-14 and Figure 2-15.
In an EJB client application, specify the timeout period of API communication until create - business method -
remove is set by using the API (methods of RequestTimeoutConfigFactory class and
RequestTimeoutConfig class), during development of the application. For details on how to set up using the
API, see 2.11.7 Implementing a timeout for RMI-IIOP communications.

2. EJB Container

57

(2) Specification range and timing of communication timeout
Use this functionality to specify the communication timeout for ORB. In other words, the communication timeout is
set for all the RMI-IIOP communications below ORB.

The time of setting a timeout value is during the execution of the first new javax.naming.InitialContext()
after invocation of the client.

Even if you do not use the CORBA Naming Service, when you use this functionality, execute new
javax.naming.InitialContext() at the beginning of client processing.

(3) Processing of the client when a communication timeout occurs
If a response is not returned for the request from the client within the value specified in the properties, the request is
cancelled as a timeout. When a communication timeout occurs due to this functionality, an
java.rmi.RemoteException (org.omg.CORBA.TIMEOUT) exception is thrown. In a client using this
functionality, the occurrence of this exception must be considered during invocation of business methods of the
Enterprise Beans.

2.11.6 Defining in cosminexus.xml
Of the timeout settings in the EJB container, the definition of the timeout of a Stateful Session Bean, timeout of EJB
objects of an Entity Bean, or the timeout in awaiting instance acquisition is specified in the <ejb-jar> tag of
cosminexus.xml. The tag to be specified will differ for each type of the target Enterprise Bean.

The following table describes the definition of the timeout of the EJB container in cosminexus.xml:

Table 2‒29: Definition of the timeout of EJB container in cosminexus.xml

Items Tag to be specified Setting contents

Timeout of a Stateful
Session Bean

<session>-<stateful>-<removal-timeout>
tag

Specify the time period for maintaining the
inactive status until the session is deleted.

Timeout of the EJB
objects in the Entity
Beans

<entity>-<entity-timeout> tag Specify the time period for existence of the
EJB object.

Timeout in awaiting
instance acquisition

In the case of a Session Bean
<session>-<stateless>-<instance-
timeout> tag

In the case of an Entity Bean
<entity>-<instance-timeout> tag

Specify the timeout period for acquiring
instances.

For details on cosminexus.xml, see 2. Application property file (cosminexus.xml) in the uCosminexus Application
Server Application and Resource Definition Reference Guide.

2.11.7 Implementing a timeout for RMI-IIOP communications
You can set up a timeout for the RMI-IIOP communications with an API.

The timeout indicated by C in Figure 2-14 and Figure 2-15 can be set up by using APIs. For specifying a timeout by
using APIs, use the APIs of the com.hitachi.software.ejb.ejbclient package. For details on the
functionality and syntax of APIs, see 4. APIs Used in EJB Client Applications in the uCosminexus Application Server
API Reference Guide.

The timeout value for an RMI-IIOP communication is the value specified in the property when the first
InitialContext is generated after starting up the client process. Even when you do not use a naming service, you
must generate InitialContext for setting up a timeout in the RMI-IIOP communication.

The communication timeout for a naming service is the value that is specified in the property during an API
invocation of JNDI, such as InitialContext creation and lookup.

2. EJB Container

58

2.11.8 Settings in the execution environment
Of the timeouts in an EJB container, the timeout for an RMI-IIOP communication can be set up in a J2EE server that
is the client process or in the EJB client applications.

You can specify the timeout of a Stateful Session Bean, the EJB objects of an Entity Bean, or the timeout in awaiting
instance acquisition in a J2EE application. Reference while you set up or change the property of the J2EE application
that does not include cosminexus.xml.

(1) Setting up a timeout for the RMI-IIOP communication (setting up a J2EE server and EJB
client applications)

You can set up a timeout for A or B in Figure 2-14 and Figure 2-15.

For setting the timeout as a property, the setup method will differ depending on the Enterprise Bean from which the
method is invoked (forms of EJB clients). Specify the settings as properties of a J2EE server or the EJB client
application of the caller (EJB client).

(a) When the EJB client is in the form of an Enterprise Bean, JSP, or servlet

Set up the timeout in a J2EE server in which the client-side Enterprise Bean, JSP, or servlet is running. Specify the
settings of a J2EE server in the Easy Setup definition file.

Specify the following parameter in the <configuration> tag of the logical J2EE server (j2ee-server) of the
Easy Setup definition file.

Parameter to be specified
ejbserver.rmi.request.timeout

Setting contents
Specify the timeout period for the communication between the client and the server in the RMI-IIOP
communication.

For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(b) When the EJB client is in the form of an EJB client application

For the EJB client application, specify the timeout value as an enabled property during the execution of the EJB client
application.

Specify the following key in usrconf.properties (user property file for Java applications):

Key to be specified
ejbserver.rmi.request.timeout key

Setting contents
Specify the timeout period for the communication between the client and the server in the RMI-IIOP
communication.

For details on usrconf.properties and keys, see 14.3 usrconf.properties (User property file for Java
applications) in the uCosminexus Application Server Definition Reference Guide.

(2) Definition of the timeout of a Stateful Session Bean, timeout of EJB objects of an Entity
Bean, or timeout in awaiting instance acquisition

The definition of the timeout of a Stateful Session Bean, timeout of EJB objects of an Entity Bean, or the timeout in
awaiting instance acquisition can also be set up in the execution environment. Specify the settings in the J2EE
application imported into a J2EE server. Execute the setup only to specify or change the property of the J2EE
application that does not include cosminexus.xml.

Set up the J2EE application in the execution environment using the server management commands and the property
files. Use the following property files to define the reference mapping:

2. EJB Container

59

Table 2‒30: Property files used to define the timeout of a Stateful Session Bean, timeout of the EJB
objects of an Entity Bean, or the timeout in awaiting instance acquisition

Setting target Attribute files

Session Bean Session Bean attribute file

Entity Bean Entity Bean attribute file

The tags specified in the property files correspond to the DD or cosminexus.xml. For details on the
cosminexus.xml settings, see 2.11.6 Defining in cosminexus.xml.

2.11.9 Precautions during setup of a communication timeout
The common precautions for setting a communication timeout are explained below:

• Precautions for when the definition of communication timeout overlaps
If a communication timeout is set up for both A and B in Figure 2-14 and Figure 2-15, and a communication
timeout is set up for A and C, you perform the operation as follows:

• Operations when a communication timeout is specified for both A and B
When a communication timeout is specified for both A and B, the operations will be as shown in the figure
below:

Figure 2‒16: Operations when a communication timeout is specified for both A and B

• Operations when a communication timeout is set for both A and C
When a communication timeout is specified for both A and C, the communication timeout setting for C is
enabled.

• Precautions during client implementation
Along with the RMI-IIOP communication timeout and the naming service communication timeout, if a response is
not returned within the specified time for a request sent from the client, the corresponding request will be
cancelled as the timed out request. In such a case, the exceptions java.rmi.RemoteException (such as

2. EJB Container

60

org.omg.CORBA.TIMEOUT) and javax.naming.NamingException will be thrown. For implementing
a client that uses a communication timeout, give consideration to the fact that these exceptions might occur during
invocation of the methods in Enterprise Beans or in JNDI APIs.

• Precautions concerning operation at the server side after the occurrence of a timeout
When a request from the client reaches the server (naming service and Enterprise Bean) and a timeout occurs
during the processing at the server side, an exception is returned to the client. However, the processing continues
normally at the server side even after the occurrence of a timeout, and therefore, the instances of the Enterprise
Bean are not destroyed and the resources such as the resource connection are not released.

2. EJB Container

61

2.12 Timer Service functionality
This section explains the functionality of the Timer Service.

The Timer Service is functionality by which the EJB container invokes an Enterprise Bean at a specified time, elapsed
time, or interval.

You can use the Timer Service in version EJB 2.1 or later. For details on the functionality that you can use in each
version, see the EJB specifications.

The following table describes the organization of this section:

Table 2‒31: Organization of this section (Functionality of the Timer Service)

Category Title Reference location

Description Overview of the Timer Service 2.12.1

Operation during the generation of an EJB timer and execution of a callback 2.12.2

Automatic generation of an EJB timer 2.12.3

Deleting the EJB timer 2.12.4

Functionality for operating the Timer Service 2.12.5

Operations of the EJB timer and callback 2.12.6

Implementation Implementing an application using the Timer Service 2.12.7

Precautions during the implementation of the Timer Service 2.12.8

Setup Settings in the execution environment 2.12.9

Notes Precautions during the use of the Timer Service 2.12.10

Note:
There is no specific description of Operation for this functionality.

2.12.1 Overview of the Timer Service
The Timer Service is functionality for invoking Enterprise Beans at a specified time, elapsed time, or interval. This
functionality is provided in the EJB container. If you use the Timer Service, the processing wherein the time is
specified, such as batch processing with the time when the machine load is low specified and daily processing at a
fixed interval, can be executed easily.

This section explains the contents of the timeout value that can be set in the Timer Service, the operations of the EJB
timer used to set timeout, and the operations of the Timer Service.

This subsection explains the timeout value that can be specified in the Timer Service, the support range of the Timer
Service, as well as transaction management by the Timer Service.

(1) Timer Service and the EJB timer
Use the API defined in Java EE to operate the Timer Service from the Enterprise Bean. Generate an EJB timer to
execute a processing for which a time is specified. Specify the time for timeout in the EJB timer. The generated EJB
timer is managed in the EJB container and once the time for timeout is reached, the Enterprise Bean method is called
back by the EJB container. The method that is called back at this point is called the timeout method.

The following figure shows an overview of the Timer Service processing:

2. EJB Container

62

Figure 2‒17: Overview of the Timer Service operation

(2) Types of EJB timers
The following two types can be set as the types of EJB timers:

• single-event timer
The single-event timer is the EJB timer for executing the timeout method only once.
The timeout is set either by specifying the time of executing the timeout method or by specifying the time period
from invocation of the method for generating the EJB timer until execution of the timeout method.
You can generate this timer using the following methods of the javax.ejb.TimerService interface:

• createTimer(long duration, Serializable info) method

• createTimer(Date expiration, Serializable info) method

• createSingleActionTimer method

• interval timer
The interval timer is the EJB timer for repeated execution of the timeout method at fixed intervals.
The timeout is set either by specifying the time of executing the first timeout method or by specifying the time
period from invocation of the method for generating the EJB timer until execution of the first timeout method.
Apart from this setting, specify the timeout interval for executing the timeout method from second time onwards.
This is the interval from one timeout to the next.
You can generate the timer using the following methods of the javax.ejb.TimerService interface:

• createTimer(long initialDuration, long intervalDuration, Serializable info) method

• createTimer(Date initialExpiration, long intervalDuration, Serializable info) method

• createIntervalTimer method

• calendar-based timer
The calendar-based timer is the EJB timer to execute the timeout method on the date and time specified in the
calendar format. You can specify single or multiple values. Also you can specify a wild card or range. For details
on the method of specifying the calendar-based timer, see 2.12.7(3) Method for specifying a schedule in calendar
format.
You can generate the javax.ejb.TimerService interface with the following method:

• createCalendarTimer method

You can also create the method with the @Schedule annotation. For details, see 2.12.3 Automatically generating
an EJB timer.

The following table describes the types of timers that can be set as an EJB timer as well as example settings:

2. EJB Container

63

Table 2‒32: Types of timers that can be set as EJB timer and example settings

Timer type Example settings Description

single-event 2006/4/15 12:00 Execute the timeout method only once at 2006/4/15 12:00.

After 24 hours Execute the timeout method only once, after 24 hours from
the generation of EJB timer.

Interval 2006/4/1 24 hours interval from 12:00 Execute the first timeout method at 01.04.06 12:00. After
this, repeat the timeout method at an interval of 24 hours.

10 hours interval after 24 hours Execute the first timeout method after 24 hours from the
generation of EJB timer. After this, repeat the timeout
method at an interval of 10 hours.

calendar-based First day of every month 12:00 Execute the timeout method on the first day of every month
at 12:00

The following figure shows the operations of the single-event timer and interval timer from among the EJB timers.
This figure shows the operations of the single-event timer that calls back the timeout method only once at 2:00 and the
interval timer that calls back the timeout method at an interval of two hours, starting from 2:00.

Figure 2‒18: Operations of the single-event timer and interval timer

(3) Support range of the Timer Service
The following table describes the support status of the Timer Service functionality defined in the Java EE
specifications:

Table 2‒33: Support status of the Timer Service functionality defined in the Java EE specifications

Timer Service functionality defined in the Java EE specifications Support status

Transaction Y

EJB timer persistence --#

Acquiring the TimerService objects (DI, JNDI lookup, EJBContext) Y

Specifying the timeout method (annotation, TimedObject implementation) Y

Specifying the timeout methods (specifying by DD) --

2. EJB Container

64

Legend:
Y: Can be used
--: Cannot be used

#
Specification of the persistent attribute of the @Schedule annotation is also not effective.
If a J2EE server is restarted due to a failure, the EJB timer that was in use before restart is not inherited. For details on automatic
generation of the EJB timer during invocation of a J2EE server, see 2.12.3 Automatically generating an EJB timer.

The following table describes the support status of Timer Service functionality for various types of Enterprise Beans:

Table 2‒34: Support status of Timer Service functionality for various types of Enterprise Beans

Timer Service functionality Message-
driven Bean

Session Bean

Entity BeanStateful Session
Bean

Stateless
Session Bean

Singleton
Session Bean

Acquiring the
TimerService objects

N -- Y Y N

Operating the objects related
to the Timer Service
(TimerService, Timer,
TimerHandle)

N Y Y Y N

Automatic generation of the
timer with annotation

N -- Y Y N

Legend:
Y: Can be used
N: Cannot be used
--: Cannot be used (J2EE specifications)

(4) Transaction management by the Timer Service
The Timer Service supports transactions. Specifically, the generation of an EJB timer, deletion of the EJB timer, and
the timeout method comply with the transactions. The transaction management of the timeout method is explained
below:

For details on generating the EJB timer, see 2.12.2 Operation during the generation of an EJB timer and execution of
a callback, and for details on deleting the EJB timer, see 2.12.4 Deleting the EJB timer.

(a) Transaction attributes that can be set in the timeout method

In the timeout method, you can select either BMT or CMT for transaction management.

If CMT is selected, the transaction attributes that can be specified in the timeout method are as follows:

• Required attribute

• RequiresNew attribute

• NotSupported attribute

If an attribute other than those described above is specified, the J2EE applications fail to start.

(b) Transaction management for callback of the timeout method

In the timeout method, when the Required attribute or the RequiresNew attribute is specified in CMT, callback
will be retried if the transaction rolls back during callback of the timeout method. For details on retrying callback, see
2.12.5(2) Retrying callback of the timeout method.

2. EJB Container

65

2.12.2 Operation during the generation of an EJB timer and execution of
a callback

Generate an EJB timer to execute processing at the time specified by the Timer Service. To stop the execution of the
processing by the EJB timer, delete the EJB timer. The time for generating and deleting the EJB timer depends upon
the type of the EJB timer and upon whether processing is being executed under transaction management. The time for
generating and deleting the EJB timer, and the operations of timeout method callback during generation and deletion
of the EJB timer are explained below:

During the generation of the EJB timer, a single EJB timer is generated by the timer generation method
(createTimer method of the javax.ejb.TimerService object). If an EJB timer is generated, a timeout
occurs at the specified time and the timeout method is called back.

(1) Counting of timeout time
During the generation of the EJB timer, in the case of an EJB timer that specifies the time from the invocation of the
EJB timer until the execution of the first timeout method, the counting of time starts from the point the method for
generating the EJB timer is invoked. The following figure shows the generation of the EJB timer and the start of the
time count:

Figure 2‒19: Generating EJB timer and starting the time count

(2) Timing of generating the EJB timer and executing callback of the timeout method
The timing of generating an EJB timer and callback of the timeout method depends upon whether the EJB timer is
generated under transaction management.

When an EJB timer is generated under transaction management
The EJB timer is generated when a transaction is committed.
The timing of executing callback of the timeout method is different in the case of an EJB timer wherein the time
for timeout is reached after the transaction is committed, and in the case of an EJB timer wherein the time for
timeout is reached before the transaction is committed. Note that if a transaction rolls back, the generation of the
EJB timer is cancelled.

• In the case of an EJB timer, wherein the time for timeout is reached after the transaction is committed
The timeout method is called back as per the specified time. The following figure shows the generation of the
EJB timer and the execution of callback:

2. EJB Container

66

Figure 2‒20: Generating the EJB timer and executing callback (in the case of an EJB timer,
wherein the timer for timeout is reached after the transaction is committed)

In this figure, the time count is started from the time the method for generating the EJB timer is invoked until
the time for a timeout is reached and the timeout method is called back at the specified time. The EJB timer is
generated during transaction commit.

• In the case of an EJB timer, wherein the time for a timeout is reached before the transaction is
committed
The timeout method is called back immediately after the transaction is committed. The following figure shows
the generation of the EJB timer and the execution of callback:

Figure 2‒21: Generating the EJB timer and executing callback (in the case of an EJB timer,
wherein the timer for timeout is reached before the transaction is committed)

In this figure, the time count is started from the time the method for generating the EJB timer is invoked until
the time for the timeout is reached before the transaction commits. The EJB timer is not generated until the
transaction is committed, therefore, the timeout method is not called back even when the time for the timeout
is reached. Callback is executed immediately after the transaction is committed.

When an EJB timer is not generated under transaction management
The EJB timer is generated immediately after the method for generating the EJB timer is invoked.
The following figure shows generation of an EJB timer that is not under transaction management:

2. EJB Container

67

Figure 2‒22: Generating the EJB timer and executing callback (when an EJB timer is not generated
under transaction management)

In this figure, the EJB timer is generated immediately after the method for generating the EJB timer is invoked. After
this, the timeout method is called back at the specified time.

2.12.3 Automatically generating an EJB timer
This section explains the method of automatically generating an EJB timer. The methods of automatically generating
an EJB timer are as follows:

• Method of specifying the @Schedule annotation
This method specifies the @Schedule annotation in an Enterprise Bean that generates the EJB timer. You can
use this method in EJB 3.1 or later .

• Servlet method
This method implements the process of automatically generating the EJB timer in the servlet.

• Management event method
This method uses a Management event to automatically generate an EJB timer. Specify to automatically generate
an EJB timer as a Management event that occurs when the message is output when a J2EE server is started.
You need not modify the J2EE application if the EJB client that invokes the Enterprise Bean generating the EJB
timer is created.

When you use the method of specifying the @Schedule annotation and the Servlet method, you can
automatically generate an EJB timer on the startup of an application. You can also automatically generate the EJB
timer on the startup of the J2EE server if you enable the automatic start of an application. When you use the
Management event method, you can automatically generate the EJB timer on startup of the J2EE server.

(1) Automatically generating an EJB timer on J2EE server startup (Method of specifying the
@Schedule annotation)

You use this method in the case of a Stateless Session Bean and a Singleton Session Bean of EJB 3.1. When an
application starts, the EJB container automatically generates a timer based on the @Schedule annotation definition
specified in the Session Bean class.

You can generate a timer by specifying the @Schedule annotation in the method of a Bean class that executes
processes with the timer, or its parent class. When starting multiple timers, specify the @Schedule annotation.

(2) Automatically generating the EJB timer when starting a J2EE server (servlet method)
This section explains the flow of automatic generation of the EJB timer and its setup when the process of
automatically generating an EJB time is implemented in the servlet.

(a) Flow of automatic generation of the EJB timer

The flow in which the servlet method automatically generates an EJB timer is shown below:

2. EJB Container

68

Figure 2‒23: Flow of automatic generation of the EJB timer (servlet method)

1. Re-start the J2EE server.

2. The J2EE application starts automatically.
The J2EE application that was running when the J2EE server is stopped, starts automatically (the application must
be enabled to start automatically).

3. The init method is executed.
When the J2EE application starts, the servlet is loaded, and the init method is executed. The init method
creates the Enterprise Bean and invokes the business method.

4. The EJB timer is generated.
In the business method of the Enterprise Bean, the EJB timer is generated from the Timer Service object.

(b) Setup for automatically generating the EJB timer

Specify the following settings to automatically generate an EJB timer in the servlet:

1. Create the business method that generates the EJB timer in the Enterprise Bean.

2. Create the servlet.
Specify to invoke the business method created in step 1 by the init method.

3. Load the servlet that is created in step 2 when the J2EE application starts.
Specify a value of 0 or more as the value of the <load-on-startup> tag of the servlet created in step 2 in the
DD (web.xml).

4. When a J2EE server is started, enable the application to start automatically.

(3) Automatically generating the EJB timer when starting a J2EE server (Management event
method)

This section explains the flow of automatic generation of the EJB timer and its setup when the process of
automatically generating an EJB timer is set as a Management event.

(a) Flow of automatic generation of the EJB timer

The flow in which the Management event method automatically generates the EJB timer is as follows:

2. EJB Container

69

Figure 2‒24: Flow of automatic generation of the EJB timer (Management event method)

1. Re-start the J2EE server.

2. A message is displayed.
After a J2EE server has started, the message KDJE30028-I is displayed. The Management event occurs when this
message is output.

3. The Management action is executed.
The Management event is received and the Management action is executed. The batch file is executed as the
Management action.

4. Batch file is executed.
The EJB application is executed in the batch file.

5. The business method is invoked in the EJB client application.
In the EJB client application, the Enterprise Bean is generated and the business method is invoked.

6. The EJB timer is generated.
In the business method of the Enterprise Bean, the EJB timer is generated from the Timer Service object.

(b) Setup for automatically generating the EJB timer

Specify the following settings to automatically generate an EJB timer by using a Management event.

1. Create the business method that generates the EJB timer in the Enterprise Bean.

2. Generate the EJB client application.
Specify to invoke the business method that is created in step 1.

3. Create the environment and the batch file for executing the EJB client application created in step 2.

4. Specify to automatically execute the Management event.
Enable the Management event. For the Management event, specify the message KDJE30028-I that is displayed
when a J2EE server starts, and specify the batch file created in step 3 as the management action for this
management event.
For details on the Management events, see 9. Notification of Management Events and Automatic Execution of
Processing with Management Actions in the uCosminexus Application Server Operation, Monitoring, and Linkage
Guide.

2. EJB Container

70

2.12.4 Deleting the EJB timer
To delete the EJB timer, cancel the EJB timer.

Note that in the case of a single-event timer, the EJB timer is deleted when the callback of the timeout method
finishes. In the case of an interval timer, the EJB timer is not deleted until the EJB timer is cancelled.

During the cancellation of the EJB timer, a single EJB timer is deleted by the EJB timer cancellation method
(cancel method of the javax.ejb.Timer object). If the EJB timer is deleted, the subsequent callbacks are not
executed. The timing for deleting the EJB timer by EJB timer cancellation depends upon whether the cancellation of
the EJB timer is executed under transaction management.

When the EJB timer is cancelled under transaction management
The EJB timer is deleted when the transaction is committed. As a result, the time for a timeout may be reached
during the period when the method for cancellation of the EJB timer is invoked until the transaction is committed.
When the transaction rolls back, cancellation of the EJB timer is cancelled.

When the EJB timer is not cancelled under transaction management
The EJB timer is deleted immediately after the method for cancellation of the EJB timer is invoked.
Reference note

When stopping the J2EE applications, all EJB timers of the J2EE applications to be stopped are deleted. When stopping
a J2EE server or during its abnormal termination, all EJB timers on a J2EE server are deleted.

2.12.5 Functionality for operating the Timer Service
The functionality used for operating the Timer Service is explained below. The operation functionality consist of the
following two types:

• Functionality for controlling the number of callback threads of the timeout method

• Functionality for retrying callback of the timeout method

Customize the properties of a J2EE server to specify the functionality. For details on the properties to be set up, see
2.12.9 Settings in the execution environment.

(1) Functionality for controlling the number of callback threads of the timeout method
Specify the number of threads to be executed concurrently in the entire J2EE server for processing callback of the
timeout method. This is called the maximum number of callback threads.

When multiple EJB timers timeout concurrently, depending upon the maximum number of callback threads of the
timeout method, the operation will be as follows:

• When the maximum number of callback threads is 1 (default)
Callback is executed sequentially. As a result, callback may start even later than the time set in the EJB timer.

• When the maximum number of callback threads is 2 or more
Only the specified number of callback processes are executed concurrently. If you increase the maximum thread
count, the resource consumption will increase by an equal amount. Therefore, specify an appropriate value for the
number of threads to be executed concurrently.

The following figure shows the relationship between the settings for the maximum number of callback threads and
callback processing:

2. EJB Container

71

Figure 2‒25: Relationship between the settings for the maximum number of callback threads and callback
processing

In this figure, the settings are specified so that EJB timer 2 will be timed out one minute after the timeout of the EJB
timer 1 occurs. When the maximum number of callback threads is set to 1, the callback processing of EJB timer 2 will
start after the callback processing of the EJB timer 1 finishes. When the maximum number of callback threads is
specified as 2, two callback processes can be executed concurrently, therefore, the callback processing of EJB timer 2
is started one minute after the EJB timer 1, as per the settings.

! Important note

Even if there is a surplus in the number of callback threads, but a shortage of instances of Enterprise Beans, the callback
processing is executed after awaiting release of the instances. Therefore, specify the Enterprise Bean instance pool after
considering the number of instances to be called back.

(2) Retrying callback of the timeout method
In the case of a failure in calling back the timeout method, retry callback.

Callback may fail in the following cases:

• When an unsearched exception (java.lang.RuntimeException, java.lang.Error and their
subclasses) is thrown during callback due to a timeout

• When the timeout method is either the Required attribute or the RequiresNew attribute of CMT and the
transaction rolls back

Set the following settings for retrying callback:

Number of retry
Specify the number of retries. When you specify 0, retry is not performed. If the count of executing retries reaches
the specified retry number, retry is not performed at a timeout.

Interval of executing retry
Specify the time period from failure of a callback until the retry callback.

2. EJB Container

72

2.12.6 Operations of the EJB timer and callback
This subsection explains the operations of the EJB timer and callback in the following cases:

• When a past time is specified in the EJB timer

• When multiple EJB timers have been specified in one Enterprise Bean class

• When the previous callback has not finished during timeout

• When cancel EJB timer is invoked from multiple threads

• When cancel EJB timer is invoked during execution of callback

• When an unconcluded transaction with the EJB timer cancelled, is present during callback

(1) When a past time is specified in the EJB timer
The operations differ according to the types of timers.

(a) In the case of a single-event timer or interval timer

When a past time is specified in the EJB timer, call back the timeout method once immediately after the generation of
the EJB timer, in the case of a single-event timer. In the case of an interval timer, call back the timeout method during
the timeout that occurs after the generation of the EJB timer. The following figure shows the operations when a past
time is specified in the EJB timer:

Figure 2‒26: Operation when a past time is specified in the EJB timer

In the case of a single-event timer
When a single-event timer that is set to timeout at 2:00, passes the timeout timing and the timeout occurs at 4:15, a
callback to the timeout method is executed once, immediately after the timeout occurs.

In the case of an interval timer
When an interval timer that is set to timeout at an interval of 2 hours starting from 2:00, passes the timeout timing
and the timeout occurs at 4:15, the callback to the timeout method is executed at the subsequent timeout timings
(the first timeout will be executed at 6:00).

(b) In the case of a calendar-based timer

The operations when you specify a past date and time in a calendar format or specify an invalid value as the date and
time (such as 2/31) are as follows:

• When you specify a past date and time in the timer generated with an API

2. EJB Container

73

The application starts, but the timer is not generated and the message KDJE43206-W is output.

• When you specify a past date and time in the timer generated with an annotation
The application starts, but the timer is not generated and the message KDJE43220-W is output.

• When you specify an invalid value (such as 2/31) as the date and time in the timer
The application starts, but the timer is not generated.

• When you invoke the getNextTimeout method with a Timer object immediately before the time limit elapses

The message KDJE43211-W is output when you invoke the getNextTimeout method.

(2) When multiple EJB timers have been specified in one Enterprise Bean class
When there are multiple EJB timers for one Enterprise Bean class, the callback processing is executed concurrently if
callback of these multiple EJB timers overlap. The callback threads and the Enterprise Bean instances for which
processing can be performed concurrently are, however, restricted in certain cases. If such callback threads and
instances are not present, wait until the release of the threads and the instances.

(3) When the previous callback has not finished during timeout
Only one callback can be executed at a time in a single EJB timer. Depending upon the processing contents, the
processing of the timeout method may sometimes take longer. As a result, in the case of an interval timer, the time of
the next timeout elapses during execution of the callback processing and the time of multiple timeouts may elapse
until one callback finishes. In such a case, the callback processing that could not be performed as per the timeout time
is not executed, but callback processing is executed for the timeout that occurs after the time of completion of the
previous callback.

