
uCosminexus Application Server

Web Container Functionality Guide

3020-3-Y05-10(E)

■ Relevant program products
See the manual uCosminexus Application Server Overview.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law, and USA export
control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
Active Directory is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

AX2000 is a product name of A10 Networks, Inc.

BIG-IP, 3-DNS, iControl Services Manager, FirePass, and F5 are either trademarks or registered trademarks of F5 Networks, Inc.

All Borland brand and product names are trademarks or registered trademarks of Borland Software Corporation in the United States and other
countries.

BSAFE is a registered trademark or trademark of EMC Corporation in the United States and/or other countries.

CORBA is a registered trademark of Object Management Group, Inc. in the United States.

gzip is a freeware of American FSF (Free Software Foundation).

IIOP is a network protocol name for communication between ORB (Object Request Broker) according to OMG specifications.

Microsoft is a registered trademark or trademark of Microsoft Corporation and its affiliates in the United States and/or other countries.

MyEclipse is a trademark of Genuitec Corporation in the United States.

OMG, CORBA, IIOP, UML, Unified Modeling Language, MDA and Model Driven Architecture are registered trademarks or trademarks of
Object Management Group, Inc. in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates.

RSA is a registered trademark or trademark of EMC Corporation in the United States and/or other countries.

SOAP is an XML-based protocol for sending messages and making remote procedure calls in a distributed environment.

SQL Server is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Windows Server is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Windows Vista is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Other product and company names mentioned in this document may be either trademarks or registered trademarks of their respective
companies.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Throughout this document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization
used by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use of a
trademark in this document should not be regarded as affecting the validity of the trademark.

■ Microsoft product screen shots
Microsoft product screen shots reprinted with permission from Microsoft Corporation.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names:

Abbreviation Full name or meaning

Active Directory Microsoft(R) Active Directory(R)

Microsoft IIS Microsoft IIS 7.0 Microsoft(R) Internet Information Services 7.0

Microsoft IIS 7.5 Microsoft(R) Internet Information Services 7.5

Windows Windows Server
2008

Windows Server
2008 x86

Microsoft(R) Windows Server(R) 2008 Standard 32-bit

Microsoft(R) Windows Server(R) 2008 Enterprise 32-bit

Abbreviation Full name or meaning

Windows Windows Server
2008

Windows Server
2008 x64

Microsoft(R) Windows Server(R) 2008 Standard

Microsoft(R) Windows Server(R) 2008 Enterprise

Windows Server
2008 R2

Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server
2012

Windows Server
2012 Standard

Microsoft(R) Windows Server(R) 2012 Standard

Windows Server
2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Datacenter

Windows XP Microsoft(R) Windows(R) XP Professional Operating System

Windows Vista Windows Vista
Business

Microsoft(R) Windows Vista(R) Business(32 bit)

Windows Vista
Enterprise

Microsoft(R) Windows Vista(R) Enterprise(32 bit)

Windows Vista
Ultimate

Microsoft(R) Windows Vista(R) Ultimate(32 bit)

Windows 7 Windows 7 x86 Microsoft(R) Windows(R) 7 Professional(32 bit)

Microsoft(R) Windows(R) 7 Enterprise(32 bit)

Microsoft(R) Windows(R) 7 Ultimate(32 bit)

Windows 7 x64 Microsoft(R) Windows(R) 7 Professional(64 bit)

Microsoft(R) Windows(R) 7 Enterprise(64 bit)

Microsoft(R) Windows(R) 7 Ultimate(64 bit)

Windows 8 Windows 8 x86 Windows(R) 8 Pro(32 bit)

Windows(R) 8 Enterprise(32 bit)

Windows 8 x64 Windows(R) 8 Pro(64 bit)

Windows(R) 8 Enterprise(64 bit)

Note that Windows 32 bit and Windows 64 bit are sometimes respectively referred to as Windows x86 and Windows x64.

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The software
described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of the terms and
conditions governing your use of the software and documentation, including all warranty rights, limitations of liability, and disclaimers of
warranty.

Material contained in this document may describe Hitachi products not available or features not available in your country.

No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in Japan.

■ Issued
Aug. 2013: 3020-3-Y05-10(E)

■ Copyright
All Rights Reserved. Copyright (C) 2013, Hitachi, Ltd.

Summary of amendments

The following table lists changes in the manual 3020-3-Y05-10(E) for uCosminexus Application Server 09-50,
uCosminexus Application Server(64) 09-50, uCosminexus Client 09-50, uCosminexus Developer 09-50,
uCosminexus Service Architect 09-50, uCosminexus Service Platform 09-50, and uCosminexus Service
Platform(64) 09-50 and product changes related to the manual:

Additions and Changes Change Location

The functions for deploying WAR applications as J2EE applications were added. 2.2.1

The functions for changing the HTTP Cookie name and the URL parameter name in the
version prior to Servlet 2.5, by conforming to the standard specifications of Servlet 3.0 were
added.

2.7.3, 2.7.6, 2.7.7, 2.7.8, 2.7.9

The method dependent restrictions in the case of reloading an application in which the
functions of Servlet 3.0 specifications are used, were deleted.

6.2.3

The description on notes was moved from release notes. 2.24, 3.3.1, 5.2.1, 6.2.1, 6.2.2, 6.2.6

In addition to the above changes, minor editorial corrections have been made.

For this version (3020-3-Y05-10(E)), some of the content in the previous version (3020-3-Y05(E)) has been moved to the uCosminexus
Application Server Common Container Functionality Guide and the structure of the contents have changed. The following table shows the
correspondence with the previous version.

Old (3020-3-Y05(E)) New (3020-3-Y05-10(E))

Bean Validation functions and Bean Validation operations Moved to the uCosminexus Application Server Common Container
Functionality Guide.

The sequence of using Bean Validation from JSF

Using the log for debug (development check log)

Preface
For details on the prerequisites before reading this manual, see the manual uCosminexus Application Server Overview.

■ Non-supported functionality
Some functionality described in this manual are not supported. The non-supported functionality include:

• Audit log functionality

• Compatibility functionality

• Cosminexus Component Transaction Monitor

• Cosminexus DABroker Library

• Cosminexus Reliable Messaging

• Cosminexus TPBroker and VisiBroker

• Cosminexus Web Service - Security

• Cosminexus XML Security - Core functionality

• JP1 linkage functionality

• Management portal functionality

• Migration functionality

• SOAP applications complying with specifications other than JAX-WS 2.1

• uCosminexus OpenTP1 linkage functionality

• Virtualized system functionality

• XML Processor high-speed parse support functionality

■ Non-supported compatibility functionality
"Compatibility functionality" in the above list refers to the following functionality:

• Basic mode

• Check of JSP source compliance (cjjsp2java) with JSP1.1 and JSP1.2 specifications

• Database connection using Cosminexus DABroker Library

• EJB client application log subdirectory exclusive mode

• J2EE application test functionality

• Memory session failover functionality

• Servlet engine mode

• Simple Web server functionality

• Switching multiple existing execution environments

• Using EJB 2.1 and Servlet 2.4 annotation

I

Contents

1 Application Server Functionality 1

1.1 Classification of functionality 2

1.1.1 Functionality that serves as an execution platform for the applications 4

1.1.2 Functionality for operating and maintaining the application execution platform 5

1.1.3 Functionality and corresponding manuals 5

1.2 Functionality corresponding to the purpose of the system 8

1.2.1 Web Container Functionality 8

1.2.2 JSF and JSTL functionality 9

1.2.3 Web server integration functionality 10

1.2.4 In-process HTTP server functionality 11

1.3 Explanation of the functionality described in this manual 13

1.3.1 Meaning of classifications 13

1.3.2 Examples of tables describing the classification 13

1.4 Main updates in the functionality of Application Server 09-50 15

2 Web Container 19

2.1 Organization of this chapter 20

2.2 Web application execution functionality 21

2.2.1 Deploying and un-deploying web applications 21

2.2.2 Notes when deploying and un-deploying web applications 22

2.3 JSP execution functionality 25

2.3.1 Overview of JSP execution functionality 25

2.3.2 Executing a tag file 26

2.3.3 Executing JSP EL 26

2.3.4 Storing the tag library in the J2EE applications 26

2.3.5 Checking the attribute name of the custom tag 28

2.3.6 Checking the duplication of the id attribute of the <jsp:useBean> tag 28

2.3.7 Implicitly importing the import attribute of the page/tag directive 32

2.4 JSP debug functionality 35

2.4.1 Mechanism of JSP debug functionality 35

2.4.2 Procedure of using the JSP debug functionality 36

2.4.3 Execution environment settings (J2EE server settings) 38

2.4.4 Precautions for using the JSP debug functionality 38

2.5 JSP pre-compilation functionality and maintaining compilation results 39

2.5.1 Overview of the JSP pre-compilation functionality 39

2.5.2 Methods for performing JSP pre-compilation 40

2.5.3 Examples of applying JSP pre-compilation 43

i

2.5.4 Processing during execution of JSP pre-compilation 45

2.5.5 Lifecycle and output destination of JSP compilation results 49

2.5.6 JSP Compilation results when JSP pre-compilation functionality is not used 51

2.5.7 Class names in JSP compilation results 54

2.5.8 Execution environment settings (J2EE server settings) 55

2.6 Functionality for setting up the default character encoding 57

2.6.1 Units for setting the default character encoding 58

2.6.2 Applicable locations and conditions for default character encoding 60

2.6.3 Application of character encoding during JSP pre-compilation 62

2.6.4 Specifiable character encoding 63

2.6.5 Implementation of default character encoding (For Servlet specifications) 63

2.6.6 Definition in the DD 66

2.6.7 Execution environment settings 66

2.6.8 Precautions related to default character encoding 67

2.7 Session management functionality 69

2.7.1 Objects managing the session information 69

2.7.2 Session ID format 70

2.7.3 Session management method 71

2.7.4 Deleting invalid session IDs maintained by the Web client 73

2.7.5 Setting the upper limit for the number of HttpSession objects 74

2.7.6 Adding a server ID to the session ID and Cookie 76

2.7.7 Definition in cosminexus.xml 77

2.7.8 Execution environment settings 77

2.7.9 Precautions related to session management 78

2.8 Event listener of an application 83

2.9 Functionality of filtering requests and responses 84

2.9.1 Servlet filter provided by Application Server (built-in filter) 84

2.9.2 Examples of recommended filter chain 86

2.9.3 Definition in the DD 86

2.9.4 Execution environment settings (Web application settings) 87

2.10 HTTP response compression functionality 88

2.10.1 Overview of HTTP response compression filter 88

2.10.2 Conditions for using the HTTP response compression filter 89

2.10.3 Executing the applications that use the HTTP response compression filter 91

2.10.4 Definition in the DD 93

2.10.5 Examples of the DD definitions 96

2.10.6 Execution environment settings (Web application settings) 98

2.11 Integrating with an EJB container 100

2.11.1 Enterprise Bean invocation method 100

2.11.2 Implementation for integrating with an EJB Container 100

2.11.3 Execution environment settings (J2EE server settings) 101

Contents

ii

2.12 Connecting to the database 102

2.13 Creating threads by a Web container 103

2.13.1 Types and number of the threads created 103

2.13.2 Total number of threads created 104

2.14 Using the user threads 107

2.14.1 Availability of the functionality in user threads 107

2.14.2 Setting the permissions for generating user threads 111

2.15 Overview of controlling the number of concurrently executing threads 112

2.15.1 Control units of the number of threads 112

2.15.2 Parameters for controlling the number of concurrently executing threads 113

2.15.3 Number of threads used in error processing of static contents and requests 115

2.16 Controlling the number of concurrently executing threads in the Web container 117

2.16.1 Mechanism for controlling the number of concurrently executing threads (Web container) 117

2.16.2 Execution environment settings (J2EE server settings) 118

2.17 Controlling the number of concurrently executing threads in the Web application 119

2.17.1 Mechanism for controlling the number of concurrently executing threads (Web applications) 119

2.17.2 Parameters required for controlling the number of concurrently executing threads (Web applications) 119

2.17.3 Guidelines for the settings for number of concurrently executing threads (Web applications) 123

2.17.4 Definition in cosminexus.xml 123

2.17.5 Execution environment settings 124

2.17.6 Example of setting the number of concurrently executing threads and the size of a pending queue
(Web application) 125

2.17.7 Notes on controlling the number of concurrently executing threads in the Web application 127

2.18 Controlling the number of concurrently executing threads in the URL group 129

2.18.1 Mechanism of controlling the number of concurrently executing threads (URL Group) 129

2.18.2 Mapping of URL patterns 129

2.18.3 Parameters required for controlling the number of concurrently executing threads (URL group) 132

2.18.4 Guidelines for setting the number of concurrently executing threads (URL group) 135

2.18.5 Definition in cosminexus.xml 136

2.18.6 Execution environment settings (Web application settings) 136

2.18.7 Example of setting the number of concurrently executing threads and the size of a pending queue
(URL Group) 137

2.19 Dynamic change in the number of concurrently executing threads 141

2.19.1 Overview of dynamically changing the number of concurrently executing threads 141

2.19.2 Flow of dynamically changing the number of concurrently executing threads 143

2.19.3 Operations of a Web application when the number of concurrently executing threads are changed
dynamically 146

2.19.4 Precautions related to dynamically changing the number of concurrently executing threads 147

2.20 Error page customization 148

2.21 Caching the static contents 149

2.21.1 Controlling the cache of static contents 149

2.21.2 Definition in the DD (Settings for each Web application) 150

2.21.3 Execution environment settings 151

Contents

iii

2.22 URI decode functionality 153

2.22.1 Overview of URI decode functionality 153

2.22.2 Execution environment settings (J2EE server settings) 154

2.22.3 Precautions for using the URI decode functionality 154

2.23 Version setup functionality of Web applications 156

2.23.1 Overview of the version setup functionality of Web applications 156

2.23.2 Compiling and executing JSP files and tag files 157

2.23.3 Execution environment settings 159

2.23.4 Precautions for using the version setup functionality of Web applications 159

2.24 Precautions related to the Web container 161

3 Using JSF and JSTL 163

3.1 Organization of this chapter 164

3.2 Overview of JSF and JSTL 165

3.2.1 Overview of JSF 165

3.2.2 JSTL 165

3.3 JSF and JSTL functionality 166

3.3.1 JSF functionalities 166

3.3.2 JSTL functionality 170

3.3.3 Proprietary functionalities of Application Server 170

3.3.4 Collaboration with other functionalities of Application Server 170

3.4 Setting up the class path (setting up the development environment) 174

3.4.1 File storage location 174

3.4.2 Setting up the class path 174

3.5 Definition in the DD 175

3.5.1 Standard context parameters 175

3.5.2 Proprietary context parameters of Application Server 177

3.5.3 Servlet settings 180

3.6 JSF applications development flow 182

3.6.1 Procedure for developing JSF applications 182

3.6.2 Procedure for using the Bean Validation from JSF 182

3.7 Using log (development investigation log) for debugging 185

3.8 Setting up the execution environment 186

3.9 To output and check the troubleshooting information 187

3.10 Notes on using JSF and JSTL 188

4 Web Server Integration 189

4.1 Organization of this chapter 190

4.2 Distributing requests with the Web server (Redirector) 191

4.2.1 Mechanism of request distribution with the Redirector 191

Contents

iv

4.2.2 User-defined file for setting the request distribution method (When the Smart Composer functionality is
used) 194

4.2.3 User-defined file for setting the request distribution method (When the Smart Composer functionality is
not used) 194

4.2.4 Points to be considered during Web server integration 196

4.3 Distributing requests by URL pattern 197

4.3.1 Overview of distributing requests by URL pattern 197

4.3.2 Types of URL patterns and priority of applicable patterns 199

4.3.3 Execution environment settings (When the Smart Composer functionality is used) 201

4.3.4 Execution environment settings (When the Smart Composer functionality is not used) 203

4.4 Distributing requests by the round-robin format 206

4.4.1 Overview of distributing requests by the round-robin format 206

4.4.2 Examples of request distribution in the round-robin format 206

4.4.3 Defining request distribution in the round robin format 207

4.4.4 Execution environment settings (When the Smart Composer functionality is used) 207

4.4.5 Execution environment settings (When the Smart Composer functionality is not used) 211

4.4.6 Precautions related to request distribution in the round-robin format 213

4.5 Distributing requests by the POST data size 214

4.5.1 Overview of distributing requests by the POST data size 214

4.5.2 Examples of distributing requests by the POST data size 214

4.5.3 Request distribution conditions 217

4.5.4 Definition for distributing requests by the POST data size 217

4.5.5 Execution environment settings (When the Smart Composer functionality is used) 218

4.5.6 Execution environment settings (When the Smart Composer functionality is not used) 221

4.6 Communication timeout (Web server integration) 224

4.6.1 Communication timeout when sending and receiving a request 225

4.6.2 Setting the communication timeout when sending and receiving a response 229

4.6.3 Setting the communication timeout 231

4.6.4 Setting the communication timeout when sending and receiving a request (When the Smart Composer
functionality is used) 232

4.6.5 Setting the communication timeout when sending and receiving a request (When the Smart Composer
functionality is not used) 233

4.6.6 Setting the communication timeout when sending and receiving a response (When the Smart
Composer functionality is used) 235

4.6.7 Setting the communication timeout when sending and receiving a response (When the Smart
Composer functionality is not used) 237

4.7 Specifying the IP address (Web server integration) 239

4.7.1 Bind address specification functionality 239

4.7.2 Execution environment settings (J2EE server settings) 239

4.7.3 Precautions for specifying the IP address in Web server integration 239

4.8 Error page customization with the Web server integration functionality 240

4.8.1 Overview of error page customization 240

4.8.2 Mechanism of error page customization 241

4.8.3 Execution environment settings (When the Smart Composer functionality is used) 242

Contents

v

4.8.4 Execution environment settings (When the Smart Composer functionality is not used) 244

4.8.5 Precautions related to error page customization 246

4.9 Viewing the top page by specifying the domain name 248

4.9.1 Viewing the top page by specifying the domain name 248

4.9.2 Execution environment settings (When the Smart Composer functionality is used) 249

4.9.3 Execution environment settings (When the Smart Composer functionality is not used) 250

4.10 Notification of gateway information to a Web container 251

4.10.1 Gateway specification functionality 251

4.10.2 Execution environment settings (When the Smart Composer functionality is used) 252

4.10.3 Execution environment settings (When the Smart Composer functionality is not used) 253

4.10.4 Precautions related to reporting the gateway information to a Web Container 254

5 In-Process HTTP Server 257

5.1 Organization of this chapter 258

5.2 Overview of in-process HTTP server 259

5.2.1 Using the in-process HTTP server 259

5.2.2 Functionality available in the in-process HTTP server 260

5.2.3 Execution environment settings (J2EE server settings) 260

5.3 Controlling the number of connections from the Web client 262

5.3.1 Overview of controlling the number of connections from the Web client 262

5.3.2 Execution environment settings (J2EE server settings) 263

5.4 Controlling the number of request processing threads 264

5.4.1 Overview of controlling the number of request processing threads 264

5.4.2 Execution environment settings (J2EE server settings) 267

5.5 Controlling the flow of requests by controlling the number of concurrent connections from the
Web client 269

5.5.1 Controlling the number of concurrent connections from the Web client 269

5.5.2 Execution environment settings (J2EE server settings) 271

5.6 Controlling the flow of requests by controlling the number of concurrently executing threads 273

5.6.1 Overview of controlling the flow of requests by controlling the number of concurrently executing threads 273

5.6.2 Execution environment settings (J2EE server settings) 273

5.7 Request distribution with the redirector 275

5.7.1 Distributing requests by URL pattern 275

5.7.2 Response customization 275

5.7.3 Execution environment settings (J2EE server settings) 275

5.7.4 Precautions related to request distribution with the redirector 278

5.8 Controlling the communication with the Web client by persistent connection 279

5.8.1 Controlling communication by Persistent Connection 279

5.8.2 Execution environment settings (J2EE server settings) 279

5.9 Communication timeout (In-process HTTP server) 281

5.9.1 Overview of the communication timeout 281

Contents

vi

5.9.2 Execution environment settings (J2EE server settings) 282

5.10 Specifying the IP address (In-process HTTP server) 284

5.10.1 Bind address specification functionality 284

5.10.2 Execution environment settings (J2EE server settings) 284

5.10.3 Precautions related to IP address specification in the in-process HTTP server 284

5.11 Controlling access by limiting the hosts that are allowed access 285

5.11.1 Limiting the hosts that are allowed access 285

5.11.2 Execution environment settings (J2EE server settings) 285

5.12 Controlling access by limiting the request data size 287

5.12.1 Limiting the request data size 287

5.12.2 Execution environment settings (J2EE server settings) 288

5.13 Controlling access by limiting the HTTP-enabled methods 289

5.13.1 Limiting the HTTP-enabled methods 289

5.13.2 Execution environment settings (J2EE server settings) 289

5.14 Customizing responses to the Web client using HTTP responses 291

5.14.1 Customizing the HTTP response header 291

5.14.2 Execution environment settings (J2EE server settings) 291

5.15 Error page customization (In-process HTTP server) 292

5.15.1 Error page that can be customized 292

5.15.2 Implementation required for customizing the error page 293

5.15.3 Execution environment settings (J2EE server settings) 293

5.15.4 Precautions related to error page customization 294

5.16 Notification of gateway information to a Web container 295

5.16.1 Gateway specification functionality 295

5.16.2 Execution environment settings (J2EE server settings) 296

5.16.3 Precautions related to reporting the gateway information to the Web container 296

5.17 Output of log and trace 298

5.17.1 Log and trace output by the in-process HTTP server 298

5.17.2 Customizing the access log of the in-process HTTP server 298

6 Implementation of Servlets and JSPs 303

6.1 Support range of the functionalities that are added or changed in Servlet specifications and JSP
specifications 304

6.2 Precautions for implementing servlets and JSPs 306

6.2.1 Common precautions for implementing servlets and JSPs 306

6.2.2 Precautions for implementing servlets 321

6.2.3 Precautions related to the specifications that are added or changed in the Servlet 3.0 specifications 327

6.2.4 Precautions related to added and changed specifications in the Servlet 2.5 specifications 333

6.2.5 Precautions related to added and changed specifications in the Servlet 2.4 specifications 337

6.2.6 Precautions for implementing JSPs 343

6.2.7 Precautions related to added and changed specifications in the JSP 2.1 specifications 352

Contents

vii

6.2.8 Precautions related to added and changed specifications in the JSP 2.0 specifications 360

6.2.9 Precautions for implementing JSPs of the JSP 1.2 specifications 365

6.2.10 Precautions related to the specifications that are added or changed in the EL2.2 specifications 366

6.2.11 Points to remember when upgrading the version of an existing Web application to the Servlet 3.0
specifications 367

6.2.12 Points to remember when upgrading the version of an existing Web application to the Servlet 2.5
specifications 367

6.2.13 Precautions related to Web applications when migrating from a previous version of Application
Server to 09-00 367

6.2.14 Points to remember when upgrading the version of an existing Web application to the Servlet 2.4
specifications 370

6.2.15 Using annotations in servlets 371

6.2.16 Precautions related to size limitations for JavaVM methods 371

6.3 Precautions for JSP migration 373

6.3.1 Precautions related to the definition of script variables for the custom tag 373

6.3.2 Precautions related to the class attributes of <jsp:useBean> tag 375

6.3.3 Precautions related to the Expression check of the tag attribute values 377

6.3.4 Precautions related to Expression specified in the tag attribute values 377

6.3.5 Precautions related to the prefix attribute of the taglib directive 378

Appendixes 381

A. Error Status Code 382

A.1 Error status codes returned by the Web container 382

A.2 Error status codes returned by the Redirector 384

A.3 Error status codes returned by the in-process HTTP server 386

B. Precautions related to Cosminexus HTTP Server Settings 388

B.1 Precautions for restarting Cosminexus HTTP Server 388

B.2 Precautions related to the redirector log 389

B.3 Precautions for upgrading Cosminexus HTTP Server 389

C. Microsoft IIS Settings 390

C.1 Microsoft IIS 7.0 or Microsoft IIS 7.5 settings 390

D. Main Functionality Changes in Each Version 395

D.1 Main functionality changes in 09-00 395

D.2 Main functionality changes in 08-70 397

D.3 Main functionality changes in 08-53 400

D.4 Main functionality changes in 08-50 401

D.5 Main functionality changes in 08-00 403

E. Glossary 407

Index 409

Contents

viii

1 Application Server Functionality
This chapter describes the classification and purpose of functionality of Application
Server and the manuals corresponding to each functionality. This chapter also
describes the functionality that was changed in this version.

1

1.1 Classification of functionality
Application Server is a product used for building an environment for executing applications mainly on a J2EE server
compliant with Java EE 6 and for developing the applications that run in the execution environment. You can use a
variety of functionality, such as functionality compliant with the Java EE standard specifications and functionality
independently extended for Application Server. By selecting and using the functionality according to the purpose and
intended use, you can build and operate a highly reliable system having excellent processing performance.

The following are the broad classifications of the Application Server functionality:

• Functionality that serves as an execution platform for the applications

• Functionality that is used for operating and maintaining the execution platform for the applications

The above-functionality can be further classified according to the positioning and the intended usage of the
functionality. Application Server manuals are provided according to the classification of the functionality.

The following figure shows the classification of the Application Server functionality and the set of manuals
corresponding to the functionality (functionality guides).

1. Application Server Functionality

2

Figure 1‒1: Classification of Application Server functionality and the set of manuals corresponding to
functionality (functionality guides)

#1
uCosminexus Application Server has been omitted from the manual names.

#2
You can execute SOAP Web Services and RESTful Web Services with Application Server. See the following
manuals other than the uCosminexus Application Server Web Service Development Guide, depending on your
purpose of execution.

When developing and executing SOAP applications

• uCosminexus Application Server SOAP Application Development Guide

When ensuring the security of SOAP Web Services or SOAP applications

• uCosminexus Application Server XML Security - Core User Guide

• uCosminexus Application Server Web Service Security User Guide

For details about the XML process

• uCosminexus Application Server XML Processor User Guide

1. Application Server Functionality

3

The following subsections describe the classifications of the functionality as well as the manuals corresponding to the
functionality.

1.1.1 Functionality that serves as an execution platform for the
applications

This functionality works as a platform for executing online businesses and batch businesses implemented as the
applications. You choose functionality that you want to use according to the intended use of a system and your
requirements.

Before you perform the system building or application development, you must first determine whether you want to use
functionality that serves as the execution platform for the applications.

The following are the classification-wise descriptions of functionality that serve as the application execution platform:

(1) Basic functionality to operate the applications (basic development functionality)
This functionality includes the basic functionality for operating the applications (J2EE applications). This
functionality is mainly the J2EE server functionality.

Application Server provides a Java EE 6-compliant J2EE server. The J2EE server provides functionality that is
compliant with the standard specifications and is independent of Application Server.

The basic development functionality can be further classified into three types according to the types of the J2EE
applications for which you use functionality. The manuals for the Application Server function guide have been
divided according to this classification.

The following is an overview of each classification:

• Functionality for executing the Web applications (Web containers)
This classification includes the Web container functionality that serves as the execution platform for Web
applications and functionality executed by linking Web containers and Web servers.

• Functionality for executing the Enterprise Beans (EJB containers)
This classification includes the EJB container functionality that serves as a platform for executing Enterprise
Beans. This classification also includes the EJB client functionality for invoking Enterprise Beans.

• Functionality used in both Web applications and Enterprise Beans (Container common function)
This classification includes functionality that can be used in the Web applications and the Enterprise Beans
operating Web containers and EJB containers respectively.

(2) Functionality for developing Web Services
This classification includes the functionality that can be used as the execution environment and development
environment for Web Services.

Application Server provides the following engines:

• The JAX-WS engine that performs binding of SOAP messages in accordance with the JAX-WS specifications

• The JAX-RS engine that performs the binding of RESTful HTTP messages in accordance with the JAX-RS
specifications

(3) Application Server independent functionality extended for improving reliability and
performance (extended functionality)

This includes the functionality extended independently for Application Server. This also includes functionality
implemented by using non-J2EE server processes such as a batch server, CTM, and database.

With Application Server, various functionality are extended to improve reliability of the system and to implement
stable operations. Furthermore, functionality is also extended to operate applications other than J2EE applications
(batch applications) in the Java environment.

1. Application Server Functionality

4

(4) Functionality for ensuring system security (security management functionality)
The functionalities that ensure system security with a focus on Application Server fall into this category. This includes
functionalities such as the authentication functionality to prevent access by unauthorized users and encryption
functionality to prevent information leakage in communication paths.

1.1.2 Functionality for operating and maintaining the application
execution platform

This functionality is used for effectively operating and maintaining the application execution platform. You use this
functionality, after starting the system operations, as and when required. However, depending on the functionality, you
must implement the settings and applications in advance.

The following are the classification-wise descriptions of functionality used for operating and maintaining the
application execution platform:

(1) Functionality used for daily operations, such as starting and stopping the systems
(operation functionality)

This classification includes functionality used in daily operations such as starting or stopping systems, starting or
stopping applications, and replacing the applications.

(2) Functionality for monitoring system usage (watch functionality)
This classification includes functionality used for monitoring the system usage and resource depletion. This
classification also includes functionality to output information used in monitoring the system operation history.

(3) Functionality for operating the system by linking with other products (linkage functionality)
This classification includes functionality to be linked and implemented with other products such as JP1 and the cluster
software.

(4) Functionality for troubleshooting (maintenance functionality)
This classification includes functionality used for troubleshooting. This classification also includes functionality used
for displaying the information that will be referenced during the troubleshooting.

(5) Functionality for migrating from products of older versions (migration functionality)
This classification includes functionality used for migrating from an older Application Server to a new Application
Server.

(6) Functionality for compatibility with products of older version (compatibility functionality)
This includes functionality used for the compatibility with older versions of Application Server. For compatibility
functionality, Hitachi encourages migrating to the corresponding recommended functionality.

1.1.3 Functionality and corresponding manuals
The function guides for Application Server have been divided according to the classifications of functionality.

The following table describes the classifications of functionality and the manuals corresponding to each functionality:

Table 1‒1: Classifications of functionality and corresponding manuals having functionality description

Category Functionality Manuals#1

Basic development
functionality

Web container Web Container Functionality
Guide#2

1. Application Server Functionality

5

Category Functionality Manuals#1

Basic development
functionality

Using JSF and JSTL Web Container Functionality
Guide#2

Web server linkage

In-process HTTP server

Servlet and JSP implementation

EJB container EJB Container Functionality
Guide

EJB client

Precautions during Enterprise Bean implementation

Naming management Common Container
Functionality Guide

Resource connections and transaction management

Invoking Application Server from OpenTP1 (TPI inbound
integrated function)

JPA usage on Application Server

Cosminexus JPA provider

Cosminexus JMS provider

Usage of JavaMail

Using CDI with Application Server

Using Bean Validation with Application Server

Application attribute management

Using annotations

Formatting and deploying J2EE applications

Container extension library

Extended functionality Executing applications using the batch server Expansion Guide

Scheduling and load balancing requests using CTM

Scheduling the batch applications

Inheriting the session information between the J2EE servers
(Session failover functionality)

Database session failover functionality

EADs session failover functionality

Controlling full garbage collection using the explicit heap
functionality

Output of the application user log

Asynchronous parallel processing of threads

Security management
functionality

Authentication using integrated user management Security Management Guide

Authentication using application settings

Using TLSv1.2 for the SSL/TLS communication

Controlling with the operation management functionality of load
balancers that use API based direct connections.

1. Application Server Functionality

6

Category Functionality Manuals#1

Operation functionality Starting and stopping the system Operation, Monitoring, and
Linkage Guide

Managing J2EE applications

Watch functionality Monitoring the operation information (Statistics collection
functionality)

Monitoring resource depletion

Audit log output functionality

Database audit trail integration functionality

Output of operation information using the management commands

Automatic execution of processing by using management event
notification and management action

Collecting statistical information of CTM

Output of the console log

Linkage functionality Operating a JP1 integrated system

Centralized monitoring of system (Linking with JP1/IM)

Automatic running of system by jobs (Linking with JP1/AJS)

Collection and consolidated management of audit log (Linking with
JP1/Audit Management - Manager)

Linking with cluster software

1-to-1 node switching system (linking with cluster software)

Mutual node switching system (linking with cluster software)

Node switching system (integrating with cluster software) for host
unit management models.

Maintenance functionality Troubleshooting related functionality Maintenance and Migration
Guide

Performance analysis where performance analysis trace is used

Hitachi-specific JavaVM (hereafter also abbreviated as JavaVM)
functionality

Migration functionality Migrating from an older version of Application Server

Migrating to a recommended functionality

Compatibility functionality Basic mode Compatibility Guide

Servlet engine mode

Compatibility functionality of the basic development functionality

Compatibility functionality of the expansion functionality

#1 uCosminexus Application Server has been omitted from the manual name

#2 This manual

1. Application Server Functionality

7

1.2 Functionality corresponding to the purpose of the
system

With Application Server, you must choose the applicable functionality according to the purpose of the system to be
built and operated.

This subsection describes the types of systems in which the functionality for executing the Web applications can be
used. The functionality-wise support for the following items are described here:

• Reliability
This functionality is best used with a system from which high reliability is recommended.
This functionality includes the functionality for enhancing the system availability (stable operations) and fault
tolerance, and the functionality for enhancing the security such as user authentication.

• Performance
This functionality is best used with a system that adds value to performance.
This functionality is used operations such as for performance tuning of the system.

• Operation and maintenance
This functionality is best used when efficient operation and maintenance is to be performed.

• Extendibility
This functionality is best used when a system is to be flexibly expanded or reduced, and when changes are to be
made to the system configuration.

• Others
This functionality is used to comply with other individual purposes.

The functionality for executing Web applications includes the Java EE standard functionality and is the functionality
independently extended on Application Server. When you choose the functionality, also confirm the compliance with
Java EE standards, as and when required.

1.2.1 Web Container Functionality
The table below describes the functionality of a Web container. Select the functionality according to the purpose of
the system. For details on the functionality, see the reference sections.

Table 1‒2: Web Container functionality and corresponding purpose of the system

Functionality

Purpose of the system Compliance with Java
EE standards

Refer-

ence
Reliability Perform

ance

Operation
and

maintena
nce

Extendib
ility Others Standard Extended

Web application
execution functionality

-- -- -- -- -- Y Y 2.2

JSP execution
functionality

-- -- -- -- -- Y Y 2.3

JSP debug functionality -- -- -- -- Y Y Y 2.4

JSP pre-compilation
functionality and
maintaining compilation
results

-- Y -- -- -- -- Y 2.5

Functionality for setting
up the default character
encoding

-- -- Y -- -- Y Y 2.6

1. Application Server Functionality

8

Functionality

Purpose of the system Compliance with Java
EE standards

Refer-

ence
Reliability Perform

ance

Operation
and

maintena
nce

Extendib
ility Others Standard Extended

Session management
functionality

Y -- -- Y -- Y Y 2.7

Event listener of an
application

-- -- -- -- Y Y -- 2.8

Filtering requests and
responses

-- -- Y -- -- Y Y 2.9

HTTP response
compression functionality

-- Y -- -- -- -- Y 2.10

Integrating with an EJB
container

-- -- -- -- -- Y Y 2.11

Connecting to the
database

-- -- -- Y -- Y Y 2.12

Creating threads by a
Web container

-- Y -- -- -- -- Y 2.13

Using user thread -- -- -- -- Y -- Y 2.14

Controlling the number
of concurrently executing
threads

-- Y -- -- -- -- Y 2.15

2.16

2.17

2.18

2.19

Error page customization -- -- -- -- Y -- Y 2.20

Caching the static
contents

-- Y -- -- -- -- Y 2.21

URI decode functionality -- -- Y -- -- Y -- 2.22

Version setup
functionality of Web
applications

-- -- Y -- -- Y Y 2.23

Legend:
Y: Supported
--: Not supported

Note:
The functionality for which Y is specified in both the 'Standard' and 'Extended' columns of 'Compliance with Java EE standards'
column indicates that the functionality unique to Application Server has been extended beyond the Java EE standard
functionality. The functionality for which Y is specified only in the Extended column indicates functionality unique to
Application Server.

1.2.2 JSF and JSTL functionality
The following table describes the JSF and JSTL functionality. Select the functionality that suits the purpose of the
system. For details on the functionality, see the Reference column.

1. Application Server Functionality

9

Table 1‒3: JSF and JSTL functionality and the corresponding purpose of the system

Functionality

Purpose of the system Compliance with Java
EE standards

Refer

ence
Reliability Perform

ance

Operation
and

maintena
nce

Extendib
ility Other Standard Extended

JSF (includes
functionality that uses
Bean Validation)

-- -- -- -- Y# Y -- Chapter
3

JSTL -- -- -- -- Y# Y --

Legend:
Y: Supported
--: Not supported

#
These functionalities improve the ease of application development.

1.2.3 Web server integration functionality
The following table describes the functionality of Web server integration. Select the functionality according to the
purpose of the system. For details on the functionality, see the reference sections:

Table 1‒4: Web server integration functionality and corresponding purpose of the system

Functionality

Purpose of the system Compliance with Java
EE standards

Refer-

ence
Reliability Perform

ance

Operation
and

maintena
nce

Extendib
ility Others Standard Extended

Distributing requests with
the Web server
(redirector)

Y Y -- Y -- -- Y 4.2

4.3

4.4

4.5

Communication timeout
(Web server integration)

Y Y -- -- -- -- Y 4.6

Specifying the IP address
(Web server integration)

-- -- -- -- Y -- Y 4.7

Error page customization
(Web server integration)

-- -- -- -- Y -- Y 4.8

Viewing the top page by
specifying the domain
name

-- -- -- -- Y Y -- 4.9

Notification of gateway
information to a Web
container

-- -- -- -- Y -- Y 4.10

Legend:
Y: Supported
--: Not supported

Note:
The functionality for which Y is specified in both the 'Standard' and 'Extended' columns of 'Compliance with Java EE standards'
column indicates that the functionality unique to Application Server has been extended beyond the Java EE standard

1. Application Server Functionality

10

functionality. The functionality for which Y is specified only in the Extended column indicates functionality unique to
Application Server.

1.2.4 In-process HTTP server functionality
The following table describes the in-process HTTP server functionality. Select the functionality according to the
purpose of the system. For details on the functionality, see the reference section.

Table 1‒5: In-process HTTP server functionality and corresponding purpose of the system

Functionality

Purpose of the system Compliance with Java
EE standards

Refer-

ence
Reliability Perform

ance

Operation
and

maintena
nce

Extendib
ility Others Standard Extended

Controlling the number
of connections from the
Web client

-- Y -- -- -- -- Y 5.3

Controlling the number
of request processing
threads

-- Y -- -- -- -- Y 5.4

Controlling the flow of
requests by controlling
the number of concurrent
connections from the
Web client

-- Y -- -- -- -- Y 5.5

Controlling the flow of
requests by controlling
the number of
concurrently executed
threads

-- Y -- -- -- -- Y 5.6

Request distribution with
the redirector

-- -- -- -- Y -- Y 5.7

Controlling the
communication with the
Web client by using
Persistent Connection

-- Y -- -- -- -- Y 5.8

Communication timeout
(in-process HTTP server)

Y Y -- -- -- -- Y 5.9

Specifying the IP address
(in-process HTTP server)

-- -- -- -- Y -- Y 5.10

Controlling access by
limiting the hosts that are
allowed access

Y -- -- -- -- -- Y 5.11

Controlling access by
limiting the request data
size

Y -- -- -- -- -- Y 5.12

Controlling access by
limiting the HTTP-
enabled methods

Y -- -- -- -- -- Y 5.13

Customizing responses to
the Web client using
HTTP responses

-- -- -- -- Y -- Y 5.14

1. Application Server Functionality

11

Functionality

Purpose of the system Compliance with Java
EE standards

Refer-

ence
Reliability Perform

ance

Operation
and

maintena
nce

Extendib
ility Others Standard Extended

Error page customization
(in-process HTTP server)

-- -- -- -- Y -- Y 5.15

Notification of gateway
information to a Web
container

-- -- -- -- Y -- Y 5.16

Output of log and trace -- -- -- -- Y -- Y 5.17

Legend:
Y: Supported
--: Not supported

Note:
The functionality for which Y is specified in both the 'Standard' and 'Extended' columns of 'Compliance with Java EE standards'
column indicates that the functionality unique to Application Server has been extended beyond the Java EE standard
functionality. The functionality for which Y is specified only in the Extended column indicates functionality unique to
Application Server.

1. Application Server Functionality

12

1.3 Explanation of the functionality described in this
manual

This section describes the meaning of the classifications used when describing the functionality in this manual, and
also provides an example of the tables used to describe each classification.

1.3.1 Meaning of classifications
The description of functionality in this manual is classified into the following five categories. You can select and read
the required location depending on the purpose of referencing the manual.

• Explanation
This is the explanation about the functionality. This section explains the purpose, features, and mechanism of the
functionality. Read this section when you want an overview of the functionality.

• Implementation
This section describes the methods such as the coding method and the DD writing method. Read this section when
developing applications.

• Settings
This section describes the required property settings for building the system. Read this section when building a
system.

• Operations
This section describes the operation method. This section describes the operating procedures and the execution
examples of commands to be used. Read this section when operating a system.

• Notes
This section describes the general precautions for using the functionality. Make sure that you read the notes.

1.3.2 Examples of tables describing the classification
The following table lists the classification for the description of functionality. The title of the table is "Organization of
this Chapter" or " Organization of this Section".

The following is an example table describing the classification for the description of functionality:

Example table describing the classification for the description of functionality

Table X-1 Organization of this chapter (XX functionality)

Category Title Reference

Explanation What is the XX functionality X.1

Implementation Implementation of applications X.2

Definitions in the DD and cosminexus.xml# X.3

Settings Settings in the execution environment X.4

Operations Operations using the XX functionality X.5

Notes Notes on using the XX functionality X.6

#
For details on cosminexus.xml, see 11. Managing Properties of Applications in the uCosminexus Application
Server Common Container Functionality Guide.

Tip
Property settings for applications that do not include cosminexus.xml

1. Application Server Functionality

13

For applications that do not include cosminexus.xml, you set or change the properties after importing the
properties into the execution environment. You can also change the set properties in the execution environment.

You specify the application settings in the execution environment using the server management commands and the
property files. For details on the application settings using the server management commands and the property
files, see 3.5.2 Procedure for setting the properties of a J2EE applications in the uCosminexus Application Server
Application Setup Guide.

The tags specified in the property file correspond to the DD or cosminexus.xml. For details on the DD or
cosminexus.xml and the corresponding property file tags, see 2. Cosminexus Application Property File
(cosminexus.xml) in the uCosminexus Application Server Application and Resource Definition Reference Guide.

Note that the properties specified in each property file can also be specified in the HITACHI Application Integrated
Property File.

1. Application Server Functionality

14

1.4 Main updates in the functionality of Application
Server 09-50

This section describes the main updates in the functionality of Application Server 09-50 and the purpose of each
change.

The contents described in this section are as follows:

• This section gives an overview and describes the main changes in the functionality of Application Server 09-50.
For details on the functionality, check the description provided in the corresponding manuals. The Reference
manual column and Reference column indicates the location of the description of a particular functionality.

• uCosminexus Application Server is omitted from the manual names mentioned in the Reference manual column.

(1) Improving development productivity
The following table describes the items that were changed to improve development productivity.

Table 1‒6: Changes made for improving the development productivity

Item Overview of changes Reference manual Reference

Simplifying the Eclipse setup The Eclipse environment can now be set up by using a GUI. Application
Development Guide

1.1.5, 2.4

Supporting debug by using the
user expanded performance
analysis trace

The user expanded performance analysis trace setup file can
now be created in the development environment.

Application
Development Guide

1.1.3, 6.5

(2) Simplifying implementation and setup
The following table describes the items that were changed to simplify implementation and setup:

Table 1‒7: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Reference

Expanding the system
configuration patterns in the
virtual environment

The types of tiers (http-tier, j2ee-tier and ctm-tier) that can
be used in the virtual environment have increased. The
following system configuration patterns can now be
configured in accordance with this:

• A pattern of configuring the Web server and J2EE
server on separate hosts

• A pattern of configuring by separating the front end
(servlet, JSP) and backend (EJB)

• A pattern of using CTM

Virtual System Setup
and Operation Guide

1.1.2

(3) Supporting standard and existing functionality
The following table describes the items that were changed to support standard and existing functionality:

Table 1‒8: Changes made for supporting standard and existing functionality

Item Overview of changes Reference manual Reference

Supporting the JDBC 4.0
specifications

DB Connector now supports the HiRDB Type4 JDBC
Driver with JDBC 4.0 specifications and the JDBC Driver
of SQL Server.

Common Container
Functionality Guide

3.6.3

Simplifying the naming
conventions in the Portable
Global JNDI name

The characters that can be used in the Portable Global JNDI
name have been added.

Common Container
Functionality Guide

2.4.3

1. Application Server Functionality

15

Item Overview of changes Reference manual Reference

Supporting the Servlet 3.0
specifications

You can now use the changed HTTP Cookie name and the
URL path parameter name of Servlet 3.0 even in versions
earlier than Servlet 2.5.

This manual 2.7

Extending the applicability of
the applications that can be
integrated with Bean Validation

The CDI or user applications can also be verified now by
using Bean Validation.

Common Container
Functionality Guide

Chapter 10

Supporting JavaMail The mail send and receive function that uses JavaMail 1.4
compliant APIs can now be used.

Common Container
Functionality Guide

Chapter 8

Expanding the applicability of
OSs on which the javacore
command can be used

The thread dump of Windows can now be acquired by using
the javacore command.

Command Reference
Guide

javacore
(acquiring
the thread
dump/when
using
Windows)

(4) Maintaining and improving reliability
The following table describes the items that were changed for maintaining and improving reliability:

Table 1‒9: Changes for maintaining and improving reliability

Item Overview of changes Reference manual Reference

Avoiding exhaustion of the

code cache area

By confirming the size of the code cache area used in the
system, and changing the threshold value before the area
becomes exhausted, the area exhaustion can now be
avoided.

System Design Guide 7.1.2

Maintenance and
Migration Guide

5.7.2, 5.7.3

Server Definition
Reference Guide

16.1, 16.2,
16.4

Supporting the effective
application of the Explicit
management functionality

A functionality that can control the objects to be moved to
the Explicit heap is now added as the functionality for
effective application of the explicit management function by
curtailing the auto-release processing time.

• Functionality for controlling the moving of objects to
the Explicit memory block

• Functionality for specifying the application exclusion
class for the explicit management functionality

• Output of the object release rate information to the
Explicit heap information

System Design Guide 7.13.6

Expansion Guide 8.2.2, 8.6.5,
8.10, 8.13.1,
8.13.3

Maintenance and
Migration Guide

5.5

Expanding the output range of
the class wise statistical
information

The reference relation based on the static field can now be
output in the expanded thread dump that includes the class
wise statistical information.

Maintenance and
Migration Guide

9.6

(5) Maintaining and improving operation performance
The following table describes the items that were changed for maintaining and improving operation performance:

Table 1‒10: Changes for maintaining and improving operation performance

Item Overview of changes Reference manual Reference

Supporting the EADs session
failover functionality

The EADs session failover functionality that implements
the session failover functionality by integrating with EADs
is now supported.

Expansion Guide Chapter 5,
Chapter 7

Operations by WAR The WAR applications that are configured only by the
WAR files can now be deployed on the J2EE server.

This manual 2.2.1

1. Application Server Functionality

16

Item Overview of changes Reference manual Reference

Operations by WAR The WAR applications that are configured only by the
WAR files can now be deployed on the J2EE server.

Common Container
Functionality Guide

13.9

Command Reference
Guide

cjimportwar
(importing
WAR
applications)

Starting and stopping by the
concurrent execution of the
management functionality

The startup and stopping of the management functionality
(Management Server and Administration Agent) has been
added to the option for concurrent execution.

Operation,
Monitoring, and
Linkage Guide

2.6.1, 2.6.2,
2.6.3, 2.6.4

Command Reference
Guide

adminagentc
tl (starting
and stopping
Administrati
on Agent),
mngautorun
(setting/
cancelling
the setting of
automatic
start and
automatic
restart),
mngsvrctl
(starting,
stopping and
setting up
Management
Server)

Forcibly releasing the Explicit
memory block in the Explicit
management functionality

The Explicit memory block can now be released at any
time, by using the javagc command.

Expansion Guide 8.6.1, 8.9

Command Reference
Guide

javagc
(forcibly
generating
the garbage
collection)

(6) Other purposes
The following table describes the items that were changed for other purposes:

Table 1‒11: Changes due to other purposes

Item Overview of changes Reference manual Reference

Acquiring the definition
information

Only the definition files can now be collected by using the
snapshot (collecting the snapshot log) command.

Maintenance and
Migration Guide

2.3

Command Reference
Guide

snapshotlog
(collecting
the snapshot
log)

Performing the log output of
the cjenvsetup command

The execution information of the Component Container
administrator setup (cjenvsetup command) can now be
output in the message log.

uCosminexus
BPM/ESB Service
Platform System
Setup and Operation
Guide

4.1.4

Maintenance and
Migration Guide

4.20

Command Reference
Guide

cjenvsetup
(setting up

1. Application Server Functionality

17

Item Overview of changes Reference manual Reference

Performing the log output of
the cjenvsetup command

The execution information of the Component Container
administrator setup (cjenvsetup command) can now be
output in the message log.

Command Reference
Guide

the
Component
Container
administrato
r)

Supporting BIG-IP v11 BIG-IP v11 has been added to the available types of the
load balancers.

uCosminexus
BPM/ESB Service
Platform System
Setup and Operation
Guide

4.7.2

Virtual System Setup
and Operation Guide

2.1

Performing the output of the
CPU time to the event log of
the Explicit management
functionality

The CPU time required for releasing the Explicit memory
block can now be output to the event log of the Explicit
management functionality.

Maintenance and
Migration Guide

5.11.3

Expanding the functionality of
the user expanded performance
analysis trace

The following functionality have now been added to the
user expanded performance analysis trace:

• The specification method to be traced can now be added
to the specification method in the method unit and can
be specified in the package unit or class unit.

• The range of the available event IDs has been expanded.

• Released the restrictions on the number of lines that can
be specified in the user expanded performance analysis
trace setup file.

• The trace acquisition level can now be specified in the
user expanded performance analysis trace setting file.

Maintenance and
Migration Guide

7.5.2, 7.5.3,
8.28.1

Improving the information
analysis used at the time of
asynchronous calling of
Session Bean

The requests at the calling source and the requests at the
calling destination can now be compared by using the root
application information of the PRF trace.

EJB Container
Functionality Guide

2.17.3

1. Application Server Functionality

18

2 Web Container
This chapter describes the Web container functionality that acts as the server platform
for executing the servlets and JSPs. Use the Web container functionality when you
execute a J2EE application with servlets or JSPs.

19

2.1 Organization of this chapter
Application Server provides functionality as a container (Web Container) that includes functionality for executing
Web applications.

The following table lists the Web Container functionality provided with Application Server and the reference sections
corresponding to the functionality:

Table 2‒1: Web container functionality and the reference sections corresponding to each functionality

Functionality Reference

Web application execution functionality 2.2

Functionality for executing JSPs 2.3

Functionality for debugging JSPs 2.4

JSP pre-compilation functionality and maintaining compilation results 2.5

Functionality for setting up the default character encoding 2.6

Session management functionality 2.7

Event listener of an application 2.8

Functionality of filtering the requests and responses 2.9

HTTP response compression functionality 2.10

Integrating with the EJB container 2.11

Connecting to the database 2.12

Creating a thread by using the Web container 2.13

Using the user thread 2.14

Controlling the number of concurrently executing threads 2.15

Controlling the number of concurrently executing threads in the Web container 2.16

Controlling the number of concurrently executing threads in each Web application 2.17

Controlling the number of concurrently executing threads in each URL group 2.18

Changing the number of concurrently executing threads dynamically 2.19

Customizing the error page 2.20

Caching the static contents 2.21

URI decode functionality 2.22

Version setup functionality of Web applications 2.23

Notes on the maximum size of POST data 2.24

The functionality of a Web container provided in Application Server includes functionality wherein the functions
unique to Application Server are extended beyond the functions defined in J2EE, and also functions provided as
functions unique to Application Server. For details on whether the functionality is unique to Application Server, see
1.2 Functionality corresponding to the purpose of the system.

2. Web Container

20

2.2 Web application execution functionality
You can execute the Web applications with a Web container. A Web application refers to a server program that runs
in a Web container. This section describes the functionality of executing Web applications.

The following table describes the organization of this section.

Table 2‒2: Organization of this section (Functionality for executing Web applications)

Category Title Reference

Description Deploying and un-deploying Web applications 2.2.1

Notes Notes on deploying and un-deploying Web applications 2.2.2

Note:
There is no specific description of Implementation, Settings, and Operations for this functionality.

A normal Web server sends only fixed HTML files. Operate a Web container and execute the Web applications in the
Web container. This execution of applications will allow you to process the data received from the Web client and
generate different Web pages according to the results of the process.

A Web application is mainly developed by using two types of technologies; servlet and JSP. Servlet is a technology
that uses a Java program, generates an HTML and processes the information received from the Web client. JSP
(JavaServer Pages) is a technology that dynamically generates Web windows by embedding tags and java programs in
HTML pages on the basis of the servlet technology. With the help of a JSP compiler, JSP is once transformed to a
servlet program coded in Java and is then compiled and executed by a Java compiler.

With the Web container of Application Server, you can execute Web applications that conform to Java Servlet 3.0
specifications and JavaServer Pages (JSP) 2.1 specifications. Note that any newly added tag of the JSP 2.2
specifications is ignored. The web.xml file of the JSP 2.2 specifications can however be read without any problem.
For details on the functionality for executing Web applications, see Java Servlet Specification v3.0, and JavaServer
Pages Specification v2.2.

To execute the Web applications by using a Web container, you need to use Cosminexus HTTP Server, Microsoft IIS,
or an in-process HTTP server as the Web server.

Reference note
The applications that can run with Application Server of a previous version can also run with this vesion.

2.2.1 Deploying and un-deploying web applications
A Web application having a WAR format changes to an executable format, when you deploy it by using any of the
following methods:

• Package the Web application in an EAR format and import the packaged application as a J2EE application in an
archive format or J2EE application in an exploded archive format.

• Import a single Web application by specifying a WAR file or a WAR directory.

A single Web application that is imported is called a WAR application. For details on WAR applications, see 13.9
WAR applications in the uCosminexus Application Server Common Container Functionality Guide.

For details on the format of the executable J2EE applications, see 13.2 Format of executable J2EE applications in the
uCosminexus Application Server Common Container Functionality Guide.

When deploy multiple Web applications is executed, isolated class loaders are created for each Web application.
Consequently, even if classes with the same class name (Login servlet) are used in different Web applications, they
are handled independently on separate class loaders.

Note that in the case of un-deploying a Web application deployed as the J2EE application, un-deploy process is
performed for each J2EE application. You cannot un-deploy a Web application in each WAR.

2. Web Container

21

2.2.2 Notes when deploying and un-deploying web applications
This subsection describes the points to be considered when deploying and un-deploying a Web application.

(1) Default mapping of servlets or JSPs
The setting that specifies which servlet will be invoked for the URL requested by the client is called Servlet mapping.
The Java servlet specification requires the servlet mapping to be coded in the DD (WEB-INF/web.xml).

On the other hand, the mapping defined by default in a Web container is called default mapping. In a Web container,
the following mapping is defined by default:

Table 2‒3: Default mapping of servlets or JSPs defined in a Web container

URL Handling

*.jsp Treated as a JSP file.

*.jspx The Web applications compliant with Servlet 2.4 or later specifications are considered as the JSP documents. Note
that the Web applications compliant with the Servlet 2.2 and Servlet 2.3 specifications are considered as the static
contents.

/servlet/* The classes of the servlet in the JAR file deployed under WEB-INF/classes or WEB-INF/lib are executed. The
executed servlet is searched by the servlet name.

When the '*' part of the URL is not defined as the servlet name, the servlet class is searched. In the '*' part of the
URL, you can specify either the fully qualified class name of the servlet or the servlet name defined in web.xml.

When the fully qualified class name of the servlet is specified, the specified servlet is executed. When the servlet
name is specified, the servlet defined in web.xml is executed.

Note that for the servlet, web.xml must include mapping definition, and if web.xml is omitted, the default mapping of the servlet
will not be enabled for the Web applications.

For the default mapping of the servlet, specify either enabled or disabled in the following parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. By default, the
default mapping of the servlet is disabled.
webserver.container.servlet.default_mapping.enabled
For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Default values when tags in the DD (WEB-INF/web.xml) are not set
In a Web container, if the following tags are not set in the DD (WEB-INF/web.xml), use the following default
values.

Table 2‒4: Default values when tags in the DD (WEB-INF/web.xml) are not set

Tag names Default values when tags are not set

welcome-file-
list

<welcome-file-list>
 <welcome-file>
 index.jsp
 </welcome-file>
 <welcome-file>
 index.html
 </welcome-file>
 <welcome-file>
 index.htm
 </welcome-file>
</welcome-file-list>

session-timeout 30

mime-mapping Relationship between extensions and MIME types

When the tags in above table are set in the DD (WEB-INF/web.xml) , the settings will be as follows:

2. Web Container

22

• The default values are overwritten with the value set in <welcome-file-list> tag.

• The default values are overwritten with the value set in <session-timeout> tag.

• The default values are overwritten for each extension, by the settings for each extension defined in <mime-
mapping> tag.

For details on the relationship between the extensions and the MIME types set by default in the mime-mapping tag of
DD (WEB-INF/web.xml), see Appendix B.1 Correspondence Between Extensions and MIME Types in the
uCosminexus Application Server Definition Reference Guide.

(3) Number of instances created for a servlet
Create one servlet instance of the same class in each Web application. Also, create one servlet instance that inherits
SingleThreadModel in each Web application in the same way as a general servlet.

However, if the same servlet and JSP are accessed by both default mapping and the mapping described in the DD, the
instances are generated in the following manner.

Table 2‒5: Generation of instances when the same servlet and JSP are accessed by both default mapping
and the mapping described in the DD

URL Instance

*.jsp Generated instance is different from the one that was generated when the same servlet and JSP are accessed by the
mapping described in DD.

*.jspx

/servlet/* • When the fully qualified class name of the servlet is specified:
Generated instance is different from the one that was generated when the same servlet and JSP are accessed by
the mapping described in DD.

• When the servlet name defined in web.xml is specified:
Generated instance is same as the one that was generated when the same servlet and JSP are accessed by the
mapping described in DD.

Also, when multiple requests for a single servlet that inherits SingleThreadModel arrive concurrently in each Web
application, control each thread so that the threads are executed one-by-one without overlapping.

(4) Timing to execute the init method and service method of servlets
The timing to execute the init method and service method of servlets differs according to the default mapping
and the servlet mapping.

• When the servlets are accessed by default mapping:
The init method and service method of servlets are executed as an extension of the filter processing mapped
to the corresponding URL.

• When the servlets are accessed by servlet mapping:
The init method is executed before the filter processing. The service method is executed as an extension of
the filter processing mapped to the corresponding URL.

(5) Servlet buffer used for sending a response
In the servlet buffer used for sending a response, only the number of request processing threads is maintained. When
you use the setBufferSize method of javax.servlet.ServletResponse to change the buffer size,
estimate the memory usage after considering that the memory of buffer size number of request processing threads
is secured.

(6) Parsing the query character string
The query string includes a combination of one or more Name=Value after ? mark of URL.

2. Web Container

23

With Application Server, if several = exist in the Name=Value part, the character string before the first = becomes
the name and the character string after = becomes the value. For example, if the URL is http://host/
examples?a=b=c, the string is analyzed as 'Value of name a is b=c'.

2. Web Container

24

2.3 JSP execution functionality
This section describes the functionality for executing JSP.

With the Web Container, you can convert the JSP that is created according to the JSP syntax provided in the Servlet
specifications into a servlet, compile JSP as a Java program, and can load and execute the program in Java VM.

The following table describes the organization of this section.

Table 2‒6: Organization of this section (Functionality for executing JSPs)

Category Title Reference

Description Overview of JSP execution functionality 2.3.1

Executing a tag file 2.3.2

Executing JSP EL 2.3.3

Storing the tag library in the J2EE applications 2.3.4

Checking the attribute name of the custom tag 2.3.5

Checking the duplication of the id attribute of the <jsp:useBean> tag 2.3.6

Implicitly importing the import attribute of the page/tag directive 2.3.7

Note:
There is no specific description of Implementation, Settings, Operations, and Notes for this functionality.

2.3.1 Overview of JSP execution functionality
You can code JSP with the standard syntax that is the standard format of the JSP specifications and the XML syntax
that is the format of the XML specifications. JSPs coded with the standard syntax are called the JSP pages and JSPs
coded with the XML syntax are called the JSP documents. Hereafter, JSP pages and JSP documents are collectively
referred to as a JSP file.

(1) JSP configuration
A JSP includes elements (directive, action, and scripting element) and template text. The template text includes white
space. Normally, the white spaces included in the template text are maintained as are, but from the JSP 2.1
specifications, functionality is added to delete the unwanted white spaces included in the template text of tag files of
the JSP pages or standard syntax. For details, see 6.2.7(2) Functionality for deleting unwanted white spaces.

Reference note
JSP EL has been provided from the JSP 2.0 specifications. JSP EL is a simplified language that allows you to code directly
in an action or a template text. For details, see 2.3.3 Executing JSP EL.

(2) Translation errors
A translation error is an error that occurs when the JSP file cannot be converted to a Java file (JSP translation) due to
syntax errors in the JSP compilation process.

JSP translation is executed at the following times, but translation errors might occur at these times:

• When JSP receives a request

• When the applications are reloaded

• When the applications are started for using the JSP pre-compilation functionality

• When the commands are executed for using the JSP pre-compilation functionality

2. Web Container

25

When a translation error occurs during the JSP compilation on a J2EE server, the message KDJE39145-E is output in
the servlet log and the message KDJE39186-E is output in the message log. When a translation error occurs during the
processing of a request, the redirector returns the error status code 500.

If a translation error occurs during the JSP pre-compilation using the cjjspc command, the messages KDJE39145-E
and KDJE39186-E are displayed on the console.

Note that translation errors might also occur due to other causes, such as analysis of the TLD file, JSP validation by
the tag library validator, or the duplication of script variables specified in the TagExtraInfo class. In these cases,
the messages are displayed according to the cause. The following table lists the messages displayed during the
translation error, with their respective cause:

Table 2‒7: Messages output when translation errors occur due to the causes other than the JSP
compilation

Classification of causes Output messages

Parsing of the TLD file KDJE39214-E, KDJE39216-E, KDJE39193-E, KDJE39055-E, KDJE39205-E, KDJE39206-E,
KDJE39207-E, KDJE39208-E, KDJE39296-E, KDJE39301-E, KDJE39302-E, KDJE39303-E,
KDJE39305-E, KDJE39306-E, KDJE39307-E, KDJE39308-E

JSP validation by tag library validator KDJE39104-E, KDJE39105-E, KDJE39106-E, KDJE39107-E, KDJE39108-E, KDJE39115-E,
KDJE39116-E, KDJE39117-E, KDJE39134-E, KDJE39135-E

Duplication of script variables
specified in the TagExtraInfo
class

KDJE39131-E, KDJE39132-E, KDJE39133-E, KDJE39136-E, KDJE39282-E, KDJE39283-E,
KDJE39291-E, KDJE39294-E

2.3.2 Executing a tag file
In Application Server, you can execute tag files created as per the JSP syntax provided in JSP 2.0 or later. When you
execute a tag file, the following contents are implemented:

• Transforming the tag file into a java class

• Compiling the transformed java class file

• Loading and executing the compiled file in JavaVM

If you use a tag file, you can describe the tag extension (that was conventionally achieved by a custom tag library)
with the JSP syntax alone.

2.3.3 Executing JSP EL
In Application Server, you can execute an EL expression created according to the syntax of EL provided in JSP 2.0 or
later. If you use JSP EL, you can describe the access to JavaBeans attributes in the JSP files and tag files.

With the EL functionality added in the JSP 2.1 specifications, you can code EL that supports the Enum type of Java
SE, specifies values of the JavaBeans attributes, and shows methods. Also, in the JSP 2.1 specifications, in addition to
EL provided in the JSP 2.0 specifications, you can code EL provided in the JSF1.1 specifications as the EL of JSP 2.1
specifications.

With the EL functionality added in the JSP 2.2 specifications, you can specify methods that have arguments.

For specifically indicating EL provided in JSP 2.0 specifications, specify EL of JSP 2.0 specifications. For specifically
indicating EL of JSP 2.1 specifications, specify EL2.1. For details on specifically indicating the EL provided in the
JSP 2.2 specifications, specify EL2.2.

2.3.4 Storing the tag library in the J2EE applications
With Application Server, you can store the tag library into the J2EE application and use the tag library from JSP.

The methods for using the tag library stored in the J2EE application from JSP differ based on whether the JSP is
compiled using the J2EE server or using the cjjspc command.

2. Web Container

26

When JSP is compiled using the J2EE server
Store the tag library in the library JAR.

When JSP is compiled using the cjjspc command
Store the tag library in the JAR file that is specified in the class path.

Both these methods are explained below.

(1) When JSP is compiled using the J2EE server
By storing the tag library in the library JAR, you can use the tag library from JSP.

(a) Searching the TLD file

If the tag library is stored in a J2EE application as a library JAR, you cannot specify the TLD file with the <taglib>
element of web.xml. In this case, set up the URI specified in the <uri> element of the TLD file in the uri property
of the taglib directive of the JSP file. When the Web application starts, the TLD file saved in the library JAR is
searched by the Web container. The URI coded in the <uri> element of the searched TLD file and the respective
TLD file will be mapped.

Note that when the <uri> element does not exist, the URI and the respective TLD file is not mapped.

The mapping of the TLD file in the library JAR has the lowest priority level. Therefore, even if the URI of the TLD
file in the library JAR is duplicated with another TLD file and web.xml in the mapping of the URI and TLD file, this
will not affect the operations of the J2EE applications running on the versions prior to 07-60 version. For details on
the priority levels in the mapping of the TLD file within library JAR, see 6.2.6(7) Mapping of URI and TLD files
specified in the uri attribute of the taglib directive.

You can use the tag library in the JSP file by specifying URI in the uri attribute of the taglib directive.

(b) Tag library functionality that can be used when storing the tag library in the library JAR

The tag library functionality that you can use to store the tag library in the library JAR are the custom tag and the
listener.

You cannot use a tag file. If you use a tag file stored in the library JAR for a JSP file or for a tag file, the <tag-
file> element of the TLD file stored in the library JAR will be ignored. Therefore, considering that the tag file does
not exist, a translation error occurs during JSP translation.

(2) When compiling JSP using the cjjspc command
By specifying the tag library that exists within the JAR file in the class path with the -classpath option of the
cjjspc command, you can use the tag library deployed outside the WEB-INF/lib directory of the Web application
from JSP.

(a) Searching the TLD file

The TLD file included in the JAR file specified in the class path is searched automatically and URI specified in the
<uri> element of the TLD file and the TLD file are mapped.

The mapping of the TLD file in the JAR file specified in the class path has the lowest priority level. Therefore, even if
the URI of the TLD file within a JAR file specified in the class path is duplicated with another TLD file and
web.xml in the mapping of the URI and TLD file, this does not affect the operations of the J2EE applications
running with the versions prior to the 07-60 version. For details on the priority levels for the mapping of the TLD file
within the JAR file specified in a class path, see 6.2.6(7) Mapping of URI and TLD files specified in the uri attribute
of the taglib directive.

(b) Tag library functionality that can be used when storing the tag library in the JAR file specified in the class
path

The tag library functionality that you can use for storing the tag library in the JAR file specified in the class path are
the custom tag and the listener.

You cannot use a tag file. If you use a tag file stored in the JAR file specified in the class path for a JSP file or a tag
file, the <tag-file> element of the TLD file stored in the JAR file will be ignored. Therefore, considering that the
tag file does not exist, a translation error occurs during the JSP translation.

2. Web Container

27

2.3.5 Checking the attribute name of the custom tag
When you check the attribute name of the custom tag, if the upper case and the lower case of the following attribute
names do not match, a translation error occurs.

• Attribute names specified in the JSP custom tag

• Attribute names defined in the TLD file or tag file

With Application Server, you can control the occurrence of translation errors because of mismatch in the upper case
and the lower case, when checking the attribute name of the custom tag. If you control the occurrence of such
translation errors, the definition of the custom tag attribute is searched without case-sensitivity from the attribute
names defined in the TLD file or tag file.

The locations for defining the attribute names of the TLD file and tag file are as follows:

• The attribute name defined in the <name> element exists in the <taglib><tag><attribute> element of the
TLD file

• The attribute name defined in the attribute directive of the tag file

(1) How to disable the attribute name check of the custom tag
Use one of the following methods to control the occurrence of translation errors due to mismatch in upper case and
lower case when checking the attribute name of the custom tag:

• Specify true in the parameter
webserver.jsp.translation.customAction.ignoreCaseAttributeName in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.
For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in
the uCosminexus Application Server Definition Reference Guide.

• Compile JSP by specifying the -usebeannocheckduplicateid option in the cjjspc command.
For details on the command, see cjjspc (JSP pre-compilation) in the uCosminexus Application Server Command
Reference Guide.

(2) Notes
If there are case-sensitive attributes, do not control the occurrence of translation errors because of mismatch in the
upper case and the lower case. If such translation errors are controlled, the following problems will occur:

• If multiple attributes that are only distinguished by the upper case or the lower case are specified in the JSP
custom tag
The setter method of the tag handler is executed for each of the attributes. At this time, even if the same
attributes are specified several times, the translation error does not occur. Therefore, the setter method might
be executed for multiple identical attributes.

• If tag handler corresponding to the attribute name distinguished only by the upper case or the lower case is
implemented
The setter method of the attribute described first in the TLD file or tag file is invoked without case-sensitivity.
At this time, the translation error does not occur. Therefore, you might not be able to invoke the intended setter
method.

2.3.6 Checking the duplication of the id attribute of the <jsp:useBean>
tag

If the id attribute value of the <jsp:useBean> tag is duplicated in the JSP specifications, a translation error occurs
and the JSP compilation fails.

With Application Server, you can compile JSP by controlling the occurrence of translation errors because of the
duplication of the id attribute value of the <jsp:useBean> tag.

2. Web Container

28

If you control the occurrence of translation errors because of the duplication of the id attribute value of the
<jsp:useBean> tag, the JSPs will run without any problem even if the id attribute value of the <jsp:useBean>
tag is duplicated. The following JSP file coding example describes this case:

Example for coding a JSP file

(Omitted)
...
<% if (Conditional-expression) { %>
<jsp:useBean id="BeanTest" class="test.TestClass1" />
<% } else { %>
<jsp:useBean id="BeanTest" class="test.TestClass2" />
<% } %>
...
(Omitted)

By using the scriptlet and coding the <jsp:useBean> tag in the if clause and the else clause respectively, only one
<jsp:useBean> tag is executed. Therefore, even if the id attribute value of the <jsp:useBean> tag is duplicated, JSP will
operate without a problem.

When you control the occurrence of translation errors because of duplication of the id attribute value of the
<jsp:useBean> tag, the KDJE39544-I message is output when the id attribute value of the <jsp:useBean> tag
is duplicated.

(1) How to enable the id attribute duplication check of the <jsp:useBean> tag
To control the occurrence of translation errors because of the duplication of the id attribute value of the
<jsp:useBean> tag, use one of the following methods:

• Specify true in the parameter webserver.jsp.translation.useBean.noCheckDuplicateId in
the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.
For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in
the uCosminexus Application Server Definition Reference Guide.

• Compile JSP by specifying the -usebeannocheckduplicateid option in the cjjspc command
For details on the command, see cjjspc (JSP pre-compilation) in the uCosminexus Application Server Command
Reference Guide.

(2) Notes
The JavaBeans object created in the <jsp:useBean> tag is managed within the scope that is specified in the
scope attribute using the id attribute value as the key. Therefore, when the following conditions are fulfilled, the
unintended JavaBeans objects might be acquired and the invalid operations might be performed:

• The occurrence of the translation error because of the duplication of the id attribute value in the
<jsp:useBean> tag is controlled.

• The id attribute value of the <jsp:useBean> tag is duplicated.

• Different JavaBeans classes are specified in the class attributes of two or more <jsp:useBean> tags where the
id attribute value is duplicated

The following points describe the examples for coding JSP files in which the intended objects might not be acquired,
when controlling the occurrence of a translation error because of the duplication of the id attribute value in the
<jsp:useBean> tag.

(a) Coding example of JSP file when an unintended JavaBeans object is acquired with a single request
(Example in which the same id attribute is specified in two or more different conditional expressions)

(Omitted)

2. Web Container

29

...
<% if (Conditional-expression-1) { %>
<jsp: useBean id="BeanTest" class="test.TestClass1" scope="page"/>
<% } %>
<% if (Conditional-expression-1) { %>
<jsp: useBean id="BeanTest" class="test.TestClass2" type="test.TestIF" scope="page"/>
<% } %>
...
(Omitted)

The same id attribute value (BeanTest) is specified in the conditional expression 1 and the conditional expression 2.
If the conditions in both conditional expression 1 and conditional expression 2 are fulfilled, the test.TestClass1
class object is acquired in the first <jsp:useBean> tag and the second <jsp:useBean> tag, and the
test.TestClass2 class object is not acquired.

The test.TestClass1 class object is registered for the id attribute value 'BeanTest' in the first
<jsp:useBean> tag. As per the interpretation, the processing for the id attribute value 'BeanTest' is the same as
that of the second <jsp:useBean> tag, and therefore, the test.TestClass1 class object that is already
registered in the first <jsp:useBean> tag will be acquired.

(b) Coding example of JSP file when unintended JavaBeans objects are acquired with multiple requests
(Example in which the same id attribute value is specified in if and else statements)

(Omitted)
...
<% if (Conditional-expression) { %>
<jsp: useBean id="BeanTest" class="test.TestClass1" scope="session"/>
<% } else { %>
<jsp: useBean id="BeanTest" class="test.TestClass2" scope="session"/>
<% } %>
...
(Omitted)

The same id attribute value (BeanTest) is specified in if and else statements. If a request is received twice and the
conditional expression of the if statement is established in the first request and the conditional expression of the if
statement is not established in the second request, the test.TestClass1 class object is acquired in both the first
<jsp:useBean> tag and the second <jsp:useBean> tag, and the test.TestClass2 class object is not
acquired.

The test.TestClass1 class object is registered for the id attribute value 'BeanTest' in the first
<jsp:useBean> tag. As per the interpretation, the processing for the id attribute value 'BeanTest' is the same as
that of the second <jsp:useBean> tag, and therefore, the test.TestClass1 class object that is already
registered in the first <jsp:useBean> tag will be acquired.

(c) Coding example 2 of JSP file when unintended JavaBeans objects are acquired with multiple requests
(Example 1 of invoking JavaBeans object by using the id attribute value, commonly specified in 2 or more
<jsp:useBean> tags, in <jsp:getProperty> tag or <jsp:setProperty> tag)

(Omitted)
...
<% if (Conditional-expression-1) { %>
<jsp:useBean id="BeanTest" class="test.TestClass1" scope="page"/>
<% } %>
<% if (Conditional-expression-2) { %>

2. Web Container

30

<jsp:useBean id="BeanTest" class="test.TestClass2" type=" test.TestIF" scope="page"/>
<% } %>
...
<jsp:setProperty name="BeanTest" property="*"/>
...
<jsp: getProperty name="BeanTest" property="value"/>
...
(Omitted)

The JavaBeans object created in the <jsp:useBean> tag will be invoked with the processes defined in the
<jsp:getProperty> and the <jsp:setProperty> tag.

If the id attribute value is duplicated in 2 or more <jsp:useBean> tags that create different JavaBeans classes, the
object specified in the <jsp:useBean> tag that appears at the end is used for the processing in the
<jsp:getProperty> or <jsp:setProperty> tags.

For example, the same id attribute value (BeanTest) is specified in the conditional expression 1 and conditional
expression 2. Therefore, even if the conditional expression 1 is established, the test.TestClass1 class object
registered in first <jsp:useBean> tag is not used for the processing in the <jsp:getProperty> and
<jsp:setProperty> tags.

(d) Coding example 3 of JSP file when unintended JavaBeans objects are acquired with multiple requests
(Example 2 of invoking JavaBeans object by using the id attribute value, commonly specified in 2 or more
<jsp:useBean> tags, in <jsp:getProperty> tag or <jsp:setProperty> tag)

(Omitted)
...
<% if (Conditional-expression-1) { %>
<jsp: useBean id="BeanTest" class="test.TestClass1" scope="page"/>
...
<jsp: setProperty name="BeanTest" property="*"/>
...
<jsp: getProperty name="BeanTest" property="value"/>
...
<% } %>
<% if (Conditional-expression-2) { %>
<jsp: useBean id="BeanTest" class="test.TestClass2" type=" test.TestIF" scope="page"/>
...
<jsp: setProperty name="BeanTest" property="*"/>
...
<jsp: getProperty name="BeanTest" property="value"/>
...
<% } %>
...
(Omitted)

The JavaBeans object created in the <jsp:useBean> tag will be invoked in the processes defined in the
<jsp:getProperty> tag and the <jsp:setProperty> tag.

If the id attribute value is duplicated in two or more <jsp:useBean> tags that create different JavaBeans classes,
the object specified in the <jsp:useBean> tag that is displayed at the end is used for the processing in the
<jsp:getProperty> tag or the <jsp:setProperty> tag.

For example, the same id attribute value (BeanTest) is specified in the conditional expression 1 and conditional
expression 2. Therefore, even if the conditional expression 1 is established, the test.TestClass2 class object

2. Web Container

31

registered in the second <jsp:useBean> tag is used for the processing in the first <jsp:useBean> tag. The
test.TestClass1 class object registered in the first <jsp:useBean> tag is not used for the processing in the
<jsp:getProperty> tag and the <jsp:setProperty> tag.

2.3.7 Implicitly importing the import attribute of the page/tag directive
According to the JSP specifications, the following classes are imported implicitly while compiling JSP:

• java.lang.*
• javax.servlet.*
• javax.servlet.jsp.*
• javax.servlet.http.*

If you use the functionality for implicitly importing the import attribute of the page/tag directive, you can
implicitly import any desired class besides those described above.

(1) How to specify the classes to be imported implicitly
This subsection describes how to specify the functionality for implicitly importing the import attribute of the
page/tag directive. You can use the functionality for implicitly importing the import attribute of the page/tag
directive when compiling JSP in a J2EE server, or when compiling JSP by the cjjspc command.

Specify the class to be imported implicitly with a fully qualified class name or with the "package name.*". When
specifying multiple class names, use a comma (,) to demarcate two class names. When you specify a class name that
does not exist or a class name with an invalid class path, the KDJE39143-E message is output during JSP
compilation.

• When compiling JSP in a J2EE server
Specify the class to be imported implicitly in the webserver.jsp.additional.import.list key of the
Easy Setup definition file.
For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in
the uCosminexus Application Server Definition Reference Guide.

• When performing JSP pre-compilation by the cjjspc command
Specify the class to be imported implicitly in the -addimport option of the cjjspc command.
For details on the command, see cjjspc (JSP pre-compilation) in the uCosminexus Application Server Command
Reference Guide.

(2) Output order of the import statements
The order of the import statements output in the java file during JSP compilation is as follows:

1. Import statement of classes specified in JSP specifications

• java.lang.*
• javax.servlet.*
• javax.servlet.jsp.*
• javax.servlet.http.*

2. Import statement of the class specified in the import attribute of the page/tag directive

3. Import statement of the class specified in the functionality for implicitly importing the import attribute of the
page/tag directive

2. Web Container

32

(3) Notes

(a) JSP file for which JSP pre-compilation is performed by the cjjspc command

The functionality for implicitly importing the import attribute of the page/tag directive operates during JSP
compilation. When JSP pre-compilation is performed by the cjjspc command, the class specified in the
webserver.jsp.additional.import.list key of the Easy Setup definition file is not imported implicitly
to the Web application for which JSP pre-compilation is performed. Therefore, to perform JSP pre-compilation by the
cjjspc command, specify the -addimport option in the cjjspc command and then perform JSP pre-
compilation for the Web application, when using the functionality for implicitly importing the import attribute of
the page/tag directive.

(b) When multiple Web applications exist in a J2EE server

The class specified in the webserver.jsp.additional.import.list key of the Easy Setup definition file
is enabled for all Web applications in the J2EE server for which JSP pre-compilation is not performed by the cjjspc
command. If you want to specify a different class for each Web application, specify the -addimport option in the
cjjspc command, and then perform JSP pre-compilation for the Web applications.

(c) Recompiling after JSP pre-compilation

When all the below conditions are satisfied, the KDJE39143-E message is output during recompilation. Therefore,
when using a Web application for which JSP pre-compilation is performed by specifying the -addimport option in
the cjjspc command, specify the same class name as the one specified in the -addimport option of the cjjsps
command in the webserver.jsp.additional.import.list key of the Easy Setup definition file.

• A class is not defined with a fully-qualified class name in the JSP file.

• JSP pre-compilation is performed by specifying the class name to be imported implicitly in the -addimport
option of the cjjspc command.

• In the webserver.jsp.additional.import.list key of the Easy Setup definition file, specify a class
name different from the class to be imported implicitly that is specified in the -addimport option of the
cjjspc command. Alternatively, either omit the webserver.jsp.additional.import.list key or
specify a blank in the webserver.jsp.additional.import.list key.

• The Web applications for which JSP pre-compilation is performed in the J2EE server are re-compiled.

(d) When a class name that already belongs to another class is specified

When the class name specified in the functionality for implicitly importing the import attribute of the page/tag
directive duplicates a class name within the package to be imported that is specified in the JSP specifications, or the
class name specified in the import attribute of the page/tag directive, a compilation error occurs during JSP
compilation, and the KDJE39143-E message is output.

An example when a compilation error occurs during JSP compilation is described below. Note that in the example, the
following class names must exist as a prerequisite:

• packageA.classA
• packageB.classA

■ When import class names from different packages overlap

An example is described below.

For the following specification contents, when an attempt is made to import classes with the same name from multiple
packages, an error occurs during JSP compilation.

Type of file Specification contents

JSP file <%@page import="packageA.classA" %>

Easy Setup definition file webserver.jsp.additional.import.list=packageB.classA

2. Web Container

33

■ When the import source package of the class used in a JSP file cannot be identified

An example is described below.

For the following specification contents, whether the classA used in the JSP file is packageA.classA or
packageB.classA cannot be identified and an error occurs during JSP compilation.

Type of file Specification contents

JSP file <%@page import="packageA.* " %>
<% System.out.println(classA.method1()); %>

Easy Setup definition file webserver.jsp.additional.import.list=packageB.*

2. Web Container

34

2.4 JSP debug functionality
This section describes the JSP debug functionality.

Using the JSP debug functionality, you can execute the debug tool functionality, such as the breakpoint settings in the
JSP file, and the debugging in the post-conversion java source will not be required. Note that you can use the JSP
debug functionality with version 2.0 or later JSP files.

The following table describes the organization of this section.

Table 2‒8: Organization of this section (JSP debug functionality)

Category Title Reference

Description Mechanism of JSP debug functionality 2.4.1

Procedure of using the JSP debug functionality 2.4.2

Settings Execution environment settings (J2EE server settings) 2.4.3

Notes Precautions for using the JSP debug functionality 2.4.4

Note:
There is no specific description of Implementation and Operations for this functionality.

2.4.1 Mechanism of JSP debug functionality
The following figure shows the mechanism of the JSP debug functionality:

Figure 2‒1: JSP debug mechanism

The following points describe the flow of data in the figure:

1. Convert the JSP file to the servlet java file.

2. Create SMAP (Source MAP) that describes the mapping of the JSP file lines and the lines of the java file
converted from the JSP file.

3. Use java compiler to create the class file from the java file.

4. Embed the SMAP information in the extension attribute (SourceDebugExtension attribute) of the created
class file.

5. During debug, use JPDA (Java Platform Debugger Architecture) to acquire embedded SMAP from the extension
information embedded in the class file in the debug tool.

Note that if an attempt to embed the SMAP information fails, the message KDJE39324-E is output.

2. Web Container

35

! Important note

Class names when the JSP debug functionality is used

The names of the classes created during the compilation are different for the case when the JSP debug functionality is used
and when the functionality is not used. For details on the class names in the JSP compilation results, see 2.5.7 Class names
in JSP compilation results.

2.4.2 Procedure of using the JSP debug functionality
This subsection describes how to use the JSP debug functionality. You can use the JSP debug functionality to compile
JSP with the J2EE server or with the cjjspc command.

How to use the JSP debug functionality for each case is described below:

(1) When compiling JSP with the J2EE server
The following figure shows the flow of usage procedure of the JSP debug functionality when compiling JSP with the
J2EE server:

Figure 2‒2: Usage procedure of the JSP debug functionality (when compiling JSP with the J2EE server)

The following points describe the procedure in the above figure:

1. Setting up the J2EE server
Enable the JSP debug functionality. Also, enable JSP reload. For details on JSP reload, see 13.8.9 Reloading JSP
in the uCosminexus Application Server Common Container Functionality Guide.

2. Starting the J2EE server
Start the J2EE server.
If the JSP debug functionality is enabled, the KDJE39322-W message is output in the message log when the J2EE
server starts.

3. Creating or modifying the JSP file
Create or modify JSP files.

4. Testing and debugging the JSP file

2. Web Container

36

Use the debug tool supporting JPDA, such as WTP to test and debug. To modify JSPs, return to step 3.

5. Distribution of JSP to the execution environment
Export the J2EE applications containing the created JSPs in the development environment, and then import the
applications into the execution environment.

(2) When compiling JSP with the cjjspc command
For compiling all JSPs before starting the J2EE applications, execute the JSP pre-compilation functionality with the
cjjspc command. For details on the JSP pre-compilation functionality, see 2.5 JSP pre-compilation functionality
and maintaining compilation results.

The following figure shows the flow of usage procedure of the JSP debug functionality when JSP pre-compilation is
executed with the cjjspc command.

Figure 2‒3: Usage procedure of the JSP debug functionality (when compiling JSP with the cjjspc
command)

The following points describe the procedure in the above figure:

1. Starting the J2EE server
Enable the JSP debug functionality. Also, enable JSP reload. For details on JSP reload, see 13.8.9 Reloading JSP
in the uCosminexus Application Server Common Container Functionality Guide.
If the JSP debug functionality is enabled, the KDJE39322-W message is output in the message log when the J2EE
server starts.

2. Creating or modifying the JSP file
Create or modify JSP files.

3. Executing the JSP pre-compile
Use the cjjspc command to execute the JSP pre-compilation functionality. Specify the -debugging option to
execute the command, and compile the JSP file.
During the execution of the cjjspc command, the KDJE53442-W message is output in the console log.

4. Testing and debugging JSP

2. Web Container

37

Use the debug tool supporting JPDA, such as WTP for testing and debugging. To modify JSPs, return to step 2.

5. Re-compiling JSP
Delete the JSP work directory. Also, use the cjjspc command without specifying the -debugging option to
re-compile the JSP file.
Note that if the JSP file is not re-compiled, you cannot execute JSP. For details, see 2.4.4 Precautions for using
the JSP debug functionality.

6. Distribution of JSP to the execution environment
Export the J2EE applications containing the created JSP in the development environment, and then import the
applications into the execution environment.

For details on the cjjspc command, see cjjspc (JSP pre-compilation) in the uCosminexus Application Server
Command Reference Guide.

2.4.3 Execution environment settings (J2EE server settings)
To use the JSP debug functionality, you must specify the J2EE server settings.

Implement the J2EE server settings in the Easy Setup definition file. Define the JSP debug functionality in
webserver.jsp.debugging.enabled within the <configuration> tag of the logical J2EE server (j2ee-
server), in the Easy Setup definition file. In this parameter, you specify whether to use the JSP debug functionality.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

2.4.4 Precautions for using the JSP debug functionality
This subsection describes the precautions for using the JSP debug functionality.

(1) Deleting the class file created in the JSP debug functionality
The class files created using the JSP debug functionality cannot be used in an environment where the JSP debug
functionality is disabled. If you want to distribute the J2EE applications created in the JSP debug functionality-
enabled environment to the JSP debug functionality-disabled environment, you must delete the class files created
using the JSP debug functionality.

To delete class files:

1. When the JSP pre-compilation functionality is used to compile JSP for applications in the exploded archive
format
Delete the JSP work directory of the JSP pre-compilation functionality. For details on the JSP working directory,
see 2.5.5(2) Output destination of JSP compilation results.

2. When JSP is compiled using any method other than the method of step 1.
Use the cjstopapp command to stop the J2EE application.

(2) J2EE server settings when the cjjspc command is used to compile JSP
To use the cjjspc command for compiling JSPs, enable the JSP debug functionality in the J2EE server executed by
JSPs.

If you specify the -debugging option for the cjjspc command to compile JSPs of the J2EE server applications in
which the JSP debug functionality is disabled, the loaded class files will be different. Therefore, the Web container
returns the error status code 404 for the HTTP request of JSP.

2. Web Container

38

2.5 JSP pre-compilation functionality and maintaining
compilation results

This section describes the JSP pre-compilation functionality and maintenance of compilation results.

Normally, the JSP files in a Web application are compiled on the Web container when the first request arrives for a
JSP file. If you use the JSP pre-compilation functionality, you can compile a JSP file before deploying the Web
applications. If you compile the JSP files beforehand by the JSP pre-compilation functionality, you can shorten the
response time when the first request arrives for a JSP file.

You can also specify whether to maintain the Java source files and the class files that act as JSP compilation results,
when the J2EE server is restarted.

The following table describes the organization of this section.

Table 2‒9: Organization of this section (JSP pre-compilation functionality and maintaining compilation
results)

Category Title Reference

Description Overview of the JSP pre-compilation functionality 2.5.1

Methods for performing JSP pre-compilation 2.5.2

Examples of application of JSP pre-compilation 2.5.3

Processing during execution of JSP pre-compilation 2.5.4

Lifecycle and output destination of JSP compilation results 2.5.5

JSP compilation results when JSP pre-compilation functionality is not used 2.5.6

Class names in JSP compilation results 2.5.7

Settings Execution environment settings (J2EE server settings) 2.5.8

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

2.5.1 Overview of the JSP pre-compilation functionality
The JSP pre-compilation functionality is used to compile the JSP files contained in a Web application before they are
deployed and then generate the class files.

The following figure shows the processing flow when the JSP pre-compilation functionality is used.

2. Web Container

39

Figure 2‒4: Processing flow when the JSP pre-compilation functionality is used

Normally, the JSP files contained in a Web application are compiled when the first request arrives for a JSP file and
class files are generated from the JSP files. As a result, the response time during the first request for JSP is delayed. If
<load-on-startup> is specified in web.xml, the compilation time becomes the starting time of the Web
application, and therefore, the response time when the first request arrives for JSP can be shortened. Web application,
however, will take a long time to start.

When you use the JSP pre-compilation functionality, the response time when the first request arrives in JSP and the
starting time of the Web application can be shortened, since the class files are already generated.

2.5.2 Methods for performing JSP pre-compilation
The following are two methods for performing JSP pre-compilation:

• JSP pre-compilation with the cjjspc command

• JSP pre-compilation when the J2EE application is started with the cjstartapp command

This subsection provides an overview of the commands used for JSP pre-compilation and explains the compilation
method. Note that the compilation method depends upon stages for pre-compiling the JSP files. For details on the
applicable stages for JSP pre-compilation and compilation method, see 2.5.3 Examples of applying JSP pre-
compilation.

(1) Overview of commands
This subsection explains the preconditions for implementing the JSP pre-compilation, the files required during
execution of the JSP pre-compilation and the files generated after executing JSP pre-compilation:

Preconditions
To implement JSP pre-compilation, it is assumed that the JSP files to be compiled are stored under the Web
application root directory or under the sub directory.

Files required for JSP pre-compilation
The following files are required for implementing JSP pre-compilation:

• JSP files (JSP 1.1, JSP 1.2, JSP 2.0, or JSP 2.1)#1

• Tag files compliant with JSP 2.0 specifications or JSP 2.1 specifications

2. Web Container

40

• Files that are statically included from the JSP files and the tag files

• TLD file#2

• web.xml#2#3

• Class library necessary for compilation

#1 JSP files implies the following files:

• Files with .jsp or .jspx extension (.jspx is only in the case of JSP 2.0 or later)

• Files specified in <jsp-file> tag of web.xml
• Files matching with <jsp-property-group><url-pattern> tag of web.xml (only in the case

of JSP 2.0 or later)

#2 Whether the tag files conform to the DTD or XML schema during execution of JSP pre-compilation is verified.
#3 If web.xml does not exist, the compilation is executed assuming the Web application version to be version
3.0.

Files generated after JSP pre-compilation JSP compilation results)
The Java source files and the class files generated from the JSP files and the tag files are called JSP compilation
results. When you implement JSP pre-compilation, the following JSP compilation results are generated in the JSP
working directory.

• The Java source files and class files generated from the JSP files

• The Java source files and class files generated from the tag files

Note that during the execution of the JSP pre-compilation, you can specify whether to save the Java source files.

(2) JSP pre-compilation with the cjjspc command
The cjjspc command is used to implement JSP pre-compilation. If you implement this command during
development of an application, you can compile the JSP files contained in a Web application. JSP pre-compilation
with the cjjspc command includes the following two methods:

• Pre-compilation in each JSP file
This method compiles only the specified JSP files among the JSP files included in a Web application.

• Pre-compilation in each Web application
This method compiles all the JSP files included in each Web application.

You can specify the following contents during execution of the cjjspc command:

• Specifying the JSP files that need not be compiled
You can exclude the pre-compilation of JSP files that need not be compiled by specifying them beforehand. The
specification methods are as follows: Specify the JSP file names that need not be compiled one-by-one in the
command. Mention all the JSP file names that need not be compiled together in a file and then specify that file in
the command.

• Specifying whether to output the list file of execution results
You can specify whether to output the list file of execution results. The list file of execution results refers to the
file in which the execution results of the cjjspc command are output. The paths of the JSP files that are
compiled successfully, the JSP files that were not be compiled, and the JSP files that are excluded from
compilation are output in a list.

• Specifying whether to save the Java source files
You can specify whether to save the Java source files generated from the JSP.

• Specifying the version of Java language specification during JSP compilation
You can specify the version of Java language specification during compilation of the Java source file generated by
JSP translation.

• Specifying whether to change the name of the JSP working directory
The JSP working directory refers to the directory that saves the JSP compilation results. You can change the name
of the JSP working directory. For details on the JSP working directory, see 2.5.5(2) Output destination of JSP
compilation results.

2. Web Container

41

• Specifying the default character encoding
You can specify the default character encoding for the JSP file. For an overview of the default character encoding,
see 2.6 Functionality for setting up the default character encoding. Also, for details on the precautions when you
set up the default character encoding with the version 07-10 for the Web applications that use the JSP pre-
compilation functionality with the version 07-00, see 2.6.8(5) Specifying the character encoding for Web
applications that executed JSP pre-compilation with version 07-00.

• Specifying whether to use the JSP debug functionality
You can specify whether you want to use the JSP debug functionality. For details on the JSP debug functionality,
see 2.4 JSP debug functionality.

• Specifying the classes to be imported implicitly
You can specify the class name to be imported implicitly by using the functionality for implicitly importing the
import attribute of the page/tag directive. For details on the functionality for implicitly importing the
import attribute of the page/tag directive, see 2.3.7 Implicitly importing the import attribute of the page/tag
directive.

Note that these settings are specified with command options. For details on the usage of the JSP pre-compilation
command (cjjspc command), see cjjspc (JSP pre-compilation) in the uCosminexus Application Server Command
Reference Guide.

! Important note

Changing the JavaVM runtime options

If you set the environment variable CJ_CMD_JVM_ARGS, you can change the JavaVM runtime options operated by the
cjjspc command.

By default, -Xmx512m (maximum value of Java heap memory area is 512 MB) is specified in the JavaVM runtime option.
When you want to compile large-scale Web applications using the cjjspc command, the maximum value of the Java heap
memory area might exceed and java.lang.OutOfMemoryError might occur. Therefore, when compiling large-scale
Web applications, you must specify the appropriate Java heap memory area in the environment variable
CJ_CMD_JVM_ARGS in advance.

Reference note

• When performing the JSP pre-compilation with the cjjspc command, if an error occurs during translation of the JSP
files or the tag files, error messages are output. An error message is output to the console.

• When the command is executed, the log is output in the standard output or standard error output. To keep the result of
log output in a file, redirect the command output to a file.
The following are the specification examples for keeping the results of log output in a file:
In Windows

> cjjspc -root D: \app\webapp1 1> .\stdout.log 2> .\stderr.log

In UNIX

cjjspc -root /app/webapp1 1> ./stdout.log 2> ./stderr.log

(3) JSP pre-compilation when a J2EE application is started by the cjstartapp command
The cjstartapp command is used to start a J2EE application. In the cjstartapp command, if you specify the
option that performs the JSP pre-compilation, the J2EE application is started after the JSP pre-compilation is
implemented. The JSP pre-compilation functionality at the time of starting the J2EE application compiles all the JSP
files contained in the J2EE application.

You can specify the settings for operation during execution of the cjstartapp command in advance. The following
contents can be specified:

• Specifying whether to save the Java source files
You can specify whether to save the Java source files generated from the JSP file.

• Specifying the version of Java language specification during JSP compilation
You can specify the version of Java language specification during compilation of the Java source file generated by
JSP translation.

2. Web Container

42

• Specifying whether to change the name of the JSP working directory
The JSP working directory refers to the directory that saves the JSP compilation results. You can change the name
of the JSP working directory. For details on the JSP working directory, see 2.5.5(2) Output destination of JSP
compilation results.

• Specifying the classes to be imported implicitly
You can specify the class name to be imported implicitly by using the functionality for implicitly importing the
import attribute of the page/tag directive. For details on the functionality for implicitly importing the
import attribute of the page/tag directive, see 2.3.7 Implicitly importing the import attribute of the page/tag
directive.

Note that you customize the operation settings of the J2EE server to implement these settings. For details on the
customization of the operation settings of the J2EE server, see 2.5.8 Execution environment settings (J2EE server
settings).

Reference note
When performing the JSP pre-compilation by the cjstartapp command, if an error occurs during translation of the JSP
files or tag files, an error message is output to the Web servlet log or the message log.

! Important note

Compilation of Java source generated from JSP

The class file generated using with the cjjspc command is used at runtime on the J2EE server. In the cjjspc command,
a class file same as that of the file generated on the J2EE server will be generated.

Therefore, when compiling Java source that is generated from the JSP file or tag file, you can only specify the version of the
Java language specification in the -source option or the class path in the classpath option. For details on how to
specify the versions of the Java language specifications, see cjjspc (JSP pre-compilation) in the uCosminexus Application
Server Command Reference Guide.

2.5.3 Examples of applying JSP pre-compilation
You can use the JSP pre-compilation functionality in the following cases:

• During development of an application

• During system operation

The following table describes the mapping between the applicable stages for JSP pre-compilation and the commands
used:

Table 2‒10: Mapping between the applicable stages for JSP pre-compilation and the commands used

Applicable stages Commands used Reference

Applicatio
n
developm
ent

When a Web application is developed cjjspc command (1)

System
operation

When J2EE applications are started cjstartapp command (2)

When J2EE applications
are switched

Normal switching cjstartapp command

Switching by reloading cjjspc command

Switching by
redeploying

cjjspc command

The stages in which the JSP pre-compilation is used are explained below. For an overview of the commands used, see
2.5.2 Methods for performing JSP pre-compilation.

Note that the JSP compilation is executed during the execution of the cjstartapp command if you specify the
option for performing JSP pre-compilation by the cjstartapp command. Because this process is performed in the
J2EE server, the memory usage of the J2EE server process increases temporarily.

2. Web Container

43

(1) Usage during development of an application
During the development of a Web application, execute the JSP pre-compilation functionality after the completion of
the Web application.

Use the cjjspc command for implementing the JSP pre-compilation. The following figure shows an example of
application of JSP pre-compilation during development of a Web application:

Figure 2‒5: Example of applying the JSP pre-compilation functionality when developing a Web application

Use the JSP pre-compilation functionality to compile all the JSP files included in a completed Web application at the
same time. As a result, you can improve the response time of JSP initial request during execution of a Web
application.

To compile all the JSP files in a Web application collectively, implement the 'Pre-compilation in each Web application
method of the cjjspc command.

For the cjjspc command, see cjjspc (JSP pre-compilation) in the uCosminexus Application Server Command
Reference Guide.

(2) Usage during system operation
To improve the response time of the JSP initial request during system operation, implement the JSP pre-compilation
before starting the operation. Implement the JSP pre-compilation during system operation when starting a J2EE
application and when switching the J2EE applications. The following figure shows an example of application of JSP
pre-compilation during system operation:

Figure 2‒6: Applying the JSP pre-compilation functionality during system operations

2. Web Container

44

The overview of each stage applicable to the JSP pre-compilation functionality is explained below. For details on the
compilation methods using the JSP pre-compilation functionality during system operations, see 5.6.3 Substituting and
maintaining J2EE applications in the uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

(a) When J2EE applications are started

When a J2EE application is started, you can use the JSP pre-compilation for an already imported J2EE application.
Execute the JSP pre-compilation functionality to be implemented when a J2EE application is started by specifying the
option for implementing the JSP pre-compilation in the cjstartapp command. If you execute this command, the
JSP files included in the J2EE application are complied together before starting the J2EE application.

(b) When J2EE applications are switched

You can use the JSP pre-compilation functionality before switching the J2EE applications. Note that the method of
JSP pre-compilation depends upon how the J2EE applications are switched.

• In the case of normal switching between J2EE applications
Normal switching between J2EE applications refers to a method in which the J2EE application is stopped once
and then switched to a new application.
In the case of normal switching between J2EE applications, execute the JSP pre-compilation by specifying the
option for implementing the JSP pre-compilation in the cjstartapp command, after importing the switched
J2EE application. If this command is executed, the JSP files included in the J2EE application are compiled
collectively before the switched J2EE application is started.

• In the case of switching the J2EE applications by reloading
Switching the J2EE applications by reloading refers to a method in which a J2EE application is switched to a new
J2EE application (an application in expanded format) without stopping.
In the case you use the reload functionality to operate a J2EE application containing the JSP compilation results,
and if the JSP files are modified, you can compile the modified JSP files by the cjjspc command.

• In the case of switching the J2EE applications by redeploying
Switching the J2EE application by redeploying refers to a method in which a J2EE application is switched to a
new J2EE application (an application in archive format) without stopping.
The order to switch the J2EE applications by redeploying is as follows:

1. Implement the JSP pre-compilation with the cjjspc command and compile all the JSP files included in the
J2EE application collectively.

2. Create an EAR file containing the JSP compilation results generated in 1.

3. Redeploy the EAR file created in 2.

For an overview of switching J2EE applications, see 5.6.3 Substituting and maintaining J2EE applications in the
uCosminexus Application Server Operation, Monitoring, and Linkage Guide. For reloading, see 13.8 Detecting
updates and reloading J2EE applications in the uCosminexus Application Server Common Container Functionality
Guide.

2.5.4 Processing during execution of JSP pre-compilation
This subsection explains the checks implemented during execution of JSP pre-compilation functionality and the
operation of a J2EE application in which the JSP pre-compilation functionality is executed.

(1) Checks implemented during JSP pre-compilation
When the JSP pre-compilation is executed, validity check of web.xml and version check of the JSP compilation
results are implemented.

(a) Validity check of web.xml

With the JSP pre-compilation functionality, whether the web.xml conforms to the DTD or XML schema is verified
before execution of compilation processing. Moreover, the validity of settings for the elements referenced during JSP
pre-compilation is also verified to the extent necessary for JSP pre-compilation. If the elements do not conform to the
schema, an error occurs during the translation of JSP that generates a Java file from the JSP file.

2. Web Container

45

The following table describes the elements of web.xml verified during execution of JSP pre-compile.

Table 2‒11: Elements of web.xml verified during execution of JSP pre-compilation

Tag names Tag description
Servlet version

2.2 2.3 2.4 2.5 3.0

<!DOCTYPE> DOCTYPE declaration Y Y N N N

<web-app> Root tag Y Y Y Y Y

<servlet> Definitions about the servlet Y Y Y Y Y

<jsp-file> JSP file name Y Y Y Y Y

<taglib> Definitions about the tag library Y Y -- -- --

<taglib-uri> URI of tag library Y Y -- -- --

<taglib-location> Location of tag library descriptor
file (TLD)

Y Y -- -- --

<jsp-config> Definitions about the JSP -- -- Y Y Y

<taglib> Definitions about the tag library -- -- Y Y Y

<taglib-uri> URI of tag library -- -- Y Y Y

<taglib-
location>

Location of tag library descriptor
file (TLD)

-- -- Y Y Y

<jsp-property-group> Settings of JSP that matches with
the specified URL pattern

-- -- Y Y Y

<url-pattern> URL pattern of JSP for which
installation is applied

-- -- Y Y Y

<el-ignored> Settings indicating whether to
ignore EL (Expression Language)

-- -- Y Y Y

<scripting-
invalid>

Settings indicating whether to
disable the scripting element

-- -- Y Y Y

<page-
encoding>

Page encoding name -- -- Y Y Y

<include-
prelude>

File included as the JSP header -- -- Y Y Y

<include-coda> File included as the JSP footer -- -- Y Y Y

<is-xml> Settings indicating whether coding
is done in XML format

-- -- Y Y Y

<deferred-
syntax-
allowed-as-
literal>

Settings indicating whether the
presence of #{ string in the part
where EL is not used is to be
considered as an error

-- -- -- Y Y

<trim-
directive-
whitespaces>

Settings indicating whether to
output extra spaces from JSP

-- -- -- Y Y

Legend:
Y: Verified
N: Not verified
--: Unsupported element

2. Web Container

46

(b) Version check of JSP compilation results

When using the JSP pre-compilation functionality, check if the version of the Web application specified in web.xml
for the J2EE server matches with the version of JSP during JSP compilation. The version check is implemented in the
following cases:

• If the implementation of JSP pre-compilation is not specified when application is started (when the application is
started with the cjstartapp command, without specifying the -jspc option)

• If JSP pre-compilation is executed in each Web application with the cjjspc command by specifying the files
excluded from the compilation

• If JSP pre-compilation is executed in each JSP file using the cjjspc command

The class files generated from JSP depend on the version of the Web application specified in web.xml. You cannot
use the class files in a Web application whose version is different from the version of the Web application during
execution of JSP pre-compilation. Consequently, if the version of a Web application is changed, you need to compile
all the JSP files.

Note that in the following cases, since all JSP files included in a Web application are compiled, the JSP compilation
result is not checked.

• If the JSP pre-compilation is executed in each Web application without specifying the files to be excluded from
compilation

• If the JSP pre-compilation used when starting the application is executed
Reference note

When version check of JSP compilation results is implemented, a version information file containing the version
information of the JSP files is generated in the JSP working directory of the Web application to be compiled. The
version information file is generated at the following location:

Web-application-directory/WEB-INF/JSP-work-directory-name/WEB-INF/JSP-work-directory-name/
jsp_compile_info

(c) TLD file check

You validate whether the TLD file complies with DTD or XML schema during the JSP pre-compilation. The
following is the description for TLD file check related to each version of Web applications:

• When the version of Web application is 2.4 or later
Validation is executed by default. Note that if the TLD file is not in accordance with the schema, an error will
occur during the translation of the JSP file.

• When the version of Web application is 2.3 or earlier
Specify in advance whether validation is to be performed. If you specify settings to validate the TLD file, the TLD
file will be validated during the JSP pre-compilation.
For details on the validation of TLD files, see 2.5.8 Execution environment settings (J2EE server settings).

(2) Handling JSP files in application in which the JSP pre-compilation functionality is
implemented

This subsection explains the operation of a J2EE application in which the JSP pre-compilation functionality is
executed.

(a) Operations when a request is executed and a J2EE application is started

When JSP pre-compilation is being implemented, JSP compilation is not implemented during execution of a request.
The class files of JSP created during pre-compilation are loaded and executed.

In such a case, an error occurs if the class files compiled from the JSP files do not exist. The following table describes
the behavior of the J2EE server when JSP pre-compilation is implemented and the files do not exist:

2. Web Container

47

Table 2‒12: Behavior of the J2EE server when the files do not exist (when JSP pre-compilation is
executed)

Non-existent files Behavior of the J2EE server

JSP files JSP files JSP file is not referenced

Class file Error 404 is returned

Tag files Tag files Tag file is not referenced

Class file Error 500 is returned
(java.lang.NoClassDefFoundError
occurs)

Statically included file Statically included file is not referenced

TLD file TLD file is not referenced

The J2EE server operates as follows, when the pre-compilation is not implemented and the files do not exist:

Table 2‒13: Behavior of the J2EE server when the files do not exist (when JSP pre-compilation is not
executed)

Non-existent files Behavior of the J2EE server

JSP files JSP files Error 404 is returned

Class file JSP files are compiled

Tag files Tag files Error 500 is returned (compilation error)

Class file Tag files are compiled

Statically included file Error 500 is returned (compilation error)

TLD file

(b) Operation when a J2EE application is started

If you pre-compile the JSP files of a Web application in which <load-on-startup> is specified in the JSP files
with web.xml, JSP compilation is not implemented when a J2EE application is started. The class files generated
during JSP pre-compilation are loaded and jspInit method is executed. In such a case, loading of JSP files fails, if
the class files of JSP, or a class file on which JSP depends does not exist.

Note that if the settings for error notification in servlet and JSP are enabled, the operation fails when starting a Web
application. For details on the settings for error notification in servlets and JSPs, see 9.16 Settings for error
notification in servlets and JSPs in the uCosminexus Application Server Application Setup Guide.

(3) Notes on JSP pre-compilation functionality
The notes related to the JSP pre-compilation functionality are as follows:

• Sending requests in which jsp_precompile is added
Even if you send a request in which the query string jsp_precompile or jsp_precompile=true was
added to an application that executes the JSP pre-compilation, the JSP compilation is not executed.

• Operation of the same Web application by multiple invocations of the command for JSP pre-compilation
You cannot execute JSP pre-compilation in the same Web application by multiple invocations of the cjjspc
command. Also, you cannot execute compilation in the same Web application with the cjjspc command, during
execution of JSP pre-compilation when an application is started.
Note that due to the command locking process, a lock file will be generated in the JSP work directory during the
execution of JSP pre-compilation functionality. The lock file is generated in the following location:
Web-application-directory/WEB-INF/JSP-work-directory-name/WEB-INF/JSP-work-directory-name/
ExecutingJspPrecompilation.lock

• Migrating to applications that use the JSP compilation results

2. Web Container

48

When the J2EE application is in the archive format, the compilation results generated by the JSP pre-compilation
functionality during the startup of the application will be deleted when the application is stopped.
The following is the procedure for using the JSP compilation results that are generated by the JSP pre-compilation
functionality during the startup of the application, even after the application stops. The description is given for
each J2EE application format.
In the case of a J2EE application of archive format

1. Execute the JSP pre-compilation when starting the application.

2. Export the application.

3. Replace with applications containing the JSP compilation results by using the redeploy functionality.

In the case of a J2EE application of exploded archive format

1. Execute JSP pre-compilation when the cjjspc command or application starts.

• Migrating to applications that do not use the JSP compilation results
When you do not use the JSP compilation results generated by JSP pre-compilation, you need to delete each JSP
working directory.
The procedure to be followed when you do not use the JSP compilation results is explained below for each format
of J2EE application:
In the case of a J2EE application of archive format

1. Export the J2EE application.

2. Deploy the EAR file.

3. Delete each JSP working directory under Web-application-root-directory/WEB-INF.

4. Create the EAR file.

5. Switch the J2EE applications using the redeploy functionality.

In the case of a J2EE application of exploded archive format

1. Stop the J2EE application.

2. Delete each JSP working directory under Web-application-root-directory/WEB-INF.

3. Start the J2EE application.

• Modifying files on which the JSP file depends
When a tag file, static included file, or TLD file is updated, compile all JSP files that reference the updated files.

• Updating the exploded archive format J2EE applications that use the JSP pre-compilation functionality
Note the followings when you update the J2EE applications in exploded archive formats that use the JSP pre-
compilation functionality:

• To add the JSP file or tag file into the J2EE application
Compile all the JSP files that reference the added JSP file or tag file. Use the JSP pre-compilation
functionality to compile the JSP file.

• To apply the JSP compilation results updated in the development environment to the execution environment
Copy the class files exist under the JSP work directory of the J2EE application in the development
environment to the JSP work directory of the J2EE application in the execution environment. In this case,
copy all the class files updated during the JSP pre-compilation in the development environment.

2.5.5 Lifecycle and output destination of JSP compilation results
JSP is compiled in a Web container, and the Java source files and class files are generated. With a Web container, you
can specify whether to maintain the Java source files and class files that serve as JSP compilation results, when a J2EE
server is restarted. This subsection describes the settings for maintaining the compilation results of the JSP file.

This subsection explains the lifecycle and the output destination of the JSP compilation results when you use the JSP
pre-compilation functionality.

(1) Lifecycle of JSP compilation results
The lifecycle of the JSP compilation results when you use the JSP pre-compilation functionality is explained below:

2. Web Container

49

Generating the compilation results
In the case you use the JSP pre-compilation functionality, compilation results are generated when:

• The cjjspc command is executed

• The Web application is started by specifying -jspc option in the cjstartapp command

Deleting the compilation results
For J2EE applications in the archive format, the compilation results generated by JSP pre-compilation
functionality during the startup of the application will be deleted, when the application stops.

(2) Output destination of JSP compilation results
When you implement the JSP pre-compilation functionality, the JSP working directory is created, and the JSP
compilation results are output to the JSP working directory. If, however, the JSP files to be compiled do not exist, the
JSP working directory is not created. The following files are output:

1. Java source files# generated from JSP files

2. Class file that compiles the Java source files mentioned in 1.

3. Java source files# generated from tag files

4. Class file that compiles the Java source files mentioned in 3.

#
When implementing the JSP pre-compilation functionality, you can specify whether to save the Java source
files.

The default output destination and the configuration of the output destination directory are explained below: For
details on the names of the output classes, see 2.5.7 Class names in JSP compilation results.

(a) Default output destination

When you execute the JSP pre-compilation functionality, the compilation results are output to the JSP working
directory. The default JSP working directory is at the following location:

In Windows
Web-application-web-inf-directory\cosminexus_jsp_work

In UNIX
Web-application-web-inf-directory/cosminexus_jsp_work

If the WEB-INF directory does not exist, the WEB-INF directory and JSP work directory are automatically created
when the JSP work directory is created.

Note that the default value is set for the name of the JSP working directory. However, if necessary, you can change the
name. For details on changing the name of the JSP work directory during the JSP pre-compilation by the cjjspc
command, see cjjspc (JSP pre-compilation) in the uCosminexus Application Server Command Reference Guide. For
details on changing the name of the JSP work directory during the JSP pre-compilation when the J2EE application is
started by the cjstartapp command, see 2.5.8 Execution environment settings (J2EE server settings).

Also, when you change the name of the JSP work directory, you must specify the name of the changed JSP work
directory in the parameter webserver.jsp.precompile.jsp_work_dir within the <configuration>
tag of the logical J2EE server (j2ee-server) of the Easy Setup definition file. For details on the Easy Setup definition
file and the parameters to be specified, see 4.6 Easy Setup definition file in the uCosminexus Application Server
Definition Reference Guide.

(b) Configuration of output destination directory

The JSP compilation results are output to the JSP working directory. The following figure shows the configuration of
the output destination directory for JSP compilation results. Note that in the following figure, default directory name is
used for the JSP working directory.

2. Web Container

50

Figure 2‒7: Configuration of output destination directory for JSP compilation results (When JSP pre-
compilation is executed)

The directory configuration is explained below:

• The package name of the classes generated from the tag files is in the following format:

In the case of a tag file under WEB-INF/tags
org.apache.jsp.tag.web.path-under-/WEB-INF/tags-directory

In the case of a tag file included in the jar file under WEB-INF/lib
org.apache.jsp.tag.meta.string-with-encoded-jar-file-name.path-under-META-INF/tags-
directory-in-jar-file

• The path length restrictions for output destination directory of the class files generated from the JSP files and the
tag files depend on the path length upper limit in the OS. If the path length exceeds the upper limit in the OS,
change the name of the JSP working directory.

! Important note
If you specify the same JSP work directory in multiple J2EE servers, the status of the JSP work directory might become
invalid when you deploy an application with the same context root.

2.5.6 JSP Compilation results when JSP pre-compilation functionality is
not used

When you do not use the JSP pre-compilation functionality, the JSP files are compiled during initial access to a JSP
file. This subsection describes the JSP compilation results and the method of changing the output destination of the
compilation results, when the JSP pre-compilation functionality is not used.

2. Web Container

51

(1) Lifecycle of JSP compilation results
The lifecycle of the JSP compilation results when you do not use the JSP pre-compilation functionality is explained
below:

Generating the compilation results
In the case you do not compile the JSP files beforehand by the JSP pre-compilation functionality, the JSP
compilation results are generated when:

• The JSP is first accessed

• The Web application in which <load-on-startup> is specified for JSP in DD (web.xml) is started

Deleting the compilation results
The JSP compilation results are deleted when:

• The J2EE application is un-deployed

• The J2EE server is started#

• The J2EE server is stopped#

#
If the setting specifies that the JSP compilation results are not to be maintained, the JSP compilation results
are deleted. When the J2EE server is started, the compilation results are deleted to prepare for the forced
termination of the server.

(2) Maintaining the compilation results of JSP files
If you do not perform JSP pre-compilation, with a Web container, you can specify whether to maintain the Java source
files and class files that serve as JSP compilation results, when a J2EE server is restarted.

Customize the properties of the J2EE server to specify the settings for maintaining the compilation results of JSP files.
For details on customizing the settings of the J2EE server operations, see 2.5.8 Execution environment settings (J2EE
server settings).

! Important note

Points to be noted when a Web application is un-deployed
By default, the setting is specified to maintain the JSP compilation results. Even if you specify the settings to maintain
the JSP compilation results, the JSP compilation results are deleted if a Web application is un-deployed. Consequently,
the user need not delete the JSP compilation results when a server is restarted. After running a Web container by
specifying the settings to maintain the JSP compilation results, if you do not need the JSP compilation results, un-deploy
the J2EE application.
Hitachi recommends that you specify the settings to maintain the JSP compilation results.

(3) Output destination of JSP compilation results
When you do not implement the JSP pre-compilation functionality, the JSP compilation results are output to the
temporary directory for JSP.

The following files are output:

1. Java source files generated from JSP files

2. Class file that compiles the Java source files mentioned in 1.

3. Java source files generated from tag files

4. Class file that compiles the Java source files mentioned in 3.

The default output destination and the configuration of the output destination directory are explained below:

For details on the output class names, see 2.5.7 Class names in JSP compilation results.

2. Web Container

52

(a) Default output destination

When you do not execute the JSP pre-compilation functionality, the JSP compilation results are output to the directory
for each Web application created under the temporary directory for JSP. The default temporary directory for JSP is at
the following location:

In Windows
Cosminexus-installation-directory\CC\server\repository\server-name\web

In UNIX
/opt/Cosminexus/CC/server/repository/server-name/web

Note that the default value is set for the temporary directory for JSP. However, if necessary, you can change the
default value. For details on changing the temporary directory for JSP, see 2.5.8 Execution environment settings (J2EE
server settings).

The directory will be created for each Web application under the temporary directory for JSP and the JSP compilation
results that exist in the relevant Web application will be output.

Note that the directory for the Web applications has the directory name based on the context root name. If the context
root name includes a slash (/), dollar sign ($), percent sign (%), and plus sign (+), the characters will be converted to
the following characters:

Characters before conversion Characters after conversion

/ $2f

$ $24

% $25

+ $2b

Example:
When the temporary directory for JSP is the default directory and the context root name is J2EE_AP1/
WEB_AP1_war, the output destination for the JSP compilation results of the relevant Web applications will be as
follows:

• In Windows
Cosminexus-installation-directory\CC\server\repository\server-name\web
\J2EE_AP1$2fWEB_AP1_war

• In UNIX
/opt/Cosminexus/CC/server/repository/server-name/web/J2EE_AP1$2fWEB_AP1_war

(b) Configuration of output destination directory

The following figure shows the configuration of the output destination directory for JSP compilation results.

2. Web Container

53

Figure 2‒8: Configuration of output destination directory for JSP compilation results (When JSP pre-
compilation is not executed)

The directory configuration is explained below:

• The package name of the classes generated from the tag files is in the following format:

In the case of a tag file under WEB-INF/tags
org.apache.jsp.tag.web.path-under-/WEB-INF/tags-directory

In the case of a tag file included in the jar file under WEB-INF/lib
org.apache.jsp.tag.meta.string-with-encoded-jar-file-name.path-under-META-INF/tags-
directory-in-jar-file

• The path length restrictions for output destination directory of the class files generated from the JSP files and the
tag files depend on the path length upper limit in the OS. If the path length exceeds the upper limit in the OS,
change the name of the JSP working directory.

2.5.7 Class names in JSP compilation results
This subsection describes the format and the conversion rules of the class names generated from the JSP file or tag
file.

(1) Class name format
The class name format of the classes generated from JSP files or tag files depend on the file type and whether the JSP
debug functionality is enabled. The following table lists the class name formats:

Table 2‒14: Class name format of classes generated from JSP files or tag files

File type When the JSP debug functionality is
disabled When the JSP debug functionality is enabled

JSP files file-name file-name_jsp

Tag files file-name_ file-name_tag

The rules specified in (2) Class name conversion rules are applied to file-name.

2. Web Container

54

(2) Class name conversion rules
If the name of the class generated from the JSP file or tag file contains characters that cannot be used as class name,
underscore (_), or dollar sign ($), the following conversion rules are applied sequentially:

1. If the first character is the package name and a character that cannot be used at the beginning of the class name,
add a dollar sign ($) at the beginning.

2. Convert a period (.) in the middle of the file name into a dollar sign ($).

3. For the characters that cannot be used as the class name, convert the underscore (_) and the characters that cannot
be used into a string of 4-digit hexadecimal expression.
The alphabetical characters used in the hexadecimal expression will be in the lower-case.

The conversion rule in step 1 is applied only to the first character. The conversion rules in step 2 and 3 are applied
sequentially from the beginning of the string.

The following table describes the conversion examples for names of classes generated from JSP files or tag files:

Table 2‒15: Conversion examples for names of classes generated from JSP files or tag files

File type File name JSP debug
functionality Class name

JSP files index.jsp -- index$jsp

Y index$jsp_jsp

10test-10.jspx -- $10test_002d10$jspx

Y $10test_002d10$jspx_jsp

test.tag -- test$tag

Y test$tag_jsp

Tag files tagfile1.tag -- tagfile1$tag_

Y tagfile1$tag_tag

Tag_File$10.tagx -- Tag_005fFile_002410$tagx_

Y Tag_005fFile_002410$tagx_t
ag

Legend:
Y: Valid
--: Invalid

2.5.8 Execution environment settings (J2EE server settings)
To use the JSP pre-compilation functionality or to maintain the compilation results, you must specify the J2EE server
settings.

Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for using the JSP pre-
compilation functionality or for maintaining the compilation results within the <configuration> tag of the logical
J2EE server (j2ee-server) in the Easy Setup definition file.

The following table lists the definitions of the Easy Setup definition file for using the JSP pre-compilation
functionality or maintaining the compilation results:

Table 2‒16: Definitions of the Easy Setup definition file for using the JSP pre-compilation functionality or
maintaining the compilation results

Items Parameter to be specified Setting contents

JSP pre-compile webserver.jsp.additional.
import.list

Specify the class name (fully-qualified class name or "package
name.*") to be imported implicitly during JSP compilation.

2. Web Container

55

Items Parameter to be specified Setting contents

JSP pre-compile webserver.jsp.keepgenerat
ed

You can specify whether to save the Java source files generated
from the JSP file.

webserver.jsp.compile.bac
kcompat

Specify the version of the Java language specifications used for
compiling the Java source files.

Note that if the version of the Java source files generated from the
JSP file by the Web application is different, specify the version for
each Web application and implement JSP pre-compile.

webserver.jsp.precompile.
jsp_work_dir

Specify the directory to output the compilation results when the
JSP pre-compilation functionality is implemented.

webserver.xml.validate Specify whether to validate the TLD file during the execution of
the JSP pre-compilation functionality, when the version of servlets
included in the Web application is earlier than the version 2.3.

Note that you specify this parameter when the Web application
version is earlier than the version 2.3. If the Web application has
the version 2.4 or later versions, the validation is implemented by
default, so you cannot specify a value in this parameter.

Save the compilation
result of the JSP file

webserver.work.clean Specify whether you want to maintain the compilation results.

webserver.work.directory Specify the output destination (temporary directory for JSP) for the
compilation results. Specify this parameter to change the default
output destination#. For details on the JSP working directory, see
2.5.6(3) Output destination of JSP compilation results. Note that
this is the output destination when you do not execute the JSP pre-
compilation functionality.

#
To change the settings for the temporary directory of JSP
After operating the Web container with settings to maintain the JSP compilation results, if you change the settings for the
temporary directory of JSP, the old temporary directory of JSP will not be deleted. Therefore, you must delete the temporary
directory manually.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

2. Web Container

56

2.6 Functionality for setting up the default character
encoding

This section describes the functionality for setting up the default character encoding.

With Application Server, you can set up the character encoding that is compliant with the Servlet specifications and is
unique to Application Server.

The following table describes the organization of this section.

Table 2‒17: Organization of this section (Functionality for setting the default character encoding)

Category Title Reference

Description Units for setting the default character encoding 2.6.1

Applicable locations and conditions for default character encoding 2.6.2

Application of character encoding during JSP pre-compilation 2.6.3

Specifiable character encoding 2.6.4

Implementation Implementation of default character encoding (for Servlet specifications) 2.6.5

Definition in the DD 2.6.6

Settings Execution environment settings 2.6.7

Notes Precautions related to default character encoding 2.6.8

Note:
There is no specific explanation of Operations for this functionality.

When specifying settings for character encoding used for request decoding and response encoding compliant with the
Servlet specifications, you describe the settings for each servlet and JSP file. With Application Server, you can specify
default character encoding using the following methods apart from the settings compliant with the Servlet
specifications:

• Setting up character encoding to be used in J2EE servers

• Setting up character encoding to be used in Web applications

This enables you to omit the character encoding settings described in the servlet and JSP file during the development
of Web applications. Also, you can easily unify the character encoding for the J2EE servers or Web applications.

The following figure shows the character encoding settings that you can omit in the Servlet specifications:

2. Web Container

57

Figure 2‒9: Character encoding settings that can be omitted in the Servlet specifications

The following subsection describes the default character encoding settings.

2.6.1 Units for setting the default character encoding
With Application Server, you can specify settings for request decoding, response encoding, and default character
encoding used in JSP files of each J2EE server and Web application.

This subsection describes the default character encoding settings. You can also apply the default character encoding
during the execution of JSP pre-compile. For details on the default character encoding settings during the JSP pre-
compilation, see 2.6.3 Application of character encoding during JSP pre-compilation.

(1) Settings for each J2EE server
You set up default character encoding for each J2EE server. If you specify settings for default character encoding for
each J2EE server, the specified character encoding will be applied to the servlets and JSP files of all the J2EE
applications deployed on the J2EE server. This enables you to unify the character encoding for J2EE servers.

In the case of the J2EE servers, the default character encoding will be set up when you customize the J2EE server
operation settings. For details on the settings, see 2.6.7 Execution environment settings.

(2) Settings for each Web application
You set up the default character encoding for each WAR file. When you specify settings for default character
encoding for each WAR file, the specified character encoding will be applied to the servlets and JSP files included in
the WAR file. This enables you to unify the character encoding for Web applications.

In the case of the Web application settings, the default character encoding will be set up when you define the J2EE
application properties. For details on the settings, see 2.6.7 Execution environment settings.

(3) Operations when character encoding is specified with multiple ranges
Apart from the character encoding settings for each J2EE server or Web application, you can also set up the character
encoding defined in the Servlet specifications. For the character encoding settings in the Servlet specifications, the
settings are specified for each servlet or JSP file.

The following figure shows the scope of settings:

2. Web Container

58

Figure 2‒10: Scope of character encoding settings

You can also specify the default character encoding with multiple ranges. For multiple setting, the default character
encoding is applied in the following sequence:

1. Settings in each servlet or JSP file (Servlet specifications)

2. Settings in each Web application

3. Settings for each J2EE server

For example, as shown in Figure 2-10, the character encoding is set up in servlet 2 and J2EE server. In this case, the
default character encoding set in each J2EE server is applied to all the applications in the J2EE server, but the
character encoding set up in the servlet is applied only to the servlet 2.

The following table lists the valid settings for each combination of the character encoding settings:

Table 2‒18: Combinations of character encoding settings and valid settings

Combination of settings

Valid settings
Settings in the

servlets or JSP files
(Servlet

specifications)#

Settings in each Web
application

Settings for each
J2EE server

Y -- -- Settings in servlets or JSP files

Y Y --

Y -- Y

Y Y Y

-- Y -- Settings in each Web application

-- Y Y

-- -- Y Settings for each J2EE server

-- -- -- Character encoding defined in the Servlet
specifications

Legend:
Y: Available
--: Unavailable

Note:
If the character encoding is not specified, the character encoding defined in the Servlet specifications is applied. For details, see
2.6.5(2) Character encoding defined in the Servlet specifications.

2. Web Container

59

#
In the JSP file or tag file with the XML syntax, if the encoding attribute is not specified in the XML declaration, the default
encoding setup functionality is enabled.

2.6.2 Applicable locations and conditions for default character encoding
This subsection describes the applicable locations and the conditions for application of default character encoding
specified for each J2EE server or Web application.

(1) Applicable locations
The default character encoding specified for each J2EE server or Web application is applied at the following
locations:

• Request decoding
Applied to the default character encoding used for decoding the request body and query.

• Response encoding
Applied to the default character encoding used for encoding the response body and response Content-Type header.

• JSP files
Applied to default character encoding of the JSP files.

(2) Applicable conditions
The default character encoding is applied if the character encoding defined in the Servlet specifications is not
specified. For details on how to set up the character encoding defined in the Servlet specifications, see 2.6.5
Implementation of default character encoding (For Servlet specifications).

The following conditions are also applicable to the character encoding used for request decoding and response
encoding:

(a) Applicable conditions for requests

The following conditions are applicable in the case of character encoding used for request decoding:

• The HTTP request header of the request sent from the client contains the charset parameter and does not contain
the Content-Type header.

Moreover, the following conditions are applicable to the request body and query:

■ Request body

In the case of servlet
The character encoding is applied when the request POST data is read using one of the following methods:

• The request POST data is read in BufferedReader acquired by using the getReader method of
javax.servlet.ServletRequest.

• The request POST data is read as a request parameter.

When the request POST data is read as a request parameter, the getParameter method, getParameterMap
method, getParameterName method, and getParameterValues method of
javax.servlet.ServletRequest will be used.

In the case of JSP files
The character encoding is applied when the request POST data is read using one of the following methods:

• The request POST data is read in BufferedReader acquired by using the getReader method of the
implicit object request.

• The request POST data is read as a request parameter.

2. Web Container

60

When the request POST data is read as a request parameter, the getParameter method, getParameterMap
method, getParameterName method, and getParameterValues method of the implicit object request
will be used or the implicit object param and paramValues in the Expression Language will be used.

■ Query

In the case of servlet
The character encoding is applied when the query is read as a request parameter in the method that uses the
getParameter method, getParameterMap method, getParameterName method, and
getParameterValues method of javax.servlet.ServletRequest.

In the case of JSP files
The character encoding is applied when the query is read as a request parameter in one of the following methods:

• The query is read as a request parameter by using the getParameter method, getParameterMap
method, getParameterName method, and getParameterValues method of the implicit object
request.

• The query is read as a request parameter by using the implicit object param and paramValues in the
Expression Language.

(b) Applicable conditions for response

The conditions applicable to the character encoding used for response encoding are described separately for the
response body and the character encoding name for the response Content-Type header.

■ Response body

In the case of servlet
The character encoding is applied when the response data is created using PrintWriter acquired with the
getWriter method of javax.servlet.ServletResponse.

In the case of JSP files
The character encoding is applied when the response is output without acquiring the ServletOutputStream
object by the getOutputStream() method of the implicit object response.#

#
When the ServletOutputStream object is acquired, all the output to the JSP body text or the implicit
object out that does not use the ServletOutputStream object become runtime error. Therefore, this
output cannot be output as response.

■ Character encoding name for the response Content-Type header

In the case of servlet
The character encoding is applied when MIME type beginning with text/ is set and charset is not set in the
response contents format.

In the case of JSP files
The character encoding is applied in one of the following cases:

• The response contents format is not set.

• MIME type beginning with text/ is set and charset is not set.

In the case of the static contents
The character encoding is applied when the following conditions are fulfilled:

• The static contents extension is set as a target for default encoding setup functionality.

• The extension is set in the MIME type beginning with text/.

• Character encoding is not set for the response in servlet, JSP, or filter before the static contents are output.
Reference note

The contents format indicates the contents MIME type. You can include the character encoding in the contents
format. The examples of contents format settings in the servlets and JSP files are as follows:

2. Web Container

61

• In the case of servlet
The setContentType method of javax.servlet.ServletResponse is used.
Example of settings: response.setContentType("text/html");

• In the case of JSP files
The contentType attribute of the Page directive is set up.
Example of settings: <%@ page contentType="text/plain" %>

The examples of MIME type when the default character encoding settings are applied and when the default
character encoding settings are not applied are as follows:

• Example when the settings are applied to the MIME type: text/plain, text/html
• Example when the settings are not applied to the MIME type: image/gif, text/html;charset=UTF-8

2.6.3 Application of character encoding during JSP pre-compilation
You can apply the default character encoding of the JSP file during the execution of the JSP pre-compilation
functionality. If the default character encoding is applied during the execution of the JSP pre-compilation
functionality, the default character encoding settings depend on the JSP pre-compilation method. The JSP pre-
compilation methods have the following two types:

• JSP pre-compilation functionality executed during the application development

• JSP pre-compilation functionality executed during the startup of the J2EE application

The default character encoding settings is described for each JSP pre-compilation type. For details on the JSP pre-
compilation functionality, see 2.5 JSP pre-compilation functionality and maintaining compilation results.

For details on the specifiable character encoding, see 2.6.4 Specifiable character encoding and for the applicable
points and conditions of the specified default character encoding, see 2.6.2 Applicable locations and conditions for
default character encoding.

(1) JSP pre-compilation functionality executed during the application development (cjjspc
command)

When JSP pre-compilation is executed using the cjjspc command, the default character encoding can be applied to
JSP files or tag files. In the cjjspc command, you specify the default character encoding in the argument of the
cjjspc command. As a result, the default character encoding specified in the command is applied to the JSP file that
is executed when the cjjspc command is running. However, if the JSP file and tag file contain the character
encoding defined in the Servlet specifications, the default character encoding settings will not be applied.

For details on settings, see cjjspc (JSP pre-compilation) in the uCosminexus Application Server Command Reference
Guide.

! Important note

The default character encoding used for request decoding and response encoding is not applied during the compilation of
JSP files, and therefore, you cannot specify the settings in the cjjspc command.

(2) JSP pre-compilation functionality executed during the startup of the J2EE application
(cjstartapp command)

When JSP pre-compilation is executed with the startup of the J2EE applications using the cjstartapp command,
you can apply the default character encoding to JSP files or tag files. The method of setting up the default character
encoding is same for J2EE servers and Web applications. For J2EE servers, the default character encoding is set up for
each J2EE server during the J2EE server operation settings. For Web applications, the default character encoding is
set up in each WAR file during the Web application development. Execute the cjstartapp command to apply the
specified default character encoding.

For details on the settings for each J2EE server and Web application, see 2.6.1 Units for setting the default character
encoding. Also, for details on settings, see 2.6.7 Execution environment settings.

2. Web Container

62

2.6.4 Specifiable character encoding
The characters that you can specify as default character encoding is the character encoding supported in JavaVM. For
details on the character encoding supported in JavaVM, see the description related to the supported encoding in the
JDK documentation.

The strings you can specify are the character encoding mentioned in the canonical name for java.nio API and the
canonical name for java.lang API and their optional names.

! Important note

If the OS of the development and operation environments of the J2EE applications are different and when the J2EE
applications are exported and imported using EAR files containing the runtime information, specify a character encoding
that is supported in both the OS of the development environment and the OS of the operation environment. If the character
encoding set up in the development environment is not supported in the operation environment, an exception might occur
when the application starts.

Furthermore, whether the specified default character encoding is supported in JavaVM or not will be validated. The
timing for validation depends on the method used for setting up the default character encoding. The following table
describes the validation timing for character encoding:

Table 2‒19: Validation timing for character encoding

Validation timing Operations when unsupported character encoding is specified

When J2EE server starts A warning message will be output and the J2EE server starting process continues. The set up
character encoding is ignored.

When the server management
command (cjsetappprop) is
executed

An error message will be output and the processing of the server management command will be
cancelled.

When the cjjspc command is
executed#

An error message will be output and the processing of the command will terminate.

#
Validation timing when the default character encoding is set up during the JSP pre-compilation with the cjjspc command. For
details on the application of default character encoding during the JSP pre-compilation, see 2.6.3 Application of character
encoding during JSP pre-compilation.

2.6.5 Implementation of default character encoding (For Servlet
specifications)

In the locations where the character encoding settings defined in the Servlet specifications exist, the default character
encoding set up on Application Server is disabled.

This subsection describes the character encoding settings defined in the Servlet specifications. Note that the character
encoding settings depend on the version of the Servlet specifications.

(1) Character encoding setting method defined in the Servlet specifications
The following table describes the character encoding setting method defined in the Servlet specifications for each
Servlet/JSP version:

Table 2‒20: Character encoding setting method defined in the Servlet specifications (Servlet 2.5, 3.0/JSP
2.1)

Setting
contents Setting location Setting method in the Servlet specifications

Character
encoding of
request

Servlet ServletRequest.setCharacterEncoding(java.lang.String env)#1

JSP files None

2. Web Container

63

Setting
contents Setting location Setting method in the Servlet specifications

Character
encoding of
response

Servlet • ServletResponse.setCharacterEncoding(java.lang.String charset)#1

• ServletResponse.setContentType(java.lang.String type)#1

• ServletResponse.setLocale(java.util.Locale loc)#1

JSP files • contentType attribute value of the Page directive (including charset)#2

• pageEncoding attribute of the Page directive#3

• page-encoding element of web.xml#2

Character
encoding of JSP
file

JSP files • BOM#3

• contentType attribute value of the Page directive (including charset)#2

• pageEncoding attribute of the Page directive or Tag directive#3

• page-encoding element of web.xml#2

• encoding attribute of the XML declaration#4

#1
Package is javax.servlet.

#2
Method set up in the JSP page.

#3
Method set up in the JSP page or in the standard format tag file.

#4
Method set up in the JSP document or XML tag file.

Table 2‒21: Character encoding setting method defined in the Servlet specifications (Servlet 2.4/JSP 2.0)

Setting
contents Setting location Setting method in the Servlet specifications

Character
encoding of
request

Servlet ServletRequest.setCharacterEncoding(java.lang.String env)#1

JSP files None

Character
encoding of
response

Servlet • ServletResponse.setCharacterEncoding(java.lang.String charset)#1

• ServletResponse.setContentType(java.lang.String type)#1

• ServletResponse.setLocale(java.util.Locale loc)#1

JSP files • contentType attribute value of the Page directive (including charset)#2

• pageEncoding attribute of the Page directive#3

• page-encoding element of web.xml#2

Character
encoding of JSP
file

JSP files • contentType attribute value of the Page directive (including charset)#2

• pageEncoding attribute of the Page directive or Tag directive#3

• page-encoding element of web.xml#2

• encoding attribute of the XML declaration#4

#1
Package is javax.servlet.

#2
Method set up in the JSP page.

#3
Method set up in the JSP page or in the standard format tag file.

2. Web Container

64

#4
Method set up in the JSP document or XML tag file.

Table 2‒22: Character encoding setting method defined in the Servlet specifications (Servlet 2.3/JSP 1.2)

Setting
contents Setting location Setting method in the Servlet specifications

Character
encoding of
request

Servlet ServletRequest.setCharacterEncoding(java.lang.String env)#1

JSP files None

Character
encoding of
response

Servlet • ServletResponse.setContentType(java.lang.String type)#1

• ServletResponse.setLocale(java.util.Locale loc)#1

JSP files contentType attribute value of the Page directive (including charset)

Character
encoding of JSP
file

JSP files • contentType attribute value of the Page directive (including charset)#2

• pageEncoding attribute of the Page directive#2

#1
Package is javax.servlet.

#2
Method set up in the JSP page or JSP document.

(2) Character encoding defined in the Servlet specifications
If the character encoding settings in the Servlet specifications and the default character encoding settings in
Application Server do not exist, the character encoding defined in the Servlet specifications is applied.

When the character encoding is not specified, the following character encoding that are defined in the Servlet
specifications will be applied:

• For a request
ISO-8859-1 is applied. The character encoding is specified in the servlets and JSP files by using Servlet API.

• For a response
The following table lists the character encoding defined in the Servlet specifications for each servlet version:

Table 2‒23: Character encoding defined in the Servlet specifications (Response)

Servlet version Types Applied character encoding

Servlet 2.3 Servlet ISO-8859-1

JSP page

JSP document

Servlet 2.4 or later Servlet ISO-8859-1

JSP page

JSP document UTF-8

• In the case of JSP files
The following table lists the character encoding defined in the Servlet specifications for each Servlet version:

Table 2‒24: Character encoding defined in the Servlet specifications (JSP file)

Servlet version JSP version Types Applied character encoding

Servlet 2.3 JSP 1.2 JSP page ISO-8859-1

JSP document

2. Web Container

65

Servlet version JSP version Types Applied character encoding

Servlet 2.4 or
later

JSP 2.0, 2.1 JSP page ISO-8859-1

Standard format tag file

JSP document UTF-8

XML tag file

2.6.6 Definition in the DD
Define the default character encoding for each Web application in web.xml.

The following table lists the definition of default character encoding in the DD:

Table 2‒25: Definition of default character encoding in the DD

Specified tags Setting contents

<http-request>-<encoding> tag Specify the character encoding to be used for request body and
query decoding.

<http-response>-<encoding> tag Specify the character encoding to be used for the response body
encoding.

<jsp>-<page-encoding> tag Specify the character encoding for the JSP file.

Note:
If the character encoding settings in the Servlet specifications exist in the servlets or JSP files in the Web application, the settings
in the Servlet specifications are enabled. For details on the priority level of the settings, see 2.6.1(3) Operations when character
encoding is specified with multiple ranges.