The following figure shows the operations when the previous callback has not finished during current callback:

Figure 2‒27: Operations when the previous callback has not finished during current callback

In this figure, the setting is such that timeout occurs at an interval of one minute and the callback processing is
executed. When the time for the second and the third timeout elapses during processing of the first callback, the
second callback processing will be performed at the next timeout after completion of the first callback processing (that
is the scheduled time for the fourth timeout). The callback processing is not performed twice for the timeout that has
elapsed the timeout time.

(4) When EJB timer cancellation is invoked from multiple threads
When the EJB timer cancellation method of the same EJB timer is invoked concurrently from multiple threads,
cancellation is executed sequentially.

If, however, EJB timer cancellation is executed under the transaction management, it is not possible to verify whether
the EJB timer is deleted until the transaction is concluded. As a result, if some other thread cancels the same EJB
timer, it results in exclusive waiting.

The following figure shows the operations when cancellation of the same EJB timer is invoked concurrently from
multiple threads:

2. EJB Container

74

Figure 2‒28: Canceling the EJB timer invoked from multiple threads

(5) When cancel EJB timer is invoked during execution of callback
When EJB timer cancellation method is invoked during the execution of callback of the timeout method, the operation
is as follows:

• The invocation of EJB timer cancellation method terminates normally.

• The callback processing of the timeout method is inherited and is executed, but the following operation is
performed after completion of callback:

• When the timeout method uses a CMT transaction, the transaction rolls back.

• When the timeout method does not use a CMT transaction, it does not affect the result of a transaction
executed during callback.

• Even in the following cases, in which callback is normally retried, retry will not be performed:

• When the CMT transaction rolls back

• When an unsearched exception is thrown

• A message is output in the message log when callback finishes.

• When the timeout method uses a CMT transaction, the message KDJE43161-W is output.

• When the timeout method does not use a CMT transaction, the message KDJE43160-W is output.

• The operation is different in the case, wherein EJB timer cancellation is executed from another transaction during
callback of the timeout method using a CMT transaction, and in the case, wherein EJB timer cancellation is
executed in the timeout method using a CMT transaction.

• The following figure shows the operation when EJB timer cancellation is executed from another transaction
during callback of the timeout method using a CMT transaction:

2. EJB Container

75

Figure 2‒29: Cancellation during execution of callback

• The following figure shows the operation when EJB timer cancellation is executed in the timeout method
using a CMT transaction:

Figure 2‒30: Cancellation of EJB timer in the timeout method

In this figure, the EJB timer actually is cancelled after completion of the timeout method. As a result, the EJB
timer is cancelled once the transaction is committed. The EJB timer continues to exist when the transaction
rolls back.

(6) When an unconcluded transaction with the EJB timer cancelled, is present during
callback

For an unconcluded transaction A in which the EJB timer is cancelled, the callback processing of the timeout method
waits exclusively from the time of completion of callback until the transaction A is concluded. Therefore, when the
timeout method is under the management of a CMT transaction, the conclusion of the transaction will be in the
waiting state until the transaction A is concluded. The following figure shows the flow of processing in such a case:

2. EJB Container

76

Figure 2‒31: Callback operations when an unconcluded transaction with the EJB timer cancelled

2.12.7 Implementing an application using the Timer Service
This subsection describes the details of implementation with an API and implementation with an annotation as
implementation contents of an application using the Timer Service. This subsection also describes the method of
specifying a schedule in the calendar format.

(1) Implementation with API
Implement the following contents:

• Specifying the timeout method
Specify the timeout method to be called back with either of the following methods:

• Specify the timeout annotation in the method used as the timeout method.

• Implement the TimedObject interface in the Enterprise Bean. In such a case, the ejbTimeout method
defined in the TimedObject interface will become the timeout method.

• Acquiring the javax.ejb.TimerService objects
Acquire the TimerService object using DI, the getTimerService method of the EJBContext interface, or
the lookup method of JNDI.

• Generating the EJB timer
Invoke any of the following methods of the TimerService object and implement the code for generating the
timer.

• createTimer()

• createSingleActionTimer()
• createIntervalTimer()
• createCalenderTimer()

• Canceling the EJB timer (Timer)
When you must execute the cancellation process, implement the code for canceling the timer. Acquire the timer
from javax.ejb.TimerService and javax.ejb.TimerHandle.

The examples of implementing this processing and the precautions during the implementation are as follows:

2. EJB Container

77

(a) Example of implementation when DI is used (specify the timeout method with the Timeout annotation)

The following is an example of implementation when an annotation. In this example, the timeout method
(myTimeout) is specified with the Timeout annotation (@Timeout).

@Stateless public class TimerSessionBean{
 @Resource TimerService timerService;

 public void createMyTimer(long intervalDuration){
 Timer timer = timerService.createTimer
 (intervalDuration, "MyTimer");
 }

 @Timeout public void myTimeout(Timer timer) {
 System.out.println("TimerSessionBean: myTimeout ");
 }

 public void cancelTimers(){
 Collection<Timer> timers = timerService.getTimers();
 for(Timer timer: timers) {
 timer.cancel();
 }
 }
}

(b) Example of implementation when EJBContext is used (implement the TimedObject interface)

The following is an example of acquiring the TimerService object by using SessionContext that is a subclass of
EJBContext. In this example, the TimedObject interface is implemented to execute the processing.

public class TimerSessionBean implements SessionBean, TimedObject{
 private SessionContext context;

 public void createMyTimer(long intervalDuration) {
 System.out.println("TimerSessionBean: start createTimer ");
 TimerService timerService = context.getTimerService();
 Timer timer = timerService.createTimer
 (intervalDuration, "MyTimer");
 }

 public void ejbTimeout(Timer timer) {
 System.out.println("TimerSessionBean: ejbTimeout ");
 }

 public void setSessionContext(SessionContext sc) {
 context = sc;
 }
}

(c) Example of implementation when lookup is used (Implement the TimedObject interface)

The following is an example of acquiring the TimerService object using the JNDI. In this example, the
TimedObject interface is implemented to execute the processing.

public class TimerSessionBean implements SessionBean, TimedObject{
 private SessionContext context;

 public void createMyTimer(long intervalDuration) {
 System.out.println("TimerSessionBean: start createTimer ");
 InitialContext context = new InitialContext();
 TimerService timerService =
 (TimerService)context.lookup("java:comp/TimerService");
 Timer timer = timerService.createTimer
 (intervalDuration, "MyTimer");
 }

 public void ejbTimeout(Timer timer){
 System.out.println("TimerSessionBean: ejbTimeout ");
 }
}

(2) Implementation with an annotation
You can automatically generate a timer using the @Schedule annotation.

2. EJB Container

78

Examples are as follows:

(a) Example of @Schedule annotation specification

An example of the @Schedule annotation is as follows. In this example, one timer is generated.

// In this example, generateMonthlyAccountStatements method is set
// to be executed at 1:00 on first day of every month with @Schedule
// annotation.
@Schedule(hour="1", dayOfMonth="1",info="AccountStatementTimer")
public void generateMonthlyAccountStatements() { ... }

Specify any character string in the info attribute of the @Schedule annotation. You can acquire the specified character
string with the getInfo method of the related Timer object.

(b) Example of @Schedules annotation specification

An example of the @Schedules annotation specification is as follows. In this example, multiple timers are generated.

// In this example, sendLunchNotification method is set to be executed
// at 12:00 from Monday to Thursday and at 11:00 on Friday with
// @Schedules annotation.
@Schedules (
 { @Schedule(hour="12", dayOfWeek="Mon-Thu"),
 @Schedule(hour="11", dayOfWeek="Fri")
 }
)
public void sendLunchNotification() { ... }

You can invoke multiple timers from one callback method with the @Schedules annotation.

(3) Method for specifying a schedule in calendar format
Use values in the coding of a calendar format as follows:

The values that you can specify are based on the standard specifications.

• Specifying a value
Specify a value in seconds or months, as shown below:
Example
second = "10"
month = "Sep"

• Wild card
Specify the wild card as shown below:
Example
second = "*"
dayOfWeek = "*"

• Specifying multiple values
You can specify multiple values by separating the values with ",".
Example
second = "10,20,30"
dayOfWeek = "Mon,Wed,Fri"
minute = "0-10,30,40"

• Specifying the range
You can specify a value for a fixed period using "-".
Example
second="1-10"
dayOfWeek = "Sat-Mon"
The following example shows the range from the 27th day of a month to the 3rd day of the next month. First "-"
indicates a time interval between the start time and the end time.

2. EJB Container

79

Example
dayOfMonth = "27-3"
This is an example of specifying days. However, you can also specify seconds, minutes, or hours in a similar way.

• Incremental specification
Specify the incremental value with "/". The process is executed every time the value specified as the incremental
value increases.
In the following example, the process is executed every 5 minutes.
Example:
minute = "*/5"
This example is same as in the case of specifying "0,5,10,15,20,25,30,35,40,45,50,55".
In the following example, the process is executed every 10 seconds after 30 seconds of each minute.
Example:
second = "30/10"
This example is same as in the case of specifying "second = "30,40,50, ...".

! Important note
If an argument of the createCalendarTimer method is invalid, the IllegalArgumentException exception
is thrown and the message KDJE43209-E is output.

2.12.8 Precautions when using the Timer Service
This subsection describes the precautions when using the Timer Service.

(1) Specifying the info argument of the createTimer method
The getInfo method of the Timer object assumes the object specified in the info argument of the
createTimer method of the TimerService object or the info argument of the constructor method of the
TimerConfig object as the return value. Therefore, the return value of the getInfo method might be different
from the object during the execution of a method such as the createTimer method, and therefore an error might
occur.

To prevent this, Hitachi recommends that you set the object specified in the info argument of the createTimer
method be invariable, such as a type String or Integer, or do not change the status of the object specified in the info
argument. If changed, the return value of the getInfo method will be the object specified after the change.

(2) Specifying the timeout method in the DD and attribute files
When specifying the timeout method in the <method> tag of a DD and the property file, perform either of the
followings:

• Do not add the definition of the <method-intf> tag immediately below the <method> tag.

• Keep the element of the <method-intf> tag as blank.

(3) Operation when attempting to acquire a Timer Service object from a Bean that does not
support Timer Service objects

The following table describes the methods for acquiring a Timer Service object when the Timer Service is not
supported. When attempting to acquire a TimerService object from a Bean or servlet that does not support Timer
Service, perform the following operation according to the methods:

Table 2‒35: Operation when attempting to acquire a Timer Service object from a Bean that does not
support Timer Service objects

Method for acquiring the TimerService objects Operation

EJBContext#getTimerService The IllegalStateException exception is thrown.

2. EJB Container

80

Method for acquiring the TimerService objects Operation

JNDI Lookup The NamingException exception is thrown.

DI An attempt to deploy has failed.

Irrespective of whether or not the timeout method is implemented in a Bean that supports the Timer Service, you can
acquire the TimerService objects.

(4) Operation specifications of the APIs provided by the TimerService
Of the operations performed during the invocation of an API provided by the TimerService, some operation
specifications are not specified clearly in the EJB specifications. The operation specifications of
javax.ejb.TimerService and javax.ejb.Timer in Application Server are as follows:

• javax.ejb.TimerService
The following table describes the operation when the timeout method is implemented in the Bean that invokes the
methods of javax.ejb.TimerService, and when the timeout method is not implemented:

Table 2‒36: Operation when the javax.ejb.TimerService API is used from the Bean

Implementation of the timeout
method

Types of javax.ejb.TimerService methods

createTimer,
createCalendarTimer,
createIntervalTimer,

createSingleActionTimer

getTimers

When the timeout method is
implemented#

The EJB timer generation processing is
executed.

The EJB timer correction is returned.

When the timeout method is not
implemented

The IllegalStateException
exception is thrown.

A blank correction is returned.

#
When the timeout method is implemented, the operation is performed according to the EJB specifications.

• javax.ejb.Timer API
The following table describes the operation during the invocation of the methods of javax.ejb.Timer for the
case when the timeout method is executed and when the timeout method is not executed:

Table 2‒37: Operation when the javax.ejb.Timer API is used

Execution of
the timeout

method

Types of javax.ejb.Timer methods

cancel

getHandle,
getInfo,

isCalendar
Timer,

getSchedul
e

getNextTime
out

getTimeRemaini
ng isPersistent

When the
timeout
method is not
executed#

See 2.12.6
Operations of
the EJB timer
and callback.

Operation is
performed
according to
the
specifications.

The timing of
occurrence of the
next timeout is
returned.

The time period until
the occurrence of the
next timeout is
returned.

Always returns false
because persistence
of the EJB timer is
not supported.

When the
timeout
method is
executed

The time
registered as the
expected start
time of a timeout
being executed is
returned.

0 is returned.

2. EJB Container

81

#
When the timeout method is not executed, the operation is performed according to the EJB specifications.

Reference note
A sample program of the Timer Service is provided in Application Server. For an overview and details on how to
execute the sample programs, see Appendix M Sample Programs Provided by Application Server in the uCosminexus
Application Server System Setup and Operation Guide.

(5) Precautions during execution of the timeout method

• Execute the timeout method in any of the following formats. If you do not execute the timeout method in either of
these formats, the application fails to start.

• void <method name>()
• void <method name>(Timer timer)

• An application exception must not be thrown in the timeout method. If an application exception is thrown, the
application fails to start.

• Do not declare final or static in the timeout method.

2.12.9 Settings in the execution environment
When using the TimerService, you must set up a J2EE server.

Set up a J2EE server with the Easy Setup definition file. Specify the settings in the <configuration> tag of the
logical J2EE server (j2ee-server) in the Easy Setup definition file.

The following table describes the definition of the TimerService in the Easy Setup definition file:

Table 2‒38: Definition of the TimerService in the Easy Setup definition file

Items Parameter to be specified Setting contents

Maximum retry count ejbserver.ejb.timerservice.retryCount Specify the maximum count for retrying
callback of the timeout method of the Timer
Service.

Retry interval ejbserver.ejb.timerservice.retryInterva
l

Specify a value in seconds for the retry interval
of calling back the timeout method of the
Timer Service.

Maximum number of
threads to call back the
timeout method

ejbserver.ejb.timerservice.maxCallbackT
hreads

Specify the maximum number of threads to call
back the timeout method of the Timer Service
in the entire J2EE server.

For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

2.12.10 Precautions when using the Timer Service
The precautions when using the Timer Service are explained below:

• When the Timer Service is used, there may be a difference in the time specified in the EJB timer, and the time
when the timeout method actually is called back. In such a case, the reasons could be as follows:

• Execution of a garbage collection
If a garbage collection is executed in JavaVM at the time specified in the EJB timer, the processing of garbage
collection is given priority. The timeout method is called back after the garbage collection finishes, therefore,
there may be some variations from the specified time.

• Platform or hardware environment

2. EJB Container

82

Use the time period of JavaVM in the Timer Service. The time period of JavaVM depends upon the platform
or hardware environment. The callback is also executed as per the time period of JavaVM, therefore, there
may be some variations from the specified time.

• On a machine where a J2EE server is running, if you modify the system time using a software, such as NTP client
software, the following operations are performed for the timeout time of the already registered EJB timer:

• In the case of a single-event timer
Timeout occurs assuming that the system time before modification is inherited.

• In the case of an interval timer
The first timeout occurs assuming that the pre-modification system time is inherited after modification. From
the second time onwards, a timeout occurs as per the system time after modification.

• In the case of a calendar-based timer or when using the method of specifying the @Schedule annotation
If you set only one callback at a specified date and time, a timeout occurs assuming that the system time
before the modification is inherited.
If you set a periodic callback, the first timeout occurs assuming that the pre-modification system time is
inherited after modification. From the second time onwards, timeouts occur as per the system time after
modification.

The following figure shows examples of the callback timing when the system time is not changed, when the
system time is returned, and when the system time is advanced.

2. EJB Container

83

Figure 2‒32: Example of call back timing

2. EJB Container

84

2.13 Invoking the remote interface of EJB
This section describes how to invoke the remote interface of an EJB.

The following table describes the organization of this section:

Table 2‒39: Organization of this section (Invoking the remote interface of an EJB)

Category Title Reference location

Description Optimizing local invocation in the EJB remote interface 2.13.1

Referencing and passing the values of the EJB remote interface 2.13.2

Operation during the occurrence of a communication failure in the EJB remote interface 2.13.3

Setup Defining in cosminexus.xml 2.13.4

Settings in the execution environment 2.13.5

Notes Precautions concerning invocation of the EJB remote interface 2.13.6

Note:
There is no specific description of Implementation and Operation for this functionality.

2.13.1 Optimizing local invocation in the EJB remote interface
This subsection explains the optimization of local invocation in the remote interface of EJB.

The methods defined in the remote interface of EJB are invoked by RMI-IIOP, however, local invocation optimization
can be applied to this invocation.

Note that the methods defined in the local interface of EJB are not invoked by using RMI-IIOP, but a normal Java
invocation method is used, therefore, this functionality is not applicable.

When optimizing local invocation in the remote interface, you can select the range for optimizing the local invocation.
Customize the properties of a J2EE server to specify the range for optimization. For details on customizing the
operation settings of a J2EE server, see 2.13.5 Settings in the execution environment.

The following table describes the correspondence between the range and the operations of the functionality for
optimizing local invocation and the values specified in the keys of a J2EE server properties
(usrconf.properties):

Table 2‒40: Range and operations of functionality for optimizing local invocation

Items
Value of ejbserver.rmi.localinvocation.scope key#

All app None

Range of local invocation
optimization

Within the same J2EE server Within the same application There is no range

Thread configuration Caller and Callee are always in
the same thread

Caller and Callee are in the same
thread only in the same
application

Caller and Callee are always in
different threads

Class loader configuration EJB is loaded by the container
class loader (J2EE server unit)

EJB is loaded by the application class loader (application unit)

Local transaction Can be used in a J2EE server Can be used in the same
application

Can be used in the same J2EE
component

#
This is a key specified in usrconf.properties.

2. EJB Container

85

2.13.2 Referencing and passing the values of the EJB remote interface
Normally, if an EJB method containing a remote interface is invoked, the arguments and the return value are copied
and passed by value, however, the arguments and the return value can also be passed by reference. When the values
are passed by reference, the aim is to reduce the load as compared to copying the values and passing them.

When passing the values by reference, you need to pay attention to the changes in the arguments and the return value
and to the deployment of the client and application wherein values are passed by reference, since the arguments and
the return value are referenced directly.

When the objects with the java.io.Serializable interface implemented are defined in the arguments or the
return value of a method, you can expect a reduction in the load by pass by reference of EJB remote interface values.
You can expect better results when the number and size of the objects is larger.

The two methods of setup are explained below. If setup is performed using either of the following methods, the pass
by reference of values is enabled:

• Setting for each EJB
Define enabling and disabling of the functionality for each EJB, as an attribute of the Session Bean or the Entity
Bean.

• Setting for each J2EE server
Collectively define the enabling and disabling of the functionality for each J2EE server as properties of a J2EE
server.

2.13.3 Operation during the occurrence of a communication failure in the
EJB remote interface

You can choose either of the following operations of the client, when communication failure occurs during invocation
of the EJB method defined as remote interface from the EJB client:

• Re-establish the connection and resend the request

• Neither re-establish the connection nor resend the request

The settings for using this functionality are specified as properties of a J2EE server or the EJB client application.

Note that in the case of an EJB client application, you can also specify in API (setProperty method of
java.lang.System class). For defining in the java.lang.System.setProperty method, specify the
settings after starting the process of the EJB client application and before invoking the methods of the Enterprise Bean
for the first time.

(1) Communication for which the settings are enabled
The operations during communication failure are enabled when communication failure occurs during the invocation of
the EJB method defined as the remote interface. Invocation of the EJB method indicates the following:

• Invocation of EJB from a Web application

• Invocation of EJB from the EJB client

• Invocation of EJB from another EJB

The following figure shows the communication for which the settings are enabled:

2. EJB Container

86

Figure 2‒33: Communication for which the settings are enabled

Note that the settings are disabled in the following cases:

• Invocation of the EJB method defined as a local interface

• Invocation of the EJB method defined as a remote interface within the range in which optimization of local
invocation is enabled

• Invocation of the Naming Service

(2) Recommended settings
Depending upon the system type, Hitachi recommends the following settings:

In the case of a search and reference node system
Hitachi recommends that you specify the settings for re-establishing the connection and resending the requests.
Consequently, the results can be acquired without facing failure in requests.

In the case of an update node system
Hitachi recommends that you specify the settings for not executing either re-establishment of the connection or
resending of requests. In an update node system, if you specify the settings for re-establishing the connection and
resending the requests, there is a risk of sending duplicate requests.

2.13.4 Defining in cosminexus.xml
Of the invocation functionality of an EJB remote interface, the settings that specify the Enterprise Bean in which the
pass by reference functionality of the EJB remote interface is to be enabled are defined in cosminexus.xml.

The definition is specified in the <ejb-jar> tag of cosminexus.xml. The tag to be specified is different for each
type of the target Enterprise Bean.

2. EJB Container

87

The definition of a timeout of an EJB container as specified in cosminexus.xml is as follows:

Tag to be specified

In the case of a Session Bean
<session>-<pass-by-reference> tag

In the case of an Entity Bean
<entity>-<pass-by-reference> tag

Contents of the file
Specify whether to enable the pass by reference functionality for the values of EJB remote interface in each
Enterprise Bean.

For details on cosminexus.xml, see 2. Application property file (cosminexus.xml) in the uCosminexus Application
Server Application and Resource Definition Reference Guide.

2.13.5 Settings in the execution environment
Of the invocation functionality of an EJB remote interface, the settings for the following functionality must be
specified in a J2EE server:

• Range of the local invocation optimization functionality of the EJB remote interface

• Settings for specifying whether to enable the pass by reference functionality of the EJB remote interface

• Operation of the EJB client during the occurrence of a communication failure in the EJB remote interface#

#
When the EJB client is in the form of an EJB client application, specify the settings as properties of the EJB
client application.

Furthermore, the settings that specify the Enterprise Bean in which the pass by reference functionality of the EJB
remote interface is enabled can be defined in the J2EE application. Reference the settings when setting up or changing
the properties of a J2EE application that does not include cosminexus.xml.

(1) Setting J2EE servers
Set up a J2EE server with the Easy Setup definition file. Specify the settings in the <configuration> tag of the
logical J2EE server (j2ee-server) of the Easy Setup definition file.

The following table describes the definition of the invocation functionality of an EJB remote interface in the Easy
Setup definition file:

Table 2‒41: Definition of the invocation functionality of an EJB remote interface in the Easy Setup
definition file

Items Parameter to be specified Setting contents

Range of the local invocation
optimization functionality

ejbserver.rmi.localinvocation
.scope

Specify the range of optimizing a local invocation
in the EJB remote interface.

Pass by reference functionality of
the remote interface

ejbserver.rmi.passbyreference
#

Specify whether to enable the pass by reference
functionality of the remote interface.

Operation of the EJB client during
the occurrence of a communication
failure in the remote interface

ejbserver.container.rebindpol
icy

If a J2EE server at the specification location is the
client of another J2EE server, specify the
operation for retrying a connection at the EJB
client side, and the operation for resending
requests.

#
In a J2EE application, you can specify whether to enable the pass by reference functionality in each Enterprise Bean. The pass by
reference functionality will be enabled if Enable is specified in either a J2EE server or the Enterprise Bean.

2. EJB Container

88

For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(2) Setting EJB client applications
When the EJB client is in the form of an EJB client application, the operation of the EJB client during the occurrence
of a communication failure in the EJB remote interface will be specified in the property of the EJB client application.

Key to be specified
ejbserver.container.rebindpolicy key

Setting contents
Specify the operation for retrying a connection at the EJB client side, and the operation for resending requests.

(3) Setting J2EE applications
You can define the settings for specifying whether to enable the pass by reference functionality of the EJB remote
interface in each Enterprise Bean, in the execution environment. Specify the settings in the J2EE application imported
into a J2EE server, and execute the setup only when setting up or changing the properties of a J2EE application that
does not include cosminexus.xml.

A J2EE application is set up in the execution environment with server management commands and property files. Use
the following property files to define the reference mapping:

Table 2‒42: Property files used to define the management method of an Enterprise Bean transaction

Setting target Attribute files

Session Bean Session Bean attribute file

Entity Bean Entity Bean attribute file

The tags specified in the property files correspond to the DD or cosminexus.xml. For details on the
cosminexus.xml settings, see 2.13.4 Defining in cosminexus.xml.

2.13.6 Precautions concerning invocation of the EJB remote interface
This subsection describes the precautions concerning invocation of the EJB remote interface.

(1) Precautions when applying optimization of local invocation

• When applying optimization of local invocation of the EJB remote interface in the processing within the same
application (when specifying ejbserver.rmi.localinvocation.scope=app in
usrconf.properties), specify the same host in the following provider URL:

• Host of the provider URL used in a J2EE server

• Provider URL host used from the J2EE application

If different hosts are specified, the local invocation will not be optimized.
Furthermore, even when the same host is specified but the string specified in the host name is different, the local
invocation will not be optimized. For example, if there is a difference in upper case and lower case characters or a
different IP address and host name is specified, the local invocation will not be optimized.

• The provider URLs used in a J2EE server are determined in the following priority order:
In case of ejbserver.naming.startupMode=inprocess:

1. Value of the vbroker.se.iiop_tp.host property

2. Value of InetAddress.getLocalHost().getHostName()
In case of ejbserver.naming.startupMode=automatic:

1. Value of InetAddress.getLocalHost().getHostName()

2. EJB Container

89

In case of ejbserver.naming.startupMode=manual:

1. Value of the ejbserver.naming.host property

2. Value of InetAddress.getLocalHost().getHostName()
• The provider URLs used from a J2EE application are determined in the following priority order:

1. Part of the argument passed to lookup when the naming service switching functionality is used

2. java.naming.provider.url property specified when InitialContext is generated

3. Provider URL that a J2EE server uses

(2) Precautions when setting up the operation during the occurrence of a communication
failure in the EJB remote interface

When NO_RECONNECT (no reconnection or resending) is selected with the
ejbserver.container.rebindpolicy key of system properties and if a connection is disconnected due to
the communication failure, you will not be able to reuse the corresponding object reference because a reconnection is
prevented. Therefore, when a method of the Enterprise Bean is to be invoked for the next time in the EJB client, re-
execute the lookup method in an EJB home object and the create method in an EJB object, and then invoke the
method. If the connection is disconnected during the method invocation of an Enterprise Bean, the method will throw
either of the following exceptions:

java.rmi.RemoteException
Instance when the detail field is org.omg.CORBA.REBIND

java.rmi.MarshalException
Instance when the detail field is org.omg.CORBA.COMM_FAILURE

An example of coding of the client that catches these exceptions is as follows:

try {
 //JNDI.lookup()
 //EJBHome.create()
 //EJBObject.invoke()
 } catch (java.rmi.MarshalException e) {
 if (e.detail instanceof org.omg.CORBA.COMM_FAILURE) {
 //Processing corresponding to communication failure
 }
 } catch (java.rmi.RemoteException e) {
 if (e.detail instanceof org.omg.CORBA.REBIND) {
 //Processing corresponding to communication failure
 }
 }

(3) Precautions when executing multiple threads
When you use multiple threads (from one client) to invoke an EJB method defined as a remote interface, there is only
one connection to the server and multiple threads share that connection. If a timeout occurs and the connection closes
with one EJB invocation, a communication failure occurs in the invocation of other EJBs. If you have selected
"reconnect the connection and resend the request" as a client operation, EJB invocation will be executed again.

To prevent the closure of the connection when a timeout occurs, specify the following contents in
usrconf.properties (user property file for the J2EE server, user property file for a batch server, or user
property file for a Java application) at the EJB invocation source (client side). For details, see the TPBroker Operation
Guide.

Contents:
vbroker.ce.iiop.ccm.htc.readerPerConnection=true
vbroker.ce.iiop.ccm.htc.threadStarter=true

When you specify the above-mentioned contents, a thread to be activated is added. For details on the estimation of the
number of threads, see 5.2.1 Estimating the resources used by J2EE server in the uCosminexus Application Server
System Design Guide.

2. EJB Container

90

(4) Precautions when the caching functionality has been enabled in the naming management
functionality

When the caching functionality has been enabled in the naming management functionality, the disabled object
reference on the cache will be acquired if the lookup method is executed after the connection is disconnected. In
such a case, when you execute the javax.rmi.PortableRemoteObject.narrow method and the create
method using the acquired object reference, a CORBA exception (such as
org.omg.CORBA.OBJECT_NOT_EXIST) will occur.

Clear the disabled cache after the connection is disconnected. For details on the procedure, see 2.8.2 Clearing the
cache used in naming in the uCosminexus Application Server Common Container Functionality Guide.

2. EJB Container

91

2.14 Fixing the communication port and IP address of
the EJB container (TPBroker options)

This section describes how to fix the communication port and IP address (TPBroker options) of an EJB container.