2.6.7 Execution environment settings
To specify settings for the default character encoding, you must set up the J2EE server and Web applications.

Reference the Web application settings only when you want to set up or change the properties of Web applications
that do not contain cosminexus.xml.

(1) Setting up the J2EE server
Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for the default character
encoding within the <configuration> tag of the logical J2EE server (j2ee-server), in the Easy Setup definition
file.

The following table lists the definitions for the default character encoding in the Easy Setup definition file:

Table 2‒26: Definitions of default character encoding in the Easy Setup definition file

Parameter to be specified Setting contents

webserver.http.request.encoding Specify the character encoding to be used for request body and
query decoding.

webserver.http.response.encoding Specify the character encoding to be used for the response body
encoding.

webserver.jsp.pageEncoding Specify the encoding for the JSP file.

webserver.static_content.encoding.extension Specify the static contents extension for applying the default
response character encoding.

2. Web Container

66

Note:
If the settings for each J2EE server are specified with the character encoding settings for each Web application, the settings for
each Web application are enabled. For details on the priority level of the settings, see 2.6.1(3) Operations when character
encoding is specified with multiple ranges.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Web application setup
Implement the settings for the Web applications in the execution environment using the server management
commands and property files. Use the WAR property file for defining the default character encoding.

The tags specified in the WAR property file correspond to the DD. For details on the definition in the DD
(web.xml), see 2.6.6 Definition in the DD.

2.6.8 Precautions related to default character encoding
Note the followings regarding the application of default character encoding:

(1) Availability of default character encoding settings for response
The default character encoding settings for response are not enabled in the following cases:

• When the static contents extension is not the extension specified in the
webserver.static_content.encoding.extension parameter#1

• When the default character encoding for response is not set up for the static contents of the error page defined in
the Servlet specifications#2

#1 Parameter for specifying the static contents extension that applies the default character encoding.

#2 In the case of static contents output after one of the following conditions, the default character encoding settings for
response are enabled:

• When the character encoding is not set for response and when the java.io.PrintWriter object is
acquired by the getWriter method of the javax.servlet.ServletResponse interface in the
servlet, JSP, or filter.

• When the request object is wrapped even though the setAttribute method is executed and the request
object is wrapped with the request wrapper that does not invoke the setAttribute method.

Note that when the HTTP response compression filter is used, the default character encoding settings for response are
not enabled.

(2) Character encoding applied to the getCharacterEncoding method
When the character encoding is not specified in the Servlet specifications, the default character encoding specified for
each J2EE server or Web application is applied to the following Servlet API methods:

• getCharacterEncoding method of javax.servlet.ServletRequest (for request)

• getCharacterEncoding method of javax.servlet.ServletResponse (for response)

However, when the character encoding is changed using the setCharacterEncoding method, the same character
encoding will be acquired.

For the response, when the reset method of javax.servlet.ServletResponse is used to initialize the
response data, the character encoding set in Application Server can be acquired with the getCharacterEncoding
method.

For details on the character encoding setting method defined in the Servlet specifications, see 2.6.5 Implementation of
default character encoding (For Servlet specifications).

2. Web Container

67

(3) Character encoding in the XML declaration
When the Web container automatically generates an XML declaration in the JSP document and XML tag file, the
default character encoding applied to the response body encoding is output in the character encoding declaration in the
XML declaration.

(4) Application of character encoding to JSP files
The character encoding settings for JSP files is applied during the compilation of the JSP file. Therefore, if the
character encoding settings are added or changed when the JSP file is already compiled, the added or changed
character encoding will not be applied to the JSP file. To apply the settings, re-compile the JSP file.

(5) Specifying the character encoding for Web applications that executed JSP pre-
compilation with version 07-00

For the Web applications that executed JSP pre-compilation with version 07-00, when you set up the default character
encoding for response, re-execute the JSP pre-compilation functionality.

The followings are the description for each of the units to set up the default character encoding:

• In the case of settings for each J2EE server
Execute JSP pre-compilation for the JSP files of all the Web applications running on the J2EE server.

• In the case of settings for each Web application
Execute JSP pre-compilation for the JSP files included in the Web applications.

For details on the default character encoding settings during the JSP pre-compilation, see 2.6.3 Application of
character encoding during JSP pre-compilation.

(6) Character encoding for default error pages
The character encoding for default error pages is specified in UTF-8, and therefore the default encoding is not applied.

2. Web Container

68

2.7 Session management functionality
This section describes the session management functionality.

The session management is a functionality used for associating the requests and Web clients. This functionality
enables you to perform operations in which the same information is inherited from the Web clients across multiple
Web pages.

The following table describes the organization of this section.

Table 2‒27: Organization of this section (Session management functionality)

Category Title Reference

Description Objects managing the session information 2.7.1

Session ID format 2.7.2

Session management method 2.7.3

Deleting invalid session IDs maintained by the Web client 2.7.4

Setting the upper limit for the number of HttpSession objects 2.7.5

Adding a server ID to the session ID and Cookie 2.7.6

Implementation Definition in cosminexus.xml 2.7.7

Settings Execution environment settings 2.7.8

Notes Precautions related to session management 2.7.9

Note:
There is no description of Operations for this functionality.

The session management functionality is also used in the following cases:

• Identification of clients when using the load balancing functionality by clustering

• Identification of clients who have already logged on to the security management functionality

The Servlet specifications clearly describe the method of using Cookies and the method of using URL rewrite as the
session management methods. Sessions are managed using these methods even in the Web container of Application
Server. However, in the Servlet specifications, there are some parts for which the management method is not
specifically described. Therefore, this subsection describes how the session management methods that are not
described in the Servlet specifications are managed on Application Server.

This subsection also describes the following three types of session management functionality that are unique to
Application Server:

• Deleting invalid session IDs maintained by the Web client

• Setting the upper limit for HTTPSession objects

• Adding server ID to the session ID and Cookie
Tip

Deleting invalid session IDs maintained by the Web client, setting the upper limit for the HttpSession objects, and
adding server ID to the session ID functionality are the prerequisites when using the session failover functionality of
Application Server. For the session failover functionality, see 5. Inheriting Session Information Between J2EE Servers
in the uCosminexus Application Server Expansion Guide.

2.7.1 Objects managing the session information
This subsection describes the HttpSession objects used for managing the session information.

2. Web Container

69

(1) How to manage the HttpSession object
The session information is information managed by the HttpSession object defined in the Servlet API.

The management of the session information starts at the following points:

• In a servlet, when the HttpSession object is referenced.

• In a JSP, when a reference to a page occurs (however, this is a default case).

After management of the session information starts, if request is sent from the same browser process to servlets in the
same Web application, the HttpSession object of the managed content is passed to the servlet.

However, the HttpSession object instances actually passed to the servlet are different for each request. In other words,
the HttpSession objects with the same contents but different instances might be passed in a series of requests
belonging to the same session.

Therefore, note the following points in the operations for the HttpSession objects:

• When accessing an HttpSession object, you need to acquire the instances for each request.

• Do not cache the references to the HttpSession objects across multiple requests.

• Furthermore, locking the HttpSession objects with 'synchronized' keyword of java is also meaningless. Do not
lock the HttpSession objects.

(2) Storage period of the HttpSession object
The HttpSession objects are stored only in single JavaVM. Therefore, if a failure occurs in a JavaVM process (J2EE
server) running as a servlet engine, the session information stored in the HttpSession object is lost.

Also, the session information is lost when the J2EE server terminates regardless of normal or abnormal termination.

If you want to store the session information even after the J2EE server terminates, use the session failover
functionality that is the Application Server functionality. For details on the session failover functionality, see 5.
Inheriting Session Information Between J2EE Servers in the uCosminexus Application Server Expansion Guide.

2.7.2 Session ID format
This subsection describes the session ID format used for identifying the session information. The HttpSession object is
identified by the session ID.

The session ID format depends on whether the following functionality is used:

• Redirector-based load balancing functionality

• Functionality to append a server ID to the session ID

The session ID is guaranteed to be unique in the J2EE server. However, if you want to set a unique value across
multiple J2EE servers, add a worker name or server ID to the session ID and ensure that the worker name or server ID
is unique across multiple J2EE servers.

The following figure shows the session ID formats for the used functionality:

2. Web Container

70

Figure 2‒11: Session ID format

Each case is described below.

• When both the redirector-based load balancing functionality and the server ID addition functionality are
not used
The session ID is 32 alphanumeric characters. These alphanumeric characters form a unique value on a J2EE
server.

• When the redirector-based load balancing functionality is used
The session ID consists of 32 alphanumeric characters, period (.), and worker name. You must specify a unique
name for each server with the worker name.
For details on the redirector-based load balancing functionality, see the description related to the use of the load
balancer in 4.2 Distributing requests with the Web server (Redirector).

• When the server ID addition functionality is used (When the redirector-based load balancing functionality
is not used)
The session ID consists of 32 alphanumeric characters and the server ID. You must specify a unique value for
each server with the server ID.
For details on the server ID addition functionality, see 2.7.6 Adding a server ID to the session ID and Cookie.
Note that when you use the redirector-based load balancing functionality, the server ID is not added.

• When the database session failover functionality is used (when completeness guarantee mode is disabled) or
when the EADs session failover functionality is used
A session ID is formed of 32 alphanumeric characters, a server ID and 16 alphanumeric characters. The addition
of a server ID to the session ID, by Server ID addition functionality is a prerequisite for using the database session
failover functionality (when completeness guarantee mode is disabled) and EADs session failover functionality.
Note that you must set a unique value for each server, in the server ID.
For details on the Server ID addition functionality, see 2.7.6 Adding a server ID to the session ID and Cookie.
For details on the settings that are the prerequisites for the database session failover functionality and EADs
session failover functionality, see 5.4.2 Prerequisite settings in the uCosminexus Application Server Expansion
Guide.

2.7.3 Session management method
This section gives the details on how to manage a session and the session ID management.

2. Web Container

71

(1) How to manage a session
Specify details about how to manage a session of a Web container, in the tracking mode. There are two types of
tracking mode; a mode using an HTTP Cookie and a mode using the URL rewrite. You can choose to use either one
or both of the tracking modes.

• When using only an HTTP Cookie
Note that only the session management by the HTTP Cookie is enabled. At this time, a character string with the
URL rewrite does not include a URL path parameter that indicates the session ID.

• When using only the URL rewrite
Note that only the session management by the URL rewrite is enabled. At this time, the response does not include
the information of an HTTP Cookie that indicates the session ID.

• When using both the HTTP Cookie and the URL rewrite
The session management by an HTTP Cookie and the session management by a URL re-write is enabled. The
Web container determines the method used for managing the session, depending on the method from which the
session ID is acquired. When the session ID is acquired from an HTTP Cookie, the Web container determines that
the session is managed by the HTTP Cookie. When the session ID is obtained from a path parameter of a URL,
the Web container determines that the session is managed by the URL rewrite. The Web container carries out this
determination for each request.

(2) Session ID management when HTTP Cookie is used for session management
The session ID is managed as an HTTP Cookie. You can attach the HttpOnly property to the HTTP Cookie.

When a new HTTP session is created, an HTTP Cookie indicating the session ID is added to the HTTP response
header. The name of the HTTP Cookie indicating the session ID is JSESSIONID. You can change the Cookie name
if you are using Application Server 09-00 or later. Note that if the created HTTP session is disabled before commit,
the HTTP Cookie is not added.

(3) Session ID management when URL rewrite is used for session management
The session ID is managed as a URL path parameter.

The name of the URL path parameter indicating the session ID is jsessionid. You can change the name if you are
using Application Server of 09-00 or later. The session ID is added in the format ;jsessionid= session ID at
the end of the URL path, when the URL is rewritten by the Web container.

The URL path has a hierarchical structure and includes a value used for identifying resources. A query and fragment is
not included in the URL path. Therefore, when these elements are included in the URL, the session ID is added
immediately after the query or fragment. Also, if a path parameter other than the session ID is included in the URL,
the path parameter indicating the session ID is added at the end of the path parameter included in the URL.

Tip
When you add the session ID to the URL path parameter, the URL string length increases.

The following table lists the increased string length:

Table 2‒28: URL string length increased by URL rewrite

Functionality usage status Increases URL string length
(unit: string length)

When the redirector-based load balancing functionality or server ID addition
functionality is not used

44#

When the redirector-based load balancing functionality is used 44# + 1 (string-length-of-
period) + string-length-of-
worker-name

When the server ID addition functionality is used (when the redirector-based load
balancing functionality is not used)

44# + string-length-of-server-
ID

2. Web Container

72

Functionality usage status Increases URL string length
(unit: string length)

When the database session failover functionality (when completeness guarantee
mode is disabled) or EADs session failover functionality is used

44# + characters count of server
ID + 16 (alphanumeric character
count)

#
This is the sum of the 12 characters (;jsessionid=) plus the 32 characters of the session ID.When the name of the
path parameter of a URL is changed, the total of the following values serves as the size of the path parameter:
- Character count of path parameter
- Character count of the semicolon (;), and equal (=) signs
- Character string length of the session ID of an HTTP session (32 characters)

2.7.4 Deleting invalid session IDs maintained by the Web client
The invalid session IDs stored by a Web client will be deleted with Application Server. As a result, the sending of
invalid session ID from Web clients is controlled.

If the HTTP session is disabled or if an HTTP session containing an invalid session ID is received, the HTTP Cookie
used for deleting the HTTP Cookie information showing the invalid session ID with the Web container is added to the
HTTP response header. As a result, the invalid session ID is deleted.

The HTTP Cookie used for deleting the HTTP Cookie information showing the invalid session ID indicates the HTTP
Cookie that fulfills all the following conditions:

• HTTP Cookie specifying the session ID and name is JSESSIONID (you can change the Cookie name if you are
using Servlet 3.0 or later)

• Value is "" (null character string).

• A positive number forming the lapsed period is set for the validity period of the HTTP Cookie.

The HTTP Cookie used for deleting the HTTP Cookie information showing the invalid session ID is added to the
HTTP response header in the following cases:

• HTTP session is disabled.

• A session ID that does not exist in the J2EE server is received.

The following are the description for each case:

Precautions for using the Web server integration functionality
If the response status code is 304 (Not Modified), the Set-Cookie header might be deleted in the Web server
specifications. At this time, the HTTP Cookie used for deleting the HTTP Cookie information showing the invalid
session ID is also not added, therefore, you cannot delete the invalid session IDs maintained by the Web client.

(1) When the HTTP session is disabled
When all the following conditions are fulfilled, the HTTP Cookie used for deleting the HTTP Cookie information
showing the invalid session ID is added to the HTTP response header:

• The session ID is notified by using the HTTP Cookie.

• The HTTP session is disabled before the HTTP response is committed in the Web application#1.

• The HTTP session does not exist when the HTTP response is committed#2.

#1
The HTTP response header is sent to the Web client when the response is committed, so the HTTP Cookie
cannot be added to a response after commit. Therefore, when the HTTP session is disabled after the HTTP
response is committed in the Web application, the HTTP Cookie used for deleting the HTTP Cookie
information is not added. However, when the next request is received, a non-existing session ID is received,

2. Web Container

73

and therefore the subsection 2.7.4(2) When a session ID that does not exist in the J2EE server is received will
be applicable and the HTTP Cookie information will be deleted.

#2
If a new HTTP session is created when the HTTP response is committed, the HTTP Cookie information of the
Web client is overwritten in the HTTP Cookie specifying the new session ID, and therefore the HTTP Cookie
information is not required to be deleted.

Note that when one of the following conditions are fulfilled and even if the HTTP session is disabled, the HTTP
Cookie used for deleting the HTTP Cookie information showing the invalid session ID is not added:

• Request is received in the simple Web server.

• The servlet engine mode is used.

These functions are provided to maintain compatibility with previous versions.

(2) When a session ID that does not exist in the J2EE server is received
When all the following conditions are fulfilled, it is determined that an invalid session ID is received and the HTTP
Cookie used for deleting the HTTP Cookie information showing the invalid session ID is added to the HTTP response
header:

• The session ID is notified by using the HTTP Cookie.

• The notified session ID does not exist in the J2EE server.

• The HTTP session does not exist when the HTTP response is committed.

(3) Notes on deleting invalid session IDs maintained by the Web client
In a configuration in which requests with the same path are handled in multiple J2EE servers, disable this
functionality.

If you handle requests with the same path in which the Path of the Cookie has been rewritten using reverse proxy, the
HTTP session might be deleted inappropriately.

2.7.5 Setting the upper limit for the number of HttpSession objects
With Application Server, you can set an upper limit for the number of valid HttpSession objects.

Set the upper limit for HTTPSession objects as the property of the Web applications contained in a J2EE
application. For details on the settings for the J2EE applications, see 2.7.7 Definition in cosminexus.xml.

! Important note

If the session failover functionality is applied to the Web applications, you must set the upper limit for the number of HTTP
sessions when the following settings are made.

• Settings for canceling the start processing of the Web application
(webserver.dbsfo.negotiation.high_level key of the Easy Setup definition file) when the negotiation
processing during the startup of the application fails.

In this case, if the upper limit is not set for the number of HTTP sessions, an error occurs when you start the Web
application that inherits the session information and you cannot start the Web application. If you have specified the settings
for continuing the startup processing of the Web application when the negotiation processing during the startup of the
application fails, the settings of the upper limit of the number of HttpSession objects is optional.

For the session failover functionality, see 5.2 Overview of the session failover functionality in the uCosminexus Application
Server Expansion Guide.

For the negotiation processing of the session failover functionality during the startup of a Web application, see 6.4.1
Processing at the time of starting an application in the uCosminexus Application Server Expansion Guide.

For the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

2. Web Container

74

Reference note
When the size estimation functionality of the global session information is enabled, the upper limit for the number of
HttpSession objects that is the prerequisite for the session failover functionality is not required to be specified. For the
size estimation functionality of the global session information, see 6.5 Estimating the size of the global session information
in the uCosminexus Application Server Maintenance and Migration Guide.

(1) HttpSession objects for which upper limit is to be set
The upper limit is set for enabled HttpSession objects.

Among the HttpSession objects acquired by the getSession method of the
javax.servlet.http.HttpServletRequest interface, valid HttpSession objects implies the objects that
satisfy the following two conditions:

• Objects in which the timeout does not occur

• Objects in which the invalidate method is not called

(2) Operations when the number of HttpSession objects exceeds the upper limit (Occurrence
of exception)

If the upper limit for the number of HttpSession objects is specified and if an attempt is made to generate
HttpSession objects exceeding the specified upper limit, an exception occurs in the getSession method of the
javax.servlet.http.HttpServletRequest interface. Depending on the settings, one of the following
exceptions will occur:

• java.lang.IllegalStateException
• com.hitachi.software.web.session.HttpSessionLimitExceededException that is an

inherited class of java.lang.IllegalStateException

Specify which exception will be thrown in the J2EE application parameters. For details on the settings for the J2EE
applications, see 2.7.8(1) Setting up the J2EE server.

The HttpSession object is generated at the following timing in the Web Container:

• JSP execution time
Indicates the cases in which JSP is executed when true is specified in the session attribute of the page directive
or when the session attribute is omitted.

• When a URL requiring FORM authentication is accessed.

If the HttpSession object generation process exceeds the specified upper limit, perform the following operations:

• When the upper limit is exceeded during execution of JSP
java.lang.IllegalStateException or
com.hitachi.software.web.session.HttpSessionLimitExceededException is thrown
before execution of user code of JSP.

• When the upper limit is exceeded during access to a URL that requires FORM authentication
java.lang.IllegalStateException or
com.hitachi.software.web.session.HttpSessionLimitExceededException is thrown
before a request is transferred to the page for logging in.
Tip

If the com.hitachi.software.web.session.HttpSessionLimitExceededException class is used,
add Cosminexus-installation-directory/CC/lib/ejbserver.jar in the class path when the J2EE applications are
developed, and compile the Java program.

2. Web Container

75

(3) Operations when the number of HttpSession objects exceeds the upper limit (message
output)

If the upper limit for the number of HttpSession objects is specified and if an attempt is made to generate
HttpSession objects exceeding the specified upper limit, the KDJE39225-E message is output to the log.

The message KDJE39225-E is output every time the request that uses HTTP session is executed, therefore, the log
might be filled up with the same message. To restrain the repeated output of the same message, you can set the
interval (output interval) for KDJE39225-E. Set the interval as required. This interval is applied to each Web
application.

For the message output interval settings, see 2.7.8(1) Setting up the J2EE server.

2.7.6 Adding a server ID to the session ID and Cookie
On Application Server, you can add a server ID to the session ID and Cookie of HttpSession. This is called server ID
addition functionality. Specify a different server ID value for each Web container.

Customize the properties of the J2EE server to specify the settings for adding a server ID to the session ID and
Cookie. For details on customizing the settings for the J2EE server operations, see 2.7.8 Execution environment
settings.

Note that when you use the session failover functionality, it is mandatory to add the server ID to the memory session
ID. For details on the memory session failover functionality, see 6. Compatibility functionality of the extended
functionality (session failover functionality) in the uCosminexus Application Server Maintenance and Migration
Guide.

! Important note

The cookie name specified in this functionality must not duplicate a Cookie name specified in the Servlet or JSP or a Cookie
name automatically specified by the Web container. The following name is automatically specified by the Web container:
JSESSIONID

With Application Server version 09-00 or later, you can change the name of the Cookie set by the Web container. For
precautions to be taken when the server ID is attached to the Cookie and you want to change the name of the Cookie
set by a Web container, see 2.7.9 Precautions related to the session management.

(1) Adding server ID to the session ID of HttpSession
The session ID is normally unique in the same Web Container. However, in a system consisting of multiple Web
containers by using a load balancer, the session ID might not be unique for the whole system. If you use the
functionality for adding server ID to the session ID of HttpSession, a server ID that differs for each Web container is
added to the session ID of HttpSession. Consequently, a unique session ID can be maintained in the system.

Reference note
When integrating with a Web server, if requests are distributed using round robin as per the settings of the redirector, the
worker name is added to the session ID regardless of whether the settings for adding the session ID of HttpSession are
specified or not. The server ID is not added.

(2) Adding a server ID to a Cookie
To transfer the requests of the same session to the same Web container, use the functionality for specifying the request
transfer destination by the Cookie of a load balancer and the functionality for adding the server ID to the Cookie.

When you use the functionality for adding the server ID to the Cookie, a server ID that is different for each Web
container is added to the Cookie. You can add the Cookie (in which the server ID was added) to an HTTP response,
and hence, the requests of the same session can be transferred to the same Web container. Note that the Cookie with a
server ID is added to the response for the request that generates the HttpSession.

Note that in the following cases, the Secure property is added to the Cookie generated by the server ID addition
functionality:

• When an HTTP request is sent using the HTTPS protocol

2. Web Container

76

• When the scheme is set with the gateway specification functionality so that the scheme is considered as HTTPS

2.7.7 Definition in cosminexus.xml
This subsection describes the definitions in cosminexus.xml required in the application development
environment.

Setting the upper limit for the number of HttpSession objects

Specify the upper limit for the number of HttpSession objects in the <http-session>-<http-session-
max-number> tag within the <war> tag of cosminexus.xml. In the Web applications that inherit the session
information, you are not required to set a valid value of one or more as the upper limit for the number of HTTP
sessions.

Customizing the session parameters
Specity a session parameter in the war-session-config tag of cosminexus.xml.
The following table lists the definitions of session parameters.

Table 2‒29: Customizing the session parameters in cosminexus.xml

Tags to be specified Setting contents

cookie-config-name tag Specifies the the HTTP Cookie name and path parameter
name of a URL.

cookie-config-http-only tag Specifies whether HTTP Cookie has only the HttpOnly
attribute.

tracking-mode tag Specifies the HTTP session management method.

For details on the tags to be specified, see 2.2.6 Details of the War property in the uCosminexus Application Server
Application and Resource Definition Reference Guide.

2.7.8 Execution environment settings
To use the session management functionality, you must set up a J2EE server.

Also, when you use J2EE applications that do not contain cosminexus.xml, you are not required to set up or
change the execution environment properties.

(1) Setting up the J2EE server
Implement the J2EE server settings in the Easy Setup definition file. Define the session management functionality in
the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

The following table describes the session management functionality defined in the Easy Setup definition file:

Table 2‒30: Definition of the session management functionality in the Easy Setup definition file

Items Parameter to be
specified Setting contents

Customizing the session
parameters

webserver.sessio
n.cookie_config.
name

Specifies the name of HTTP Cookie and the path parameter name of a URL.

webserver.sessio
n.cookie_config.
http_only

Specifies whether to add the HttpOnly attribute in HTTP Cookie.

webserver.sessio
n.tracking_mode

Specifies the HTTP session management method.

2. Web Container

77

Items Parameter to be
specified Setting contents

Set maximum number of
HttpSession objects

webserver.sessio
n.max.throwHttpS
essionLimitExcee
dedException

Specify whether to throw
com.hitachi.software.web.session.HttpSessionLimitExcee
dedException when the number of HttpSession objects exceeds the
upper limit.

To throw java.lang.IllegalStateException, specify false.

webserver.sessio
n.max.log_interv
al

Specify the output interval for KDJE39225-E.

Adding server ID to the
session ID and Cookie

webserver.sessio
n.server_id.enab
led

Specify whether to add the server ID to the session ID.

webserver.sessio
n.server_id.valu
e

Specify the server ID to be added to the session ID.

webserver.contai
ner.server_id.en
abled

Specify whether to add the server ID to the Cookie.

webserver.contai
ner.server_id.na
me

Specify the name of the Cookie to be added to the server ID.

webserver.contai
ner.server_id.va
lue

Specify the server ID to be added to the Cookie.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Setting up the J2EE application
Set up the J2EE applications in the execution environment using the server management commands and property files.
Use the WAR property file to define the session management functionality.

The tags specified in the WAR property file correspond to cosminexus.xml. The definition of the session
parameter customization conforms to the standard specifications of Servlet 3.0. For details on the definitions in
cosminexus.xml, see 2.7.7 Definition in cosminexus.xml.

2.7.9 Precautions related to session management
This subsection describes the precautions related to session management.

(1) Customizing session parameters and the precautions related to the session parameters
You can change the name of HTTP Cookie and the path parameter name of a URL by performing the following
settings:

• Easy Setup definition file (webserver.session.cookie_config.name parameter)

• cosminexus.xml (war-session-config-cookie-config-name tag)

• web.xml (/web-app/session-config/cookie-config/name element) (in the case of Servlet 3.0 and
later)

• Servlet API (setName() method of the javax.servlet.SessionCookieConfig interface) (in the case
of Servlet 3.0 and later)

2. Web Container

78

! Important note
If settings made with different methods exist, the settings are applied in the order of the settings made using the Servlet
APIs, coding in the cosminexus.xml, coding in web.xml, and coding in the Easy Setup definition file.

When the webserver.session.cookie_config.name parameter of the Easy Setup definition file is true,
and the specified HTTP Cookie name is duplicated with the path parameter name of the URL as well as the name of
the Cookie specified in the Cookie addition function, the system performs the following operations.

When duplicated with the name specified in the webserver.session.cookie_config.name parameter of
the Easy Setup definition file

A default session ID is set. In the case of an HTTP Cookie, the session ID is 'JSESSIONID' and in the case of a
path parameter of a URL, the session ID is 'jsessionid'.

When duplicated with the name specified in cosminexus.xml, web.xml, or Servlet API
KDJE39338-E is output at the time of starting the Web application, and the Web application fails to start.
KDJE39338-E is output at the time of executing the Web application reload process and the reload process is
continued. When KDJE39338-E is output during the reload process, first modify the file in which the name of the
Cookie was changed by using Servlet API, and then re-execute the reload process.

(2) API used for URL rewrite and related precautions
URL rewrite is executed when the Servlet API that executes URL rewrite in the J2EE applications is invoked.

• The Servlet API that executes URL rewrite is a method of the following
javax.servlet.http.HttpServletResponse interface:

• encodeURL(java.lang.String url) method

• encodeRedirectURL(java.lang.String url) method

• encodeUrl(java.lang.String url) method

• encodeRedirectUrl(java.lang.String url) method

For details on these methods, see the Servlet specifications. Note that the encodeUrl(java.lang.String
url) method and the encodeRedirectUrl(java.lang.String url) method are the deprecated APIs in
Servlet 2.1 and later versions. Therefore, Hitachi recommends that you use methods other than these two methods.

As the API operations not specified in the Servlet specifications, this subsection describes the operations on
Application Server for the return value of the Servlet API for executing URL rewrite.

An HTTP session is enabled only in Web applications that are processing the requests. Therefore, URL rewrite will
only be performed if the URL specified in the Servlet API argument is the URL indicated in the Web applications that
are processing the requests. The following table lists the conditions for determining whether the URL is in the Web
applications that are processing the requests for each URL argument:

Table 2‒31: Conditions for determining whether the URL is in the Web applications that are processing the
requests for each URL argument

Types of argument
URL Conditions

Relative URL

(Example: /ex/
a.html)

The URL is determined as being in the Web application only if the following condition is fulfilled:

• The normalized path of the argument URL contains the context root name of the Web application that is
processing the requests.#1

Absolute URL

(Example: http: //
host1/ex/)

The URL is determined as being in the Web application only if the following conditions are fulfilled:

• The schema of the argument URL is http or https.#2

• If the argument URL and request URL have the same schema, the port number is matching.

• The host name of the argument URL matches with the request host name. #1#3

• The normalized path of the argument URL contains the context root name of the Web application that is
processing the requests.#1

2. Web Container

79

#1
Case-sensitive when names are compared.

#2
Case-insensitive when names are compared.

#3
The request host name is the host name part of the request Host header and compare the strings without performing name
resolution of the host name. Use the return value of the javax.servlet.ServletRequest.getServerName method
for the request host name. Note that in the following cases even if the host is the same, the host will be determined as a different
host:

• When the argument URL is the host name specification, the request URL is the IP address

• When the argument URL is the IP address specification, the request URL is the host name

This subsection also describes the return values when a string other than URL is specified in the Servlet API argument
for executing URL rewrite. Furthermore, the specification of a query or fragment at the beginning of the URL is also
described here.

The following table lists the return values for each Servlet API argument for executing URL rewrite:

Table 2‒32: Return values for each Servlet API argument for executing URL rewrite

Item No.
Conditions

Return value or exceptions
HTTP session Argument

1 N null null is returned.

2 N Invalid format for
URL

The java.lang.IllegalArgumentException exception has occurred.

3 • A new HTTP
session is
present
during the
request
processing.

• Session ID is
notified
during URL
rewrite.

Null character
string

The value with the session ID added is returned for the URL path of the HTTP
request and the query.#1

4 URL beginning
with query (when
the first character
is a question
mark (?))

The value with the value specified in the session ID and argument added is
returned for the URL path of the HTTP request.#1

5 URL beginning
with fragment
(when the first
character is a
hash mark (#))

The value specified in the argument is returned.#2

6 URL containing
the path
parameter that
indicates the
session ID of the
current HTTP
session

The value specified in the argument is returned.

7 URL determined
to be in the Web
application that is
processing the
requests.

The value with the session ID added in the argument is returned.

8 Other conditions The value specified in the argument is returned.

Legend:
--: Not applicable

Note:
The item numbers in this table indicate the priority of the conditions, the smaller the item number, the higher the priority of the
condition.

2. Web Container

80

#1
The path is not included in the argument URL, so you cannot directly add a path parameter to the argument URL. A URL in
which the argument begins with a null character string or query indicates request URL resources, therefore, use the value with
the path parameter added to the request URL to perform URL rewrite.

#2
A URL that is only a fragment indicates a specific location in the current resources. In a Web browser, normally this URL is
treated as one that indicates shift in the displayed contents. At this time, a request is not sent to the server. This operation is in
accordance with RFC3986.

The following is an example of URL where URL rewrite is used to add the session ID. Note that this example is based
on the following prerequisites:

Preconditions

• Servlet API is executed after the HTTP session is generated.

• HTTP request URL is http: //host1/gyoumu1/app1/index.jsp?type=1.

• The context root name is /gyoumu1.

The following is an example table describing the compliance between the specified value of the servlet API arguments
used in URL rewrite and the return value after rewrite (URL):

Table 2‒33: Specified value of the servlet API arguments used in URL rewrite and the corresponding
return value after rewrite (URL)

Servlet API arguments Return values

b.html b.html;jsessionid=AAAAA111112222233333444445555566svr0

../b.html ../b.html;jsessionid=AAAAA111112222233333444445555566svr0

../../b.html ../../b.html

http: //host2/ http: //host2

https: //host1/gyoumu1/ https: //host1/gyoumu1/;jsessionid=AAAAA111112222233333444445555566svr0

"" (null character string) "/gyoumu1/app1/index.jsp;jsessionid=AAAAA111112222233333444445555566svr0?type=1"

"?mode=2" "/gyoumu1/app1/index.jsp;jsessionid=AAAAA111112222233333444445555566svr0?mode=2"

"#aaa" "#aaa"

(3) Precautions for using URL rewrite
This point describes the precautions for using URL rewrite.

■ Screen transition from static contents

In the case of screen transition from the static contents (such as HTML file), the session managed with URL rewrite is
not maintained.

When you use URL rewrite to manage a session, implement settings so that the screen will always transit by using
servlets or JSPs. Also, implement the process for adding the session ID by rewriting URL with Servlet API in the
servlets or JSPs.

■ Request URL acquired in the Web applications

Even if the HTTP request URL contains the path parameter indicating the session ID managed by URL rewrite, the
path parameter indicating the session ID is not included in the URL acquired with the following methods:

Interface
javax.servlet.http.HttpServletRequest interface

Method

• getRequestURI() method

2. Web Container

81

• getRequestURL() method

(4) Secure property of the HTTP Cookie used in session management
When an HTTP request is send using the HTTPS protocol, the session ID generated by the Web container is returned
to the client by the HTTP Cookie. At that time, the Secure property is allocated to the HTTP Cookie.

Also, when the scheme is set up using the gateway specification functionality so that the scheme is considered as
HTTPS, and if the session ID generated by the Web container is returned to the client by the HTTP Cookie, the
Secure attribute is allocated to the respective HTTP Cookie.

2. Web Container

82

2.8 Event listener of an application
This section explains the event listener functionality of an application.

Event listener functionality is present in each Web application. The application event listener is instantiated when a
Web application is deployed. The instantiated application event listener receives the state change event of either one
or both of the servlet context object and the session object. The events received by the listener object are as follows:

• Generating a new session object

• Before serializing a session object#1

• After de-serializing a session object#1

• Deleting a session object

• Adding, deleting, and changing attributes of a session object

• Generating a servlet context object

• Deleting a servlet context object

• Adding, deleting, and changing attributes of a servlet context object

• Arrival of requests in a Web application#2

• Completion of request processing in a Web application#2

• Adding, deleting, and changing attributes of a request object#2

#1
Servlet API assumes that due to the vendor-specific processing of a session object, a session object is saved
and communicated after serializing, and processing is restarted after de-serializing a session object at another
point of time.
The intention of providing such event notifications in session object is to add not just data, but also resources,
such as database connections and object references in a session object. In an application designed to add
resources to a session object, the resources must be released once before serializing, and then acquired again
after de-serializing.
A configuration in which the resources are added to the session object, if not used with utmost care, the
amount of resources required in the entire server will increase immensely, and there might be a shortage of
resources. Therefore, use the event listener functionality if you can secure the resources.

#2
Can only be used in Web applications compliant with Servlet 2.4 or later specifications.

2. Web Container

83

2.9 Functionality of filtering requests and responses
This subsection describes the functionality for filtering the requests and responses.

The following table describes the organization of this section.

Table 2‒34: Organization of this section (Functionality for filtering requests and responses)

Category Title Reference

Description Servlet filter provided by Application Server (built-in filter) 2.9.1

Examples of recommended filter chain 2.9.2

Implementation Definition in the DD 2.9.3

Settings Execution environment settings (Web application settings) 2.9.4

Note:
There is no specific description of Operations and Notes for this functionality.

The filtering functionality available on Application Server is the functionality defined in the Servlet specifications and
the functionality provided with Application Server. Both of the above functions filter requests and responses of
servlets or JSPs.

The filtering functionality defined in the Servlet specifications wraps the requests before executing the servlets and
JSPs or the responses after executing the servlets and JSPs. As a result, you can perform operations such as changing
the data and acquiring the trace for the resources.

With the filtering functionality provided with Application Server, you can inherit the session information and
compress the HTTP responses. In Application Server, a servlet filter is provided for using this filtering functionality.
The servlet filter provided in Application Server is called a built-in filter. The following subsection explains the built-
in filter provided in Application Server.

2.9.1 Servlet filter provided by Application Server (built-in filter)
In Application Server, a servlet filter (built-in filter) is provided to use the following functionality:

• Inheriting the session information between the J2EE servers (Memory session failover functionality)
To inherit the session information between the J2EE servers, Application Server provides a filter for session
failover as the built-in filter.

• Compressing the HTTP responses
To compress the HTTP responses for the HTTP requests, Application Server provides an HTTP response
compression filter as the built-in filter.

The following table describes the types of built-in filters. Further, references of the functionality that you can use by
embedding the built-in filter in a Web application are also described.

Table 2‒35: Types of built-in filters

Type of built-in filter Description of functionality Reference manual Reference

Filter for session failover This functionality manages the session information
executed in a J2EE application. In the case of failure of the
J2EE server, the managed session information is inherited
to another J2EE server.

uCosminexus
Application Server
Maintenance and
Migration Guide

6.2,

6.4

HTTP response compression
filter

This functionality compresses the HTTP responses to the
HTTP requests for servlets, JSPs, and static contents, in the
gzip format.

This manual 2.10

2. Web Container

84

Tip
When you build in each filter in the Web application, specify in the order of 'filter for session failover', 'HTTP response
compression filter' in the filter mapping definition. The filter for session failover must be deployed before all the built-in
filters and user filters.

Note that with Servlet 3.0 or later, you can define a filter by using an API and not the web.xml file. However you
cannot use an API to define a built-in filter.

The action of the built-in filter on HTTP requests and HTTP responses, the restrictions on the operation conditions of
the built-in filter are explained below:

(1) Action on the HTTP requests and HTTP responses
The built-in filter acts on the request header and the request body of the HTTP requests sent from the client, and may
delete, add, and change the information. In the same way, the built-in filter may also act on the response header and
the response body of the HTTP responses sent from the server. The following table describes the action of the built-in
filter on HTTP requests and HTTP responses:

Table 2‒36: Action of the built-in filter on HTTP requests and HTTP responses

Type of built-in filter Action on the HTTP request Action on the HTTP response

Filter for session
failover

-- --

HTTP response
compression filter

-- When the response body is compressed, gzip is
specified in the Content-Encoding header. The
response body is compressed in gzip format.

Legend:
--: Not applicable

(2) Restriction on operation conditions
When you use the user filter and the built-in filter simultaneously, there are restrictions on the order in which the built-
in filter is invoked in the filter chain.

The following restrictions are explained for each built-in filter:

• Restriction on the location
This is the restriction on the location (invocation order) of the built-in filter in the filter chain.

• Restriction on operation conditions
This is a restriction on the operation conditions, such as the preconditions for operation of the built-in filter.

• Restriction on the other servlet filters deployed before and after the built-in filter
This is a restriction with respect to servlet filters that are deployed before and after the built-in filter.

(a) Restrictions on the filter for session failover

The following table describes the restrictions on the filter used for session failover:

Table 2‒37: Restrictions on the filter used for session failover

Type of restriction Description

Restriction on the location The filter for session failover must be invoked first in the filter chain. You need to deploy the
filter for session failover before all the user filters and the built-in filter.

Restriction on operation conditions --

Restriction on the other servlet filters
deployed before and after the built-in
filter

--

2. Web Container

85

Legend:
--: Not applicable

(b) Restrictions on an HTTP response compression filter

The following table describes the restrictions on the HTTP response compression filter:

Table 2‒38: Restrictions on the HTTP response compression filter

Type of restriction Description

Restriction on the location --

Restriction on operation conditions --

Restriction on the other servlet filters
deployed before and after the built-in
filter

In the case of concurrent use of the HTTP response compression filter and servlet filter that
changes the settings of the Content-Length header or the Content-Encoding header by using the
setHeader method, addHeader method, setIntHeader method, or addIntHeader
method of the javax.servlet.http.HttpServletResponse interface, you need to
deploy the servlet filter after the HTTP response compression filter.

Legend:
--: Not applicable

2.9.2 Examples of recommended filter chain
The examples of recommended filter chain are explained below. Deploy the filters to form a chain in the following
order:

Note that the general filters that act on the request body and the response body are assumed as user filters explained in
the examples.

• When using filters for session failover, and an HTTP response compression filter

1. Filter for session failover

2. HTTP response compression filter

• When using filters for session failover, an HTTP response compression filter, and a user filter (Filter A)

1. Filter for session failover

2. Session failover filter

3. HTTP response compression filter

4. User filter (Filter A)

• When using a filter for session failover and a user filter (Filter C)

1. Filter for session failover

2. User filter (Filter C)

• When using an HTTP response compression filter and a user filter (Filter D)

1. HTTP response compression filter

2. User filter (Filter D)

2.9.3 Definition in the DD
Define the functionality for filtering requests and responses in web.xml.

For details on the definition of functionality for filtering requests and responses in the DD, see the following locations
respectively:

• For the filter for session failover, see 5. Inheritance of Session Information Between J2EE Servers in the
uCosminexus Application Server Expansion Guide.

• For details on the HTTP response compression filter, see 2.10 HTTP response compression functionality.

2. Web Container

86

2.9.4 Execution environment settings (Web application settings)
To define the functionality for filtering requests and responses you must set up the Web applications. Reference this
subsection only if you want to set or change the properties of Web applications that do not contain
cosminexus.xml.

Implement the Web application settings in the execution environment by using the server management commands and
property files. To define the filtering for requests and responses, use the filter property file and WAR property file.

The tags specified in the filter property file and WAR property file correspond to the DD. For the definitions in the
DD (web.xml), see 2.9.3 Definition in the DD.

2. Web Container

87

2.10 HTTP response compression functionality
This subsection describes the HTTP response compression functionality.

The HTTP response compression functionality compresses the HTTP responses for the HTTP requests to the servlets,
JSPs, and static contents in the gzip format. By using this functionality to compress the HTTP responses, you can
reduce the time required for communicating the HTTP responses between the Web container and Web client
(browser).

This functionality is provided as a servlet filter that is embedded and runs in the Web application. This is called the
HTTP response compression filter.

The following table describes the organization of this section.

Table 2‒39: Organization of this section (HTTP response compression functionality)

Category Title Reference

Description Overview of HTTP response compression filter 2.10.1

Conditions for using the HTTP response compression filter 2.10.2

Implementation Executing the applications that use the HTTP response compression filter 2.10.3

Definition in the DD 2.10.4

Examples of the DD definitions 2.10.5

Settings Execution environment settings (Web application settings) 2.10.6

Note:
There is no specific description of Operations and Notes for this functionality.

2.10.1 Overview of HTTP response compression filter
If you enable the HTTP response compression functionality, the response body of the HTTP response is compressed
in a gzip format. The following figure shows an overview of HTTP response compression functionality.

Figure 2‒12: Overview of HTTP response compression functionality

To enable the HTTP response compression functionality, you need to embed the HTTP response compression filter
provided by Application Server, in the Web application. In the case of applying the HTTP response compression
functionality, add the filter definition of the HTTP response compression filter and the definition of the filter mapping
to the DD (web.xml) of Web application. In the case of applying the HTTP response compression functionality to a
Web application that is already deployed on a J2EE server, use the server management commands to add the filter
definition of the HTTP response compression filter and the definition of filter mapping.

2. Web Container

88

2.10.2 Conditions for using the HTTP response compression filter
This subsection describes the conditions and precautions for using the HTTP response compression filter.

(1) Preconditions
To use the HTTP response compression functionality, the following preconditions need to be satisfied:

• gzip format compliant Web client
When the HTTP response compression functionality is enabled, you need to decompress HTTP responses that are
compressed in gzip format with the Web client. The Web client, therefore must support the gzip format. If the
Web client does not support the gzip format, HTTP responses are not compressed, even if the HTTP response
compression functionality is enabled.

• HTTP/1.1 compliant Web client
In HTTP response compression functionality, the value specified in the Accept-Encoding header of the HTTP
request determines whether the Web client supports the gzip format. The Web client is therefore required to
support HTTP/1.1 as defined in the specifications of the Accept-Encoding header.

(2) Required memory size
The memory required for the HTTP response compression functionality is obtained with the following formula:

Memory-required-for-the-HTTP-response-compression-functionality (bytes) = Number-of-concurrent-
executions-of-the-HTTP-requests-that-enable-the-HTTP-response-compression-functionality Response-
compression-threshold (bytes)
The compression threshold is used for determining whether to compress the HTTP response depending on the size of
the HTTP response body. Only when the size of the HTTP response body exceeds the size defined in the compression
threshold, the HTTP response will be compressed. Note that the compression threshold is specified for HTTP
requests.

Define the compression threshold in the DD (web.xml). When the size of the HTTP response is small, by defining
the compression threshold you ensure that the time required for HTTP response compression is not longer than the
time required for communication.

Decide an appropriate size for the compression threshold depending on the type of resources you want to compress
and the speed of communications line. Hitachi recommends that you acquire the size defined in the compression
threshold using the actual measurements and define the appropriate size.

(3) Conditions for enabling the HTTP response compression functionality
You can specify conditions for enabling the HTTP response compression functionality. The conditions that can be
specified are explained below.

• URL pattern of HTTP request
If the URL of the request to a Web application (in which the HTTP response compression filter is installed)
matches with the specified URL pattern, compress the response to that request.
The following figure shows an example with '*.html' specified as the URL pattern of the HTTP request that
executes the compression of HTTP response:

2. Web Container

89

Figure 2‒13: Example with '*.html' specified as the UTL pattern of the HTTP request that executes
HTTP response compression

• Media-Type of HTTP response
If the value of the Media-Type included in the Content-Type header of the HTTP response matches with the
specified value, compress the HTTP response.
In the case of servlets or JSPs, the value of the Media-Type of HTTP response is set by the setContentType
method of a J2EE application. In the case of static contents, the Media-Type is the MIME type associated with the
extension.
The following figure shows an example with 'text/html' specified as the Media-Type of HTTP response that
executes the compression of HTTP response:

Figure 2‒14: Example with 'text/html' specified as the Media-Type of HTTP response that executes
HTTP response compression

• Body size of HTTP response
Set a threshold value to execute the compression of an HTTP response. If the body size exceeds this threshold
value, compress the HTTP response.
The following figure shows an example in which the HTTP response compression functionality is enabled by
specifying '200 bytes' as the body size of the HTTP response that executes the compression of HTTP response:

2. Web Container

90

Figure 2‒15: Example with '200 bytes' specified as the body size of the HTTP response that executes
HTTP response compression

(4) Notes

Precautions related to the definition of the HTTP response compression filter
When using the HTTP response compression filter, after considering the action of the built-in filter on the HTTP
requests and HTTP responses and the restrictions on the order of the filter chain, you need to embed HTTP
response compression filter in a Web application. For details on the built-in filter, see 2.9.1 Servlet filter provided
by Application Server (built-in filter).
Note that with Servlet 3.0 or later, you can define a filter by using an API and not the web.xml file. However,
you cannot use an API to define a built-in filter.

Precautions related to error pages
In the Web applications that use the HTTP response compression functionality, you can customize the error pages
by using the following functionality:

• Error page customization with the Web server functionality

• Error page customization based on in-process HTTP server

• Error page customization with the <error-page> tag of web.xml
When using the error page with the <error-page> tag of web.xml, specify the servlet that acquires and uses
javax.servlet.ServletOutputStream from the static contents or response in the error page.
In the HTTP response compression functionality, you use javax.servlet.ServletOutputStream
acquired from the response object to output the compressed data. Therefore, java.io.PrintWriter cannot
be acquired from the response object in the servlet or JSP that generates an error page.

2.10.3 Executing the applications that use the HTTP response
compression filter

This subsection describes the precautions to be taken when developing applications that use the HTTP response
compression filter.

(1) Order of invocation when the HTTP response compression filter is combined with other
filters

The HTTP response compression filter must be invoked before the other filters specified in the HTTP response
header. When you use the setHeader method, addHeader method, setIntHeader method, and

2. Web Container

91

addIntHeader method of javax.servlet.http.HttpServletResponse to use other filters that set
Content-Length header and Content-Encoding header, deploy the other filters after the HTTP response compression
filter.

(2) Precautions related to HTTP response buffer
When the HTTP response compression functionality is enabled, the buffer with the size specified in the compression
threshold is installed before the HTTP response buffer. Data is written in the HTTP response buffer when the output
data exceeds the compression threshold.

Unless the compressed data size exceeds the HTTP response buffer size, the HTTP response is not written in the Web
client. If you are required to write the HTTP response in the Web client before the output data size exceeds the
compression threshold, you must explicitly invoke the flush method of the stream for response output#. However, if
the flush method or flushBuffer method of the javax.servlet.ServletResponse interface is invoked
before the output data size exceeds the compression threshold, the output data is written in the Web client without
being compressed.

#
The stream for response output indicates the following objects:

• javax.servlet.ServletOutputStream acquired by the getOutputStream method of the
javax.servlet.ServletResponse interface

• java.io.PrintWriter acquired by the getWriter method of the
javax.servlet.ServletResponse interface

• javax.servlet.jsp.JspWriter implicitly available in JSP

(3) Precautions related to the response header of the HTTP response
When the response body of the HTTP response is compressed with the HTTP response compression functionality,
gzip is specified in the Content-Encoding header and Accept-Encoding is specified in the Vary header of this HTTP
response. Nothing is specified in the Content-Length header.

Therefore, note the following points when you use the setContentLength method of the
javax.servlet.ServletResponse interface and when you use API# for adding and changing the response
header of the javax.servlet.http.HttpServletResponse interface:

• When you use one of the following APIs to add the filter for setting the Content-Length header and Content-
Encoding header, define in the DD (web.xml) that the API be executed after the filter for response compression:

• setContentLength method of the ServletResponse class

• API# for adding and changing the response header of the HttpServletResponse class

• When the response body of the HTTP response is compressed, the Content-Length header of the HTTP response
is not added even though the setContentLength method of the ServletResponse class and the API# for
adding and changing the response header of the HttpServletResponse class are used. The HTTP response
for which the Content-Length header is not added is sent in the chunk format to the client by the Web container.

• When the response body of the HTTP response is compressed, a value is not set in the Content-Encoding header
even though the API# for adding and changing the response header of the HttpServletResponse class is
used. When the response body is compressed, gzip is specified in the Content-Encoding header by the Web
Container.

#
The API for adding and changing the response header indicates the following methods of the
javax.servlet.http.HttpServletResponse interface:

• setHeader method

• addHeader method

• setIntHeader method

• addIntHeader method

2. Web Container

92

(4) Precautions related to data output for HTTP response
Note the following points when ServletOutputStream or PrintWriter is acquired with the
getOutputStream method or the getWriter method of the javax.servlet.ServletResponse
interface and the HTTP response is output:

• When you invoke the setContentType method of ServletResponse while the data is being written in the
HTTP response buffer by using ServletOutputStream or PrintWriter, even if HTTP response with
Media-Type specified for compression exists, the HTTP response is not compressed.
However, if an asterisk (*) is specified in the Media-Type to be compressed, the HTTP response is compressed.

• To compress the JSP output by specifying Media-Type, either specify the contentType attribute of the Page
directive or invoke the setContentType method of the ServletResponse class before the JSP buffer is
exceeded.

(5) Precautions for compressing HTTP responses in applications
For HTTP responses compressed in applications, specify settings so that the HTTP response compression
functionality is not enabled. If the HTTP response compression functionality is enabled for the HTTP responses
compressed in applications, the operations might not function properly.

2.10.4 Definition in the DD
This subsection describes the DD definitions required for using the HTTP response compression functionality.

To enable the HTTP response compression functionality, you must add the filter definition and filter mapping
definition in the DD of the Web applications. The HTTP response compression functionality is enabled only when
requests exist for the resources with the URL pattern mapped by the filter mapping definition.

Define the HTTP response compression functionality in web.xml.

The following table lists the definition of HTTP response compression functionality in the DD:

Table 2‒40: Definition of HTTP response compression functionality in the DD

Settings Specified tags Setting contents

Filter definition <filter-name> tag
in the <filter> tag

Specify the name of the filter you want to add. The set value is a fixed value.

Set value (fixed value)
com.hitachi.software.was.web.ResponseCompressionFil
ter

<filter-class> tag
in the <filter> tag

Specify the class name of the filter you want to add. The set value is a fixed
value.

Set value (fixed value)
com.hitachi.software.was.web.ResponseCompressionFil
ter

Mapping of the URL
pattern and HTTP
response compression
rules

<param-name> tag
and <param-value>
tag in the <filter-
class><init-
param> tag

Specify the mapping of the URL pattern and the HTTP response compression
functionality.

For details, see 2.10.4(1) Mapping of the URL pattern and HTTP response
compression rules (url-mapping).

HTTP response
compression rules

Specify the compression rule name, Media-Type, and compression threshold as
the compression rules for HTTP response.

For details, see 2.10.4(2) HTTP response compression rules.

Filter mapping
definition

<filter-name> tag
in the <filter-
mapping> tag

Specify the filter name. The set value is a fixed value.

Set value (fixed value)
com.hitachi.software.was.web.ResponseCompressionFil
ter

2. Web Container

93

Settings Specified tags Setting contents

Filter mapping
definition

<url-pattern> tag
in the <filter-
mapping> tag

Specify the mapping of the URL pattern or servlet class and the HTTP response
compression filter. The HTTP response compression functionality is enabled only
when requests exist for the resources with the URL pattern mapped by the filter
mapping definition.

The set value is optional.

The definition contents of the DD are described in the following examples of the DD definitions:

 ...
<filter>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filter-name>
 <filter-class>com.hitachi.software.was.web.ResponseCompressionFilter</filter-class>
 <init-param>
 <param-name>url-mapping</param-name>
 <param-value>
 /*=rule1;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule1</param-name>
 <param-value>
 *: 1000;
 </param-value>
 </init-param>
</filter>
 ...
<!-- The filter mappings for Response Compression Filter -->
<filter-mapping>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

The part enclosed in the <filter> tag is the filter definition and the part enclosed in the <filter-mapping> tag
is the filter mapping definition. The value specified in the <filter-name> tag and <filter-class> tag of the
filter definition is fixed in the following package name:

com.hitachi.software.was.web.ResponseCompressionFilter

The contents defined in the <init-param> tag of the DD are as follows:

(1) Mapping of the URL pattern and HTTP response compression rules (url-mapping)
The <init-param> tag of the DD specifies the mapping of the URL pattern that enables the HTTP response
compression functionality and the name of the HTTP response compression rule applied to the specified URL pattern.

The rules for specifying parameters and the mapping rules for URL pattern are as follows:

(a) Rules for specifying parameters

• The URL pattern is case-sensitive.

• The name of the HTTP response compression rule is case-sensitive.

• The URL pattern and HTTP response compression rule name are delimited by one-byte equal sign (=).

• Delimit multiple specifications with one-byte semicolon (;).

• If multiple URL patterns are applicable, the URL pattern specified earlier is used.

• The linefeed, tabs, and spaces in the parameter value are ignored.

• The one-byte semicolon (;) at the end of the parameter value is ignored.

(b) Mapping rules for URL pattern

The path match, extension match, and exact match mapping rules are applicable to the URL pattern defined in the
url-mapping parameter. The following shows the mapping rules:

• Path match

2. Web Container

94

If a string beginning with / and ending with /* is specified as the URL pattern and if the relative path from the
context root of the request URL begins with the string excluding * from the URL pattern, the string is considered
as matching. Also, if /* is specified as the URL pattern, all the request URLs are considered to be matching.

Examples:
In the URL pattern /jsp/*, if the relative path from the context root of the request URL is /jsp/index.jsp, the
string is considered as matching.

• Extension match
If a string beginning with *. is specified as the URL pattern and if the string is the same as the string continuing
after *. of the request URL extension and URL pattern, the string is considered as matching.

Example:
In the URL pattern *.jsp, if the relative path from the context root of the request URL is /jsp/
index.jsp, the string is considered to be matching.

• Exact match
If a string other than those mentioned above begins with / as the specified URL pattern and if the relative path
from the context root of the request URL is exactly same as this URL pattern, the string is considered as matching.

Example:
In the URL pattern /jsp/index.jsp, if the relative path from the context root of the request URL is /
jsp/index.jsp, the string is considered as matching.

(2) HTTP response compression rules
The <init-param> tag of the DD specifies the Media-Type of the HTTP response to be compressed and the
compression threshold.

Media-Type
If the Media-Type specified as the condition is included in the HTTP response, the HTTP response will be
compressed with the HTTP response compression functionality.

Compression threshold
The compression threshold is specified as an integer value from 100 to 2,147,483,647. By default, compression
threshold 100 is applied to the all Media-Type.
The compression threshold is used for determining whether to compress the HTTP response depending on the size
of the HTTP response body. When the size of the HTTP response body exceeds the size defined in the
compression threshold, the HTTP response will be compressed with the HTTP response compression
functionality.
When the size of the HTTP response is small, by defining the compression threshold you ensure that the time
required for HTTP response compression is not longer than the time required for communication.
An appropriate size is decided for the compression threshold depending on the type of resources you want to
compress and the speed of communications line; therefore, it is recommended that the size defined in the
compression threshold be acquired using actual measurements and be defined appropriately.

The following shows the rules for specifying parameters:

• If an asterisk (*) is specified in Media-Type, all Media-Type are shown. However, if each Media-Type is
specified, the specification for each Media-Type is given priority.

• Media-Type is case-insensitive.

• Media-Type and compression threshold are delimited with one-byte colon (:).

• Delimit multiple specifications with one-byte semicolon (;).

• If the same Media-Type is specified multiple times, the Media-Type specified later is used.

• The linefeed, tabs, and spaces in the parameter value are ignored.

• The one-byte semicolon (;) at the end of the parameter value is ignored.

(3) Notes
Take the following precautions when you set up the HTTP response compression filter:

2. Web Container

95

• Check the validity of the filter initialization parameter when you initialize the filter for response compression. If a
problem occurs in the value defined in the initialization parameter, an error occurs in the filter initialization
process and the Web application will not start.

• If the request URL matches the URL pattern specified in the url-mapping parameter, but if the response
compression filter does not match the mapped URL pattern, the response compression rules specified in the url-
mapping parameter are not applied.

• If multiple URL patterns are mapped to the response compression filter, you need to specify the filter mapping
definition in such a way so that the request URL does not match with multiple URL patterns simultaneously. To
specify different response compression functionality for multiple URL patterns, specify multiple URL patterns in
the url-mapping parameter.

• To use the memory session failover functionality, specify the filter mapping definition of the response
compression filter under the filter mapping definition of the filter for session failover.

• If the Web application version is Servlet 2.4 or later versions, do not specify the <dispatcher> tag of
<filter-mapping>. Also, if 'FORWARD', 'INCLUDE', and 'ERROR' is specified in the <dispatcher>
tag, note that an error will occur while starting the Web application and the application cannot be started.

2.10.5 Examples of the DD definitions
This subsection describes the examples of the DD definitions that use the HTTP response compression functionality as
the examples for each of the following cases:

• When the compression condition is specified for the body size of the HTTP response

• When the compression condition is specified for the URL pattern

• When the compression condition is specified for the Media-Type of the HTTP response

• When the compression conditions are combined and specified

(1) When the compression condition is specified for the body size of the HTTP response
The following is an example of definition when the compression condition is specified for the body size of the HTTP
response:

<web-app>
 ...
<!-- The filter for Response Compression Filter -->
<filter>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filter-name>
 <filter-class>com.hitachi.software.was.web.ResponseCompressionFilter</filter-class>
 <init-param>
 <param-name>url-mapping</param-name>
 <param-value>
 /*=rule1;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule1</param-name>
 <param-value>
 *: 1000;
 </param-value>
 </init-param>
</filter>
 :
<!-- The filter mappings for Response Compression Filter -->
<filter-mapping>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>
 ...
</web-app>

In the definition example, the HTTP response for accessing the URL pattern /* and the body size exceeding 1,000
bytes is compressed.

2. Web Container

96

(2) When the compression condition is specified for the URL pattern
The following is an example of definition when the compression condition is specified for the URL pattern:

<web-app>
 ...
<!-- The filter for Response Compression Filter -->
<filter>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filter-name>
 <filter-class>com.hitachi.software.was.web.ResponseCompressionFilter</filter-class>
 <init-param>
 <param-name>url-mapping</param-name>
 <param-value>
 /app/dir/*=rule1;
 *.html=rule1;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule1</param-name>
 <param-value>
 *: 100;
 </param-value>
 </init-param>
</filter>
 ...
<!-- The filter mappings for Response Compression Filter -->
<filter-mapping>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filter-name>
 <url-pattern>/app/*</url-pattern>
</filter-mapping>
 ...
</web-app>

In this definition example, the HTTP response for accessing the URL pattern /app/* and fulfilling the following
conditions is compressed:

• HTTP response for which the HTTP request URL pattern is /app/dir/* and the body size exceeds 100 bytes

• HTTP response for which the HTTP request URL pattern is *.html and the body size exceeds 100 bytes

(3) When the compression condition is specified for the Media-Type of the HTTP response
The following is an example of definition when the compression condition is specified for the Media-Type of HTTP
response:

<web-app>
 ...
<!-- The filter for Response Compression Filter -->
<filter>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filter-name>
 <filter-class>com.hitachi.software.was.web.ResponseCompressionFilter</filter-class>
 <init-param>
 <param-name>url-mapping</param-name>
 <param-value>
 /*=rule1;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule1</param-name>
 <param-value>
 text/html: 500;
 application/pdf: 1000;
 </param-value>
 </init-param>
</filter>
 ...
<!-- The filter mappings for Response Compression Filter -->
<filter-mapping>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>
 ...
</web-app>

In this definition example, the HTTP response for accessing the URL pattern /* and fulfilling the following
conditions is compressed:

2. Web Container

97

• HTTP response for which Media-Type is text or html and the body size exceeds 500 bytes

• HTTP response for which Media-Type is application or pdf and the body size exceeds 1,000 bytes

(4) When the compression conditions are combined and specified
You can also combine and define the compression conditions as shown in the following example:

<web-app>
 ...
<!-- The filter for Response Compression Filter -->
<filter>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filter-name>
 <filter-class>com.hitachi.software.was.web.ResponseCompressionFilter</filter-class>
 <init-param>
 <param-name>url-mapping</param-name>
 <param-value>
 /app/dir1/*=rule1;
 /app/dir2/*=rule2;
 *.html=rule3;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule1</param-name>
 <param-value>
 *: 500;
 application/pdf: 1000;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule2</param-name>
 <param-value>
 application/pdf: 2000;
 </param-value>
 </init-param>
 <init-param>
 <param-name>rule3</param-name>
 <param-value>
 *: 100;
 </param-value>
 </init-param>
</filter>
 ...
<!-- The filter mappings for Response Compression Filter -->
<filter-mapping>
 <filter-name>com.hitachi.software.was.web.ResponseCompressionFilter</filter-name>
 <url-pattern>/app/*</url-pattern>
</filter-mapping>
 ...
</web-app>

In this definition example, the HTTP response for accessing the URL pattern /app/* and fulfilling the following
conditions is compressed:

• HTTP response for which the HTTP request URL pattern is /app/dir1/*, Media-Type is other than
application or pdf, and the body size exceeds 500 bytes

• HTTP response for which the HTTP request URL pattern is /app/dir1/*, Media-Type is application or pdf,
and the body size exceeds 1,000 bytes

• HTTP response for which the HTTP request URL pattern is /app/dir2/*, Media-Type is application or pdf,
and the body size exceeds 2,000 bytes

• HTTP response for which the HTTP request URL pattern is *.html and the body size exceeds 100 bytes

2.10.6 Execution environment settings (Web application settings)
To use HTTP response compression based on filtering, you must set up the Web application.

Reference the Web application settings only to set or change the properties of Web applications that do not contain
cosminexus.xml.

2. Web Container

98

Implement the Web application settings in the execution environment using the server management commands and
property files. To define HTTP response compression based on filtering, use the filter property file and WAR property
file.

The tags specified in the filter property file and WAR property file correspond to the DD. For details on definitions in
the DD (web.xml), see 2.10.4 Definition in the DD and 2.10.5 Examples of the DD definitions.

2. Web Container

99

2.11 Integrating with an EJB container
A Web container integrates with an EJB container to operate as a J2EE server. This section explains the invocation of
the Enterprise Beans. Note that you can even use a business interface to invoke Enterprise Beans.

The following table describes the organization of this section.

Table 2‒41: Organization of this section (Integrating with an EJB Container)

Category Title Reference

Description Enterprise Beans invocation method 2.11.1

Implementation Implementation for integrating with an EJB Container 2.11.2

Settings Execution environment settings (J2EE server settings) 2.11.3

Note:
There is no description of Operations and Notes for this functionality.

2.11.1 Enterprise Bean invocation method
Invocation methods for Enterprise Beans include invocation by using Lookup and invocation by using DI. When you
use the Lookup, the invocation method depends upon whether you use the functionality for switching the CORBA
Naming Service.

When you use the functionality for switching the CORBA Naming Service, or when invoking the Enterprise
Beans contained in the same EAR

When the Enterprise Beans to be invoked are contained in the same EAR, invoke the Enterprise Beans as shown
in the following example:
Even if the Enterprise Beans to be invoked are not present in the same EAR, you can use the functionality for
switching the CORBA Naming Service and invoke the Enterprise Beans as shown below. For the functionality
used for switching the CORBA Naming Service, see 2.10 Switching the CORBA Naming Service in the
uCosminexus Application Server Common Container Functionality Guide.

Example:
Context ctx = new InitialContext() ;
Object o = ctx.lookup("java: comp/env/ejb/cart") ;
CartHome h = (CartHome) PortableRemoteObject.narrow(o, CartHome.class) ;
Cart c = h.create() ;
c.call() ;

When invoking the Enterprise Beans contained in different EAR without using the functionality for switching
the CORBA Naming Service

When you do not use the functionality for switching the CORBA Naming Service, and if the Enterprise Beans to
be invoked are contained in different EAR, invoke Enterprise Beans An example is shown below.

Example:
Context ctx = new InitialContext() ;
Object o =
 ctx.lookup("HITACHI_EJB/SERVERS/MyServer/EJB/APName/Cart") ;
CartHome h = (CartHome) PortableRemoteObject.narrow(o, CartHome.class) ;
Cart c = h.create() ;
c.call() ;

2.11.2 Implementation for integrating with an EJB Container
When using the Enterprise Beans invocation, before deploying the corresponding Web application, acquire the RMI-
IIOP stubs (stubs.jar) and the RMI-IIOP interface from the J2EE server, and save in the WEB-INF/lib directory of
the Web application.

Change the stub names appropriately before saving the stubs (stubs.jar) of multiple RMI-IIOP in the WEB-INF/lib
directory to avoid the duplication of names.

2. Web Container

100

Note that you can use the dynamic class loading of J2EE server for the RMI-IIOP stubs. For dynamic class loading,
see 3.7.3 Dynamic class loading in the uCosminexus Application Server EJB Container Functionality Guide.

When invoking an EJB from WAR, you need to define ejb-ref in the DD of WAR. If, however, you use annotations to
define the references, you need not define the reference in web.xml. When invoking EJBs of the same application
from WAR, you need not include stubs and remote interface in the WAR.

When invoking EJBs running on different application or different J2EE server from WAR, remote interface and stubs
are necessary. Specify settings to include the remote interface in WAR and auto-generate the stubs when the J2EE
application is started in the execution environment. For details on the execution environment settings, see 2.11.3
Execution environment settings (J2EE server settings).

2.11.3 Execution environment settings (J2EE server settings)
Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for integrating with an EJB
container in ejbserver.deploy.stub.generation.scope in the <configuration> tag of the logical
J2EE server (j2ee-server) in the Easy Setup definition file. In this parameter, you specify the stubs for invoking the
EJB on other applications by a remote interface.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

2. Web Container

101

2.12 Connecting to the database
When you use a Web container, you can use a resource adapter of the J2EE service to access the database. When you
access the database through a resource adapter, Use a DBConnector. When accessing the database, you can use the
following functionality:

• JDBC connection pooling

• JDBC connection sharing

• Distributed transaction

For details on connecting to the database, see 3.6 Connecting to the database in the uCosminexus Application Server
Common Container Functionality Guide. For settings of the resource adapter for connecting to the database, see 3.6.9
Settings in the execution environment (settings in the resource adapter) in the uCosminexus Application Server
Common Container Functionality Guide.

2. Web Container

102

2.13 Creating threads by a Web container
This section describes the creation of threads by a Web container.

The following table describes the organization of this section.

Table 2‒42: Organization of this section (Creating threads by a Web container)

Category Title Reference

Description Types and number of the threads created 2.13.1

Total number of threads created 2.13.2

Note:
There is no specific description of Implementation, Settings, Operations, and Notes for this functionality.

In a Web container, create threads for Web server integration, and for Web applications. Determine if the system has
enough resources for these threads.

Note that in Application Server, you can even create and use the threads (user threads) from servlets and JSPs. For
details on Application Server functionality that can be used in the user threads, see 2.14 Using the user threads.

The threads created by a Web container are explained below:

2.13.1 Types and number of the threads created
The following table describes the threads created by a Web container:

Table 2‒43: Threads created by a Web container

Classification of threads Reference

Threads for the simple Web server of a Web container (1)

Threads for using the Web server integration functionality#1 (2)

Threads for using the in-process HTTP server#2 (3)

Threads for the Web application (4)

Threads for the context used for management (5)

Threads for monitoring the timeout when sending a response (6)

#1
Threads created when the Web server integration functionality is used.

#2
Threads created when the in-process HTTP server is used.

(1) Threads for the simple Web server of a Web container (mandatory)
The types and the number of threads created by the Web container for the simple Web server are explained below:

Threads created
Web container creates the threads for receiving the requests for establishing TCP connection, as well as threads
for processing the received requests.

Number of threads
One thread is created for receiving the requests for establishing TCP connection. A minimum of five threads and
maximum 100 threads are created for processing the requests received by the simple Web server.
During invocation, five threads are created for processing the requests. When the number of concurrently
executing threads exceeds the number of already invoked threads, up to 100 threads are created.

2. Web Container

103

Always use the simple Web server of the Web container.

(2) Threads for using the Web server integration functionality
The types and the number of threads created by the Web container for integrating with the Web server are explained
below:

Threads created
Web container creates the threads for receiving requests from the redirector for establishing a connection, as well
as threads for processing the requests received from the redirector.

Number of threads
One thread is created for receiving requests from the redirector for establishing a connection. Threads equal to the
number of connections between the Web server and the Web container are created for processing the requests
received from the redirector
During invocation, threads equal to the number specified in the
webserver.connector.ajp13.max_threads key of usrconf.properties are created for
processing the requests received from the redirector (default value of
webserver.connector.ajp13.max_threads key is 10).

(3) Threads for using the in-process HTTP server
The types and the number of threads created by the Web container for the in-process HTTP server are explained
below:

Threads created
The Web container creates the threads for processing the requests and the threads for monitoring the number of
request processing threads.

Number of threads
The threads equal to the number of connections from the Web client or proxy server are created for processing the
requests. The request processing threads equal to the number specified in the
webserver.connector.inprocess_http.init_threads key of usrconf.properties are
created when the J2EE server starts (default value of
webserver.connector.inprocess_http.init_threads key is 10). When the number of
concurrently executing threads exceeds the number of threads created during the invocation of the J2EE server,
the request processing threads are created with the maximum number of connections from the Web client as the
upper limit (default value of webserver.connector.inprocess_http.max_connections key is
100).
Furthermore, one thread is created for monitoring the number of request processing threads.

(4) Threads for the Web application
In each Web application, Web container creates threads for monitoring the valid time period of a session. A minimum
of one thread and maximum three threads are created.

(5) Threads for the context used for management
Web container creates two threads for generating two contexts for management.

(6) Threads for monitoring the timeout when sending a response
If you enable the timeout when sending a response, Web container creates one thread for monitoring the send timeout.

2.13.2 Total number of threads created
The total number of threads that the Web container creates by default when the process starts is described separately
as the threads created while integrating with the Web server and the threads created while using the in-process HTTP

2. Web Container

104

server. This numeric value, however, does not include threads other than the Web container, and the threads created
by JavaVM.

(1) When integrating with the Web server
This subsection explains the total number of threads created when integrating with the Web server. This subsection
also explains the number of threads used in Web server integration.

(a) Total number of threads created

The total number of threads created depends upon whether you set the timeout when sending a response.

If you set the timeout when sending a response
Total-number-of-threads = A + B + C + D + E

If you do not set the timeout when sending a response
Total-number-of-threads = A + B + C + D
Legend:

A: Number of threads for the simple Web server of the Web container
B: Number of threads used for integrating with the Web server
C: Number of threads in each Web application
D: Number of threads for the context used for management
E: Number of threads for monitoring the timeout when sending a response

Consequently, the total number of threads created during invocation of a process in Web server integration is as
follows:

Total-number-of-threads-in-the-case-you-set-the-timeout-when-sending-a-response
= 6 + 11 + (1 number-of-Web-applications) + 2 + 1
= 20 + number-of-Web-applications

Total-number-of-threads-in-the-case-you-do-not-set-the-timeout-when-sending-a-response
= 6 + 11 + (1 number-of-Web-applications) + 2
= 19 + number-of-Web-applications

After invocation of a process, the number of threads increases depending on the number of connections to the Web
server, and the number of concurrently executing simple Web servers.

(b) Number of threads used for integrating with a Web server

During invocation of a Web container, threads equal to the number specified in the
webserver.connector.ajp13.max_threads key of usrconf.properties are created for the request
processing threads when using the Web server integration functionality. Threads equal to the number of connections
from the redirector are created subsequently. The maximum number of request processing threads, therefore depends
upon the maximum number of connections of the Web server.

Note that when the connection between the redirector and the Web container is disconnected due to timeout, request
processing threads are created more than the maximum number of connections to the Web server. The expression for
calculating the maximum number of request processing threads is shown below:

• When Cosminexus HTTP Server is used
Maximum-number-of-request-processing-threads = A + B
Legend:

A: Settings of the ThreadsPerChild directive of Cosminexus HTTP Server
B: Number of requests running when the connection between the redirector and the Web container is
disconnected due to timeout (maximum value is the value specified for
webserver.connector.ajp13.max_threads)

• In the case of using the Microsoft IIS
Maximum-number-of-request-processing-threads = A B + C

2. Web Container

105

Legend:
A: Number of threads of Microsoft IIS
B: Number of processes of Microsoft IIS
C: Number of requests running when the connection between the redirector and the Web container is
disconnected due to timeout (maximum value is the value specified for
webserver.connector.ajp13.max_threads)

(2) When using the in-process HTTP server
The total number of threads created depends upon whether you set the timeout when sending a response.

If you set the timeout when sending a response
Total-number-of-threads = A + B + C + D + E

If you do not set the timeout when sending a response
Total-number-of-threads = A + B + C + D
Legend:

A: Number of threads for the simple Web server of the Web container
B: Number of threads for using the in-process HTTP server
C: Number of threads in each Web application
D: Number of threads for the context used for management
E: Number of threads for monitoring the timeout when sending a response

Therefore, the total number of threads during process invocation when the in-process HTTP server is used is as
follows:

Total-number-of-threads-in-the-case-you-set-the-timeout-when-sending-a-response
= 6 + 11 + (1 number-of-Web-applications) + 2 + 1
= 20 + number-of-Web-applications

Total-number-of-threads-in-the-case-you-do-not-set-the-timeout-when-sending-a-response
= 6 + 11 + (1 number-of-Web-applications) + 2
= 19 + number-of-Web-applications

After invocation of a J2EE server, the number of threads increases depending on the number of connections to the
Web clients, and the number of concurrently executing simple Web servers.

2. Web Container

106

2.14 Using the user threads
In Application Server, you can create the threads from the servlets and the JSPs and use them. The threads created
explicitly in a program by the user are called User threads. This section describes how to use the user threads.

The following table describes the organization of this section.

Table 2‒44: Organization of this section (Using the user threads)

Category Title Reference

Description Availability of the functionality in user threads 2.14.1

Settings Setting the permissions for generating user threads 2.14.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

2.14.1 Availability of the functionality in user threads
This section explains the Application Server functionality available in user threads. For details on how to use user
threads, see 6.2.1(15) Using user thread.

The following table describes whether each functionality provided in an Application Server is available in user
threads:

Table 2‒45: Availability of the functionality in user threads

Functionality name Availability Reference

Using servlet API P (1)

Invoking an Enterprise Bean N --

Naming Service Y (2)

Resource connection P (3)

Transaction service P

Integrated user management N --

Log operation and failure detection Y (4)

J2EE application operations P (5)

Using the container extension library Y (6)

Legend:
Y: Available
P: Partially available
N: Not available
--: Not applicable

The functionality available in the user threads is further classified into detailed functionality, and whether each
functionality is available in servlets or JSPs, and user threads is explained below. The notes on using the functionality
in user threads are also explained.

(1) Servlet API
When you use the servlet API in user threads, you cannot use the request objects and response objects. Use the servlet
API only in request processing threads. For details, see the section on Thread Safety in the Servlet Specifications.

2. Web Container

107

(2) Naming Service
The following table describes whether the functionality provided as the Naming Service is available in servlets or
JSPs and user threads:

Table 2‒46: Availability of the functionality of Naming Service (user threads)

Classification/Functionality name Servlets or JSPs User threads

JNDI Lookup Resource adapter DB Connector Y Y

DB Connector for
Cosminexus RM and
Cosminexus RM

Y Y

TP1/Message Queue -
Access

Y Y

uCosminexus TP1
Connector

Y Y

Java Mail Y Y

JavaBeans resource Y Y

User transaction Y Y

Legend:
Y: Available

When you use the Naming Service, do not stop the application when the user threads are running.

(3) Resource connection and transaction service
The following table describes whether the functionality provided as resource connection and transaction service is
available in servlets or JSPs and user threads:

Table 2‒47: Availability of the functionality of resource connection and transaction management (user
threads)

Classification/Functionality name Servlets or JSPs User threads

Connection pooling Connection pooling by DB Connector Y Y

Connection pooling by DB Connector for
Cosminexus RM and Cosminexus RM

Y Y

Connection pooling with uCosminexus TP1
Connector

Y Y

Connection pooling to TP1/Message Queue - Access Y Y

Connection pooling to SMTP server -- --

Warming up of connection pool Y Y

Adjusting the number of connections Y Y

Connection sharing Y Y

Connection association Y Y

Statement pooling (DB Connector) Y Y

Light transaction Y Y

In-process transaction service Y Y

DataSource object caching Y Y

2. Web Container

108

Classification/Functionality name Servlets or JSPs User threads

Optimizing container management sign-on in DB Connector Y Y

Pooling the receiving buffer Y Y

Detecting a connection
failure

Failure detection by DB Connector Y Y

Failure detection by DB Connector for Cosminexus
RM and Cosminexus RM

Y Y

Detecting connection failure with uCosminexus TP1
Connector

-- --

Detecting connection failure to TP1/Message Queue
- Access

-- --

Detecting connection failure of SMTP server -- --

Waiting to acquire connections in the case of connection depletion Y Y

Retrying to acquire
connection

Retrying connection acquisition by DB Connector Y Y

Retrying connection acquisition by DB Connector for
Cosminexus RM and Cosminexus RM

Y Y

Retrying acquisition of connection with
uCosminexus TP1 Connector

Y Y

Retrying acquisition of connection to TP1/Message
Queue - Access

Y Y

Retrying acquisition of connection to SMTP server -- --

Connection pool clear Y Y

Closing and releasing a
connection

Automatic closing of connection (Web container) Y --

Connection sweeper Y Y

Transaction timeout Y Y

Transaction recovery Y Y

Automatic conclusion of transaction# Y N

SQL output for troubleshooting Y Y

Connection pool clustering Y Y

Legend:
Y: Available
--: Not available

#
This functionality is used for looking up an unconcluded transaction when returning from a method of the servlet.

The precautions when using the resource connection and transaction service in user threads are as follows:

• You cannot start and conclude a transaction, and acquire and release a connection on threads generated in a servlet
in which the SingleThreadModel interface is implemented.

• A transaction cannot be inherited when threads are generated.

• Start and conclude a transaction on the same thread.

• You cannot pass a connection between threads. If a connection is used, the operation becomes invalid.

• When a connection is acquired in user threads, ensure that you close the connection on the thread in which the
connection was acquired.

2. Web Container

109

(4) Log operation and failure detection
The following table describes whether the functionality provided as log operation and error detection is available in
servlets or JSPs and user threads:

Table 2‒48: Availability of the functionality of log operation and failure detection (user threads)

Classification/Functionality name Servlets or JSPs User threads

Automatic execution of processing by Management events Y Y

Monitoring a system by JP1 event Y Y

User log output Y Y

Performance analysis trace Y Y

Monitoring the CTM statistics Y Y

Legend:
Y: Available

(5) J2EE application operations
The following table describes whether the functionality provided for operating a J2EE application is available in
servlets or JSPs and user threads:

Table 2‒49: Availability of the functionality for operating a J2EE application (User threads)

Classification/Functionality name Servlets or JSPs User threads

Controlling the number of concurrently executing threads in the Web container Y --

Dynamically changing the number of concurrently executing threads in the
schedule queue

Y Y

Monitoring the
execution time of a
J2EE application

Method timeout functionality Y --

Method cancellation functionality Y --

Terminating the J2EE
application

Normal termination Y Y#1

Forced termination Y Y#1

Switching the J2EE
application

Switching by redeploy functionality Y Y#2

Switching by reload functionality Y Y

Legend:
Y: Available
--: Not available

#1
Do not stop user threads in the container.

#2
Do not stop user threads in the container when switching the J2EE applications that are started.

(6) Container Extension Library
The container extension library is available in both servlets or JSPs and user threads.

2. Web Container

110

2.14.2 Setting the permissions for generating user threads
To generate threads that the user explicitly generates in a program (user threads), permissions must be granted to the
target servlet and JSP to generate the thread. This subsection describes the permission settings for generating the user
threads.

To generate the user threads, confirm that the following coding exist in the server.policy. This definition grants
the permission to generate the user threads.

permission java.lang.RuntimePermission "modifyThread";
permission java.lang.RuntimePermission "modifyThreadGroup";

Use the Smart Composer functionality commands to specify server.policy after the system is built. The coding
example of the server.policy file is as follows:

...
//
// Grant access permissions to JSP/Servlet
//
grant codeBase "file: ${ejbserver.http.root}/web/${ejbserver.serverName}/-" {
permission java.lang.RuntimePermission "loadLibrary.*";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.lang.RuntimePermission "modifyThread";
permission java.lang.RuntimePermission "modifyThreadGroup";
permission java.net.SocketPermission "*", "connect";
permission java.io.FilePermission "<<ALL FILES>>", "read, write";
permission java.util.PropertyPermission "*", "read";
permission javax.security.auth.AuthPermission "getSubject";
permission javax.security.auth.AuthPermission "createLoginContext.*";
};
...

2. Web Container

111

2.15 Overview of controlling the number of concurrently
executing threads

In the Web container, the servlet requests are processed in multi-threads. You can set the upper limit for the number of
threads that you can execute concurrently. By setting the upper limit, you can prevent a decline in the performance
due to slashing. If you set an appropriate number of threads, you can tune the performance as per the access status.

This section describes the settings for controlling the number of concurrently executing threads.

The following table describes the organization of this section.

Table 2‒50: Organization of this section (Controlling the number of concurrently executing threads)

Category Title Reference

Description Control units of the number of threads 2.15.1

Parameters for controlling the number of concurrently executing threads 2.15.2

Number of threads used in error processing of static contents and requests 2.15.3

Note:
There is no specific description of Implementation, Settings, Operations, and Notes for this functionality.

2.15.1 Control units of the number of threads
The methods for controlling the number of concurrently executing threads include the controlling in Web container, in
Web application, and in URL group.

• Controlling the number of concurrently executing threads in a Web container
Set the number of threads for processing the requests concurrently in all Web applications on a Web container. For
details, see 2.16 Controlling the number of concurrently executing threads in the Web container.

• Controlling the number of concurrently executing threads in a Web application
Set the number of threads for processing the requests concurrently in each Web application on a Web container.
You can control the number of threads more carefully as compared to the method for controlling the number of
concurrently executing threads in Web container. For details, see 2.17 Controlling the number of concurrently
executing threads in the Web application.

• Controlling the number of concurrently executing threads in a URL group
Set the number of threads for processing the requests concurrently in URL corresponding to business logic, such
as servlet and JavaBeans, in a Web application. A business logic that processes the requests sent to a specific URL
is called a URL group. Since the number of concurrently executing threads is controlled in URL group, you can
control the number of threads more carefully as compared to the method for controlling in Web application. For
details, see 2.18 Controlling the number of concurrently executing threads in the URL group.

The following figure shows the relationship between each control unit:

2. Web Container

112

Figure 2‒16: Relationship between each control unit of the number of concurrently executing threads

As shown in the figure, the biggest unit of controlling the number of concurrently executing threads is the Web
container. In the case of controlling the number of threads in each Web application of the Web container, specify the
control in the Web application. In the case of controlling the number of threads in URL group of a Web application,
specify the control in the URL group. The smallest unit of controlling the number of threads is the URL group.

Controlling the number of threads has an inclusion relation, and hence, in the case of controlling the number of
threads in the Web application, you also need to specify the setting in the Web container. Moreover, in the case you
control the number of threads in the URL group, you also need to specify the setting in the Web container and the
Web application.

2.15.2 Parameters for controlling the number of concurrently executing
threads

Control the number of concurrently executing threads by parameters, such as the maximum number of concurrently
executing threads, the number of dedicated threads, and the size of a pending queue.

This subsection explains the main parameters for controlling the number of threads.

(1) Maximum number of concurrently executing threads
From among the total number of available threads, the maximum number of concurrently executing threads refers to
the number of threads that can concurrently execute the maximum number of requests in which the number of
concurrently executing threads is to be controlled.

Set the maximum number of concurrently executing threads in a Web container, Web application, and URL group.

(2) Number of dedicated threads
From among the total number of available threads, the number of dedicated threads refers to the number of threads
that can definitely execute the requests in which the number of concurrently executing threads is to be controlled. By
specifying the control in the Web application and URL group, you can secure the minimum number of threads in each
Web application or each URL group.

(3) Size of a pending queue
When the requests in which the number of concurrently executing threads is to be controlled, reach the upper limit of
the number of concurrently executing threads, you can specify the size of the request queue. Specify the number of
requests to be stored in the queue as the queue size.

The conditions for saving requests in a pending queue are as follows:

2. Web Container

113

• When available number of the shared threads is not specified, in the case number-of-concurrently-executing-
threads < maximum-number-of-concurrently-executing-threads, and number-of-concurrently-executing-threads

 number-of-dedicated-threads

• When number-of-concurrently-executing-threads maximum-number-of-concurrently-executing-threads

Note that if space is not available in a pending queue, the requests are not processed and an error is returned to the
client.

You can set the size of a pending queue in the Web application and the URL group.

(4) Number of shared threads
The number of shared threads refers to the number of non-dedicated threads, from among the available threads. The
number of shared threads includes the number of shared threads of the Web container, and the number of shared
threads of the Web application.

• Number of shared threads in a Web container
The number of shared threads in a Web container is the number of threads shared by all the Web applications
deployed on the Web container.

• Number of shared threads in a Web application
The number of shared threads in a Web application is the number of threads shared by all the processes included
in the Web application.

The number of shared threads is calculated from the maximum number of concurrently executing threads and the
number of dedicated threads.

For details on how to calculate the number of shared threads, see (5) Method to calculate the number of shared
threads.

(5) Method to calculate the number of shared threads
This point describes how to calculate the number of shared threads in a Web container and the number of shared
threads in a Web application. When you specify the settings to control the number of concurrently executing threads
in the Web application, the number of shared threads in the Web application depends upon whether you specify the
settings to control the number of concurrently executing threads in the URL group.

Note that the URL group does not have any shared threads. When you specify the method for controlling the number
of concurrently executing threads in URL group of a Web application, the number of shared threads of the Web
application is used.

• Number of shared threads in the Web container
When a Web application with the number of dedicated threads specified exists on the Web Container, the number
of shared threads will be as follows:

Total-number-of-shared-threads-in-the-Web-container =
Maximum-number-of-concurrently-executing-threads-in-the-Web-container - Total-number-of-dedicated-
threads-in-a-Web-application#

Total number of dedicated threads that are set in all Web applications deployed on the Web container.

The number of dedicated threads set in each Web application is the minimum number of threads to be secured in
the Web application. This thread count is not used in the request processing of another Web applications.

• Number of shared threads in a Web application (When control of the number of concurrently executing threads in
each URL group is specified)

Number-of-shared-threads-in-a-Web-application =
Maximum-number-of-concurrently-executing-threads-in-a-Web-application-unit - Total-number-of-
dedicated-threads-in-URL-group#

Total number of dedicated threads in all the URL groups set in a Web application.

• Number of shared threads in a Web application (When control of the number of concurrently executing threads in
each URL group is not specified)

2. Web Container

114

Number-of-shared-threads-in-a-Web-application = Maximum-number-of-concurrently-executing-threads-in-the-
Web-application

The following figure shows an example for calculating the number of shared threads in a Web container and Web
application when the number of concurrently executing threads is specified:

Figure 2‒17: Example for calculating the number of shared threads

• The number of shared threads in a Web Container = A - (total of B)
In this figure, the number of shared threads in a Web Container is 7 - (2 + 0) = 5.

• The number of shared threads in Web application 1 = C - (total of D)
The number of dedicated threads in each URL group is specified in Web application 1. In this figure, the number
of shared threads is 3 - (2 + 0) = 1

• The number of shared threads in Web application 2 = The number of shared threads in the Web Container
The settings for controlling the number of concurrently executing threads are not specified in the Web application
2. Therefore, the number of shared threads in the Web Container is applied to the number of shared threads in the
Web application 2. In the figure, the number of shared threads is 5.

• The number of shared threads in Web application 3 = The maximum number of concurrently executing
threads
The number of dedicated threads in each URL group is not specified in Web application 3. Therefore, number of
shared threads the Web application 3 is applied to the number of shared threads in Web application 3. In this
figure, the number of shared threads is 2.

2.15.3 Number of threads used in error processing of static contents and
requests

The maximum number of concurrent connections of a Web server is used to: a) Process the requests in the Web
container b) Process the static contents deployed on the Web server c) Send the requests of the Web container and
perform the error processing of the requests that exceed the number of concurrently executing threads and the pending
queue. The number of threads used for processing the static contents, and for error processing of the requests that
exceed the size of pending queue is as follows:

2. Web Container

115

Number-of-threads-used-for-processing-the-static-contents-and-error-processing-of-requests =
Maximum-number-of-concurrent-connections-of-a-Web-server - (Maximum-number-of-concurrently-
executing-threads-in-Web-container + total-size-of-the-pending-queue-of-Web-application-and-URL-group-
and-default-pending-queue)

Note that the number of threads used for static contents is not assigned in the default settings. In the case of securing
the number of threads for processing the static contents, specify appropriate values for the size of the pending queue of
the Web application, URL group, and default pending queue to satisfy the above formula.

2. Web Container

116

2.16 Controlling the number of concurrently executing
threads in the Web container

This section describes the settings for controlling the number of concurrently executing threads in the Web Container.

The following table describes the organization of this section.

Table 2‒51: Organization of this section (Controlling the number of concurrently executing threads in the
Web Container)

Category Title Reference

Description Mechanism for controlling the number of concurrently executing threads (Web container) 2.16.1

Settings Execution environment settings (J2EE server settings) 2.16.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

2.16.1 Mechanism for controlling the number of concurrently executing
threads (Web container)

The following figure shows the mechanism of controlling the number of concurrently executing threads in the Web
container:

Figure 2‒18: Controlling the number of concurrently executing threads in the Web container

For example, if two Web applications are deployed on the Web container, and 5 is set as the number of concurrently
executing threads, the number of threads that you can concurrently execute in two Web applications will be 5.

Even when the access is centralized in one of the multiple Web applications deployed on the Web container, by setting
the number of concurrently executing threads in the Web container, you can assign the threads to the Web application
in which the access is centralized. The following figure shows this mechanism:

2. Web Container

117

Figure 2‒19: Handling of threads when the access is centralized (For Web containers)

As shown in the figure, when two Web applications are deployed on the Web container and '5' is set as the number of
concurrently executing threads, all the five threads are assigned to the Web application 1 if the requests are
concentrated in Web application 1.

On the other hand, the requests for the Web application 2 are accumulated in the pending queue of the Web container
until the request processing of the Web application 1 is complete. Note that the requests accumulated in the pending
queue of the Web container are executed in a sequence, after the request processing is complete.

2.16.2 Execution environment settings (J2EE server settings)
Implement the J2EE server settings in the Easy Setup definition file. To define the settings for controlling the number
of concurrently executing threads in the Web container, specify one of the following parameters in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

• webserver.connector.ajp13.max_threads
Set the maximum number of concurrently executing threads in the entire Web container. Specify this parameter in
the case of Web server integration.

• webserver.connector.inprocess_http.max_execute_threads
Set the maximum number of concurrently executing threads in the entire Web container. Specify this parameter
when using the in-process HTTP server.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

2. Web Container

118

2.17 Controlling the number of concurrently executing
threads in the Web application

This section describes the settings for controlling the number of concurrently executing threads in the Web
applications.

Note that when you control the number of threads in the Web application, you also need to simultaneously specify the
settings to control the number of threads in the Web container. Also, see 2.16 Controlling the number of concurrently
executing threads in the Web container.

The following table describes the organization of this section.

Table 2‒52: Organization of this section (Controlling the number of concurrently executing threads in the
Web applications)

Category Title Reference

Description Mechanism for controlling the number of concurrently executing threads (Web applications) 2.17.1

Parameters required for controlling the number of concurrently executing threads (Web
applications)

2.17.2

Guidelines for the settings for number of concurrently executing threads (Web applications) 2.17.3

Implementation Definition in cosminexus.xml 2.17.4

Settings Execution environment settings 2.17.5

Examples of setting the number of concurrently executing threads and the size of a pending
queue (Web application)

2.17.6

Notes Notes on controlling the number of concurrently executing threads in the Web application 2.17.7

Note:
There is no specific description of Operations for this functionality.

2.17.1 Mechanism for controlling the number of concurrently executing
threads (Web applications)

If you want to control the number of concurrently executing threads more carefully than the Web container, control
the number of concurrently executing threads in the Web application.

When you set the number of concurrently executing threads in the Web application, an upper limit is set for the
number of concurrently executing threads in each Web application. As a result, when the number of requests to a
specific Web application increases, you can prevent that Web application from occupying the capacity of the entire
Web container, and can also ensure smooth execution of other businesses.

For guidelines on setting the number of concurrently executing threads in the Web application, see 8.3.4 Controlling
the number of concurrently executing threads of a Web application in the uCosminexus Application Server System
Design Guide. Also, for the parameters specified in the Web container, see 2.16.2 Execution environment settings
(J2EE server settings).

2.17.2 Parameters required for controlling the number of concurrently
executing threads (Web applications)

An overview of the parameters required for controlling the number of threads in each Web application is as follows:

• Specifying the setting to control the number of concurrently executing threads in the Web container

Set the maximum number of concurrently executing threads in the Web container. Note that the maximum number of
concurrently executing threads set here is shared in all the Web applications deployed on the Web container.

2. Web Container

119

• Specifying the setting to control the number of concurrently executing threads in the Web application

Set the following parameters in the Web application for which you want to control the number of concurrently
executing threads:

• Maximum number of concurrently executing threads
Set the maximum number of threads that you can concurrently execute in a Web application.

• Number of dedicated threads
Set the number of dedicated threads of a Web application.

• Size of the pending queue of the Web application
Set up the size of the pending queue of the Web application.

• Default size of a pending queue
Set the size of the pending queue for a Web application in which you do not specify the setup to control the
number of concurrently executing threads in the Web application.

The details on the parameters required for specifying to control the number of concurrently executing threads in the
Web applications are as follows:

(1) Maximum number of concurrently executing threads in the Web application
If the value for maximum number of concurrently executing threads in the Web application is set, that value is
applied. This subsection explains the concept of the maximum number of concurrently executing threads in the Web
applications for which the number of concurrently executing threads and the number of dedicated threads is not set.

(a) In the case of the Web application in which you do not specify the setting to control the number of
concurrently executing threads

The maximum number of concurrently executing threads of the Web application in which you dot set the maximum
number of concurrently executing threads, is as follows:

Maximum-number-of-concurrently-executing-threads =
Maximum-number-of-concurrently-executing-threads-in-the-Web-container - Total-number-of-dedicated-
threads-in-a-Web-application#

#
Total number of dedicated threads that are set in all Web applications deployed on the Web container.

(b) In the case of the Web application in which dedicated threads are not set

When specifying the setting to control number of concurrently executing threads in the Web application, the setting of
the number of dedicated threads is optional. The smaller value in the following two values is applicable as the
maximum number of concurrently executing threads of a Web application in which the number of dedicated threads is
not set:

Maximum-number-of-concurrently-executing-threads =
Maximum-number-of-concurrently-executing-threads-set-in-the-Web-application
or
Maximum-number-of-concurrently-executing-threads-in-the-Web-container - Total-number-of-dedicated-
threads-in-a-Web-application#

#
Total number of dedicated threads set in all the Web applications deployed on the Web container.

(2) Number of dedicated threads of the Web application
When only the number of concurrently executing threads in the Web container is set, and if the access is centralized to
another Web application in the Web container, the threads are used in the application for which the access is
centralized. You can secure the minimum number of threads required for execution in the Web application by setting
the number of dedicated threads. Therefore, even if the access is centralized to another Web application in the Web
container, you can execute the requests without waiting.

2. Web Container

120

(a) Operation of the Web application depending on the presence or absence of the settings for the number of
dedicated threads

The following figure shows the number of dedicated threads in the Web application, and illustrates the operations of
two Web applications in which one is without the number of dedicated threads set and the other is with the number of
dedicated threads set:

Figure 2‒20: Number of dedicated threads in the Web applications

The contents of the figure are explained below. Web application 1 and Web application 2 are running in the Web
container. The settings to control the number of concurrently executing threads are not specified in Web application 2,
while it is specified in Web application 1. In Web application 1, the maximum number of concurrently executing
threads is set as 3, and the number of dedicated threads is set as 1.

For example, if the access is centralized in Web application 2, and the number of dedicated threads is not set in Web
application 1, all the threads are used in Web application 2. As illustrated in the figure, by setting the number of
dedicated threads in Web application 1, you can secure at least one thread in Web application 1 even when the access
is centralized in Web application 2. Consequently, you can ensure the processing of Web application 1 in which the
number of dedicated threads is set.

As described in the above example, if you set the number of dedicated threads, then even if the access is centralized in
another business, you can certainly execute the Web application. Therefore, Hitachi recommends that you set the
number of dedicated threads in highly important Web applications, such as applications for management.

Note that the threads equal to the specified number of dedicated threads are not used in request processing of another
applications. It is optional to set the number of dedicated threads in the settings for controlling the number of
concurrently executing threads in Web application.

(b) Number of dedicated threads and maximum number of concurrent connections

When the maximum number of concurrent connections of the Web server (when the Web server integration
functionality is used) or the maximum number of concurrent connections from the Web client (when the in-process
HTTP server is used) are less and if the maximum number of concurrent connections are occupied by the requests to
the Web applications in which the number of dedicated threads is not set, even when the Web applications with the
number of dedicated threads set are accessed, the requests remain pending and an error occurs on the Web server or on
the in-process HTTP server.

To properly execute a Web application in which the number of dedicated threads is set, without any dependency on
the access flow to other Web applications, you need to set an appropriate value in the maximum number of concurrent
connections. The method for setting the maximum number of concurrent connections is explained below:

• Method for setting the maximum number of concurrent connections of a Web server (when the Web server
integration functionality is used)
When you use the Web server integration functionality, you need to set a value greater than that shown below as
the maximum number of concurrent connections in the Web server:

2. Web Container

121

Maximum-number-of-concurrent-connections-of-a-Web-server > Total-size-of-the-pending-queue-of-Web-
application-and-default-pending-queue + Maximum-number-of-concurrently-executing-threads-in-the-Web-
container
Set an appropriate value for the number of dedicated threads so that the above expression is satisfied.
Note that the maximum number of concurrent connections of a Web server is set at the following location:

When Cosminexus HTTP Server is used
ThreadsPerChild directive of httpsd.conf (in Windows) or MaxClients directive of
httpsd.conf (in UNIX)

In the case of using the Microsoft IIS
Number of connections to the client as set in [Internet Service Manager]

For details on the settings for using Cosminexus HTTP Server, see uCosminexus Application Server HTTP Server
User Guide. For details on the settings for using Microsoft IIS, see Microsoft IIS Help.

• Method for setting the maximum number of concurrent connections from the Web client (When the in-
process HTTP server is used)
When you use the in-process HTTP server, you need to set a value greater than that shown below as the maximum
number of concurrent connections from the Web clients:
Maximum-number-of-concurrent-connections-from-Web-clients > Total-size-of-the-pending-queue-of-Web-
application-and-default-pending-queue + Maximum-number-of-concurrently-executing-threads-in-the-Web-
container
Note that the number of concurrent connections from the Web client is a value obtained by subtracting the number
of requests that were denied connection from the maximum number of connections from the Web client. For
details, see 5.5 Controlling the flow of requests by controlling the number of concurrent connections from the Web
client.

(3) Size of a pending queue of Web application
Set the size of a pending queue of a Web application.

If you set the maximum number of concurrently executing threads in the Web application, the requests are
accumulated in a queue when the number of executing threads reaches the maximum number. At this point, you can
specify the size of the pending queue in the Web application.

The setting up of the size of the pending queue of a Web application depends upon whether you specify the number of
concurrently executing threads in the Web application.

• When you set the number of concurrently executing threads in the Web application
You can set the size of a pending queue in each Web application.

• When you do not set the number of concurrently executing threads in the Web application
A common size of the pending queue is used in the Web application. The common pending queue size is called
the default pending queue size.

Operations of the pending queue of the Web application and default pending queue
In the case of multiple setting (including the setting for size of a pending queue of Web application and the default
size of a pending queue) of a pending queue, the requests executed by using the number of shared threads are
processed in an order starting from the first arrived request in the queue.

Maximum number of concurrent connections of the Web server and the pending queue of the Web application
and default pending queue (when the Web server integration functionality is used)

The maximum number of concurrent connections in the Web server is the upper limit for the multiplicity of the
requests transferred to the Web container from the Web server. As a result, when setting the number of dedicated
threads, specify a number smaller than the maximum number of concurrent connections in the Web server, as the
size of the pending queue of the Web application and default pending queue.

Maximum number of concurrent connections from the Web clients and the pending queue of the Web
application and default pending queue (when the in-process HTTP server is used)

The upper limit value for the multiplicity of the number of connections from the Web client is as follows:
Maximum-number-of-concurrent-connections-from-the-Web-client - Number-of-requests-for-which-connection-
is-denied

2. Web Container

122

As a result, when setting up the number of dedicated threads, specify a number smaller than the maximum number
of concurrent connections from the Web clients, as the size of the pending queue of the Web application and
default pending queue.
Note that if the maximum number of concurrent connections from the Web client is greater than Sum-of-size-of-
the-pending-queue-of-Web-application-and-default-pending-queue + Maximum-number-of-concurrently-
executing-threads-in-Web-Container, you are not required to control the number of concurrent executions from
the Web client with the in-process HTTP server. Also, if the maximum number of concurrent connections from
the Web client is smaller than Sum-of-size-of-the-pending-queue-of-Web-application-and-default-pending-queue
+ Maximum-number-of-concurrently-executing-threads-in-Web-Container, an error can be returned immediately
to the client without the occurrence of connection pending, by controlling the number of concurrent executions
from the Web client through the in-process HTTP server.
Tip

Operation of the requests when the number of concurrently executing threads reaches the maximum number

When the number of concurrently executing threads in Web application reaches the maximum number, requests are
accumulated in the queue, if there is a space in the queue. Once the on-going request processing finishes, requests are
extracted sequentially from the queues and are executed. Note that if there is no space in the queue, the requests result
in an error, and error HTTP 503 is returned to the client.

2.17.3 Guidelines for the settings for number of concurrently executing
threads (Web applications)

This subsection provides the guidelines for settings when you want to control the number of concurrently executing
threads in the Web applications.

• Follow this order to determine the value you want to set:

1. Determine the maximum number of concurrently executing threads in the Web container.

2. Determine the maximum number of concurrently executing threads in the Web applications.

3. Determine the number of dedicated threads in the Web applications.

4. Determine the size of the pending queue of the Web application and default pending queue.

• Specify the settings for the number of concurrently executing threads in the Web applications keeping in mind the
operations of the Web applications and the capacity of the host on which the J2EE server is running. Execute the
Web applications and evaluate whether the set value is valid.
You can check the statistics for a running Web application by using Management Server. For details on checking
the operational status of the Web applications, see 2.19.2(1) Confirming the operational status of a Web
application.

• When you set the number of dedicated threads for multiple Web applications, the total of the number of dedicated
threads in each Web application must be less than the maximum number of concurrently executing threads of the
Web container. Determine the value to be specified along with the settings for controlling the number of
concurrently executing threads in the Web container.

• Note that when the maximum number of concurrently executing threads in the Web container is small, the
maximum number of concurrently executing threads in the Web application might be even smaller than the set up
number.

• The number of dedicated threads must be less than the maximum number of concurrently executing threads in the
Web application.

2.17.4 Definition in cosminexus.xml
This subsection describes the definitions in cosminexus.xml required in the application development
environment.

Specify the definition for controlling the number of threads in the Web application in the <war> tag of
cosminexus.xml.

The following table lists the definitions in cosminexus.xml for controlling the number of threads in the Web
applications:

2. Web Container

123

Table 2‒53: Definitions in cosminexus.xml for controlling the number of threads in the Web applications

Items Tag to be specified Setting contents

Controlling the number
of concurrently
executing threads in a
Web application#

<thread-control-max-threads> tag in
<thread-control> tag

The maximum number of threads that you can
concurrently execute in a Web application can be
specified.

Number of dedicated
threads in the Web
application.

<thread-control-exclusive-threads>
tag in <thread-control> tag

You can specify the minimum number of threads to
be secured in the Web application (number of
dedicated threads).

If you do not want to specify the number of
dedicated threads, specify 0.

Pending queue for each
Web application

<thread-control-queue-size> tag in
<thread-control> tag

When the number of executing threads reaches the
maximum number, the request is accumulated in a
queue. You specify the pending queue size used at
this time for each Web application.

Note:
You can also dynamically change the settings for the number of concurrently executing threads in the Web applications by using
the management command (mngsvrutil). As a result, you can change the setting of the number of concurrently executing
threads without stopping the service of running Web applications. For details on dynamically changing the maximum number of
concurrently executing threads of the Web applications, see 2.19 Dynamic change in the number of concurrently executing
threads.

For details on the tags to be specified, see 2.2.6 Details of the War property in the uCosminexus Application Server
Application and Resource Definition Reference Guide.

2.17.5 Execution environment settings
This subsection explains the settings to control the number of threads in the Web application.

To control the number of threads in the Web application, you must set up the J2EE server and J2EE applications.

Reference the J2EE application settings only when you want to set or change the properties of the J2EE applications
that do not contain cosminexus.xml.

(1) Setting up the J2EE server
Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for controlling the number
of threads in the Web applications in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy
Setup definition file.

The following table lists the definition in the Easy Setup definition file for controlling the number of threads in the
Web applications:

Table 2‒54: Definition in the Easy Setup definition file for controlling the number of threads in the Web
applications

Items Parameter to be specified Setting contents

Controlling the number
of concurrently
executing threat

webserver.container.thread_control.
enabled

Specifies whether the number of concurrently
executing threads in the Web applications will be
controlled. If you specify true, the controlling of
the number of concurrently executing threads in the
Web applications is enabled. If you specify false,
the controlling of the number of concurrently
executing threads in the Web applications is disabled
and the number of concurrently executing threads in
the Web Container is controlled.

Default size of a
pending queue

webserver.container.thread_control.
queue_size

When the number of executing threads reaches the
maximum number, the request is accumulated in a
queue. This parameter specifies the common pending

2. Web Container

124

Items Parameter to be specified Setting contents

Default size of a
pending queue

webserver.container.thread_control.
queue_size

queue size for each Web application at this time
(default pending queue size).

The set value is applied when the number of
concurrent executions in the Web applications is not
specified.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Setting up the J2EE application
Implement the J2EE application settings in the execution environment by using the server management commands
and property files. Use the WAR property file to define the controlling of the number of threads in the Web
application.

The tags specified in the WAR property file correspond to cosminexus.xml. For details on the definitions in
cosminexus.xml, see 2.17.4 Definition in cosminexus.xml.

2.17.6 Example of setting the number of concurrently executing threads
and the size of a pending queue (Web application)

This subsection describes the examples for setting up the number of concurrently executing threads and the size of
pending queues of Web applications. The examples explained here refer to the Web applications in which the Web
server integration functionality is used.

(1) Example of setting the Web applications used in the description
In this example, the setting to control the number of concurrently executing threads in Web application is specified in
two Web applications out of the four Web applications deployed on the Web container. The settings are shown below:

• Maximum number of concurrent connections in the Web server: 50

• Maximum number of concurrently executing threads of Web container: 10

• Default size of the pending queue: 10

• Specifying the setting to control the number of concurrently executing threads in the Web application
This is assumed that the following settings are specified in Web applications A and B respectively.
In the Web applications C and D, the settings for controlling the number of concurrently executing threads in the
Web applications are not specified.

Web application name
Maximum number of

concurrently executing
threads

Number of dedicated
threads

Size of pending
queue of Web

application

Web application A 3 1 5

Web application B 3 2 10

The following figure illustrates the example in which the Web application with the setting to control the number of
concurrently executing threads for each Web application, and Web applications without the setting exist together on a
Web container:

2. Web Container

125

Figure 2‒21: Example of Web application settings

(2) Number of threads available in each Web application
The maximum number of concurrently executing threads, the number of dedicated threads, and the size of the pending
queue that you can use in the case of the setup in figure 2-21 are illustrated below for each Web application. Note that
the serial number of the description corresponds to the serial number mentioned in the figure.

1. Web application A

• Maximum number of concurrently executing threads and the number of dedicated threads
Since the maximum number of concurrently executing threads and the number of dedicated threads is set in
Web application A, you can use the threads up to the respective set values.
You can concurrently execute maximum of 3 threads in the Web application A. Out of the three threads you
can secure minimum of one thread for the number of dedicated threads in Web application A.

• Size of the pending queue of the Web application
The size of the pending queue of the Web application is specified in the Web application A. If three threads
are used concurrently in the Web application A, a maximum of five requests to the Web application A are
accumulated in the queue.

2. Web application B

• Maximum number of concurrently executing threads and the number of dedicated threads
Since the maximum number of concurrently executing threads and the number of dedicated threads is set in
Web application B, you can use the threads up to the respective set values.
You can concurrently execute maximum of 3 threads in the Web application B. Out of the three threads, you
can secure minimum of two threads for the number of dedicated threads in Web application B.

• Size of the pending queue of the Web application

2. Web Container

126

The size of the pending queue of the Web application is specified in the Web application B. If three threads
are used concurrently in the Web application B, a maximum of ten requests to the Web application B are
accumulated in the queue.

3. Web application C and Web application D
The setting to control the concurrently executing threads in the Web application is not specified in Web
application C and Web application D.
Perform the operation as follows:

• Maximum number of concurrently executing threads
In Web application C and Web application D, use the number of shared threads of the Web container. In this
case, since the number of shared threads of the Web container is seven, you can use maximum up to seven
threads together in Web application C and Web application D.
Note that the number of threads is shared between Web application C and Web application D.
In Web application 3 and Web application 4, since the setting to control the number of concurrently executing
threads is not specified, there are no dedicated threads. When the access is centralized in Web application A
and Web application B, and no threads are available, the processing of Web application C and Web
application D is pending.

• Size of default pending queue
When the processing of the Web application C or the Web application D is pending, the requests to these Web
applications are accumulated in the pending queue. The size of the pending queue is not specified for the Web
application C and the Web application D, and therefore, the requests are accumulated in the default pending
queue. A maximum of ten requests are accumulated in the pending queue.
Reference note

In a Web container, the threads are even used for error processing of static contents and requests. The number of
threads used for these objectives can be calculated from the following expression:

Number-of-processing-threads-of-Web-server - (Maximum-number-of-concurrently-executing-threads-of-Web-
container + Total-size-of-the-pending-queues#)

The total size of the pending queues refers to the value obtained by adding the size of the pending queues of
the Web container, Web application A and Web application B, in this figure.
Therefore, in the case of this figure, the value will be 50 - (10 + (10 + 5 + 10)) implying that 15 threads
are used for error processing of static contents and requests.

2.17.7 Notes on controlling the number of concurrently executing threads
in the Web application

When you control the number of concurrently executing threads in the Web application, note the following points:

• When the number of threads exceeds the maximum number of concurrently executing threads in Web container
Since only the requests equal to the minimum number of threads secured in the Web application are implemented
when all of the following conditions are satisfied, the thread count may temporarily exceed the maximum number
of concurrently executing threads in the Web container.

• If the value set for the number of concurrently executing threads in the Web container is completely used
when the access is centralized.

• If a Web application in which the number of dedicated threads is set, is deployed

• If a request arrives in the deployed Web application, before completion of the request processing threads that
are running

• Access to be controlled
Apart from the access to servlets and JSPs, the number of concurrently executing threads is also to be controlled
when the static contents are accessed.

• Notes for using the error page customization functionality
When using the error page customization functionality with <error-page> tag used in web.xml, the number
of concurrently executing threads is not controlled in processing of the request that is transferred when an error
occurs. There are no restrictions as a result of controlling the number of concurrently executing threads.

2. Web Container

127

• About the threads
The dedicated threads are not generated as exclusive threads of the Web application. The minimum number of
threads secured when a Web application is executed is set here for the thread count.
Note that the threads for request processing is re-used in the entire Web container.

• Maximum number of concurrently executing threads in Web application
Even if a value greater than the maximum number of concurrently executing threads in Web container is set as the
maximum number of concurrently executing threads in Web application, you can deploy the Web application on a
J2EE server. Note that the maximum number of concurrently executing threads in Web container is, however used
for the maximum number of concurrently executing threads in deployed Web application.

• When the number of shared threads in Web application is 0 or less
If you deploy a following type of Web application, the number of shared threads in Web application may become
0 or less. Note that if the number of shared threads in the Web application is 0 or less, deployment of the Web
application fails. You can consider the following cases in which the number of shared threads is 0 or less:

• When a Web application with setting to control the number of concurrently executing threads in URL group is
already deployed, and an attempt is made to deploy another Web application with the number of dedicated
threads set

• When the number of dedicated threads, and the setting to control the number of concurrently executing threads
in URL group is specified in a Web application to be deployed, and the number of shared threads in Web
application is already 0 or less during setup

2. Web Container

128

2.18 Controlling the number of concurrently executing
threads in the URL group

This section describes the settings for controlling the number of concurrently executing threads in the URL group.

Note that when you control the number of threads in the URL group, you also need to simultaneously specify the
setting to control the threads in the Web container and the Web application. Also see 2.16 Controlling the number of
concurrently executing threads in the Web container and 2.17 Controlling the number of concurrently executing
threads in the Web application.

The following table describes the organization of this section.

Table 2‒55: Organization of this section (Controlling the number of concurrently executing threads in the
URL group)

Category Title Reference

Description Mechanism of controlling the number of concurrently executing threads (URL group) 2.18.1

Mapping of URL patterns 2.18.2

Parameters required for controlling the number of concurrently executing threads (URL group) 2.18.3

Guidelines for setting the number of concurrently executing threads (URL group) 2.18.4

Implementation Definition in cosminexus.xml 2.18.5

Settings Execution environment settings (Web application settings) 2.18.6

Examples of setting the number of concurrently executing threads and the size of a pending
queue (URL group)

2.18.7

Note:
There is no specific description of Operations and Notes for this functionality.

2.18.1 Mechanism of controlling the number of concurrently executing
threads (URL Group)

If you want to control the number of concurrently executing threads more carefully than the Web application, control
the number of concurrently executing threads in the URL group.

If a business logic (servlets and JavaBeans) that takes long processing time is present in a Web application, almost all
the concurrently executing threads in the Web application are used, and the processing of other business logics may be
in waiting state. In such a case, by specifying the setting to control the number of concurrently executing threads in the
URL group, you can execute the business logics of the Web application without affecting the other processing.

Note that the URL that you can control with the number of concurrently executing threads indicates the request URI
defined in RFC 2616. The URL that can control the number of concurrently executing threads in URL group does not
include the query characters of request URI. An example is shown below.

• HTTP requests that can be controlled: /webapp/index.html

• HTTP requests that cannot be controlled: http: //localhost/webapp/index.html?id=0001

For guidelines on setting the number of concurrently executing threads in the URL group, see 8.3.4 Controlling the
number of concurrently executing threads in a Web application in the uCosminexus Application Server System Design
Guide.

2.18.2 Mapping of URL patterns
This subsection explains the order of mapping between URL specified in a URL that can be controlled by controlling
the number of concurrently executed threads and a URL pattern and the request URL. This subsection also explains
the case in which the URL pattern is set for the welcome file.

2. Web Container

129

(1) URL that can be controlled by controlling the number of concurrently executed threads
A URL that can be controlled by controlling the number of concurrently executed threads in a URL group indicates
the request URI defined in RFC 2616. The URL that can be controlled by controlling the number of concurrently
executed threads in a URL group does not include the schema, host, port, and query string of the request URI.

The following is an example of a URL that can be controlled by controlling the number of concurrently executed
threads in a URL group:

The request URI of the received HTTP request:
http://localhost/webapp/index.html?id=0001

The part used for controlling the number of concurrently executed threads in a URL group:
/webapp/index.html

(2) Mapping order
The request URL is mapped in the following order of 1. to 3. Note that the mapping order is same as the order
applicable to servlet mapping in the Servlet specifications.

1. Exact match
If the request URL and the URL pattern match completely, the matching URL pattern is applied.

2. Prefix match
The URL pattern in which the request URL and the prefix are matching and the request URL matches with the
longest string, is applied.

3. Extension match
If the request URL and the extension match, the matching URL pattern is applied.

Note that if the request URL does not match with the above-mentioned 1. to 3., the number of concurrently executing
threads is not controlled in the URL group. In such a request URL, the number of concurrently executing threads is
controlled in the Web application.

Examples of URL mapping are explained using the following URL patterns:

Table 2‒56: Examples of URL pattern

URL pattern URL group corresponding to the URL pattern

/foo/bar Control1

/foo/* Control2

/foo/bar/* Control3

*.do Control4

Mapping example 1: When the request URL is /foo/bar
Since the request URL completely matches with the URL pattern of Control1, the request URL is distributed to
the Control1.

Mapping example 2: When the request URL is /foo/bb
Since the request URL does not match completely with any URL pattern, the request URL is distributed to
Control2 in which the prefix is matching.

Mapping example 3: When the request URL is /foo/aa.do
In this case, the following locations are matching in Control2 and Control4:

• Prefix /foo matches with Control2.

• Extension .do matches with Control4.

In the mapping order, since prefix match is given priority over extension match, the request URL is distributed to
Control2.

Mapping example 4: When the request URL is /foo/bar/
In this case, the prefix is matching in Control2 and Control3 respectively.

2. Web Container

130

• Prefix /foo matches with Control2.

• Prefix /foo/bar matches with Control3.

The request URL is distributed to Control3 in which it matches with the longer string.

Mapping example 5: When the request URL is /foo/bar/action.do
In this case, the following locations are matching in Control2, Control3 and Control4:

• Prefix /foo matches with Control2.

• Prefix /foo/bar matches with Control3.

• Extension .do matches with Control4.

In the mapping order, since prefix match is given priority over extension match, and the URL pattern that matches
the longer string is given priority, the request URL is distributed to Control3.

Mapping example 6: When the request URL is /context/fo
Since there is no corresponding URL pattern, the mapping of request URL is treated as controlling the
concurrently executing threads in the Web application.

Mapping example 7: When the request URL is /action.do
Since the extension matches with Control4, the request URL is distributed to Control4.

Mapping example 8: When the request URL is /boo/action.do
Since the extension matches with Control4, the request URL is distributed to Control4.

(3) Flow of processing when URL pattern is set in the welcome file
The following figure illustrates the flow of processing when the URL pattern is set in the welcome file. In the example
illustrated in the following figure, the context root of Web application is context, and /index.html is set as the
web.xml for welcome file. The URL pattern and the definition name for controlling the number of concurrently
executing threads in the URL group is as follows:

• URL pattern: /index.html
• Definition name for controlling the number of concurrently executing threads in the URL group: Control1

Figure 2‒22: Example of setting a URL pattern in the welcome file

The flow in the figure is as follows:

1. The client sends requests to http: //localhost/context/.

2. The J2EE server returns the HTTP status code 302, so that the client can re-access the welcome file set as
web.xml. http: //localhost/context/index.html is included in Location header.

3. The client that receives the HTTP response sends requests to the value of the Location header (http: //
localhost/context/index.html) .

2. Web Container

131

4. Since the request of the corresponding Web application is /index.html, the request is controlled by
'controlling the number of concurrently executing threads in the URL group' functionality of Control1. After
request processing is complete, index.html is send to the client as response.

2.18.3 Parameters required for controlling the number of concurrently
executing threads (URL group)

This subsection explains the settings to control the thread count in the URL group. You need to specify the following
settings to control the thread count in the URL group:

1. Specifying the setting to control the number of concurrently executing threads in the Web container
Set the maximum number of concurrently executing threads in the Web container. Note that the maximum number
of concurrently executing threads set here is shared in all the Web applications deployed on the Web container.
For details on specifying the setting to control the number of concurrently executing threads in the Web container,
see 2.16 Controlling the number of concurrently executing threads in the Web container.

2. Specifying the setting to control the number of concurrently executing threads in the Web application
Set the number of concurrently executing threads and the number of dedicated threads in the Web application.
Note that when setting the number of concurrently executing threads in the URL group, it is mandatory to set the
number of dedicated threads in the Web application.
For details on specifying the setting to control the number of concurrently executing threads in the Web
application, see 2.17 Controlling the number of concurrently executing threads in the Web application.

3. Specifying the setting to control the number of concurrently executing threads in the URL group
To control the number of concurrently executing threads in the URL group, set the following parameters in the
URL group of the Web application in which the setting to control the number of concurrently executing threads in
Web application is specified:

• Definition name of the control of number of concurrently executing threads in URL group
Set the name of the URL group that is the unit to control the number of concurrently executing threads.

• Maximum number of concurrently executing threads
Set the maximum number of threads that you can concurrently execute in the URL group.

• Number of dedicated threads
Set up the number of dedicated threads in the URL group.

• Size of the pending queue of the URL group
Set the size of a pending queue in the URL group.

• URL pattern
Specify the URL pattern to distribute the request URL in which the number of threads is to be controlled.

The detailed settings to control the number of concurrently executing threads in the URL group are explained below:

(1) Maximum number of concurrently executing threads in URL group
The thread count used in the URL group refers to the thread count of the Web application to which the URL group
belongs. Consequently, if one thread is used in the URL group, it implies that one thread is executed even in the Web
application that includes the URL group.

Note that for a request URL in which the maximum number of concurrently executing threads of URL group is not
set, the number of shared threads in the Web application is used. The number of shared threads in the Web application
is as follows:

Number of shared threads in Web application unit =
Maximum number of concurrently executing threads in Web application unit# - Total number of dedicated threads
in URL group

The smaller value in following 1. and 2., is applied as the maximum number of concurrently executing threads:

1. Number of shared threads in Web container unit

2. Value set as the maximum number of concurrently executing threads in Web application

2. Web Container

132

In such a case, the number of shared threads in Web application needs to be at least 1. If the number of shared threads
is 0 or less, an error occurs. For details, see 2.17.7 Notes on controlling the number of concurrently executing threads
in the Web application.

(2) Number of dedicated threads in URL group
Set the number of dedicated threads in URL group to execute specific business logic without being affected by other
business logics in the Web application.

Specify the number of dedicated threads in URL group within the range of the number of dedicated threads set in the
Web application. As a result, if the number of dedicated threads is not set in the Web application that includes the
URL group, you cannot set the number of dedicated threads even in the URL group.

If the number of requests to the request URL in which the setting to control the number of concurrently executing
threads in the URL group is specified exceeds the number of dedicated threads in URL group, and if the value is less
than the maximum number of concurrently executing threads in the URL group, the requests are processed by using
the number of shared threads in the Web application. As a result, if the number of shared threads in the Web
application is less, be careful that the maximum number of concurrently executing threads in URL group will be even
lesser than the set value.

(3) Pending queue in URL group
The pending queue in the URL group refers to the queue in which requests enter when the number of concurrently
executing threads in URL group reaches the upper limit. The pending queue in URL group is created for each URL
group when the setting to control the number of concurrently executing threads in the URL group is specified. Set the
size of this pending queue.

Requests enter a pending queue when the number of concurrently executing threads in a URL group reaches the upper
limit, and the pending queue of the URL group has some space. The requests in the pending queue of the URL group
are extracted sequentially from the pending queue, and executed after the processing of the request is complete. If the
number of concurrently executing threads in the URL group reaches the upper limit and there is no space in the
pending queue of the URL group, an error occurs, and then HTTP status code 503 is returned to the client.

Note that the requests entering the pending queue of the URL group do not enter the default pending queue and the
pending queue of the Web application. The pending queue of the Web application is used for the requests that do not
correspond to the request URL set for controlling the number of concurrently executing threads in the URL group.

(4) Setting the URL patterns
Set the URL patterns for distributing the request URL. You can specify the URL patterns for the servlet mapping in
Servlet specifications. You can specify the following URL patterns:

• A string beginning with "/"
Example: /index.jsp

• A string beginning with "/" and ending with "/*"
Example: /test/*

• A string beginning with "*."
Example: *.do

For details on the order of mapping the request URL with the URL pattern, see 2.18.2 Mapping of URL patterns.

To control the number of concurrently executing threads in the URL group, you must simultaneously specify settings
to control the number of concurrently executing threads in the Web applications and the settings to control the number
of threads in the Web Container. The following table lists the parameters specified for controlling the number of
concurrently executing threads in the URL group:

2. Web Container

133

Table 2‒57: Parameters specified for controlling the number of threads in the URL group

Set parameters
Set units

Web Container Web application URL group

Whether to control the number
of concurrently executing
threads

-- Y --

Maximum number of
concurrently executing threads

Y Y Y

Number of dedicated threads -- Y Y

Size of a pending queue -- Y Y

Default size of a pending queue -- Y --

Definition name of the control
of number of concurrently
executing threads in URL
group

-- -- Y

URL pattern to be controlled -- -- Y

Legend:
Y: Specified
--: Not applicable

The settings for controlling the number of concurrently executing threads in the URL group are described here. Use
the server management commands to specify settings for controlling the number of concurrently executing threads in
the URL group. For details on the parameters set in the Web Container, see 2.16.2 Execution environment settings
(J2EE server settings) and for details on the settings for each Web application parameter, see 2.17.5 Execution
environment settings.

You can set the followings in the server management commands:

• Definition name of the control of number of concurrently executing threads in URL group
Specifies the URL group name in which the number of concurrently executing threads is controlled. The group
name must be unique in the Web application.
The characters that can be used are as follows:

• Alphanumeric characters (A-Z, a-z, 0-9)

• One-byte hyphen (-)

• One-byte underscore (_)

The length of the string is 1 to 64.

• Maximum number of concurrently executing threads in each URL group
Specify the maximum number of threads that you can concurrently execute in a URL group. The specifiable range
is as follows:

Setup range for Maximum number of concurrently executing threads
1 Maximum-number-of-concurrently-executing-threads (URL-group) Maximum-number-of-
concurrently-executing-threads (Web-application)

• Number of dedicated threads in the URL group
Specify the minimum number of threads to be secured in the URL group (number of dedicated threads). The
specifiable range is as follows:

Setup range for the number of dedicated threads
0 number-of-dedicated-threads (URL-group) Maximum-number-of-concurrently-executing-
threads (URL-group)
Furthermore, the number of dedicated threads in the URL group must be less than the number of dedicated
threads in the Web application.

2. Web Container

134

Also, the sum of the number of dedicated threads set in the URL group in the Web application must fulfill the
following conditions. Note that these conditions depend on the values of the maximum number of concurrently
executing threads and the number of dedicated threads in Web application.

In the Web application settings, when Maximum-number-of-concurrently-executing-threads number-of-
dedicated-threads

Number-of-dedicated-threads (Web-application) Sum-of-number-of-dedicated-threads (URL-group)

In the Web application settings, when Maximum-number-of-concurrently-executing-threads = number-of-
dedicated-threads

Number-of-dedicated-threads (Web-application) > Sum-of-number-of-dedicated-threads (URL-group)

Specify 0 when you do not want to set the number of dedicated threads.

• Size of the pending queue of the URL group
When the number of executing threads reaches the maximum number, the request is accumulated in the queue.
Specify the pending queue size at this time for each URL group. The specifiable range is as follows:

Setup range for the size of the pending queue of the URL group
0 pending-queue-size (URL-group) 2,147,483,647

If you specify 0, the pending queue of the URL group will not be used. At this time, if the number of concurrently
executing threads reaches the upper limit, the requests will result in an error.

• URL pattern to be controlled
Specify the URL for which you want to control the number of concurrently executing threads. Specify a unique
name in the Web application for the URL pattern. Also, specify the URL below the Web application context.

When using the server management commands, set the number of concurrently executing threads in the
<urlgroup-thread-control> tag under the <thread-control> tag of the WAR property file.

• Specify the definition name for controlling the number of concurrently executing threads in the <urlgroup-
thread-control-name> tag.

• Specify the maximum number of concurrently executing threads in the URL group in the <urlgroup-
thread-control-max-threads> tag.

• Specify the number of dedicated threads in the <urlgroup-thread-control-exclusive-threads>
tag.

• Specify the size of the pending queue of the URL group in the <urlgroup-thread-control-queue-
size> tag.

• In the <urlgroup-thread-control-mapping> tag, specify the URL pattern you want to control enclosed
in the <url-pattern> tag.

Acquire the property file using the cjgetappprop command of server management commands, and after editing
the property file, apply the edited contents using the cjsetappprop command. For the server management
commands, see 3. Basic Operation of Server Management Commands in the uCosminexus Application Server
Application Setup Guide.

2.18.4 Guidelines for setting the number of concurrently executing
threads (URL group)

This subsection provides guidelines for specifying the settings to control the number of concurrently executing threads
in the URL group.

• When specifying the settings to control the number of concurrently executing threads in the URL group, set up the
followings beforehand:

• Maximum number of concurrently executing threads of Web container

• Maximum number of concurrently executing threads, number of dedicated threads, pending queue size for
each Web application

• Follow this order to determine the value you want to set:

2. Web Container

135

1. Set the maximum number of concurrently executing threads in the URL group.

2. Set the number of dedicated threads in the URL group.

3. Set the size of a pending queue in the URL group.

4. Set the URL pattern.

• In the maximum number of concurrently executing threads in the URL group, set an appropriate value for the
business logic present in the J2EE application.
For example, if the processing of specific business logic is heavy, by setting an upper limit to the number of
concurrently executing threads of that business logic, you can prevent the business logic from occupying the entire
Web application capacity, even if the access to the business logic is centralized.

• Set the number of dedicated threads in URL group to execute specific business logic without being affected by
other business logics in the Web application.

• Set the pending queue size in the URL group to set an upper limit for the flow to specific business logic. The
guidelines for setting the pending queue in the URL group is the same as that for the default pending queue and
the pending queue in the Web application.

2.18.5 Definition in cosminexus.xml
This subsection describes the definitions in cosminexus.xml required in the application development
environment.

Specify the definition for controlling the number of concurrently executing threads in the URL group in the <war>
tag of cosminexus.xml.

The following table lists the definitions in cosminexus.xml for controlling the number of concurrently executing
threads in the URL group.

Table 2‒58: Definitions in cosminexus.xml for controlling the number of concurrently executing threads in
the URL group

Tag to be specified Setting contents

<urlgroup-thread-control-name> tag Specifies the definition name for controlling the number of concurrently
executing threads.

<urlgroup-thread-control-max-
threads> tag

Specifies the Maximum number of concurrently executing threads in the URL
group.

<urlgroup-thread-control-exclusive-
threads> tag

Specifies the number of dedicated threads.

<urlgroup-thread-control-queue-
size> tag

Specifies the size of the pending queue of the URL group.

<urlgroup-thread-control-mapping> tag Specifies the URL pattern you want to control enclosed in the <url-pattern>
tag.

For details on the tags to be specified, see 2.2.6 Details of the War property in the uCosminexus Application Server
Application and Resource Definition Reference Guide.

2.18.6 Execution environment settings (Web application settings)
To control the number of concurrently executing threads in the URL group, you must set up the Web application.

Reference the Web application settings only when you want to set or change the properties of the Web applications
that do not contain cosminexus.xml.

Implement the Web application settings in the execution environment by using the server management commands and
property files. Use the WAR property file for the definition for controlling the number of concurrently executing
threads in the URL group.

2. Web Container

136

The tags specified in the WAR property file correspond to cosminexus.xml. For details on the definitions in
cosminexus.xml, see 2.18.5 Definition in cosminexus.xml.

2.18.7 Example of setting the number of concurrently executing threads
and the size of a pending queue (URL Group)

This subsection describes the examples of setting up the number of concurrently executing threads and the size of the
pending queue of the URL group. The examples explained here reference to the Web applications in which the Web
server integration functionality is used.

(1) Example of setting the Web applications used in the description
In this example, out of the two Web applications deployed on the Web container, the setting to control the number of
concurrently executing threads in the Web application as well as in the URL group is specified in one Web
application. The settings are shown below:

• Maximum number of concurrent connections in the Web server: 40

• Maximum number of concurrently executing threads of Web container: 8

• Default size of the pending queue: 5

• Specifying the setting to control the number of concurrently executing threads in the Web application
Set the following contents in Web application A. Note that in Web application B, the setting is not specified to
control the number of concurrently executing threads in the Web application.

Web application name
Maximum number of

concurrently executing
threads

Number of dedicated
threads

Size of pending queue of
Web application

Web application A 7 3 5

• Specifying the setting to control the number of concurrently executing threads in the URL group
In Web application A, the setting of the following URL groups is specified. In Control C, the settings for
controlling the number of concurrently executing threads in URL group are not specified.

URL group name URL pattern
Maximum number of

concurrently
executing threads

Number of dedicated
threads

Size of pending queue
of Web application

Control A /
health_check.jsp

1 1 1

Control B /create_pdf 3 2 5

The following figure shows the example in which the thread count is controlled in the URL group:

2. Web Container

137

Figure 2‒23: Example of settings in the URL group

(2) Number of threads available in each Web application
The maximum number of concurrently executing threads, the number of dedicated threads, and the size of the pending
queue that you can use in the case of the setup in figure 2-23 are illustrated below for each Web application or URL
group. Note that the serial number of the description corresponds to the serial number mentioned in the figure.

1. Web application A
The setting to control the number of concurrently executing threads is specified in the Web application A. In the
business logics (Control A and Control B) of Web application A, the setting to control the number of concurrently
executing threads in the URL group is specified.
The thread count of the Web application A is explained below:

• Maximum number of concurrently executing threads and the number of dedicated threads
Since the maximum number of concurrently executing threads and the number of dedicated threads is set, you
can use the threads up to the respective set values.
You can concurrently execute maximum of 7 threads in the Web application A. Out of the seven threads you
can secure minimum of three thread for the number of dedicated threads in Web application A.

• Number of shared threads

2. Web Container

138

Calculate the number of shared threads that you can use in the entire Web application A by the following
expression: Maximum number of concurrently executing threads in Web application A - Total number of
dedicated threads. In this case, the number of shared threads will be 7 - 3, that is 4.

• Size of the pending queue of the Web application
The size of the pending queue of the Web application is specified in the Web application A. If seven threads
are used concurrently in the entire Web application A, a maximum of five requests are accumulated in the
pending queue. Note that this queue is used in the requests to the business logic Control C in the Web
application, in which the settings to control the number of concurrently executing threads in the URL group is
not specified.

2. Control A (requests to /health_check.jsp)

• Maximum number of concurrently executing threads and the number of dedicated threads
Since the maximum number of concurrently executing threads and the number of dedicated threads is set in
Control A, you can use the threads up to the respective set values.
In Control A, the maximum number of concurrently executable threads is one. This one thread also acts as the
minimum number of dedicated threads that you can secure in Control A. Note that the number of dedicated
threads in Control A is one of the dedicated threads in Web application A.

• Size of the pending queue of the URL group
The size of the pending queue of the URL group is specified in Control A. If one thread is in use in Control A,
maximum one request is accumulated in the pending queue of the URL group.

3. Control B (requests to /create_pdf)

• Maximum number of concurrently executing threads and the number of dedicated threads
Since the maximum number of concurrently executing threads and the number of dedicated threads is set in
Control B, you can use the threads up to the respective set values.
In Control B, the maximum number of concurrently executable threads is three. Out of the three threads, you
can secure minimum of two threads as the dedicated threads in Control B. Note that, , out of the dedicated
threads in Web application 1, two threads serve as the dedicated threads in Control2.

• Size of the pending queue of the URL group
The size of the pending queue of the URL group is specified in Control B. If three threads are in use in
Control B, maximum five requests are accumulated in the pending queue of the URL group.

4. Control C process
The setting to control the number of concurrently executing threads is not specified for requests to business logic
Control C in Web application A.
Perform the operation as follows:

• Maximum number of concurrently executing threads
The number of shared threads in Web application A is the maximum number of concurrently executing
threads. Since the number of shared threads in Web application A is four, the maximum number of
concurrently executing threads of the Control C processing is four.
Web application 1 does not contain any dedicated threads since the setting to control the number of
concurrently executing threads is not specified. Therefore, if access to Control A or B is centralized and if the
threads that can be used in the Web application A are lost, the processing of the Control C business logic
remains pending.

• Size of the pending queue of the Web application
When the processing of business logic Control C is pending, the requests to the processing are accumulated in
the queue. Since the size of the pending queue of the URL group is not specified in the business logic Control
C, the requests are accumulated in the pending queue of the Web application A. A maximum of five requests
are accumulated in the pending queue.

5. Web application B
The settings to control the number of concurrently executing threads in Web application are not specified in Web
application B.
Perform the operation as follows:

• Maximum number of concurrently executing threads
The number of shared threads in Web container is used as the maximum number of concurrently executing
threads. You can calculate the number of shared threads in Web container by the following expression:

2. Web Container

139

Maximum number of concurrently executing threads in Web container - Number of dedicated threads in Web
application A
In this case, it will be 8 - 3, that is the maximum number of concurrently executing threads in Web application
B will be 5.

• Size of default pending queue
When requests are pending in the Web application B, the requests to the Web application B are accumulated
in the pending queue. Since the size of the pending queue of the Web application is not specified in the Web
application B, the requests are accumulated in the default pending queue. A maximum of five requests are
accumulated in the pending queue.
Reference note

In a Web container, the threads are even used for error processing of static contents and requests. The number of
threads used for these objectives can be calculated from the following expression:

Number-of-processing-threads-of-Web-server - (Maximum-number-of-concurrently-executing-threads-of-Web-
container + Total-size-of-the-pending-queues#)

The total size of the pending queues refers to the value obtained by adding the size of the pending queues of
the Web container, Web application A, Control A, and Control B, in this figure.

Therefore, in case of figure 3-16, the value will be 40 - (8 + (5 + 5 + 1 + 5)), that is the number of threads used
for error processing of static contents and requests is 16.

2. Web Container

140

2.19 Dynamic change in the number of concurrently
executing threads

This section describes the settings for dynamically changing the number of concurrently executing threads.

The following table describes the organization of this section.

Table 2‒59: Organization of this section (Dynamically changing the number of concurrently executing
threads)

Category Title Reference

Description Overview of dynamically changing the number of concurrently executing threads 2.19.1

Flow of dynamically changing the number of concurrently executing threads 2.19.2

Operations of a Web application when the number of concurrently executing threads are
changed dynamically

2.19.3

Notes Precautions related to dynamically changing the number of concurrently executing threads 2.19.4

Note:
There is no specific description of Implementation, Settings, and Operations for this functionality.

2.19.1 Overview of dynamically changing the number of concurrently
executing threads

This subsection provides an overview of dynamically changing the number of concurrently executing threads.

(1) Usage of dynamically changing the number of concurrently executing threads
In a system built with Application Server, you can dynamically change the maximum number of concurrently
executing threads, number of dedicated threads, and pending queue size of each Web application without stopping the
service. You can change the maximum number of concurrently executing threads, number of dedicated threads, and
pending queue size of each Web application with the management command (mngsvrutil) .

If the maximum number of concurrently executing threads of each Web application is changed, the following aspects
can be supported:

• Performance tuning in the operational status of each Web application
You can tune the performance while providing services to a client.

• Changing the maximum number of concurrently executing threads of each temporary Web application
corresponding to the access status
You can temporarily increase or decrease the maximum number of concurrently executing threads of a specific
Web application corresponding to the access status.

• Changing the maximum number of concurrently executing threads of each planned Web application according to a
time zone
You can systematically increase or decrease the maximum number of concurrently executing threads of a Web
application according to a time zone.

Note that the items set here become invalid when you stop the service and the settings are not saved in J2EE server.
Further, with this method you can change only the information related to a Web application. When you change the
Web container settings, you have to restart the J2EE server to apply the changes.

When you want to change the maximum number of concurrently executing threads of each Web container or when
you want to permanently change the maximum number of concurrently executing threads of a Web application, follow
the procedure similar to the one used when building a system.

2. Web Container

141

! Important note

When the maximum number of concurrently executing threads of a Web application is changed, the control operation for
these threads of each URL group is affected depending on the relation between the maximum number of concurrently
executing threads and the number of dedicated threads of each URL group. For details, see 2.19.1(4) Effect on the
controlling of the number of concurrently executing threads in the URL group.

(2) An example of setting change
This subsection introduces an example of setting change for a specific Web application, in the case you want to
improve the throughput and reduce the number of requests resulting in an error. In this example, the maximum
number of concurrently executing threads, the number of dedicated threads, and the size of the pending queue of a
Web application are increased. Note that you cannot change the maximum number of concurrently executing threads
of Web container, and the maximum number of concurrently executing threads of URL group during dynamic change
in the number of concurrently executing threads.