By defining the options of Cosminexus TPBroker via J2EE server, you can perform the operations by fixing the
communication ports and the IP address of the EJB container. Hitachi strongly recommends that you specify the
settings for fixing the ports when the security of the system is to be improved by reducing the used ports to the
minimum extent. For details on the Cosminexus TPBroker option, see TPBroker Users Guide.

The following table describes the organization of this section:

Table 2‒43: Organization of this section (Fixing the communication port and IP address of an EJB
container) (TPBroker option)

Category Title Reference location

Description Fixing the communication port 2.14.1

Fixing the IP address 2.14.2

Setup Settings in the execution environment 2.14.3

Note:
There is no specific description of Implementation, Operation, and Notes for this functionality.

2.14.1 Fixing the communication port
By default, a random value is allocated by Cosminexus TPBroker to the communication ports of the EJB container.

On the contrary, you can fix the communication ports in each J2EE server by specifying any value as the Cosminexus
TPBroker option. Specify the port numbers so that there is no duplication of the port numbers with other programs.

2.14.2 Fixing the IP address
By default, the IP address of the EJB container is acquired by Cosminexus TPBroker from the execution environment
machine system, and is then allocated.

On the contrary, you can fix the IP address in each J2EE server by specifying any value as the Cosminexus TPBroker
option.

2.14.3 Settings in the execution environment
When fixing the communication port and IP address of an EJB container, you must set up a J2EE server.

Set up a J2EE server with the Easy Setup definition file. Specify the settings in the <configuration> tag of the
logical J2EE server (j2ee-server) of the Easy Setup definition file.

The following table describes the definition in the Easy Setup definition file for fixing the communication port and IP
address of the EJB container:

Table 2‒44: Definition for fixing the communication port and IP address of the EJB container in the Easy
Setup definition file

Items Parameter to be specified Setting contents

Communication port of the
EJB container

vbroker.se.iiop_tp.scm.iiop_tp.lis
tener.port

Specify the communication port of the EJB
container.

Whether or not to fix the IP
address or the host name

vbroker.se.iiop_tp.host Specify whether or not to fix the IP address or
host name used by the EJB container.

2. EJB Container

92

For details on the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

2. EJB Container

93

2.15 Using the interceptor
This section describes how to use the interceptor.

The interceptor can be specified in Application Server with a DD, property file, or annotation (excluding the default
interceptor).

The following table describes the organization of this section:

Table 2‒45: Organization of this section (Using the interceptor)

Category Title Reference location

Description Overview of the usage of the interceptor 2.15.1

Preventing the invocation of upper level interceptor 2.15.3

Execution order of an interceptor 2.15.4

Implementation Defining in an annotation or a DD 2.15.2

Setup Configuring in the execution environment 2.15.5

Notes Notes on inceptors 2.15.6

Note:
There is no specific description of Operation for this functionality.

2.15.1 Overview of the usage of the interceptor
The following interceptors can be used in Application Server:

• Default interceptor
This interceptor is applicable to all components included in EJB-JAR. The default interceptor becomes the upper
level interceptor of the class level interceptor and the method level interceptor. Set this interceptor by using a DD
or a property file.

• Class level interceptor
This interceptor is applicable to the specified classes. The class level interceptor becomes the upper level
interceptor of the method level interceptor. Set this interceptor by using an annotation, a DD, or a property file.

• Method level interceptor
This interceptor is applicable to the specified business methods. Set this interceptor by using an annotation, a DD,
or a property file.

2.15.2 Defining in an annotation or a DD
You set up an interceptor as an EJB-JAR property either by specifying in an annotation or by using a DD or a property
file.

(1) Defining the default interceptor
The default interceptor is applicable to all the components included in EJB-JAR.

In a DD, you can specify the information of the default interceptor by coding the <interceptor-binding> tag
below the <ejb-jar> tag.

The following table describes the components to be specified below the <interceptor-binding> tag:

2. EJB Container

94

Table 2‒46: Components (default interceptor) to be specified below the <interceptor-binding> tag when
using a DD

Tag names
Optional/

Required
Contents of the file

<description> Optional Specify any information.

<ejb-name> Required Specify a wild card (*).

<interceptor-class> Required Specify the class name of the interceptor class in the element.

The value of the components specified in any other tag is not applied.

The following is an example of coding of the DD when the default interceptor is used:

<ejb-jar>
 ...
 <assembly-descriptor>
 <interceptor-binding>
 <description xml:lang="en">Default Interceptor</description>
 <ejb-name>*</ejb-name>
 <interceptor-class>test.ejb30.MyDefaultIC</interceptor-class>
 <interceptor-class>test.ejb30.MyDefaultIC2</interceptor-class>
 </interceptor-binding>
 </assembly-descriptor>
 ...
</ejb-jar>

In this example of coding, test.ejb30.MyDefaultIC and test.ejb30.MyDefaultIC2 are specified as the
default interceptor classes.

• Rules for specifying the interceptor class

The specification method of the class name in the interceptor-class tag conforms to the EJB 3.0 specification. Specify
as per the following rules:

• You can specify one interceptor class name in one interceptor-class tag.

• You can code multiple interceptor-class tags. If you code multiple interceptor-class tags, the interceptor is
invoked in the order in which you have coded.

• You can specify the interceptor method in an interceptor class, specified in the interceptor-class tag, with the
following annotations:

• @AroundInvoke
• @PostConstruct
• @PreDestroy

For details on annotations, see 2. Dependency Injection and Annotation corresponding to the annotation servers in the
uCosminexus Application Server API Reference Guide.

(2) Defining the class level interceptor
The class level interceptor is applicable to the specified classes. This point describes how to set a class level
interceptor by using a DD and by using the EJB-JAR property file in the execution environment.

In a DD, you can specify the information of the class level interceptor by describing the <interceptor-
binding> tag below the <ejb-jar> tag.

The following table describes the elements below the <interceptor-binding> tag.

2. EJB Container

95

Table 2‒47: Elements (class level interceptor) to be specified below the <interceptor-binding> tag when
using a DD tag

Tag name Mandatory/
Optional Contents to be specified

<ejb-name> Mandatory Specify EJB name.

<interceptor-class> Mandatory Specify the class name of the interceptor class in the element.

Note that elements are not specified in the <method> tag.

(3) Defining the method level interceptor
The method level interceptor is applicable to the specified business methods. This point describes how to set a method
level interceptor by using a DD and by using the EJB-JAR property file in the execution environment.

In a DD, you can specify the information of the method level interceptor by describing the <interceptor-
binding> tag below the <ejb-jar> tag.

The following table describes the elements below the <interceptor-binding> tag.

Table 2‒48: Elements (method level interceptor) to be specified below the <interceptor-binding> tag when
using a DD tag

Tag name Mandatory/
Optional Contents to be specified

<ejb-name> Mandatory Specify the EJB name.

<interceptor-class> Mandatory Specify the class name of the interceptor class in the element.

<method-name> Mandatory Specify the method name in the element.

<method-params> Optional Specify the argument list for the method in the element.

The following table describes the range of the business methods that define the method level interceptor when you
specify a business method in the <method-name> tag and you omit the value specified for the <method-
params> tag or you specify the argument list in the <method-params> tag. Note that when * (wild card) is
specified in the <method-name> tag, the definition of the method level interceptor is not used.

Table 2‒49: Range of business methods that define the method level interface

Value specified in the <method-
params> tag Range of business methods that define the method level interceptor

The value is omitted. An interceptor is defined for all business methods that have exactly matching method names.

An argument list is specified. An interceptor is defined for the business methods that have exactly matching method names
and argument list.

If you specify an argument list, you can overwrite the information specified in an annotation in
the DD.

■ Applicable rules for method level interceptor

The definition of the method level interceptor that is used when executing a business method is determined in the
following order:

1. If a definition completely matches with the business method to be executed, the method name specified in the
<method-name> tag, and the argument list specified in the <method-params> tag, then the definition of that
method level interceptor is used.

2. If the business method to be executed and the method specified in the <method-name> tag match and the
argument list is not specified in the <method-params> tag of a definition, then the definition of that method
level interceptor is used.

2. EJB Container

96

3. If a method level interceptor in which the business method to be executed and the method specified in the
<method-name> tag are matching, is not defined, then the method level interceptor definition is not used.

Note that when the business method to be executed corresponds to both definitions, namely the definition in which the
method specified in the <method-name> tag and the argument list specified in the <method-params> tag match
completely, and the definition in which the method specified in the <method-name> tag is matching and the
argument list is not specified in the <method-params> tag, then the definition that completely matches with the
method name and argument list is used.

Also, the method level interceptor specified using annotations is handled as a definition in which the method names
and the argument list match completely. If you want to overwrite the method level interceptor specified using
annotations in DD, you must describe the interceptor in DD by using a definition in which the method names and the
argument list match completely.

2.15.3 Controlling the invocation of upper level interceptor
You can control the execution of an upper level interceptor in a class level interceptor and a method level interceptor
by using an annotation or a DD.

The following table describes the range in which the execution of the interceptor can be controlled.

Table 2‒50: Range in which the execution of the upper level interceptor can be controlled

Type of interceptor
Interceptor to be controlled

Default interceptor Class level interceptor Method level interceptor

Default interceptor N N --

Class level interceptor Y# N --

Method level interceptor Y Y --

Legend:
Y: The invocation of the upper level interceptor can be controlled.
N: Does not correspond to the upper level, and will be ignored even if you create a definition to control invocation.
--: Invocation of the upper level interceptor cannot be defined.

#
When a definition for controlling the invocation of the default interceptor in the class level interceptor is specified, the invocation
of the default interceptor is controlled irrespective of the definition in the method level interceptor.

2.15.4 Execution order of the interceptors
The execution order of an interceptor is determined according to the following rules by default:

• Execution order of EJB 3.0 specifications
The following execution order is provided in the EJB 3.0 specifications:

1. Default interceptor

2. Class level interceptor

3. Method level interceptor

4. Interceptor method specified in the Bean class

• Rules to be followed when there are multiple interceptors of the same level
If there are multiple interceptors of the same level, the interceptors are executed in the sequence defined in the
annotations or DD.

• If the interceptor class has a parent class and the interceptor method is defined in the parent class
Execution will take place from the parent class.

• Rules according to the definition for controlling the invocation of an upper level interceptor

2. EJB Container

97

When a definition to control the invocation of an upper level interceptor is specified, the interceptor of the
specified level is not invoked.

• The execution order in the <interceptor-order> tag
If you execute the following business methods, an interceptor of a level higher than the interceptor defining the
<interceptor-order> tag of DD or the property file is not invoked:

• The business method of the Enterprise Bean class to which the class level interceptor defining the execution
order in the <interceptor-order> tag is applied

• The business method to which the method level interceptor defining the execution order in the
<interceptor-order> tag is applied

Among the interceptors that use the <interceptor-order> tag, the definition of the lowest level interceptor
and the interceptor of a level lower than that interceptor is executed.

Note that the execution order of the default interceptor described here can be changed using the following method:

• You can exclude the execution of the default interceptor class by using the
@ExcludeDefaultInterceptors annotation or the <exclude-default-interceptors> tag of
DD.

• You can exclude the execution of the class level interceptor class by using the
@ExcludeClassInterceptors annotation or the <exclude-class-interceptors> tag of DD.

• You can replace the order of interceptor classes of all levels by describing the <interceptor-order> tag of
DD.

Points (1) to (4) describe these rules and the execution order combining the rules for overwriting annotations based on
DD. For details on overwriting an annotation based on DD, see 12.6.2 Overwriting annotations based on DD in the
uCosminexus Application Server Common Container Functionality Guide.

(1) When the definition for controlling the invocation of the default interceptor and class level
interceptor is specified

The following table describes the execution order of the interceptors when the definition for controlling the invocation
of the default interceptor and class level interceptor is specified. In this table, the execution order for combinations
shown by Y/N in the column Use of <interceptor-order> for each item number is shown by numbers in front of the
DD or annotation in the column Execution order of the interceptor.

Table 2‒51: Execution order of the interceptors (when the definition for controlling the invocation of the
default interceptor and class level interceptor is specified)

No.

Use of <interceptor-order> Execution order of the interceptor

Default Class level Method
level Default Class level Method level Interceptor method

1 Y Y Y -- -- 1. DD 2. Annotation

2 Y Y N -- -- 1. Annotation

2. DD

3. Annotation

3 Y N Y -- -- 1. DD 2. Annotation

4 Y N N -- -- 1. Annotation

2. DD

3. Annotation

5 N Y Y -- -- 1. DD 2. Annotation

6 N Y N -- -- 1. Annotation

2. DD

3. Annotation

7 N N Y -- -- 1. DD 2. Annotation

8 N N N -- -- 1. Annotation

2. DD

3. Annotation

2. EJB Container

98

Legend:
Default: Default interceptor
Class level: Class level interceptor
Method level: Method level interceptor
Interceptor method: Interceptor method specified in the Bean class
Y: Execution order is specified by using the <interceptor-order> tag.
N: Execution order is not specified by using the <interceptor-order> tag.
--: Not executed.
DD: The interceptor specified in the DD is executed.
Annotation: The interceptor specified in the annotation is executed.

(2) When the definition for controlling the invocation of the default interceptor is specified
The following table describes the execution order of the interceptors when the definition for controlling the invocation
of the default interceptor is specified. In this table, the execution order for combinations shown by Y/N in the column
Use of <interceptor-order> for each item number is shown by numbers in front of the DD or annotation in the column
Execution order of the interceptor.

Table 2‒52: Execution order of the interceptors (when the definition for controlling the invocation of the
default interceptor is specified)

No.

Use of <interceptor-order> Execution order of the interceptor

Default Class
level

Method
level Default Class level Method level Interceptor method

1 Y Y Y -- -- 1. DD 2. Annotation

2 Y Y N -- 1. DD 2. Annotation

3. DD

4. Annotation

3 Y N Y -- -- 1. DD 2. Annotation

4 Y N N -- 1.Annotation

2. DD

3. Annotation

4. DD

5. Annotation

5 N Y Y -- -- 1. DD 2. Annotation

6 N Y N -- 1. DD 2. Annotation

3. DD

4. Annotation

7 N N Y -- -- 1.DD 2. Annotation

8 N N N -- 1. Annotation

2. DD

3. Annotation

4. DD

5. Annotation

Legend:
Default: Default interceptor
Class level: Class level interceptor
Method level: Method level interceptor
Interceptor method: Interceptor method specified in the Bean class
Y: Execution order is specified by using the <interceptor-order> tag.
N: Execution order is not specified by using the <interceptor-order> tag.
--: Not executed.
DD: The interceptor specified in the DD is executed.
Annotation: The interceptor specified in the annotation is executed.

(3) When the definition for controlling the invocation of the class level interceptor is specified
The following table describes the execution order of the interceptors when the definition for controlling the invocation
of the class level interceptor is specified. In this table, the execution order for combinations shown by Y/N in the

2. EJB Container

99

column Use of <interceptor-order> for each item number is shown by numbers in front of the DD or annotation in the
column Execution order of the interceptor.

Table 2‒53: Execution order of the interceptors (when the definition for controlling the invocation of the
class level interceptor is specified)

No.

Use of <interceptor-order> Execution order of the interceptor

Default Class
level

Method
level Default Class level Method level Interceptor method

1 Y Y Y -- -- 1. DD 2. Annotation

2 Y Y N 1. DD -- 2. Annotation

3. DD

4. Annotation

3 Y N Y -- -- 1. DD 2. Annotation

4 Y N N 1. DD -- 2. Annotation

3. DD

4. Annotation

5 N Y Y -- -- 1. DD 2. Annotation

6 N Y N 1. DD -- 2. Annotation

3. DD

4. Annotation

7 N N Y -- -- 1. DD 2. Annotation

8 N N N 1. DD -- 2. Annotation

3. DD

4. Annotation

Legend:
Default: Default interceptor
Class level: Class level interceptor
Method level: Method level interceptor
Interceptor method: Interceptor method specified in the Bean class
Y: Execution order is specified by using the <interceptor-order> tag.
N: Execution order is not specified by using the <interceptor-order> tag.
--: Not executed.
DD: The interceptor specified in the DD is executed.
Annotation: The interceptor specified in the annotation is executed.

(4) When the definition for controlling the invocation of the upper level interceptor is not
specified

The following table describes the execution order of the interceptors when the definition for controlling the invocation
of the upper level interceptor is not specified. In this table, the execution order for combinations shown by Y/N in the
column Use of <interceptor-order> for each item number is shown by numbers in front of the DD or annotation in the
column Execution order of the interceptor.

Table 2‒54: Execution order of the interceptors (when the definition for controlling the invocation of the
upper level interceptor is not specified)

No.

Use of <interceptor-order> Execution order of the interceptor

Default Class
level

Method
level Default Class level Method level Interceptor method

1 Y Y Y -- -- 1. DD 2. Annotation

2 Y Y N -- 1. DD 2. Annotation

3. DD

4. Annotation

3 Y N Y -- -- 1. DD 2. Annotation

2. EJB Container

100

No.

Use of <interceptor-order> Execution order of the interceptor

Default Class
level

Method
level Default Class level Method level Interceptor method

4 Y N N 1. DD 2. Annotation

3. DD

4.Annotation

5. DD

6. Annotation

5 N Y Y -- -- 1.DD 2. Annotation

6 N Y N -- 1. DD 2. Annotation

3. DD

4. Annotation

7 N N Y -- -- 1.DD 2. Annotation

8 N N N 1. DD 2. Annotation

3. DD

4. Annotation

5. DD

6. Annotation

Legend:
Default: Default interceptor
Class level: Class level interceptor
Method level: Method level interceptor
Interceptor method: Interceptor method specified in the Bean class
Y: Execution order is specified by using the <interceptor-order> tag.
N: Execution order is not specified by using the <interceptor-order> tag.
--: Not executed.
DD: The interceptor specified in the DD is executed.
Annotation: The interceptor specified in the annotation is executed.

2.15.5 Configuring the execution environment
Interceptors can also be set in the execution environment. When setting an inceptor in the execution environment, set
the interceptor to the J2EE application that is imported to a J2EE server.

J2EE application can be set in the execution environment with the server management command and property file.
EJB- JAR property file is used to define interceptors. Note that you cannot perform settings by using the server
management command (cjsetresprop -type ejb command) for EJB-JAR files that are not included in the
J2EE application.

The tag specified in the EJB-JAR property file is compatible with DD. For details on the definitions in DD (ejb-
jar.xml), see 2.15.2 Defining in an annotation or a DD.

2.15.6 Notes on inceptors
• When there are multiple <interceptor-binding> tags that have specified "*" (wild card) in the <ejb-
name> tag, the contents described in the uppermost <interceptor-binding> tag become valid. The
subsequent contents are not set.

• In a property file, if there are multiple <interceptor-binding> tags in which the value of the <ejb-
name> tag, the <named-method> tag, and all the elements under the <named-method> tag match, the
contents described in the upper most <interceptor-binding> tag become valid. The subsequent contents
are not set.

• In a DD, if there are multiple <interceptor-binding> tags in which the value of the <ejb-name> tag, the
<method> tag, and all the elements under the <method> tag match, the contents described in the upper most
<interceptor-binding> tag become valid. The subsequent contents are not set.

2. EJB Container

101

2.16 Omitting local business interfaces (Using No-
Interface view)

With EJB 3.1, when executing a local invocation in a Session Bean, you can create an EJB without creating a local
business interface. In such cases, you can invoke all the business methods, which are published as the No-Interface
view from the client. Omission of the local business interface leads to easier development and maintenance activities
of the EJB.

The following table describes the organization of this section.

Table 2‒55: Organization of this section (omitting a local business interface (using No-Interface view))

Category Title Reference location

Description Overview of No-Interface view 2.16.1

Implementation Definition for using No-Interface view 2.16.2

Methods that cannot be used 2.16.3

Notes Precautions during development 2.16.4

Note: There is no specific description of Setup and Operation for this functionality.

2.16.1 Overview of No-Interface view
A session Bean is accessed from the following three clients:

• Remote client
A remote client invokes a business method by using the remote business interface (or the remote home interface).
This client invokes a method provided in the remote client view of a Session Bean.

• Local client
A local client invokes a business method by using the local interface. This client invokes a method provided in the
local client view of a Session Bean.

• Web service client
A Web service client invokes a business method by using the Web service. This client invokes a method provided
in the WebService client view of a Session Bean.

The No-Interface view is one of the local client views. It is available in EJB 3.1 or later.

If you use the No-Interface view, definition of a local business interface is not required. If none of the remote client
view, local client view or Web service client view is implemented in an application, the No-Interface view is created
by the EJB container. Even if any of the views is implemented in an application, you can use the No-Interface view by
explicitly specifying the @LocalBean annotation. You need not implement any special interface for using the No-
Interface view in a Session Bean.

By using the No-Interface view, you can use all the public methods in a Session Bean from the client. You can acquire
the reference from a client to the No-Interface view with the DI or JNDI look-up.

No-Interface view is created when an application starts and it is available until the application stops.

! Important note

When you invoke a method published in the No-Interface view by the client, you cannot invoke a method that specifies an
access modifier other than a public access modifier. If you invoke a method that specifies an access modifier other than a
public access modifier, javax.ejb.EJBException occurs.

2.16.2 Definition for using No-Interface view
An EJB container creates the No-Interface view when it corresponds to one of the following views:

2. EJB Container

102

• When the following views are not implemented in a Session Bean:

• Local client view

• Remote client view

• Web service client view

The java.io.Serializable interface, java.io.Externalizable interface, and interface in the
javax.ejb package are excluded from the judgment of whether the above mentioned views are implemented.

• When the @LocalBean annotation is defined in a Session Bean

2.16.3 Methods that cannot be used
When using the No-Interface view, do not use the following methods as business methods. If you use these methods, a
compilation error occurs and the application fails to start.

• public void init(Hashtable)
• public void init(Object)
• public void init(String, Hashtable)
• public void initializeBIInstance()
• public Throwable convertRemoteException(Throwable)
• public Throwable unwrapServerException(Throwable)

Also, do not use the following methods defined in the java.lang.Object class:

• equals(Object)
• hashCode()
• toString()
• clone()
• finalize()

2.16.4 Precautions during development
The precautions to be taken when developing a Session Bean that uses the No-Interface view are as follows:

• Do not include java.rmi.RemoteException in the method of a Session Bean where the local business
interface is omitted.
However, if you invoke a method in which an interface in the javax.ejb package is implemented, an error does
not occur even if java.rmi.RemoteException is included in the throws clause.

• A method of the Session Bean in which an interface in the javax.ejb package is implemented does not serve as
a business method. When using the No-Interface view, do not invoke such methods from the client.

• You cannot declare final in any method in the Bean class and its parent class. You cannot invoke a method with
a final declaration in the No-Interface view.

• If you declare static or final in the methods of a Session Bean, such methods are not treated as business
methods. When using the No-Interface view, do not invoke such methods from the client.

• If you use the @AroundInvoke annotation in a normal business interface, execution of the business methods
results in a deployment error. However, when using the No-Interface view, if you use the @AroundInvoke
annotation in a public method, an error does not occur. Such methods are treated as business methods.

• With the standard specifications, you can use the @Remove annotation in business methods. However, if you
specify the @Remove annotation in a business method in which the @PreDestroy annotation is also specified,
javax.ejb.NoSuchObjectLocalException is thrown, on invoking the method from the client.

2. EJB Container

103

2.17 Asynchronous invocation of Session Bean
In EJB3.1, you can invoke the business method of a Session Bean asynchronously. Consequently, you can execute
multiple processes in parallel.

The following table describes the organization of this section.

Table 2‒56: Organization of this section (Asynchronous invocation of Session Bean)

Category Title Reference location

Description Applicability of asynchronous invocation of Session Bean 2.17.1

Handling transactions in asynchronous invocation 2.17.2

Handling the application information in an asynchronous invocation 2.17.3

Implementation Defining the annotation used for asynchronous invocation 2.17.4

Specifying return values for an asynchronous method 2.17.5

Operation for execution status and execution result of an asynchronous method
based on Future<V> object

2.17.6

Definitions in cosminexus.xml 2.17.7

Notes Notes on annotation when implementing an asynchronous method 2.17.8

Notes on operation of an asynchronous method 2.17.9

Note: There is no specific description of Setup and Operation for this functionality.

2.17.1 Applicability of asynchronous invocation of Session Bean
If you execute an asynchronous invocation for the Session Bean, the EJB container immediately returns the control to
the client which is a source of invocation without waiting for the processing of the Session Bean. A method that
receives the asynchronous invocation executes processing in a thread different from the source of invocation. On the
client machine, throughput of the application improves because application moves to the next processing without
waiting for the result.

You can execute an asynchronous invocation for a Session Bean containing the following EJB 3.1 compliant
interfaces or views:

• Remote business interface

• Local business interface

• No-Interface view

You can perform an asynchronous invocation by using the @Asynchronous annotation.

You can execute all the public methods in a Stateless Session Bean or Singleton Session Bean as asynchronous
methods by using the @Asynchronous annotation.

Note that you cannot implement asynchronous methods with the method of a Stateful Session Bean because the
session details and transaction status at the time of executing the asynchronous invocation are not retained.

The transmission of security information when an asynchronous invocation is executed is the same as that in the case
of a synchronous invocation.

2.17.2 Handling transactions in asynchronous invocation
You can specify only the following transaction attributes in the asynchronous invocation of a Session Bean:

• Required attribute

• RequiresNew attribute

2. EJB Container

104

• NotSupported attribute

However, the transaction context of the client, which is the source of invocation, is not transmitted in the
asynchronous method. The application developer needs to handle it as if it does not have the transmitted transaction
context. For example, even if you define the Required attribute in the asynchronous method, it is processed in the
same way as when the RequiresNew attribute is specified in an EJB container.

The following table describes the transactions that correspond to the specification of the transaction attribute in an
asynchronous method specified on the client machine.

Table 2‒57: Transactions that correspond to the specification of transaction attributes in asynchronous
methods specified on the client machine

Transaction attributes specified in methods Transaction on the client
machine

Transaction associated with
asynchronous method

NOT_SUPPORTED None None

T1 None

REQUIRED None T2

T1 T2

REQUIRES_NEW None T2

T1 T2

SUPPORTS None None

T1 None

NEVER None None

T1 None

MANDATORY None Error

T1 Error

Legend:
None: No transaction is specified or no transaction
T1: Transaction set by the invocation source client
T2: New transaction which is started by an EJB container

2.17.3 Handling root application information in asynchronous invocation
An EJB container performs the output of the root application information at the invocation source to an option, with
the event ID (0x84C0) of the PRF trace, which is output just before the callback of an asynchronous method. You can
compare the requests at the invocation source and the invocation destination by using this root application
information.

2.17.4 Defining the annotation used for asynchronous invocation
When executing an asynchronous invocation, specify the @Asynchronous annotation for a business method or a
class of the Session Bean. If you specify the @Asynchronous annotation in a class, it is considered that the
@Asynchronous annotation is specified for all the business methods in the class.

The request from the client machine sent by specifying the @Asynchronous annotation is executed with a new
thread as a Daemon thread.

2. EJB Container

105

2.17.5 Specifying return values for an asynchronous method
You can select either of the following values as a return value in an asynchronous method.

• void
• java.util.concurrent.Future<V> (V is a type of return value)

Hereafter, it is described as Future<V>.

Note that if you select void, you cannot declare an application exception. If you select Future<V>, you can declare
an application exception. If invoked from a remote interface, the Future<V> object used to access the processing
result is retained in an EJB container.

In an asynchronous method, you can pass the processing result object of the method to the invocation source by using
javax.ejb.AsyncResult<V>, which is an implementation class of Future<V>.

The examples when Future<V> and void are specified as return values in coding that uses the @Asynchronous
annotation are as follows:

// Enterprise Bean Business method

//Example when Future<V> is specified as return value
@Asynchronous
public Future<Integer> performCalculation(...) {
 // ... do calculation
 Integer result = null;
 if (ejb_context.wasCancelCalled()) {
 return new AsyncResult<Integer>(-1);
 }
 ...
 return new AsyncResult<Integer>(result);
}
// Example when void is specified as return value
@Asynchronous
public void performAddition (...) {
 Integer result = null;
 // ... do addition
}

2.17.6 Operation for execution status and execution result of an
asynchronous method based on Future<V> object

If you specify Future<V> as the return value of the asynchronous method, you can execute the following processes
using the method of Future<V>. You cannot execute these processes when the return value is void.

• Cancelling the asynchronous invocation processing

• Acquiring the execution result of the asynchronous invocation processing

• Confirming the execution status of the asynchronous invocation processing

• Acquiring causes of an exception occurrence in the asynchronous invocation processing

(1) Cancelling asynchronous invocation processing
You can cancel the processing by using the cancel method of the Future<V> object.

If the cancellation is successful, true is returned as the return value of the method. If the cancellation fails, false is
returned as the return value.

If the asynchronous invocation fails, whether to interrupt the processing or execute it as it is, is decided depending on
the specification in the mayInterruptIfRunning parameter of the cancel method.

(2) Acquiring the execution result of the asynchronous invocation processing
You use the get method of the Future<V> object to acquire the execution result.

2. EJB Container

106

The processing is complete when the processing is successfully executed and the processing result is acquired as the
return value or when ExecutionException occurs. Hereafter, you can acquire the same result if you acquire the
execution result using the same Future<V> object.

Note that if a timeout occurs during the method invocation of the Future<V> object in Application Server,
EJBException is thrown for the client by the EJB container.

(3) Confirming the execution status of asynchronous invocation processing
You can confirm whether the execution of the asynchronous processing is complete or cancelled. You can check the
status using the following methods of the Future<V> object:

• isDone method
When the processing is successfully completed, an exception is thrown, or when the processing is cancelled, true
is returned.

• isCancelled method
When the processing is successfully cancelled, true is returned, or when the processing cancellation fails, false is
returned.

In the asynchronous method, you can confirm whether the cancel method was invoked from the client machine, using
the following methods:

• wasCancelCalled method
When the execution cancellation of the asynchronous invocation processing is invoked by the cancel method, and
true (stop the running process) is specified in the mayInterruptIfRunning parameter of the cancel
method, true is returned. If false (complete the running process) is specified in the mayInterruptIfRunning
parameter of the cancel method, false is returned.

(4) Acquiring causes of the exception occurrence in asynchronous invocation processing
If a system exception occurs in the method of the business interface, java.rmi.RemoteException is returned
instead of javax.ejb.EJBException to the invocation source client machine. If a system exception is received
during the asynchronous invocation processing, you can determine that the asynchronous method was not executed on
the client machine. In such cases, you can invoke the asynchronous method again.

If an exception other than a system exception, such as an application exception occurs, the client can determine that
the exception has occurred during the asynchronous processing after executing the asynchronous processing by the
EJB container. In such cases, you can acquire the cause of the exception occurrence by using the exception object.

An example of coding to obtain the cause of the exception that occurs at the time of asynchronous invocation, by
invoking the getCause method of an exception object, is as follows:

// Bean Client
Future future = asynSessionBean.performCalculation();
while (!future.isDone()) {
 Thread.currentThread().sleep(10000);
 future.cancel(true);
 break;
}
if (future.isCancelled() == false) {
 Integer answer = null;
 try{
 answer = (Integer)future.get();
 } catch(ExecutionException e){
 System.out.println("caught exception: " +e.getCause());
 }
 System.out.println("Answer=" + answer.toString());
}
asynSessionBean.performAddition();

2.17.7 Definitions in cosminexus.xml
You can set the following items in cosminexus.xml:

2. EJB Container

107

• Number of threads that can simultaneously execute the asynchronous invocation processing and the retention
period of the threads

• Timeout of the processing result retention period of the asynchronous method

For details on cosminexus.xml, see 2. Application property file (cosminexus.xml) in the uCosminexus Application
Server Application and Resource Definition Reference Guide.

(1) Number of threads that can simultaneously execute the asynchronous invocation
processing and retention period of the threads

Define attributes such as the number of threads that can be simultaneously executed and the retention period of threads
in cosminexus.xml. You can set the following parameters:

• max-thread-pool-size
Specify the maximum number of threads that can be generated in a pool.

• min-thread-pool-size
Specify the maximum number of unused threads that can be stored in a pool.

• thread-pool-keep-alive
If the number of unused threads exceeds the number specified in min-thread-pool-size, set the time
required for retaining all the threads, until the threads end.

(2) Timeout of the processing result retention period of the asynchronous method
Set a timeout in the retention period of the Future<V> object used for acquiring the processing result of the
asynchronous method invocation that uses a remote interface. If you do not set the timeout, the processing result is
retained until the application stops. This can result in an increase in the memory usage volume and occurrence of the
OutOfMemory error in cases such as when there are many processing results. To prevent this, set the maximum value
of the period for which the results are to be retained. Set the following parameters:

• result-timeout-value
Specify the period (Unit: minute) for which the processing result is to be retained. Processing results that exceed
the specified period are deleted from the EJB container and are no longer available for referencing.

If you invoke the method in the Future<V> object that shows the processing result after deletion, an EJBException
that has the character string "KDJE43202-I" in the message is thrown. You can confirm whether "KDJE43202-I"
exists in the exception message and determine whether the result is deleted due to a timeout occurrence.

However, in the case of a local client, because the Future<V> object is retained locally, the method ends
successfully without throwing any exception.

Notes on the Java heap estimation and Java heap tuning when an asynchronous invocation is to be executed, are as
follows:

(a) Java heap estimation when executing the asynchronous invocation

If an asynchronous processing is invoked using the remote interface, the Future<V> object that shows processing
results is retained in JavaVM on which the EJB container operates. Therefore, if there are many requests, you must be
careful so that the OutOfMemory error does not occur in JavaVM.

When executing the asynchronous invocation, estimate the Java heap size required for each asynchronous method
using the following estimation formula.

Java heap size (unit: KB) required for one asynchronous method

=(1+A) (B+C+1) D

Legend:
A: Object size (KB) depending on the user application
B: Average value (minute) of the asynchronous method execution time
C: Value of the result-timeout-value specified in cosminexus.xml
D: Average execution count of asynchronous methods invoked in one minute

2. EJB Container

108

Add the values calculated for each asynchronous method and then calculate the required Java heap size as a whole.

Tip

• The java heap size required for invoking the asynchronous method in a remote interface is calculated by the above
estimation formula. When invoking with a local interface, the result is not maintained in the EJB container and hence
estimation is not required.

• "Object size depending on the user application" is the size of the processing result object. Usually, you need not be
aware of the size of the processing result object of the user application. However, if the size is large, change the Java
heap size as and when required after measuring the size to be used in the test program.

(b) Notes on tuning the timeout period

Consider the following points regarding the tuning of the timeout period:

• For the timeout period, specify a value longer than the interval in which the isDone method of the Future
object is executed in an application. Also specify a value longer than the period from the invocation of the get
method of the Future object until the invocation of the asynchronous method.

• If you want to reduce the resource usage volume, decrease the value of result-timeout-value. However,
in such cases, you cannot access the deleted processing results once the time is elapsed.

• Calculate a size that does not consume too much of the Java heap memory after considering the average value of
the execution time of the asynchronous method, execution time of the asynchronous method, and the average
value of the execution count in one minute. Then set the definition of result-timeout-value.

2.17.8 Notes on annotation when implementing an asynchronous
method

• If you specify the asynchronous method in a class unit, (if you specify the @Asynchronous annotation for a
class), you must specify void or Future <V> as the return value of all the methods in the class. If you specify
any other type, the application fails to start.

• If you specify an asynchronous method in a method unit, (if you specify the @Asynchronous annotation for
method), you must specify void or Future <V> as the return value of the method for which the
@Asynchronous annotation is specified. If you specify any other type, the application fails to start.

2.17.9 Notes on operation of an asynchronous method
• You cannot execute the method cancellation functionality in a Session Bean that executes the asynchronous

invocation, if you try to cancel the method, the KDJE52703-W message is output; however, the method is not
cancelled.
To cancel the asynchronous method, use a method of the Future<V> object.

• When the application stops, cleanup processing is executed. Cleanup processing does not end until all the running
processes end. When all the processes are complete, cleanup processing ends and the application stops.

• If you invoke the asynchronous processing of a Session Bean by using a remote interface, an object which causes
full garbage collection during the server operation, is generated. Therefore, if you want to prevent the occurrence
of a full garbage collection, use the remote interface and do not invoke the asynchronous processing.

2. EJB Container

109

2.18 Specifications in Session Synchronization
annotation

You can define the processing (Session Synchronization) that is executed before and after the start and end of a
transaction by using annotations in addition to implementing the javax.ejb.SessionSynchronization
interface.

This section describes how to set the processing executed before and after the start and end of a transaction with
annotations, when a transaction is managed in CMT.

The following table describes the organization of this section:

Table 2‒58: Organization of this section (Setting the processing to be executed before and after start and
end of transaction)

Category Title Reference location

Description Method of setting Session Synchronization with annotation 2.18.1

Implementation Rules for implementation 2.18.2

Notes Notes on implementation 2.18.3

Note: There is no specific description of Setup and Operation for this functionality.

2.18.1 Method of setting Session Synchronization with annotation
When a transaction is managed in CMT, transactions are managed by the container. In such cases, you can develop an
application without implementing start and end of the transaction. In the management by a container, the transaction
starts immediately before the start of the method and it is committed and ended immediately after the end of the
method.

If you want to execute a specific processing before and after the start and end of a transaction by the container, use the
Session Synchronization functionality. You can use the Session Synchronization functionality in either of the
following methods:

• Method for implementing the javax.ejb.SessionSynchronization interface

• Method of specifying the annotation

You can use the method that specifies the annotation in EJB3.1 or later. If you specify annotations, you can set the
timing of executing the process before and after the start and end of a transaction without implementing the
javax.ejb.SessionSynchronization interface. This simplifies the development of the application.

This subsection describes the specifications when annotations are to be used. You can use the following annotations:

@AfterBegin
@AfterBegin is an annotation which reports the start of a new transaction. A container invokes the processing
with the specification of this annotation after the start of the transaction and immediately before invoking the
business method.

@BeforeCompletion
@BeforeCompletion is an annotation which reports the completion of the business method. The processing
with the specification of this annotation is invoked after completing the business method and immediately before
committing the transaction. If you want to roll back the processing implemented by the business method, you must
invoke the setRollbackOnly method at this time.

@AfterCompletion
@AfterCompletion is an annotation which reports the completion of a transaction. The processing with the
specification of this annotation is invoked immediately after completion of the transaction.
In this annotation, you can specify true or false as a parameter. If you specify true, processing is executed
when the transaction is committed. If you specify false, processing is executed when the transaction is rolled back.

2. EJB Container

110

You can specify these annotations in the class of a Stateful Session Bean (or its parent class). With respective Session
Beans, you can specify one of these annotations for each type.

2.18.2 Rules for implementation
Specify the method that specifies annotations by conforming to the following rules. If you do not specify the method
properly, an error occurs when the application starts.

• You can use this functionality only in a Stateful Session Bean that manages transactions with CMT. You cannot
use this functionality in the Stateless Session Bean and Singleton Session Bean. In BMT, you can manage the
timing of the transaction processing with a Session Bean and hence you need not use this functionality.

• Do not declare final and static in a method that specifies annotation.

• Set the return value of a method that specifies annotations to the void type.

• Do not specify parameters in @AfterBegin and @BeforeCompletion.

• Specify only one boolean type value in the @AfterCompletion parameter.

2.18.3 Notes on implementation
Precautions during the implementation are as follows:

• A container invokes the afterBegin method, beforeCompletion method, or afterCompletion
method only when the javax.ejb.SessionSynchronization interface is implemented in the target
Session Bean (or its parent class) or when the annotation is specified in the Session Bean.
If both, the implementation of the javax.ejb.SessionSynchronization interface and specification of
annotations are implemented when developing a Session Bean, implementation of the interface is given priority.

• If you specify the same annotation for multiple times in a Session Bean class, we cannot guarantee which method
from among the afterBegin method, beforeCompletion method or afterCompletion method
specified for multiple times will be invoked by the container.

• If you specify parameters not conforming to the annotation rules, the application fails to start and the KDJE42039-
E message is output.

• You can invoke the methods for which the processing time is set using the @AfterBegin annotation,
@BeforeCompletion annotation, or @AfterCompletion annotation directly from the client machine, in
the same way as for other business methods. However, generally, the callback method is not to be published
on the client machine as a business method. Therefore, we recommend declaring a value other than public in
the access modifier of such methods.

2. EJB Container

111

2.19 Using Singleton Session Beans
This section describes the details of the Singleton Session Bean that can be used on Application Server.

The following table describes the organization of this section.

Table 2‒59: Organization of this section (Using Singleton Session Bean)

Category Title Reference location

Description Exclusive control of Singleton Session Beans 2.19.1

Error handling in Singleton Session Beans 2.19.2

Notes Precautions when using Singleton Session Beans 2.19.3

Note: There is no specific description of Implementation, Setup, Operation and Notes for this functionality.

2.19.1 Exclusive control of Singleton Session Beans
The two methods for exclusive control of a Singleton Session Bean are as follows:

• Container-Managed Concurrency
This method manages the processing status of the instance of a method level in an EJB container.

• Bean-Managed Concurrency
This method manages the processing status of all the Bean instances in an Enterprise Bean.

When developing a Singleton Session Bean, you must determine the method you use to manage the exclusive control.
You cannot use both the methods concurrently.

(1) Container- Managed Concurrency
The EJB container executes exclusive control. Respective business methods and timeout methods are controlled by the
Read lock or Write lock. In the case of a method for which the Read lock is set, you can concurrently execute the
processing of multiple methods. In the case of a method for which the Write lock is set, any other method is not
invoked until the processing of one method is complete.

Specify the type of lock for a method of the Session Bean class or overridden class with an annotation. If you do not
explicitly specify the type of lock, operation is performed in the same way as when the Write lock is specified.

When executing exclusive control, you can set the timeout period for pending processes. You can specify the timeout
period using the @AccessTimeout annotation. If a timeout occurs,
javax.ejb.ConcurrentAccessTimeoutException is thrown for the invocation source client by an EJB
container.

(2) Bean-Managed Concurrency
If you specify the Bean-Managed Concurrency, exclusive control is not executed for a Singleton Session Bean by the
EJB container. Implementation related to exclusive control is required during the application development. Implement
using Synchronized and volatile in the Java language depending on the purpose of usage.

2.19.2 Error handling in Singleton Session Beans
The following errors might occur during the initialization of a Singleton Session Bean:

• DI failure

• Occurrence of a system exception in the constructor method

• Occurrence of an exception in the lifecycle callback method (PostConstruct or PreDestroy)

2. EJB Container

112

If initialization of a Singleton Session Bean fails, javax.ejb.NoSuchEJBException occurs for invoking the
business interface method of a Singleton Session Bean.

If initialization is successful, the instance of the Singleton Session Bean is retained until the application stops. The
instance of the Singleton Session Bean is not destroyed even if a system exception is thrown from the business method
or the callback method of a Singleton Session Bean.

! Important note

With Application Server, you cannot invoke the asynchronous method of a Singleton Session Bean from the
PostConstruct method of a Singleton Session Bean.

2.19.3 Precautions when using Singleton Session Beans
• Processing of threads waiting for acquisition of Write lock is not interrupted by stopping the application.

• If a circular dependency is specified in the @DependsOn annotation, an error occurs in the deploy processing
when the application starts.

• With Application Server, you cannot specify the @DependsOn annotation for a Singleton Session Bean for
different EJB-JAR files.

• In the lifecycle callback method (PostConstruct or PreDestroy) of a Singleton Session Bean, specification
of the transaction attribute of the @TransactionAttribute annotation is invalid.

2. EJB Container

113

3 EJB Client
This chapter explains the functionality that can be used in the EJB client. The EJB
client is a client program that invokes Enterprise Beans.

115

3.1 Organization of this chapter
An EJB client is a client program that invokes the Enterprise Beans executed by the EJB container on a J2EE server.

The types of EJB clients are as follows:

• EJB client application

• Web applications such as servlets or JSPs

• Other Enterprise Beans

An EJB client application is a client application that invokes the Enterprise Beans running on a J2EE server.

The following table describes the functionality of an EJB client and the reference location for each functionality:

Table 3‒1: Functionality of an EJB client and the reference location for each functionality

Functionality Reference
location

Functionality that can be used in an EJB client 3.2

Starting EJB Client Applications 3.3

Invoking an Enterprise Bean 3.4

Implementing a transaction in EJB client application 3.5

Implementing security in EJB client application 3.6

Obtaining RMI-IIOP stubs and interfaces 3.7

System log output of EJB client application 3.8

This chapter mainly describes the functionality of the EJB client applications.

3. EJB Client

116

3.2 Functionality that can be used in an EJB client
The following table describes the functionality that can be used in the EJB client. For details on the respective
functionality, see the description given in the references. Note that uCosminexus Application Server is omitted from
the manual names mentioned in the Reference column.

Table 3‒2: Functionality that can be used in the EJB client

Category Overview of the functionality Reference Manual Reference
location

JNDI Basic
functionality

This functionality enables to search and
obtain the EJB home object reference and the
reference of business interface.

Common Container
Functionality Guide

Chapter 2

Extended
functionality

In a system consisting of multiple Naming
Services and J2EE servers, this functionality
enables to execute lookup from the EJB client
by round robin. This makes load balancing
possible.

This functionality enables to maintain the
objects looked up from the Naming Service
(cached) on the memory. By using the cache,
the performance-related cost for accessing the
Naming Service can be reduced.

EJB The Enterprise Beans running in the EJB
container cannot be invoked.

This manual 2.2, 3.4#, 3.7#

When a communication failure occurs during
EJB invocation, the send operation can be
selected.

This manual 2.13.3

Transaction A transaction can be started and concluded in
the EJB client.

Common Container
Functionality Guide

Chapter 3

Security User authentication can be performed by
using the user and the password defined in the
J2EE server. After logging on from the EJB
client, the business methods of the EJB with
the security role specified can be invoked.

This manual 3.6#

Security Management
Guide

Chapter 6

Others A communication timeout can be set for
communication between the EJB client and
the Naming Service, and between the EJB
client and the J2EE server.

This manual 2.11

The performance analysis trace of the EJB
client can be output.

Maintenance and
Migration Guide

4.6

#
The implementation method of the application is described here.

The following table describes the extended functionality that can be used in the EJB client application. For details on
the respective functionality, see the description given in the reference. Note that data source (JDBC) and connector
(Connector) cannot be used in an EJB client application.

Table 3‒3: Expansion functionality that can be used in an EJB client application

Category Overview of the functionality for the functionality

Transaction In an EJB client application, you can obtain
UserTransaction, and start or conclude the transaction.
UserTransaction is obtained by either of the following
methods:

1. Using the UserTransactionFactory class

3.5

3. EJB Client

117

Category Overview of the functionality for the functionality

Transaction 2. Using lookup

Note that the method given in 1. is recommended in
Cosminexus.

3.5

Others The EJB client log can be output. 3.8#

EJB client application can be started using the command
(cjclstartap command).

3.3.1

#
This manual describes the system log of an EJB client application. For details on the user log output by the EJB client
applications, see 9. Output of the Application User Log in the uCosminexus Application Server Expansion Guide.

The functionality of an EJB client application is described in the following sections.

3. EJB Client

118

3.3 Starting EJB Client Applications
This section describes how to start an EJB client application.

Start the EJB client application using a command.

The following table describes the organization of this section:

Table 3‒4: Organization of this section (Starting EJB client applications)

Category Title Reference location

Description Command used for starting an EJB client application 3.3.1

Using the cjclstartap command 3.3.2

Using the vbj command 3.3.3

Setup Specifying the environment variables required for executing an EJB client application 3.3.4

Specifying the property of an EJB client application 3.3.5

Note:
There is no specific description of Implementation, Operation, and Notes for this functionality.

This section describes the commands used for starting the EJB client application and the flow of starting the EJB
client application for each command used.

3.3.1 Commands used for starting an EJB client application
The following table describes the commands used for starting an EJB client application:

Table 3‒5: Commands used for starting an EJB client application

Command name Description

cjclstartap The cjclstartap command enables you to code beforehand the options and property required for executing an
EJB client application in the option definition files and the property files. Note that if the options and property are
omitted for each file, the command is executed by using the default value.

Hitachi recommends that in Cosminexus you operate the EJB client applications in the cjclstartap command
that strengthens the troubleshooting functionality.

Furthermore, you can also use the cjclstartap command to start Java applications.

The location to save the command is as follows:

• In Windows
Cosminexus-installation-directory\CC\client\bin

• In UNIX
/opt/Cosminexus/CC/client/bin

vbj In the case of the vbj command, the options and property required to execute the EJB client applications must be
specified as the arguments of the command. You cannot omit the options and property.

The vbj command is used for the compatibility with the old versions. Use this command when you want to
execute the EJB client applications using the vbj command according to the past methods.

The location to save the command is as follows:

• In Windows
Cosminexus-installation-directory\TPB\bin\vbj

• In UNIX
/opt/Cosminexus/TPB/bin/vbj

3. EJB Client

119

! Important note

When you use uCosminexus Client to create the EJB client environment, replace Cosminexus-installation-directory\CC in
the storage directory with Cosminexus-installation-directory\CCL.

The flow of starting an EJB client application with each of the above commands is described in the following
subsections.

3.3.2 Using the cjclstartap command
The following is the flow of starting an EJB client application using the cjclstartap command:

1. Specify the environment variables required for executing the EJB client application.
Among all the environment variables required for executing the EJB client application, specify only the
environment variables that are required when you execute the EJB client application using the cjclstartap
command. For details on the required environment variables, see 3.3.4 Specifying the environment variables
required for executing an EJB client application.

2. In the option definition file (usrconf.cfg) of the EJB client application, specify the Java options and the class
path of the JAR files.

Storage location of usrconf.cfg
A sample of usrconf.cfg is saved in the following location. Copy this sample file to any location of your
choice, and then use.
In Windows
Cosminexus-installation-directory\CC\client\templates\usrconf.cfg
In UNIX
/opt/Cosminexus/CC/client/templates/usrconf.cfg

Specifying the JavaVM startup options
Specify the JavaVM startup options in the add.jvm.arg key of usrconf.cfg. For details on the options
that can be specified, see 16. JavaVM Startup Options in the uCosminexus Application Server Definition
Reference Guide.

Specifying the class path of the JAR files
Specify the class path of the JAR file in the add.class.path key of usrconf.cfg. For details on the
JAR files that you must specify in the class path, see 3.7.4 Specifying JAR files in the class path of the EJB
client application.

3. Specify the properties in the property file (usrconf.properties) of the EJB client application.

Storage location of usrconf.properties
A sample of usrconf.properties is saved in the following location. Copy this sample file to any
location of your choice, and then use the file.
In Windows
Cosminexus-installation-directory\CC\client\templates\usrconf.properties
In UNIX
/opt/Cosminexus/CC/client/templates/usrconf.properties

Specifying properties
For details on the contents that can be specified in the properties, see 3.3.5 Specifying the property of an EJB
client application. If necessary, also see 3.5.3 Precautions during the implementation of a transaction in the
EJB client application, 3.8 System log output of an EJB client application, and 9.10 User log output settings
for EJB client applications (when using the cjclstartap command) in the uCosminexus Application Server
Expansion Guide.
For details on the properties that can be specified, see 14.3 usrconf.properties (User property file for Java
applications) in the uCosminexus Application Server Definition Reference Guide.

4. When usrconf.cfg and usrconf.properties are saved in a location other than the current directory in
which the cjclstartap command is executed, specify the absolute path of the storage location of
usrconf.cfg and usrconf.properties with the environment variable CJCLUSRCONFDIR.

3. EJB Client

120

Save the created files usrconf.cfg and usrconf.properties in the same directory and specify the
absolute path of that directory with the environment variable CJCLUSRCONFDIR.
This operation is not required when usrconf.cfg and usrconf.properties are saved in the current
directory in which the cjclstartap command is executed. Proceed to step 5.

5. Use the cjclstartap command to start the EJB client application.
For details on the cjclstartap commands, see cjclstartap (Starting Java applications) in the uCosminexus
Application Server Command Reference Guide.

! Important note
When you use uCosminexus Client to create the EJB client environment, replace Cosminexus-installation-directory\CC
in the storage directory with Cosminexus-installation-directory\CCL.

When false is set up in ejb.client.directory.shareable, and the cjclstartap command is
executed, the work file that will be used by the command is created. If the work file is corrupt, the operation of the
cjclstartap command or cjcldumpap command will not be guaranteed. The output destination of the work file
and the file name are as follows:

In Windows
Current-directory\.cjclstartap.lock
ejb-clien-log-directory\.ejbclientlog.lock
Current-directory\cjclstartap.pid

In UNIX
Current-directory/.cjclstartap.lock
ejb.client.log-directory/.ejbclientlog.lock
Current-directory/cjclstartap.pid
Current-directory/.COSMINEXUS_CC_EJBCLIENT_ProcessID

Reference note
You can also use the cjclstartap command to start Java applications. For details on how to start Java applications
by using the cjclstartap command, see cjclstartap (Starting Java applications) in the uCosminexus Application
Server Command Reference Guide.

3.3.3 Using the vbj command
This subsection describes the flow of starting an EJB client application using the vbj command. If you use a batch
file or shell script file to execute an EJB client application, you can describe the following contents in the batch file or
shell script file:

1. Specify the environment variables required for executing an EJB client application.
Among all the environment variables required for executing the EJB client application, specify only the
environment variables that are required while executing the EJB client application with the vbj command. For
details on the required environment variables, see 3.3.4 Specifying the environment variables required for
executing an EJB client application.

2. Specify the JavaVM startup options.
Specify the appropriate JavaVM startup options in the vbj command. For details on the options that can be
specified, see 16. JavaVM Startup Options in the uCosminexus Application Server Definition Reference Guide.

3. Specify the class path of the JAR files.
Specify the appropriate class paths in the vbj command. For details on the required class paths, see 3.7.4
Specifying JAR files in the class path of the EJB client application.

4. Specify the properties.
For details on the contents that can be specified in properties, see 3.3.5 Specifying the property of an EJB client
application. If necessary, also see 3.8 System log output of an EJB client application, 3.5.3 Precautions during the
implementation of a transaction in the EJB client application, and 9.11 Implementing and setting up the user log
output for EJB client applications (when using the vbj command) in the uCosminexus Application Server
Expansion Guide.

3. EJB Client

121

For details on the properties that can be specified, see 14.3 usrconf.properties (User property file for Java
applications) in the uCosminexus Application Server Definition Reference Guide.

5. Use the vbj command to start the EJB client application.

! Important note
When you use uCosminexus Client to create the EJB client environment, replace Cosminexus-installation-directory\CC
in the storage directory with Cosminexus-installation-directory\CCL.

3.3.4 Specifying the environment variables required for executing an EJB
client application

This subsection describes the setup of environment variables of an EJB client application. The environment variables
required for executing an EJB client application are as follows:

Table 3‒6: Environment variables required for executing an EJB client application (in Windows)

Environment variable Value
Commands

cjclstartap vbj

PATH#1 Cosminexus-installation-directory\jdk\bin -- Y

Cosminexus-installation-directory\TPB\bin Y --

Cosminexus-installation-directory\PRF\bin -- Y

VBROKER_ADM Cosminexus-installation-directory\TPB\adm Y Y

PRFSPOOL#2 Cosminexus-installation-directory\PRF\spool O O

TZ JST-9 (In the case of Japan) Y Y

Legend:
Y: The environment variables must be specified in the command. Specification is mandatory.
O: Specified during installation. Specification is optional.
--: Specification is not required.

#1
Specify Cosminexus-installation-directory\jdk\bin at the beginning of the environment variable PATH.

#2
The Cosminexus Performance Tracer log is output under the PRFSPOOL environment variable set by the installer. However, if
the PRF daemon is not allocated to the machine on which the EJB client application is running, the module trace increases
monotonically.
Do not set the PRFSPOOL environment variable when the PRF daemon is not allocated.
Use one of the following methods:
- Delete the PRFSPOOL environment variable from the system environment variables.
- Disable the PRFSPOOL environment variable when you execute the EJB client.

Table 3‒7: Environment variables required for executing an EJB client application (in UNIX)

Environment variable Value
Commands

cjclstartap vbj

LIBPATH, or
LD_LIBRARY_PATH#1

/opt/Cosminexus/TPB/lib
/opt/Cosminexus/PRF/lib

Y Y

PATH#2 /opt/Cosminexus/jdk/bin -- Y

/opt/Cosminexus/TPB/bin Y --

/bin -- Y

3. EJB Client

122

Environment variable Value
Commands

cjclstartap vbj

PATH#2 /usr/bin -- Y

VBROKER_ADM /opt/Cosminexus/TPB/adm Y Y

PRFSPOOL#3 /opt/Cosminexus/PRF/spool O O

TZ JST-9 (In the case of Japan) Y Y

Legend:
Y: The environment variables must be specified in the command. Specification is mandatory.
O: Specification is optional.
--: Specification is not required.

#1
The name of the environment variable used differs depending on the OS.
LIBPATH: In AIX
LD_LIBRARY_PATH: In HP-UX (IPF), Linux, or Solaris

#2
Specify /opt/Cosminexus/jdk/bin at the beginning of the environment variable PATH.

#3
The Cosminexus Performance Tracer log is output under the PRFSPOOL environment variable. However, if the PRF daemon is
not allocated to the machine on which the EJB client application is running, the module trace increases monotonically.
Do not set the PRFSPOOL environment variable when the PRF daemon is not allocated. Specifically disable the PRFSPOOL
environment variable when you execute the EJB client.