Table 2‒60: An example of the dynamic change in the number of concurrently executing threads

Parameter Setting before change Setting after change

Maximum number of concurrently executing threads of Web container 10 --

Web application setup Maximum number of concurrently
executing threads

7 8

Number of dedicated threads 4 5

Size of a pending queue 8 10

Legend:
--: The setting cannot be changed

(3) Operation after setting change
A change in the number of concurrently executing threads is applied immediately. You need to pay attention in the
following operations, immediately after making changes:

When the maximum number of concurrently executing threads is changed

• When the maximum number of concurrently executing threads is increased
The requests that change to executable state from among the pending requests of the Web application are
executed immediately.

• When the maximum number of concurrently executing threads is reduced, since all the threads specified in the
maximum number of concurrently executing threads are used.
The requests that exceed the maximum number of concurrently executing threads after change are executed
concurrently on a temporary basis.

When the number of dedicated threads is changed

• When the number of dedicated threads is increased, since all the threads specified in the maximum number of
concurrently executing threads of Web container are used
If there are pending requests in a Web application in which the number of dedicated threads is increased, as
many requests as the number of dedicated threads are executed immediately. In such cases, however, the
requests that exceed the maximum number of concurrently executing threads of Web container are executed
concurrently on a temporary basis.

• When the number of dedicated threads is reduced
When the number of dedicated threads is reduced, the number of threads shared in all the Web applications
increases. In such cases, the requests in the pending state that change to executable state by increasing the
number of threads shared in all Web applications, are executed immediately.

When the size of the pending queue of the Web application is changed

• When the size of a pending queue is reduced, since requests are pending up to the upper limit of the queue in a
pending queue of Web application

2. Web Container

142

Error HTTP 503 is returned for the requests that exceed the size of the pending queue.

(4) Effect on the controlling of the number of concurrently executing threads in the URL group
When you dynamically change the number of concurrently executing threads of the Web application in which the
settings to control the number of concurrently executing threads in URL group is specified, the setting of the number
of concurrently executing threads in URL group may be affected. The setting is affected due to the following changes:

When the maximum number of concurrently executing threads in Web application is reduced
When the following condition is satisfied by reducing the maximum number of concurrently executing threads in
the Web application, the maximum number of concurrently executing threads in URL group is temporarily used as
the number of concurrently executing threads in Web application.

Condition in which the maximum number of concurrently executing threads in URL group is changed
Maximum-number-of-concurrently-executing-threads-in-URL-group > Maximum-number-of-concurrently-
executing-threads-in-Web-application

The setting of the maximum number of concurrently executing threads in URL group is however not changed. If
the maximum number of concurrently executing threads in Web application reduces up to the number of threads
set during dynamic change, and the maximum number of concurrently executing threads in URL group falls
below the maximum number of concurrently executing threads in Web application, the maximum number of
concurrently executing threads in URL group operates as per the setting.
Note that due to of this change, in order to continue the processing of running requests, the requests that exceed
the maximum number of concurrently executing threads of Web application after change are executed
concurrently on a temporary basis.

When the number of dedicated threads in Web application is reduced
If the number of dedicated threads in Web application is reduced, the number of dedicated threads set in all the
URL groups of the Web application is no longer available. The conditions in which you cannot use the number of
dedicated threads are explained below. Note that these conditions depend on the relationship between the
maximum number of concurrently executing threads and the number of dedicated threads in Web application.

When the maximum number of concurrently executing threads in Web application = Number of dedicated threads
in Web application

When the following expression is fulfilled, you cannot use the number of dedicated threads set in the URL
group.
Number-of-dedicated-threads-in-Web-application Total-number-of-dedicated-threads-in-URL-group

When the maximum number of concurrently executing threads in Web application Number of dedicated
threads in Web application

When the following expression is fulfilled, you cannot use the number of dedicated threads set in the URL
group.
Number-of-dedicated-threads-in-Web-application < Total-number-of-dedicated-threads-in-URL-group

2.19.2 Flow of dynamically changing the number of concurrently
executing threads

The preparations and procedures for dynamically changing the maximum number of concurrently executing threads of
a Web application are described below:

Preparation
Perform the dynamic change in the maximum number of concurrently executing threads of a Web application
when the J2EE applications including the J2EE server and the Web application, are started.
For starting a J2EE server, see 4.1.24 Starting the system (when using CUI) in the uCosminexus Application
Server System Setup and Operation Guide. For starting a system including the startup of a J2EE application, see
4.1.29 Setting and starting the business application (when using CUI) in the uCosminexus Application Server
System Setup and Operation Guide.

Procedure
For dynamically changing the maximum number of concurrently executing threads of a Web application:

2. Web Container

143

1. Monitor the operational status of a Web application, and confirm that it is necessary to change the
maximum number of concurrently executing threads (see (1))
Perform this task using the management command.

2. Change the maximum number of concurrently executing threads of the Web application when deemed
necessary (see (2))
Perform this task using the management command.

3. Check the operational status of the Web application and confirm the improvement (see (3))
Perform this task using the management command.

(1) Confirming the operational status of a Web application
Confirm the operational status of a running Web application. You can confirm the operational status of a Web
application using the management command (mngsvrutil) . After confirming the operational status, consider
whether to change the maximum number of concurrently executing threads in cases such as described below:

• When the number of pending threads is too large in number as compared to the number of active threads in a
situation when this condition is not assumed

• When the current value of the number of pending requests of a Web application is approaching the maximum
value of the number of pending requests of the Web application, in the case when this condition is not assumed

• When requests are overflowing from the pending queue of the Web application, in a situation when this condition
is not assumed
When you monitor and determine that it is necessary to change the maximum number of concurrently executing
threads permanently, rather than changing dynamically stop the Web application and reset the maximum number
of concurrently executing threads. For details on the settings for controlling the maximum number of concurrently
executing threads in the Web container when the Web application is not running, see 2.16 Controlling the number
of concurrently executing threads in the Web Container, 2.17 Controlling the number of concurrently executing
threads in the Web application, and 2.18 Controlling the number of concurrently executing threads in the URL
group.

To check the operational status of the Web application, specify and execute subcommand get in the mngsvrutil
command.

The execution format and an example are described below. For details on the mngsvrutil command, see
mngsvrutil (Management command of Management Server) in the uCosminexus Application Server Command
Reference Guide.

Execution format

mngsvrutil -m Management-Server-host-name [:port-number] -u Management-user-ID -p
Management-password -t host-name -k host get webApps

Execution example
mngsvrutil -m mnghost -u user01 -p pw1 -t host01 -k host get webApps

The execution result of the command is output in a standard output or file.

From the statistics of a running Web application, you can check the information to be referred when changing the
maximum number of concurrently executing threads of a Web application with the following header information
items. Note that N seconds is the sampling time that is set by management.

Table 2‒61: Information to be referred when changing the maximum number of concurrently executing
threads of a Web application

Header information Contents

contextRoot Context root of a Web application

exclusiveThreadCountUpperBound Number of dedicated threads of a Web application

activeThreadCountUpperBound Maximum number of concurrently executing threads of a Web application

waitingRequestCountUpperBound Pending queue size of a Web application

2. Web Container

144

Header information Contents

currentThreadCountUpperBound Upper value of the number of threads of a Web application that can be executed
concurrently

activeThreadCount Current value of the number of active threads

activeThreadCountPeak N seconds peak of the number of active threads

activeThreadCountAverage N seconds average value of the number of active threads

activeThreadCountHightWaterMark Maximum value of the number of active threads

activeThreadCountLowWaterMark Minimum value of the number of active threads

waitingRequestCount Current value of the number of pending requests of a Web application

waitingRequestCountPeak N seconds peak of the number of pending requests of a Web application

waitingRequestCountAverage N seconds average value of the number of pending requests of a Web application

waitingRequestCountHighWaterMark Maximum value of the number of pending requests of a Web application

waitingRequestCountLowWaterMark Minimum value of the number of pending requests of a Web application

overflowRequestCount Number of requests overflowing from the pending queue of a Web application

(2) Changing the settings of the maximum number of concurrently executing threads of a
Web application

Change the following items of a Web application, the operational status of which is confirmed, as required:

• Maximum number of concurrently executing threads

• Number of dedicated threads

• Size of a pending queue

You can change these items with management command (mngsvrutil) . The value set here is applied until the Web
application stops.

! Important note

Do not deploy and undeploy a J2EE application when dynamically changing (when the sub command change is specified in
the mngsvrutil command) the maximum number of concurrently executing threads of a Web application.

For dynamically changing the maximum number of concurrently executing threads of a Web application, specify and
execute the sub command change in the mngsvrutil command.

The following is the execution format. For details on the mngsvrutil command, see mngsvrutil (Management
command of Management Server) in the uCosminexus Application Server Command Reference Guide.

Execution format

mngsvrutil -m Host-name-of-Management-Server [:port-number] -u Management-user-ID -
p Management-password -t host-name -k host change webAppThreadCtrl Context-root-of-
the-Web-application Maximum-number-of-concurrently-executing-threads, number-of-
dedicated-threads, pending-queue-size-of-Web-application

The following is an execution example. In this example, the settings are changed as shown in the following table. Note
that the name of the Web application is WebAP1.

Table 2‒62: Example of settings for dynamically changing the maximum number of concurrently executing
threads of a Web application (WebAP1)

Setting target Settings Setting before change Setting after change

Web container Maximum number of
concurrently executing threads

10 10 (cannot be changed)

2. Web Container

145

Setting target Settings Setting before change Setting after change

Web application (WebAP1) Maximum number of
concurrently executing threads

7 8

Number of dedicated threads 4 5

Size of a pending queue 8 10

Execution example
mngsvrutil -m mnghost -u user01 -p pw1 -t host01 -k host change
webAppThreadCtrl "WebAP1" 8, 5, 10

The set contents are applied immediately after executing the command.

2.19.3 Operations of a Web application when the number of concurrently
executing threads are changed dynamically

This subsection describes the operations of a Web application when the maximum number of concurrently executing
threads of a Web application is changed dynamically.

(1) Operations when the maximum number of concurrently executing threads is changed
When the maximum number of concurrently executing threads is changed, the Web application runs as follows:

When the maximum number of concurrently executing threads is increased
Among the pending requests of the Web application, the executable requests are executed immediately.
For example, when the number of maximum concurrently executing threads is changed from 7 to 8 due to the
changes in the settings, if there are any requests in the pending queue of the Web application, one request from the
pending queue is immediately executed.

When the maximum number of concurrently executing threads is decreased
The maximum number of concurrently executable threads is decreased.
However, if you attempt to change the settings when all the threads of the maximum number of concurrently
executing threads are being used, the threads exceeding the maximum number of concurrently executing threads
are executed temporarily, since the number of running threads cannot be decreased.
For example, when the maximum number of concurrently executing threads is changed from 8 to 7 by changing
the settings, and if 8 threads are in use at that time, temporarily the 8th thread that exceeds the maximum number
of concurrently executing threads after change in settings will be executed.
If one of the active threads ends, the number of threads is decreased and thereafter threads are executed according
to the set value, i.e. maximum 7 threads are executed concurrently as per the settings.

(2) Operations when the number of dedicated threads is changed
When the number of dedicated threads is changed, a Web application runs as follows:

When the number of dedicated threads is increased
Among the pending requests of the Web application, the executable requests are executed immediately with the
increase in the number of dedicated threads of the corresponding Web application.
Moreover, when access is in peak and all the threads set in the maximum number of concurrently executing
threads of each Web container are in use, and if the number of dedicated threads of a specific Web application is
increased, the requests that are in the pending queue of that Web application are executed immediately. As a
result, the number of threads exceeding the maximum number of concurrently executing threads of each Web
container is executed temporarily.
For example, if the maximum number of concurrently executing threads of each Web container is 10, and the
number of threads used in WebAP1 and WebAP2 of the Web application is 7 and 3 respectively, if the number of
dedicated threads of WebAP1 is changed to 8, 11 threads are executed temporarily in each Web container.

2. Web Container

146

When the number of dedicated threads is decreased
On decreasing the number of dedicated threads of a specific Web application, the number of shared threads in
each Web container is increased. Among the requests of the Web application, URL group, and default pending
queue, if there are any threads that can be executed, they are executed immediately on increasing the number of
shared threads from the requests in the pending queue.

(3) Operations when the size of the pending queue of a Web application is changed
When the size of the pending queue of a Web application is changed, the Web application runs as follows:

When the size of the pending queue of the Web application is increased
The size of the pending queue of the Web application is increased immediately.

When the size of the pending queue of the Web application is decreased
When the size of the pending queue of the Web application is changed to a value smaller than the number of
requests waiting in the pending queue of the Web application, the request exceeding the pending queue size is
returned as an HTTP 503 error.

2.19.4 Precautions related to dynamically changing the number of
concurrently executing threads

• You can dynamically change the setting of the number of concurrently executing threads in Web application. You
cannot dynamically change the number of concurrently executing threads in Web container, and the number of
concurrently executing threads in URL group.

• The information about the dynamically changed number of concurrently executing threads is not saved in the
J2EE server. Note that the changed values are invalid when the service is stopped.

• If the number of shared threads in Web application is 0 or less due to dynamic change of the number of
concurrently executing threads in the Web application, you cannot use the number of dedicated threads set in all
the URL groups of the Web application.

2. Web Container

147

2.20 Error page customization
When the client accesses a non-existent resource, and a servlet in which an exception occurred, the Web container
returns an error status code. An error page corresponding to the error status code returned from the Web container is
displayed in the client. In an application server, instead of the error pages displayed in the client, pages created by the
user can be displayed in the client. This is called error page customization.

The methods to customize the error pages include: Customization with the <error-page> tag of web.xml
specified in Servlet specifications and customization with the Web server functionality. You can also use the error
page customization with the in-process HTTP server.

For details on the error page customization when the Web server functionality is used, see 4.8 Error page
customization with the Web server integration functionality. For details on error page customization with the in-
process HTTP server, see 5.15 Error page customization (In-process HTTP server).

2. Web Container

148

2.21 Caching the static contents
You can cache the static contents that were accessed once, on the memory. By caching the once accessed static
contents on the memory, and by returning a response from the cache to the browser when the static contents are
accessed for second time and then onwards, you can shorten the response time of the static contents.

With a Web container, you can control the cache of the static contents by setting an upper limit for the memory size
used for the cache in the Web application, and an upper limit for the file size of the static contents to be cached.

This section describes the static contents cache.

The following table describes the organization of this section.

Table 2‒63: Organization of this section (static contents cache)

Category Title Reference

Description Controlling the cache of static contents 2.21.1

Implementation Definition in the DD (Settings for each Web application) 2.21.2

Settings Execution environment settings 2.21.3

Note:
There is no specific description of Operations and Notes for this functionality.

2.21.1 Controlling the cache of static contents
With a Web container, you can control the cache of the static contents by setting an upper limit for the memory size
used for the cache in the Web application, and an upper limit for the file size of the static contents to be cached.

The cache of the static contents is controlled by the following two methods:

• Controlling the cache of static contents in the Web container
This is the method to control the cache of static contents in the Web container. In the Web container, set an upper-
limit value for the memory size to be cached in the Web application, and also an upper-limit value for the file size
of the static contents allowed to be cached. The set upper-limit value of the memory size used in the cache of Web
application unit, and the upper-limit value of the file size of static contents is applied to all the Web applications
deployed on the Web container.

• Controlling the cache of static contents in the Web application
This is the method to control the cache of static contents in the Web application. In the Web application, set an
upper-limit value for the memory size to be cached, and an upper-limit value for the file size allowed to be cached.
If control in Web application as well as control in Web container are set, the setting for control in Web application
is given priority.

Note that if the memory size to be cached in the Web application unit exceeds the upper-limit value, or the file size of
static contents exceeds the upper-limit value, caching is not performed on the memory, but a response is returned from
the file system to the browser each time.

Specify the settings for caching the static contents at the following locations, for each range:

• Controlling the cache of static contents in the Web container
Specify as a property of the J2EE server.

• Controlling the cache of static contents in the Web application
Set as an attribute (property) of Web application.

! Important note
The functionality for caching the static contents is disabled, when the reload functionality of J2EE application is
enabled.

2. Web Container

149

2.21.2 Definition in the DD (Settings for each Web application)
Specify whether you want to use the static contents cache functionality, memory size of static contents permitting
cache, and upper limit for the file size for each Web application.

This subsection describes the definitions in the DD required in the application development environment.

Specify the definition of static contents cache in each Web application in the <param-name> tag that exists in the
<web-app><context-param> tag of web.xml.

The following table lists the definitions of the static contents cache in the DD:

Table 2‒64: Definitions of the static contents cache in the DD

Items Parameters specified in <param-name> tag Set contents in <param-value> tag

Enabling or disabling
the static contents cache
functionality

com.hitachi.software.web.static_con
tent.cache.enabled

Specifies the enabling or disabling of the static
contents cache functionality.

Memory size in each
Web application

com.hitachi.software.web.static_con
tent.cache.size

Specifies the size that can be cached in the memory
in bytes if the static contents cache functionality is
enabled.

• If the total size of the cache exceeds the specified
value in the Web application, the Web
application that has not been accessed for the
longest time is deleted from the cache. The
deletion of the cache is repeated until the total
cache size becomes less than the set value.

• In Web applications where the memory size is
not specified, the value specified in its property
is used. However, in Web applications where the
memory size is specified, the value specified in
its property is not used.

• Specifies an integer value from 0 to 2147483647.
If 0 is specified, restrictions are not set for the
cacheable memory size for each Web
application.

• If an invalid value is set in this property and if
the value is smaller than the value specified in
the file size that permits cache, the default value
is used.

• If a null character string or blank character is set
in this property, the default value is used.

File size permitting
cache

com.hitachi.software.web.static_con
tent.cache.filesize.threshold

Specifies the cacheable file size in bytes if the static
contents cache functionality is enabled.

• A file with size exceeding the specified value is
not cached.

• In Web applications where the file size is not
specified, the value specified in its property is
used. However, in Web applications where the
file size is specified, the value specified in its
property is not used.

• Specifies an integer value from 0 to 2147483647.
If 0 is specified, restrictions are not set for the
cacheable file size.

• If an invalid value is set in this property and if
the value is greater than the value specified in the
memory size for each Web application, the
default value is used.

• If a null character string or blank character is set
in this property, the default value is used.

2. Web Container

150

! Important note

The following parameters are used in the static contents cache functionality and therefore, cannot be used optionally in the
<context-param> tag of the DD:

• com.hitachi.software.web.static_content.cache.enabled
• com.hitachi.software.web.static_content.cache.size
• com.hitachi.software.web.static_content.cache.filesize.threshold

An example of the DD definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN'
'http: //java.sun.com/dtd/web-app_2_3.dtd'>

<web-app>
 <context-param>
 <param-name>
 com.hitachi.software.web.static_content.cache.enabled
 </param-name>-
 <param-value>true</param-value>
 </context-param>

 <context-param>
 <param-name>
 com.hitachi.software.web.static_content.cache.size
 </param-name>
 <param-value>5242880</param-value>
 </context-param>

 <context-param>
 <param-name>
 com.hitachi.software.web.static_content.cache.filesize.threshold
 </param-name>
 <param-value>102400</param-value>
 </context-param>
</web-app>

The above definition example defines the following contents:

• The static contents cache functionality is enabled.

• The memory size of the Web application is set to 5 MB.

• The upper limit of the file size that permits cache is set to 100 KB.
Note that if an invalid value or null character is specified in the DD, the settings in the Web container (Easy Setup
definition file settings) are used.

2.21.3 Execution environment settings
To define the static contents cache for each Web container, you must set up the J2EE server.

To define the static contents cache for each Web application, you must set up the Web applications. Reference these
settings only when you want to set or change the properties of Web applications that do not contain
cosminexus.xml.

Tip
Whether you specify settings in the Web container or in the Web application, the settings in the Web application are given
priority.

(1) J2EE server settings (settings for each Web container)
Implement the J2EE server settings in the Easy Setup definition file. Specify the definition of the static contents cache
for the Web container in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup
definition file.

The following table lists the definitions of static contents cache in the Easy Setup definition file:

2. Web Container

151

Table 2‒65: Definitions of the static contents cache in the Easy Setup definition file

Items Parameter to be
specified Setting contents

Enabling and disabling
of the static contents
cache functionality

webserver.static
_content.cache.e
nabled

Specifies the enabling, disabling, or forced disabling of the static contents cache.

Memory size in each
Web application

webserver.static
_content.cache.s
ize

Specifies the memory size in each Web application for which static contents
cache is permitted.

File size permitting
cache

webserver.static
_content.cache.f
ilesize.threshol
d

Specifies the upper limit for the file size in the Web application for which static
contents cache is permitted.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Web application settings (Settings for each Web application)
Implement the Web application settings in the execution environment by using the server management commands and
property files. Use the WAR property file to define the static contents cache.

The tags specified in the WAR property file correspond to the DD. For details on definitions in the DD, see 2.21.2
Definition in the DD (Settings for each Web application).

2. Web Container

152

2.22 URI decode functionality
You can use the URI decode functionality in the Web server integration and the in-process HTTP server.

This section describes the URI decode functionality.

The following table describes the organization of this section:

Table 2‒66: Organization of this section (URI decode functionality)

Category Title Reference

Description Overview of URI decode functionality 2.22.1

Settings Execution environment settings (J2EE server settings) 2.22.2

Notes Precautions for using the URI decode functionality 2 22.3

Note:
There is no specific description of Implementation and Operations for this functionality.

2.22.1 Overview of URI decode functionality
The URI decode functionality is used for decoding the URL-encoded strings included in the servlet path of request
URIs and in the additional path information of Application Server. However, the context path is not decoded.

To execute a Web application that does not use decoded URIs, you must not use the URI decode functionality or you
must manage at the Web application machine.

The following is the description of "Servlet APIs affected when URI decode functionality is used", "Functionality
using decoded strings", "Character code used for decoding", and "Execution procedure for decoding and normalizing
character strings":

(1) Servlet APIs affected when using the URI decode functionality
For using the URI decode functionality, a decoded URI is considered as a return value in the following methods of the
javax.servlet.http.HttpServletRequest interface:

• getPathInfo method

• getPathTranslated method

• getServletPath method

However, in the getRequestURI and getRequestURL methods, a non-decoded URL is considered as a return
value.

(2) Functionality using decoded strings
For using the URI decode functionality, the decoded strings are used in the following processes:

• Matching with URL pattern of servlets and JSPs

• Matching with default mapping

• Matching with static contents

• Matching with URL pattern of filter

• Matching with the <error-page> tag of web.xml or with the errPage attribute of the page directive of
JSPs

• Matching with URL pattern for restricting access

• Determining URL for login authentication

• Forward and include request

• Matching with URL pattern for HTTP response compression filter

2. Web Container

153

• Matching with URL pattern to control the number of concurrently executed threads in the URL group

However, the context path is not decoded and is handled as the original string, so the value "404 Not Found" is
considered as a return value, when the context path does not match with the context root.

The matching for the decoded character string is not performed in the following functionality of Application Server:

• Error page customization functionality of the in-process HTTP server

• Request distribution functionality by redirecting the in-process HTTP server

(3) Character code used for decoding
For using the URI decode functionality, the character code used for decoding is UTF-8.

(4) Execution procedure for decoding and normalizing character strings
URLs used in the matching processes after decoding are normalized in the request URIs sent from clients.

2.22.2 Execution environment settings (J2EE server settings)
To use the URI decode functionality, you must set up a J2EE server.

Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for the URI decode
functionality in webserver.http.request.uri_decode.enabled within the <configuration> tag of
the logical J2EE server (j2ee-server) in the Easy Setup definition file. With this parameter, specify whether to use the
URI decode functionality or not.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

2.22.3 Precautions for using the URI decode functionality
This subsection describes the precautions for using the URI decode functionality.

(1) Execution procedure for decoding and normalizing character strings
The URIs, normalized after decoding, are used for matching the URL patterns with the servlet path.

The URIs, normalized without decoding, are used for matching the context root with the context path.

(2) Attributes of request
The decoded values are also stored in the attributes that are added in requests during the forward or include
processing. The following table describes whether the stored values are decoded for each attribute specified in
requests during the forward or include processing:

Processi
ng Attribute Decoding the stored value

Forward javax.servlet.forward.request_uri N

javax.servlet.forward.context_path N

javax.servlet.forward.servlet_path Y

javax.servlet.forward.path_info Y

javax.servlet.forward.query_string N

Include javax.servlet.include.request_uri N

javax.servlet.include.context_path N

2. Web Container

154

Processi
ng Attribute Decoding the stored value

Include javax.servlet.include.servlet_path Y

javax.servlet.include.path_info Y

javax.servlet.include.query_string N

Legend:
Y: Decoded
N: Not decoded

For details on each attribute and the values stored in each attribute, see Servlet specifications.

(3) Inheriting HTTP session
The context path is not decoded and is handled as the original string, so the HTTP session is inherited.

2. Web Container

155

2.23 Version setup functionality of Web applications
This section describes the version setup functionality of Web applications.

The following table describes the organization of this section:

Table 2‒67: Organization of this section (Version setup functionality of Web applications)

Category Title Reference

Description Overview of the version setup functionality of Web applications 2.23.1

Compiling and executing JSP files and tag files 2.23.2

Settings Execution environment settings 2.23.3

Notes Precautions for using the version setup functionality of Web applications 2.23.4

Note
There is no specific description of Implementation and Operations for this functionality.

2.23.1 Overview of the version setup functionality of Web applications
To execute Web applications in Application Server, the servlets and JSPs that are compliant with the version of the
Web application defined in web.xml are executed.

The version setup functionality of Web applications is used for specifying versions, when executing Web applications.
You can use this functionality to execute the Web application compliant with the specified version without changing
the version of the Web application defined in web.xml.

The following are the differences when you use or do not use the version setup functionality of Web applications:

When using the version setup functionality of Web applications
You need not change the version of the Web application defined in web.xml to execute servlets and JSPs
compliant with the new version, for executing the Web application created in the earlier version.
If version of the Web application to be executed is specified, a syntax check in JSP compilation and operations of
servlet APIs are changed simultaneously, when you change web.xml. However, you cannot use the functions
that must be defined in web.xml.

When the version setup functionality of Web applications is not used
For executing the Web application created in earlier version, you must change the version of the Web application
defined in web.xml to execute servlets and JSPs compliant with the new version.

The following table describes the different operations of Web applications that are defined in web.xml, depending
on the version specified by the version setup functionality of Web applications:

Table 2‒68: Different operations depending on the version specified by the version setup functionality of
Web applications

Version defined in web.xml
Version specified by the version setup functionality of Web applications

No specifications 2.4 2.5

2.2 Operating as 2.3#1 Operating as 2.4 Operating as 2.5

2.3 Operating as 2.3

2.4 Operating as 2.4

2.5, 3.0 Operating as 2.5 Operating as 2.5#2

#1
When the version defined in web.xml is 2.2 and nothing is set up by the version setup functionality of Web applications, the
operations are performed as the Web application of 2.3 version.

2. Web Container

156

#2
When the version defined in web.xml is 2.5 and 2.4 version is set up by the version setup functionality of Web applications, the
operations are performed as the Web application of 2.5 version.

! Important note

The version setup functionality of Web applications is used to support the migration of applications of the old version. We
do not recommend using this functionality for developing new applications.

To develop a new application, specify the web.xml of the correct version.

2.23.2 Compiling and executing JSP files and tag files
This subsection describes the operations executed if the version of the JSP specifications is different in the
compilation and execution of JSP files and tag files, when you use the version setup functionality of Web applications.
This subsection separately describes the cases "When the JSP pre-compilation functionality is used" and "When the
JSP pre-compilation functionality is not used".

(1) When the JSP pre-compilation functionality is used
When compiling the JSP files using the JSP pre-compilation functionality, the class file generated from the JSP file
and the version information file both are created. The version information file is output when the JSP pre-compilation
functionality is executed and the version of the JSP file is coded.

In the following two cases, versions of JSPs are different:

• When the version information file and the version of the JSP specifications, corresponding to the Web application
version for executing the Web application, are different

• When the version of the class files generated from JSP files using the JSP pre-compilation functionality and its
corresponding version of the JSP specifications are different

The following table describes the operations of Web applications for above two cases:

Table 2‒69: When the version information file and the version of the JSP specifications are different

Timing for changing file Operation of Web application

Before starting Web applications Case 1

After starting Web applications For
enabling
reload

Case 2

For
disabling
reload

Case 1
If the JSP pre-compilation command is executed before starting a Web application, the message KDJE39522-E is
output, when an attempt to start the Web application fails.

Case 2
Operations are same as the case 1 after re-starting the J2EE server or Web applications.

Table 2‒70: When versions of class files and the JSP specifications are different

Timing for changing file Operation of Web application

Before starting Web applications Case 3

After starting Web applications For
enabling
reload

Case 4

2. Web Container

157

Timing for changing file Operation of Web application

After starting Web applications For
disabling
reload

Case 5

Case 3

• In JSP files where <load-on-startup> is specified in web.xml
If true is specified in the WAR property file or the <start-notify-error> tag of
cosminexus.xml, or if the tag specifications are omitted, the message KDJE39298-E will output, when an
attempt to start the Web application fails.
If false is specified in the <start-notify-error> tag of cosminexus.xml, the message
KDJE39298-E will output when you start the Web application, but the Web application will start successfully.
However, during the request, the message KDJE39298-E will output, and the error code 500 (Internal
Server Error) will returned.

• In JSP files in which <load-on-startup> is not specified in web.xml
During the initial request, the message KDJE39298-E will output, and the error code 500 (Internal
Server Error) will returned.

Case 4

• In the executed JSP file
Operations are same as the case 3 after re-starting the J2EE server or Web application.

• In the non-executed JSP file
Operations are same as the case 3 "In JSP files in which <load-on-startup> is not specified in
web.xml".

Case 5

• In the executed JSP file
When executing reload, the message KDJE39317-E will output resulting in the failure of JSP reload (error
code 500 (Internal Server Error) returns from the corresponding request).

• In the non-executed JSP file
Operations are the same as in case 4 "In the non-executed JSP file".

! Important note

• The cases (case 3, case 4, and case 5), with only different class files, are considered for overwriting the class
files with different versions that are compiled by the JSP pre-compilation command. As a result, you cannot
use the JSP pre-compilation functionality for starting Web applications.

• You cannot use the JSP pre-compilation functionality for starting Web applications because you cannot update
the version information file after starting the Web application (case 2).

• In the case 1, when you start a Web application using the JSP pre-compilation functionality that is used for
starting Web applications, an error does not occur because you have recreated the version information file
itself. Also, for executing the JSP pre-compilation command before starting Web applications, the command
will check the version. Also, when executing the command, a version mismatch might be detected and an error
might occur.

• When you compile JSPs by specifying a separate JSP file during JSP pre-compilation, the version of the JSP
specifications specified in the existing version information file will be compared with the version of the JSP
specifications during the compilation. In such cases, if the versions will be different, the message KDJE39522-
E will output and an error will occur. If a separate JSP file is not specified, the version information file will be
recreated, and an error will not occur.

(2) When the JSP pre-compilation functionality is not used
When different class files are used for the Web application version during the compilation and execution, the message
KDJE39334-I will output, and the JSP files and tag files will be compiled again.

The following table describes the re-compilation operation when the Web application during the compilation and
execution are different:

2. Web Container

158

Version for compilation Version for execution (version of JSP
specifications)

Version of web.xml File type Version of TLD 2.2 2.3 2.4 2.5

2.2 JSP file -- -- -- 2.0 2.1

2.3 -- -- N 2.0 2.1

2.4 JSP file -- 1.2#1 1.2 N 2.1

Tag file 2.0 -- -- N N#2

2.5, 3.0 JSP file -- 1.2#1 1.2 2.0 N

Tag file 2.0 -- -- N N#2

2.1 -- -- 2.0 N

Legend:
--: Not applicable
N: Not re-compiled
1.2: Re-compiled as per the JSP1.2 specifications
2.0: Re-compiled as per the JSP2.0 specifications
2.1: Re-compiled as per the JSP2.1 specifications

#1
If the version of web.xml is 2.2, operations are performed as Web application version 2.3, and therefore, re-compilation is done
as per the JSP1.2 specifications.

#2
In the JSP2.1 specifications, the JSP specifications compliant with the JSP version defined in the TLD file are determined for tag
files. Even if the Web application version is 2.5, the tag files can be executed as per the JSP2.0 specifications, and therefore, the
file is not compiled again.

2.23.3 Execution environment settings
To use the version setup functionality of Web applications, you must set up the J2EE server and the JSP pre-
compilation commands.

(1) J2EE server settings
Implement the J2EE server settings in the Easy Setup definition file. Specify the executing version for the Web
application version setup functionality of Web applications in webserver.application.lower_version
within the <configuration> tag of the logical J2EE server (j2ee-server) within the Easy Setup definition file. In
this parameter, specify whether to use the version setup functionality of Web applications.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Settings for JSP pre-compilation commands
Implement the JSP pre-compilation settings in the -lowerversion option of the cjjspc command. For details on
the cjjspc command, see cjjspc (JSP pre-compilation) in the uCosminexus Application Server Command Reference
Guide.

2.23.4 Precautions for using the version setup functionality of Web
applications

This subsection describes the precautions for using the version setup functionality of Web applications.

2. Web Container

159

(1) Using annotations
Even when you use the version setup functionality of Web applications, when specifying the version of Web
applications in which annotations can be used, you cannot read the annotation information.

(2) Exporting J2EE applications
When Web applications are exported by enabling the version setup functionality of Web applications, the version
specified by the version setup functionality of Web applications is not changed, and the Web applications are
exported. The Web applications, with the same version as imported, will be exported.

2. Web Container

160

2.24 Precautions related to the Web container
• The maximum size of the POST data that can be handled in a Web container is 2 GB. Also, the maximum size of

the POST data that can be handled is regulated depending on the settings of the Web container, and the settings of
the Web server and redirector in front of the Web container.

• The Web container returns an Eta (Entity Tag) that consists of the file size and the last updated date and time
and does not include a unique ID (incode) allocated to the file.

2. Web Container

161

3 Using JSF and JSTL
This chapter describes the details on using JSF and JSTL.

163

3.1 Organization of this chapter
This chapter describes the details on using JSF and JSTL.

Java Server Faces (JSF) is a Web application framework provided with the standard specification of JavaEE.

Java Server Pages Standard Tag Library (JSTL) is a tag library that has all the tags frequently used in Web
applications.

The following table describes the organization of this chapter:

Table 3‒1: Organization of this chapter (Using JSF and JSTL)

Classification Title Reference

Guide Overview of JSF and JSTL 3.2

JSF and JSTL functionality 3.3

Implementation Setting up a class path (Setting up a development environment) 3.4

Definitions in a DD 3.5

JSF applications development flow 3.6

Using a log (development inspection log) for debugging 3.7

Setup Setting up an execution environment 3.8

Operations To output and check the troubleshooting information 3.9

Notes Notes on using the JSF and JSTL 3.10

3. Using JSF and JSTL

164

3.2 Overview of JSF and JSTL
This section gives an overview of the JSF and JSTL. Note that you can use the Bean Validation functionality from the
JSF.

3.2.1 Overview of JSF

(1) About JSF
The JSF is a framework defined as a standard specification in JaveEE to develop a user interface for Web
applications. The JSF aims at making the development of Web applications more efficient. A Web application
developed by using the JSF is called a JSF application.

The JSF distinctly differentiates between Model class (business logic) development and View class (input and output
windows) development based on the MVC model, thereby simplifying the division of work among JSP developers.
Developers can focus on their own work, which in turn improves the development efficiency.

(2) Linkage with Bean Validation
With Application Server, you can use the Bean Validation functionality to simplify the process for validating the
values entered in a JSF application.

For details on using Bean Validation, see 10. Using Bean Validation with Application Server in the uCosminexus
Application Server Common Container Functionality Guide.

3.2.2 JSTL
The JSTL is a library of tags that are used to express common processes, such as the database access process, and the
loop process executed in a Web application. Using the tags provided by the JSTL reduces the time required normally
to describe the processes that require coding, thus improving the development efficiency.

3. Using JSF and JSTL

165

3.3 JSF and JSTL functionality
This section describes the details on the JSF and JSTL functionality.

The following figure shows the process flow for a Web application that uses JSF and JSTL:

Figure 3‒1: Process flow for a Web application that uses JSF and JSTL

• When you access a Web page that uses a JSF application from the client, a request goes to the FacesServlet servlet
that exists in the JSF framework. The JSF application starts the processing with the FacesServlet as the starting
point, and the JSFCore of the JSF framework processes user-defined classes or pages. The result of the request
processing is returned as a response to the client through the FacesServlet.

• When you access a Web page that uses JSTL from the client, the JSTL library executes processes corresponding
to the tags used in the Web page. The result of the process is returned as a response to the client.

3.3.1 JSF functionalities
This section describes the details on JSF functionalities.

(1) Basic functionalities of JSF
When you develop a Web application using JSF, you can use various JSF functionalities such as defining access to the
page view, page re-use, changing or validating types of input values from the client, and controlling events in the
application.

You use the ManagedBean or the Expression Language functionality to implement most of the functionalities of JSF.

ManagedBean is a JavaBean that defines methods and the data to be used in the JSP and Facelets pages. For details on
ManagedBean, see the JSF specifications.

The Expression Language functionality associates properties and methods defined in the ManagedBean with
attributes of the JSF tags by coding properties and methods in a prescribed format. The Expression Language
functionality is a part of the JSP specifications. For details, see the JSF specifications.

3. Using JSF and JSTL

166

(2) Operations of Bean Validation with Application Server
The following table describes functionalities of the Bean Validation that can be used from JSF.

Table 3‒2: Functionalities of Bean Validation that can be used from JSF

No. Functionality Overview

1 Validation of input values This functionality uses the specified validation definitions to verify the
values set in ManagedBean.

Group management functionality This functionality groups validations.

Message management functionality This functionality manages the messages that are returned when the
validation result is an error.

2 Create custom validator This functionality creates independent validation processes.

You can use the functionalities of the Bean Validation by specifying annotations. The following table describes
annotation classes that can be specified for using the functionalities of the Bean Validation. The table also describes
the types of variables that can be specified as well as the operations performed when an invalid type of variable is
specified.

Table 3‒3: Annotation classes and variable types that can be specified in the Bean Validation

No. Annotation
class

Variable type that can be
specified

Behavior when an invalid
variable type is specified Remarks

1 Null You can specify any type of
variable

-- --

2 NotNull You can specify any type of
variable

-- --

3 AssertTrue • boolean/java.lang.Boolean javax.validation.Unex
pectedTypeException is
thrown.

--

4 AssertFalse • boolean/java.lang.Boolean javax.validation.Unex
pectedTypeException is
thrown.

--

5 Min • java.math.BigDecimal

• java.math.BigInteger

• byte/java.lang.Byte

• short/java.lang.Short

• int/java.lang.Integer

• long/java.lang.Long

• float/java.lang.Float

• double/java.lang.Double

• java.lang.String

javax.validation.Unex
pectedTypeException is
thrown.

--

6 Max • java.math.BigDecimal

• java.math.BigInteger

• byte/java.lang.Byte

• short/java.lang.Short

• int/java.lang.Integer

• long/java.lang.Long

• float/java.lang.Float

• double/java.lang.Double

• java.lang.String

javax.validation.Unex
pectedTypeException is
thrown.

--

3. Using JSF and JSTL

167

No. Annotation
class

Variable type that can be
specified

Behavior when an invalid
variable type is specified Remarks

7 DecimalMin • java.math.BigDecimal

• java.math.BigInteger

• java.lang.String

• byte/java.lang.Byte

• short/java.lang.Short

• int/java.lang.Integer

• long/java.lang.Long

• float/java.lang.Float

• double/java.lang.Double

javax.validation.Unex
pectedTypeException is
thrown.

javax.validation.Vali
dationException is
thrown if you specify a value
that cannot be parsed by
java.math.BigDecimal,
for the value attribute.

8 DecimalMax • java.math.BigDecimal

• java.math.BigInteger

• java.lang.String

• byte/java.lang.Byte

• short/java.lang.Short

• int/java.lang.Integer

• long/java.lang.Long

• float/java.lang.Float

• double/java.lang.Double

javax.validation.Unex
pectedTypeException is
thrown.

javax.validation.Vali
dationException is
thrown if you specify a value
that cannot be parsed by
java.math.BigDecimal,
for the value attribute.

9 Size • java.lang.String

• java.util.Collection

• java.util.Map

• array

javax.validation.Unex
pectedTypeException is
thrown.

javax.validation.Vali
dationException is
thrown if you specify a
negative value for the max or
min attribute.

javax.validation.Vali
dationException is
thrown if you specify a value
greater than max, in min.

10 Digits • java.math.BigDecimal

• java.math.BigInteger

• java.lang.String

• byte/java.lang.Byte

• short/java.lang.Short

• int/java.lang.Integer

• long/java.lang.Long

• float/java.lang.Float

• double/java.lang.Double

javax.validation.Unex
pectedTypeException is
thrown.

javax.validation.Vali
dationException is
thrown if you specify a
negative value for the
integer or fraction
attribute.

11 Past • java.util.Date

• java.util.Calendar

javax.validation.Unex
pectedTypeException is
thrown.

--

12 Future • java.util.Date

• java.util.Calendar

javax.validation.Unex
pectedTypeException is
thrown.

--

13 Pattern • java.lang.String javax.validation.Unex
pectedTypeException is
thrown.

javax.validation.Vali
dationException is
thrown if the value that you
have specified for the regexp
attribute is incorrect as a
regular expression.

3. Using JSF and JSTL

168

No. Annotation
class

Variable type that can be
specified

Behavior when an invalid
variable type is specified Remarks

13 Pattern • java.lang.String javax.validation.Unex
pectedTypeException is
thrown.

Whether an expression is
regular depends on the
java.util.regex.Pattern
specifications.

Legend:
--: Not Applicable.

(3) JSF operations in Application Server
JSF operations in Application Server are as follows:

• If you use the Expression Language to specify methods that function as ValueChangeListener,
ActionListener, AjaxBehaviorListener, and ComponentSystemEventListener, and if both, a
method with arguments and a method without arguments exist with the same name, the method with arguments is
invoked.

• If multiple components are present in the f:facet tag, the component coded first is processed in a JSP page,
whereas in a Facelets page, all the coded components are processed.

• If the f:subview tag is coded outside the f:view tag, in JSP pages, the value of the f:view is overwritten with the
value of f:subview. In Facelets pages, the value of f:view does not change and f:view and f:subview are displayed
together.

• You must code the h:head tag when using the f:ajax tag. f:ajax does not function unless the h:head tag is coded.

• When using the valueChangeListener attribute or the f:valueChangeListener tag for processing an event,
if you specify ValueExpression in the value attribute of the h:inputText tag and RequestScoped in the
scope attribute, the valueChangeListener method is executed even if you do not change the input value.

• If the user application registers a Cookie called csfcfc and sends repeated requests to the Facelets by using the
Flash object, an error occurs while reading the data of the Flash object and exception
(NullPointerException) handling is done.

• The retry count of the ui:repeat tag will be the value specified in the size attribute + 1.

• Attributes of some tags might become invalid due to the browser specifications. We therefore recommend that you
check the browser specifications.

• To enable the required attribute of tags such as composite:attribute, composite:facet, composite:insertFacet,
and composite:renderFacet tags, set the value of the context parameter javax.faces.PROJECT_STAGE to
Development.

• The value you specify in the context parameter javax.faces.FACELETS_REFRESH_PERIOD serves as the
time from receiving the latest request by the Facelets page until the Facelets file update is confirmed.

• Therefore, in an environment where many requests are sent in a short period of time, the time until the
confirmation of the update is extended according to the latest request, and there is a possibility that a state
continues where the Facelets file is not updated.

• The Bean Validation functionality is usually enabled in Application Server. For details on how to disable the Bean
Validation functionality, see10.5.1 Procedure of using Bean Validation from JSF in the uCosminexus Application
Server Common Container Functionality Guide.

• Specify the attribute as the target for specifying a value in the f:attribute tag, in which the character string
(having java.lang.String type) is treated as the specified value.

• Note that the parameter count of the requests included in the POST data from the client window of the JSF
application differs depending on the type of the JSP tag to be used and the usage method. When you want to set a
maximum value of the request parameters count in the
webserver.connector.limit.max_parameter_count key, we recommend that you validate by using
the real JSF application on the same environment as the real environment.

• When the resources of META-INF/resources within the JAR file of the application are updated, the message
KDJE39556-W is output at the time of reload. If you access the resource from a JSF when the message is output,
you can acquire the updated resources.

3. Using JSF and JSTL

169

3.3.2 JSTL functionality
In the JSTL, you can execute processes that are used in common in applications by defining tags in pages.

The JSTL includes tags related to setting values, conditional sorting, database access, internationalization, and XML
parsing.

3.3.3 Proprietary functionalities of Application Server
The following table describes the proprietary functionalities of Application Server available for JSTL and JSF.

Table 3‒4: Proprietary functionalities of Application Server

No. Functionality Explanation

1 Log output This functionality records the execution related information in a log file.

2 Output of the performance analysis
trace

This functionality records the trace of the start and end of specific functionalities
(methods) in a file.

Use this information to analyze the system performance and performance
bottlenecks. For details on the output of the performance analysis trace, see 7.
Performance Analysis by Using Trace based Performance Analysis in the
uCosminexus Application Server Maintenance and Migration Guide.

3.3.4 Collaboration with other functionalities of Application Server
This section describes the collaboration of JSF and JSTL with other functionalities of Application Server.

The following table describes the functionalities that you must consider when using in combination with JSF or JSTL.

Table 3‒5: Functionalities that you must consider when using in combination with JSF or JSTL

Item No. Functionality Reference

1 Explicit memory management functionality 7. Controlling full garbage collection
by using the explicit memory
management functionality in the
Expansion Guide

2 Session failover functionality 5.2 Overview of the session failover
functionality in the Expansion Guide

3 Re-deploy and re-load functionality 13. Format and deployment of J2EE
application in the Common Container
Functionality Guide

4 JSP pre-compile functionality 2.5 JSP pre-compilation functionality
and maintaining compilation results

5 Giving optional names to J2EE resources (user specified name space
functionality)

2. Naming control in the Common
Container Functionality Guide

Note:
The manual name uCosminexus Application Server is omitted.

The sections hereafter describe the collaboration of JSF and JSTL with each functionality.

(1) Explicit memory management functionality
With JSF, the following information and objects generated based on the user-created Facelets files or JSP files are
registered in HTTP sessions:

• Information of HTML page windows (View state)

• Objects of the ManagedBean class with the SessionScope defined

3. Using JSF and JSTL

170

You can use the explicit memory management functionality to control the same objects and information, as used in
other Web applications.

However, whether the objects and information are registered in HTTP sessions is subject to conditions. Furthermore,
not all the information registered in HTTP sessions is necessarily managed with the explicit memory management
functionality. The following table describes the conditions when information and objects can be registered in HTTP
sessions and whether the registered information or objects can be managed with the explicit memory management
functionality.

Table 3‒6: Conditions for registering the information and objects in HTTP sessions

Information or object Condition for registering in HTTP sessions

Whether the explicit
memory management

functionality can be
used for controlling

View information of the UIComponent
(information of the View that comprises I/O
interface components such as text fields, radio
buttons, and submit buttons for enabling the
user interaction)

When the value of the JSF standard context parameter
(javax.faces.STATE_SAVING_METHOD) is
"server"(default value)

Not used

ManagedBean object When you specify the SessionScope annotation, or
"session" in the managed-bean-scope in faces-
config.xml.

Used

Character code to be used in pages When an HTTP session is generated Used

Objects registered in the SessionMap When used in a user application Used

If you intend to use the explicit memory management functionality, you must calculate the approximate memory size
that the JSP application requires for the explicit memory management area. You can calculate the memory size with
the following formula:

Memory size used by a JSF application for the explicit memory management area
The memory size used for the explicit memory management area in one session
=(A#+1) X 0.4 KB
+ ManagedBean object size (when registering in the HTTP session)
+ Object size when registering in the SessionMap
"A" indicates the value specified in the property (com.sun.faces.numberOfLogicalViews) that is
used for setting the maximum value of a JSF logical page. The default value is 15.

Notes on using the explicit memory management functionality in a JSF application
HTTP sessions are not discarded (the invalidate method of the
javax.servlet.http.HttpServletRequest interface is not called) in JSF. You must therefore discard
HTTP sessions (call the invalidate method of the javax.servlet.http.HttpServletRequest
interface) in user applications, or set an adequate session timeout.

(2) Session failover functionality
The JSF can use the session failover functionality in the same way as for other Web applications with objects
registered in the HTTP session. You need not perform any JSF specific settings for using this functionality.

Size of objects registered in an HTTP session by a JSF application
If you intend to use the session failover functionality, use the values listed in the following table to estimate the
size of objects that the JSF application registers in an HTTP session.

Table 3‒7: Size of objects registered in HTTP session by JSF application

Page Operations that use memory Memory used

Facelets page Mandatory objects and all tags 1.3 KB

Page generation part of one Form tag 0.2 KB#1

If Expression Language is used#2 0.8 KB#3

3. Using JSF and JSTL

171

Page Operations that use memory Memory used

JSP page Mandatory objects and all the tags 2.2 KB

Page generation part of one Form tag 2.0 KB#1

If Expression Language is used#2 0.8 KB#3

#1
The size might vary depending upon how ManagedBean is created or the ID settings of the tag.

#2
You must estimate the size for each individual resource.

#3
The size might vary depending upon how the resources are set up.

Note that the memory size values described in the table are estimated values. Use the information retrieved after
executing the application to calculate the actual memory size required for an HTTP session.

Notes on using the session failover functionality in a JSF application
With the session failover functionality, if there is information that cannot be serialized with the serialization, when
inheriting attributes of an HTTP session, serialization fails and you cannot save the information. This applies also
to JSF applications. Serialization fails in the following cases and you cannot use the session failover functionality:

• If you specify either the SessionScope annotation, or "session" in the managed-bean-scope tag of
faces-config.xml, and ManagedBean includes the information that cannot be serialized

• If the information that cannot be serialized is registered in SessionMap

(3) Redeploy and reload functionality
You need not consider any special points for using the redeploy functionality in JSF applications. You can use the
functionality in the same way as in other Web applications.

Execution of the reload functionality from a command prompt also requires no special consideration. You can use the
functionality in JSF applications in the same way as in other Web applications.

However, the files that are reloaded based on the update detection have the following limitations:

Update Detection of JSP files
The update detection of JSP files is the same as the update detection in other Web applications.

Update Detection of Facelets files
Facelets files are not subject to the update detection.

The following table describes the applicability of the reload functionality when updating files in Facelets.

Table 3‒8: The applicability of the reload functionality when updating files in Facelets

Files subject to update detection
Applicability of the reload functionality

app web jsp

Facelets file N N N

Tag file Y Y Y

ManagedBean compilation result Y Y Y

Static content N N N

Legend:
Y: Applicable
N: Not applicable

Servlets or JSP files that are loaded with a class loader are subject to monitoring and hence the J2EE server detects
when files are updated, and then executes the reload functionality. However, a class loader does not load Facelets

3. Using JSF and JSTL

172

files. Accordingly, the J2EE server does not detect whether files have been updated, and as a result does not execute
the reload functionality.

To automatically detect and apply the updates made to the Facelets files, specify
javax.faces.FACELETS_REFRESH_PERIOD as the standard context parameter. Facelets files are monitored
for updates at regular intervals as set in the parameter, and any update detected is applied. Note that you can use this
functionality only for applications in the exploded archive format.

If you update a Facelets file after executing the page output of the file, the JSF detects updates when the page is
accessed next time, and displays the KDJE59227-I message.

(4) JSP precompile functionality
You can use the JSP precompile functionality to compile JSP files in a JSF application.

However, you must explicitly specify the tag library and the class library to be used in the -classpath option when
you use the cjjspc command to compile JSP files in the JSF application.

The following example shows how to specify the -classpath option.

The following example shows how to specify the -classpath option in the cjjspc command for compiling JSP
files in the JSF application (in Windows):

-classpath Cosminexus-application-server-installation-directory /CC/lib/
cjsf.jar; Cosminexus-application-server-installation-directory /CC/lib/
cjsf.jar

(5) Assigning an optional name to J2EE resources (user-specified name space functionality)
You cannot assign optional names to J2EE resources in the JSTL.

Specify the relative path from java:comp/env in the datasource attribute of the sql:setDataSource tag in the
JSTL.

3. Using JSF and JSTL

173

3.4 Setting up the class path (setting up the
development environment)

This section describes how to set the class path required for using JSF and JSTL.

3.4.1 File storage location
The following table describes the storage location of JSF and JSTL libraries that are installed during the Application
Server installation.

Table 3‒9: Storage location of JSF and JSTL libraries

Type File overview File name Class path

JSF A library for
consolidating interfaces
and implementations

cjsf.jar Cosminexus-application-server-installation-directory
\CC\lib\cjsf.jar

JSTL A library for
consolidating interfaces
and implementations

cjstl.jar Cosminexus-application-server-installation-directory
\CC\lib\cjsf.jar

Note:
In UNIX, replace the Cosminexus-application-server-installation-directory with /opt/Cosminexus and \ with /.

3.4.2 Setting up the class path
Set the class path in the add.class.path key in the usrconf.cfg file (the option definition file for a Java
application) of the J2EE Server to run the applications that use JSF and JSTL with Application Server.

The following example is for the Windows environment:

add.class.path=Cosminexus-application-server-installation-directory\CC\lib\cjsf.jar
add.class.path=Cosminexus-application-server-installation-directory\CC\lib\cjstl.jar

! Important note

Concurrently specifying libraries with different versions in the class path might lead to abnormal behavior of the
application. You must specify a library that is compatible with the application version.

For details on settings required to develop a JSF application in the Developer environment, seeAppendix L.1 When
using JSF in the uCosminexus Application Server Application Development Guide.

3. Using JSF and JSTL

174

3.5 Definition in the DD
You must set up the context parameters in the DD (web.xml) to use a JSF application.

This section describes how to set up the JSF context parameters in the DD.

3.5.1 Standard context parameters
The following table describes the standard context parameters of JSF.

Table 3‒10: Standard context parameter of JSF

Parameter name Data
type Specifiable value

Behavior
when an
invalid
value is
specified

Default
value Explanation

javax.faces.CONF
IG_FILES

String A comma (,) or
semicolon (;) delimited
list of JSF setup files
under the current
context root

Ignores
the invalid
configurat
ion file.

/WEB-
INF/
faces-
config.
xml

Specifies the path of the JSF setup file
used in the application.

javax.faces.DATE
TIMECONVERTER_DE
FAULT_TIMEZONE_I
S_SYSTEM_TIMEZON
E

Boolean true or

false
false false Specifies whether to use GMT in the

time zone that is set with the
convertDateTime tag.

javax.faces.DECO
RATORS

String A semicolon (;)
delimited list of class
names in the
javax.faces.view.
facelets.TagDeco
ratorlist type and
without the constructor
argument

Ignores
the
specified
class

""
(empty)

Specifies the user defined Decorator
class.

javax.faces.DEFA
ULT_SUFFIX

String A space delimited list of
page extensions.

.xhtml

.view

.xml

.jsp

.xhtml

.view

.xml

.jsp

Specifies the suffix of the file used as
a JSF page.

javax.faces.DISA
BLE_FACELET_JSF_
VIEWHANDLER

Boolean true or

false
false false Specifies whether to use the Facelets

view handler in the application.

javax.faces.FACE
LETS_BUFFER_SIZE

int 1 to 2147483647 1024 1024 Specifies the buffer size of the stream
used while returning a response page
to the client.

javax.faces.FACE
LETS_LIBRARIES

String A semicolon
(;)delimited list of
Facelets tag library
paths in the application
root.

Ignores
the library
file of the
specified
tag.

""
(empty)

Specifies the path of the tag library file
used in the user-defined Facelets.

javax.faces.FACE
LETS_REFRESH_PER
IOD

int -2147483648 to

2147483647

2 2 Specifies the interval in milliseconds
at which the JSF checks the Facelets
files for changes when a Facelets page
is requested. #1

javax.faces.FACE
LETS_RESOURCE_RE
SOLVER

String A valid java class name
that inherits the
javax.faces.view.facelet

Ignores
the

""
(empty)

Specifies the user defined
ResourceResolver class.

3. Using JSF and JSTL

175

Parameter name Data
type Specifiable value

Behavior
when an
invalid
value is
specified

Default
value Explanation

javax.faces.FACE
LETS_RESOURCE_RE
SOLVER

String s. (In ResourceResolver,
define a constructor
with no arguments or a
constructor that has one
argument of the
ResourceResolver type)

specified
class.

""
(empty)

Specifies the user defined
ResourceResolver class.

javax.faces.FACE
LETS_SKIP_COMMEN
TS

Boolean true or

false

false false Specifies whether to output the
comments described in the Facelets
file to the response page.

javax.faces.FACE
LETS_VIEW_MAPPIN
GS

String A semicolon (;)
delimited list of strings
that either starts or ends
with "*" is considered as
a valid value.

Ignores
the
specified
string.

""
(empty)

Specifies a file name pattern used for
recognizing Facelets files.

javax.faces.FULL
_STATE_SAVING_VI
EW_IDS

String A comma (,) separated
list of strings that
indicate view ID.

Ignores
the
specified
string.

""
(empty)

Specifies the ID of the view for which
you want to save the entire state. You
can no longer use the method for
saving the state partially in a view
specified using this parameter. #2

javax.faces.INTE
RPRET_EMPTY_STRI
NG_SUBMITTED_VAL
UES_AS_NULL

Boolean true or

false

false false Specifies whether to convert the
submitted value (if the value is empty)
to null in the JSF internally.

javax.faces.LIFE
CYCLE_ID

String Java ID name DEFAUL
T

No
warning
message
is output,
when you
call the
JSF
applicatio
n.
However,
the
Illegal
Argumen
tExcept
ion
handling
is done
when the
FacesServ
let starts.

Specifies the user-defined life cycle
ID.

javax.faces.PART
IAL_STATE_SAVING

Boolean true or

false

true true Specifies whether you can use a
method to partially save the view state
in the application.

javax.faces.PROJ
ECT_STAGE

String Production,

Development,

UnitTest, or SystemTest

Productio
n

Product
ion

Specifies the value according to the
software development phase.

javax.faces.SEPA
RATOR_CHAR

Charact
er

Any identifiable string
that can be used for the
web.xml parsing

First
character
of the
string

: Specifies a character to separate the
Id attribute of tags output to the
response page.

3. Using JSF and JSTL

176

Parameter name Data
type Specifiable value

Behavior
when an
invalid
value is
specified

Default
value Explanation

javax.faces.STAT
E_SAVING_METHOD

String The client or

the server

server server Specifies how to save the state of the
view.

javax.faces.VALI
DATE_EMPTY_FIELD
S

String auto,

true, or

false

false auto Specifies whether to validate a
submitted value, if the value is empty
or null.

javax.faces.vali
dator.DISABLE_DE
FAULT_BEAN_VALID
ATOR

Boolean true or

false

false false Specifies whether to disable the use of
Bean Validation in an application.#3

#1
You cannot use this parameter for applications in the archive format, because the files in the archive format cannot be modified.
You can, however, use this parameter for applications in the exploded archive format.

#2
Although no warning message is output if you do not specify forward slash (/) at the beginning of an ID string, you cannot save
the entire state. You can save only the partial state. We therefore recommend that you start a string with a forward slash (/).

#3
For details on the operations of each setup value, see 10.5.1 Procedure of using Bean Validation from JSF in the uCosminexus
Application Server Common Container Functionality Guide.

3.5.2 Proprietary context parameters of Application Server
The following table describes proprietary context parameters of Application Server.

Table 3‒11: Proprietary context parameters of Application Server

Parameter name Date
type Specifiable value

Behavior
when an
invalid
value is
specified

Default
value Explanation

com.sun.faces.cl
ientStateTimeout

Long -9223372036854775808

to
9223372036854775807

Timeout
does not
work.

Timeout
does not
work.

Specifies the timeout value for the
view state. If the time consumed
between the present view and the next
view exceeds the timeout value, the
next view is not displayed, and
javax.faces.application.Vi
ewExpiredException is thrown.
This parameter is enabled if the value
of
javax.faces.STATE_SAVING_M
ETHOD is "client". If this
parameter is not set, the timeout does
not occur. The parameter value + 1 is
considered as the valid timeout value.

For example, if you set the parameter
value as 0, the timeout occurs in 1
minute. If you specify a negative
value, the view is definitely disabled
after submit.

com.sun.faces.di
sableUnicodeEsca
ping#1

String auto, true, or false false auto Determines the output method for non-
ASCII characters of the response page
to be returned to the client. There are
two types of output methods of non-

3. Using JSF and JSTL

177

Parameter name Date
type Specifiable value

Behavior
when an
invalid
value is
specified

Default
value Explanation

com.sun.faces.di
sableUnicodeEsca
ping#1

String auto, true, or false false auto ASCII characters, either output the
characters as it is or output as the
character reference.

The encoding set in the response page
has an impact on this functionality.
The extent of the impact of this
functionality differs for JSP and
Facelets respectively.

In JSP, characters specified in JSF tags
(HTML tags or core tags) are targeted.
While in Facelets, all the characters
described in a page are targeted.

com.sun.faces.nu
mberOfLogicalVie
ws

int 0 to 2147483647 15 15 Specifies the count of logical views. #2

This parameter is enabled if the value
of
javax.faces.STATE_SAVING_M
ETHOD is "server". If you access a
view that exceeds the value set in this
parameter, the logical view that is not
referenced for the longest period of
time is replaced with the currently
accessed logical view. The result page
does not appear even if you submit the
replaced view. If you set 0 in this
parameter, the view is definitely
disabled after you perform submit. If a
negative value is set, the behavior
differs for JSP and Facelets
respectively.

In JSP, although an exception occurs,
the view is displayed and you can also
submit the view. Note that you cannot
save the view state.

In Facelets, an exception occurs and
the view is not displayed.

com.sun.faces.nu
mberOfViewsInSes
sion

int 0 to 2147483647 15 15 Specifies the number of view states
that you can register in a logical view.
#2 This parameter is enabled if the
value of
javax.faces.STATE_SAVING_M
ETHOD is "server".

If you submit the same view for a
number of times more than the value
set in this parameter, the state of the
view that is not referenced for the
longest period of time is replaced with
the state of the currently accessed
view. The result page does not appear
even if you submit the view that has
the replaced state.

If you set 0 in this parameter, the view
is definitely disabled after you perform
submit. If you set a negative value, the
behavior differs for JSP and the
Facelets.

In JSP, although an exception occurs,
the view is displayed and you can also

3. Using JSF and JSTL

178

Parameter name Date
type Specifiable value

Behavior
when an
invalid
value is
specified

Default
value Explanation

com.sun.faces.nu
mberOfViewsInSes
sion

int 0 to 2147483647 15 15 submit the view. Note that you cannot
save the view state.

In Facelets, an exception occurs and
the view is not displayed.

#1
The following table describes the mapping between the values set for the com.sum.faces.disableUnicode.Escaping
parameter and the output of the response page.

Table 3‒12: Mapping between the values set for the com.sum.faces.disableUnicode.Escaping parameter
and the output of the response page

Value set for the
com.sun.faces.disableUnicodeEscaping

Response page encoding is in
UTF, or ISO-8859-1

Response page encoding is
other than UTF, or ISO-8859-1

true Character Character

false Character reference Character reference

auto Character Character reference

#2
The Logical view indicates response pages saved by the JSF. A logical view is used to identify the views accessed so far by the
client. A logical view is created when the client accesses a view. The logical view also holds the view states. A view state is
incremented by one every time you submit the same view.
The following figure shows the relationship of the view and the values specified for numberOfLogicalViews and
numberOfViewsInSession.

3. Using JSF and JSTL

179

Figure 3‒2: 2Relationship of the view and the values specified for numberOfLogicalViews and
numberOfViewsInSession

The number of states specified for numberOfViewsInSession is stored for each logical view included in the
number of logical views specified in numberOfLogicalViews.

When a client machine submits a value to the server machine, the server machine saves a new state of the view. Note
that a state indicates the information about the UI components defined in a logical view.

In JSF, the window information (View state) of Facelets files created by the user or HTML pages created based on
JSP files and the objects of the ManagedBean class that define SessionScope, are registered in the HTTP session.

3.5.3 Servlet settings
The servlets settings are defined in web.xml. A web.xml file has different definitions for different versions of
servlet.

(1) For Servlet2.5
You must define the following tags in web.xml to run JSF applications:

• servlet

Use the servlet tag to register the FacesServlet class as a servlet. Make the settings in the web.xml as follows:

3. Using JSF and JSTL

180

<servlet>
<servlet-name>FacesServlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
</servlet>

• servlet-mapping

You must define the servlet-mapping element in web.xml.

Make the settings in web.xml as follows:

<servlet-mapping>
<servlet-name>FacesServlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>

(2) For Servlet3.0
For Servlet3.0, processes such as registration of the FacesServlet class or definition of the URL mapping are
done by default. You need not define any settings in web.xml and the creation of web.xml is also optional.

The following points describe how the program behaves depending upon whether you register the FacesServlet
class and define the URL mapping in web.xml.

Condition 1:

Conditions
When either of the following conditions is fulfilled:

• You create web.xml but do not register the FacesServlet class and do not define the URL mapping

• You do not create web.xml

Behavior
FacesServlet is automatically initialized and is mapped to the following default URL:

• /faces/*
• *.jsf
• *.faces

The user accesses the FacesServlet by using the default URL.

Condition 2:

Condition
You create web.xml and register the FacesServlet class, and define the URL mapping.

Behavior
The user accesses the FacesServlet according to the contents defined in web.xml. In such cases, the default
settings described in Condition 1 above are not used.

3. Using JSF and JSTL

181

3.6 JSF applications development flow
This section describes the JSF applications development flow.

3.6.1 Procedure for developing JSF applications
The following figure shows the flow of developing a JSF application. Develop the application by performing the tasks
in order of the numbering in the following figure. In step 1 of the figure, determine common identifiers necessary for
creating items described from steps 2 to 6.

Figure 3‒3: Flow of the process for developing a JSF application

The procedure described above covers the development procedure up to the step for creating a JSF application. To
actually execute the developed JSF application, you must create an EAR file including the files described above, and
deploy the JSF application on the Application Server machine.

3.6.2 Procedure for using the Bean Validation from JSF
This section describes the procedure for using the Bean Validation from JSF.

(1) Prerequisite
You must satisfy the following conditions for using the Bean Validation verification functionality in JSF:

• Create Web pages in Facelets.

• Define annotations of the Bean Validation in ManagedBean.

3. Using JSF and JSTL

182

(2) Validation process
The validation process of the Bean Validation differs according to the values set in the context parameter of JSF. The
behavior of the Bean Validation differs according to the values set in
javax.faces.validator.DISABLE_DEFAULT_BEAN_VALIDATOR and depending upon whether the
f:validateBean tag is specified for the ManagedBean that defines the annotation of the Bean Validation.

Table 3‒13: Relation of the values set in javax.faces.validator.DISABLE_DEFAULT_BEAN_VALIDATOR
and the validation process

Value set in
javax.faces.validator.DISABLE_DEFAULT_BEA

N_VALIDATOR

If the <f:validateBean> tag is
specified (when the disabled

attribute is not specified)

If validation is done by the Bean
Validation

true Yes Yes

No No

false Yes Yes

No Yes

If no value is specified (default) Same as in the case of false Same as in the case of false

For details on how to use the f:validateBean tag, see Standard specifications of JSF.

For details on how to define a validation for ManagedBean variables, see Standard specifications of Bean Validation.

(3) Implementation example
The following is an example of implementation done for using the Bean Validation from JSF.

The following is an example of implementing a Facelets page that registers the information which requires validation.

 <f:view>
 <h:form>
 Enter ID

 <h:inputText id="IDBox" value="#{personalData.id}" />

 <h:message for="IDBox"/>

 <f:validateBean disabled="true">
 Enter name (validation will not be performed)

 <h:inputText id="NameBox" value="#{personalData.name}" />

 </f:validateBean >

 Enter age

 <h:inputText id="AgeBox" value="#{personalData.age}" />

 <h:message for="AgeBox"/>

 :
 :
 </h:form>
 </f:view>

! Important note

Although validation is defined for variables of the corresponding ManagedBean in the inputText tag in
<f:validateBean disabled="true">, the validation is not performed.

Next is an implementation example of the validation definition for the ManagedBean that stores the data, which
requires validation.

@ManagedBean(name="personalData")
@SessionScoped
public class PersonalData
{
 @Size(min=8,max=12, message="Enter a string between 8 to 12 characters inclusive.")
 private String id = "";

 @Size(min=1,message="Enter name.")
 private String name = "";

3. Using JSF and JSTL

183

 @Max(value = 150, message="Confirm if the correct age is entered.")
 @Min(value = 0, message="Age must be 0 or above.")
 private int age = 0;
 :
setter/gettter method
 :
}

3. Using JSF and JSTL

184

3.7 Using log (development investigation log) for
debugging

You can use the development investigation log for debugging during the JSP application development.

You can use the development investigation log to investigate the cause or to understand more details on the behavior
of the concerned functionality if an error occurs or a bug is detected during the development of a JSF application.

The JSF application outputs the development related messages to the development investigation log. While debugging
the JSF application, you can identify the messages to be noted, with the respective class names that are output in
messages. The following table describes the components that output the messages and the respective class names that
are output.

Table 3‒14: Class names output in the development investigation log of the JSF application and the Bean
Validation

Component name Class name output Output content

JSF javax.faces.~
com.sun.faces.~

• Error messages

• Messages reporting incorrect settings

• Exception stack trace

• Messages about the execution status of
functionalities

• Messages about the internal status

Note that the development investigation log is not output if the default settings are used. You need to change the
settings as and when required.

For details such as the settings required to output the development investigation log, the output destination of log, the
output format, and the log level, see 24.4 Messages output in the development check log in the uCosminexus
Application Server Messages.

Also, for details on the development investigation log of Bean Validation used in the JSF application, see 10.6 Using
log (development investigation log) for debugging in the uCosminexus Application Server Common Container
Functionality Guide.

3. Using JSF and JSTL

185

3.8 Setting up the execution environment
The execution environment for applications that use JSF and JSTL needs to be set up in the same way as the
development environment. You must set libraries in the J2EE server class path.

For details on the class path to be set up, see 3.4 Setting up the class path (setting up the development environment).

3. Using JSF and JSTL

186

3.9 To output and check the troubleshooting information
If an error occurs in the application that uses JSF and JSTL, reference the log and take the required action. For details,
see 4. Output Destinations and Output Methods of Data Required for Troubleshooting and 5. Problem Analysis in the
uCosminexus Application Server Maintenance and Migration Guide.

3. Using JSF and JSTL

187

3.10 Notes on using JSF and JSTL
This section describes the points to consider when using JSF and JSTL.

• Values set in context parameters are handled according to the following rules:

• Boolean type properties are case-sensitive.

• All context parameters have their respective default values. If an incorrect value or a value outside the
specified range is set, a default value is used and the incorrect context parameter is output to a message.

• You must consider the following points regarding the library version while setting up the class path of JSF or
JSTL:

• A library of any other version must not be specified in the class path along with the library version that you
actually want to use. The application might behave abnormally.

• You must specify a library in the class path that is compatible with the application version.

3. Using JSF and JSTL

188

4 Web Server Integration
This chapter describes the functionality related to Web server integration.

189

4.1 Organization of this chapter
Application Server provides the redirector functionality for Web server integration. A redirector refers to a library
provided in the Web container. By registering the redirector in the Web server, you will be able to process a specific
requests, from the HTTP requests for the Web server, in the specified Web container and distribute and process the
requests in multiple Web containers.