If AIX is the execution environment, apart from the environment variables described in the above table, you must
specify environment variables specific to AIX. For details, see 4.1.11 Items to be checked when setting system
environment variables in the uCosminexus Application Server System Setup and Operation Guide.

3.3.5 Specifying the property of an EJB client application
In an EJB client application, you can specify properties corresponding to the functionality to be used. For details on
the properties that can be specified in an EJB client application, see 14.3 usrconf.properties (User property file for
Java applications) in the uCosminexus Application Server Definition Reference Guide.

3. EJB Client

123

3.4 Invoking an Enterprise Bean
This section describes how to invoke an Enterprise Bean from an EJB client application and also describes the
operation settings to be specified in the client when a communication failure occurs during the method invocation.

The following table describes the organization of this section:

Table 3‒8: Organization of this section (Invoking an Enterprise Bean)

Category Title Reference location

Description Flow of Enterprise Bean invocation from an EJB client application 3.4.1

Implementation Implementation for invoking an Enterprise Bean 3.4.2

Note:
There is no specific explanation of Setup, Operation, and Notes for this functionality.

3.4.1 Flow of Enterprise Bean invocation from an EJB client application
This subsection describes the flow of invoking an Enterprise Bean based on the example of searching and obtaining
the references of an EJB home object.

Figure 3‒1: Flow of invoking an Enterprise Bean from the EJB client application by using the home
interface

To invoke an Enterprise Bean from the EJB client application using the home interface, obtain the references of the
EJB home object using JNDI. To do so, you must implement in such a way so that the JNDI naming context is
generated in the EJB client application and the references of the EJB home object can be searched. For details on how
to invoke an Enterprise Bean, see 3.4.2 Implementation for invoking an Enterprise Bean. Furthermore, since an EJB
client application uses RMI-IIOP for communication, you can reference the stubs and interfaces of RMI-IIOP. For
details on how to obtain the stubs and interfaces of RMI-IIOP, see 3.7 Obtaining RMI-IIOP stubs and interfaces.

3.4.2 Implementation for invoking an Enterprise Bean
To invoke an Enterprise Bean from the EJB client application, use JNDI. This subsection describes how to invoke an
Enterprise Bean when the references of the EJB home object are look up and also when the references of the business
interface are look up.

(1) Invoking an Enterprise Bean by searching the references of the EJB home object
The method of invoking an Enterprise Bean using look up the references of the EJB home object is described as
follows, based on an example of implementation:

(a) Generating the JNDI naming context

Generate the JNDI naming context to be used for the look up of the references of the EJB home object.

3. EJB Client

124

javax.naming.Context ctx = new javax.naming.InitialContext();

(b) Searching and obtaining the references of the EJB home object

Use the generated JNDI naming context to obtain the references of the EJB home object. To obtain the references of
the EJB home object, perform lookup with either the automatically bound name (Portable Global JNDI name or a
name starting with HITACHI_EJB) or the name provided by using the user-specified name space functionality. In the
following example, lookup is performed using the user-specified name space and the references are obtained. For
details on how to perform lookup, see 2.3 Binding to and looking up an object in the JNDI namespace in the
uCosminexus Application Server Common Container Functionality Guide.

String ejbName = "MySample";
java.lang.Object obj = ctx.lookup(ejbName);
SampleHome sampleHome =
(SampleHome)javax.rmi.PortableRemoteObject.narrow(obj, SampleHome.class);

(c) Generating the Enterprise Beans and invoking the methods

Generate the instances of the Enterprise Beans using the create method of the EJB home object. By doing this, the
methods of the Enterprise Beans required in the application can be invoked.

Sample remoteSample = sampleHome.create();
//Generate Enterprise Bean instances
String result = remoteSample.getData("data");
//Invoke the business methods

In the Entity Bean, when you use the find method that returns the collection type, the objects obtained from the
collection must be narrowed in the Enterprise Bean class.

Collection c = home.findByXXX(keyValue);
Iterator i=c.iterator();
while (i.hasNext()) {
 Sample remoteSample=(Sample)javax.rmi.PortableRemoteObject.narrow(i.next(),
Sample.class);
 //Invoke a business method in RemoteSample.
}

(2) Invoking an Enterprise Bean by searching the references of the business interface
The method of invoking an Enterprise Bean using look up of the references of the business interface is described as
follows as per the implementation example:

(a) Generating the InitialContext

To invoke an Enterprise Bean using the business interface, first of all generate the InitialContext.

// Generate the InitialContext
InitialContext ctx = new InitialContext();

(b) Searching and obtaining the references of the business interface

Use the generated InitialContext to obtain the references of the business interface. To obtain the references of
the business interface, perform lookup with either the automatically bound name or the name provided by using the
user-specified name space functionality. For details on how to look up a business interface using an automatically
bound name, see 2.5 Lookup by a name starting with HITACHI_EJB in the uCosminexus Application Server Common
Container Functionality Guide.

// Obtain the reference of the business interface
Sample sample = (Sample)ctx.lookup("HITACHI_EJB/SERVERS/MyServer/EJBBI/SampleApp/
Sample");

3. EJB Client

125

(c) Calling a method

When the references of the business interface are obtained, the business method can be invoked.

// Invoke the business method
String result = sample.getData("data");

3. EJB Client

126

3.5 Implementing a transaction in an EJB client
application

This section describes the implementation of a transaction in an EJB client application.

The following table describes the organization of this section:

Table 3‒9: Organization of this section (Implementing a transaction in an EJB client application)

Category Title Reference
location

Implementation Procedure for using a transaction in the EJB client 3.5.1

Obtaining UserTransaction using lookup 3.5.2

Notes Precautions during the implementation of a transaction in the EJB client application 3.5.3

Note:
There is no specific description of Operation for this functionality.

Tip
The following is the description for Description and Setup:

Description:
See 3. Resource Connection and Transaction Management in the uCosminexus Application Server Common Container
Functionality Guide.

Setup:
See 3.20 Points to be considered when starting a transaction in the EJB client applications in the uCosminexus
Application Server Common Container Functionality Guide.

! Important note

When you use uCosminexus Client to create the EJB client environment, you cannot use transactions of the EJB client
application.

3.5.1 Procedure for using a transaction in the EJB client
To use a transaction in the EJB client application:

1. Add the following JAR files to the class path specified during the startup of the EJB client application:

• In Windows
Cosminexus-installation-directory\TPB\lib\tpotsinproc.jar
Cosminexus-installation-directory\CC\lib\ejbserver.jar#

• In UNIX
/opt/Cosminexus/TPB/lib/tpotsinproc.jar
/opt/Cosminexus/CC/lib/ejbserver.jar#

#
Add ejbserver.jar after HiEJBClientStatic.jar.

2. Add the system properties required during the startup of the EJB client application.
For details on how to add system properties, see 3.20 Points to be considered when starting a transaction in the
EJB client applications in the uCosminexus Application Server Common Container Functionality Guide.

3. Immediately after the startup of the process of the EJB client application, execute the initialization processing of
the service from the user codes implemented in the EJB client application.
To execute the initialization processing of the service, invoke the EJBClientInitializer class
(com.hitachi.software.ejb.ejbclient.EJBClientInitializer).

3. EJB Client

127

Note that if you generate javax.naming.InitialContext, and invoke the getUserTransaction
method of the UserTransactionFactory class before invoking the initialize method of the
EJBClientInitializer class, the initialization processing will be executed at that point of time. Therefore,
you need not execute the initialization processing in the EJBClientInitializer class.
For details on the syntax and functionality of the EJBClientInitializer class, see 4.2 EJBClientInitializer
class in the uCosminexus Application Server API Reference Guide.

4. Obtain the UserTransaction object.
The UserTransaction object is obtained with either of the following two methods:

• Using the UserTransactionFactory class
Obtain the UserTransaction object using the getUserTransaction method of the
com.hitachi.software.ejb.ejbclient.UserTransactionFactory class. For details on the
syntax and functionality of the UserTransactionFactory class, see 4.5 UserTransactionFactory class
in the uCosminexus Application Server API Reference Guide.

• Using lookup
Obtain the UserTransaction object using the look up from the naming service. For details on how to
obtain the UserTransaction object using lookup, see 3.4.8 Process overview and points to be considered
when using UserTransaction interface in the uCosminexus Application Server Common Container
Functionality Guide.

Hitachi recommends that in the EJB client you obtain UserTransaction using the
UserTransactionFactory class. However, if you are not able to change the source codes of the EJB client
application because of the migration from an application server of another company, use lookup.

5. From the thread that invokes the Enterprise Bean, invoke the begin method of the UserTransaction
interface and start the transaction.

6. Invoke the Enterprise Bean running on the server.

7. From the thread that invokes the Enterprise Bean, invoke the commit method or the rollback method of the
UserTransaction interface and conclude the transaction.

3.5.2 Obtaining UserTransaction using lookup
Indicate the search string specified when using look up for UserTransaction from the EJB client application.

HITACHI_EJB/SERVERS/server-name/SERVICES/UserTransaction

Because the object obtained based on the result of the lookup has java.lang.Object type, the object is used by
casting in the javax.transaction.UserTransaction type.

If a failure occurs in the lookup, the javax.naming.NamingException exception will occur.

The specifications for casting in the UserTransaction type and for exceptions are the same as that for using the
look up for UserTransaction from a Web application running on the J2EE server and from an Enterprise Bean

! Important note

The lookup of UserTransaction is not supported in the following environments:

• Lookup of UserTransaction in the global Naming Service used when linking with CTM

• Lookup of UserTransaction using the user-specified name space management functionality that is used with the round
robin search functionality

When using UserTransaction in these environments, use the UserTransactionFactory class to obtain
UserTransaction.

3.5.3 Precautions during the implementation of a transaction in the EJB
client application

The precautions to be taken when implementing a transaction in an EJB client are indicated below:

3. EJB Client

128

• If an exception occurs during the initialization processing of a service, the system property might not be specified
properly. You follow the exception message in such a case.

• If the mandatory, required, and supports attributes are specified in the Container-Managed Transaction
(CMT), the invoked Enterprise Bean can be executed within the scope of the transaction started in the EJB client
application.

• If an EJB client application shuts down because of a failure during the transaction processing, you need to restart
the EJB client application and execute the recovery process of the global transaction. Design the EJB client
application in such a way so that after restarting the EJB client application, the initialize method of the
EJBClientInitializer class is invoked and the recovery process of the global transaction starts.
Transaction is recovered in the background, therefore, initialize method does not wait until completion of recovery
and returns.

• If the transaction is started in an EJB client application, design the EJB client application so that its process always
stops after all the transactions are completed. If you stop the processing of the EJB client application without
waiting for the transactions to conclude, the transactions in the Preparing status might be remained without
being concluded. In such a state, you cannot perform the normal termination of Application Server and the
resource adapter. Furthermore, the resource lock might not be released.
For any reason if a transaction that is in the Preparing state remains back, you must restart the EJB client
application and execute the recovery process of the global transaction.

• In an EJB client application, the root application information and client application information are not included in
the performance analysis trace that JTA and OTS output. To trace a request, use a hash code of the thread and XID
information. The message output when a transaction timeout occurs includes the hash code of the thread that starts
the transaction instead of including the root application information.

3. EJB Client

129

3.6 Implementing security in an EJB client application
This section describes the implementation of security in an EJB client application.

In an EJB client application, the user can be authenticated by using the user name and password defined in the J2EE
server. If a login is performed by authenticating the user from the EJB client application, you can invoke the methods
of an Enterprise Bean in which the Security role is specified.

The following table describes the organization of this section:

Table 3‒10: Organization of this section (Implementing security in an EJB client application)

Category Title Reference location

Implementation Preconditions for implementing security 3.6.1

Sample program when security is implemented 3.6.2

Note:
There is no specific description of Setup, Operation, and Notes for this functionality.

Tip
The following is the explanation for Description:

Description:
See 6. Authentication by application settings in the uCosminexus Application Server Security Management Guide.

3.6.1 Preconditions for implementing security
Security is implemented in an EJB client application with the APIs that Cosminexus provides. This subsection
describes the preconditions for implementing security and also describes how to implement security. For details on the
functionality and syntax of APIs, see 4. APIs Used in the EJB Client Applications the uCosminexus Application Server
API Reference Guide.

Before implementing security, make sure that the following preconditions are fulfilled:

• The user must be registered in the J2EE server.

• The Security role must be specified for the registered user.

(1) Implementing security
To implement security in an EJB client application:

1. Import the package of the security API.
To use the security API, import the following package:

import com.hitachi.software.ejb.security.base.authentication.*

2. Obtain the LoginInfoManager object.
Obtain the LoginInfoManager object with the program that invokes the methods of the Enterprise Bean. To
obtain the object, use the getLoginInfoManager method of the static method prepared for the
LoginInfoManager object.

LoginInfoManager lm = LoginInfoManager.getLoginInfoManager();

3. Log in with the user name and password.
After obtaining the LoginInfoManager object, invoke the login method.

lm.login(username, password);

4. Invoke the methods of the Enterprise Bean.

3. EJB Client

130

After the successful execution of the login method, invoke the methods of the Enterprise Bean.

5. Perform a logout.
After the invocation of the Enterprise Bean methods is complete, log out from the J2EE server with the logout
method.

lm.logout();

! Important note

When implementing security in an EJB client application, you must add HiEJBClientStatic.jar in the class path
and perform compilation.

3.6.2 Sample program when security is implemented
When the name of the Enterprise Bean is account, the sample program for invoking the getAccountID method will
be as follows:

import com.hitachi.software.ejb.security.base.authentication.*;
 ...
 try {
 LoginInfoManager lm = LoginInfoManager.getLoginInfoManager();
 String userName = System.getProperty("username");
 String password = System.getProperty("password");
 if(lm.login(userName , password)) {
 try {
 System.out.println("user:" + userName + "login success");
 Context ctx = new InitialContext();
 java.lang.Object obj = ctx.lookup(appUnitPath + "Account");
 AccountHome aHome =
 (AccountHome)PortableRemoteObject.narrow(obj,AccountHome.class);
 Account account = aHome.create();
 account.getAccountID();
 } finally {
 lm.logout();
 }
 }
 } catch(NotFoundServerException e) {
 System.out.println("not found server");
 } catch(InvalidUserNameException e) {
 System.out.println("invalid user name");
 } catch(InvalidPasswordException e) {
 System.out.println("invalid password");
 } catch(Exception e) {
 e.printStackTrace();
 }

3. EJB Client

131

3.7 Obtaining RMI-IIOP stubs and interfaces
This section describes the acquisition of the RMI-IIOP stubs and interfaces.

The following table describes the organization of this section:

Table 3‒11: Organization of this section (Obtaining RMI-IIOP stubs and interfaces)

Category Title Reference
location

Description Overview of obtaining RMI-IIOP stubs and interfaces 3.7.1

Manual download with server management commands 3.7.2

Dynamic class loading 3.7.3

Setup Specifying JAR files in the class path of the EJB client application 3.7.4

Notes Precautions during the use of uCosminexus Client 3.7.5

Note:
There is no specific description of Implementation, and Operation for this functionality.

3.7.1 Overview of obtaining RMI-IIOP stubs and interfaces
An EJB client application uses the RMI-IIOP functionality of Cosminexus TPBroker to invoke applications.

When searching and obtaining the references of an EJB home object, settings must be specified in such way so that
the following stubs and classes can be referenced in the EJB client application:

• Stubs of the EJB objects of an Enterprise Bean

• Stubs of the EJB home object of an Enterprise Bean

• All classes in which the stubs are used

Furthermore, you can reference the following interfaces and all classes from the EJB client application:

• Remote interface

• Home interface

• All classes that reference the interfaces

If the Enterprise Beans are invoked using a business interface, you can reference the business interface and the classes
used for invoking the business interface.

These classes (RMI-IIOP stubs and RMI-IIOP interfaces) are downloaded using the server management commands or
dynamic class loading.

Tip

Differentiating the use of the server management commands and the dynamic class loading
Instead of using the dynamic class loading, the use of server management commands for downloading the classes
required for invocation is better from the viewpoint of performance. Therefore, Hitachi recommends that you use server
management commands during the actual operation. On the other hand, Hitachi recommends the use of dynamic class
loading for obtaining and updating the stubs during development and testing because the dynamic class loading does not
consume much time.

3.7.2 Manual download with server management commands
You can download the RMI-IIOP stubs and RMI-IIOP interfaces with the cjgetstubsjar server management
command. For details on how to use the cjgetstubsjar command, see 10.7 Obtaining the RMI-IIOP stub and
interface in the uCosminexus Application Server Application Setup Guide.

3. EJB Client

132

3.7.3 Dynamic class loading
Start the EJB client application without specifying the RMI-IIOP stubs in the class path. The RMI-IIOP stubs and
RMI-IIOP interfaces will be read automatically when the EJB client application invokes the Enterprise Bean.

To use dynamic class loading of RMI-IIOP stubs:

1. Edit the Easy Setup definition file.
Specify true in the ejbserver.DynamicStubLoading.Enabled parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) of the Easy Setup definition file.

2. Restart the corresponding J2EE server.
Start the J2EE server. If the J2EE applications are already running, stop them once and then restart the J2EE
servers.

! Important note
The precautions to be taken for using the dynamic class loading are as follows:

• When using dynamic class loading, you cannot start more than one J2EE application having Enterprise Beans with
the same package name and interface name, in a single J2EE server. You cannot start more than one J2EE
application even when the name of the parent class that acts as the inheritance source is the same. Here, the parent
class that acts as the inheritance source is a class created by the user and not a class provided by J2SE and J2EE.

• If the stubs are not specified in the class path of the client program, you cannot recover the Handle
(javax.ejb.Handle) of the serialized Enterprise Bean object.

• You cannot use the dynamic class loading functionality when executing the look up of the global CORBA Naming
Service of CTM.

• If you start the J2EE server by specifying the -nosecurity option in the cjstartsv command, you cannot use
the dynamic class loading when a J2EE application, which operates on the J2EE server, operates as an EJB client.

3.7.4 Specifying JAR files in the class path of the EJB client application
This subsection describes how to set up JAR files in the class path of the EJB client application. The method of setting
the JAR file to the class path differs depending upon the command used to invoke the EJB client application.

• Using the cjclstartap command
When using the cjclstartap command, set up the JAR files in the class path with the option definition file
(usrconf.cfg) of the EJB client application.
For details on usrconf.cfg (option definition file for Java application), see 14.2 usrconf.cfg (option definition
file for Java application) in the uCosminexus Application Server Definition Reference Guide.

• Using the vbj command
When using the vbj command, set up the JAR files with the batch file or shell script file, or with the command
arguments.

The following table describes the JAR files required for executing an EJB client application:

Table 3‒12: JAR files required for executing the EJB client application

JAR file name [Type]#1 JAR file location Contents included

Commands

cjclstart
ap vbj

hitj2ee.jar [Fixed]

• In Windows
Cosminexus-installation-directory\CC
\lib

• In UNIX
/opt/Cosminexus/CC/lib

Class provided with the
product

-- Y

3. EJB Client

133

JAR file name [Type]#1 JAR file location Contents included

Commands

cjclstart
ap vbj

HiEJBClientSta
tic.jar

[Fixed]

• In Windows
Cosminexus-installation-directory\CC
\client\lib

• In UNIX
/opt/Cosminexus/CC/client/lib

Class provided with the
product

-- Y

vbjorb.jar
vbsec.jar

[Fixed]

• In Windows
Cosminexus-installation-directory\TPB
\lib

• In UNIX
/opt/Cosminexus/TPB/lib

Class provided with the
product

-- Y

cprf.jar [Fixed]

• In Windows
Cosminexus-installation-directory\PRF
\lib

• In UNIX
/opt/Cosminexus/PRF/lib

Class provided with the
product

-- Y

hntrlibMj.jar
or
hntrlibMj64.ja
r
#2 #3

[Fixed]

• In Windows
Program-files\Hitachi
\HNTRLib2\classes

• In UNIX
/opt/hitachi/HNTRLib2/classes

Class provided with the
product

-- Y

tpotsinproc.ja
r

[Transaction used]

• In Windows
Cosminexus-installation-directory\TPB
\lib

• In UNIX
/opt/Cosminexus/TPB/lib

Class provided with the
product

-- O

ejbserver.jar [Transaction used]

• In Windows
Cosminexus-installation-directory\CC
\lib

• In UNIX
/opt/Cosminexus/CC/lib

O O

stubs.jar [RMI-IIOP stubs]

Either download from the J2EE server, or use
dynamic class loading

RMI-IIOP stubs

• Stubs of the EJB object

• Stubs of the EJB home
object

• Classes in which the
stubs are referenced

O O

numeric-value.jar [RMI-IIOP interfaces]

Download from the J2EE server

RMI-IIOP interfaces

• Remote interface

Y Y

3. EJB Client

134

JAR file name [Type]#1 JAR file location Contents included

Commands

cjclstart
ap vbj

numeric-value.jar [RMI-IIOP interfaces]

Download from the J2EE server

• Home interface

• Classes in which
interfaces are referenced

Y Y

User-created JAR file User-created class This is a user-created class
used in the EJB client
application.

If the unique Filter class,
the Formatter class or the
Handler class created by
the user is used in the user
log functionality of the EJB
client application, specify
these classes also in the class
path.#3

Y Y

Legend:
Y: Must be specified in the class path.
O: If necessary, specify in the class path.
--: Need not be specified in the class path.

#1
The JAR files include the following types:

• [Fixed]
The file name and location of the specified JAR file are fixed, irrespective of the number of applications invoked from the EJB
client application or the contents.

• [Transaction used]
If a transaction is used in the EJB client application, specify the corresponding JAR file. For details, see 3.20 Points to be
considered when starting a transaction in the EJB client applications in the uCosminexus Application Server Common Container
Functionality Guide.

• [RMI-IIOP stubs]
Specify the JAR file corresponding to each application invoked from the EJB client application. Need not be specified when
using dynamic class loading.

• [RMI-IIOP interfaces]
If the RMI-IIOP interfaces are not obtained in the EJB client application, download and specify the JAR file corresponding to
each application. If the RMI-IIOP interfaces are already obtained in the EJB client application, specify the obtained classes or the
JAR files.

#2
Use a JAR file corresponding to the OS you are using. For HP-UX (IPF) and Linux (IPF), specify hntrlibMj64.jar. For
other operating systems, specify hntrlibMj.jar. Note that if these JAR files are specified, output mode of the system log
changes to a shared subdirectory mode. For details on the shared subdirectory mode, see 3.8.2 Output destination subdirectory of
the system log.

#3
Specify for using the user log output functionality of the EJB client application. For details on how to specify the user log output
settings for the EJB client applications, see 9.8 User log output settings for J2EE applications in the uCosminexus Application
Server Expansion Guide.

! Important note

• When you use uCosminexus Client to create the EJB client environment, replace Cosminexus-installation-directory\CC
in the storage directory with Cosminexus-installation-directory\CCL.

• When you use uCosminexus Client to create the EJB client environment, you cannot use the transactions of the EJB
client application.

• When setting up JAR files in the class path, pay attention to the setup order of the JAR files.
When using a transaction, set up tpotsinproc.jar and ejbserver.jar in the class path. In such a case, set up
HiEJBClientStatic.jar even before ejbserver.jar.

3. EJB Client

135

When using the performance analysis trace functionality, set up cprf.jar in the class path. In such a case, set up
cprf.jar before setting up HiEJBClientStatic.jar.
If you set up these files in the reverse order, an attempt to initialize the performance analysis trace will fail. Furthermore,
if you specify these files in the reverse order, the message KDJE51008-W will be output with the reason code -4 when
the log level of the EJB client application is set to Warning or higher. Note that when an attempt to initialize the
performance analysis trace fails, the performance analysis trace will not be output, but you can continue with the
processing of the EJB client application.

3.7.5 Precautions during the use of uCosminexus Client
The cjgetstubsjar command is not included in uCosminexus Client. Therefore, you cannot obtain the stubs and
the interfaces with the server management commands. The following is the procedure for manually obtaining the
RMI-IIOP stubs in uCosminexus Client:

1. Execute the cjgetstubsjar command on the machine on which Application Server is running and place the
file containing RMI-IIOP stubs and interfaces in any directory of your choice.

2. From the machine on which uCosminexus Client is running, access the machine on which Application Server is
running, and then download the file containing the RMI-IIOP stubs and the interfaces through the file transfer.

3. EJB Client

136

3.8 System log output of an EJB client application
This section describes the system log output of an EJB client application.

The following table describes the organization of this section:

Table 3‒13: Organization of this section (System log output of an EJB client application)

Category Title Reference location

Description Overview of the system log of an EJB client application 3.8.1

Output destination subdirectory of the system log 3.8.2

Setup Changing the output destination and output level of the system log 3.8.3

Sharing the log output destination subdirectory among multiple processes 3.8.4

Setting up the access permission of the log output destination directory 3.8.5

Note:
There is no specific description of Implementation, Operation, and Notes for this functionality.

3.8.1 Overview of the system log of an EJB client application
There are three types of logs that output in the system log of an EJB client application; the message log, the exception
log, and the maintenance log. In an EJB client application, you can change the settings of the output destination and
output level of the system log, and the output destination subdirectory, as and when required.

3.8.2 Output destination subdirectory of the system log
The system log of an EJB client application is output in each process of the EJB client application. In the system log,
you can share the log output destination subdirectory among the multiple processes. The operation mode for sharing
the log output destination subdirectory among the multiple processes is called the shared subdirectory mode.

Tip
If you want to use an existing EJB client application created with a version earlier than 06-50 as it is, perform the operation
in the exclusive subdirectory mode in which the log output destination subdirectory is created for each process. We
recommend that you use the shared subdirectory mode for creating a new EJB client application because the exclusive
subdirectory mode is used for compatibility with versions earlier than 06-50.

The following table describes operations in the shared subdirectory mode.

Table 3‒14: Differences between the shared subdirectory mode and exclusive subdirectory mode

Items Sub directory shared mode

Possibility of sharing a subdirectory among multiple processes Can be shared.

Creation of the log management file Created.

Default value of the ejbserver.client.ejb.log key# System

Default value of the ejbserver.client.log.appid key# Ejbcl

Specification of the ejbserver.client.log.directorynum key# Always disabled.

Number of files that can be specified in the
ejbserver.logger.channels.define.channel-name.filenum key#

1 to 64

Size (bytes) that can be specified in the
ejbserver.logger.channels.define.channel-name.filesize key#

4,096 to 16,777,216

3. EJB Client

137

#
System property specified when an EJB client application is started.

! Important note

• When executing an EJB client application with the cjclstartap command, use the shared subdirectory mode.

• When using the user log functionality of an EJB client application, use the shared subdirectory mode.

• Specifying the operation mode
For details on specifying the class path for using the shared subdirectory mode, see 3.7.4 Specifying JAR files in
the class path of the EJB client application.

• Sharing a subdirectory
When you are using the shared subdirectory mode, you can share the log output destination subdirectory. For
details on sharing a subdirectory, see 3.8.4 Sharing the log output destination subdirectory among multiple
processes.

3.8.3 Changing the output destination and output level of the system log

(1) Setting up the system log
The method of setting the system log of the EJB client application differs depending upon the command used to
invoke the EJB client application.

• Using the cjclstartap command
When using the cjclstartap command, set up the properties of the system log with the property file of the
EJB client application (usrconf.properties).

• Using the vbj command
When using the vbj command, set up the properties of the system log with a batch file or shell script file or with
the command arguments.

(2) Setting up the output destination and output level of the system log
You can change the attributes of the system log of an EJB client application by customizing either the option
definition file for Java applications (usrconf.cfg), or the user property file for Java applications
(usrconf.properties). The following table describes the items that can be changed and the keys of properties
with which changes can be specified. This table also describes the necessity of specifying the properties that are to be
specified in the execution commands of the EJB client application.

Table 3‒15: Keys used to change the output destination and output level of the system log of an EJB client
application

Items that can be changed Key of the option definition file for
Java applications

Key of the user property file for Java
applications Type

Log output destination#1 ejb.client.log.directory ejbserver.client.log.director
y

Variable

Name of the log output
destination directory created
in each EJB client
application#1

ejb.client.ejb.log ejbserver.client.ejb.log Selective
variable

Name of the log output
destination subdirectory
created in each process of the
EJB client application#1

ejb.client.log.appid ejbserver.client.log.appid Selective
variable

Termination of message
output in standard output#2

ejb.client.log.stdout.ena
bled

-- Selective
variable

3. EJB Client

138

Items that can be changed Key of the option definition file for
Java applications

Key of the user property file for Java
applications Type

Number of log files -- ejbserver.logger.channels.def
ine.channel-name#3.filenum

Selective
variable

Log file size -- ejbserver.logger.channels.def
ine.channel-name#3.filesize

Selective
variable

Log output level#4 -- ejbserver.logger.enabled.* Selective
variable

Output destination of the trace
file of Cosminexus TPBroker

-- vbroker.orb.htc.tracePath Selective
variable

Number of trace files of
Cosminexus TPBroker

-- vbroker.orb.htc.comt.fileCoun
t

Selective
variable

Number of entries in each
trace file of Cosminexus
TPBroker

-- vbroker.orb.htc.comt.entryCou
nt

Selective
variable

Legend:
Variable: The value must be specified according to the execution environment of the system.
Selective variable: Either specify the value according to the execution environment of the system or omit the specification.
--: Cannot be specified

#1
In usrconf.cfg, you can change the settings of the operation log, log operation log, exception information during the
occurrence of a failure and maintenance information.
Furthermore, if the same items are set up in usrconf.cfg and usrconf.properties, the contents specified in
usrconf.properties will be given priority.

#2
You can specify the settings to prevent the output of messages of the operation log, cjclstartap command log and startup
process standard output information in standard output.

#3
The following names that indicate the type of the log are set up as channel names:
ClientMessageLogFile (Operation log) (File name: cjclmessagen.log)
ClientExceptionLogFile (Exception information during the occurrence of a failure) (File name: cjclexceptionn.log)
ClientMaintenanceLogFile (Maintenance information) (File name: cjclmaintenancen.log)

#4
When you set up the system properties using a shell script, you cannot specify the log output level
(ejbserver.logger.enabled.* key).

Whether or not you can specify system properties will depend on the usage form of the EJB client application. The
following table describes the relationship between the usage form of the EJB client application and system properties.
Note that the numbers in Table 3-16 and Table 3-17 correspond to each other.

Table 3‒16: Usage form of an EJB client application

Types of EJB client applications
Multiplicity of simultaneous startup of EJB client applications

1 multiple 2 to 8 multiples 9 to 16 multiples

1 type 1. 2. 3.

2 types or more 4. 5. 6.

Table 3‒17: Usage form of the EJB client application and system properties

System property specification
Types of EJB client application usage

1. 2. 3. 4. 5. 6.

ejbserver.client.ejb.log Available Available Required Required Required Required

3. EJB Client

139

System property specification
Types of EJB client application usage

1. 2. 3. 4. 5. 6.

ejbserver.client.log.appid Available Not
available

Not
available

Available Not
available

Not
available

ejbserver.client.log.directorynu
m

Available Available Required Available Available Required

The description of the numbers specified in the above tables is as follows:

1. You can even specify the default directory in the ejbserver.client.ejb.log key.
When the ejbserver.client.log.appid key is specified, the specification of the
ejbserver.client.log.directorynum key will become invalid.

2. You can even specify the default directory in the ejbserver.client.ejb.log key.
Because multiple EJB client applications are started simultaneously, do not specify the
ejbserver.client.log.appid key. When you specify the
ejbserver.client.log.directorynum key, make sure to specify the
ejbserver.client.ejb.log key.

3. Make sure to specify the ejbserver.client.ejb.log key in each EJB client application. Because multiple
EJB client applications are started simultaneously, do not specify the ejbserver.client.log.appid key.
Specify the value of the ejbserver.client.log.directorynum key according to the multiplicity.

4. Make sure to specify the ejbserver.client.ejb.log key in each EJB client application.
When the ejbserver.client.log.appid key is specified, the specification of the
ejbserver.client.log.directorynum key will become invalid.

5. Make sure to specify the ejbserver.client.ejb.log key in each EJB client application. Because multiple
EJB client applications are started simultaneously, do not specify the ejbserver.client.log.appid key.
When you specify the ejbserver.client.log.directorynum key, make sure to specify the
ejbserver.client.ejb.log key.

6. Make sure to specify the ejbserver.client.ejb.log key in each EJB client application. Because multiple
EJB client applications are started simultaneously, do not specify the ejbserver.client.log.appid key.
Specify the value of the ejbserver.client.log.directorynum key according to the multiplicity.

3.8.4 Sharing the log output destination subdirectory among multiple
processes

If you are using the shared subdirectory mode, you can share the log output destination subdirectory.

The system log of the EJB client application is saved in the subdirectory below the log output destination directory
(the directory specified in the ejbserver.client.log.directory key and
ejbserver.client.ejb.log key) created in each EJB client application. Note that you can specify the
subdirectory name with the ejbserver.client.log.appid key.

When you are using the shared subdirectory mode, specify a value different from that specified when you are using
the exclusive subdirectory mode in the ejbserver.client.ejb.log key that specifies the log output
destination directory. If you specify the same value as the exclusive subdirectory mode, you will not be able to
manage the number of log output destination subdirectories in the exclusive subdirectory mode. Note that the
exclusive subdirectory mode is a mode for achieving compatibility with older versions.

If the EJB client running in the shared subdirectory mode outputs the KDJE90002-E message in the log operation
information (cjlogger.log file) and terminates, or if it outputs the KDJE90003-E message, the exclusion
processing of the log file might have failed. By increasing the retry frequency and retry interval with the
ejbserver.client.log.lockRetryCount and ejbserver.client.log.lockInterval keys, the
failure in the exclusion processing of the log file can be recovered.

For details on obtaining the system log of an EJB client application, see 4.5 System log of the EJB client applications
in the uCosminexus Application Server Maintenance and Migration Guide.

3. EJB Client

140

Note:
If you start multiple EJB client applications simultaneously during the initial startup, the process of log directory
generation may collide with other EJB client applications started at the same time, resulting in the output of the
KDJE51003-E message and abnormal termination. Either do not start multiple EJB client applications
simultaneously during the initial startup, or create the log output destination directory beforehand.

3.8.5 Setting up the access permission of the log output destination
directory

In UNIX, when you execute an EJB client application using the same log output destination directory in multiple user
accounts, you must set up access permission for the log output destination directory.

Specify the mode of the log output destination directory so that the write permission is granted to a group and all other
users. Then set up umask to 0 and execute the EJB client application.

3. EJB Client

141

4 Precautions During the
Implementation of Enterprise
Beans
This chapter describes the precautions to be taken when implementing an Enterprise
Bean.

143

4.1 Organization of this chapter
This chapter describes the precautions to be taken for implementing Enterprise Beans as the program of an application
that is running on the Application Server machine.

The following table describes the organization of this chapter:

Table 4‒1: Organization of this chapter (Precautions During the Implementation of an Enterprise Bean)

Category Title Reference location

Common precautions for all
Enterprise Beans

Rules for naming an Enterprise Bean and related classes 4.2.1

Acquiring and releasing a resource connection 4.2.2

Differentiating the use of a local interface and remote interface 4.2.3

Using the Local Invocation Optimization functionality 4.2.4

Method for invoking an Enterprise Bean of another J2EE application with
the component interface

4.2.5

Method for invoking an Enterprise Bean of another J2EE application with
the business interface

4.2.6

Precautions concerning the acquisition of a class loader 4.2.7

Precautions during the use of the URLConnection class 4.2.8

Precautions concerning loading of the native library 4.2.9

About the timeout of access exclusion of an Entity Bean (common for CMP
and BMP)

4.2.10

About the occurrence of a deadlock during the use of an Entity Bean
(common for CMP and BMP)

4.2.11

Precautions regarding the methods of the javax.ejb.EJBContext interface 4.2.12

About the <prim-key-class> tag of the Entity Bean (common for
CMP and BMP) property file

4.2.13

Precautions concerning EJB specifications 4.2.14

About multi-byte characters 4.2.15

Precautions concerning transmission of Unicode supplementary characters 4.2.16

Precautions concerning API of EJB3.0 4.2.17

Precautions related to ejb-jar.xml of EJB 3.0 or later 4.2.18

Precautions related to use Generics 4.2.19

Precautions when using EJB 3.1 4.2.20

About the getCause() method 4.2.21

Precautions concerning name of the resource reference 4.2.22

Precautions concerning libraries of Application Server 4.2.23

Precautions for each type of
Enterprise Beans

Precautions during the implementation of a Stateful Session Bean 4.3.2

Precautions during the implementation of an Entity Bean (BMP) 4.3.3

Precautions during the implementation of an Entity Bean (CMP) 4.3.4

Precautions during the implementation of a Message-driven Bean 4.3.5

Precautions during the implementation of Singleton Session Bean 4.3.6

4. Precautions During the Implementation of Enterprise Beans

144

Note:
This chapter provides the description only for Precautions.

4. Precautions During the Implementation of Enterprise Beans

145

4.2 Common precautions for all Enterprise Beans
This section describes the common precautions to be taken when implementing Enterprise Beans.

4.2.1 Rules for naming an Enterprise Bean and related classes
When implementing an Enterprise Bean class, home interface, component interface, business interface, interceptor
class, and the related classes, follow the naming rules described here:

• Do not place an Enterprise Bean and the related classes in a package beginning with the same name as the class
name of these classes.
For example, you cannot assign a class having the same name as the package name, such as "Example.Example".

• You cannot use a package name beginning with Wrappers.

• Use alphanumeric characters and symbols in the name of an Enterprise Bean class, home interface, component
interface, and business interface. You cannot use a method name and member variable name beginning with an
underscore (_).

• Do not use the following methods as business methods. If you use the following methods as business methods, a
compile error might occur when the application starts, and EJB might not execute correctly:

• The following methods that are defined with java.lang.Object:
equals(Object), hashCode(), toString(), clone(), finalize()

• The following methods that are defined with javax.ejb.EJBObject and
javax.ejb.EJBLocalObject:
getEJBHome(), getEJBLocalHome(), getHandle(), getPrimaryKey(),
isIdentical(EJBLocalObject), isIdentical(EJBObject), remove()

• In a CMP Entity Bean, you cannot specify a CMP field name and CMR field name beginning with an underscore
(_).

• You cannot use a package name and class name in which the only difference is that of upper case and lower case
characters. The upper case and lower case characters are not differentiated in RMI-IIOP, and therefore, the
Enterprise Bean might not be accessed properly.

• In the case of existence of a class that implements java.rmi.Remote, such as the home interface of a JAR
file, the stubs will be generated in the work directory. Specify the package name and class name for the class that
implements java.rmi.Remote in such a way so that the path length of the work directory does not reach the
upper limit of the platform. For details on estimating the length of the work directory path, see the following
manuals:

• For J2EE servers
Appendix C.1 Work directory of J2EE servers in the uCosminexus Application Server System Setup and
Operation Guide

• Work directory for batch servers
Appendix C.2 Work directory of batch servers in the uCosminexus Application Server System Setup and
Operation Guide

• Even for a separate EJB-JAR file, make sure that the classes are not duplicated in the same application.

• Do not use the reserved names of VisiBroker for the class name of the remote interface and remote component
interface of an Enterprise Bean. The reserved names of VisiBroker include Helper, Holder, Package,
Operations, POA, and POATie. For details on the reserved names in VisiBroker, see the manual Borland(R)
Enterprise Server VisiBroker(R) Programmer's Reference.

• When creating an Enterprise Bean class in the default package, do not create a class ending with the following
strings:

• _LocalHomeImpl
• _LocalComponentImpl
• _RemoteHomeImpl
• _RemoteComponentImpl

4. Precautions During the Implementation of Enterprise Beans

146

• _LocalBIProxyImpl
• _LocalBIClientSideProxyImpl
• _RemoteBIProxyInterface
• _RemoteBIProxyImpl
• _RemoteBIClientSideProxyImpl
• _CallbackWrapperImpl
• _InvocationContextImpl

4.2.2 Acquiring and releasing a resource connection
If you are using a J2EE resource connection, such as JDBC and JMS in an Enterprise Bean, release the connection
with the close method of the Connection class. If you do not release the connection, the resource might be
consumed before you can anticipate the consumption. To avoid such a situation, consider the following points during
the implementation:

• Do not maintain the connection in the member variable of the Enterprise Bean class.
If a connection is maintained in the member variable, the connection will be in the usage status irrespective of the
execution of the Bean, leading to a decline in the performance. Therefore, the connection must be acquired and
released during the execution of the SQL.

• Set up a connection pool.
If you set up a connection pool, the overheads of acquiring a connection to re-use a physical connection can be
reduced. When executing under a JTA transaction, you must set up a connection pool.

4.2.3 Differentiating the use of a local interface and remote interface
If you use a local interface added in the EJB 2.0 specifications, the overhead of the RMI-IIOP communication
processing can be reduced, but remote invocation cannot be performed for an Enterprise Bean having only local
interfaces. Furthermore, when using a local interface, you can operate the method arguments and return the values
with the pass by reference functionality. Differentiate the use of a local interface and remote interface based on the
following usage conditions of local interfaces:

When the use of a local interface is recommended
Hitachi recommends that you use a local interface when the Enterprise Bean and client (Enterprise Bean or JSP,
servlet) are included in the same J2EE application.

When the use of a local interface is mandatory
The use of a local interface is mandatory for a CMP2.x CMR. You must, therefore, use a local interface.

When a local interface cannot be used
You cannot use a local interface in the following cases:

• When the Enterprise Bean and client (Enterprise Bean or JSP, servlet) are included in different J2EE
applications.

• When the Enterprise Bean and client (Enterprise Bean or JSP, servlet) are executed on another J2EE server
(separate JavaVM).

• When already implemented in EJB 1.1.

4.2.4 Usage of the local invocation optimization functionality
If you use the local invocation optimization functionality when using a remote interface, the overhead of the RMI-
IIOP communication processing can be reduced. The format of local invocation is almost the same as that of the
method invocation, but the method arguments and return values are processed by the pass by reference functionality.

4. Precautions During the Implementation of Enterprise Beans

147

4.2.5 Method for invoking an Enterprise Bean of another J2EE
application with the component interface

This subsection describes how to invoke an Enterprise Bean of another J2EE application with the component
interface, when the application is running in the same J2EE server and also when the application is running in another
J2EE server.

(1) For an Enterprise Bean running in another application on the same J2EE server
To invoke the Enterprise Bean:

1. Include the remote home interface and remote interfaces of the invoked Enterprise Bean as well as the user-
created classes used in the interfaces in the invoking EJB-JAR file or the WAR file.

2. Specify the following property in the user-defined file for J2EE servers:
Specify app in the ejbserver.deploy.stub.generation.scope key of usrconf.properties.
For details on usrconf.properties, see 14.3 usrconf.properties (User property file for Java applications) in
the uCosminexus Application Server Definition Reference Guide.

3. Use the Naming Service switching functionality to specify the lookup name of the Enterprise Bean beginning with
corbaname and running in another J2EE application.
For details on the specification method, see 9.3.1 Reference definition of other Enterprise Beans in the
uCosminexus Application Server Application Setup Guide.
An example of the specification is given below:
corbaname::NamingHost:900#HITACHI_EJB/SERVERS/MyServer/EJB/MyApplication/
MyBean

(2) For an Enterprise Bean running on another J2EE server
To invoke the Enterprise Bean:

1. Include the remote home interface and remote interfaces of the invoked Enterprise Bean as well as the user-
created classes used in the interfaces in the invoking EJB-JAR file or the WAR file.

2. Specify the following property in the user-defined file for J2EE servers:
Specify app in the ejbserver.deploy.stub.generation.scope key of usrconf.properties.

3. Use the Naming Service switching functionality to specify the lookup name of the Enterprise Bean beginning with
corbaname and running in another J2EE application.
For details on the specification method, see 9.3.1 Reference definition of other Enterprise Beans in the
uCosminexus Application Server Application Setup Guide.
An example of specification is given below:
corbaname::NamingHost:900#HITACHI_EJB/SERVERS/MyServer/EJB/MyApplication/
MyBean

4.2.6 Method for invoking an Enterprise Bean of another J2EE
application with the business interface

This subsection describes how to invoke an Enterprise Bean of another J2EE application with the business interface,
when the application is running on the same J2EE server, and also when the application is running on another J2EE
server.

(1) For an Enterprise Bean running in another application on the same J2EE server
To invoke the Enterprise Bean:

1. Include the business interface of the invoked Enterprise Bean as well as the user-created classes used in the
interface in the invoking EJB-JAR file or the WAR file.

4. Precautions During the Implementation of Enterprise Beans

148

2. If none is specified for the ejbserver.rmi.localinvocation.scope key in the user-defined file for J2EE server, acquire
the stubs by using the cjgetstubsjar command for the invoked Enterprise Bean and include these stubs in the
invoking EAR file.#

The Enterprise Bean is looked up without using the EJB references. The format for specifying the lookup name is
as follows:
HITACHI_EJB/SERVERS/server-name/EJBBI/J2EE-APP-name/Enterprise-Bean-name
server-name: J2EE server name
J2EE-APP-name: Lookup name of the J2EE application
Enterprise-Bean-name: Lookup name of the Enterprise Bean

#
If you use the dynamic class loading functionality for invocation of the business interface between
applications, you need not include the stubs. However, Hitachi does not recommend the use of the dynamic
class loading functionality from the point of view of performance.

(2) For an Enterprise Bean running on another J2EE server
To invoke the Enterprise Bean:

1. Include the business interface of the invoked Enterprise Bean as well as the user-created classes used in the
interface in the invoking EJB-JAR file or the WAR file.

2. Acquire the stubs by using the cjgetstubsjar command for the invoked Enterprise Bean and include these
stubs in the invoking EAR file.#

The Enterprise Bean is looked up without using the EJB references. The format for specifying the lookup name is
as follows:
HITACHI_EJB/SERVERS/server-name/EJBBI/J2EE-APP-name/Enterprise-Bean-name
server-name: J2EE server name
J2EE-APP-name: Lookup name of the J2EE application
Enterprise-Bean-name: Lookup name of the Enterprise Bean

#
If you use the dynamic class loading functionality for invocation of the business interface between
applications, you need not include the stubs. However, Hitachi does not recommend the use of the dynamic
class loading functionality from the point of view of performance.

4.2.7 Precautions concerning the acquisition of a class loader
When you acquire the class loaders of Cosminexus Component Container from the codes within the J2EE application
and use the following APIs, the java.net.JarURLConnection class will be used:

• getResource(String).openConnection().getInputStream();
• getResource(String).openStream()

By expanding the above methods, the openConnection method of the java.net.JarURLConnection class
will be invoked, and the JAR file specified in the corresponding URL will be opened. You must perform the
operations concerning the JAR file, and therefore, when the openConnection method of the
java.netJarURLConnection class is used, make sure to invoke the close method of the JarFile instance
to be returned by getJarFile of java.net.JarURLConnection. If the close method is not invoked
explicitly, the JAR file will remain open and cannot be deleted. Furthermore, do not use the above methods in a J2EE
application.

4.2.8 Precautions during the use of the URLConnection class
The java.net.URLConnection class uses the setUseCaches(boolean) method to specify whether or not
to use the cache information when acquiring a connection for the specified URL. If the setUseCaches(false)
method is specified for the URLConnection class, the target object will be generated for each connection. When

4. Precautions During the Implementation of Enterprise Beans

149

using this class from the codes within the J2EE application, a memory leak might occur in the JavaVM of the J2EE
server.

4.2.9 Precautions concerning loading of the native library
Do not use the System.loadLibrary method to load the native library from the Enterprise Bean. If you load the
native library in the Enterprise Bean, java.lang.UnsatisfiedLinkError might occur due to limitations of
the JNI specifications. If you must load the native library, create a container extension library to invoke the
System.loadLibrary method, and implement in such a way so that the container extension library is referenced
from the Enterprise Bean. For details on creating the container extension library, see 14. Container Extension Library
in the uCosminexus Application Server Common Container Functionality Guide.

4.2.10 About the timeout of access exclusion of an Entity Bean (common
for CMP and BMP)

When using an Entity Bean (CMP or BMP), an exclusion processing is applicable for the access to the Entity Beans of
the same primary key. If the Entity Beans of the same primary key are accessed simultaneously, and the processing
takes up some time, the exclusion processing is awaited. If exclusion cannot be acquired after waiting for the
exclusion processing, the exception IllegalStateException occurs with a timeout (default value 45 seconds).
In such a case, you can prevent the occurrence of a timeout by specifying the timeout period in the
ejbserver.server.mutex.invocation.timeout key of the user-defined file for the J2EE servers
(/opt/Cosminexus/CC/server/usrconf/ejb/server-name/usrconf.properties). For details on
the ejbserver.server.mutex.invocation.timeout key, see 2.4 usrconf.properties (User property file
for J2EE servers) in the uCosminexus Application Server Definition Reference Guide.

4.2.11 About the occurrence of a deadlock during the use of an Entity
Bean (Common for CMP and BMP)

With Application Server, the transaction functionality of the database is used for the transaction processing of an
Entity Bean. A deadlock might occur depending on the order of access to the database, setup of the tables concerning
data exclusion, setup of the database in the system, and the SQL statement to be invoked. For details, see the manual
of the database you are using.

4.2.12 Precautions regarding the methods of the javax.ejb.EJBContext
interface

Depending on the transaction management model of the Enterprise Bean, you might not issue the models for the
getUserTransaction method, getRollbackOnly method, or the setRollbackOnly method of the
javax.ejb.EJBContext interface. Furthermore, among the methods of the Enterprise Bean, the methods that are
operated with the "Unspecified transaction" status according to the EJB specifications cannot be issued. If a method
cannot be issued, the EJB container throws java.lang.IllegalStateException. The possibility of issuing
each method is described in the following tables.

Table 4‒2: Possibility of issuing each transaction management model

javax.ejb.EJBContext method
Possibility of issuing

BMT CMT

getUserTransaction Y --

getRollbackOnly -- --

setRollbackOnly -- Y

Legend:
Y: Can be issued

4. Precautions During the Implementation of Enterprise Beans

150

--: Cannot be issued

Table 4‒3: Possibility of issuing each EJB method

Type of Beans Method Possibility of issuing

SessionBean Constructor --

setSessionContext --

ejbCreate --

ejbRemove --

ejbPassivate --

ejbActivate --

Business method Y

afterBegin Y

beforeCompletion Y

afterCompletion --

EntityBean Constructor Y

setEntityContext --

unsetEntityContext --

ejbCreate Y

ejbPostCreate Y

ejbRemove Y

ejbHome Y

ejbPassivate --

ejbActivate --

ejbLoad Y

ejbStore Y

Business method Y

Message-driven Bean Constructor --

ejbCreate --

onMessage Y

Methods of the message listener Y

ejbRemove --

Legend:
Y: Can be issued
--: Cannot be issued

4.2.13 About the <prim-key-class> tag of the Entity Bean (common for
CMP and BMP) property file

If an interface and abstract class is specified in the <prim-key-class> tag of the Entity Bean property file,
perform the operation as follows:

4. Precautions During the Implementation of Enterprise Beans

151

• In the case of Entity Bean (CMP)
The error message KDJE42039-E is output during the deployment, and the deployment processing terminates
with an error.

• In the case of Entity Bean (BMP)
Deployment and execution can be performed in the same way as is performed when a class is specified.

4.2.14 Precautions concerning EJB specifications
If a description not in compliance with the EJB specifications is given, an error (exception) might occur. Even if no
error occurred in a previous version, an error might occur when the version is upgraded. If an error occurs, check the
error contents, and make changes according to the EJB specifications.

4.2.15 About multi-byte characters
In the classes that configure EJB, do not use multi-byte characters in the class (package) name, method name, return
value type, arguments (type and name) of the methods such as the business method, callback method and interceptor
method, and names of exceptions declared in the throws clause.

4.2.16 Precautions concerning transmission of Unicode supplementary
characters

When Application Server contains Cosminexus TPBroker as component software, the Unicode supplementary
characters can be transmitted by invoking the methods of the Enterprise Bean through the RMI-IIOP communication.
In such a case, the operation during the transmission of the Unicode supplementary characters will differ depending on
the version of Application Server at the sending and receiving sides. The following table describes the combination of
versions of the applications servers, and the operation during the transmission of the Unicode supplementary
characters.

Table 4‒4: Combination of versions of Application Servers, and operation during the transmission of
Unicode supplementary characters

Version of the Application Server at
the sending side

Version of the Application Server at the receiving side

07-50 or later Before 07-50

07-50 or later Y --

Before 07-50 -- --

Legend:
Y: Unicode supplementary characters can be transmitted.
--: Unicode supplementary characters cannot be transmitted.

For a version that does not support transmission of Unicode supplementary characters, either the
java.rmi.RemoteException exception or the java.rmi.MarshalException exception will be thrown
during the transmission of the Unicode supplementary characters by the RMI-IIOP communication.

The operation for transmission of the Unicode supplementary characters can be specified so that the operation is the
same as for versions prior to 07-50. To set up the same operations as for the versions prior to 07-50, specify false in
the vbroker.orb.htc.surrogateCheckOff key of usrconf.properties (user property file for J2EE
servers and user property file for the Java applications). For details on the key, see the TPBroker Users Guide.

4.2.17 Precautions concerning API of EJB 3.0
The following APIs added in EJB 3.0 are not supported:

• javax.ejb.EJBContext#lookup(java.lang.String)

4. Precautions During the Implementation of Enterprise Beans

152

• javax.ejb.SessionContext#getBusinessObject(java.lang.Class)

4.2.18 Precautions when using ejb-jar.xml of EJB 3.0 or later
With Application Server version 08-70 or later, you can code the following elements in ejb-jar.xml of EJB 3.0 or
later.

• <display-name> element

• <interceptor-binding> element and the elements under the <interceptor-binding> element
(definition for interceptor)

• <application-exception> element and the elements under the <application-exception> element
(definition for application exception)

• <module-name> element

4.2.19 Precautions related to use Generics
Generics is the functionality that can be used with J2SE 5.0 or later. When you use different objects with types or
methods, you can use Generics to guarantee safety of types at the compile time. You can also use Generics to create a
program for handling types as parameters, irrespective of the data types.

A type that is changed to a parameter is referenced as a type parameter. A type parameter is used for declaring classes,
interfaces, methods, or a constructor using Generics. For the definition List<E> extends Collection<E>, <E>
corresponds to a type parameter.

Also, the specification of a specific parameter type for a class, interface, method, or constructor using Generics is
called parameterization. For example, "List<String>" and "Collection<Integer>" are parameterized
classes.

(1) Interfaces in which type parameters can be used
With interfaces, type parameters can be used in method parameters, returns, and throws. The type parameters to be
used are declared in the interface definition.

(a) Types of interfaces in which type parameters can be used

The following table describes the types of interfaces in which type parameters can be used for each Enterprise Bean
type:

Table 4‒5: Types of interfaces in which type parameters can be used

Type of interface

Enterprise Bean type

Session Bean Entity
Bean

Message-
driven Bean

Business interface P -- --

Home interface N N --

Component interface N N --

Message listener interface -- -- Y

Others (any arbitrary interface) Y Y Y

Legend:
Y: Can be used.
P: Can be used. However, a declared type parameter must be parameterized in the business interface. If the declared type
parameter is not parameterized, either an error will occur or the operation will not be guaranteed.
N: Cannot be used.
--: Cannot be used (Java EE specifications).

4. Precautions During the Implementation of Enterprise Beans

153

(b) Precautions when a type parameter is used in a business interface

When a type parameter, defined in an interface, is parameterized in a business interface and the method of the
parameterized business interface is redefined, an error might occur based on the combination of the location, wherein
the type parameter is used, and the interface type. If an error occurs, take action by deleting the redefined method.

The following table describes the combinations that might result in an error, when a method is redefined in the
business interface:

Table 4‒6: Combination resulting in an error when a method is redefined in the business interface

Location wherein the type parameter is used Local interface Remote interface

Returns Y Y

Parameters -- --

Throws Y Y

Legend:
Y: The application is started successfully.
--: An error occurs when starting the application.

An error occurs when both the following conditions are applicable:

• The type parameter defined in the interface is parameterized.

• A method is redefined in the interface that inherits the interface in which the type parameter is parameterized.

The following is a coding example to show the occurrence of an error. In the following example, the definition of the
method String get(Float args) must be deleted from the definition of MyInterface to recover from the
error:

public interface SuperInterface<T> {
String get(T args);
}

// Redefine the method in which the parameterized SuperInterface is inherited.
public interface MyInterface
extends SuperInterface<Float> {
// To recover from the error, the following redefined method definition must be deleted.
 String get(Float args);
}

(2) Classes in which type parameters can be used
With classes, type parameters can be used within the method and the method signature.

The following table describes the types of classes in which type parameters can be used for each Enterprise Bean type:

Table 4‒7: Types of classes in which type parameters can be used

Type of class

Enterprise Bean type

Session Bean Entity Bean Message-driven
Bean

Enterprise Bean class Y Y Y

Interceptor class Y -- --

Others (any arbitrary class) Y Y Y

Legend:
Y: Can be used.
--: Cannot be used (Application Server does not support this combination).

4. Precautions During the Implementation of Enterprise Beans

154

(3) Other precautions

You cannot specify an annotation# corresponding to Application Server in a generic method and a generic constructer.
If you specify such an annotation, the annotation is ignored.

An example of a generic method and a generic constructor is given below.