The following table lists the functionality and the corresponding reference sections for each functionality related to the
Web server integration:

Table 4‒1: Functionality and the corresponding reference sections of each functionality related to Web
server integration

Functionality Reference

Distributing requests with the Web server (Redirector) 4.2

Distributing requests by URL pattern 4.3

Distributing requests by the round-robin format 4.4

Distributing requests by the POST data size 4.5

Communication timeout (Web server integration) 4.6

Specifying the IP address (Web server integration) 4.7

Error page customization (Web server integration)# 4.8

Viewing the top page by specifying the domain name 4.9

Notification of Gateway Information to a Web Container 4.10

#
Functionality available only when you use Cosminexus HTTP Server as the Web server. You cannot use this functionality in the
case of using Microsoft IIS.

Furthermore, in the case of Web server integration, you can also use the SSL-based authentication and the data
encryption functionality of Cosminexus HTTP Server or the SSL-based authentication and the data encryption
functionality of Microsoft IIS.

For SSL-based authentication and data encryption in Cosminexus HTTP Server, see 7.2.5 SSL setup with Cosminexus
HTTP Server in the uCosminexus Application Server Security Management Guide. For SSL-based authentication and
data encryption in Microsoft IIS, see 7.2.6 Microsoft IIS setup (in Web redirector environments) in the uCosminexus
Application Server Security Management Guide. You can use this functionality only in the Web redirector
environment.

Note that the Web server integration functionality provided in Application Server includes a functionality wherein the
functions unique to the Application Server are extended beyond the functions defined in J2EE, and also those
provided as functions unique to Application Server. For details about whether the functionality is unique to
Application Server, see 1.2 Functionality corresponding to the purpose of the system.

Environment settings required for Web server integration
The following environment settings are required for the Web server integration:

• When Smart Composer is used
See Appendix B Precautions related to Cosminexus HTTP Server Settings and set up the environment of
Cosminexus HTTP Server.

• When Smart Composer is not used
Set up the environment of one of the following Web servers:

• Cosminexus HTTP Server (Appendix B)

• Microsoft IIS (Appendix C)

4. Web Server Integration

190

4.2 Distributing requests with the Web server
(Redirector)

This section explains the distribution of requests with the redirector.

You can use this functionality only when you use the Web server integration functionality. To distribute requests, you
must define distribution for the host on which the Web server or the redirector is running.

The following table describes the organization of this section:

Table 4‒2: Organization of this section (Distributing requests with the Web server (redirector))

Category Title Reference

Description Mechanism of request distribution with the redirector 4.2.1

User-defined file for setting the request distribution method (When the Smart Composer
functionality is used)

4.2.2

User-defined file for setting the request distribution method (When the Smart Composer
functionality is not used)

4.2.3

Notes Points to be considered during Web server integration 4.2.4

Note:
There is no description of Implementation, Settings, and Operations for this functionality.

Note that the required definitions differ according to the type of the Web server used. Also, if the type of the Web
server used is Cosminexus HTTP Server, the definitions also differ according to the type of the functionality used for
the system building. The following table lists the types of Web servers and the definitions to be used:

Table 4‒3: Web server types and the definitions to be used

Type of the
Web server

Type of system building
function Definitions

Cosminexus
HTTP Server

Smart Composer functionality • Definition of Easy Setup definition file

• Definition of workers.properties
• Definition of mod_jk.conf

Other than Smart Composer
functionality

• Definition of workers.properties
• Definition of mod_jk.conf

Microsoft IIS -- • Definition of workers.properties
• Definition of uriworkermap.properties
• Definition of isapi_redirect.conf

Legend:
--: Not applicable

For details on distributing requests by redirection when using the in-process HTTP server, see 5.7 Request distribution
with the redirector.

4.2.1 Mechanism of request distribution with the Redirector
If you use the redirector, from among the HTTP requests sent to the Web server, specific requests can be processed in
the specified Web container, and requests can be processed by distributing to multiple Web containers.

In the case of distributing requests with the redirector, use the Web container execution process, called the worker
process# that runs behind the Web server. A worker process is used to process requests including servlets and JSPs,
via the redirector. Data exchange between the Web server and a worker process is based on TCP/IP and is executed
through a specific port number set by the user. To specify the redirector settings, use the setup unit that abstracts the

4. Web Server Integration

191

Web container called worker. The worker includes a worker indicating a stand-alone J2EE server and a worker
indicating a J2EE server in a cluster configuration. The worker that forwards requests to the J2EE server is called a
forwarding worker. A forwarding worker is the ajp13 type worker.

#
A worker process actually acts as a J2EE server.

(1) Patterns to transfer the requests
The patterns to transfer requests from the redirector to the worker process are as follows:

• Transfer from one Web server to one worker process

• Transfer from one Web server to multiple worker processes

Note that the mechanism of request distribution is not affected even if the Web server and the worker processes are
present on the same machine or on different machines.

The following figures show the patterns to transfer requests from the redirector to the worker process:

Figure 4‒1: Transfer from one Web server to one worker process

4. Web Server Integration

192

Figure 4‒2: Transfer from one Web server to multiple worker processes

To distribute the requests to multiple Web containers, define the worker processes of multiple Web containers as the
distribution destinations, in the redirector registered in the Web server.

(2) Request distribution method
The methods to distribute requests with the redirector include:

• Distributing by URL pattern
Use this method when you want to execute a specific processing in a single Web container, and when you want to
distribute a process to multiple Web containers.
You can use this method when there is one worker process, as well as when there are multiple worker processes.

• Distributing in round-robin format with a load balancer
Use this method when you want to distribute a process to multiple Web containers.

• Distributing by the POST data size
Use this method when you want to distribute a process to multiple Web containers. You can specify this
distribution method only when the Web server used is Cosminexus HTTP Server.
Note that you cannot use this distribution method when the following functionality are used:

• Session failover functionality

• Distributing requests by the round robin format

To create a worker process, define the following attributes in a file (workers.properties) called the worker
definition file:

• Worker name

• Worker type

• Host name or IP address of the Web server on which the worker is running

• Port number received by the worker

The following workers are already defined in a standard workers.properties file. When the Web server and the
Web container are operated on the same host, you need not change these parameters.

4. Web Server Integration

193

Worker attributes Parameter

Worker name worker1

Worker type ajp13

Host name Localhost

Port number 8007

For details on how to define a worker process, see 9.5 workers.properties (Worker definition file) in the uCosminexus
Application Server Definition Reference Guide.

4.2.2 User-defined file for setting the request distribution method (When
the Smart Composer functionality is used)

To distribute requests, edit the following user-defined files in a text editor and specify the worker, mapping between
the URL pattern and worker, and the redirector operations.

• Easy Setup definition file
Specify the worker definition, the worker-wise parameters, and the mapping between the URL pattern and
workers. Use this file to set up request distribution by URL pattern.

• workers.properties (Worker definition file)
Specify the worker definition and the worker-wise parameters. Use this file to set up request distribution by the
round robin format and the request distribution by the POST data size.

• mod_jk.conf (Redirector action definition file)
Specify the mapping between the URL pattern and workers and specify the redirector operations, such as which
URL patterns will be forwarded to the Web container with the requests sent to Cosminexus HTTP Server. Use this
file to set up request distribution by the round robin format and the request distribution by the POST data size.

For details on the Easy Setup definition file, see 4.6 Easy Setup definition file in the uCosminexus Application Server
Definition Reference Guide. For details on the Worker definition file, see 9.5 workers.properties (Worker definition
file) in the uCosminexus Application Server Definition Reference Guide. For details on the Redirector Operation
definition file, see 9.2 isapi_redirect.conf (Redirector Operation definition file for Microsoft IIS) in the uCosminexus
Application Server Definition Reference Guide.

4.2.3 User-defined file for setting the request distribution method (When
the Smart Composer functionality is not used)

To distribute requests, edit the following user-defined files in a text editor and specify workers, mapping between the
URL pattern and workers, and the redirector operations.

The files to be setup depend on the used Web server. The common user-defined files and the user-defined files for
each Web server are separately described here. For details on the user-defined file httpsd.conf, see the
uCosminexus Application Server HTTP Server User Guide. For details on the other user-defined files, see the
uCosminexus Application Server Definition Reference Guide

(1) Common user-defined files
The common user-defined files for Cosminexus HTTP Server and Microsoft IIS are as follows:

• workers.properties (worker definition file)
Specify the worker definitions and the parameters for each worker.
The storage location of this file is as follows:

• In Windows
Cosminexus-installation-directory\CC\web\redirector\workers.properties

• In UNIX

4. Web Server Integration

194

/opt/Cosminexus/CC/web/redirector/workers.properties
• usrconf.properties (user property file)

Set the communication timeout when the Web container receives a request from the redirector.
The storage location of this file is as follows:

• In Windows
Cosminexus-installation-directory\CC\server\usrconf\ejbs\server-name
\usrconf.properties

• In UNIX
/opt/Cosminexus/CC/server/usrconf/ejb/server-name/usrconf.properties

(2) User-defined files for Cosminexus HTTP Server
The user-defined files for Cosminexus HTTP Server are as follows:

• mod_jk.conf (redirector action definition file)
Specify the redirector operations for Cosminexus HTTP Server.
The storage location of this file is as follows:

• In Windows
Cosminexus-installation-directory\CC\web\redirector\mod_jk.conf

• In UNIX
/opt/Cosminexus/CC/web/redirector/mod_jk.conf

• httpsd.conf (Cosminexus HTTP Server Definition file)
Specify the directive (parameter that defines the execution environment of the Web server) for defining the
operating environment of Cosminexus HTTP Server.
The storage location of this file is as follows:

• In Windows
Cosminexus-installation-directory\httpsd\conf\httpsd.conf

• In UNIX
/opt/hitachi/httpsd/conf/httpsd.conf

(3) User-defined files for Microsoft IIS
The user-defined files for Microsoft IIS are as follows:

• uriworkermap.properties (mapping definition file)
Specifies the mapping between the URL pattern and worker in Microsoft IIS.
The storage location of this file is as follows:
Cosminexus-installation-directory\CC\web\redirector\uriworkermap.properties

• isapi_redirect.conf (redirector action definition file)
Specify the redirector operations for Microsoft IIS.
The storage location of this file is as follows:
Cosminexus-installation-directory\CC\web\redirector\isapi_redirect.conf

(4) Notes
The followings are the notes related to the user-defined files:

• During the overwrite installation, the user-defined file is not overwritten.

• For the processing of the worker definition file and the Web server definition file when performing the upgrade
installation, see 10. Migrating from Application Server of an Old Version in the uCosminexus Application Server
Maintenance and Migration Guide.

• The maximum number of characters in one line of the redirector definition file is 1,023. Specify settings within
this character count.

4. Web Server Integration

195

• In the following user-defined files, if several parameters are specified with the same name, the value of the
parameter specified first is used for operations:

• isapi_redirect.conf
• workers.properties
• uriworkermap.properties

4.2.4 Points to be considered during Web server integration
This subsection explains the points to be considered when integrating with the Web server.

(1) Upper limit value of the request headers and response headers that can be sent and
received by the Web container

When integrating with the Web server, an upper limit is set on the size of the request headers and the response headers
that can be sent and received by the Web container. The respective upper-limit value is 16 KB. Note that you cannot
send and receive the headers exceeding 16 KB.

(2) Points to be considered when using Cosminexus HTTP Server
In a system built by the application server, you cannot use the virtual host functionality of Cosminexus HTTP Server.
If you want to invoke multiple Cosminexus HTTP Servers on the same host, use Management Server.

(3) Points to be considered when using the Microsoft IIS
The points to be considered when using the Microsoft IIS are explained below:

• When multiple Web sites are built by Microsoft IIS, you cannot integrate simultaneously with these Web sites.
When you are building multiple Web sites, set a redirector in each Web site.

• Change the URL information for the requests transferred to the Web container with the redirector for Microsoft
IIS. Use the changed request URL in the ISAPI filter.
Consequently, you cannot acquire the request URL received first by the Microsoft IIS with the ISAPI filter
executed after the redirector for Microsoft IIS. If you want to acquire the request URL received by Microsoft IIS
with the ISAPI filter, you need to set a higher priority order for the ISAPI filter as compared to the redirector for
Microsoft IIS. Note that when you need to change the priority order of the redirector for Microsoft IIS to Medium
or Low in order to adjust the priority order of the ISAPI filter, specify the priority order with the
filter_priority key of the action definition file of the redirector for Microsoft IIS. For the
filter_priority key, see 9.2 isapi_redirect.conf (Redirector Operation definition file for Microsoft IIS) in
the uCosminexus Application Server Definition Reference Guide.

• When integrating with Microsoft IIS, even if you specify the following HTTP request headers in the Web client,
you cannot receive these request headers in a Web application:

• tomcaturl
• tomcatquery
• tomcatworker
• tomcattranslate

These HTTP request headers are used in the redirector.

• When integrating with Microsoft IIS, you cannot specify settings for distributing requests by the POST data size.

4. Web Server Integration

196

4.3 Distributing requests by URL pattern
This section explains the distribution of requests by the URL patterns.

You can distribute the requests by the URL patterns included in an HTTP request. Consequently, only a specific
processing can be executed in the Web container, and a processing can be distributed to multiple Web containers
depending on the contents of the processing.

The following table describes the organization of this section.

Table 4‒4: Organization of this section (Distributing requests by the URL pattern)

Category Title Reference

Description Overview of distributing requests by URL pattern 4.3.1

Types of URL patterns and priority of applicable patterns 4.3.2

Settings Execution environment settings (When the Smart Composer functionality is used) 4.3.3

Execution environment settings (When the Smart Composer functionality is not used) 4.3.4

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

4.3.1 Overview of distributing requests by URL pattern
Define the requests transferred to the Web container according to the mapping between the URL pattern and the
worker process. The redirector can switch the Web containers that transfer the requests, depending on the set URL
pattern.

For example, you can define 'Process the HTTP request containing the URL "/examples/" in a Web container', and
'Process the HTTP request containing the URL "/examples1/" in Web container A, and the HTTP request containing
the URL "/examples2/" in Web container B'.

The following figures show the examples of request distribution with the redirector:

4. Web Server Integration

197

Figure 4‒3: Request distribution with the redirector (when distributing and transferring specific requests to
the Web container)

Figure 4‒4: Request distribution with the redirector (when distributing and transferring requests to multiple
Web containers)

4. Web Server Integration

198

4.3.2 Types of URL patterns and priority of applicable patterns
This section describes the types of URL patterns that you can specify for URL mapping of the Redirector and the
priority of applicable patterns.

(1) Types of URL patterns
You can specify the following four types of URL patterns for the URL mapping of the redirector:

• Complete path specification
This is a completely matching pattern.

URL format:
/path
When specifying only the route, use "/".

Characters you can specify in /path:
Specify a string having at least one of the following characters:
Single-byte alphanumeric characters, "/", "*", "-", ".", "_", "~", "!", "$", "&", " '", "(", ")", "+", ",", "=",
":", "@"

Example:
When the URL pattern is "/examples/jsp/index.jsp", and the URL is "/examples/jsp/index.jsp", it indicates a
match.

• Path specification
In this pattern, the paths are matching.

URLformat:
/path/*
When specifying all requests, use "/*".

Characters you can specify in /path:
Specify a string having at least one of the following characters:
Single-byte alphanumeric characters, "/", "*", "-", ".", "_", "~", "!", "$", "&", " '", "(", ")", "+", ",", "=",
":", "@"

Example:
When the URL pattern is "/examples/*", and the URL is "/examples/jsp/index.jsp", it indicates a match.

• Extension specification
In this pattern, the extensions are matching. This pattern is applicable to all the hierarchies below the specified
path.

URL format:
/path/*.extension
When specifying all the paths, use "/*.extension".

Characters you can specify in path and extension:
Specify a string having at least one of the following characters:
Single-byte alphanumeric characters, "/", "*", "-", ".", "_", "~", "!", "$", "&", " '", "(", ")", "+", ",", "=",
":", "@"

Example:
When the URL pattern is "/examples/*.jsp", and the URL is "/examples/jsp/index.jsp", it indicates a match.

• Suffix specification
In this pattern, suffixes are matching. This pattern is applicable to all the hierarchies below the specified path.

URL format:
/path/*suffix
When specifying all the paths, use "/*<suffix>".

Characters you can specify in path and suffix:
Specify a string having at least one of the following characters:

4. Web Server Integration

199

Single byte alphanumeric characters, "/", "*", "-", ".", "_", "~", "!", "$", "&", " '", "(", ")", "+", ",", "=",
":", "@"

Example:
When the URL pattern is "/examples/servlet/*Servlet", and the URL is "/examples/servlet/HelloServlet", it
indicates a match.

! Important note
The following are the notes on specifying a URL pattern:

• A URL pattern must not begin with anything but "/". In Windows, if you specify a character other than "/", the
KDJE41012-E message is output and the mapping is ignored. In any other OS, a message is displayed and
Cosminexus HTTP Server fails to start.

• A "*", when used as a wildcard, cannot be specified before the "/*" in a URL pattern. If you specify anything
other than "/" just before the first "*" in a URL pattern, the URL pattern is treated as a "Complete path
specification" and "/*" is not treated as a wildcard even if it is a part of the URL.

• Do not describe multiple mappings of the same URL pattern. The behavior in case you specify multiple
mappings, is as follows.
The former URL pattern mapping is used in the "Complete path specification" and the "Path specification". The
latter mapping is used in the case of "Extension specification" and "Suffix specification".

• You must use only valid values in path, extension, and suffix. If you use an invalid character in a URL pattern,
some types of characters might not be forwarded to the Web container.

• The string length of extension or suffix must be at least one character long. If the length is shorter than one
character, the "Extension specification" outputs the KDJE41041-W message, and the mapping is ignored. In
the Suffix specification, the value that you specify is treated as a URL pattern of the "Path specification".

(2) Priority of applicable patterns
Among the mapping to these four URL patterns, the URL pattern with the highest priority is 'Complete path
specification'. When the URL does not match with 'Complete path specification', path matching is judged in the
following order, and the applicable URL pattern is decided:

1. When the URL does not match with 'Complete path specification'
The longest matching URL pattern from among 'Path specification', 'Extension specification', and 'Suffix
specification' is applied. Longest match refers to the longest matching URL from the beginning ("/") until the
high order path of "*".
The URL in which the following two mappings are defined is illustrated below as an example:

Mapping definition:
/examples/* worker1
/examples/jsp/* worker2

In this case, when the URL is "/examples/jsp/index.jsp", the mapping of worker2 is applied, and when the URL is
"/examples/test/index.jsp", the mapping of worker1 is applied.

2. In addition to the conditions of 1., when multiple longest matching 'Path specification', 'Extension specification',
and 'Suffix specification' URL patterns are present
'Extension specification' or 'Suffix specification' is given priority over 'Path specification'.
The URL in which the following two mappings are defined is illustrated below as an example:

Mapping definition:
/examples/jsp/* worker1
/examples/jsp/*.jsp worker2

In this case, when the URL is "/examples/jsp/index.jsp", the mapping of worker2 is applied, and when the URL is
"/examples/jsp/test.html", the mapping of worker1 is applied.

3. In addition to the conditions of 1. and 2., when multiple longest matching 'Extension specification 'and 'Suffix
specification' URL patterns are present
The URL pattern specified later is given priority.
The URL in which the following two mappings are defined is illustrated below as an example:

4. Web Server Integration

200

Mapping definition:
/examples/*.jsp worker1
/examples/*jsp worker2

When URL is specified in this order, the mapping of worker2 is applied when the URL is "/examples/jsp/
index.jsp".

! Important note
You must note the following points when judging the priority of applicable patterns:

• If a request URL includes a query (string after a "?" mark in the URL), the query part is not used when comparing
with the URL pattern.
Example:
If the request URL is "/examples/jsp/index.jsp?query=foo", the URL used for comparison is "/examples/jsp/
index.jsp".

• If a request URL includes a parameter (string from a semicolon (;)), the parameter part is not used when comparing
with the URL pattern.
Example:
If the request URL is "/examples/jsp/index.jsp;jsessionid=0000", the URL used for comparison is "/examples/jsp/
index.jsp".

• A request URL path is first normalized and then the URL is compared with the URL pattern to judge whether both
the URLs match.
Example:
If a request URL is "/examples/../examples/./jsp//index.jsp", the URL used for comparison is "/examples/jsp/
index.jsp".

• A URL pattern is never normalized. Therefore, a URL pattern that includes "./" or "../" does not match with the
request URL.

• In Windows, an extension of a URL pattern specified in the "Extension specification" is not case sensitive.

4.3.3 Execution environment settings (When the Smart Composer
functionality is used)

Distributing requests by the URL patterns included in the HTTP requests enables you to execute only the specific
processes in the Web container and to distribute requests to multiple Web containers according to the processing
contents. Note that, when you use 'Distributing requests by URL pattern' method, as a principle, the requests are
distributed in the Web application. Define the URL pattern as an operation of the redirector.

(1) Setup procedure
To set the distribution of requests by the URL pattern:

1. Define the workers and mapping between the URL pattern and workers in the Easy Setup definition file.
Specify the list of worker names, worker types (set ajp13), port number, and host name.
If mapping is already defined, delete or replace the definition.

2. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see Appendix B Precautions related to Cosminexus HTTP Server Settings.

(2) Settings in the Easy Setup definition file
Specify the definition for distributing requests by the URL pattern in the <configuration> tag of the logical Web
server (web-server) in the Easy Setup definition file.

The following table lists the definitions in the Easy Setup definition file for distributing requests by the URL pattern:

4. Web Server Integration

201

Table 4‒5: Definitions in the Easy Setup definition file for distributing requests by the URL pattern

Category Parameter Description

Worker
definitions

worker.list Specifies a list of one or multiple worker names.

worker.worker-name.host Specifies the worker host name or IP address.

worker.worker-name.port Specifies the worker port number.

worker.worker-name.type Specifies the worker type (ajp13, lb, or post_size_lb).

Worker.worker-
name.cachesize

Specifies the number of worker connections that are reused in the redirector.

This parameter can only be specified in Windows.

worker.worker-
name.receive_timeout

Specifies the communication timeout value.

worker.worker-
name.delegate_error_c
ode

Specifies the error status code used when the creation of the error page is
entrusted to the Web server.

Definition of
mapping between
the URL pattern
and worker

JkMount Specifies some combination of workers specified in the URL pattern and
worker.list.

Note:
Define the name of the workers specified in the worker.list parameter in worker-name.

For details on the Easy Setup definition file and the parameters, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

(3) Example settings
The following figure shows the distribution of requests by the URL patterns.

Figure 4‒5: Example of distribution of requests by the URL patterns

In this example, the Web application app1 is deployed on host A and the Web application app2 is deployed on host
B. By including the name of the Web application you want to process in the URL pattern of the request, the request
with the URL pattern /app1/* can be processed on the host A and the request with the URL pattern /app2/* can
be processed on the host B. The worker name of the host A is worker1 and the worker name of the host B is
worker2.

4. Web Server Integration

202

An example of the Easy Setup definition file is described below. To distribute the requests to multiple Web containers,
specify the worker processes of multiple Web containers as the distribution destinations, in the redirector registered in
the Web server. Also, the URL pattern /app1/* are mapped with worker1 and the URL pattern /app2/* are
mapped with worker2.

Note that to implement this configuration, you must distribute requests to multiple Web systems.

Example of Easy Setup definition file
...
<param>
 <param-name>JkMount</param-name>
 <param-value>/app1/* worker1</param-value>
 <param-value>/app2/* worker2</param-value>
</param>
<param>
 <param-name>worker.list</param-name>
 <param-value>worker1, worker2</param-value>
</param>
<param>
 <param-name>worker.worker1.port</param-name>
 <param-value>8007</param-value>
</param>
<param>
 <param-name>worker.worker1.host</param-name>
 <param-value>hostA</param-value>
</param>
<param>
 <param-name>worker.worker1.type</param-name>
 <param-value>ajp13</param-value>
</param>
<param>
 <param-name>worker.worker1.cachesize</param-name>
 <param-value>64</param-value>
</param>
<param>
 <param-name>worker.worker2.port</param-name>
 <param-value>8007</param-value>
</param>
<param>
 <param-name>worker.worker2.host</param-name>
 <param-value>hostB</param-value>
</param>
<param>
 <param-name>worker.worker2.type</param-name>
 <param-value>ajp13</param-value>
</param>
<param>
 <param-name>worker.worker2.cachesize</param-name>
 <param-value>64</param-value>
</param>
...

4.3.4 Execution environment settings (When the Smart Composer
functionality is not used)

Distributing requests by the URL patterns included in the HTTP requests enables you to execute only the specific
processes in the Web container and to distribute requests to multiple Web containers according to the processing
contents. Note that, when you use 'Distributing requests by URL pattern' method, as a principle, the requests are
distributed in the Web application. Define the URL pattern as an operation of the redirector.

(1) Setup procedure
To set the distribution of requests by the URL pattern:

1. Define the worker in workers.properties.
Specify the list of worker names, worker types (set ajp13), port number, and host name.

4. Web Server Integration

203

The default value is defined in workers.properties that is provided by default. To use the default definition
defined as a comment, delete the hash mark (#) at the beginning of the applicable line.
For details on workers.properties (worker definition file), see 9.5 workers.properties (worker definition
file) in the uCosminexus Application Server Definition Reference Guide.

2. When using Cosminexus HTTP Server, define the mapping between the URL pattern and worker in
mod_jk.conf. When using Microsoft IIS, define the mapping between the URL pattern and worker in
uriworkermap.properties.
If mapping is already defined, delete or replace the definition.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 9.3 mod_jk.conf
(redirector operation definition file for HTTP Server) in the uCosminexus Application Server Definition Reference
Guide.
For details on uriworkermap.properties (mapping definition file for Microsoft IIS), see 9.4
uriworkermap.properties (mapping definition file for Microsoft IIS) in the uCosminexus Application Server
Definition Reference Guide.

3. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see Appendix B Precautions related to Cosminexus HTTP Server Settings
or Appendix C Microsoft IIS Settings.

(2) Example settings
The following figure shows the distribution of requests by the URL patterns.

Figure 4‒6: Example of distribution of requests by the URL patterns

In this example, the Web application app1 is deployed on host A and the Web application app2 is deployed on host
B. By including the name of the Web application you want to process in the URL pattern of the request, the request
with the URL pattern /app1/* can be processed on the host A and the request with the URL pattern /app2/* can
be processed on the host B. The worker name of host A is worker1 and the worker name of host B is worker2.

An example of the workers.properties file is shown below. To distribute the requests to multiple Web
containers, specify the worker processes of multiple Web containers as the distribution destinations, in the redirector
registered in the Web server.

Example of workers.properties (In Windows)
worker.list=worker1, worker2

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.cachesize=64

worker.worker2.port=8007

4. Web Server Integration

204

worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.cachesize=64

Example of workers.properties (In UNIX)
worker.list=worker1, worker2

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13

Examples of the mod_jk.conf and uriworkermap.properties files are shown below. Here, the URL
pattern /app1/* are mapped with worker1 and the URL pattern /app2/* are mapped with worker2.

Example of mod_jk.conf (In Cosminexus HTTP Server)
JkMount /app1/* worker1
JkMount /app2/* worker2

Example of uriworkermap.properties (In Microsoft IIS)
/app1/*=worker1
/app2/*=worker2

4. Web Server Integration

205

4.4 Distributing requests by the round-robin format
This section explains the distribution of requests by the round-robin format.

The following table describes the organization of this section.

Table 4‒6: Organization of this section (Distributing requests by the round-robin format)

Category Title Reference

Description Overview of distributing requests by the round-robin format 4.4.1

Examples of Request Distribution in the Round-robin Format 4.4.2

Defining request distribution in the round robin format 4.4.3

Settings Execution environment settings (When the Smart Composer functionality is used) 4.4.4

Execution environment settings (When the Smart Composer functionality is not used) 4.4.5

Notes Precautions related to request distribution in the round-robin format 4.4.6

Note:
There is no specific description of Implementation and Operations for this functionality.

When Web containers are deployed with a cluster configuration, by using the redirector, requests are distributed in
round-robin format to the respective Web containers. By referencing the session ID appended to each request, the
redirector distributes the requests so that the requests from the same Web client are always transferred to the same
Web container.

If the processing efficiency of the Web containers to which requests are distributed is different, you can adjust the
proportion of load on each host by defining load parameters. When distributing requests in the round-robin format, as
a prerequisite, you must deploy the same Web application on each Web container performing the distribution
processing.

4.4.1 Overview of distributing requests by the round-robin format
For distribution of requests in the round-robin format with a cluster configuration, use a worker definition called load
balancer. The list of worker processes that act as the distribution destinations is defined in the load balancer. Based on
this definition, requests are distributed to the worker processes in the round-robin format.

An HTTP request is distributed. The HTTP requests belonging to the same session, however, are distributed to the
same worker as the previous distribution destination.

Reference note
During the Web server integration, if you specify request distribution with the round-robin format in the redirector settings,
the worker name will be added in the session ID of HttpSession. Also, regardless of whether the settings for adding the
server ID are specified, the server ID will not be added in the session ID of HttpSession.

4.4.2 Examples of request distribution in the round-robin format
The following figure shows an example of request distribution with the load balancer.

4. Web Server Integration

206

Figure 4‒7: Example of request distribution with the load balancer

4.4.3 Defining request distribution in the round robin format
The following load balancer is already defined in a standard workers.properties file.

#worker.list=loadbalancer1

#worker.loadbalancer1.type=lb
#worker.loadbalancer1.balanced_workers=worker1, worker2

Set the type of the worker in worker.loadbalancer1.type. Set the name of the worker process to which the request is to
be distributed in worker.loadbalancer1.balanced_workers. In workers.properties, lb and
worker1, worker2 are defined respectively as loadbalancer1.

This definition is, however, described as a comment. Consequently, when using the above-mentioned load balancer,
delete the '#' (hash mark) present at the beginning of the corresponding rows of workers.properties.

You can define the ratio of request distribution in lbfactor parameter of each worker definition that is the
distribution target. Larger the lbfactor, larger is the ratio of requests transferred to the worker process.

For example, when requests are distributed to two worker processes, namely worker1 and worker2, the ratio of request
distribution is defined as follows in the lbfactor parameter of the worker definition:

• lbfactor parameter of worker1: 2.0

• lbfactor parameter of worker2: 1.0

In this case, worker1 is in charge of double the number of Web clients of worker2.

4.4.4 Execution environment settings (When the Smart Composer
functionality is used)

By defining the list of workers that act as the distribution destinations in the load balancer, requests are distributed to
the workers in the round-robin format.

If you set a load balancing value in each worker that acts as the distribution destination and define the request
distribution ratio, you can adjust the proportion of load on each host. Since the redirector distributes requests with the
round-robin format for each HTTP request at this ratio, higher the ratio for a worker the greater will be the proportion
of forwarded requests. However, the HTTP requests belonging to the same session are distributed to the same worker
as the last time.

4. Web Server Integration

207

(1) Setup procedure
To set the distribution of requests by the round-robin format, specify the settings using the following procedure:

1. Define the load balancer and worker in workers.properties.

Definitions for the load balancer
Specify the list of worker names, worker types (specify lb), and list of workers for load balancing.

Definitions for each worker
Specify the worker types (specify ajp13), port number, host name, and the load balancing value.

The default value is defined in workers.properties that is provided by default. To use the default definition
defined as a comment, delete the hash mark (#) at the beginning of the applicable line.
For details on workers.properties (worker definition file), see 9.5 workers.properties (worker definition
file) in the uCosminexus Application Server Definition Reference Guide.

2. Define the mapping between the URL pattern and worker in mod_jk.conf.
If mapping is already defined, delete or replace the definition.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 9.3 mod_jk.conf
(redirector operation definition file for HTTP Server) in the uCosminexus Application Server Definition Reference
Guide.

3. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see Appendix B Precautions related to Cosminexus HTTP Server Settings.

Notes

• When you use load balancing with the redirector and if a failure is detected in a worker, the worker is
excluded from the choices for redirect destination workers for 60 seconds from the detection of failure.
Therefore, even if the failure is recovered, the worker might not be used for a maximum of 60 seconds.

• In UNIX, when the server processes of Cosminexus HTTP Server are generated or destroyed according to the
load, multiple server processes are allocated by the worker defined first in workers.properties. Also,
even if the number of server processes is fixed, the server process to which the request is allocated is
uncertain, and therefore, if you specify the same load balancing value, round-robin might not occur. Unless
destroyed, the server processes are allowed to increase according to the load, and therefore you must specify a
directive in such a way so that the server processes are not generated or destroyed in a short time.
Specify the httpsd.conf directive of Cosminexus HTTP Server in such a way so that the following
conditions are fulfilled:

Conditions Meaning

MaxSpareServers MaxClients The server processes increase up to MaxClients and stay resident even after the
processing ends.

MaxRequestsPerChild 10000 The HTTP request is processed 10,000 times and then the server process is
terminated to refresh the operations (10,000 is the recommended value). Specify
an adequately large value for the number of J2EE servers that act as the
distribution destinations.

StartServers = MaxClients You specify this condition to start all the server processes first.

Example specification of directive

StartServers 256
MaxClients 256
MaxSpareServers 256
MaxRequestsPerChild 10000

(2) Settings in workers.properties and mod_jk.conf
Define the settings for distributing requests by the round-robin format in workers.properties and
mod_jk.conf. The following table lists the keys defined in workers.properties and mod_jk.conf:

4. Web Server Integration

208

Table 4‒7: Keys defined in workers.properties and mod_jk.conf (When distributing requests by the round-
robin format)

Types of files Key name Description

workers.prop
erties

worker.list Specifies a list of one or multiple worker names.

worker.worker-name.host Specifies the worker host name or IP address.

worker.worker-name.port Specifies the worker port number.

worker.worker-name.type Specifies the worker type. Specify lb in the load balancer and ajp13 in the
worker for load balancing.

worker.worker-
name.balanced_workers

Specifies the list of workers for load balancing.

worker.worker-
name.lbfactor

Specifies the load balancing value.

worker.worker-
name.cachesize

Specifies the number of worker connections that are reused in the redirector.

This key can only be specified in Windows.

worker.worker-
name.receive_timeout

Specifies the communication timeout value.

worker.worker-
name.delegate_error_c
ode

Specifies the error status code used when the creation of the error page is
entrusted to the Web server.

mod_jk.conf JkMount Specifies some combination of workers specified in the URL pattern and
worker.list.

Note:
In worker-name, define the worker name specified in the worker.list key or the worker.worker-
name.balanced_workers key.

The following table lists the parameters that you can specify for each worker type:

Table 4‒8: Keys that can be specified for each worker type

Key name

Worker type (value specified in worker.worker-name.type)

Load balancer

(Specify lb)

Worker

(Specify ajp13)

worker.worker-name.host -- Y

worker.worker-name.port -- Y

worker.worker-name.type Y Y

worker.worker-name.balanced_workers Y --

worker.worker-name.lbfactor -- O

worker.worker-name.cachesize -- O

worker.worker-name.receive_timeout -- O

worker.worker-
name.delegate_error_code

-- O

Legend:
Y: Can be specified
--: Cannot be specified
O: Can be optionally specified

4. Web Server Integration

209

(3) Example settings
The following figure shows the distribution of requests by the round-robin format.

Figure 4‒8: Example of distribution of requests by the round-robin format

In this example, the requests under /examples are equally distributed on host A and on host B. The worker name in
host A is worker1 and the worker name in host B is worker2.

An example of the workers.properties file is shown below. The load balancer and worker are defined here.
Since the requests are distributed at an equal rate, 1 is specified as the load balancing value for both worker1 and
worker2.

Example of workers.properties (In Windows)
worker.list=loadbalancer1

worker.loadbalancer1.balanced_workers=worker1, worker2
worker.loadbalancer1.type=lb

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.cachesize=64
worker.worker1.lbfactor=1

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.cachesize=64
worker.worker2.lbfactor=1

Example of workers.properties (In UNIX)
worker.list=loadbalancer1

worker.loadbalancer1.balanced_workers=worker1, worker2
worker.loadbalancer1.type=lb

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.lbfactor=1

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.lbfactor=1

An example of the mod_jk.conf file is shown below. The load balancer name loadbalancer1 is specified here.

4. Web Server Integration

210

Example of mod_jk.conf
JkMount /examples/* loadbalancer1

4.4.5 Execution environment settings (When the Smart Composer
functionality is not used)

By defining the list of workers that act as the distribution destinations in the load balancer, the requests are distributed
to the workers with the round-robin format.

If you specify a load balancing value in each worker that acts as the distribution destination and define the request
distribution ratio, you can adjust the proportion of load on each host. Since the redirector distributes requests with the
round-robin format for each HTTP request at this ratio, higher the ratio for a worker the greater will be the proportion
of forwarded requests. However, the HTTP requests belonging to the same session are distributed to the same worker
of the last time.

(1) Setup procedure
To set the distribution of requests by the round-robin format, use the following procedure:

1. Define the load balancer and worker in workers.properties.

Definitions of load balancer
Specify the list of worker names, worker types (specify lb), and list of workers for load balancing.

Definitions for each worker
Specify the worker types (specify ajp13), port number, host name, and the load balancing value.

The default value is defined in workers.properties that is provided as standard. To use the default
definition defined as a comment, delete the hash mark (#) at the beginning of the applicable line.
For details on workers.properties (worker definition file), see 9.5 workers.properties (worker definition
file) in the uCosminexus Application Server Definition Reference Guide.

2. When using Cosminexus HTTP Server, define the mapping between the URL pattern and worker in mod_jk.conf.
When using Microsoft IIS, define the mapping between the URL pattern and worker in uriworkermap.properties.
If a mapping is already defined, delete the definition or replace the mapping.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 9.3 mod_jk.conf
(redirector operation definition file for HTTP Server) in the uCosminexus Application Server Definition Reference
Guide.
For details on uriworkermap.properties (mapping definition file for Microsoft IIS), see 9.4
uriworkermap.properties (mapping definition file for Microsoft IIS) in the uCosminexus Application Server
Definition Reference Guide.

3. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see Appendix B Precautions related to Cosminexus HTTP Server Settings
or Appendix C Microsoft IIS Settings.

Notes

• When you perform load balancing in redirector and if a failure is detected in a worker, that worker is excluded
from the choices of the redirect destination workers for the period of 60 seconds after the failure is detected.
Therefore, even if the failure is recovered, the worker might not be used for a maximum period of 60 seconds.

• When you use Microsoft IIS and specify multiple worker processes on which the redirector is running, and if
two or more workers are set, many requests are allocated to the worker defined initially in
workers.properties that is the initial redirect destination.
Also, allocation of a request to a work process is dependent on the Microsoft IIS control and therefore, even if
the same load balancing value is specified, there are cases when a round-robin is not performed.
In such cases, by setting the number of application pools to one, a round robin can be performed even for the
first redirect allocation destination.

• In UNIX, when the server processes of Cosminexus HTTP Server are generated or destroyed according to the
load, more requests are allocated by the worker defined first in workers.properties. Also, even if the
number of server processes is fixed, the server process to which the request is allocated is uncertain, and

4. Web Server Integration

211

therefore if you specify the same load balancing value, the round-robin might not occur. Unless the server
process is destroyed, the server process is allowed to increase according to the load, so you must specify a
directive in such a way so that the server processes are not generated or destroyed in a short time.
Specify the httpsd.conf directive of Cosminexus HTTP Server in such a way so that the following
conditions are fulfilled:

Conditions Meaning

MaxSpareServers MaxClients The server processes increase up to MaxClients and stay resident even after the
processing ends.

MaxRequestsPerChild 10000 The HTTP request is processed 10,000 times and then the server process is
terminated to refresh the operations (10,000 is the recommended value). Specify
an adequately large value for the number of J2EE servers that act as the
distribution destinations.

StartServers = MaxClients You specify this condition to start all the server processes first.

Example specification of directive

StartServers 256
MaxClients 256
MaxSpareServers 256
MaxRequestsPerChild 10000

(2) Settings in workers.properties and mod_jk.conf
The settings in workers.properties and mod_jk.conf are the same settings that are specified when Smart
Composer is used. For details, see 4.4.4(2) Settings in workers.properties and mod_jk.conf.

(3) Example settings
The following figure shows the distribution of requests by the round-robin format.

Figure 4‒9: Example of distribution of requests by the round robin format

In this example, the requests under /examples are equally distributed on host A and on host B. The worker name in
host A is worker1 and the worker name in host B is worker2.

An example of the workers.properties file is shown below. The load balancer and worker will be defined here.
Since the requests are distributed at an equal rate, 1 is specified as the load balancing value for both worker1 and
worker2.

4. Web Server Integration

212

Example of workers.properties (In Windows)
worker.list=loadbalancer1

worker.loadbalancer1.balanced_workers=worker1, worker2
worker.loadbalancer1.type=lb

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.cachesize=64
worker.worker1.lbfactor=1

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.cachesize=64
worker.worker2.lbfactor=1

Example of workers.properties (In UNIX)
worker.list=loadbalancer1

worker.loadbalancer1.balanced_workers=worker1, worker2
worker.loadbalancer1.type=lb

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.lbfactor=1

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.lbfactor=1

Examples of the mod_jk.conf and uriworkermap.properties files are shown below. The load balancer
name loadbalancer1 will be specified here.

Example of mod_jk.conf (in Cosminexus HTTP Server)
JkMount /examples/* loadbalancer1

Example of uriworkermap.properties (In Microsoft IIS)
/examples/*=loadbalancer1

4.4.6 Precautions related to request distribution in the round-robin format
The precautions related to request distribution in the round-robin format for the redirector are as follows:

• Sending requests to the Web container when the J2EE application is not running
When distributing requests with the round-robin format, requests are sent to the Web container even when the
J2EE application is not running. Therefore, you must isolate all the Web containers from the system, and then
implement the changes in J2EE applications.

• Disabling of health check by the load balancer
When the load balancer and request distribution with the round-robin format are combined and used, requests are
normally forwarded to the Web container by the redirector even if a failure occurs in the J2EE server. As a result,
the failure on the J2EE server cannot be detected in the load balancer and the Web container cannot be monitored.

4. Web Server Integration

213

4.5 Distributing requests by the POST data size
This section explains the distribution of requests by the POST data size.

The following table describes the organization of this section.

Table 4‒9: Organization of this section (Distributing requests by the POST data size)

Category Title Reference

Description Overview of distributing requests by the POST data size 4.5.1

Examples of Distributing Requests by the POST Data Size 4.5.2

Request distribution conditions 4.5.3

Definition for distributing requests by the POST data size 4.5.4

Settings Execution environment settings (When the Smart Composer functionality is used) 4.5.5

Execution environment settings (When the Smart Composer functionality is not used) 4.5.6

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

4.5.1 Overview of distributing requests by the POST data size
When Web containers are deployed with a cluster configuration, by using the redirector, requests are distributed by
the POST data size to the respective Web containers. If you use this functionality, you can forward the very long
POST data requests with a long processing time to the specific Web containers. As a result, you can avoid the
decrease in the throughput of requests other than the very long POST data requests or can avoid the decrease in
response time. When distributing requests in this method, as a prerequisite, you must deploy a Web application on
each Web container performing the distribution processing. However, the Web applications deployed on each J2EE
server is not required to be the same.

For distributing requests by the POST data size in the cluster configuration, use the worker definition called POST
request-distributing worker. The list of worker processes that act as the distribution destinations is defined in the
POST request-distributing worker. Based on this definition, requests are distributed to the worker processes by the
POST data size. The worker process that acts as the distribution destination of the POST request-distributing worker is
called POST request-forwarding worker.

The HTTP requests are distributed to the POST request-forwarding worker.

! Important note

Even when the session is managed with control based on HTTP Cookie or URL rewriting, if distribution by POST data size
is specified, the request distribution destination is determined by the POST data size. Therefore, the session ID of the
HttpSession is not inherited even when the request is from the same client.

For example, if HttpSession session ID is generated on J2EE server 1 and the request is forwarded to J2EE server 2, a
new HttpSession session ID is generated on J2EE server 2. In this case, if J2EE server 1 is accessed again, the
HttpSession session ID generated on J2EE server 2 is being used in the client, so a new HttpSession session ID is
generated on J2EE server 1. Therefore, the session of the HttpSession is not inherited.

Note that when the HttpSession session ID is generated on J2EE server 1 and a request is forwarded to J2EE server 2, in
that case if HttpSession session ID is not generated on J2EE server 2, the HttpSession session ID of J2EE server 1
will be used as it is, when you re-access the J2EE server 1.

4.5.2 Examples of distributing requests by the POST data size
For distributing requests by the POST data size, the value set as the upper limit of the POST data size will differ
depending on whether the request forwarded to the POST request-distributing worker can be limited or not.

• When the request forwarded to the POST request-distributing worker can be limited

4. Web Server Integration

214

The requests fulfilling the following conditions are forwarded to the POST request-distributing worker:

• The request is a POST data request.

• The POST data size of the request is less than 200 MB.

If the request can be limited, the range of very long POST data that you want to process can also be limited. Set an
upper limit for each request-forwarding worker so that a request of a specific POST data size is forwarded to a
worker that is processing a very long POST data request.
The following figure shows a distribution example of requests by the POST data size when the requests can be
limited:

Figure 4‒10: Example of distribution of requests by the POST data size (When the request can be
limited)

In this figure, two POST request-forwarding workers are prepared. An upper limit is set for the POST data size in
such a way so that the requests with POST data size between 100 MB and 200 MB are forwarded to worker
process B. If the POST data size of the request is less than the upper limit, the request is distributed to the
respective POST request-forwarding worker. If the POST data size of a request is applicable to multiple POST
request-forwarding workers, the request is distributed to the POST request-forwarding worker with the smallest
POST data size upper limit. For example, a request with POST data size 80 MB is applicable to both workers, but
is distributed to worker process A.

• When the request forwarded to the POST request-distributing worker cannot be limited
If the request cannot be limited, set the maximum value as the upper limit for the POST data size of the worker
that processes very long POST data.
The following figure shows a distribution example of requests by the POST data size when the request cannot be
limited:

4. Web Server Integration

215

Figure 4‒11: Example of distribution of requests by the POST data size (When the request cannot be
limited)

In this figure, 2 POST request-forwarding workers are prepared and upper limit is set for the POST data size in
each of the workers. Maximum value is set in the upper limit for the POST data size of worker process B in such a
way so that all the requests of very long POST data are processed in worker process B. POST data requests that
are more than the upper limit of worker process A (100 MB or more) are forwarded to the worker process B. Note
that in this case, if non-POST data requests and requests that cannot reference the POST data size are forwarded,
these requests are not distributed by the request-distributing workers, so an error occurs and the redirector returns
the error status code 400.

While distributing requests by the POST data size, if requests not fulfilling the request distribution conditions are
forwarded to the POST request-distributing worker, and error occurs and the redirector returns the error status code
400. For details on the request distribution conditions, see 4.5.3 Request distribution conditions.

If you want to process requests that do not fulfill the request distribution conditions, you must set up the worker
process to forward that request. The worker process that forwards requests which do not fulfill the request distribution
conditions is called a default worker. The default worker settings are optional.

The following figure shows an example in which the requests cannot be limited, and the requests not fulfilling the
request distribution conditions are forwarded to the default worker:

4. Web Server Integration

216

Figure 4‒12: Example of distribution of requests by the POST data size (When the default worker is set)

In this figure, settings are specified in such a way so that the requests that do not fulfill the request distribution
conditions are forwarded to the worker process A of the default worker.

4.5.3 Request distribution conditions
The requests distributed to the POST request-forwarding worker must fulfill the following conditions:

Conditions of the requests distributed to the POST request-forwarding worker

• The request method is POST.

• The request has a Content-Length header (body data is not in chunk format).

• The value of the Content-Length header of the request is less than the POST data size set in the worker.

A request that does not fulfill even one of these conditions is distributed to the default worker. If the default worker is
not set, an error occurs and an error with error status code 400 is returned.

4.5.4 Definition for distributing requests by the POST data size
The following workers that are used for distributing requests by the POST data size are already defined in a standard
workers.properties file.

#worker.list=postsizelb1
#worker.postsizelb1.type=post_size_lb
#worker.postsizelb1.post_size_workers=worker1, worker2
#worker.postsizelb1.default_worker=worker1

4. Web Server Integration

217

Set the type of the worker in worker.postsizelb1.type. In
worker.postsizelb1.post_size_workers, set the worker process name of the POST request-forwarding
worker that forms the target of distribution. In worker.postsizelb1.default_worker, set the default
worker. In workers.properties, define post_size_lb in the worker type, worker1 and worker2 in the
POST request-forwarding worker, and worker1 in the default worker as postsizelb1.

This definition is, however, described as a comment. Therefore, when using the POST request-distributing worker of
this definition, delete the hash mark (#) at the beginning of the applicable line in workers.properties.

Specify the POST data size for distributing the request in the post_data parameter of the worker definition in
workers.properties.

For example, use the postsizelb1 definition that is provided by default to define the following POST data size in
the 2 POST request-forwarding workers named worker1 and worker2 respectively:

• post_data parameter for worker1: 100m

• post_data parameter for worker2: 200m

In this case, the requests of size less than 100 MB are distributed to worker1 and the requests of size between 100 MB
to 200 MB are distributed to worker2. If the request-distributing worker distributes a request of size 200 MB or more,
the request is forwarded to worker1 that is set as the default worker.

4.5.5 Execution environment settings (When the Smart Composer
functionality is used)

By defining the list of workers that act as the distribution destinations in the POST request-distributing worker,
requests are distributed to the workers by the POST data size.

Set the upper limit for the POST data size and define the request distribution destination in the POST request-
forwarding worker that acts as the distribution destination. As a result, request processing of very long POST data size
with a long processing time is distributed to a specific host. The redirector distributes the requests to each HTTP
request with the upper limit of the POST data size, so you can avoid the decrease in throughput of requests other than
the very long POST data requests and can avoid the decrease in response time. Note that when the upper limit of the
POST data size is specified, the value of the POST data size is given priority even if the HTTP request belongs to the
same session.

(1) Setup procedure
To specify settings for distributing requests by the POST data size, use the following procedure:

1. Define the POST request-distributing worker and POST request-forwarding worker in workers.properties.

Definitions for POST request-distributing worker
Specify the list of worker names, worker types (specify post_size_lb), and list of workers for distribution
by the POST data size. As needed, set the default worker.

Definitions for each POST request-forwarding worker
Specify the worker types (specify ajp13), port number, host name, and the upper limit of the POST data size.

The default value is defined in workers.properties that is provided by default. To use the default definition
defined as a comment, delete the hash mark (#) at the beginning of the applicable line.
For details on workers.properties (worker definition file), see 9.5 workers.properties (worker definition
file) in the uCosminexus Application Server Definition Reference Guide.

2. Define the mapping between the URL pattern and worker in mod_jk.conf.
If a mapping is defined, delete the definition or replace the mapping.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 9.3 mod_jk.conf
(redirector operation definition file for HTTP Server) in the uCosminexus Application Server Definition Reference
Guide.

3. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see Appendix B Precautions related to Cosminexus HTTP Server Settings.

4. Web Server Integration

218

(2) Settings in workers.properties and mod_jk.conf
Define the settings for distributing requests by the POST data size in workers.properties and mod_jk.conf.
The following table lists the keys defined in workers.properties and mod_jk.conf.

Table 4‒10: Keys defined in workers.properties and mod_jk.conf (When distributing requests by the POST
data size)

Types of files Key name Description

workers.prop
erties

worker.list Specifies a list of one or multiple worker names.

worker.worker-name.host Specifies the worker host name or IP address.

worker.worker-name.port Specifies the worker port number.

worker.worker-name.type Specifies the worker type. Specify post_size_lb in the POST request-
distributing worker and ajp13 in the POST request-forwarding worker that
forms the target for distribution.

worker.worker-
name.post_size_worker
s

Specifies the list of workers that form the target of distribution by the POST data
size.

worker.worker-
name.post_data

Specifies the upper limit (bytes) of the POST data size for the request.

worker.worker-
name.default_worker

Specifies the worker (default worker) for forwarding the requests if the worker
applicable to the request distribution destination is not in the POST request-
forwarding worker within the cluster configuration.

worker.worker-
name.cachesize

Specifies the number of worker connections that are reused in the redirector.

This key can only be specified in Windows.

worker.worker-
name.receive_timeout

Specifies the communication timeout value.

worker.worker-
name.delegate_error_c
ode

Specifies the error status code used when the creation of the error page is
entrusted to the Web server.

mod_jk.conf JkMount Specifies some combination of workers specified in the URL pattern and
worker.list.

Note:
In worker-name, define the worker name specified in the worker.list key or worker.worker-
name.post_size_workers key.

The following table lists the keys that you can specify for each worker type:

Table 4‒11: Keys that can be specified for each worker type

Key name

Worker type (value specified in worker.worker-name.type key)

POST request-distributing worker
(Specify post_size_lb)

POST request-forwarding worker
(Specify ajp13)

worker.worker-name.host -- Y

worker.worker-name.port -- Y

worker.worker-name.type Y Y

worker.worker-name.post_size_workers Y --

worker.worker-name.post_data -- Y

worker.worker-name.default_worker O --

4. Web Server Integration

219

Key name

Worker type (value specified in worker.worker-name.type key)

POST request-distributing worker
(Specify post_size_lb)

POST request-forwarding worker
(Specify ajp13)

worker.worker-name.cachesize -- O

worker.worker-name.receive_timeout -- O

worker.worker-
name.delegate_error_code

-- O

Legend:
Y: Can be specified
--: Cannot be specified
O: Can be optionally specified

(3) Example settings
The figure below shows the distribution of requests by POST data size. This figure shows an example when the
requests cannot be limited:

Figure 4‒13: Example of distribution of requests by the POST data size

In this example, among the requests under /examples, the requests with POST data size of less than 100 MB are
distributed to host A and the requests with POST data size between 100 MB and 200 MB are distributed to host B.
The requests that do not fulfill the request distribution conditions are distributed to the host A that is set as the default
worker. The worker name of the host A is worker1 and the worker name of the host B is worker2. For details on the
request distribution conditions, see 4.5.3 Request distribution conditions.

An example of the workers.properties file is described here. The POST request-distributing worker, POST
request-forwarding worker, and default worker is defined here. As the upper limit of POST data size, 100m is
specified for worker1 and 2048m is specified for worker2 (maximum value of the upper limit for POST data
size). In the default worker, worker1 is specified.

4. Web Server Integration

220

Example of workers.properties (In Windows)
worker.list=postsizelb1

worker.postsizelb1.post_size_workers=worker1, worker2
worker.postsizelb1.type=post_size_lb
worker.postsizelb1.default_worker=worker1

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.cachesize=64
worker.worker1.post_data=100m

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.cachesize=64
worker.worker2.post_data=2048m

Example of workers.properties (In UNIX)
worker.list=postsizelb1

worker.postsizelb1.post_size_workers=worker1, worker2
worker.postsizelb1.type=post_size_lb
worker.postsizelb1.default_worker=worker1

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.post_data=100m

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.post_data=2048m

An example of the mod_jk.conf file is shown below. POST request-distributing worker postsizelb1 is
specified here.

Example of mod_jk.conf
JkMount /examples/* postsizelb1
Reference note

You can also set the upper limit for the POST data size in the LimitRequestBody directive of httpsd.conf
(Cosminexus HTTP Server definition file). For details on the LimitRequestBody directive, see the uCosminexus
Application Server HTTP Server User Guide.

4.5.6 Execution environment settings (When the Smart Composer
functionality is not used)

By defining the list of workers that act as the distribution destinations in the POST request-distributing worker,
requests are distributed to the workers by the POST data size.

Set the upper limit for the POST data size and define the request distribution destination in the POST request-
forwarding worker that acts as the distribution destination. As a result, request processing of very long POST data size
with a long processing time is distributed to a specific host. The redirector distributes the requests to each HTTP
request with the upper limit of the POST data size, so you can avoid the decrease in throughput of requests other than
the very long POST data requests and can avoid the decrease in the response time. Note that when the upper limit of
the POST data size is specified, the value of the POST data size is given priority even if the HTTP request belongs to
the same session.

! Important note

When integrating with Microsoft IIS, you cannot specify settings for distributing requests by the POST data size.

4. Web Server Integration

221

(1) Setup procedure
To specify settings for distributing requests by the POST data size, you use the following procedure:

1. Define the POST request-distributing worker and POST request-forwarding worker in workers.properties .

Definitions for POST request-distributing worker
Specify the list of worker names, worker types (specify post_size_lb), and list of workers for distribution
by the POST data size. As needed, set the default worker.

Definitions for each POST request-forwarding worker
Specify the worker types (specify ajp13), port number, host name, and the upper limit of the POST data size.

The default value is defined in workers.properties that is provided by default. To use the default definition
defined as a comment, delete the hash mark (#) at the beginning of the applicable line.
For details on workers.properties (worker definition file), see 9.5 workers.properties (worker definition
file) in the uCosminexus Application Server Definition Reference Guide.

2. Define the mapping between the URL pattern and worker in mod_jk.conf.
If a mapping is already defined, delete the definition or replace the mapping.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 9.3 mod_jk.conf
(redirector operation definition file for HTTP Server) in the uCosminexus Application Server Definition Reference
Guide.

3. Set up the Web server environment and restart the Web server.
For details on the Web server settings, see , Appendix B Precautions related to Cosminexus HTTP Server Settings.

(2) Example settings
The figure below shows the distribution of requests by POST data size. This figure shows an example for the case
when request is not limited:

Figure 4‒14: Example of distribution of requests by the POST data size

In this example, among the requests under /examples, the requests with POST data size of less than 100 MB are
distributed to host A and the requests with POST data size between 100 MB and 200 MB are distributed to host B.
The requests that do not fulfill the request distribution conditions are distributed to the host A that is set as the default

4. Web Server Integration

222

worker. The worker name of the host A is worker1 and the worker name of the host B is worker2. For details on the
request distribution conditions, see 4.5.3 Request distribution conditions.

An example of the workers.properties file is shown below. The POST request-distributing worker, POST
request-forwarding worker, and default worker are defined here. As the upper limit of POST data size, 100m is
specified for worker1 and 2048m is specified for worker2 (maximum value of the upper limit for POST data
size). In the default worker, worker1 is specified.

Example of workers.properties (In Windows)
worker.list=postsizelb1

worker.postsizelb1.post_size_workers=worker1, worker2
worker.postsizelb1.type=post_size_lb
worker.postsizelb1.default_worker=worker1

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.cachesize=64
worker.worker1.post_data=100m

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.cachesize=64
worker.worker2.post_data=2048m

Example of workers.properties (In UNIX)
worker.list=postsizelb1

worker.postsizelb1.post_size_workers=worker1, worker2
worker.postsizelb1.type=post_size_lb
worker.postsizelb1.default_worker=worker1

worker.worker1.port=8007
worker.worker1.host=hostA
worker.worker1.type=ajp13
worker.worker1.post_data=100m

worker.worker2.port=8007
worker.worker2.host=hostB
worker.worker2.type=ajp13
worker.worker2.post_data=2048m

An example of the mod_jk.conf file is shown below. POST request-distributing worker postsizelb1 will be
specified here.

Example of mod_jk.conf
JkMount /examples/* postsizelb1
Reference note

You can also set the upper limit for the POST data size in the LimitRequestBody directive of httpsd.conf
(Cosminexus HTTP Server definition file). For details on the LimitRequestBody directive, see the uCosminexus
Application Server HTTP Server User Guide.

4. Web Server Integration

223

4.6 Communication timeout (Web server integration)
This section describes communication timeout in Web server integration.

When you use the functionality for Web server integration, you can set the communication timeout for receiving
requests and sending responses between the client and the Web server, and also between the Web server and the Web
container. When the response is awaited due to the network and application failure, you can detect the occurrence of
failure from the occurrence of a timeout, if the communication timeout is set.

The following table describes the organization of this section.

Table 4‒12: Organization of this section (Communication timeout (Web server integration))

Category Title Reference

Description Communication timeout when sending and receiving a request 4.6.1

Communication timeout when sending and receiving a response 4.6.2

Settings Setting the communication timeout 4.6.3

Setting the communication timeout when sending and receiving a request (When the Smart
Composer functionality is used)

4.6.4

Setting the communication timeout when sending and receiving a request (When the Smart
Composer functionality is not used)

4.6.5

Setting the communication timeout when sending and receiving a response (When the Smart
Composer functionality is used)

4.6.6

Setting the communication timeout when sending and receiving a response (When the Smart
Composer functionality is not used)

4.6.7

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

When you use the Web server integration functionality, set the communication timeout for the communication
indicated by the four arrows in the following figure. In the case of communication between the redirector and the Web
container, you can set the communication timeout in both the redirector and Web container. In the case of sending
requests, you can set the communication timeout when the redirector sends the requests and the Web container
receives the requests. Similarly, when sending responses, you can set the communication timeout when the Web
container sends the responses and the redirector receives the responses. The following figure shows the
communication for which timeout can be set.

Figure 4‒15: Communication for which timeout can be set

The setting of communication timeout is explained separately for receiving of a request and sending of a response.

4. Web Server Integration

224

4.6.1 Communication timeout when sending and receiving a request
This subsection explains the setting of communication timeout for sending and receiving requests when the Web
server integration functionality is used. The following figure shows the locations to set the communication timeout for
sending and receiving requests.

Figure 4‒16: Locations to set the communication timeout for sending and receiving requests

When you use the Web server integration functionality, set the communication timeout at the locations marked with a
O sign in the figure. The locations to set the communication timeout are explained below. The numbers in the figure
correspond to the numbers in the following explanation:

1. When a request is received by the Web server (Client - Web server)
Set the communication timeout when the Web server receives a request from the client. Set the communication
timeout in the Web server.
For details on the failures that can be detected by setting the communication timeout when the request is received
by the Web server, see (1) When a request is received by the Web server explained below.

2. When a request is sent by the redirector (Redirector - Web container)
Set the communication timeout when a request is sent from the redirector to the Web container. Set the
communication timeout in the redirector.
For details on the failures that can be detected by setting a communication timeout when the request is sent by the
redirector, see (2) When a request is sent by the redirector explained below.

3. When a request is received by the Web container (Redirector - Web container)
Set the communication timeout when the Web container receives a request from the redirector. Set the
communication timeout in the Web container.
For details on the failures that can be detected by setting a communication timeout when the request is received by
the Web container, see (3) When a request is received by the Web container explained below.

(1) When a request is received by the Web server
You can set the timeout period in the Web server, for receiving a request transferred from the client. You can detect
the occurrence of failure in the client by using the communication timeout that was set up. You can detect the
following failures:

Detectable failures

• The host on which the client is running is down.

• A network failure occurs between the client and the Web server.

• A failure occurs in client application.

(2) When a request is sent by the redirector
You can set the timeout period in the redirector, for sending a request to the Web container. When the set timeout
period is exceeded and a timeout occurs, a message is output to the error log of Cosminexus HTTP Server.

(a) Communication timeout that can be set and detectable failures

You can set the timeout to the following two time-periods when a request is sent by the redirector:

• The time to establish a connection for sending request to the Web container

4. Web Server Integration

225

• The time to send a request to the Web container

You can detect the occurrence of failure in the Web container or on the network using the communication timeout that
was set up. You can detect the following failures:

Detectable failures

• The host on which the Web container is running is down.

• A network failure occurs between the redirector and the Web container.

(b) Retrying sending of requests

If a request cannot be sent temporarily from the redirector, you can retry sending the request. A request might not be
sent temporarily in the following cases:

• In the case of temporary failure of the network

• When requests are centralized in the Web container during establishment of a connection, and a request for
establishing connection overflows temporarily from the listen queue

• When a Web container is yet to start completely

You can retry establishing a connection, and sending request headers. The following figure shows the flow of retry
process.

Figure 4‒17: Flow of retry process when requests are sent to the Web container

Retry is executed when a timeout occurs in A or B of the figure. Retry is not executed when processing fails at C or D
of the figure, and timeout occurs. The connection is closed and an error is returned to the client. Note that the failure
of processing at C or D in the figure indicates failure in receiving request body from the Web server, or failure in
sending request body to the Web container.

4. Web Server Integration

226

Tip
In the case of C or D in the figure, the processing of the request may have started already in the Web container. If you
execute retry in the case of failure in receiving the request body from the Web server, or in the case of failure in sending the
request body to the Web container, the send process may be duplicated, and therefore, retry is not done.

The retry operation in the case of failure in processing at A and B in the figure is explained below:

■ Retry operation in the case of failure in processing at A in the figure

After sending a request from the redirector to the Web container for establishment of a connection, if the power supply
to the host on which the Web container is running is disrupted or a network failure occurs, the operation is performed
as follows:

1. If the set timeout period elapses, a message indicating the occurrence of timeout during establishment of the
connection is output.

2. Retry establishing connection only for specified number of times.

Note that if a connection cannot be established in spite of retrying for the specified number of times, a message
indicating failure in sending request is output, and an error (status code 500) is returned to the client.

■ Retry operation in the case of failure in processing at B part in the figure

After a connection is established successfully, or the request header is sent to the Web container, if the power supply
to the host on which the Web container is running is disrupted and a network failure occurs, perform the operation as
follows:

1. If the set timeout period elapses, a message indicating the occurrence of timeout when sending a request is output.

2. Close the connection that was used for sending the request header.

3. Retry sending the request header only for specified number of times.
Note that at this point, the operation depends upon whether the connections are available in the connection cache.

• When connections are available in the connection cache
Use a connection in the connection cache and retry the process from sending the request header.

• When there are no connections in the connection cache
Re-establish a connection, and then retry sending the request header.

Note that if the request header cannot be sent in spite of retrying for the specified number of times, a message
indicating failure in sending request is output, and status code 500 is returned to the client.

■ Retry operation when a request is distributed using a load balancer

The following figure shows the retry operation when you use a load balancer to distribute a request:

Note that in this figure, a request is first distributed to Web container 1 and then to Web container 2, and the retry
frequency is set as three times.

Figure 4‒18: Retry operation when a request is distributed using a load balancer

The retry operation shown in the figure is as follows:

4. Web Server Integration

227

1. Sending request to the Web container 1
A request is sent to Web container 1. Retry operation is performed in the case of failure in establishing a
connection to Web container 1, or failure in sending the request header. Retry is executed up to three times.

2. Sending request to the Web container 2
If the retry operation fails three times in Web container 1, the request is transferred to Web container 2. When the
request is transferred, retry is counted again from 1, and hence, retry is executed up to three times even in Web
container 2.

3. Error notification to the client
If the process of establishing a connection or sending the request header fails three times even in Web container 2,
an error (status code 500) is returned to the client.
Reference note

A request is transferred only to the set number of Web containers.

(3) When a request is received by the Web container
You can set a timeout period in the Web container, for receiving a request transferred from the redirector. You can
detect the occurrence of failure in the redirector using the communication timeout that was set up. You can detect the
following failures:

Detectable failures

• The host on which the Web server is running is down.

• A network failure occurs between the Web server and the Web container.

• Timeout occurred in the Web container before the processing between the client and the Web server
completes.
This implies that when the data size requested by the Web container was being read between the client and the
Web server, the communication timeout set in the Web container occurred before the data is read completely,
due to insufficient communication speed between the client and the Web server.

The following table describes the conditions for occurrence of communication timeout and the operations after the
timeout occurs.

Table 4‒13: Conditions for occurrence of communication timeout and the operations after occurrence

Conditions for occurrence of communication timeout Operations after occurrence

In the case all the following conditions are satisfied when a request
is received:

• The request contains a body data.

• The body data is not in the chunk format.

• After the reading process starts, a failure occurs in the host on
which the redirector is running, or in the network between the
redirector and the Web container.

• Request is not processed.

• Message KDJE39188-E is output to the message log.

In the case all the following conditions are satisfied when using
API# in the servlet (JSP):

• The request contains a body data.

• The body data is not in the chunk format.

• After the reading process starts, a failure occurs in the host on
which the redirector is running, or in the network between the
redirector and the Web container.

• java.lang.IllegalStateException occurs.

• The connection to the redirector is closed, and thereafter you
cannot read or write the data.

• Message KDJE39188-E is output to the message log.

In the case all the following conditions are satisfied when POST
data is read by using the java.io.BufferedReader class
acquired by getReader method of
javax.servlet.ServletRequest class or
javax.servlet.ServletInputStream class in the servlet
(JSP):

• java.net.SocketTimeoutException occurs.

• The connection to the redirector is closed, and thereafter you
cannot read or write the data.

• Message KDJE39188-E is output to the message log.

4. Web Server Integration

228

Conditions for occurrence of communication timeout Operations after occurrence

• The request contains a body data.

• After the reading process starts, a failure occurs in the host on
which the redirector is running, or in the network between the
redirector and the Web container.

• java.net.SocketTimeoutException occurs.

• The connection to the redirector is closed, and thereafter you
cannot read or write the data.

• Message KDJE39188-E is output to the message log.

#
Indicates the case of using the getParameter method, getParameterMap method, getParameterNames method, and
getParameterValues method of javax.servlet.ServletRequest.

4.6.2 Setting the communication timeout when sending and receiving a
response

This subsection explains the setting of communication timeout for sending and receiving responses when the Web
server integration functionality is used. The following figure shows the locations to set the communication timeout for
sending and receiving responses:

Figure 4‒19: Locations to set the communication timeout for sending and receiving responses (when the
Web server integration functionality is used)

When you use the Web server integration functionality, set the communication timeout at the locations marked with a
O sign in the figure. The locations to set the communication timeout are explained below. The numbers in the figure
correspond to the numbers in the following explanation:

1. When a response is sent by the Web container (Web container - redirector)
Set the communication timeout when a response is sent from the Web container to the redirector. Set the
communication timeout in the Web container.
For details on the failures that you can detect by setting the communication timeout when a response is sent by the
Web container, see (1) When a response is sent by the Web container explained below.

2. When a response is received by the redirector (Web container - redirector)
Set communication timeout when the redirector receives a response from the Web container. Set the
communication timeout in the redirector.
For details on the failures that you can detect by setting communication timeout when response is received by the
redirector, see (2) When a response is received by the redirector explained below.

3. When a response is sent by the Web server (Web server - Client)
Set communication timeout when a response is sent from the Web server to the client. Set the communication
timeout in the Web server.
For details on the failures that you can be detect by setting the communication timeout when a response is sent by
the Web server, see (3) When a response is sent by the Web server explained below.

(1) When a response is sent by the Web container
You can set a timeout period in the Web container, for sending a response to the redirector. You can detect the
occurrence of failure in the redirector using the communication timeout that was set up. You can detect the following
failures:

4. Web Server Integration

229

Detectable failures

• The host on which the redirector is running is down.

• A network failure occurs between the Web container and the redirector.

When the communication timeout occurs, KDJE39507-E (timeout occurred when sending a response) is output to the
message log. The following table describes the conditions for occurrence of communication timeout and the
operations after the timeout occurs.

Table 4‒14: Conditions for occurrence of communication timeout and the operations after occurrence

Timing of occurrence of communication
timeout

Operation of the method after occurrence
of communication timeout

Operation of servlets or JSPs after
occurrence of communication

timeout

When response data is sent to the client by
using the method of
javax.servlet.ServletOutputStr
eam class acquired by getOutputStream
method of
javax.servlet.ServletResponse
class, in the servlet

Exception
java.net.SocketTimeoutExceptio
n occurs.

Since the connection to the redirector
is closed, you cannot send or receive
the request data and the response data.

When response data is sent to the client by
using the method of
java.io.PrintWriter class acquired
by getWriter method of
javax.servlet.ServletResponse
class, in the servlet

The send process is interrupted and returned. • The checkError method of
java.io.PrintWriter class
returns true.