For details on annotations corresponding to Application Server, see 2.1 Supported range of corresponding
applications in the uCosminexus Application Server API Reference Guide.

class MyClass{

// Generic constructor
<T1> MyClass(Collection<T1> c){};

// Generic method
<T2> void MyMethod(Collection<T2> c){};

}

4.2.20 Precautions when using EJB 3.1
This subsection describes the precautions to be taken when using EJB 3.1.

• EJB 3.1 does not support an EJB container that can be embedded

• EJB 3.1 does not support the @StatefulTimeout and @AroundTimeout annotations. You cannot use the
@AccessTimeout annotation in a Stateful Session Bean.

• EJB 3.1 does not support the EJB packaging to WAR. EJB 3.1 does not support storing of class files, granted with
an EJB component definition annotation (@Stateless/@Stateful/@Singleton), to the JAR file under WEB-INF/
classes or WEB-INF/lib of WAR, and also the placing of WEB-INF/ejb-jar.xml. The operations of the
applications having such structure are not guaranteed.

• You cannot use the Web service client view in a Singleton Session Bean.

• When using functionalities added in EJB 3.1, the functionalities cannot be used in combination with the following
functionalities:

• JPA

• JAX-WS

• JAX-RS

• The EJB container does not support the getContextData method of the javax.ejb.EJBContext interface added in
EJB 3.1.

4.2.21 About the getCause()method
You can acquire the original system exceptions thrown by the user with getCause()only when using a Session
Bean of a local interface in the 1.4 mode.

Remote interfaces, Entity Bean, and Message-driven Bean are not supported. Also, the basic mode is not supported.

4.2.22 Precautions concerning the name of resource reference
You cannot specify a slash (/) at the end of the character string in a resource reference name. If you have performed
this setting in an application (Session Bean) that was used by Application Server 08-70 or earlier, the application will
fail to start when using Application Server version 09-00 or later.

4.2.23 Precautions concerning the libraries of Application Server
If you include the libraries of Application Server in a J2EE application, importing or starting and executing the
application might lead to an invalid operation due to reasons such as mismatching of the library version. Therefore, do

4. Precautions During the Implementation of Enterprise Beans

155

not include the libraries of Application Server in a J2EE application; unless it is specifically mentioned as a usage
method of the product.

4. Precautions During the Implementation of Enterprise Beans

156

4.3 Precautions for each type of the Enterprise Bean
This section describes the precautions for each type of the Enterprise Beans.

4.3.1 Precautions during the implementation of a Stateless Session Bean
This subsection describes the precautions to be taken when implementing a Stateless Session Bean.

(1) Releasing the references with the remove method
When you invoke a Stateless Session Bean using the home interface, you acquire the references by invoking the
create method of the home interface. However, when the invocation of the Session Bean is complete, you must
release the references by invoking the remove method. If you do not release the references, the memory on the J2EE
server will remain occupied.

Furthermore, by specifying the option that makes the invocation of the remove method unnecessary, the invocation
of the remove method for the EJB objects of the Stateless Session Bean will become unnecessary. If you enable this
option, you can invoke the business method after invoking the remove method.

If this option is disabled, you must invoke the remove method. Furthermore, when you invoke the business method
after invoking the remove method, the java.rmi.NoSuchObjectException exception will be returned to the
invocation source.

In the ejbserver.rmi.stateless.unique_id.enabled key of usrconf.properties, you specify
the option that makes the invocation of the remove method unnecessary and define the option for the J2EE servers.
For details on the key, see 2.4 usrconf.properties (User property file for J2EE servers) in the uCosminexus
Application Server Definition Reference Guide.

(2) About accessing the resource manager with the ejbCreate method and with a method in
which the @PostConstruct annotation is specified

According to the EJB specifications, accessing the resource manager with the ejbCreate method or with a method
in which the @PostConstruct annotation is specified is not allowed.

(3) Precautions about sharing of Bean classes
Do not use the same Session Bean as a Stateful Session Bean and Stateless Session Bean in the same J2EE
application.

(4) About invoking the begin method of javax.transaction.UserTransaction either with the
ejbRemove method or with a method in which the @PreDestroy annotation is specified

The begin method of javax.transaction.UserTransaction might be invoked either with the
ejbRemove method of the Stateless Session Bean or with a method in which the @PreDestroy annotation is
specified. However, according to the EJB specifications, you cannot use this method after invocation. Do not invoke
the begin method of javax.transaction.UserTransaction.

4.3.2 Precautions during the implementation of a Stateful Session Bean
This subsection describes the precautions to be taken when implementing a Stateful Session Bean.

(1) Deleting the EJB instances and releasing the references with either the remove method
or a method in which the @Remove annotation is specified

• When you invoke a Stateful Session Bean using the home interface, you acquire the references by invoking the
create method of the home interface. However, when the invocation of the Session Bean is complete, you must
delete the EJB instances and release the references by invoking the remove method.

4. Precautions During the Implementation of Enterprise Beans

157

• When you invoke a Stateful Session Bean using the business interface, once the invocation of the business method
is complete, you must delete the EJB instances and release the references by invoking the method in which the
@Remove annotation is specified.

• If you do not delete the EJB instances and release the references, the memory on the J2EE server will remain
occupied.

(2) Precautions about sharing of Bean classes
Do not use the same Session Bean as a Stateful Session Bean and Stateless Session Bean in the same J2EE
application.

(3) Precautions concerning destruction of SessionSynchronization instances
If a system exception occurs during the beforeCompletion and afterCompletion method of
SessionSynchronization, the instances of the corresponding Session Bean will not be destroyed in the EJB
container.

(4) About invocation of the begin method of javax.transaction.UserTransaction with the
setSessionContext method

The setSessionContext method of the Stateful Session Bean is used for invoking the begin method of
javax.transaction.UserTransaction. However, according to the EJB specifications, you cannot use this
method after invocation. Do not invoke the begin method of javax.transaction.UserTransaction.

(5) About invocation of an Enterprise Bean from the afterCompletion method
When you invoke another Enterprise Bean from the afterCompletion method of the Stateful Session Bean, the
following operation will be performed depending on the operation mode of the J2EE server mode:

• 1.4 mode: The Enterprise Bean is invoked.

According to the EJB specifications, you cannot invoke another Enterprise Bean from the afterCompletion
method of the Stateful Session Bean. Do not invoke another Enterprise Bean.

4.3.3 Precautions during the implementation of an Entity Bean (BMP)
This subsection describes the precautions to be taken when implementing an Entity Bean (BMP).

(1) About accessing the resource manager with the setEntityContext method
According to the EJB 1.1 specifications and the EJB 2.0 specifications, accessing the resource manager with the
setEntityContext method is not allowed.

(2) About specifying an interface in the primary key class
When an interface and abstract class are specified in the <prim-key-class> tag of the DD of a BMP Entity Bean,
deployment and execution can be performed in the same way as when a class is specified.

(3) Releasing references with the remove method
When you invoke an Entity Bean by using the home interface, you obtain the references by invoking the create
method of the home interface; however, after completing the invocation of the Entity Bean, make sure that you release
the references by invoking the remove method.

If you do not release the references, the memory on the J2EE server will be consumed.

4. Precautions During the Implementation of Enterprise Beans

158

4.3.4 Precautions during the implementation of an Entity Bean (CMP)
This subsection describes the precautions to be taken when implementing an Entity Bean (CMP).

(1) About accessing the resource manager with the setEntityContext method
According to the EJB 1.1 specifications and EJB 2.0 specifications, accessing the resource manager with the
setEntityContext method is not allowed.

(2) Precautions concerning the use of a user-defined type CMP field
In the cases other than when you use a compound primary key as the primary key, you cannot use a user-defined type
CMP field.

(3) Precautions concerning transactions during the use of a CMR field
When using a Collection-type CMR field, or an Iterator of the Collection-type CMR field, you can access the CMR
field and Iterator within the scope of the transaction when the CMR field is acquired. In the callTeam method of the
following coding example, you must execute the getPlayers method that is the getter method of the CMR
field, and all the operations using the succeeding Iterator in the same transaction (between [a] and [b]).

 public void callTeam() {
 ...
 //[a]
 Collection playersInTeam = team.getPlayers();
 Iterator i = playersInTeam.iterator();
 while (i.hasNext()) {
 LocalPlayer p = (LocalPlayer) i.next();
 ...
 }
 //[b]
 }

If you execute this coding example outside the transaction, the IllegalStateException exception will occur.
To avoid this, specify the settings in CMT to execute within the transaction.

(4) Precautions concerning the usage of cascade-delete of CMR
The following limitations are applicable for using the cascade-delete of CMR:

• When removing an Entity Bean with cascade-delete, you must specify the settings such that the client program
that acts as the invocation source has not only the method permission of the remove method of the Bean that is
removed first, but also the method permission of the remove method of the component interfaces of all the Beans
that are the target of cascade-delete.

• Set up the transaction attribute of the remove method of the component interfaces of all the Beans that are the
target of cascade-delete to Required.

• When multiple Beans are circulated in the relationship that specifies the cascade-delete, the execution of the
remove method in all Beans that exist in the circulating relationship is not guaranteed.

(5) About specifying an interface in the primary key class
When an interface and the abstract class are specified in the <prim-key-class> tag of the DD of a CMP Entity
Bean, the error message KDJE42039-E is output during the deployment, and the deployment processing terminates
with an error.

(6) Releasing the references with the remove method
When you invoke an Entity Bean by using the home interface, you obtain the references by invoking the create
method of the home interface; however, after completing the invocation of the Entity Bean, make sure that you release
the references by invoking the remove method.

4. Precautions During the Implementation of Enterprise Beans

159

If you do not release the references, the memory on the J2EE server will be consumed.

(7) Notes on the finder or select methods of EJB QL
You cannot specify an array as the argument type of the finder or select methods of EJB QL.

4.3.5 Precautions during the implementation of a Message-driven Bean
This subsection describes the precautions to be taken when implementing a Message-driven Bean.

(1) Precautions when setting up a transaction of the Message-driven Bean (When using a
resource adapter conforming to Connector 1.0)

When the delivery of messages to the Message-driven Bean, and database access in the Message-driven Bean are
executed synchronously, set up the transaction setting of the Message-driven Bean to Required in CMT. By doing
this, if the transaction rolls back, the messages will be re-delivered to the Message-driven Bean. However, because the
re-delivery of messages will also be iterated when the transaction rollback iterates, you must check the re-delivery of
messages using the getJMSRedelivered method of the javax.jms.Message class in the Message-driven
Bean. If NotSupported is specified in CMT or if a message is received once by the Message-driven Bean in BMT,
the message will not be re-delivered even if the transaction rolls back.

(2) Notes when setting a transaction of Message-Driven Bean (when using a resource
adapter conforming to Connector 1.5)

When you use a global transaction for the resource access processing in OpenTP1, which uses the TP1 inbound
integration functionality, and the Message-driven Bean, select CMT as the method for managing the Message-driven
Bean transactions. Also, set the transaction attribute to Required.

Even when you use a global transaction in EIS that delivers messages to other Message-driven Beans and in resource
access processing within the Message-driven Bean, select CMT as the method for managing the Message-driven Bean
transactions. Also, set the transaction attribute to Required.

However, when you use the CJMSP resource adapter or the FTP inbound adapter, the delivery of messages to a
Message-driven Bean and the resource access processing in the Message-driven Bean cannot be executed concurrently
by using the global transaction. Therefore, to receive messages from the CJMSP resource adapter or the FTP inbound
adapter, set BMT or CMT as the method for managing the Message-driven Bean transactions, and set the transaction
attribute to NotSupported.

4.3.6 Precautions during the implementation of Singleton Session Beans
Do not implement the javax.ejb.SessionSynchronization interface when you implement a Singleton Session Bean.
Also, do not specify annotations related to the SessionSynchronization (@AfterBegin annotation,
@BeforeCompletion annotation, or @AfterCompletion annotation) in a Session Bean.

4. Precautions During the Implementation of Enterprise Beans

160

Appendixes

161

A. uCosminexus Client
uCosminexus Client is a product for building the execution environment (EJB client environment) of an EJB client
application. You can use uCosminexus Client as the client when you want to set up a system in which the Enterprise
Beans of the J2EE application running on Application Server are invoked directly from the program running on the
client machine, instead of being invoked via a Web server.

Note that the target OS for uCosminexus Client is Windows only.

uCosminexus Client consists of the Application Server components that are required in a client environment or the
components corresponding to that subset.

This appendix describes the functionality of uCosminexus Client and also how to install this functionality.

A.1 Functionality of uCosminexus Client
uCosminexus Client has the following functionality:

• Executing EJB client applications
This functionality can execute EJB client applications that are Java applications that invoke Session Beans
through RMI-IIOP communication. Furthermore, Java applications can also be started.

• Performance analysis trace output
This functionality can output the performance analysis information when a request is sent from an EJB client
application. You can analyze the output performance analysis information by converting it into CSV format and
matching it with the performance analysis information output by various functionality of other J2EE servers.

A.2 Installation procedure
This section describes the procedure for installing uCosminexus Client.

Use HITACHI Integrated Installer to install this product.

To install uCosminexus Client:

1. Install uCosminexus Client.
For details on the directory configuration of uCosminexus Client after installation, see Appendix A.3 Directory
configuration of uCosminexus Client.

2. Set up the environment variables.
For details on the environment variables that must be specified in uCosminexus Client, see 3.3.4 Specifying the
environment variables required for executing an EJB client application.

3. Estimate and set up the resources.
Estimate and set up the resources to be used in the machine in which uCosminexus Client is installed. For details
on estimating the resources to be used, see the following manuals:

• For a J2EE application execution platform
5. Estimating the Resources to be used (J2EE Application Execution Platform) in the uCosminexus
Application Server System Design Guide

• For a batch application execution platform
6. Estimating the Resources to be used (Batch Application Execution Platform) in the uCosminexus
Application Server System Design Guide

Start the EJB client applications after the completion of the installation. Set up the operation of the EJB client
applications by editing the directly set up files, and by specifying the environment variables.

Start the EJB client applications using the cjclstartap command. For details on the procedure, see 3.3 Starting
EJB Client Applications.

A. uCosminexus Client

162

Tip
When you use uCosminexus Client to create the EJB client environment, the storage directory of each user-defined file will
be Cosminexus-installation-directory\CCL.

! Important note

When a directory that exists below C:\Program Files is specified as the log output destination in Windows Server
2012, Windows Server 2008, Windows 8, Windows 7, or Windows Vista, you must execute the EJB client applications with
the administrator permission. If a user without administrator permission specifies a directory that exists below C:
\Program Files as the log output destination, and then executes an EJB client application, the log will not be saved. In
such a case, the log will be saved in the following directory:

C:\Users\user-name\AppData\Local\VirtualStore
If an EJB client application previously used in a version earlier than 07-50 is to be used in Windows Server 2012, Windows
Server 2008, Windows 8, Windows 7, or Windows Vista, the log output destination must be revised.

For details on how to use the administrator privileges for execution in Windows Server 2012, Windows Server 2008,
Windows 8, Windows 7, or Windows Vista, see 1.6 Notes when using Windows Server 2012, Windows Server 2008,
Windows 8, Windows 7, or Windows Vista in the uCosminexus Application Server System Setup and Operation Guide.

A.3 Directory configuration of uCosminexus Client
The following figure shows the directory configuration of uCosminexus Client and Cosminexus Component Container
- Client, the component software of uCosminexus Client:

Figure A‒1: Directory configuration of uCosminexus Client

A. uCosminexus Client

163

B. Main updates in the functionalities of each version
This section describes the updates in the main functionality in each version of Application Server prior to version
09-50 and the purpose of each update. For details on the main updates in the functionality of version 09-50, see 1.4
Main updates in the functionality of Application Server 09-50.

The description is as follows:

• This section gives an overview and describes the main updates in the functionality of Application Server version
09-50. For details on the functionality, check the description in the Reference location column corresponding to
the Reference manual column. Reference manual and Reference location columns describe the main locations
where the functionality is described.

• uCosminexus Application Server is omitted from the manual names mentioned in the Reference manual column.

B.1 Main updates in the functionality of 09-00

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify the implementation and setup.

Table B‒1: Changes done for simplifying implementation and setup

Item Overview of changes Reference manual Reference
location

Changing the operation target
unit of setup and operation in a
virtual environment

The operation target unit of setup and operation in a virtual
environment is changed from a virtual server to a virtual
server group. Enabled the batch registration of multiple
virtual servers to the management unit by using the file,
which defines the information on the virtual server group.

Virtual System Setup
and Operation Guide

1.1.2

Releasing restrictions on the
environments set up by using
Setup Wizard

Released the restrictions on the environment that you can
set up by using Setup Wizard. Now, you use Setup Wizard
to set up and unset up even an environment set up with
another functionality.

System Setup and
Operation Guide

2.2.7

Simplifying the deletion
procedure of the setup
environment

Simplified the deletion procedure by adding a functionality
(mngunsetup command) that deletes the system
environment, set up with Management Server.

System Setup and
Operation Guide

4.1.37

Management Portal
User Guide

3.6, 5.4

Command Reference
Guide

mngunset
up (deleting
the setup
environment
of
Management
Server)

(2) Supporting the standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table B‒2: Changes done for supporting the standard and existing functionality

Item Overview of changes Reference manual Reference
location

Supporting Servlet 3.0 Supported Servlet 3.0. Web Container
Functionality Guide

Chapter 6

Supporting EJB 3.1 Supported EJB 3.1. This manual Chapter 2

B. Main updates in the functionalities of each version

164

Item Overview of changes Reference manual Reference
location

Supporting JSF 2.1 Supported JSF 2.1. Web Container
Functionality Guide

Chapter 3

Supporting JSTL 1.2 Supported JSTL 1.2. Web Container
Functionality Guide

Chapter 3

Supporting CDI 1.0 Supported CDI 1.0. Common Container
Functionality Guide

Chapter 9

Using the Portable Global
JNDI name

Enabled the look up of objects by using the Portable Global
JNDI name.

Common Container
Functionality Guide

2.4

Supporting JAX-WS 2.2 Supported JAX-WS 2.2. Web Service
Development Guide

1.1, 16.1.5,
16.1.7,
16.2.1,
16.2.6,
16.2.10,
16.2.12,
16.2.13,
16.2.14,
16.2.16,
16.2.17,
16.2.18,
16.2.20,
16.2.22,
19.1, 19.2.3,
37.2, 37.6.1,
37.6.2,
37.6.3

Supporting JAX-RS 1.1 Supported JAX-RS 1.1. Web Service
Development Guide

1.1, 1.2.2,
1.3.2, 1.4.2,
1.5.1, 1.6,
2.3, Chapter
11, Chapter
12, Chapter
13, Chapter
17, Chapter
24, Chapter
39

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table B‒3: Changes done for maintaining and improving reliability

Item Overview of changes Reference manual Reference
location

Using TLSv1.2 in the SSL/TLS
communication

Enabled the communication of SSL/TLS with the security
protocols that include TLSv1.2, by using RSA BSAFE
SSL-J.

Security Management
Guide

7.3

(4) Maintaining and improving the operation efficiency
The following table describes the items that are changed for maintaining and improving the operation efficiency.

B. Main updates in the functionalities of each version

165

Table B‒4: Changes done for maintaining and improving the operation efficiency

Item Overview of changes Reference manual Reference
location

Monitoring total pending
queues in the entire Web
container

Enabled the monitoring through the output of total pending
queues in the entire Web container to statistics.

Operation,
Monitoring, and
Linkage Guide

Chapter 3

Performing the output of a
performance analysis trace of
an application (user extended
trace)

Enabled the output of a performance analysis trace used for
analyzing the processing performance of the user-developed
applications, without changing the applications.

Maintenance and
Migration Guide

Chapter 7

Operations using a user script
in a virtual environment

Enabled the execution of the user-created scripts (user
scripts) on a virtual server at any timing.

Virtual System Setup
and Operation Guide

7.8

Improving the management
portal

Changes are done in the following windows of the
management portal, so that the messages that describe
procedures, are displayed on the windows:

• Deploy the Preference Information window

• Startup window of the Web server, J2EE server and
SFO server

• Batch start, batch restart and startup window of the Web
server cluster and J2EE server cluster

Management Portal
User Guide

10.11.1,
11.9.2,
11.10.2,
11.11.2,
11.11.4,
11.11.6,
11.12.2,
11.13.2,
11.13.4,
11.13.6

Adding the restart functionality
of the operation management
functionality

Enabled the setting of an automatic restart with the
operation management functionality (Management Server
and Administration Agent). Also enabled the continuation
of the operation even at the time of failure occurrence in the
operation management functionality. Also changed the
method for setting the automatic start.

Operation,
Monitoring, and
Linkage Guide

2.4.1, 2.4.2,
2.6.3, 2.6.4

Command Reference
Guide

mngautor
un (set up/
canceling
the set up of
autostart
and
autorestart)

(5) Other purposes
The following table describes the items that are changed for other purposes.

Table B‒5: Changes done for other purposes

Item Overview of changes Reference manual Reference
location

Changing the file switching
unit at the time of log output

Enabled the date-wise switching of the output destination
files, at the time of log output.

Maintenance and
Migration Guide

3.2.1

Changing the name of the Web
server

Changed the name of the Web server included in
Application Server to HTTP Server

HTTP Server --

Supporting the direct
connection that uses API
(SOAP architecture) with BIG-
IP

Supported the direct connection that uses API (SOAP
architecture) with BIG-IP (load balancer).

Also changed the method for setting the connection
environment of the load balancer when using a direct
connection that uses API.

System Setup and
Operation Guide

4.7.3,
Appendix K

Virtual System Setup
and Operation Guide

2.1,
Appendix C

Security Management
Guide

8.2, 8.4, 8.5,
8.6, 18.2,
18.3, 18.4

Legend:
--: See the entire manual

B. Main updates in the functionalities of each version

166

B.2 Main updates in the functionality of 08-70

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify implementation and setup:

Table B‒6: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Reference
location

Improving management portal Enabled setup of the properties that define resource adaptor
properties (setting contents of the Connector property file)
and connection test of those properties on a Management
Portal screen. Also enabled the uploading of J2EE
applications (ear files and zip files) to Management Server,
on the Management Portal screen.

First Step Guide 3.5

Management Portal
User Guide

--

Adding implicit import
functionality of the import
attribute in page/tag directive

Enabled the usage of the implicit import functionality of the
import attribute in page/tag directive.

Web Container
Functionality Guide

2.3.7

Supporting the automation of
environment settings related to
the JP1 products in a virtual
environment

Enabled the automatic setting of the environment of JP1
products related to the virtual server by hooks script, when
setting up Application Server for a virtual server.

Virtual System Setup
and Operation Guide

7.7.2

Improving the integrated user
management functionality

Enabled the connection to a database with the JDBC driver
of database products when using the database in the user
information repository.

Database connection with the JDBC driver of Cosminexus
DABroker Library is no longer supported.

Enabled settings related to the integrated user management
functionality in the Easy Setup Definition file and on the
Management Portal screen.

In the case of an Active Directory, supported the double
byte characters such as the Japanese characters with DN.

Security Management
Guide

Chapter 5,
14.3

Management Portal
User Guide

3.5, 10.9.1

Expanding the setting items of
HTTP Server

Enabled the direct settings of the directive (setting contents
of httpsd.conf (Hitachi Web Server definition file))
that defines the operation environment of HTTP Server in
an Easy Setup definition file and on the management portal
window.

System Setup and
Operation Guide

4.1.21

Management Portal
User Guide

10.10.1

Definition Reference
Guide

4.13

Legend:
-: See the entire manual

(2) Supporting standard and existing functionalities
The following table describes the items that are changed to support the standard and existing functionalities:

Table B‒7: Changes made for supporting the standard and existing functionalities

Item Overview of changes Reference manual Reference
location

Adding specification items of
ejb-jar.xml

Enabled the specifications for the class level interceptor and
method level interceptor in ejb-jar.xml.

This manual 2.15

Supporting the parallel copy
garbage collection

Enabled the selection of the parallel copy garbage collection Definition Reference
Guide

16.5

B. Main updates in the functionalities of each version

167

Item Overview of changes Reference manual Reference
location

Supporting the global
transaction of an Inbound
resource adapter based on the
Connector 1.5 specifications

Enabled the usage of Transacted Delivery in the resource
adaptor based on the Connector 1.5 specifications. Now the
EIS that invokes a Message-driven Bean can also participate
in the global transaction.

Common Container
Functionality Guide

3.16.3

Supporting MHP of the TP1
inbound adapter

Enabled the usage of MHP as a client of OpenTP1 that
invokes Application Server with the TP1 inbound adapter.

Common Container
Functionality Guide

Chapter 4

Supporting the FTP inbound
adapter by the cjrarupdate
command

Added the FTP inbound adapter in the resource adapter that
you can upgrade with the cjrarupdate command

Command Reference
Guide

2.2

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability:

Table B‒8: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Reference
location

Improving the database session
failover functionality

In a system that focuses on performance, enabled the
selection of a mode that does not acquire the lock of a
database storing the global session information. Also,
enabled the definition of request for a reference without
updating the database.

Expansion Guide Chapter 6

Expanding the process that is
the target of the
OutOfMemory handling
functionality

Added a process that is the target of the OutOfMemory
handling functionality.

Maintenance and
Migration Guide

2.5.7

Definition Reference
Guide

16.2

Adding a functionality for
reduction in the memory size of
the Explicit heap used in an
HTTP session

Added a functionality to restrain the memory usage of the
Explicit heap used in an HTTP session.

Expansion Guide 8.11

(4) Maintaining and improving the operation efficiency
The following table describes the items that are changed for maintaining and improving the operation efficiency:

Table B‒9: Changes made for maintaining and improving the operation efficiency

Item Overview of changes Reference manual Reference
location

Supporting the user
authentication that uses JP1
products in a virtual
environment (supporting cloud
operations)

Enabled the management and authentication of users who
use the virtual server manager with the authentication server
of JP1 products, at the time of JP1 integration.

Virtual System Setup
and Operation Guide

1.2.2,
Chapter3, 4,
5, 6, 7.9

(5) Other purposes
The following table describes the items that are changed for other purposes:

B. Main updates in the functionalities of each version

168

Table B‒10: Changes made for other purposes

Item Overview of changes Reference manual Reference
location

Supporting a direct connection
with the load balancer using the
API (REST architecture)

Supported a direct connection with the API (REST
architecture) as a method of connecting to the load balancer.

Also added ACOS (AX2500) as a type of available load
balancer.

System Setup and
Operation Guide

4.7.2, 4.7.3

Virtual System Setup
and Operation Guide

2.1

Definition Reference
Guide

4.5

Supporting timeout when
collecting the snapshot log and
improving the collection target

Enabled the end (timeout) processing in the time specified
for the collection of a snapshot log. Changed the data
collected as the primary submitted documents.

Maintenance and
Migration Guide

Appendix A

B.3 Main updates in the functionality of 08-53

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify implementation and setup:

Table B‒11: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Reference
location

Configuring a virtual
environment supporting various
hypervisors

Changes have been made such that Application Server can
also be configured on virtual servers that are implemented
by using various Hypervisors. Also, the environment
including a mix of multiple hypervisors is now supported.

Virtual System Setup
and Operation Guide

Chapter 2, 3,
5

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support standard and existing functionality:

Table B‒12: Changes made for supporting standard and existing functionality

Item Overview of changes Reference manual Reference
location

Invocation from OpenTP1
supporting integration of
transactions

Changes have been made to enable transaction integration
when invoking Message-driven Beans operating on
Application Server from OpenTP1.

Common Container
Functionality Guide

Chapter 4

JavaMail Changes have been made to enable the use of the Receive
mail functionality that uses Javamail 1.3 compliant API by
integrating with a POP3 compliant mail server.

Common Container
Functionality Guide

Chapter 8

(3) Maintenance and improvement of reliability
The following table describes the items that are changed for maintaining and improving reliability:

Table B‒13: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Reference
location

Improving JavaVM
troubleshooting functionality

Changes have been made to enable the use of the following
functionalities as JavaVM troubleshooting functionalities:

Maintenance and
Migration Guide

Chapter
4,Chapter5,

Chapter 9

B. Main updates in the functionalities of each version

169

Item Overview of changes Reference manual Reference
location

Improving JavaVM
troubleshooting functionality

• The operations when an OutOfMemoryError occurs can
be changed.

• The upper limit of the C heap allocated volume can be
set when compiling JIT.

• The upper limit of the number of threads can be set.

• Extended the output items of extended verbosegc
information.

Maintenance and
Migration Guide

Chapter
4,Chapter5,

Chapter 9

(4) Maintaining and improving the operation performance
The following table describes the items that are changed for maintaining and improving operation performance:

Table B‒14: Changes made for maintaining and improving operation performance

Item Overview of changes Reference manual Reference
location

Support to JP1/ITRM JP1/ITRM that is a product to centrally manage the IT
resource is now supported.