• Since the connection to the
redirector is closed, you cannot
send or receive the request data
and the response data.

When response data is sent to the client by
using the method of
javax.servlet.jsp.JspWriter
class, in JSP

Exception
java.net.SocketTimeoutExceptio
n occurs.

Since the connection to the redirector
is closed, you cannot send or receive
the request data and the response data.

When the response data of static contents is
sent to the client

-- --

Legend:
--: Not applicable

(2) When a response is received by the redirector
When a request is sent to the Web container, the redirector awaits for a response from the Web container. You can set
the timeout for this response waiting time. You can detect the occurrence of failure in the Web container using the
communication timeout that was set up. You can detect the following failures:

Detectable failures

• The host on which the Web container is running is down.

• A network failure occurs between the Web container and the redirector.

• A Web application failure occurs in the Web container.

The following failures occur in the Web application:

Web application failures

• A response is not returned due to an infinite loop in the servlets or JSPs processing.

• The Enterprise Bean and database are invoked as an extension of servlets or JSPs, and response from them
is awaited.

• Dead lock occurs in the Web application.

• The Web application does not catch up with the server processing and is running slow during the peak
access.

4. Web Server Integration

230

Operation after communication timeout in the redirector
When communication timeout occurs, the redirector disconnects the connection to the Web container, and returns
error with status code 500 to the client.
Tip

Operation when timeout occurs during processing of an application

Even if the redirector times out during processing in the Web container, you cannot detect that the redirector has timed
out, in the Web container.

You can detect the timeout in the redirector once the processing of the Web container finishes, and a response is
transferred to the redirector. In such a case, however, since the redirector has already disconnected the connection to the
Web container, an error occurs when sending a response. The following figure illustrates the operation when a timeout
occurs during processing of an application.

Figure 4‒20: Operation when a timeout occurs during processing of an application

The figure is explained below.

1. When a timeout occurs in the redirector, a request is sent for disconnecting the connection to the Web container.

2. Redirector sends an error code to the Web server.

3. When processing of the application in the Web container finishes, a response is sent to the redirector. However,
since the connection between the redirector and the Web container is already disconnected in 1., a communication
error occurs.

(3) When a response is sent by the Web server
You can set a timeout period in the Web server, for sending data to the client. You can detect the occurrence of failure
in the client by using the communication timeout that was set up. You can detect the following failures:

Detectable failures

• The host on which the client is running is down.

• A network failure occurs between the client and the Web server.

• A failure occurs in client application.

4.6.3 Setting the communication timeout
This subsection describes the communication timeout settings between a client and a Web server and between a Web
server (redirector) and a Web container.

4. Web Server Integration

231

You set a communication timeout when sending and receiving requests or when sending and receiving responses. The
method of specifying communication timeout differs according to the availability of Smart Composer. The following
table lists the communication timeout setting method and the corresponding reference sections:

Table 4‒15: Setting method and references of communication timeout (Web server integration)

Set up timing
Usage of Smart Composer

Used Not used

When sending and receiving a request 4.6.4 4.6.5

When sending and receiving a response 4.6.6 4.6.7

Note that you can also set communication timeout in the EJB client that invokes EJB. Specify the settings in the EJB
client during J2EE application development. For the setting method, see 2.11.5 Timeout of RMI-IIOP communications
in the uCosminexus Application Server EJB Container Functionality Guide.

4.6.4 Setting the communication timeout when sending and receiving a
request (When the Smart Composer functionality is used)

You set the communication timeout for sending and receiving requests between the client and Web server and the
redirector and Web Container.

The following are the methods of setting a communication timeout in each of these cases:

(1) Settings in the Web server for receiving requests
Specify the communication timeout in the Web server, when receiving the requests from the client into the Web
server. You can use Cosminexus HTTP Server as the Web server.

(a) How to set

Set the communication timeout for the receiving process of requests forwarded from the client in httpsd.conf.

• Waiting time for the request receiving process
In the Timeout directive, set the waiting time (seconds) for the process of receiving requests from the client. The
default value of the Timeout directive is 300 seconds. Note that the value set here is shared with the
communication timeout for the process of sending data to the client. For details on the communication timeout for
the process of sending data to the client, see 4.6.6(3) Settings in the Web server for sending responses.

(b) Precautions for setup

To set the timeout for receiving requests in the Web server, take into consideration the network configuration and
traffic status between the client and the Web server and specify a time in which the occurrence of failure can be
determined.

(2) Settings in the redirector for sending requests
When sending a request from the redirector to the Web container, first establish a connection with the Web container.
You can set the communication timeout for sending requests from the redirector to the Web container when the
connection is established and when the request is sent. You can also set the retry frequency to be used when an
attempt to establish connection and to send the request header fails.

(a) How to set

Specify the communication timeout for establishing the connection and the request sending process and the retry
frequency from the redirector in the Easy Setup definition file.

• Communication timeout in establishing connection

4. Web Server Integration

232

Set the waiting time (seconds) for the process of establishing a connection with the Web container in the
JkConnectTimeout parameter in the <configuration> tag of the logical Web server (web-server). The
default value of the JkConnectTimeout parameter is 30 seconds.

• Timeout for the request sending process
Set the waiting time (seconds) for the process of sending a request to the Web container in the JkSendTimeout
parameter in the <configuration> tag of the logical Web server (web-server). The default value of the
JkSendTimeout parameter is 100 seconds.

• Retry frequency for establishing a connection and sending a request
Set the retry frequency for establishing a connection and sending a request to the Web container in the
JkRequestRetryCount parameter in the <configuration> tag of the logical Web server (web-server).
The default value of the JkRequestRetryCount parameter is three times.

(b) Precautions for setup

Take the followings into consideration when you specify the communication timeout value for sending requests and
the retry frequency set up in the redirector:

• The retry frequency includes the first connection established and the first request sent. Therefore, if the first
connection or request sending process fails, the retrying of connection or request sending process is counted as the
second time.

• If you specify 0 as the communication timeout for establishing a connection and for the request sending process or
if you set a longer time than the re-send timer for establishing a connection and sending data by TCP, the TCP
timeout value is applied to communication timeout value.

(3) Settings in the Web Container for receiving requests
Set the communication timeout when the Web container receives a request from the redirector, to the Web container.

(a) How to set

Set the communication timeout for the process of receiving requests forwarded from the redirector in the Easy Setup
definition file:

• Timeout for the request receiving process
Set the waiting time (seconds) for the process of receiving requests from the redirector in
webserver.connector.ajp13.receive_timeout parameter in the <configuration> tag of
the logical J2EE server (j2ee-server). The default value of the parameter is 100 seconds.

(b) Precautions for setup

Take the followings into the consideration when you specify the timeout value set in the Web container for receiving
requests:

• Set a value bigger than the time set in the timeout for receiving Web server requests.
If a value smaller than the time specified as the timeout for receiving Web server requests is set, when network
failure occurs in the client and between the client and Web server, timeout occurs in the Web container before the
Web server. In this case, one cannot determine whether the failure has occurred in the Web server or in the client.

• If data must be received from the client, set the time in which data can be received taking into consideration the
communication speed with the client.

• When failure occurs in the redirector while the data is being sent to the Web container, the failure is detected by
the timeout in the TCP re-send timer.
Note that in UNIX, the time until timeout depends on the OS.

4.6.5 Setting the communication timeout when sending and receiving a
request (When the Smart Composer functionality is not used)

You set the communication timeout for sending and receiving requests between the client and the Web server and
between the redirector and the Web container.

4. Web Server Integration

233

The following are the methods for setting the communication timeout in each of the cases:

(1) Settings in the Web server for receiving requests
In the Web server, you specify the communication timeout for receiving the requests from the client in the Web
server. You can use either Cosminexus HTTP Server or Microsoft IIS as the Web server.

(a) How to set

Set the communication timeout for the process of receiving requests forwarded from the client in the following files:

• httpsd.conf (In Cosminexus HTTP Server)
In the Timeout directive, set the waiting time (seconds) for the process of receiving requests from the client. The
default value of the Timeout directive is 300 seconds. Note that the value set here is shared with the
communication timeout for the process of sending data to the client. For details on the communication timeout for
the process of sending data to the client, see 4.6.6(3) Settings in the Web server for sending responses.

• isapi_redirect.conf (In Microsoft IIS)
Set the waiting time (seconds) for the process of receiving requests from the client in the
receive_client_timeout key.

(b) Precautions for setup

To set the timeout for receiving requests in the Web server, take into consideration the network configuration and
traffic status between the client and the Web server and specify a time in which the occurrence of failure can be
determined.

(2) Settings in the redirector for sending requests
When sending a request from the redirector to the Web container, first establish a connection with the Web container.
You can set the communication timeout for sending requests from the redirector to the Web container when the
connection is established and when the request is sent. You can also set the retry frequency to be used when an
attempt to establish connection and to send the request header fails.

(a) How to set

Specify the communication timeout for establishing the connection and the request sending process and the retry
frequency from the redirector in the following files:

• mod_jk.conf (In Cosminexus HTTP Server)

• Communication timeout in establishing connection
Set the waiting time (seconds) for the process of establishing a connection with the Web Container in the
JkConnectTimeout key. The default value of the JkConnectTimeout key is 30 seconds.

• Timeout for the request sending process
Set the waiting time (seconds) for the process of sending a request to the Web container in the
JkSendTimeout key. The default value of the JkSendTimeout key is 100 seconds.

• Retry frequency for establishing a connection and sending a request
Set the retry frequency for establishing a connection and sending a request to the Web container in the
JkRequestRetryCount key. The default value of the JkRequestRetryCount key is three times.

• isapi_redirect.conf (In Microsoft IIS)

• Communication timeout in connection process
Set the waiting time (seconds) for the process of establishing a connection with the Web container in the
connect_timeout key. The default value of the connect_timeout key is 30 seconds.

• Timeout for the request sending process
Set the waiting time (seconds) for the process of sending a request to the Web container in the
send_timeout key. The default value of the send_timeout key is 100 seconds.

• Retry frequency for establishing a connection and sending a request

4. Web Server Integration

234

Set the retry frequency for establishing a connection and sending a request to the Web container in the
request_retry_count key. The default value of the request_retry_count key is three times.

(b) Precautions for setup

Take the followings into the consideration when you specify the communication timeout value for sending requests
and the retry frequency set in the redirector:

• The retry frequency includes the first connection established and the first request sent. Therefore, if the first
connection or request sending process fails, the retrying of connection or request sending process is counted as the
second time.

• If you specify 0 as the communication timeout for establishing a connection and for the request sending process or
if you set a longer time than the re-send timer for establishing a connection and sending data by TCP, the TCP
timeout value is applied to communication timeout value.

(3) Settings in the Web container for receiving requests
Set the communication timeout when the Web container receives a request from the redirector, to the Web container.

(a) How to set

Set the communication timeout for the process of receiving requests forwarded from the redirector in the following
file:

• usrconf.properties
Set the waiting time (seconds) for the process of receiving requests from the redirector in the
webserver.connector.ajp13.receive_timeout key.

(b) Precautions for setup

Take the followings into consideration when you specify the timeout value set in the Web container for receiving
requests:

• Set a value bigger than the time set in the timeout for receiving Web server requests.
If a value smaller than the time specified as the timeout for receiving Web server requests is set, and network
failure occurs in the client and between the client and Web server, the timeout occurs in the Web container before
the Web server. In this case, you cannot determine whether the failure has occurred in the Web server or in the
client.

• If data needs to be received from the client, set the time in which data can be received taking into consideration
the communication speed with the client.

• When failure occurs in the redirector while the data is being sent to the Web Container, the failure is detected by
the timeout in the TCP re-send timer.
Note that in UNIX, the time until timeout depends on the OS.

4.6.6 Setting the communication timeout when sending and receiving a
response (When the Smart Composer functionality is used)

You set the communication timeout for sending and receiving responses between the Web container and the redirector
and between the Web server and the client.

The followings are the methods for setting the communication timeout in each of the cases:

(1) Settings in the Web container for sending responses
In the Web container, you specify the communication timeout for the process of sending a response from the Web
container to the redirector. Set the waiting time for sending a response from the Web container in the Easy Setup
definition file.

• Timeout for the response sending process

4. Web Server Integration

235

Set the timeout (seconds) for sending a response from the Web container in the
webserver.connector.ajp13.send_timeout parameter in the <configuration> tag of the logical
J2EE server (j2ee-server). The default value of the parameter is 600 seconds.

(2) Settings in the redirector for receiving responses
Set communication timeout when the redirector receives a response from the Web container, to the redirector.

(a) How to set

Set the waiting time for the response from the Web container in the Easy Setup definition file.

• Timeout for the response receiving process
Set the response waiting time (seconds) for each worker in the worker.worker-name.receive_timeout
parameter in the <configuration> tag of the logical J2EE server (j2ee-server). The default value of the
parameter is 3600 seconds. If you want to set communication timeout for J2EE applications, define and map
workers for each J2EE application.

(b) Precautions for setup

You can detect Web application failure by the timeout in receiving a response in the redirector. Therefore, depending
on the operation state, consider the time required for processing Web applications and set a value from which failure
can be detected as the communication timeout value.

Take the followings into the consideration when you set the timeout value for receiving responses in the redirector:

• Set a time longer than the time required for processing the Web applications in communication timeout.
If the set timeout value is shorter than the Web application processing time, even if the Web application is
processing normally, the timeout is determined in the redirector and an error is returned to the client.

• Consider the waiting time based on the controlling of the number of concurrently executing threads at the peak of
the Web container.
Because of the controlling of the number of concurrently executing threads, at the peak of the Web Container,
there might be requests awaiting processing. Therefore, if controlling the number of concurrently executing
threads is set, you must specify the communication timeout considering the extension of the request processing
time. For details on controlling the number of concurrently executing threads, see 2.15 Overview of controlling the
number of concurrently executing threads.

• When failure occurs in the Web container while the data is being sent to the redirector, the failure is detected by
the timeout in the TCP re-send timer.
Note that in UNIX, the time until timeout depends on the OS.

(3) Settings in the Web server for sending responses
In the Web server, you set the communication timeout for sending a response to the client.

(a) How to set

Set the waiting time for the response from the client in httpsd.conf.

• Communication timeout for the data sending process
Set the communication timeout in the Timeout directive. Note that the communication timeout specified in the
Timeout directive is specified both as the communication timeout for the request receiving process and the
communication timeout for the response sending process. Therefore, you cannot set a different time in the
communication timeout for the request receiving process and the communication timeout for the response sending
process.
For details on the communication timeout for the process of receiving requests from clients, see 4.6.4(1) Settings
in the Web server for receiving requests.

4. Web Server Integration

236

(b) Precautions for setup

To set the timeout for sending responses in the Web server, take into the consideration the network configuration and
traffic status between the client and the Web server and specify adequate time for sending and receiving data with the
client.

Also, for the timeout value set in the Web server for sending responses, specify a value smaller than the timeout value
in the Web container for sending responses. If the timeout for sending responses in the Web server is greater than
timeout for sending responses in the Web container, and a failure occurs between the client and Web server, the
timeout in the Web container for sending a response to the redirector might occur earlier than the timeout in the Web
server for sending response to the client. In this case, one cannot determine whether the failure has occurred between
the client and the Web server or between the redirector and Web container.

4.6.7 Setting the communication timeout when sending and receiving a
response (When the Smart Composer functionality is not used)

You set the communication timeout for sending and receiving responses between the Web container and the redirector
and between the Web server and the client.

The following are the methods for setting a communication timeout in each of the cases:

(1) Settings in the Web container for sending responses
In the Web container, you specify the communication timeout for the process of sending a response from the Web
container to the redirector. Set the waiting time for sending a response from the Web container in the following file:

• usrconf.properties
Set the timeout (seconds) for sending a response from the Web container in the
webserver.connector.ajp13.send_timeout key. The default value is 600 seconds.

(2) Settings in the redirector for receiving responses
Set the communication timeout when the redirector receives a response from the Web container, to the redirector.

(a) How to set

Set the waiting time for the response from the Web container in the following file:

• workers.properties
Set the response waiting time (seconds) for each worker in the worker.worker-name.receive_timeout
key. If you want to set a communication timeout for J2EE applications, define and map workers for each J2EE
application.

(b) Precautions for setup

You can detect Web application failure by a timeout in receiving a response in the redirector. Therefore, depending on
the operation state, consider the time required for processing Web applications and set a value from which failure can
be detected as the communication timeout value.

Take the following into the consideration when you set the timeout value for receiving responses in the redirector:

• Set a time longer than the time required for processing the Web applications in the communication timeout.
If the set timeout value is shorter than the Web application processing time, the timeout is determined in the
redirector and an error is returned to the client even if the Web application is processing normally.

• Consider the waiting time based on the controlling of the number of concurrently executing threads at the peak of
the Web container.
Because of the controlling of the number of concurrently executing threads, at the peak of the Web container,
there might be requests awaiting processing. Therefore, if server management commands are used to specify the
control of the number of concurrently executing threads, you must specify the communication timeout considering
the extension of the request processing time. For details on controlling the number of concurrently executing
threads by using the server management commands, see 2.15 Overview of controlling the number of concurrently
executing threads.

4. Web Server Integration

237

• When failure occurs in the Web container while the data is being sent to the redirector, the failure is detected by
the timeout in the TCP re-send timer.
Note that in UNIX, the time until timeout depends on the OS.

(3) Settings in the Web server for sending responses
In the Web server, you can set the communication timeout for sending a response to the client.

(a) How to set

Set the waiting time for the response from the client in the following files:

• httpsd.conf (In Cosminexus HTTP Server)
Set the communication timeout in the Timeout directive. Note that the communication timeout specified in the
Timeout directive is specified both as the communication timeout for the request receiving process and the
communication timeout for the response sending process. Therefore, you cannot set the different time for the
communication timeout of the request receiving process and for the communication timeout of the response
sending process.
For details on the communication timeout for the process of receiving requests from clients, see 4.6.4(1) Settings
in the Web server for receiving requests.

• MinFileBytesPerSec property (In Microsoft IIS)
Set the communication timeout in the MinFileBytesPerSec property. In the MinFileBytesPerSec
property, specify the throughput (byte/second) of the response data sent from the Web server to the client. The
communication timeout occurs when the response data throughput falls below the value set in
MinFileBytesPerSec. Note that, the default value for a communication timeout is 240 byte/second.
For details on the settings, see the manual Microsoft IIS.

(b) Precautions for setup

To set the timeout for sending responses in the Web server, take into consideration the network configuration and
traffic status between the client and the Web server and specify adequate time for sending and receiving data with the
client.

Also, as the timeout value set in the Web server for sending responses, specify a value smaller than the timeout value
in the Web container for sending responses. If the timeout for sending responses in the Web server is greater than
timeout for sending responses in the Web container, when failure occurs between the client and the Web server, the
timeout in the Web container for sending a response to the redirector might occur earlier than the timeout in the Web
server for sending response to the client. In this case, one cannot determine whether the failure has occurred between
the client and the Web server or between the redirector and the Web container.

4. Web Server Integration

238

4.7 Specifying the IP address (Web server integration)
This section describes the control of communication with the Web client by specifying the IP address in Web server
integration.

The following table describes the organization of this section.

Table 4‒16: Organization of this section (Specifying the IP address (Web server integration))

Category Title Reference

Description Bind address specification functionality 4.7.1

Settings Execution environment settings (J2EE server settings) 4.7.2

Notes Precautions for specifying the IP address in Web server integration 4.7.3

Note:
There is no description of Implementation and Operations for this functionality.

4.7.1 Bind address specification functionality
In a Web container, you can explicitly specify the IP address to be used in Web server integration. This functionality
is called the Bind address specification functionality. By using the bind address specification functionality, you can
specify the setting so that only a single specific IP address is used for a host having multiple physical network
interfaces or single physical network interface, when executing with a host.

Customize the properties of the J2EE server to set the bind IP address. For details on customizing the J2EE server
operation settings, see 4.7.2 Execution environment settings (J2EE server settings).

4.7.2 Execution environment settings (J2EE server settings)
To specify the IP address in Web server integration, you must set up the J2EE server.

Implement the J2EE server settings in the Easy Setup definition file. To define the IP address in Web server
integration, specify the following parameter in the <configuration> tag of the logical J2EE server (j2ee-server)
in the Easy Setup definition file:

webserver.connector.ajp13.bind_host
Specifies the IP address or host name used when the Web server integration functionality is used.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

4.7.3 Precautions for specifying the IP address in Web server integration
The following are the precautions for specifying the IP address in Web server integration:

• When the host name or the IP address is set, only requests for connecting to the specified IP address can be
received. Instead of setting the IP address, a connection to any IP address on that host can be received, by
specifying the wild card address. By default, the setting is specified to use the wild card address. When using the
wild card address, note the following points:

• If the specified host name cannot be resolved in the hosts file or DNS, start the server by using the wild card
address.

• If the specified host name or IP address is a remote host, start the server by using the wild card address.

4. Web Server Integration

239

4.8 Error page customization with the Web server
integration functionality

When the client accesses a non-existent resource, and a servlet in which an exception occurred, the Web container
returns an error status code. An error page corresponding to the error status code returned from the Web container is
displayed in the client. In an application server, instead of the error pages displayed in the client, pages created by the
user can be displayed in the client. This is called error page customization.

This section describes the customization of the error page with the Web server functionality when the system is
integrated with the Web server.

The following table describes the organization of this section.

Table 4‒17: Organization of this section (Error page customization (Web server integration))

Category Title Reference

Description Overview of error page customization 4.8.1

Mechanism of error page customization 4.8.2

Settings Execution environment settings (When the Smart Composer functionality is used) 4.8.3

Execution environment settings (When the Smart Composer functionality is not used) 4.8.4

Notes Precautions related to error page customization 4.8.5

Note:
There is no specific description of Implementation and Operations for this functionality.

! Important note

You can use the error page customization with the Web server functionality, only when you use the Web server integration
functionality. You can use the error page customization functionality only in Cosminexus HTTP Server. You cannot use this
functionality in Microsoft IIS.

4.8.1 Overview of error page customization
The methods to customize the error pages include: Customization with the <error-page> tag of web.xml
specified in Servlet specifications and customization with the Web server functionality. However, the error page used
when the redirector returns an error such as when the communication between the redirector and Web container fails
cannot be customized with the method of using the <error-page> tag of web.xml. Use the Web server
functionality to customize the error page when the redirector returns an error. The following table describes the error
locations and the corresponding error page customization methods:

Table 4‒18: Error locations and the corresponding error page customization methods

Error location

Customization method

Method of using the Web server functionality Method of using the <error-page> tag of
web.xml

Web container Y Y

Redirector Y --

Legend:
Y: Can be customized
--: Cannot be customized

For details on the conditions for occurrence of an error in the Web container, and the corresponding error status codes,
see Appendix A Error Status Code.

4. Web Server Integration

240

4.8.2 Mechanism of error page customization
This subsection describes the mechanism of the process of error page customization when an error occurs in the Web
container and when an error occurs in the redirector.

When an error occurs in the Web container
The redirector receives the error status codes sent from the Web container. The redirector assigns creation of error
pages to the Web server, and the Web server sends the user created pages corresponding to the error status codes
to the client. As a result, the pages created by the user are displayed in the client.
The following figure shows the processing flow of error page customization:

Figure 4‒21: Processing of displaying error pages created by the user (when the Web server
functionality is used)

Stages 1 to 3 of the figure are explained below:

1. If the client accesses a non-existent resource, the Web container sends error 404 to the Web server.

2. When the redirector receives error 404, it requests the Web server to generate an error page corresponding to
error 404, based on the setting information#.

3. The Web server returns the error page 'missing.html' corresponding to error 404 to the client according to the
setting information#.

When an error occurs in the redirector
If an error occurs in the redirector, the redirector requests the Web server to generate an error page corresponding
to the occurred error, on the basis of the setup information. The Web server sends the user-created page
corresponding to the error status code to the client, based on the setup information#. As a result, the pages created
by the user are displayed in the client.

#
To customize the error pages, you need to specify the relationship between the error status code and the error
page, beforehand.
The following figure shows an overview of the relationship.

4. Web Server Integration

241

Figure 4‒22: Specifying the relationship between the error status code and the error page (by using
the Web server functionality)

When an error occurs, in order to display the error page created by the user instead of the error page
displaying the error status code, you associate the error page created by the user to a specific error status code.
When an error with the applicable error status code occurs, the error page corresponding to the error status
code is sent to the client, on the basis of the information set in the Web server (Cosminexus HTTP Server).

4.8.3 Execution environment settings (When the Smart Composer
functionality is used)

This subsection describes the settings for the error page customization.

(1) How to set
Define the association between the error status code and the error page in the following files:

• Easy Setup definition file
Specify the error status code that you want to associate with the error page in the worker.worker-
name.delegate_error_code parameter in the <configuration> tag of the logical Web server (web-
server).
For details on the Easy Setup definition file and the parameters, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

• httpsd.conf
Associate the error status code and the file name of the corresponding error page in the ErrorDocument
directive.
For details on httpsd.conf (HTTP Server definition file), see the uCosminexus Application Server HTTP Server
User Guide.

(a) Precautions when specifying the error status codes

Take the following precautions when specifying the error status codes in the Easy Setup definition file:

• Specify the error status code for each worker.

• The worker type that can specify the error status code is only ajp13. If the worker type is lb (settings specified
for load balancing based on the round-robin format) and post_size_lb (settings specified for distributing
requests based on the POST data size), the specified contents are ignored.

• The specifiable error status code is listed in the following table. The error page cannot be associated with error
status codes other than the followings:

4. Web Server Integration

242

Table 4‒19: Error status codes that can be associated with error pages

Error status codes Explanation

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Time-out

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Long

415 Unsupported Media Type

416 Requested Range Not Satisfiable

417 Expectation Failed

422 Unprocessible Entity

423 Locked

424 Failed Dependency

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Time-out

505 HTTP Version not supported

507 Insufficient Storage

510 Not Extended

(b) Precautions for specifying the ErrorDocument directive

Take the following precautions when you specify the ErrorDocument directive in httpsd.conf:

• When using the local URL in the ErrorDocument directive, specify a URL that the redirector will not forward
to the Web container.

• When the URL pattern /* is mapped to a worker in the redirector settings such as for using the root context, all
the requests are forwarded to the Web container. Therefore, in the ErrorDocument directive, set the resources on
the Web container by using the complete URL.

4. Web Server Integration

243

The following is the example settings for displaying error404.jsp under the root context on the Web
container when the root context is used and the error status code 404 occurs. The hostA is the host operating the
Web server.

Example:
ErrorDocument 404 http://hostA/error404.jsp

Also, when the Web container is not running, the redirector returns an error with error status code 500. Therefore,
for customizing the error page when the Web container is not running, you must specify other Web server
resources for the error status code 500 using the complete URL, in the ErrorDocument directive.

(2) Example settings
The following example describes the error page customization:

Example of Easy Setup definition file

...
<param>
 <param-name>worker.list</param-name>
 <param-value>worker1</param-value>
</param>
<param>
 <param-name>worker.worker1.type</param-name>
 <param-value>ajp13</param-value>
</param>
<param>
 <param-name>worker.worker1.host</param-name>
 <param-value>host1</param-value>
</param>
<param>
 <param-name>worker.worker1.delegate_error_code</param-name>
 <param-value>404</param-value>
</param>
...

Define the error status code '404(Not Found)' in the worker.worker-name.delegate_error_code
parameter.

Example of httpsd.conf
Description of httpsd.conf#
...
ErrorDocument 404 /missing.html

The error status code and the file name of the corresponding error page are associated. When an error with error
status code '404(Not Found)' occurs, the missing.html file is displayed.
For details on the ErrorDocument directive, see the uCosminexus Application Server HTTP Server User
Guide.

4.8.4 Execution environment settings (When the Smart Composer
functionality is not used)

This subsection describes the settings for error page customization.

(1) How to set
Define the association between the error status code and error page in the following files:

• workers.properties
Specify the error status code that you want associated with the error page in the worker.worker-
name.delegate_error_code key.
For details on workers.properties (worker definition file), see 9.5 workers.properties (worker definition
file) in the uCosminexus Application Server Definition Reference Guide.

• httpsd.conf

4. Web Server Integration

244

Associate the error status code and the file name of the corresponding error page in the ErrorDocument
directive.
For details on httpsd.conf (HTTP Server definition file), see the uCosminexus Application Server HTTP Server
User Guide.

Precautions related to workers.properties settings

• Specify the error status code for each worker.

• The worker type that can specify the error status code is only ajp13. If the worker type is lb (settings
specified for load balancing based on the round-robin format), the specified contents are ignored.

• The specifiable error status code is listed in the following table. The error page cannot be associated with error
status codes other than the followings:

Table 4‒20: Error status codes that can be associated with error pages

Error status codes Explanation

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Time-out

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Long

415 Unsupported Media Type

416 Requested Range Not Satisfiable

417 Expectation Failed

422 Unprocessible Entity

423 Locked

424 Failed Dependency

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Time-out

505 HTTP Version not supported

4. Web Server Integration

245

Error status codes Explanation

507 Insufficient Storage

510 Not Extended

Precautions for specifying the ErrorDocument directive

• When using the local URL in the ErrorDocument directive, specify a URL that the redirector will not forward
to the Web Container.

• When the URL pattern /* is mapped to a worker in the redirector settings such as for using the root context,
all the requests are forwarded to the Web container. Therefore, in the ErrorDocument directive, set the
resources on the Web container by using the complete URL.
The following example describes the settings for displaying error404.jsp under the root context on the
Web container when the root context is used and the error status code 404 occurs. The hostA is the host
operating the Web server.
ErrorDocument 404 http://hostA/error404.jsp
Also, when the Web container is not running, the redirector returns an error with error status code 500.
Therefore, for customizing the error page when the Web container is not running, you must specify other Web
server resources for the error status code 500 using the complete URL, in the ErrorDocument directive.

(2) Example settings
The following is an example of error page customization:

Example of workers.properties
Description of worker definition file
worker.list=worker1

worker.worker1.type=ajp13
worker.worker1.host=host1
worker.worker1.port=8007
worker.worker1.delegate_error_code=404

Define the error status code '404(Not Found)' in the worker.worker-name.delegate_error_code key.

Example of httpsd.conf
Description of httpsd.conf#
...
ErrorDocument 404 /missing.html

The error status code and the file name of the corresponding error page are associated. When an error with error
status code '404(Not Found)' occurs, the missing.html file is displayed.
For details on the ErrorDocument directive, see the uCosminexus Application Server HTTP Server User
Guide.

4.8.5 Precautions related to error page customization
Note the following points when customizing the error pages with the Web server functionality, in the case of using the
Web server integration functionality:

• You can use the error page customization functionality only in Cosminexus HTTP Server. For this reason, when
integrating with the Microsoft IIS, even if error page customization is set in workers.properties, it
becomes invalid.

• When the Web application supports the Servlet 2.3 specifications and you use the error page customization
functionality with the <error-page> tag of web.xml specified in the Servlet specifications, the Web
container returns the result of access to the pages described in the <error-page> tag, as the status code.
Therefore, if an error does not occur in access to the pages described in the <error-page> tag , this
functionality does not work.

4. Web Server Integration

246

• If the settings for error page customization are specified only in either the worker definition (the
workers.properties or Easy Setup definition file) or httpsd.conf, then even if the specified error
occurs in the Web container, the file set by the user is not displayed.
If the error status code entrusted with the generation of the error page is only specified in the worker definition
(the ErrorDocument directive of httpsd.conf is not defined), the error page returned when the error with
that error status code occurs is the page that is automatically generated by Cosminexus HTTP Server.

4. Web Server Integration

247

4.9 Viewing the top page by specifying the domain name
When accessing a deployed Web application merely by specifying the domain name in the URL, the top pages of Web
applications, such as index.html and index.jsp can be displayed. You can use this functionality only when you use the
Web server integration functionality. Files such as index.html and index.jsp are called welcome files.

This section describes the viewing of the top page by specifying the domain name.

The following table describes the organization of this section.

Table 4‒21: Organization of this section (Viewing the top page by specifying the domain name)

Category Title Reference

Description Viewing the top page by specifying the domain name 4.9.1

Settings Execution environment settings (When the Smart Composer functionality is used) 4.9.2

Execution environment settings (When the Smart Composer functionality is not used) 4.9.3

Note:
There is no description of Implementation, Operations, and Notes for this functionality.

4.9.1 Viewing the top page by specifying the domain name
To display the top page only by specifying the domain name, you need to deploy the welcome file in the root context.
Root context refers to a context whose context root# is a null character (name is not specified in the context root).

#
The unit of management that compile the Web applications is called a context. The root path of this context is
called a context root. When accessing a Web application, specify the context root on the URL.
The following figure explains the context and the context root:

Figure 4‒23: Context and context root

The following settings are required to display the top page only by specifying the domain name:

• Settings of the redirector
The root context is accessed via the Web server. Consequently, you need to specify the settings in the URL
mapping definition of the redirector, so that the corresponding URL is redirected. Specify the settings in either
mod_jk.conf (in Cosminexus HTTP Server) or uriworkermap.properties (in Microsoft IIS).

• Settings of the application
Specify a null character in the context root of the imported J2EE application.

■ Notes

Note the following points when using the 'Viewing the top page by specifying the domain name' functionality:

• Accessed hierarchy when the context root and the root context have the same hierarchies
When the context root and the root context have the same hierarchies, the hierarchy of the context root is accessed.
An example is shown below.

4. Web Server Integration

248

Example:
In this example, the context root of Web application A is 'example', while the context root of Web application
B is a null character, and both the Web applications have the hierarchy called 'example'.

Figure 4‒24: Example of accessed hierarchy when the context root and root context have the same
hierarchies

In this case, when 'http://host-name/example' is accessed, example/index.jsp of Web application A that has a
context root is executed.
If, however, the directory contains "forward" and "include", and for example "forward" in the directory is
accessed, URL is forwarded to the index.jsp of the root context.

• Configuration in the Web application
You cannot use 'ejb' and 'web' at the beginning of the URL.

Examples of URLs in which you cannot use the 'ejb' and 'web' at the beginning:
http://host-name:port-number/ejb/
http://host-name:port-number/web/

For this reason, do not configure a Web application to be deployed as the root context, so that 'ejb' or 'web' is at
the beginning.

• How to display in a message text
In the messages output to the console and log files, the context root is displayed as a null character.

4.9.2 Execution environment settings (When the Smart Composer
functionality is used)

This subsection describes the settings for viewing the top page by specifying the domain name.

When accessing a deployed Web application merely by specifying the domain name in the URL, the top pages of Web
applications, such as index.html and index.jsp can be displayed.

(1) How to set
To view the top page by specifying the domain name:

1. Specify the root context.
The root context is a context in which the name is not specified for the context root. The specification of the root
context differs according to the operation mode.
For defining the context root for the J2EE application, see 9.11.1 Defining the context root of J2EE applications in
the uCosminexus Application Server Application Setup Guide.

2. Specify distribution of requests to the root context in the redirector.
Specify the distribution of requests to the root context in the Easy Setup definition file.
For details about the Easy Setup definition file and parameters, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

4. Web Server Integration

249

(2) Example settings
The following is an example of settings for distributing requests to the root context.

To view the top page of a Web application by specifying only the domain name in the URL, specify settings in the
URL mapping definition of the redirector in such a way so that the requests are distributed to the root context. For
example, to distribute root context to worker1 and /examples to worker2, specify as follows:

Example of Easy Setup definition file
...
<param>
 <param-name>JkMount</param-name>
 <param-value>/* worker1</param-value>
 <param-value>/examples/* worker2</param-value>
</param>
...

4.9.3 Execution environment settings (When the Smart Composer
functionality is not used)

This subsection describes the settings for viewing the top page by specifying the domain name.

When accessing a deployed Web application merely by specifying the domain name in the URL, the top pages of Web
applications, such as index.html and index.jsp can be displayed.

(1) How to set
To view the top page by specifying the domain name:

1. Specify the root context.
The root context is a context in which the name is not specified for the context root. The specification of the root
context differs according to the operation mode.
Use the server management commands to specify the root context when you define the J2EE application
properties. To set the root context as the context root, specify a null character. For defining the context root for the
J2EE application, see 9.11.1 Defining the context root of J2EE applications in the uCosminexus Application
Server Application Setup Guide.

2. Specify distribution of requests to the root context in the redirector.
Specify the distribution of requests to the root context in mod_jk.conf when using Cosminexus HTTP Server
as the Web server and in uriworkermap.properties when using Microsoft IIS as the Web server.
For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 9.3 mod_jk.conf
(redirector operation definition file for HTTP Server) in the uCosminexus Application Server Definition Reference
Guide.
For details on uriworkermap.properties (mapping definition file for Microsoft IIS), see 9.4
uriworkermap.properties (mapping definition file for Microsoft IIS) in the uCosminexus Application Server
Definition Reference Guide.

(2) Example settings
An example of settings for distributing requests to the root context is as follows.

To view the top page of a Web application by specifying only the domain name in the URL, specify settings in the
URL mapping definition of the redirector in such a way so that the requests are distributed to the root context. For
example, to distribute root context to worker1 and /examples to worker2, specify as follows:

Example of mod_jk.conf (in Cosminexus HTTP Server)
JkMount /* worker1
JkMount /examples/* worker2

Example of uriworkermap.properties (In Microsoft IIS)
/*=worker1
/examples/*=worker2

4. Web Server Integration

250

4.10 Notification of gateway information to a Web
container

This section describes the reporting of the gateway information to a Web container.

This functionality notifies a Web container of gateway information so that the Web container can properly redirect to
a welcome file or Form authentication window.

The following table describes the organization of this section.

Table 4‒22: Organization of this section (Reporting the gateway information to a Web Container)

Category Title Reference

Description Gateway specification functionality 4.10.1

Settings Execution environment settings (When the Smart Composer functionality is used) 4.10.2

Execution environment settings (When the Smart Composer functionality is not used) 4.10.3

Notes Precautions related to reporting the gateway information to a Web Container 4.10.4

Note:
There is no specific description of Implementation and Operations for this functionality.

4.10.1 Gateway specification functionality
If a gateway such as an SSL accelerator or a load balancer is placed between a client and a Web server, when the Web
container automatically redirects to a welcome file or the Form authentication window, the Web container may not
properly create a forwarding URL because the container cannot acquire the information about the gateway.

To avoid this problem, you can use the gateway specification functionality. This functionality notifies a Web container
of gateway information so that the Web container can properly redirect to a welcome file or Form authentication
window.

The gateway specification functionality is used in the following case:

• When an SSL accelerator is placed between a client and Web server:
Even if a client accesses an SSL accelerator via HTTPS, the SSL accelerator accesses a Web server via HTTP,
which causes the Web container to assume that the access uses HTTP. For this reason, HTTP is used for the URL
scheme for the welcome file or Form authentication window that is the redirection destination.
In this situation, by using the gateway specification function to specify that the scheme be always considered as
HTTPS, you can ensure that accesses are properly redirected.

• When a request without a Host header needs to be redirected away from the Web server that received the
request
When redirecting a request without a Host header, the host name and the port number of the redirection
destination URL will be the host name and the port number of the Web server that receives the request.
Use the gateway specification functionality when the host name and port number of the URL accessed by the
client is different from the Web server that receives the request, such as when a load balancer is deployed before
the Web server. As a result, the host name and port number accessed from the client are specified, so the request
can be redirected properly.

Note that in the case of Web server integration, gateway specification functionality cannot be used when multiple
different routes are used for accessing one Web container (when HTTP requests are forwarded to the Web container
from multiple gateways). To use the gateway specification functionality in the case of Web server integration, use a
configuration in which there is one access route to the Web Container.

4. Web Server Integration

251

4.10.2 Execution environment settings (When the Smart Composer
functionality is used)

This subsection describes the settings to use the gateway specification functionality.

When a gateway such as an SSL accelerator or load balancer is placed between a client and a Web server, you can use
the gateway specification functionality to report the gateway information to the Web container and can properly
redirect the access to the top page of the Web application or Form authentication window.

(1) How to set
To use the gateway specification functionality:

1. Specify the gateway host name, port number, and URL scheme for redirect destination for each redirector.

2. Restart the Web server.

Specify the gateway host name, port number, and URL scheme for redirect destination in the Easy Setup definition
file. Specify the following parameters in the <configuration> tag of the logical Web server (web-server):

• Host name: JkGatewayHost
• Port number: JkGatewayPort
• URL scheme for redirect destination: JkGatewayHttpsScheme

For details about the Easy Setup definition file and the parameters, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Example settings
The following figure shows the example settings for the gateway specification functionality:

Figure 4‒25: Example settings for the gateway specification functionality

In this example, an SSL accelerator is placed between the client and Web server. Even if a client accesses an SSL
accelerator via HTTPS, the SSL accelerator accesses a Web server via HTTP, which causes the Web container to
assume that the access uses HTTP. For this reason, HTTP is used for the URL scheme for the top page of the Web
application or Form authentication window that is the redirection destination. In this situation, by using the gateway
specification function to specify that the scheme be always considered as HTTPS, you can ensure that accesses are
properly redirected.

An example of the Easy Setup definition file is described below. Specify On in the JkGatewayHttpsScheme
parameter so that the URL scheme for redirect destination is always considered to be HTTPS.

Example of Easy Setup definition file
...
<param>
 <param-name>JkGatewayHost</param-name>
 <param-value>host1</param-value>

4. Web Server Integration

252

</param>
<param>
 <param-name>JkGatewayPort</param-name>
 <param-value>4443</param-value>
</param>
<param>
 <param-name>JkGatewayHttpsScheme</param-name>
 <param-value>On</param-value>
</param>
...

4.10.3 Execution environment settings (When the Smart Composer
functionality is not used)

This subsection describes the settings to use the gateway specification functionality.

When a gateway such as an SSL accelerator or load balancer is placed between a client and a Web server, you can use
the gateway specification functionality to report the gateway information to the Web Container and can properly
redirect the access to the top page of the Web application or Form authentication window.

(1) How to set
To use the gateway specification functionality:

1. Specify the gateway host name, port number, and URL scheme for redirect destination for each redirector.

2. Restart the Web server.

Specify the gateway host name, port number, and URL scheme for redirect destination in mod_jk.conf when using
Cosminexus HTTP Server as the Web server and in isapi_redirect.conf when using Microsoft IIS as the Web
server. The keys specified are as follows:

For details on mod_jk.conf (redirector operation definition file for HTTP Server), see 9.3 mod_jk.conf (redirector
operation definition file for HTTP Server) in the uCosminexus Application Server Definition Reference Guide.

For details on isapi_redirect.conf (redirector operation definition file for Microsoft IIS), see 9.2
isapi_redirect.conf (redirector operation definition file for Microsoft IIS) in the uCosminexus Application Server
Definition Reference Guide.

• In mod_jk.conf
Host name: JkGatewayHost key
Port number: JkGatewayPort key
URL scheme for redirect destination: JkGatewayHttpsScheme key

• In isapi_redirect.conf
Host name: gateway_host key
Port number: gateway_port key
URL scheme for redirect destination: gateway_https_scheme key

(2) Example settings
The following figure shows the example settings for the gateway specification functionality:

4. Web Server Integration

253

Figure 4‒26: Example settings for the gateway specification functionality

In this example, an SSL accelerator is placed between the client and Web server. Even if a client accesses an SSL
accelerator via HTTPS, the SSL accelerator accesses a Web server via HTTP, which causes the Web container to
assume that the access uses HTTP. For this reason, HTTP is used for the URL scheme for the top page of the Web
application or Form authentication window that is the redirection destination. In this situation, by using the gateway
specification function to specify that the scheme be always considered as HTTPS, you can ensure that accesses are
properly redirected.

Examples of the mod_jk.conf and isapi_redirect.conf files are shown below. Specify On in the
JkGatewayHttpsScheme key of mod_jk.conf and true in the gateway_https_scheme key of
isapi_redirect.conf so that the URL scheme for redirect destination is always considered to be HTTPS.

Example of mod_jk.conf (in Cosminexus HTTP Server)
JkGatewayHost host1
JkGatewayPort 4443
JkGatewayHttpsScheme On

Example of isapi_redirect.conf (In Microsoft IIS)
gateway_host=host1
gateway_port=4443
gateway_https_scheme=true

4.10.4 Precautions related to reporting the gateway information to a Web
Container

The following are cautionary notes on using the gateway specification functionality:

• Specifying the host name and port number of an URL where an access is redirected:
A browser usually sends a request with the Host header appended, so it is not necessary to specify the host name
or port number for an URL where access is to be redirected.
Note that you can check whether or not the request has the Host header by calling the getHeader method of the
javax.servlet.http.HttpServletRequest class, with the Host argument specified.

• Servlet API behavior:
Using the gateway specification functionality causes some servlet API functions to behave differently. Take care
when using API functions with a Web application.
For details on the servlet API functionality where the operations change, see 6.2.2(10) Precautions for using the
gateway specification functionality.

• The <transport-guarantee> tag in web.xml:
When you use the gateway specification functionality to specify that a scheme is to be considered as HTTPS, a
request to a Web server will be considered to use HTTPS even if the request actually uses HTTP. Note that this
prevents an access from being redirected to an URL that uses HTTPS, even if you specify INTEGRAL or
CONFIDENTIAL in the <transport-guarantee> tag in web.xml.

4. Web Server Integration

254

• The Secure attribute for cookies:
When you use the gateway specification functionality to specify that a scheme is to be considered as HTTPS,
when a session ID generated by a Web container is returned to the client by the session cookie, the Secure
attribute is appended to the cookie.

• Communicating with the Web server without passing the gateway
When you enable the gateway specification functionality in the redirector, you cannot perform direct HTTP
communication without unless passing through the gateway, such as the SSL accelerator and load balancer, in the
Web server.

4. Web Server Integration

255

5 In-Process HTTP Server
This chapter describes the settings for the in-process HTTP server functionality.

257

5.1 Organization of this chapter
Application Server provides an in-process HTTP server as Web server functionality. The in-process HTTP server is
Web server functionality provided in the J2EE server processes. Since the J2EE server processing receives the HTTP
request directly without passing through the Web server, you can use the Web server functionality with better
processing performance than during the Web server integration.

The following table lists the functionality and the reference sections corresponding to the functionality of the in-
process HTTP server:

Table 5‒1: Functionality and reference sections corresponding to each functionality of in-process HTTP
server

Functionality Reference

Overview of in-process HTTP server 5.2

Controlling the number of connections from the Web client 5.3

Controlling the number of request processing threads 5.4

Controlling the flow of requests by controlling the number of concurrent connections from the Web client 5.5

Controlling the flow of requests by controlling the number of concurrently executing threads 5.6

Request distribution with the redirector 5.7

Controlling the communication with the Web client by Persistent Connection 5.8

Communication timeout (In-process HTTP server) 5.9

Specifying the IP address (In-process HTTP server) 5.10

Controlling access by limiting the hosts that are allowed access 5.11

Controlling access by limiting the request data size 5.12

Controlling access by limiting the HTTP-enabled methods 5.13

Customizing responses to the Web client using HTTP responses 5.14

Error page customization (in-process HTTP server) 5.15

Notifying the gateway information to the Web container 5.16

Output of log and trace 5.17

Note that the in-process HTTP server functionality provided in Application Server includes a functionality wherein
the functions unique to Application Server are extended beyond the functions defined in J2EE, and also those
provided as functions unique to Application Server. For details on whether the functionality is unique to Application
Server, see 1.2 Functionality corresponding to the purpose of the system.

5. In-Process HTTP Server

258

5.2 Overview of in-process HTTP server
This section provides an overview of the in-process HTTP server.

The following table describes the organization of this section.

Table 5‒2: Organization of this section (Overview of in-process HTTP server)

Category Title Reference

Description Using the in-process HTTP server 5.2.1

Functionality available in the in-process HTTP server 5.2.2

Settings Execution environment settings (J2EE server settings) 5.2.3

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

5.2.1 Using the in-process HTTP server
The in-process HTTP server is the Web server functionality provided in the J2EE server processes.

As the J2EE server processing receives the HTTP request directly without passing through the Web server, you can
use the Web server functionality with even better processing performance than during the Web server integration.
Therefore, for a system that emphasizes performance, Hitachi recommends that you use the in-process HTTP server.

However, there are comparative differences in the functionality provided in Cosminexus HTTP Server and Microsoft
IIS, you check the differences in the functionality, and then determine whether to use the in-process HTTP server.
Furthermore, you cannot use the in-process HTTP server and the Web server integration functionality simultaneously.
When you design the system, you must choose which functionality you will use, in advance. For details on the
guidelines for selection, see the uCosminexus Application Server System Design Guide.

To use the in-process HTTP server, the prerequisites are as follows:

• The in-process HTTP server must be deployed within the internal network in failover instead of deploying the
server in DMZ that is accessible from the external networks to which unauthorized access is assumed. In a system
accessed from external networks such as Internet, you must build a system in which a proxy server is deployed on
DMZ and forwarded to the in-process HTTP server within the internal network. For details on building a system
when using the in-process HTTP server, see the uCosminexus Application Server System Design Guide.

• In the in-process HTTP server, only HTTP is supported. HTTPS is not supported. To use HTTPS, the SSL
accelerator or reverse proxy of Cosminexus HTTP Server is a prerequisite.

You can use the in-process HTTP server to access only the Web applications deployed on the J2EE server. Note that
you cannot deploy static contents alone, but only when you execute request distribution with the redirector and error
page customization, you can specify static contents that are not included in the Web application.

Take note of the following when using the in-process HTTP server:

• If you stop the J2EE server by executing the cjstopsv command, during the TCP connection of the Web client
and the in-process HTTP server, the J2EE server does not stop, until the Web client disconnects the TCP
connection of the in-process HTTP server or the timeout specified in the
webserver.connector.inprocess_http.persistent_connection.timeout key of
usrconf.properties (user property file for the J2EE server) occurs. If you want to stop the J2EE server
regardless of the disconnection of the TCP connection from the Web client or the timeout occurrence, forcibly
stop the J2EE server by specifying the -f option in the cjstopsv command. Customize the J2EE server
properties to specify the settings for the in-process HTTP server. For details on customizing the operation settings
for the J2EE server, see 5.2.3 Execution environment settings (J2EE server settings).
Tip

The in-process HTTP server is not the default server.

5. In-Process HTTP Server

259

5.2.2 Functionality available in the in-process HTTP server
The following table lists the functionality available in the in-process HTTP server and the reference section of each
functionality:

Table 5‒3: Functionality available in the in-process HTTP server and references

Functionality name Reference

Controlling the number of connections from the Web client 5.3

Controlling the number of request processing threads from the Web client 5.4

Controlling the flow of
requests

Controlling the number of concurrent connections
from the Web client

5.5

Controlling the number of concurrently executing
threads#

5.6

Request distribution with the redirector 5.7

Controlling
communication with the
Web client

Controlling communication by Persistent Connection 5.8

Communication timeout that can be set in the in-
process HTTP server

5.9

IP address specification used in the in-process HTTP
server#

5.10

Controlling access from
the Web client

Limiting the hosts that are allowed access 5.11

Limiting the request data size 5.12

Limiting the HTTP-enabled methods 5.13

Customizing the
responses to the Web
client

Customizing the HTTP response header 5.14

Customizing the error page 5.15

Notifying the gateway information to the Web container# 5.16

Output of log and trace 5.17

#
The functionality is not different when the in-process HTTP server is not used (when the Web server integration functionality is
used).

5.2.3 Execution environment settings (J2EE server settings)
This subsection describes how to set up the in-process HTTP server.

To receive HTTP requests by using the Web server functionality provided in the J2EE server processes, the system
must be built with a configuration using the in-process HTTP server functionality. For details on the system
configuration and building with the in-process HTTP server functionality, see the uCosminexus Application Server
System Setup and Operation Guide.

Procedure:

1. Enabling the in-process HTTP server functionality.
Define the specifications for the in-process HTTP server by specifying true in the
webserver.connector.inprocess_http.enabled parameter in the <configuration> tag of the
logical J2EE server (j2ee-server) in the Easy Setup definition file. By default, false is specified. For details on
the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application Server
Definition Reference Guide.

2. Specify settings for controlling the number of connections from the Web client and controlling the number of
request processing threads.

5. In-Process HTTP Server

260

By adjusting the number of request processing threads according to the performance of the host that operates the
server and the status of access from the client, you can improve the performance of the in-process HTTP server.
For details on settings, see 5.3 Controlling the number of connections from the Web client and 5.4 Controlling the
number of request processing threads.
Note the following when you set up the in-process HTTP server:

• If a large number of requests need to be processed immediately after the server starts, specify a big value as
the number of request processing threads to be created when the server starts.

• Note that if you increase the maximum number of spare threads, you can promptly support sudden increase in
access, but a lot of resources will be consumed.

3. Specify settings for controlling access from the Web client.
By enhancing the security for connections and requests sent from the client, you can prevent unauthorized access
and attacks on the server from outside. For details on settings, see 5.11 Controlling access by limiting the hosts
that are allowed access, 5.12 Controlling access by limiting the request data size, and 5.13 Controlling access by
limiting the HTTP-enabled methods.

4. As and when required, specify settings for the functionality that can be used in the in-process HTTP server.
For details on the functionality available in the in-process HTTP server, see 5.2.2 Functionality available in the
in-process HTTP server.

5. In-Process HTTP Server

261

5.3 Controlling the number of connections from the Web
client

By controlling the number of connections and number of request processing threads from the Web client and by
optimizing the number of request processing threads, you can constantly control the load on the J2EE server and
maintain a stable and high throughput. For details on controlling the number of request processing threads, see 5.4
Controlling the number of request processing threads.

This section describes the controlling of the number of connections from the Web client.

The following table describes the organization of this section.

Table 5‒4: Organization of this section (Controlling the number of connections from the Web client)

Category Title Reference

Description Overview of controlling the number of connections from the Web client 5.3.1

Settings Execution environment settings (J2EE server settings) 5.3.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

In the in-process HTTP server, you can control the number of request processing threads created by the in-process
HTTP server by setting the number of Web clients that can connect simultaneously. Also, by pooling the constant
number of request processing threads that are not running as the spare threads, the processing required for adding and
deleting the request processing threads is restrained to the minimum.

5.3.1 Overview of controlling the number of connections from the Web
client

In the in-process HTTP server, you set the maximum number of Web clients and proxy servers connecting
simultaneously and control the number of request processing threads. The in-process HTTP server creates the request
processing threads for the number of connections from the Web client, and therefore, the maximum number of
connections from the Web client becomes the upper limit for the number of request processing threads that are created
by the in-process HTTP server.

Note that the connection requests from the client are registered in the TCP/IP Listen queue and are passed to the
request processing threads. The connection requests from the client exceeding the upper limit for the number of
connections are accumulated in the Listen queue. When the connection requests from the client accumulated in the
Listen queue exceed the specified maximum value, the client fails to connect to the server.

The following figure shows an overview of controlling the number of connections from the Web client:

5. In-Process HTTP Server

262

Figure 5‒1: Overview of controlling the number of connections from the Web client

5.3.2 Execution environment settings (J2EE server settings)
Specify the definition for controlling the number of connections from the Web client in the <configuration> tag
of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

The following table lists the definition in the Easy Setup definition file for controlling the number of connections from
the Web client:

Table 5‒5: Definition in the Easy Setup definition file for controlling the number of connections from the
Web client

Parameter to be specified Setting contents

webserver.connector.inprocess_http.
max_connections

Specifies the maximum number of connections with the Web client and proxy
server. The in-process HTTP server creates the request processing threads for the
number of connections from the Web client, and therefore, the value specified
here becomes the upper limit for the number of request processing threads.

webserver.connector.inprocess_http.
backlog

The HTTP requests exceeding the upper limit for the number of connections from
the Web client are accumulated in the Listen queue. Specify the maximum
number of registrations in the Listen queue in this parameter.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

5. In-Process HTTP Server

263

5.4 Controlling the number of request processing
threads

By controlling the number of connections and number of request processing threads from the Web client and by
optimizing the number of request processing threads, you can constantly control the load on the J2EE server and
maintain a stable and high throughput. For details on controlling the number of connections from the Web client, see
5.3 Controlling the number of connections from the Web client.

This section describes the controlling of the number of request processing threads. The following table describes the
organization of this section.

Table 5‒6: Organization of this section (Controlling the number of request processing threads)

Category Title Reference

Description Overview of controlling the number of request processing threads 5.4.1

Settings Execution environment settings (J2EE server settings) 5.4.2

Note:
There is no specific description Implementation, Operations, and Notes for this functionality.

5.4.1 Overview of controlling the number of request processing threads
After the request processing threads are created when the in-process HTTP server starts, the status of the request
processing threads and the number of threads are monitored periodically. When requests are concentrated in the in-
process HTTP server, the request processing threads are added and the adequate number of spare threads is pooled in
advance. When there are few requests, the extra pooled spare threads will be deleted.

The controlling of the number of request processing threads is executed as follows:

1. When the J2EE server starts, the specified number of request processing threads is created.

2. While the J2EE server is running, the number of request processing threads is monitored.

3. During monitoring, if the number of spare threads is smaller than the specified minimum value, the request
processing threads are added and pooled as the spare threads. Also, if the number of spare threads is greater than
the specified maximum value, the extra spare threads are deleted.
Note that you can also maintain the number of threads created when the J2EE server starts. When maintaining the
number of threads created at startup, if the total number of request processing threads and spare threads is less
than the number of threads created when the Web server starts, even if the number of spare threads exceeds the
maximum value, the spare threads are not deleted. For example, if the number of threads created when the Web
server starts is 8 and the maximum number of spare threads is 5, the spare threads are not deleted in the case when
the number of request processing threads is 2 and the number of spare threads is 6.

The transition of the number of request processing threads is explained with the following examples:

• Transition example 1
Assume the following settings:

• Maximum number of connections from the Web client: 15

• Number of registrations in the Listen queue: 100

• Number of request processing threads created when the J2EE server starts: 8

• Minimum number of spare threads: 5

• Maximum number of spare threads: 10

• Maintenance of the number of threads created when the J2EE server starts: Disabled

The following figure shows the transition example for the number of request processing threads:

5. In-Process HTTP Server

264

Figure 5‒2: Transition example for the number of request processing threads

Stages 1. to 7. of the figure are explained below:

1. When the J2EE server starts, the specified number (8 threads) of request processing threads is created.

2. When 4 requests are received, the number of spare threads becomes 4 and since this number is less than the
minimum value, 1 thread is added.

3. When the processing of the 4 requests ends, the number of spare threads becomes 9. Since this number is less
than the maximum value and more than the minimum value, the current state is maintained.

4. When 14 requests are received, the number of spare threads is less than the minimum value, but the maximum
number of connections from the Web client is reached, therefore, the spare threads add only 1 thread.

5. When the processing of 13 requests ends, the number of spare threads exceeds the maximum value, so 4
threads are deleted.

6. When 7 requests are received, the number of spare threads is less than the minimum value, so 2 threads are
added.

7. When the processing of 8 requests ends, the number of spare threads exceeds the maximum value, so 3 threads
are deleted.

• Transition example 2
By setting the maximum number of spare threads equal to the maximum number of connections from the Web
client, you can continue to use the request processing threads created once without deleting them.
The transition example for the number of request processing threads when the maximum number of spare threads
is equal to the maximum number of connections from the Web client is as follows:
Assume the following settings:

• Maximum number of connections from the Web client: 15

• Maximum number of registrations in the Listen queue: 100

• Number of request processing threads created when the J2EE server starts: 8

• Minimum number of spare threads: 5

• Maximum number of spare threads: 15

• Maintenance of the number of threads created when the J2EE server starts: Disabled

The following figure shows the transition example for the number of request processing threads, when the
maximum number of spare threads is equal to the maximum number of connections from the Web client:

5. In-Process HTTP Server

265

Figure 5‒3: Transition example for the number of request processing threads when the maximum
number of spare threads is equal to the maximum number of connections from the Web
client

Stages 1. to 7. of the figure are explained below:

1. When the J2EE server starts, the specified number (8 threads) of request processing threads is created.

2. When 4 requests are received, the number of spare threads becomes 4 and since this number is less than the
minimum value, 1 thread is added.

3. When the processing of the 4 requests ends, the number of spare threads becomes 9. Since this number is less
than the maximum value and more than the minimum value, the current state is maintained.

4. When 14 requests are received, the number of spare threads is less than the minimum value, but so that the
total number of request processing threads does not exceed the maximum number of connections from the
Web client, spare threads add only 1 thread.

5. When the processing of 13 requests ends, the number of spare threads becomes 14, but this number is less than
the maximum value and more than the minimum value, so the current state is maintained.

6. When 7 requests are received, the number of spare threads becomes 7, but this number is less than the
maximum value and more than the minimum value, so the current state is maintained.

7. When the processing of 8 requests ends, the number of spare threads becomes 15, but this number is less than
the maximum value and more than the minimum value, so the current state is maintained.

• Setup example-3
The following is a transition example for the number of request processing threads when the number of threads
created at server startup is maintained:
Assume the following settings:

• Maximum number of connections from the Web client: 15

• Maximum number of registrations in the Listen queue: 100

• Number of request processing threads created when the J2EE server starts: 8

• Minimum number of spare threads: 3

• Maximum number of spare threads: 5

• Maintenance of the number of threads created when the J2EE server starts: Enabled

The following figure shows the transition example for the number of request processing threads when the number
of threads created at server startup is maintained:

5. In-Process HTTP Server

266

Figure 5‒4: Transition example for the number of request processing threads when the number of
threads created at J2EE server startup is maintained

Stages 1. to 8. of the figure are explained below:

1. When the J2EE server starts, the specified number (8 threads) of request processing threads is created.

2. When 6 requests are received, the number of spare threads becomes 2. Since this number is less than the
minimum value, 1 thread is added.

3. When the processing of the 6 requests ends, the number of spare threads becomes 9 and the maximum value is
exceeded, but in order to maintain the number of threads created at server startup, only 1 thread is deleted.

4. When 14 requests are received, the number of spare threads is less than the minimum value, but so that the
total number of request processing threads does not exceed the maximum number of connections from the
Web client, spare threads add only 1 thread.

5. When the processing of 7 requests ends, the number of spare threads becomes 8 and exceeds the maximum
value, so 3 threads are deleted.

6. When 3 requests are received, the number of spare threads becomes 2 and is less than the minimum value, so
1 thread is added.

7. When the processing of 1 request ends, the number of spare threads becomes 4, but this number is less than
the maximum value and more than the minimum value, so the current status is maintained.

8. When the processing of 9 requests ends, the number of spare threads becomes 13. This number is more than
the maximum value, but in order to maintain the number of threads at J2EE server startup, only 5 threads are
deleted.

5.4.2 Execution environment settings (J2EE server settings)
Specify the definition for controlling the number of request processing threads in the <configuration> tag of the
logical J2EE server (j2ee-server) in the Easy Setup definition file.

The following table lists the definitions in the Easy Setup definition file for controlling the number of request
processing threads:

5. In-Process HTTP Server

267

Table 5‒7: Definitions in the Easy Setup definition file for controlling the number of request processing
threads

Parameter to be specified Setting contents

webserver.connector.inprocess_http.
init_threads

Specify the number of request processing threads created when the J2EE server
starts.

webserver.connector.inprocess_http.
min_spare_threads

Specify the minimum number of spare threads. If the number of spare threads is
less than the specified minimum value, the request processing threads are added
and are pooled as the spare threads.

webserver.connector.inprocess_http.
max_spare_threads

Specify the maximum number of spare threads. If the number of spare threads is
more than the specified maximum value, the surplus spare threads are deleted. By
setting the maximum number of spare threads equal to the maximum number of
connections from the Web client, you can continue to use the request processing
threads created once without deleting them.

webserver.connector.inprocess_http.
keep_start_threads

Specify whether or not to maintain the request processing threads created when
the J2EE server starts.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

5. In-Process HTTP Server

268

5.5 Controlling the flow of requests by controlling the
number of concurrent connections from the Web
client

This section describes the controlling of the flow of requests by controlling the number of concurrent connections
from the Web client.

The following table describes the organization of this section.

Table 5‒8: Organization of this section (Controlling the flow of requests by controlling the number of
concurrent connections from the Web client)

Category Title Reference

Description Controlling the number of concurrent connections from the Web client 5.5.1

Settings Execution environment settings (J2EE server settings) 5.5.2

Note:
There is no specific description Implementation, Operations, and Notes for this functionality.

5.5.1 Controlling the number of concurrent connections from the Web
client

In the in-process HTTP server, you control the number of concurrent connections from the Web client by specifying
the maximum number of connections from the Web client along with the number of requests for which connection is
rejected.

When the number of connections from the Web client increases or if the load on the J2EE server increases with the
effect of the J2EE applications, the Web client can instantly receive a response by rejecting the receipt of requests
from the Web client and by returning an error immediately. As a result, the load on the J2EE server is controlled
constantly and the response time for the request can be maintained.

The value obtained by subtracting the number of requests for which the connection is rejected from the maximum
number of connections by the Web client is the number of requests for which connection is approved by the Web
client.

The following figure shows an overview of controlling the number of concurrent connections from the Web client:

5. In-Process HTTP Server

269

Figure 5‒5: Overview of controlling the number of concurrent connections from the Web client

For example, assuming the maximum number of connections from the Web client is 40 and the number of requests for
which connection is rejected is 1, the number of Web clients that can concurrently process the requests by connecting
to the in-process HTTP server is 39. If the number of threads that are processing the requests becomes 39, the
remaining 1 thread continues to return an error for the received requests until the number of request processing threads
(under processing) will reduce. The following figure shows an example of controlling the number of concurrent
connections from the Web client:

Figure 5‒6: Example of controlling the number of concurrent connections from the Web client

By controlling the number of concurrent connections from the Web client, an error with the status code 503 is returned
to the Web client for the request for which connection is rejected. At this time, if you customize the error page
returned to the client, you can customize the response message or redirect to another server.

For details on the settings for customizing the responses to the Web client (in the in-process HTTP server), see 5.14
Customizing responses to the Web client using HTTP responses and 5.15 Error page customization (In-process HTTP
server).

5. In-Process HTTP Server

270

! Important note

When displaying a page with a frame or a page with an inserted image, the multiple requests might be received from the
Web client. In this case, the pages displayed by controlling the number of concurrent connections from the Web client might
result in partial errors.

5.5.2 Execution environment settings (J2EE server settings)
To control the number of concurrent connections from the Web client, you must set a J2EE server.

The setting method and example of controlling the number of concurrent connections from the Web client are
described here.

(1) How to set
Specify the definition for controlling the number of concurrent connections from the Web client in the following
parameter in the <configuration> tag of the logical J2EE server (j2ee-server), in the Easy Setup definition file:

webserver.connector.inprocess_http.rejection_threads
Specifies the number of requests for which connection is rejected.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

! Important note

When displaying a page with a frame or a page with an image inserted, multiple requests might be received from the Web
client. In this case, the pages displayed by the controlling of the number of concurrent connections from the Web client
might result in partial errors.

(2) Example settings
The example of settings for controlling the number of concurrent connections from the Web client is described here.

The following is an example of settings wherein the upper limit of number of request processing threads is 40 and the
number of request processing threads for which the connection is rejected is 1:

...
<param>
 <param-name>webserver.connector.inprocess_http.max_connections</param-name>
 <param-value>40</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.rejection_threads</param-name>
 <param-value>1</param-value>
</param>
...

In this example, the number of Web clients that can process requests concurrently after connection is 39. If the
number of threads that are processing requests reaches 39, the remaining 1 thread keeps returning error to the Web
client.

By controlling the number of concurrent connections from the Web client, an error of the status code 503 (Service
Unavailable) is returned to the Web client for the requests for which connection is rejected. At this time if you
customize the error page returned to the client, you can customize the response message or redirect to another server.
The following are the setting examples for each of these cases. For details on customizing the error page, see 5.15
Error page customization (In-process HTTP server) .

• To customize the response message
The following is an example of settings for returning a specific file as the response body to the Web client when
the connection from the Web client is rejected:

...
<param>
 <param-name>webserver.connector.inprocess_http.rejection_threads</param-name>

5. In-Process HTTP Server

271

 <param-value>3</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.list</param-name>
 <param-value>REJECTION_1</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.REJECTION_1.status</
param-name>
 <param-value>503</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.REJECTION_1.file</
param-name>
 <param-value>C: /data/busy.html</param-value>
</param>
<param>
 <param-
name>webserver.connector.inprocess_http.error_custom.REJECTION_1.file.content_type=text/
html; charset</param-name>
 <param-value>ISO-8859-1</param-value>
</param>
<param>
 <param-
name>webserver.connector.inprocess_http.error_custom.REJECTION_1.request_url</
param-name>
 <param-value>/*</param-value>
</param>
...

In this example, '503' is specified in the error status code, C:/data/busy.html is specified in the
corresponding error page file, 'text/html; charset=ISO-8859-1 (Media-Type is text/html and ISO-8859-1 character
set is used)' is specified in the Content-Type header of the response, and /* is specified in the URL pattern.
Therefore, when error status code '503' occurs, regardless of the request URI, the contents of C:/data/
busy.html file are returned as a response.

• To redirect a request to another server
The following is an example of settings for redirecting a request for which connection is rejected to another
server:

...
<param>
 <param-name>webserver.connector.inprocess_http.rejection_threads</param-name>
 <param-value>3</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.list</param-name>
 <param-value>REJECTION_1</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.error_custom.REJECTION_1.status</
param-name>
 <param-value>503</param-value>
</param>
<param>
 <param-
name>webserver.connector.inprocess_http.error_custom.REJECTION_1.redirect_url</
param-name>
 <param-value>http: //host1/busy.html</param-value>
</param>
<param>
 <param-
name>webserver.connector.inprocess_http.error_custom.REJECTION_1.request_url</
param-name>
 <param-value>/*</param-value>
</param>
<param>
...

In this example, '503' is specified in error status code, http://host1/busy.html is specified in the
corresponding error page file, and /* is specified in the URL pattern. Therefore, when error status code '503'
occurs, regardless of the request URI, all the requests are redirected to the http://host1/busy.html URL.

5. In-Process HTTP Server

272

5.6 Controlling the flow of requests by controlling the
number of concurrently executing threads

This section describes the controlling the flow of requests by controlling the number of concurrently executing
threads.

The following table describes the organization of this section.

Table 5‒9: Organization of this section (Controlling the flow of requests by controlling the number of
concurrently executing threads)

Category Title Reference

Description Overview of controlling the flow of requests by controlling the number of concurrently
executing threads

5.6.1

Settings Execution environment settings (J2EE server settings) 5.6.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

Reference note
There is no difference in the functionality when in-process HTTP server is not used (when the Web server integration
functionality is used). For explanation of this functionality, see 2.15 Overview of controlling the number of concurrently
executing threads.

5.6.1 Overview of controlling the flow of requests by controlling the
number of concurrently executing threads

In the Web container, the servlet requests are processed in multi-threads. At this time, you can set an upper limit on
the number of threads that can be executed concurrently for avoiding the decrease in performance due to slashing. If
you set an appropriate number of threads, you can tune the performance as per the access status.

5.6.2 Execution environment settings (J2EE server settings)
To control the number of concurrently executing threads in the Web container, you must set up a J2EE server.

This subsection describes the settings for controlling the number of concurrently executing threads in the Web
container.

The methods for controlling the number of concurrently executing threads include the controlling in Web container, in
Web application, and in URL group.

(1) Controlling in the Web container
To control the number of concurrently executing threads in the Web container, set the maximum number of threads
that can be executed concurrently in the entire Web container. The number of threads set here is shared in all the Web
applications deployed on the Web container.

Specify the definition for controlling the number of concurrently executing threads in the Web container in the
following parameter within the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup
definition file.

webserver.connector.inprocess_http.max_execute_threads
Set the maximum number of threads that you can concurrently execute in the entire Web container.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

5. In-Process HTTP Server

273

(2) Controlling in the Web application
Note that when you control the number of concurrently executing threads in the Web application, you also need to
simultaneously specify the settings to control the number of threads in the Web container.

Specify settings for controlling the number of concurrently executing threads in the Web application using the Easy
Setup definition file and the server management commands. The method of setup is the same as is used for the Web
server integration functionality. For details on how to set up the number of concurrently executing threads in the Web
applications when the Web server integration functionality is used, see 2.17 Controlling the number of concurrently
executing threads in the Web application.

(3) Controlling in the URL group
To control the number of concurrently executing threads in the URL group, you must also specify settings for
controlling the number of concurrently executing threads in the Web application and the settings for controlling the
number of threads in the Web container simultaneously.

Specify settings for controlling the number of concurrently executing threads in the URL group by using the server
management commands. The method of setup is the same as is used for the Web server integration functionality. For
details on how to set the number of concurrently executing threads in the URL group when the Web server integration
functionality is used, see 2.18 Controlling the number of concurrently executing threads in the URL group.

5. In-Process HTTP Server

274

5.7 Request distribution with the redirector
This section explains the distribution of requests with the redirector.

In the in-process HTTP server, you can distribute the requests by the URL patterns included in an HTTP request. You
can also customize the responses for the distributed requests and return them to the client.

This section describes the distribution of requests by the URL pattern and the process of customizing the responses.
The section also provides an overview of the settings for request distribution with the redirector.

The following table describes the organization of this section.

Table 5‒10: Organization of this section (Request distribution with the redirector)

Category Title Reference

Description Distributing requests by URL pattern 5.7.1

Response customization 5.7.2

Settings Execution environment settings (J2EE server settings) 5.7.3

Notes Precautions related to request distribution with the redirector 5.7.4

Note:
There is no specific description of Implementation and Operations for this functionality.

5.7.1 Distributing requests by URL pattern
In the in-process HTTP server, of the HTTP requests for the in-process HTTP server, you can distribute and process
requests for a specific URL to a specified Web container. As a result, when the Web application is moved to another
J2EE server due to the reasons such as changes in the system configuration, the request to the old URL can be
forwarded to the new URL.

Also, in the distribution of requests by redirecting to the in-process HTTP server, the requests for specific Web
applications and specific servlets and JSPs in the Web application can be temporarily redirected to another Web
server. In the in-process HTTP server, the requests are redirected regardless of whether the resources for the requested
servlets and JSPs actually exist. The redirection is given a higher priority than the servlets and JSPs. Therefore, when
the requests to the servlets and JSPs match with the redirected URL, the servlets and JSPs are not executed.

5.7.2 Response customization
You can also customize a specific file to return as a response for the requests to a specific URL. If the status code of
the response for the request to a redirected URL is 300 to 307, the response body is auto-generated and the response is
returned to the client. You can also use a specified file as the response body. When you specify the file, specify the
Content-Type header of the response as well.

For details on the status code for which the response is auto-generated and for the settings for request distribution with
the redirector (in the in-process HTTP server), see 5.7.3 Execution environment settings (J2EE server settings).

5.7.3 Execution environment settings (J2EE server settings)
This subsection describes the settings for distributing requests with the redirector.

(1) Overview
In the in-process HTTP server, you can distribute requests by the URL pattern included in the HTTP request. You can
also customize the response for the distributed request and return a specific file to the client. When the response status
code for the request to a redirected URL is 300, the response body is auto-generated and the response is returned to the
client. Also, you can use a specified file as a response body. When you specify the file, also specify the Content-Type
header of the response.

5. In-Process HTTP Server

275

The auto-generated response body is as follows:

<HTML><HEAD>
<TITLE>Status code and explanation</TITLE>
</HEAD><BODY>
<H1>Status code and explanation</H1>
</BODY></HTML>

The status code for which the response body is auto-generated and the description is as follows:

• 300 Multiple Choices

• 301 Moved Permanently

• 302 Found

• 303 See Other

• 305 Use Proxy

• 307 Temporary Redirect

When the reading of the file used as the response body during request processing fails, if 300 is specified as the status
code, the response body is auto-generated and returned to the client. If 200 is specified as the status code, status 500
error is returned to the client.

(2) How to set
Specify the definition for distributing requests with the redirector in the <configuration> tag of the logical J2EE
server (j2ee-server), in the Easy Setup definition file.

The following table lists the definitions in the Easy Setup definition file for distributing requests with the redirector:

Table 5‒11: Definitions in the Easy Setup definition file for distributing requests with the redirector

Parameter to be specified Setting contents

webserver.connector.inprocess_http.
redirect.list

Specifies the redirect definition name.

webserver.connector.inprocess_http.
redirect.redirect-difinition-
name.request_url

Specifies the URL of the redirected request as an absolute path beginning with a
slash (/).

webserver.connector.inprocess_http.
redirect.redirect-difinition-
name.redirect_url

Specifies the URL for redirecting the request. Note that when 200 is specified as
the status code, the URL cannot be specified.

webserver.connector.inprocess_http.
redirect.redirect-difinition-name.status

Specifies the response status code used when redirection is executed.

webserver.connector.inprocess_http.
redirect.redirect-difinition-name.file

Specifies the file to be used as the response body when a specific file is returned
to the client as a response. Note that when 200 is specified as the status code, the
file to be used must be specified.

webserver.connector.inprocess_http.
redirect.redirect-difinition-
name.file.content_type

Specifies the Content-Type header of the file to be used as the response body
when a specific file is returned as a response to the client.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

! Important note

• When the HTTP response is an HTML file, if another file (such as an image file) is being referenced from that HTML,
the file might not be properly displayed in the browser.

• If the value specified in the redirect URL matches with the value specified for the request URL, note that the client
keeps redirecting the requests.

5. In-Process HTTP Server

276

• When a session is managed by URL rewriting, the session cannot be inherited even if the request is redirected to the
same Web application as the request URL.

(3) Example settings
An example of settings for request distribution with the redirector is as follows:

• Setup example-1
An example of request distribution with the redirector is as follows:

...
<param>
 <param-name>webserver.connector.inprocess_http.redirect.list</param-name>
 <param-value>REDIRECT_1, REDIRECT_2</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.redirect.REDIRECT_1.request_url</
param-name>
 <param-value>/index.html</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.redirect.REDIRECT_1.redirect_url</
param-name>
 <param-value>http: //host1/new_dir/index.html</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.redirect.REDIRECT_1.status</param-
name>
 <param-value>302</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.redirect.REDIRECT_2.request_url</
param-name>
 <param-value>/old_dir/*</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.redirect.REDIRECT_2.redirect_url</
param-name>
 <param-value>http: //host1/new_dir/</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.redirect.REDIRECT_2.status</param-
name>
 <param-value>301</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.redirect.REDIRECT_2.file</param-
name>
 <param-value>C: /data/301.html</param-value>
</param>
<param>
<param-
name>webserver.connector.inprocess_http.redirect.REDIRECT_2.file.content_type</
param-name>
 <param-value>text/html; charset=ISO-8859-1</param-value>
</param>
...

In this example, REDIRECT_1 and REDIRECT_2 are used as the redirect definition names. In REDIRECT_1,
the request to /index.html is redirected to http://host1/new_dir/index.html with status code
'302'. In REDIRECT_2, the requests to /old_dir/ are redirected under http://host1/new_dir/ with
status '301'. Also, C:/data/301.html is used as the response body and text/html;
charset=ISO-8859-1 is used as the Content-Type header.

• Setup example-2
When a wild card is used as a request URL and a value ending with slant (/) is specified in the redirect URL, the
value set in the Location header of the response becomes 'Value specified in the redirect URL' + 'Actual path from
the wild card of the request URL'.

5. In-Process HTTP Server

277

...
<param>
 <param-name>webserver.connector.inprocess_http.redirect.list</param-name>
 <param-value>REDIRECT_3</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.redirect.REDIRECT_3.request_url</
param-name>
 <param-value>/dir1/*</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.redirect.REDIRECT_3.redirect_url</
param-name>
 <param-value>http: //host/dir2/</param-value>
</param>
...

In this example, when the actual request URL is /dir1/subdir1/index.html, http://host/dir2/
subdir1/index.html is set in the Location header. Note that even when a wild card is used in the request
URL, if the redirect URL does not end with slant (/), the value of the Location header is the same as the redirect
URL.
When redirect is executed, if a query string is added to the actual request URL, the value set in the Location
header is a value wherein the query string is added to the value specified for the redirect URL. You can also
specify a value with the query string added in the redirect URL. In this case, if a query string is also added to the
actual request URL, the value set in the Location header is a value wherein the request query string is added
behind the value specified for the redirect URL.

5.7.4 Precautions related to request distribution with the redirector
The precautions related to request distribution with the redirector are as follows:

• When the HTTP response is an HTML file, if another file (such as an image file) is being referenced from that
HTML, the file might not be properly displayed in the browser.

• If the value specified in the redirect URL matches with the value specified for the request URL, note that the client
keeps redirecting the requests.

• When a session is managed by URL rewriting, the session cannot be inherited even if the request is redirected
within the Web application.

5. In-Process HTTP Server

278

5.8 Controlling the communication with the Web client by
persistent connection

This section describes the controlling of communication with the Web client by Persistent Connection.

The following table describes the organization of this section.

Table 5‒12: Organization of this section (Controlling communication with the Web client by Persistent
Connection)

Category Title Reference

Description Controlling communication by Persistent Connection 5.8.1

Settings Execution environment settings (J2EE server settings) 5.8.2

Note:
There is no specific description Implementation and Operations for this functionality.

5.8.1 Controlling communication by Persistent Connection
The persistent connection is functionality used for connecting the TCP connection established between the Web client
and the in-process HTTP server and keep using the TCP connection between multiple HTTP requests. By using the
persistent connection, the time required for establishing a connection between the Web client and Web server is
reduced and an attempt is made to reduce the processing time and lessen the communication traffic.

In the in-process HTTP server, you set up the following items to control communication by the Persistent Connection:

• Upper limit for the number of persistent connections
By setting the upper limit for the number of persistent connections, you control the number of Web clients that can
continuously process requests with one TCP connection. If the number of TCP connections exceeds the specified
upper limit, the connection disconnects after the processing of the request ends. As a result, you can secure the
threads for processing the new requests and prevent the request processing threads from being used exclusively by
a specific client.

• Upper limit for the request processing frequency of persistent connection
By setting the maximum value for the request processing frequency of the persistent connection, you can control
the processing when there are continuous requests from the same Web client.
When the request processing frequency of the persistent connection exceeds the specified upper limit, the
connection disconnects after the processing of the request ends. As a result, you can prevent the request processing
threads from being used exclusively by a specific client.

• Persistent connection timeout
By setting a timeout for the request waiting time of the persistent connection, you control the request waiting time
of the persistent connection. If there is no request to process requests until the specified timeout period expires, the
TCP connection disconnects. As a result, you can prevent the TCP connection from being continuously occupied
in an unused state. Also, even if you specify 0 for the request waiting time of Persistent Connection so that a
timeout does not occur, if the number of requests exceeds the upper limit on the number of requests that can be
processed, the connection is disconnected.

Note that a disconnected Web client will try to connect and send requests again.

5.8.2 Execution environment settings (J2EE server settings)
To use controlling of communication by the persistent connection, you must set up the J2EE server.

This subsection describes the settings and examples for controlling communication by the persistent connection.

5. In-Process HTTP Server

279

(1) Setting up the J2EE server
Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for controlling
communication by the persistent connection in the <configuration> tag of the logical J2EE server (j2ee-server)
in the Easy Setup definition file.

The following table lists the definitions in the Easy Setup definition file for controlling communication by the
persistent connection.

Table 5‒13: Definitions in the Easy Setup definition file for controlling communication by persistent
connection

Parameter to be specified Setting contents

webserver.connector.inprocess_http.
persistent_connection.max_connectio
ns

Specifies the upper limit for the number of persistent connections to control the
number of Web clients that can process requests continuously with one TCP
connection.

webserver.connector.inprocess_http.
persistent_connection.max_requests

Specifies the upper limit for the request processing frequency of the persistent
connection to control the processing when there are continuous requests from the
same Web client.

webserver.connector.inprocess_http.
persistent_connection.timeout

Specifies the timeout value for persistent connection to control the request
waiting time of the persistent connection.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

(2) Example settings
The following is an example of settings for controlling communication by the persistent connection:

...
<param>
<param-name>webserver.connector.inprocess_http.persistent_connection.max_connections</
param-name>
 <param-value>5</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.persistent_connection.max_requests</
param-name>
 <param-value>100</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.persistent_connection.timeout</param-
name>
 <param-value>15</param-value>
</param>
...

In this example, when the number of TCP connections exceeds '5' or when the request processing frequency exceeds
100, the TCP connection disconnects after the processing of the request ends. Also, if there is no request to process
requests even after the timeout period of 15 seconds passes, the TCP connection disconnects.

5. In-Process HTTP Server

280

5.9 Communication timeout (In-process HTTP server)
This section describes the controlling of communication with the Web client through communication timeout in the
in-process HTTP server.

The following table describes the organization of this section.

Table 5‒14: Organization of this section (Communication timeout (in-process HTTP server))

Category Title Reference

Description Overview of the Communication Timeout 5.9.1

Settings Execution environment settings (J2EE server settings) 5.9.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

5.9.1 Overview of the communication timeout
When using the in-process HTTP server, you can set communication timeout for receiving a request and sending a
response between the Web client and the in-process HTTP server. When the response is awaited due to the network
and application failure, you can detect the occurrence of failure from the occurrence of timeout, if the communication
timeout is set.

When you use the in-process HTTP server, set the timeout for the communication indicated by the two arrows in the
following figure.

Figure 5‒7: Communication for which timeout can be set (When using the in-process HTTP server)

As shown in the figure, communication timeout is set for receiving requests and sending responses. The setting of
communication timeout is explained separately for receiving of a request and sending of a response.

Note that when data timeout occurs while receiving a request from the Web client and sending a response to the Web
client, a Web client or network failure is assumed and the connection with the Web client is disconnected, so a
response is not returned.

(1) Communication timeout when receiving a request
The following figure shows the locations to set the communication timeout for receiving requests.

5. In-Process HTTP Server

281

Figure 5‒8: Locations to set the communication timeout for receiving requests (When using the in-process
HTTP server)

When using the in-process HTTP server, you set a timeout for the communication between the Web client and the in-
process HTTP server.

By setting a timeout for the communication between the Web client and the in-process HTTP server, you can detect
the following failures in the client:

• The host on which the Web client is running is down.

• A network failure occurred between the Web client and the in-process HTTP server

• A failure occurs in client application.

(2) Communication timeout when sending a response
The following figure shows the locations to set the communication timeout for sending responses.

Figure 5‒9: Locations to set the communication timeout for sending responses (When using the in-process
HTTP server)

When using the in-process HTTP server, you set a timeout for the communication between the in-process HTTP
server and the Web client.

By setting a timeout for the communication between the in-process HTTP server and the Web client, you can detect
the following failures:

• The host on which the Web client is running is down.

• A network failure occurred between the Web client and the in-process HTTP server

• A failure occurs in client application.

5.9.2 Execution environment settings (J2EE server settings)
To set up a communication timeout for the in-process HTTP server, you must set up the J2EE server.

This subsection describes the settings and examples of communication timeout in the in-process HTTP server.

5. In-Process HTTP Server

282

You set up communication timeout when receiving requests and when sending responses. The setting of
communication timeout is described separately for receiving of a request and sending of a response.

(1) Communication timeout settings for receiving requests
You set the communication timeout for receiving requests between the client and the in-process HTTP server.

Specify the communication timeout for receiving requests in the in-process HTTP server with the following
parameters within the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition
file:

webserver.connector.inprocess_http.receive_timeout
Specifies the waiting time for the process of receiving a request from the client.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

(2) Communication timeout settings for sending responses
You set the communication timeout for sending responses between the in-process HTTP server and the client.

Specify the communication timeout for sending responses in the in-process HTTP server with the following
parameters within the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition
file:

webserver.connector.inprocess_http.send_timeout
Specifies the waiting time for the process of sending a response to the client.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

(3) Example settings
An example of settings for communication timeout in the in-process HTTP server is as follows:

...
<param>
 <param-name>webserver.connector.inprocess_http.receive_timeout</param-name>
 <param-value>300</param-value>
</param>

<param>
 <param-name>webserver.connector.inprocess_http.send_timeout</param-name>
 <param-value>600</param-value>
</param>
...

In this example, 300 seconds is specified as the request receiving timeout and 600 seconds as the response sending
timeout.

5. In-Process HTTP Server

283

5.10 Specifying the IP address (In-process HTTP server)
This section describes the controlling of communication with the Web client by specifying the IP address in the in-
process HTTP server.

The following table describes the organization of this section.

Table 5‒15: Organization of this section (Specifying the IP address (in-process HTTP server))

Category Title Reference

Description Bind address specification functionality 5.10.1

Settings Execution environment settings (J2EE server settings) 5.10.2

Notes Precautions related to IP address specification in the in-process HTTP server 5.10.3

Note:
There is no specific description of Implementation and Operations for this functionality.

Reference note
The functionality is not different when in-process HTTP server is not used (when the Web server integration functionality is
used). For details on the functionality, see 4.7 Specifying the IP address (Web server integration).

5.10.1 Bind address specification functionality
In the Web container, you can explicitly specify the IP address to be used in the in-process HTTP server. This
functionality is called the Bind address specification functionality. By using the bind address specification
functionality, you can specify the setting so that only a single specific IP address is used for a host having multiple
physical network interfaces or single physical network interface, when executing with a host.

5.10.2 Execution environment settings (J2EE server settings)
To specify the IP address of the in-process HTTP server, you must set the J2EE server.

This subsection describes the settings for the IP address of the in-process HTTP server.

Specify the IP address of the in-process HTTP server in the following parameters in the <configuration> tag of
the logical J2EE server (j2ee-server) in the Easy Setup definition file:

webserver.connector.inprocess_http.bind_host
Specifies the host name or IP address to be used in the in-process HTTP server.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

5.10.3 Precautions related to IP address specification in the in-process
HTTP server

The precautions related to IP address specification in the in-process HTTP server are as follows:

• When the host name or the IP address is set, only requests for connecting to the specified IP address can be
received. Instead of setting the IP address, a connection to any IP address on that host can be received, by
specifying the wild card address. By default, the setting is specified to use the wild card address. When using the
wild card address, note the following points:

• If the specified host name cannot be resolved in the hosts file or DNS, start the server by using the wild card
address.

• If the specified host name or IP address is a remote host, start the server by using the wild card address.

5. In-Process HTTP Server

284

5.11 Controlling access by limiting the hosts that are
allowed access

To prevent unauthorized access of the J2EE server, you can control the hosts that can access the J2EE server. By
default, access from all the hosts is allowed. By specifying the host name or the IP address of the host that is allowed
access beforehand, you can allow access only from a specific host and prevent unauthorized access.

This section describes the controlling of access by limiting the hosts that are allowed access to the J2EE server.

Table 5‒16: Organization of this section (Controlling access by limiting the hosts that are allowed access)

Category Title Reference

Description Limiting the hosts that are allowed access 5.11.1

Settings Execution environment settings (J2EE server settings) 5.11.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

5.11.1 Limiting the hosts that are allowed access
To limit the hosts, set the host name or IP address of the hosts that are allowed access. In such a case, if you specify an
asterisk (*) in place of the host name and the IP address, access from all hosts is allowed. When the hosts that are
allowed access are specified by the host name, the name of the host is resolved on starting the J2EE server. Note that
even if the local host is not explicitly specified, the access is always allowed. Normally, for the systems that are
accessed from external networks, you specify the IP address of the proxy server.

The precautions when the host that is allowed access is specified in the host name are as follows:

Notes

• You need to specify the host name resolvable in the hosts file or DNS. If the host name cannot be resolved, the
server is started by the default settings.

• The host name is resolved when the J2EE server is started, and hence, longer time is taken for starting the
server. The changed IP address may not be applied after starting the server.

5.11.2 Execution environment settings (J2EE server settings)
To specify settings for limiting the hosts that are given the access, you must set up the J2EE server.

This subsection describes the settings and examples for limiting the hosts that are given the access.

(1) How to set
Specify the settings for limiting the hosts that are given the access in the following parameter within the
<configuration> tag of the logical J2EE server (j2ee-server), in the Easy Setup definition file.

webserver.connector.inprocess_http.permitted.hosts
Specifies the host name or IP address of the host that is given the access.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

! Important note

The precautions when the host that is given the access is specified in the host name are as follows:

• You need to specify the host name resolvable in the hosts file or DNS. If the host name is not resolvable, the J2EE
server is started with the default settings (access is given for all the hosts).

5. In-Process HTTP Server

285

• The host name is resolved when the J2EE server is started, and hence, longer time is taken for starting the J2EE server.
The changed IP address may not be applied after starting the server.

(2) Example settings
The following is the setting example for limiting the hosts that are given the access:

...
<param>
 <param-name>webserver.connector.inprocess_http.permitted.hosts</param-name>
 <param-value>host1, host2</param-value>
</param>
...

In this example, access is given only for 'host1' and 'host2' and access from other hosts is not allowed.

5. In-Process HTTP Server

286

5.12 Controlling access by limiting the request data size
In the in-process HTTP server, by receiving only the request data that is less than a constant size, you can reject the
receipt of invalid request data, control the load on the server, and maintain stable operations.

This section describes the controlling of access by limiting the request data size.

The following table describes the organization of this section.

Table 5‒17: Organization of this section (Controlling access by limiting the request data size)

Category Title Reference

Description Limiting the request data size 5.12.1

Settings Execution environment settings (J2EE server settings) 5.12.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

5.12.1 Limiting the request data size
In the in-process HTTP server, by receiving only the request data that is less than a constant size, you can reject the
receipt of invalid request data, control the load on the server, and maintain stable operations.

Set the following items to implement access control by limiting the request data size:

• Limiting the length of the request line
Control the access by setting an upper limit on the length of the request line. The length of a request line includes
the HTTP method, URI (including the query string), the HTTP version, and the linefeed (2 bytes) indicating the
end of the request line.
If the length of the received request line exceeds the upper limit, an error of status code 414 is returned to the Web
client.

• Limiting the number of HTTP headers
Control the access by setting the upper limit for the number of HTTP headers included in the HTTP request.
If the number of HTTP headers included in the received HTTP request exceeds the upper limit, an error of status
code 400 is returned to Web client.

• Limiting the request header size
Control access by setting the upper limit for the request header size of the HTTP request.
If the HTTP header size of the received HTTP request exceeds the upper limit, an error of status code 400 is
returned to Web client.

• Limiting the request body size
Control access by setting the upper limit for the body size of the HTTP request. In the in-process HTTP server, the
body size of the HTTP request is determined by the value of the Content-Length header included in the request
header.
If the body size of the HTTP request exceeds the upper limit, an error of status code 413 is returned to Web client.
When the request body is sent in a chunk format, the data up to the specified upper limit is read inside the servlet.
If the data exceeds the upper limit, an exception (IOException) is thrown in the servlet, but the processing of the
servlet continues. Based on the result of data read up to the specified upper limit in the client that sent the request,
the response created by the application is returned.
Tip

If the gateway device such as SSL accelerator and load balancer exist or if the proxy server is deployed and the gateway
equipment and proxy server have the functionality for controlling the request data size, you must set a value less than
the value set in the control functionality.

5. In-Process HTTP Server

287

5.12.2 Execution environment settings (J2EE server settings)
To specify the settings for limiting the request data size, you must set up a J2EE server.

This subsection describes the settings and examples for limiting the request data size:

(1) How to set
Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for limiting the request
data size in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

The following table lists the definitions in the Easy Setup definition file for limiting the request data size:

Table 5‒18: Definitions in the Easy Setup definition file for limiting the request data size

Parameter to be specified Setting contents

webserver.connector.inprocess_http.
limit.max_request_line

Specifies the upper limit of the request line.

webserver.connector.inprocess_http.
limit.max_headers

Specifies the upper limit for the number of HTTP headers included in the HTTP
request.

webserver.connector.inprocess_http.
limit.max_request_header

Specifies the upper limit for the request header size of the HTTP request.

webserver.connector.inprocess_http.
limit.max_request_body

Specifies the upper limit for the body size of the HTTP request.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

Tip
If the gateway device such as SSL accelerator and load balancer exist or if the proxy server is deployed and the gateway
device and proxy server have the functionality for controlling the request data size, you must set a value less than the value
set in the control functionality.

(2) Example settings
An example of settings for limiting the request data size is as follows:

...
<param>
<param-name>webserver.connector.inprocess_http.limit.max_request_line</param-name>
 <param-value>1024</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.limit.max_headers</param-name>
 <param-value>100</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.limit.max_request_header</param-name>
 <param-value>8192</param-value>
</param>
<param>
<param-name>webserver.connector.inprocess_http.limit.max_request_body</param-name>
 <param-value>16384</param-value>
</param>
...

5. In-Process HTTP Server

288

5.13 Controlling access by limiting the HTTP-enabled
methods

This section describes the controlling of access by limiting the HTTP-enabled methods.

The following table describes the organization of this section:

Table 5‒19: Organization of this section (Controlling access by limiting the HTTP-enabled methods)

Category Title Reference

Description Limiting the HTTP-enabled methods 5.13.1

Settings Execution environment settings (J2EE server settings) 5.13.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

5.13.1 Limiting the HTTP-enabled methods
In the in-process HTTP server, you reject the receipt of requests containing HTTP-disabled methods by limiting the
HTTP-enabled methods for the HTTP request. As a result, you can prevent the unauthorized access of the resources
on the server. By default, you can use the DELETE method, HEAD method, GET method, OPTIONS method, POST
method, and PUT method.

To limit the HTTP methods, specify the method names of the HTTP-enabled methods. The value defined in RFC2616
must be used for the value set as the HTTP-enabled method. However, an asterisk (*) cannot be used in the method
name string. If an asterisk (*) is specified instead of the method name, all the methods can be used.

If a request containing an HTTP-disabled method is received, an error of status code 405 is returned to the Web client.

Note that if a request containing the OPTIONS method is sent for the static contents, a method excluding the disabled
methods for the in-process HTTP server from the enabled methods (GET method, POST method, TRACE method, and
OPTIONS method) is returned for the static contents in the Allow header included in the response by default. In the
case of servlets and JSPs, limiting the HTTP-enabled methods depends on the implementation of the Web application.

5.13.2 Execution environment settings (J2EE server settings)
To specify settings for limiting the HTTP-enabled methods, you must set up the J2EE server.

This subsection describes the settings and examples for limiting the HTTP-enabled methods.

(1) How to set
Specify the settings for limiting the HTTP-enabled methods in the following parameter in the <configuration>
tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

webserver.connector.inprocess_http.enabled_methods
Specifies the method name of an HTTP-enabled method.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

Tip
If a request containing the OPTIONS method is sent for the static contents, a request excluding the disabled methods for the
in-process HTTP server from the enabled methods (GET method, POST method, TRACE method, and OPTIONS method) is
returned for the static contents by default. In the case of servlets and JSPs, limiting the HTTP-enabled methods depends on
the implementation of the Web application.

5. In-Process HTTP Server

289

(2) Example settings
The following is the setting example for limiting the HTTP-enabled methods. Note that the following example shows
the default settings:

...
<param>
 <param-name>webserver.connector.inprocess_http.enabled_methods</param-name>
 <param-value>GET, HEAD, POST, PUT, DELETE, OPTIONS</param-value>
</param>
...

In this example, access is allowed for the GET method, HEAD method, POST method, PUT method, DELETE method,
and OPTIONS method and access is rejected for the TRACE method.

5. In-Process HTTP Server

290

5.14 Customizing responses to the Web client using
HTTP responses

This section describes the customizing of responses to the Web client using HTTP responses.

The following table describes the organization of this section:

Table 5‒20: Organization of this section (Customizing responses to the Web client using HTTP responses)

Category Title Reference

Description Customizing the HTTP response header 5.14.1

Settings Execution environment settings (J2EE server settings) 5.14.2

Note:
There is no specific description of Implementation, Operations, and Notes for this functionality.

5.14.1 Customizing the HTTP response header
This subsection describes the customizing of the HTTP response header.

In the in-process HTTP server, you can customize the information that is automatically set up in the Server header of
the HTTP response. By default, CosminexusComponentContainer is automatically setup.

The value defined in RFC2616 must be used for the value that is automatically set up in the Server header. If the use
of Server header is specified in the servlets and JSPs, that setting is given priority.

5.14.2 Execution environment settings (J2EE server settings)
To specify settings for customizing the HTTP response header, you must set up the J2EE server.

This subsection describes the settings and examples for customizing the HTTP response header.

(1) How to set
Specify the settings for customizing the HTTP response header in the following parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

webserver.connector.inprocess_http.response.header.server
Specifies the string that is automatically set up in the Server header of the HTTP response.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Example settings
The following is the setting example for customizing the HTTP response header:

...
<param>
 <param-name>webserver.connector.inprocess_http.response.header.server</param-name>
 <param-value>GyoumuServer/1.0</param-value>
</param>
...

In this example, GyoumuServer/1.0 is specified as the Server header value.

5. In-Process HTTP Server

291

5.15 Error page customization (In-process HTTP server)
If the client access non-existent resources the in-process HTTP server returns the error status code and error page, and
the error page generated by the in-process HTTP server is displayed to the client. In the in-process HTTP server, a
user-created page can be displayed to the client instead of this error page. This is called error page customization.

This section describes the customization of the responses to the Web client with the error page.

The following table describes the organization of this section:

Table 5‒21: Organization of this section (Error page customization (in-process HTTP server))

Category Title Reference

Description Error page that can be customized 5.15.1

Implementation Implementation required for customizing the error page 5.15.2

Settings Execution environment settings (J2EE server settings) 5.15.3

Notes Precautions related to error page customization 5.15.4

Note:
There is no specific description of Operations for this functionality.

5.15.1 Error page that can be customized
When an error such as the access to non-existent resources occurs, a user-created error page can be displayed to the
client instead of the error page displaying the error status code.

By using the error page customization with the in-process HTTP server, you can control error page customization
corresponding to a specific status code and error page customization corresponding to a request URL in the Web
Container at the same time. You can also customize the error page even when you cannot customize the error page
with the Web applications in the following cases:

• When the context corresponding to the request does not exist (status code 404)

• When an attempt is made to process the request with a context that is in the process of stopping (status code 503)

• When the in-process HTTP server returns an error status code

For details on the error status codes returned by the in-process HTTP server, see Appendix A.3 Error status codes
returned by the in-process HTTP server.

In the in-process HTTP server, you can customize the following error pages:

• Error page customization corresponding to the status codes
You can customize the error pages corresponding to the status codes 400 and 500.
By customizing the error pages corresponding to the status code, you can send the files corresponding to the status
code and execute redirection corresponding to the status code.

• Sending the files corresponding to the status code
You can return to the client a specific file as a response body for the customized status code. In this case,
specify the Content-Type header value of the response.
Note that if the reading of the file fails during request processing, the default error page is used.

• Redirection corresponding to the status code
You can redirect to a specific URL for the customized status code. In the case of redirection, specify 302 as
the response status code and the redirect URL in the Location header.
When sending a file corresponding to the status code, redirection cannot be executed.

• Error page customization corresponding to the request URLs
You can specify a request URL and customize the error page for a specific URL. When the request URL is
specified, the customized error page is returned to the client only when an error occurs in the request processing
matching with the specified URL.

5. In-Process HTTP Server

292

5.15.2 Implementation required for customizing the error page
To customize the error page with the in-process HTTP server, use the sendError method of the
javax.servlet.http.HttpServletResponse interface, and set the response status code. Note that if you
use the setStatus method (such as when the setStatus method is used in JSP), customization might not be
executed by the in-process HTTP server. However, even if you use the sendError method, if the Web application
fulfills one of the following conditions, the error page is not customized by the in-process HTTP server:

• If an exception is thrown during the execution of the sendError method

• When error page customization is specified in the Web application and when an error occurs, the execution of the
error page as per the settings terminates normally#

#
Normal termination of error page execution implies the satisfaction of the following conditions:

• An exception that cannot be caught in the error page does not occur.

• The status code ends with a value other than 400 to 599.

5.15.3 Execution environment settings (J2EE server settings)
To customize the error pages, you must set up the J2EE server.

This subsection describes the settings and examples for error page customization.

(1) How to set
Implement the J2EE server settings in the Easy Setup definition file. Specify the definition for error page
customization in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition
file.

The following table lists the definitions in the Easy Setup definition file for the error page customization:

Table 5‒22: Definitions in the Easy Setup definition file for error page customization

Parameter to be specified Setting contents

webserver.connector.inprocess_http.
error_custom.list

Specifies the definition name for error page customization.

webserver.connector.inprocess_http.
error_custom.error-page-customising-
definition-name.status

Specifies the error status code that customizes the error page to customize the
error page in association with the error status code.

webserver.connector.inprocess_http.
error_custom.error-page-customising-
definition-name.file

Specifies the file to be returned to the client as a response body to send a file
corresponding to the error status code.

webserver.connector.inprocess_http.
error_custom.error-page-customising-
definition-name.file.content_type

Specifies the value of the Content-Type header when a file specified in the
webserver.connector.inprocess_http.error_custom.error-
page-customizing-definition-name.file parameter is sent to the client as a
response body.

webserver.connector.inprocess_http.
error_custom.error-page-customising-
definition-name.redirect_url

Specifies the redirection destination URL when redirecting in compliance with
the error status code.

webserver.connector.inprocess_http.
error_custom.error-page-customising-
definition-name.request_url

Specifies the request URL that applies error page customization when
customizing the error page in association with the request URL.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

5. In-Process HTTP Server

293

(2) Example of settings
The following is the setting example of settings for the error page customization:

...
<param>

<param-name>webserver.connector.inprocess_http.error_custom.list</param-name>
 <param-value>ERR_CUSTOM_1, ERR_CUSTOM_2</param-value>
</param>
<param>

<param-name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_1.status</
param-name>
 <param-value>404</param-value>
</param>
<param>

<param-name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_1.file</param-
name>
 <param-value>C: /data/404.html</param-value>
</param>
<param>

<param-
name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_1.file.content_type</
param-name>
 <param-value>text/html; charset=ISO-8859-1</param-value>
</param>
<param>

<param-name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_2.status</
param-name>
 <param-value>503</param-value>
</param>
<param>

<param-
name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_2.redirect_url</param-
name>
 <param-value>http: //host1/503.html</param-value>
</param>
<param>

<param-name>webserver.connector.inprocess_http.error_custom.ERR_CUSTOM_2.request_url</
param-name>
 <param-value>/dir1/*</param-value>
</param>
...

In this example, ERR_CUSTOM_1 and ERR_CUSTOM_2 are used as the error page customizing definition names. In
ERR_CUSTOM_1, when the response status code is '404', C:/data/404.html is returned to the client. text/
html; charset=ISO-8859-1 is used as the Content-Type header value. In ERR_CUSTOM_2, when the request
is a URL beginning with /dir1/ and the response status code is '503', the request is redirected to http://
host1/503.html.

5.15.4 Precautions related to error page customization
The precautions related to error page customization by the in-process HTTP server are as follows:

• When the HTTP response is an HTML file, if another file (such as an image file) is being referenced from that
HTML, the error page might not be properly displayed.

• Note that depending on the browser settings, if the status code indicates an error and if the size of the response
body is small, the response body MIGHT be replaced by a browser-specific message. Note that in the default error
page displayed when an error page is not specifically customized, the size of the response body is small.

• If the value specified in the redirect URL matches with the value specified for the request URL and if the same
error status occurs after redirection, note that the client keeps redirecting the requests.

• When redirect corresponding to the status code is implemented, the query string added to the request URL when
an error occurs, is not added to the redirect URL. Also, when a session is managed by URL rewriting, the session
cannot be inherited even if the request is redirected to the same Web application as the error page.

5. In-Process HTTP Server

294

5.16 Notification of gateway information to a Web
container

This section describes the reporting of the gateway information to the Web container.

The following table describes the organization of this section:

Table 5‒23: Organization of this section (Reporting of the gateway information to the Web container)

Category Title Reference

Description Gateway specification functionality 5.16.1

Settings Execution environment settings (J2EE server settings) 5.16.2

Notes Precautions related to reporting the gateway information to the Web Container 5.16.3

Note:
There is no specific description of Implementation and Operations for this functionality.

Reference note
The functionality is not different when in-process HTTP server is not used (when the Web server integration functionality is
used). For details on the functionality, see 4.10 Notification of gateway information to a Web container.

5.16.1 Gateway specification functionality
If a gateway such as an SSL accelerator or a load balancer is placed between a client and an in-process HTTP server,
when the Web container automatically redirects to a welcome file or the Form authentication window, the Web
container may not properly create a forwarding URL because the container cannot acquire the information about the
gateway.

To avoid this problem, you can use the gateway specification functionality. This functionality notifies a Web container
of gateway information so that the Web container can properly redirect to a welcome file or Form authentication
window.

The gateway specification functionality is used in the following case:

• When an SSL accelerator is placed between a client and in-process HTTP server:
Even if a client accesses an SSL accelerator via HTTPS, the SSL accelerator accesses a Web server via HTTP,
which causes the Web container to assume that the access uses HTTP. For this reason, HTTP is used for the URL
scheme for the welcome file or Form authentication window that is the redirection destination.
In this situation, by using the gateway specification function to specify that the scheme be always considered as
HTTPS, you can ensure that accesses are properly redirected.

• When a request without a Host header needs to be redirected away from the in-process HTTP server that
received the request
When redirecting a request without a Host header, the host name and port number of the redirection destination
URL becomes the host name and port number of the Web server that receives the request.
Use the gateway specification functionality when the host name and port number of the URL accessed by the
client is different from the Web server or in-process HTTP server that receives the request, such as when a load
balancer is deployed before the Web server or in-process HTTP server. As a result, the host name and port number
accessed from the client are specified, so the request can be redirected properly.

Note that when using the in-process HTTP server, gateway specification functionality cannot be used if multiple
different routes are used for accessing one Web container (when HTTP requests are forwarded to the Web container
from multiple gateways). To use the gateway specification functionality in the in-process HTTP server, use a
configuration in which there is one access route to the Web container.

5. In-Process HTTP Server

295

5.16.2 Execution environment settings (J2EE server settings)
To specify settings for reporting the gateway information to the Web Container, you must set up a J2EE server.

This subsection describes the settings and examples for reporting the gateway information to the Web container.

(1) How to set
Implement the J2EE server settings in the Easy Setup definition file. Define the settings for reporting the gateway
information to the Web container in the <configuration> tag of the logical J2EE server (j2ee-server) in the Easy
Setup definition file.

The following table lists the definitions in the Easy Setup definition file for reporting the gateway information to the
Web container:

Table 5‒24: Definitions in the Easy Setup definition file for reporting the gateway information to the Web
container

Parameter to be specified Setting contents

webserver.connector.inprocess_http.
gateway.https_scheme

Specifies the scheme of the redirection destination URL.

webserver.connector.inprocess_http.
gateway.host

Specifies the gateway host name.

webserver.connector.inprocess_http.
gateway.port

Specifies the gateway port number.

For details on the Easy Setup definition file and the parameters to be specified, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

(2) Example settings
An example of settings for the gateway specification functionality is as follows:

...
<param>
 <param-name>webserver.connector.inprocess_http.gateway.host</param-name>
 <param-value>host1</param-value>
</param>
<param>
 <param-name>webserver.connector.inprocess_http.gateway.port</param-name>
 <param-value>4443</param-value>
</param>
<param>

<param-name>webserver.connector.inprocess_http.gateway.https_scheme</param-name>
 <param-value>true</param-value>
</param>
...

In this example, the gateway specification functionality is used to specify settings so that the scheme is always
considered to be HTTPS.

5.16.3 Precautions related to reporting the gateway information to the
Web container

The following are cautionary notes on using the gateway specification functionality:

• Specifying the host name and port number of an URL where an access is redirected:
A browser usually sends a request with the Host header appended, so it is not necessary to specify the host name
or port number for an URL where access is to be redirected.
Note that you can check whether or not the request has the Host header by calling the getHeader method of the
javax.servlet.http.HttpServletRequest interface, with the Host argument specified.

5. In-Process HTTP Server

296

• Servlet API behavior:
Using the gateway specification functionality causes some servlet API functions to behave differently. Take care
when using API functions with a Web application.
For details on the servlet API functions where the operations are changed, see 6.2.2(10) Precautions for using the
gateway specification functionality.

• The <transport-guarantee> tag in web.xml:
When you use the gateway specification functionality to specify that a scheme is to be considered as HTTPS, a
request to a Web server will be considered to use HTTPS even if the request actually uses HTTP. Note that this
prevents an access from being redirected to an URL that uses HTTPS, even if you specify INTEGRAL or
CONFIDENTIAL in the <transport-guarantee> tag in web.xml.

• The Secure attribute for cookies:
When you use the gateway specification functionality to specify that a scheme is to be considered as HTTPS,
when a session ID generated by a Web container is returned to the client by the session cookie, the Secure
attribute is appended to the cookie.

5. In-Process HTTP Server

297

5.17 Output of log and trace
This section describes the log and trace output by the in-process HTTP server.

The following table describes the organization of this section:

Table 5‒25: Organization of this section (Output of log and trace)

Category Title Reference

Description Log and trace output by the in-process HTTP server 5.17.1

Settings Customizing the access log of the in-process HTTP server 5.17.2

Note:
There is no specific description Implementation, Operations, and Notes for this functionality.

5.17.1 Log and trace output by the in-process HTTP server
The in-process HTTP server outputs the log and trace described in the following table to support application
development, for performance analysis during operations, and for troubleshooting during a failure:

Table 5‒26: Log and trace output by the in-process HTTP server

Types of log and trace Description

Access log Outputs the result of request and response processing from the Web client. This log is used for
analyzing the communication with the Web client.

By analyzing the access log, you can analyze the files requested from the Web client and the
performance information and session tracking information of the in-process HTTP server.

Performance analysis trace Outputs the performance analysis information of the sending and receiving of requests and the
information for troubleshooting in the case of failure in the in-process HTTP server.

The performance analysis trace is converted to a CSV format and can be used to analyze the
bottlenecks in the entire system in combination with the performance analysis information
output by the functionality of other J2EE servers. For details on the performance analysis trace,
see 4.6 Performance analysis trace in the uCosminexus Application Server Maintenance and
Migration Guide.

Thread trace Trace for maintenance.

Communication trace Trace for maintenance.

5.17.2 Customizing the access log of the in-process HTTP server
The in-process HTTP server outputs the access log, performance analysis trace, thread trace, and communication trace
for supporting application development, for performance analysis during operations, and for troubleshooting during
failure. You can change the number and size of these files. You can also customize the log output format in the access
log.

This subsection describes the customization of the access log output format in the in-process HTTP server. For details
on changing the number and size of the access log and trace files in the in-process HTTP server, see 3.3.11 Settings
for acquiring logs of the in-process HTTP server in the uCosminexus Application Server Maintenance and Migration
Guide.

(1) Customization procedure
To customize the access log output format:

1. Define the format name of the access log.

5. In-Process HTTP Server

298

To create a new format, add the new format name in the
webserver.logger.access_log.format_list parameter in the <configuration> tag of the
logical J2EE server (j2ee-server) in the Easy Setup definition file.

Example settings

...
<param>
 <param-name>webserver.logger.access_log.format_list</param-name>
 <param-value>formatA</param-value>
</param>
...

For creating a new format, reference the access log format provided by default. For details on the format, see (2)
Access log format.

2. Define the output format for the access log.
Define the access log output format in the format specified in format-name with the
webserver.logger.access_log.format-name parameter within the <configuration> tag of the
logical J2EE server (j2ee-server) in the Easy Setup definition file. Specify the argument for the access log format
in the output format definition.

Example settings

...
<param>
 <param-name>webserver.logger.access_log.formatA</param-name>
 <param-value>%h %u %t "%r" %>s HostHeader="%{host}i"</
param-value>
</param>
...

For details on the specifiable format arguments, see (3) Arguments of the access log format.

3. Specify the format that will be used to output the access log.
Specify the format name that will be used to output the access log with the
webserver.logger.access_log.inprocess_http.usage_format parameter within the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. An access log
is output in the format specified here:

Example settings

...
<param>
 <param-name>webserver.logger.access_log.inprocess_http.usage_format</param-
name>
 <param-value>formatA</param-value>
</param>
...

(2) Access log format
Application Server provides two types of formats namely common (default format) and combined (extended format)
as the access log formats of the in-process HTTP server. When creating a new format, reference these formats.

(a) Output format

The output format of access log is described below. Note that indicates one-byte space. Also, for the convenience
of expression, the log is output across multiple lines, but the log is actually output in one line.

The output format of a default format is as follows:

Host-name-or-IP-address-of-Web-client Remote-log-name Authentication-user-name
Start-time-of- Web-client-request-processing Request-line
Final-status-code Number-of-bytes-sent-excluding-the-HTTP-header

The output format of an extended format is described below:

Host-name-or-IP-address-of-Web-client Remote-log-name Authentication-user-name
Start-time-of- Web-client-request-processing Request-line

5. In-Process HTTP Server

299

Final-status-code Number-of-bytes-sent-excluding-the-HTTP-header
 "Referer-header-contents" "User-Agent-header-contents"

The underlined part is the difference between the default format and extended format. In the extended format,
Referer header contents and User-Agent header contents is output in addition to the output
contents of the default format.

(b) Example of output

An example of access log output in the default format is as follows:

10.20.30.40 - user [20/Dec/2004: 15: 45: 01 +0900] "GET /index.html HTTP/1.1" 200 8358
10.20.30.40 - user [20/Dec/2004: 15: 45: 01 +0900] "GET /left.html HTTP/1.1" 200 2358
10.20.30.40 - user [20/Dec/2004: 15: 45: 01 +0900] "GET /right.html HTTP/1.1" 200 4358

An example of access log output in the extended format is as follows:

10.20.30.40 - - [18/Jan/2005: 13: 06: 10 +0900] "GET / HTTP/1.0" 200 38 "-" "Mozilla/
4.0 (compatible; MSIE 6.0; Windows NT 5.1) "
10.20.30.40 - - [18/Jan/2005: 13: 06: 25 +0900] "GET /demo/ HTTP/1.0" 500 684 "-"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1) "

(3) Arguments of the access log format
The following table lists the arguments of the access log format that are specified when you define the output format
of the format:

Table 5‒27: List of arguments of the access log format

Format
arguments Output contents Example of output

%% % Sign %

%a IP address of the Web client 10.20.30.40

%A IP address of the J2EE server 10.20.30.100

%b Number of bytes sent excluding the HTTP header

('-' in the case of 0 bytes)

2048

%B Number of bytes sent excluding the HTTP header

('0' in the case of 0 bytes)

1024

%h Host name or IP address of the Web client

(IP address when the host name cannot be acquired)

10.20.30.40

%H Request protocol HTTP/1.1

%l Remote log name#1

(Always '-')

-

%m Request method GET

%p Port number that receives the request from the Web client 80

%q Query string

(Begins with '? '. If the query string does not exist, null character)

?id=100&page=15

%r Request line GET /index.html HTTP/1.1

%>s Final status code

(Internally redirected value is not output)

200

5. In-Process HTTP Server

300

Format
arguments Output contents Example of output

%S#2 User's session ID

('-' if the session ID does not exist)

00455AFE4DA4E7B7789F247B8FE5
D605

%t Start time of the Web client request processing

(Unit: seconds, output format: dd/MMM/YYYY:HH:mm:ss Z)

[18/Jan/2005: 13: 06: 10 +0900]

%T Time required for processing the Web client request

(Unit: seconds)

2

%d Start time of the Web client request processing

(Unit: milliseconds, output format: dd/MMM/YYYY:HH:mm:ss.nnn Z
(nnn indicates milliseconds))

[18/Jan/2005: 13: 06: 10.152 +0900]

%D Time required for processing the Web client request

(Unit: milliseconds)

2000

%u Basic authentication user name, Form authentication user name

('-' when the authentication user name does not exist)

user

%U Request file path /index.html

%v Local host name of the J2EE server server

%{foo}I#3 Contents of request header foo
('-' when foo header does not exist)

In the case of %{Host}i,
www.example.com:8888

%{foo}c Of the Cookie information sent by the Web client, contents of Cookie
name foo
('-' when the Cookie name does not include foo)

In the case of %{JSESSIONID}c,
00455AFE4DA4E7B7789F247B8FE5
D605

%{foo}o#3 Contents of response header foo
('-' when the foo header does not exist)

In the case of %{Server}o,
CosminexusComponentContainer

#1
The remote log name is the user name in the Web client that can be acquired with the Identification protocol defined in RFC
1413.

#2
The session ID displayed in %S is the value of the Cookie name 'JSESSIONID'. This session ID is different from the global
session ID in the memory session failover functionality. When you want to output the global session ID, specify %
{GSESSIONID}c. If GIDCookieName is changed, specify the value of the changed GIDCookieName.

#3
The same header name might be sent multiple times in one HTTP request or HTTP response. In this case, the contents of the
header read first will be output.

! Important note

If there is an error in the specification of the format argument, the default format is used. The example of the use of the
default format is as follows:

• When strings not existing in the list of format arguments (example: %G) is specified

• When 0 characters (such as %{}i) are specified in the request header contents, response header contents, and Cookie
name.

Reference note
If the default format and extended format are coded in the format arguments, the format is as follows:

• Default format
%h %l %u %t "%r" %>s %b

• Extended format

5. In-Process HTTP Server

301

%h %l %u %t "%r" %>s %b "%{Referer}i" "%{User-Agent}i"

5. In-Process HTTP Server

302

6 Implementation of Servlets and
JSPs
This chapter describes the precautions for implementing servlets and JSPs.

303

6.1 Support range of the functionalities that are added or
changed in Servlet specifications and JSP
specifications

This section gives an overview of the functionalities that are added or changed in the Servlet and JSP specifications,
and also describes the support range of functionalities in Application Server.

For details on operations and precautions when using the functionalities that are added or changed in different
versions of Servlet specifications and JSP specifications in Application Server, see the sections starting from 6.2.3.

The following table gives an overview of the functionalities that are added, or changed in Servlet 3.0 and describes the
support range.

Table 6‒1: Overview of the Servlet 3.0 functionalities and the support range

No. Functionality name Functionality overview Support

1 web.xml (Servlet 3.0) and new annotations You can use a web.xml that is compatible with Servlet 3.0. Y

You can define servlet annotations. (web.xml can be
omitted)

Y

You can use web-fragment.xml. N #1

2 Dynamic servlet definition You can define servlet, filters or listeners with an API. Y

3 File upload Requests with multipart/form-data as the content-type
can be processed.

Y

4 Static resource allocation You can allocate static resources or JSP to META-INF/
resources of the JAR file.

Y

5 Security enhancements • You can set security with annotations.

• You can use APIs for authentication.

Y

6 Asynchronous servlet Request processing and response generation can be done in a
different thread other than the thread that receives requests.

N #2

7 Other changes in the Servlet specifications You can add the HttpOnly attribute to Cookie. Y

You can change the HTTP Cookie name indicating a session
ID of the HTTP session.

Y

You can use the HTTP digest authentication. N #3

You can acquire the SSL Session ID as the
ServletRequest property.

N #4

8 Changes in JSP specifications You can use a web.xml to specify the default content type or
the buffer size.

N #5

9 Methods with the EL parameter You can invoke methods having parameters. Y#6

10 API enhancements You can use newly added or changed APIs. L#7

Legend:
Y: Supported
N: Not supported
L: Limited support

#1
Is ignored, if the Web application includes web-fragment.xml.

#2
The DD and annotations related to asynchronous servlets are ignored. An exception is thrown if you invoke an API of an
asynchronous servlet.

6. Implementation of Servlets and JSPs

304

#3
Operation is not guaranteed if you set the digest authentication in the DD.

#4
If you specify javax.servlet.request.ssl_session_id as an argument in the ServletRequest class and invoke
the getAttribute method, null is always returned.

#5
A web.xml compatible with JSP 2.2 can be read. However, any tag added in JSP 2.2 is ignored.
Even for a Web application of version 3.0, the JSP version that complies with JSP is version 2.1.

#6
You cannot use the Expression Language of JSP 2.2 if the EL is of the JSP 2.1 or 2.0 specifications. If you use an API of JSP 2.2
EL, the operation is not guaranteed because the API is not checked.

#7
You can use APIs of supported functionalities, but not of functionalities that are not supported. For details on APIs of Servlet
3.0, see 6.2.3(9) About APIs.

6. Implementation of Servlets and JSPs

305

6.2 Precautions for implementing servlets and JSPs
This section describes the precautions for implementing servlets and JSPs.

The following table describes the organization of this section.

Table 6‒2: Organization of this section (Precautions for implementing servlets and JSPs)

Titles Reference

Common precautions for implementing servlets and JSPs 6.2.1

Precautions for implementing servlets 6.2.2

Precautions related to the specifications that are added or changed in the Servlet 3.0 specifications 6.2.3

Precautions related to added and changed specifications in the Servlet 2.5 specifications 6.2.4

Precautions related to added and changed specifications in the Servlet 2.4 specifications 6.2.5

Precautions for implementing JSPs 6.2.6

Precautions related to added and changed specifications in the JSP 2.1 specifications 6.2.7

Precautions related to added and changed specifications in the JSP 2.0 specifications 6.2.8

Precautions for implementing JSPs of the JSP 1.2 specifications 6.2.9

Precautions related to the specifications that are added or changed in the EL2.2 specifications 6.2.10

Points to remember when upgrading the version of an existing Web application to the Servlet 3.0
specifications

6.2.11

Points to remember when upgrading the version of an existing Web application to the Servlet 2.5
specifications

6.2.12

Precautions related to Web applications when migrating from a previous version of Application Server to
09-00

6.2.13

Points to remember when upgrading the version of an existing Web application to the Servlet 2.4
specifications

6.2.14

Using annotations in servlets 6.2.15

Precautions related to size limitations for JavaVM methods 6.2.16

6.2.1 Common precautions for implementing servlets and JSPs
This subsection describes the common precautions for implementing servlets and JSPs as the application programs
running on the Application Server.

(1) J2EE application version requirements for Web application operations
For each Web application version, the following table lists the J2EE version to which the J2EE application conforms
and that forms the prerequisite for Web application operations:

Table 6‒3: J2EE version to which the J2EE application conforms

Version of J2EE specifications to which
the J2EE application conforms

Servlet specifications corresponding to the Web applications

3.0 2.5 2.4 2.3 2.2

Java EE 6 Y Y Y Y Y

Java EE 5 N Y Y Y Y

J2EE1.4 N N Y Y Y

6. Implementation of Servlets and JSPs

306

Version of J2EE specifications to which
the J2EE application conforms

Servlet specifications corresponding to the Web applications

3.0 2.5 2.4 2.3 2.2

J2EE1.3 N N L Y Y

J2EE1.2 N N L L Y

Legend:
Y: Available
L: Limited (since the version of the J2EE specifications is updated to 1.4 when importing the J2EE application)
N: Not available

(2) Supported range of Web applications
The Web application version is identified by the version information of the Servlet specifications described in
web.xml. A Web application of a higher version can use the functionality of a lower version. A Web application of a
lower version cannot use the functionality of a higher version.

The following table describes the range of functionality available for each Web application version:

Table 6‒4: Supported range of Web applications

Version of the
Web

application

Servlet JSP Tag library#1

3.0 2.5 2.4 2.3 2.2 2.2 2.1 2.0 1.2 1.1 2.1 2.0 1.2 1.1

3.0 Y Y Y Y Y N#2 Y Y Y Y Y Y Y Y

2.5 N Y Y Y Y N Y Y Y Y Y Y Y Y

2.4 N N Y Y Y N N Y Y Y N Y Y Y

2.3 N N N Y Y N N N Y Y N N Y Y

2.2 N N N N Y N N N N Y N N N Y

Legend:
Y: Available
N: Not available

#1
The tag library version indicates the version of the tag library descriptor (TLD file).

#2
A web.xml compatible with JSP 2.2 can be read. However, any tag added to JSP 2.2 is ignored.

Note that if the functionality of a later version is used from a Web application of an earlier version, an error might
occur. The following table describes the errors in each version:

Table 6‒5: Errors that occur if functionalities of Servlet 3.0 are used from a Web application that is
compatible with Servlet 2.2, 2.3, 2.4, or 2.5 specifications

Specifications Functionality used Operation in the event of an error

Servlet 3.0 Invoking new API The program does not check whether an API of the Servlet 3.0 specification is being
used. To avoid any abnormal operation, do not call the API.

Using new annotations For handling errors occurring due to annotations, see 12. Using Annotations in the
uCosminexus Application Server Common Container Functionality Guide.

JSP 2.2 New EL API The program does not check whether an API of EL2.2 specification is being used.
To avoid any abnormal operation, do not call the API.

For details on operations and precautions when upgrading a Web application from Servlet 2.2, Servlet 2.3, Servlet 2.4,
or Servlet 2.5 specifications to Servlet 3.0 specifications, see 6.2.11 Points to remember when upgrading the version
of an existing Web application to the Servlet 3.0 specifications.

6. Implementation of Servlets and JSPs

307

Table 6‒6: Errors when Servlet 2.5 functionality is used from a Web application corresponding to Servlet
2.2, 2.3, or 2.4 specifications

Specifications Functionality used Error processing

Servlet 2.5 Invoking new API The check whether the API added in the Servlet 2.5 specifications
is used, is not performed. The operations when the API is invoked
do not function properly, so do not invoke the API.

Using new annotations For the processing when an annotation is used and an error occurs,
see 12. Using annotations in the uCosminexus Application Server
Common Container Functionality Guide.

JSP 2.1 Attributes of the new directive#1 KDJE39145-E message is output in the servlets log and
KDJE39186-E message is output in the message log#2 and a
translation error occurs.

TLD 2.1 If the following TLD file exists when the Web application starts,
the KDJE39293-W message is output in the message log and the
processing is not performed:

• TLD file specified in the <tablib-location> element in
the <taglib> element of web.xml

• TLD file deployed under the /META-INF directory in the Jar
file under the /WEB-INF/lib directory

If a TLD file other than the above exists when the Web application
starts, the KDJE39293-W message is output in the message log
during JSP compilation and the processing is not performed.

If JSP compilation occurs when the application is accessed the first
time, the KDJE39145-E message is output in the servlets log and
the KDJE39186-E message is output in the message log#2 and a
translation error occurs.

EL addition functionality • Dedicated processing is not implemented for the Enum type
added in JSP 2.1. The processing is same as for the general
classes.
However, if the EL API of the JSP 2.0 specifications that is
deprecated in the JSP 2.1 specifications is used, regardless of
the Web application version, the API is processed in the EL
functionality range of the JSP 2.0 specifications.

• EL with #{} format is displayed as a string.

• "\#" is not handled as an escape sequence, and is displayed as
a string "\#".

#1
If an undefined directive is specified in the JSP specifications for XXX using the format <jsp:directive.XXX/> on the
JSP page or if an undefined standard action is specified in the JSP specifications for XXX using the format <jsp:XXX>, the
definition contents are output as is.

#2
The details of JSP compilation error are output in KDJE39145-E and the reporting of translation error is output in KDJE39186-E.

For details on the operations and precautions when upgrading the Web application version from Servlet 2.2
specifications, Servlet 2.3 specifications, and Servlet 2.4 specifications to Servlet 2.5 specifications, see 6.2.12 Points
to remember when upgrading the version of an existing Web application to the Servlet 2.5 specifications.

Table 6‒7: Errors when using the functionality of Servlet 2.4 specifications from a Web application
corresponding to Servlet 2.2 or 2.3 specifications

Specifications Functionality used Error processing

Servlet 2.4 Invoking new API The check for whether the API added in the Servlet 2.4
specifications is used, is not performed. The operations when the
API is invoked do not function properly, so do not invoke the API.

6. Implementation of Servlets and JSPs

308

Specifications Functionality used Error processing

Servlet 2.4 Registering new listener The KDJE39297-W message is output in the message log when the
Web application starts and the listener definition is ignored.

JSP 2.0 New directive and new standard
action#1

The KDJE39145-E message is output in the servlets log and the
KDJE39186-E message is output in the message log#2, and a
translation error occurs.

Tag files When TLD is not used
The tagdir attribute that is a new attribute is assumed to be
invalid in the taglib directive, the KDJE39145-E message is
output in the servlets log and the KDJE39186-E message is
output in the message log#2, and a translation error occurs.

When TLD is used
A TLD 2.0 usage error occurs.

TLD 2.0 The following TLD files are checked when the Web application
starts. When applicable, the KDJE39293-W message is output in
the message log and the file is ignored:

• TLD file specified in <taglib><tablib-location> of
web.xml

• TLD file deployed under /META-INF in the Jar file under /
WEB-INF/lib

The TLD files other than above-mentioned are checked during the
JSP compilation. When the JSP file is compiled, such as during the
initial access, the KDJE 39145-E message is output in the servlets
log and the KDJE39186-E message is output in the message log#2,
and a translation error occurs.

Simple Tag Handler The KDJE39145-E message is output in the servlets log and the
KDJE39186-E message is output in the message log#2, and a
translation error occurs.

#1
If an undefined directive is specified in the JSP specifications for XXX using the format <jsp:directive.XXX/> on the
JSP page or if an undefined standard action is specified in the JSP specifications for XXX using the format <jsp:XXX>, the
definition contents are output as it is.

#2
The details of JSP compilation error are output in KDJE39145-E and the reporting of translation error is output in KDJE39186-E.

For details on the operations and precautions when upgrading the Web application version from Servlet 2.2
specifications and Servlet 2.3 specifications to Servlet 2.4 specifications, see 6.2.14 Points to remember when
upgrading the version of an existing Web application to the Servlet 2.4 specifications.

Note that even if you use the Servlet 2.3 functionality from the Web applications corresponding to the Servlet 2.2
specifications, when imported, the application is rewritten by the Web application conforming to the Servlet 2.3
specifications, and therefore, the application is processed normally and error is not reported.

(3) Notes on using the transaction and JDBC connection
To use a transaction in the servlets and JSPs, acquire the JDBC connection with the applicable service method and
release the connection before the applicable service method ends. In the servlets and JSPs where the transaction is
running, the use of the following JDBC connections is not supported:

• Use of the JDBC connection on the thread generated by the service methods of the servlets and JSPs.

• Use of the JDBC connection in the service methods of the other servlets and JSPs invoked from the service
methods of the servlets and JSPs.

• Use of the JDBC connection acquired with the init method of the service methods of the servlets and JSPs.

• Use of the JDBC connection stored in the instance variable.#

6. Implementation of Servlets and JSPs

309

#
When the servlets and JSPs of SingleThreadModel are used, the JDBC connection can be stored in the
instance variable.

(4) Notes related to package name specification
If a class with an invalid package name is used in the servlets and JSPs, an error with status code 500 occurs when the
class is accessed from the browser. For example, even if a created class file is deployed correctly and accessed from
the browser, if the package name declaration is invalid, the applicable class is not found. In this case, an error with
status code 500 is returned.

(5) Notes for using cookies

• Do not use cookies containing double-byte codes such as Japanese characters. If such cookies are used, the HTTP
session used in the servlets and JSPs might be lost.

• When managing a session with a cookie, the session generated using the servlets or JSPs accessed in the URL by
the host name is not inherited in the servlets or JSPs accessed in the URL with the IP address specified instead of
the host name (and vice versa).

(6) Notes related to display of input values with special meanings
When the input values of characters with special meanings such as "<" and ">" in forms are displayed as it is,
malicious users might use the tags such as <SCRIPT>, <OBJECT>, <APPLET>, <EMBED> that can execute scripts
and cause important security-related problems. A processing must be added for the application developer to inspect
the data entered by a user and the characters with special meanings must be excluded.

(7) Notes related to error page display after response commit
After the response is committed in the servlets or JSPs, even if an error such as an exception occurs, the following
error pages are not displayed in the browser:

• Error pages specified in web.xml
• Error pages specified in the errorPage attribute of the JSP page directive

• Default error pages output by the Web container server

The Web container commits the response automatically when the response buffer becomes full apart from the case in
which the user commits the response by invoking the flushBuffer method of the ServletResponse class
explicitly.

To check whether the response is committed in the servlets or JSPs, use the isCommitted method of the
ServletResponse class. Also, you can change the buffer size using the setBufferSize method of the
ServletResponse class in the case of servlets and by specifying the buffer attribute of the page directive for JSPs.

(8) Improving the performance when using the PrintWriter and JSPWriter class
By reducing the frequency of invoking the print method and the println method of the PrintWriter class
and the JSPWriter class, you can reduce the access frequency and improve the performance. For example, use the
StringBuffer class and invoke the println method finally to reduce the frequency of invoking the print and
println methods.

(9) Notes on referencing the error information by javax.servlet.error.XXXXX
The javax.servlet.error.XXXXX attributes defined in the Servlet 2.3 specifications are used for referencing
the error information that causes the execution of the error page in the servlets or JSPs specified in the <error-
page> tag of web.xml. Do not reference these attributes from servlets or JSPs other than those specified in the
<error-page> tag of web.xml.

6. Implementation of Servlets and JSPs

310

(10) Notes on accessing files
To access a file, make sure you specify the absolute path. If you specify the relative path, the J2EE server tries to
search the target path according to the relative path from the execution directory of the Web container server. If you
specify the relative path in the getRealPath method of the ServletContext class, the relative path in the
directory that deploys the WAR file is acquired.

Furthermore, when you access a file, make sure that you close the file. If you access a file in the WAR file
deployment directory and do not close the file, you cannot perform the normal un-deployment on the J2EE server. If
the file not closed even when the path under the WAR file deployment directory is not specified, events such as the
files cannot be deleted when the J2EE server is running occur.

(11) Error page settings when an exception occurs
If an exception occurs while accessing the JSPs and servlets, the exception status code is returned to the browser by
the default processing in the Web Container. To change this default processing, specify the JSP errorPage or set the
error page in web.xml.

(12) Notes related to acquisition of the class loader
To use the following methods by acquiring the class loader of the Cosminexus Component Container from the code in
the J2EE application, use the java.net.JarURLConnection class:

• getResource(String) .openConnection() .getInputStream()
• getResource(String) .openStream()

In the process in which these methods are invoked, the openConnection method of the
java.net.JarURLConnection class is invoked and the JAR file specified in the applicable URL is opened.
This JAR file remains open unless the close method is explicitly invoked and cannot be deleted. Do not use these
methods in the J2EE application. Also, when the operations for the JAR file are required and when using the
openConnection method of the java.net.JarURLConnection class, make sure that you invoke the close
method of the JarFile instance that the getJarFile method of the java.net.JarURLConnection returns.

(13) Notes on using the URLConnection class
When the java.net.URLConnection class uses the setUseCaches(boolean) method to acquire the
connection for the specified URL, you can specify whether or not to use the cache information. When the
setUseCaches(false) method is specified for the URLConnection class, the target object is generated for
each connection. When the URLConnection class is used from the code in the J2EE application, memory might be
insufficient for the J2EE server JavaVM.

(14) Notes related to the loading of the native library
Do not use the System.loadLibrary method to load the native library from the servlets and JSPs. If the native
library is loaded with the servlets and JSPs, the error java.lang.UnsatisfiedLinkError might occur
depending on the constraints of the JNI specifications. If you must load the native library, create the container
extension library that invokes the System.loadLibrary method and implement settings so that the container
extension library is referenced from the servlets and JSPs. For creating the container extension library, see 14.
Container Extension Library in the uCosminexus Application Server Common Container Functionality Guide.

(15) Using user thread
You can generate and use threads from the servlets and JSPs that form the application. The thread that a user explicitly
generates in a program is called a user thread.

The user threads are classified as follows depending on the operation method after generating the threads (lifecycle):

• Threads operating within the scope of the service method and the init method.

• Threads operating in the background of the service method and the init method.

6. Implementation of Servlets and JSPs

311

Usage conditions of the user thread

• The user thread cannot be used in the Enterprise Bean (since the generation of threads from the Enterprise
Bean is prohibited in the EJB specifications).

• The server modes of the Application Server that can use the user threads are as follows:

Table 6‒8: Preconditions for the user threads (server mode)

Server modes Availability

J2EE server mode 1.4 mode Y

Basic mode N

Servlet engine mode N

Legend:
Y: Available
N: You can use the functionality in the scope supported in the server mode (basic mode or servlet engine mode).
However, you cannot use the connection pool. Note that these functionalities are provided to maintain compatibility.

The following points describe the lifecycle when using the user threads:

(a) When the threads operate within the scope of the service method and init method

In this model, the processing of the user thread is completed with the service method and the init method. The
following figure shows the flow of processing in this model:

Figure 6‒1: Processing when the thread operates within the scope of the service method and the init
method

The user thread will be generated within the invocation scope of the service method and the init method. The
service method and the init method wait for the processing of the user thread by the join method to complete,
and then the methods are returned.

(b) When the threads operate in the background of the service method and the init method

In this model, the user thread is generated with the service method and the init method, and then the user thread
is operated in the background. The following figure shows the flow of processing in this model:

6. Implementation of Servlets and JSPs

312

Figure 6‒2: Processing when the threads operate in the background of the service method and the init
method

The service method and the init method that generated the user thread will be returned without waiting for the
processing to complete after the user thread is generated. However, after the application is stopped, the J2EE service
cannot be used from the user thread. Therefore, no problem occurs if a user thread is stopped by a
contextDestroyed method of javax.servlet.ServletContextListener or a JSP or servlet
destroy method invoked by the stopping of an application.

(16) Persistence of session information
The Web container does not support the persistence of the session information. Irrespective of whether the session
information in the Web container is normal or abnormal, the information is lost once the Web container exits. If you
want to maintain the session information, use the session failover functionality.

Furthermore, when the <distributable> tag is specified in web.xml or when the not Serializable object is
registered as the session information, IllegalArgumentException does not occur.

(17) Messages output when the init method and destroy method are not overridden
If you initialize or terminate the servlets that do not override the init method and the destroy method, the log of
the following format is output in the servlets log:

• Message ID: KDJE39037-I

• Message text: path="aa....aa" :bb....bb: init#

aa....aa
Indicates the context path starting with a forward slash (/).

bb....bb
Indicates the servlets name specified in the <servlet-name> tag of web.xml. In the case of servlets with
default mapping, the name is org.apache.catalina.INVOKER.class-name.

#
In the case of the init method, the name is init and in the case of destroy method, the name is
destroy. The output messages are the log output in the init method and destroy method of the

6. Implementation of Servlets and JSPs

313

javax.servlet.GenericServlet class respectively. Therefore, these messages are not output in the
servlets that override the init method or the destroy method.

Also, in the case of JSP, if the init method and the destroy method are not overridden in the base class of JSP
specified in the extends attribute of the page directive, a similar message is output. In this case, servlets name is
com.hitachi.software.web.servlet-name.jsp. If the extends attribute of the page directive is not
specified in JSP, only the init method log is output and the destroy method log is not output.

However, for both servlet and JSP, when the init method and the destroy method of the superclass are invoked
by overriding the init method and the destroy method, this message is output.

(18) javax.servlet.error.exception attribute of the javax.servlet.ServletRequest object
The javax.servlet.error.exception attribute of the javax.servlet.ServletRequest object is
separately described as follows for the case in which exception is thrown in the Servlet and when exception is thrown
in the JSP file:

(a) When an exception is thrown in the servlet

When the exception class thrown in the servlet is java.lang.Error or an inherited class
The exception of the javax.servlet.