Virtual System
Configuration and
Operation Guide

1.3, 2.1

(5) Other purposes
The following table describes the items that are changed for other purposes:

Table B‒15: Changes made for other purposes

Item Overview of changes Reference manual Reference
location

Support for Microsoft IIS 7.0
and Microsoft IS 7.5

Microsoft IIS 7.0 and Microsoft IIS 7.5 is now supported as
Web server.

-- --

Support for HiRDB Version 9
and SQL Server 2008

The following products are now supported as Database.

• HiRDB Server Version 9

• HiRDB/Developer's Kit

• Version 9

• HiRDB/Run Time Version 9

• SQL Server 2008

Also, SQL Server JDBC Driver is now supported as SQL
Server 2008 compliant JDBC driver.

Common Container
Functionality Guide

Chapter 3

Legend:
--: Does not correspond

B.4 Main updates in the functionality of 08-50

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify implementation and setup:

B. Main updates in the functionalities of each version

170

Table B‒16: Changes made for simplifying implementation and setup

Item Overview of change Reference manual Reference
location

Change in the tags for which it
is mandatory to specify
web.xml of the Web service
provider side

Because it is mandatory to specify the listener tag, servlet
tag and servlet-mapping tag in web.xml of Web service
provider side, the tags have been arbitrarily changed.

Definition Reference
Guide

2.4

Using the network resource of
the Logical server

Added a functionality to access the network resource and
network drive on the other hosts from the J2EE application.

Operation,
Monitoring, and
Linkage Guide

1.2.3, 5.2,
5.7

Simplification of the procedure
to execute Sample program

The procedure to execute the sample program is simplified
by providing a part of the sample program in EAR format.

First Step Guide 3.5

System Setup and
Operation Guide

Appendix M

Improving the operations of the
Operations Management Portal
window

Changed the default update interval of the screen from Do
not update to 3 seconds.

Management Portal
User Guide

7.4.1

Improving the Completion
screen of the Setup window

Changes are made to the window Setup wizard completion
window to enable the display of the Easy Setup definition
file and connector property file used in the setup.

System Setup and
Operation Guide

2.2.6

Configuring a virtual
environment

Added a procedure to configure Application Server on
virtual servers that are implemented by using various
hypervisors.#

Virtual System Setup
and Operation Guide

Chapter 3
and 5

#
When you configure with the 08-50 mode, see Appendix D Settings when using the Virtual server manager of the 08-50 mode of
uCosminexus Application Server Virtual System Setup and Operation Guide.

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support standard and existing functionality:

Table B‒17: Changes made for supporting standard and existing functionality

Item Overview of change Reference manual Reference
location

Support for invocation from
OpenTP1

Changes have been made to enable invocation of the
Message-driven Beans operating on Application Server
from OpenTP1.

Common Container
Functionality Guide

Chapter 4

Support to JMS Changes have been made to enable the usage of the CJMS
provider functionality that is compliant with the JMS1.1
specifications.

Common Container
Functionality Guide

Chapter 7

Support to Java SE 6 Java SE 6 functionality can be used now. Maintenance and
Migration Guide

5.5,5.8.1

Support for using Generics Generics can now be used in EJB. This manual 4.2.19

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability:

B. Main updates in the functionalities of each version

171

Table B‒18: Changes made for maintaining and improving reliability

Item Overview of change Reference manual Reference
location

Improving the usability of the
Explicit Memory Management
functionality

The Explicit Memory Management functionality can now
be easily used by using the automatic allocation setup file.

System Design Guide 7.1.1, 7.6.3,
7.10.5,
7.11.1

Expansion Guide Chapter 8

Disabling database session
failover functionality in URI

When using the database session failover functionality, a
request that is not the target of the functionality can now be
specified in URI.

Expansion Guide 5.6.1

Error monitoring in the virtual
environment

A setting has been added to stop the virtual server in which
an error has occurred by monitoring virtual server errors in
the virtual system.

Virtual System Setup
and Operation Guide

Appendix D

(4) Maintaining and improving the operation performance
The following table describes the items that are changed for maintaining and improving operation performance:

Table B‒19: Changes made for maintaining and improving operation performance

Item Overview of change Reference manual Reference
location

Omission of the Management
user account

The user can now omit the input of login ID and password
in the Operations management portal, Management Server
commands, and Smart Composer functionality commands.

System Setup and
Operation Guide

4.1.15

Management Portal
User Guide

2.2, 7.1.1,
7.1.2, 7.1.3,
8.1, 8.2.1,
Appendix F.
2

Command Reference
Guide

1.4,
mngsvrct
l (set up/
cancelling
the set up of
autostart
and
autorestart),
mngsvrut
il(Manage
ment Server
management
command),
8.3,
cmx_admi
n_passwd(
Settings of
the
Management
user account
of
Management
Server)

Operations of the virtual
environment

Added a procedure to operate batch startup and batch
stopping scale in and scale out for the multiple servers in
the virtual system.#

Virtual System Setup
and Operation Guide

Chapter 4
and 6

#
When you configure with 08-50 mode, see Appendix D Settings when using the Virtual server manager of the 08-50 mode of
uCosminexus Application Server Virtual System Setup and Operation Guide.

B. Main updates in the functionalities of each version

172

(5) Other purposes
The following table describes the items that are changed for other purposes:

Table B‒20: Changes made for other purposes

Item Overview of change Reference manual Reference
location

Functionality to count the
unnecessary objects in the
Tenured area

You can now specify only the unnecessary objects within
the Tenured area.

Maintenance and
Migration Guide

9.8

Functionality to output the
source object list of the
Tenured area increase factor

You can now output the information of the object that is
specified by using the functionality to count the unnecessary
objects in the Tenured area, and is the source of
unnecessary objects.

9.9

Functionality to analyze the
class wise statistical
information

The class wise statistical information can now be output in
CSV format.

9.10

Cluster node switching
according to the automatic
restart restore over number
detection

The node can now be switched at a timing when the logical
server is in an abnormal stop status (when an errors is
detected if the frequency of automatic restart is in an over
status or frequency of automatic restart is set to 0) for a
cluster configuration that is monitored for switching the
Management Server.

Operation,
Monitoring, and
Linkage Guide

18.4.3,
18.5.3,
20.2.2,
20.3.3,
20.3.4

Node switching system for the
host unit management model

The node can now be switched for the host unit
management model in the system operations integrated with
cluster software.

Chapter 20

Support for ACOS (AX2000,
BS320)

Added ACOS (AX2000, BS320) to the type of available
load balancing functionality

System Setup and
Operation Guide

4.7.2, 4.7.3,
4.7.5, 4.7.6,
Appendix K,
AppendixK.2

Definition Reference
Guide

4.5, 4.6.2,
4.6.4, 4.6.5,
4.6.6, 4.10.1

Adding the transaction property
that can be specified in the
Stateful Session Bean
(SessionSynchronization) when
managing a transaction in CMT

When managing a transaction in CMT, Supports,
NotSupported and Never can be now specified as a
transaction property in the Stateful Session Bean
(SessionSynchronization).

This manual 2.7.3

Terminating the Administration
Agent when OutOfMemory has
occured

When OutOfMemory occurs in Java VM, the
Administration Agent can be terminated.

Maintenance and
Migration Guide

2.5.8

Asynchronous parallel
processing of threads

Asynchronous timer processing and Asynchronous
processing of threads can be implemented by using
TimerManager and WorkManager.

Expansion Guide Chapter 10

B.5 Main updates in the functionality of 08-00

(1) Improvement in development productivity
The following table describes the items that are changed for improving the development productivity:

B. Main updates in the functionalities of each version

173

Table B‒21: Changes for improving the development productivity

Item Overview of change Reference manual Reference
location

Simplifying migration from
another Application Server
product

The following functionality can be used for the smooth
migration from another Application Server product:

• The upper limit of an HTTP session can be judged with
an exception.

• The occurrence of a translation error when the ID of
JavaBeans is duplicate or when the upper-case and
lower-case characters are differentiated in the attribute
name of custom tags and in the TLD definition can be
prevented.

Web Container
Functionality Guide

2.3, 2.7.5

Providing cosminexus.xml By describing the attributes unique to Application Server in
cosminexus.xml, a J2EE application can be started
without setting up the property, once the J2EE application is
imported to the J2EE server.

Common Container
Functionality Guide

11.3

(2) Supporting standard functionality
The following table describes the items that are changed to support standard functionality:

Table B‒22: Changes made for supporting standard functionality

Item Overview of change Reference manual Reference
location

Supporting Servlet 2.5 Servlet 2.5 is supported. Web Container
Functionality Guide

2.2, 2.5.4,
2.6, Chapter
6

Supporting JSP 2.1 JSP 2.1 is supported. Web Container
Functionality Guide

2.3.1, 2.3.3,
2.5, 2.6,
Chapter 6

JSP debug JSP debugging can be performed in the development
environment by using MyEclipse.#

Web Container
Functionality Guide

2.4

Saving the tag library in library
JAR and mapping TLD

When the tag library is saved in library JAR, the TLD files
in library JAR can be searched by the Web container when
the Web application is running, and then TLD files can be
mapped automatically.

Web Container
Functionality Guide

2.3.4

Omitting
application.xml

application.xml can be omitted in the J2EE
application.

Common Container
Functionality Guide

11.4

Combined use of annotation
and DD

Annotations can be used together with DD, and the contents
specified in the annotation can be updated in the DD.

Common Container
Functionality Guide

12.5

Compliance of annotations with
the Java EE 5 standard (default
interceptor)

The default interceptor can be saved in the library JAR.
Furthermore, DI can be performed from the default
interceptor.

Common Container
Functionality Guide

11.4

Reference resolution of
@Resource

Reference resolution of a resource can be performed with
@Resource.

Common Container
Functionality Guide

12.4

Supporting JPA JPA specifications are supported. Common Container
Functionality Guide

Chapter 5
and 6

#
In version 09-00 or later, you can use the JSP debug functionality in a development environment with WTP.

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability:

B. Main updates in the functionalities of each version

174

Table B‒23: Changes made for maintaining and improving operation performance

Item Overview of change Reference manual Reference
location

Persistence of session
information

The session information of an HTTP session can be saved in
the database, and can be inherited.

Expansion Guide Chapter 5
and 6

Preventing a full garbage
collection

The occurrence of a full garbage collection can be
prevented by allocating the object that causes the full
garbage collection outside the Java heap.

Expansion Guide Chapter 8

Client performance monitor The time consumed in client processing can be checked and
analyzed.

-- --

Legend :
--: The function is deleted in version 09-00.

(4) Maintaining and improving the operation performance
The following table describes the items that are changed for maintaining and improving operation performance:

Table B‒24: Changes made for maintaining and improving operation performance

Item Overview of change Reference manual Reference
location

Improving the operability of
applications in Operations
Management Portal

About application and resource operations, the server
management command and Operations management portal
can now perform mutual operations.

Management Portal
User Guide

1.1.3

(5) Other purposes
The following table describes the items changed for some other purposes:

Table B‒25: Changes for some other purposes

Item Overview of change Reference manual Reference
location

Deleting disabled HTTP cookie Disabled HTTP cookie can be deleted. Web Container
Functionality Guide

2.7.4

Detecting a naming service
failure

When a failure occurs in the naming service, the EJB client
can now detect the error faster.

Common Container
Functionality Guide

2.9

Connection failure detection
timeout

The timeout period for a connection failure detection
timeout can be specified.

Common Container
Functionality Guide

3.15.1

Supporting Oracle11g Oracle11g can be used as a database. Common Container
Functionality Guide

Chapter 3

Scheduling batch processing The execution of batch applications can be scheduled with
CTM.

Expansion Guide Chapter 4

Batch processing log Changes have been made in such a way so that the size and
number of log files of batch execution commands, retry
frequency, and retry interval (when a failure occurs in the
log exclusion processing) can be specified.

Definition Reference
Guide

3.6

Snapshot log The collection details of the snapshot log have been
changed.

Maintenance and
Migration Guide

Appendix A.
1, Appendix
A.2

Publication of the protected
area of method cancellation

The contents of the protected area list to which method
cancellation is not applicable are published.

Operation,
Monitoring, and
Linkage Guide

Appendix C

B. Main updates in the functionalities of each version

175

Item Overview of change Reference manual Reference
location

Functionality for selecting
garbage collection before
statistics output

Whether or not to execute a garbage collection can be
selected before the statistical information for each class is
output.

Maintenance and
Migration Guide

9.7

Functionality for the output of
age distribution information of
the Survivor area

The age distribution information of the Java objects of
Survivor area can be output to the JavaVM log file.

Maintenance and
Migration Guide

9.11

Functionality for eliminating
the finalize stagnation

The stagnation of the finalize processing of JavaVM can be
eliminated by monitoring the status of the processing.

-- --

Changing the maximum heap
size of the server management
commands

The maximum heap size used by server management
commands has been changed.

Definition Reference
Guide

5.2, 5.3

Support when a display name
that is not recommended is
specified

A message will now be output when a display name that is
not recommended in J2EE application is specified

Messages KDJE42374-
W

Legend:
--: The functionality is deleted in version 09-00.

B. Main updates in the functionalities of each version

176

C. Glossary
Terminology used in this manual

For the terms used in the manual, see the uCosminexus Application Server and BPM/ESB Platform Terminology Guide.

C. Glossary

177

Index

A
About <prim-key-class> tag of Entity Bean (Common for

CMP and BMP) property file 151
About accessing resource manager with setEntityContext

method 158, 159
About invocation of begin method of

javax.transaction.UserTransaction with
setSessionContext method 158

About invocation of Enterprise Bean from afterCompletion
method 158

About occurrence of deadlock during use of Entity Bean
(Common for CMP and BMP) 150

About specifying interface in primary key class 158, 159
About the timeout of access exclusion of an Entity Bean

(common for CMP and BMP) 150
Acquiring and releasing resource connection 147
Applicability of asynchronous invocation of Session Bean

104
Asynchronous invocation of Session Bean 104
Automatically generating an EJB timer 68

B
BMP 20
BMT 39
business interface

functionality 23
invoking Enterprise Bean 24

C
cache model

Caching (commit option B) 50
Full caching (commit option A) 50
No caching (commit option C) 50

Changing output destination and output level of system log
138

Checking compliance with EJB specifications 30
cjclstartap 119
class level interceptor 94
CMP 20
CMT 40
Common precautions for all Enterprise Beans 146
Connecting to external resource 38

D
default interceptor 94
Definition for using No-Interface view 102
Differentiatinguse of local interface and remote interface

147

E
EJB

invoking remote interface 85

EJB client 116
EJB client application 116
EJB container

setting up timeout 55
ejbserver.container.rebindpolicy 88
ejbserver.container.security.disabled 54
ejbserver.ejb.timerservice.maxCallbackThreads 82
ejbserver.ejb.timerservice.retryCount 82
ejbserver.ejb.timerservice.retryInterval 82
ejbserver.rmi.localinvocation.scope 88
ejbserver.rmi.passbyreference 88
ejbserver.rmi.request.timeout 59
EJB timer

deleting 71
generating 66

Enterprise Bean
controlling access 54
executing 19
interface 21
lifecycle 24
option for preventing access control 54
preventing access control 54
transaction management 39
type 19

Entity Bean 20
cache model 50
lifecycle 27
pooling 52
pool-state 52
ready-state 52

Error handling in Singleton Session Bean 112
Exclusive control of Singleton Session Bean 112
execution order of interceptors 97

F
fixing

communication port 92
IP address 92

G
Generating Enterprise Beans and invoking methods 125
Generating JNDI naming context 124

H
How to set Session Synchronization with annotation 110

I
Implementing security in EJB client application 130
Implementing transaction in EJB client application 127
interceptor 94
Invoking Enterprise Bean by searching references of

business interface 125

179

Invoking Enterprise Bean by searching references of EJB
home object 124

L
lifecycle

Enterprise Bean 24
Entity Bean 27
Message-driven Bean 28
Session Bean 25
Stateful Session Bean 25
Stateless Session Bean 25

Lifecycle of Singleton Session Bean 26
Local interface 23

M
Main updates in functionality of Application Server 09-50

13
managing

Enterprise Bean pool 52
Message-driven Bean 20

lifecycle 28
pooling 53

Method for invoking Enterprise Bean of another J2EE
application with component interface 148

Method for invoking Enterprise Bean of another J2EE
application with business interface 148

method level interceptor 94
methods that cannot be used (no-interface view) 103

N
No-Interface view 102
Notes on annotation when implementing asynchronous

method 109
Notes on finder method or select method of EJB QL 160
notes when setting transaction of Message-driven Bean

(when using resource adapter conforming to Connector
1.5) 160

O
Obtaining UserTransaction using lookup 128
Omitting local business interfaces 102
Operation during occurrence of communication failure in

EJB remote interface 86
Operation of ejb client during the occurrence of

communication failure in remote interface 88
Optimizing local invocation in EJB remote interface 85
Overview of No-Interface view 102

P
parameterization 153
Pass by reference functionality of

remoteinterfaceityofonoptimizationfunctionalityfailure in
EJB remote interface remote interface 88

pooling
Entity Bean 52
Message-driven Bean 53
Stateless Session Bean 52

precaution
concerning EJB specifications 152
concerning loading of native library 150
concerning transmission of Unicode supplementary

characters 152
during implementation of Entity Bean (BMP) 158
during implementation of Entity Bean (CMP) 159
during implementation of Message-driven Bean 160
during implementation of Stateful Session Bean 157
during implementation of Stateless Session Bean

157
during use of URLConnection class 149
regarding methods of javax.ejb.EJBContext

interface 150
Precautions about sharing Bean classes 158
Precautions about sharing of Bean classes 157
Precautions concerning acquisition of class loader 149
Precautions concerning destruction of

SessionSynchronization instances 158
Precautions concerning usage of cascade-delete of CMR

159
Precautions concerning transactions during use of CMR

field 159
Precautions concerning use of user-defined type CMP field

159
Precautions during development (No-Interface view) 103
Precautions during implementation of Singleton Session

Beans 160
Precautions when setting up transaction of Message-driven

Bean (When using resource adapter conforming to
Connector 1.0) 160

R
Range of local invocation optimization functionality 88
Referencing and passing values of EJB remote interface 86
Releasing references with remove method 157
Releasing references with remove method 158, 159
Remote interface 23
RMI-IIOP communications for which a timeout can be

specified 57
Rules for naming an Enterprise Bean and related classed

146

S
Searching and obtaining references of EJB home 125
Session Bean 19

lifecycle 25
shared subdirectory mode 137
Singleton Session Beans 112
Specifications in Session Synchronization annotation 110
Specifying environment variables required for executing

EJB client application 122
Specifying JAR files in class path of EJB client application

133
Stateful Session Bean 19

lifecycle 25
timeout 56

Stateless Session Bean 19
lifecycle 25
pooling 52

Index

180

T
timeout

awaiting instance acquisition 56
EJB object 56
RMI-IIOP communication 56
Stateful Session Bean 56

timeout method 62
Timer Service 62

functionality 71
implementing application 77

transaction attribute 40
Mandatory 43
Never 44
NotSupported 41
Required 41
RequiresNew 42
Supports 42

Transaction attributes that can be specified for each type of
Enterprise Bean 45

type parameter 153

U
Usage form of EJB client application 139
Usage form of EJB client application and system properties

139
Usage of local invocation optimization functionality 147

V
vbj 119
vbroker.se.iiop_tp.host 92
vbroker.se.iiop_tp.scm.iiop_tp.listener.port 92

Index

181

	EJB Container Functionality Guide
	Summary of amendments
	Preface
	Contents
	1. Application Server Functionality
	1.1 Classification of functionality
	1.1.1 Functionality that serves as a platform for executing applications
	1.1.2 Functionality for operating and maintaining a platform for executing applications
	1.1.3 Correspondence between functionality and manuals

	1.2 Functionality corresponding to the purpose of the system
	1.2.1 EJB container functionality
	1.2.2 Functionality of EJB Client

	1.3 Explanation of the functionality described in this manual
	1.3.1 Meaning of the classification
	1.3.2 Example table describing the classification

	1.4 Main updates in the functionality of Application Server 09-50

	2. EJB Container
	2.1 Organization of this chapter
	2.2 Executing an Enterprise Bean
	2.2.1 Types of Enterprise Bean
	2.2.2 Interface for Enterprise Bean
	2.2.3 Lifecycle of Enterprise Beans

	2.3 Checking the compliance with EJB specifications
	2.4 Mapping of CMP fields and data types
	2.4.1 Range of Java data type supported in CMP
	2.4.2 Mapping the CMP field and database
	2.4.3 Precautions for using CMP

	2.5 Registering a reference in the JNDI name space of the EJB container
	2.5.1 Registering a reference in the java:comp/env name space
	2.5.2 Defining in cosminexus.xml
	2.5.3 Setting up in the execution environment

	2.6 Connecting to an external resource
	2.7 Transaction management in an Enterprise Bean
	2.7.1 Types of transaction management methods in an Enterprise Bean
	2.7.2 BMT
	2.7.3 CMT
	2.7.4 Defining in cosminexus.xml
	2.7.5 Settings in the execution environment

	2.8 Cache models of an Entity Bean
	2.8.1 Types of cache models of an Entity Bean
	2.8.2 Defining in cosminexus.xml
	2.8.3 Settings in the execution environment

	2.9 Managing the Enterprise Bean pool
	2.9.1 Pooling of Stateless Session Beans
	2.9.2 Pooling of Entity Beans
	2.9.3 Pooling of Message-driven Beans
	2.9.4 Defining in cosminexus.xml
	2.9.5 Settings in the execution environment

	2.10 Controlling the access to the Enterprise Beans
	2.10.1 Preventing access control to an Enterprise Bean
	2.10.2 Settings in the execution environment

	2.11 Setting up a timeout in the EJB container
	2.11.1 Types of timeouts
	2.11.2 Timeout of a Stateful Session Bean
	2.11.3 Timeout of the EJB objects in the Entity Beans
	2.11.4 Timeout in awaiting instance acquisition
	2.11.5 Timeout of RMI-IIOP communication
	2.11.6 Defining in cosminexus.xml
	2.11.7 Implementing a timeout for RMI-IIOP communications
	2.11.8 Settings in the execution environment
	2.11.9 Precautions during setup of a communication timeout

	2.12 Timer Service functionality
	2.12.1 Overview of the Timer Service
	2.12.2 Operation during the generation of an EJB timer and execution of a callback
	2.12.3 Automatically generating an EJB timer
	2.12.4 Deleting the EJB timer
	2.12.5 Functionality for operating the Timer Service
	2.12.6 Operations of the EJB timer and callback
	2.12.7 Implementing an application using the Timer Service
	2.12.8 Precautions when using the Timer Service
	2.12.9 Settings in the execution environment
	2.12.10 Precautions when using the Timer Service

	2.13 Invoking the remote interface of EJB
	2.13.1 Optimizing local invocation in the EJB remote interface
	2.13.2 Referencing and passing the values of the EJB remote interface
	2.13.3 Operation during the occurrence of a communication failure in the EJB remote interface
	2.13.4 Defining in cosminexus.xml
	2.13.5 Settings in the execution environment
	2.13.6 Precautions concerning invocation of the EJB remote interface

	2.14 Fixing the communication port and IP address of the EJB container (TPBroker options)
	2.14.1 Fixing the communication port
	2.14.2 Fixing the IP address
	2.14.3 Settings in the execution environment

	2.15 Using the interceptor
	2.15.1 Overview of the usage of the interceptor
	2.15.2 Defining in an annotation or a DD
	2.15.3 Controlling the invocation of upper level interceptor
	2.15.4 Execution order of the interceptors
	2.15.5 Configuring the execution environment
	2.15.6 Notes on inceptors

	2.16 Omitting local business interfaces (Using No-Interface view)
	2.16.1 Overview of No-Interface view
	2.16.2 Definition for using No-Interface view
	2.16.3 Methods that cannot be used
	2.16.4 Precautions during development

	2.17 Asynchronous invocation of Session Bean
	2.17.1 Applicability of asynchronous invocation of Session Bean
	2.17.2 Handling transactions in asynchronous invocation
	2.17.3 Handling root application information in asynchronous invocation
	2.17.4 Defining the annotation used for asynchronous invocation
	2.17.5 Specifying return values for an asynchronous method
	2.17.6 Operation for execution status and execution result of an asynchronous method based on Future<V> object
	2.17.7 Definitions in cosminexus.xml
	2.17.8 Notes on annotation when implementing an asynchronous method
	2.17.9 Notes on operation of an asynchronous method

	2.18 Specifications in Session Synchronization annotation
	2.18.1  Method of setting Session Synchronization with annotation
	2.18.2 Rules for implementation
	2.18.3 Notes on implementation

	2.19 Using Singleton Session Beans
	2.19.1 Exclusive control of Singleton Session Beans
	2.19.2 Error handling in Singleton Session Beans
	2.19.3 Precautions when using Singleton Session Beans

	3. EJB Client
	3.1 Organization of this chapter
	3.2 Functionality that can be used in an EJB client
	3.3 Starting EJB Client Applications
	3.3.1 Commands used for starting an EJB client application
	3.3.2 Using the cjclstartap command
	3.3.3 Using the vbj command
	3.3.4 Specifying the environment variables required for executing an EJB client application
	3.3.5 Specifying the property of an EJB client application

	3.4 Invoking an Enterprise Bean
	3.4.1 Flow of Enterprise Bean invocation from an EJB client application
	3.4.2 Implementation for invoking an Enterprise Bean

	3.5 Implementing a transaction in an EJB client application
	3.5.1 Procedure for using a transaction in the EJB client
	3.5.2 Obtaining UserTransaction using lookup
	3.5.3 Precautions during the implementation of a transaction in the EJB client application

	3.6 Implementing security in an EJB client application
	3.6.1 Preconditions for implementing security
	3.6.2 Sample program when security is implemented

	3.7 Obtaining RMI-IIOP stubs and interfaces
	3.7.1 Overview of obtaining RMI-IIOP stubs and interfaces
	3.7.2 Manual download with server management commands
	3.7.3 Dynamic class loading
	3.7.4 Specifying JAR files in the class path of the EJB client application
	3.7.5 Precautions during the use of uCosminexus Client

	3.8 System log output of an EJB client application
	3.8.1 Overview of the system log of an EJB client application
	3.8.2 Output destination subdirectory of the system log
	3.8.3 Changing the output destination and output level of the system log
	3.8.4 Sharing the log output destination subdirectory among multiple processes
	3.8.5 Setting up the access permission of the log output destination directory

	4. Precautions During the Implementation of Enterprise Beans
	4.1 Organization of this chapter
	4.2 Common precautions for all Enterprise Beans
	4.2.1 Rules for naming an Enterprise Bean and related classes
	4.2.2 Acquiring and releasing a resource connection
	4.2.3 Differentiating the use of a local interface and remote interface
	4.2.4 Usage of the local invocation optimization functionality
	4.2.5 Method for invoking an Enterprise Bean of another J2EE application with the component interface
	4.2.6 Method for invoking an Enterprise Bean of another J2EE application with the business interface
	4.2.7 Precautions concerning the acquisition of a class loader
	4.2.8 Precautions during the use of the URLConnection class
	4.2.9 Precautions concerning loading of the native library
	4.2.10 About the timeout of access exclusion of an Entity Bean (common for CMP and BMP)
	4.2.11 About the occurrence of a deadlock during the use of an Entity Bean (Common for CMP and BMP)
	4.2.12 Precautions regarding the methods of the javax.ejb.EJBContext interface
	4.2.13 About the <prim-key-class> tag of the Entity Bean (common for CMP and BMP) property file
	4.2.14 Precautions concerning EJB specifications
	4.2.15 About multi-byte characters
	4.2.16 Precautions concerning transmission of Unicode supplementary characters
	4.2.17 Precautions concerning API of EJB 3.0
	4.2.18 Precautions when using ejb-jar.xml of EJB 3.0 or later
	4.2.19 Precautions related to use Generics
	4.2.20 Precautions when using EJB 3.1
	4.2.21 About the getCause()method
	4.2.22 Precautions concerning the name of resource reference
	4.2.23 Precautions concerning the libraries of Application Server

	4.3 Precautions for each type of the Enterprise Bean
	4.3.1 Precautions during the implementation of a Stateless Session Bean
	4.3.2 Precautions during the implementation of a Stateful Session Bean
	4.3.3 Precautions during the implementation of an Entity Bean (BMP)
	4.3.4 Precautions during the implementation of an Entity Bean (CMP)
	4.3.5 Precautions during the implementation of a Message-driven Bean
	4.3.6 Precautions during the implementation of Singleton Session Beans

	Appendixes
	A. uCosminexus Client
	A.1 Functionality of uCosminexus Client
	A.2 Installation procedure
	A.3 Directory configuration of uCosminexus Client

	B. Main updates in the functionalities of each version
	B.1 Main updates in the functionality of 09-00
	B.2 Main updates in the functionality of 08-70
	B.3 Main updates in the functionality of 08-53
	B.4 Main updates in the functionality of 08-50
	B.5 Main updates in the functionality of 08-00

	C. Glossary

	Index

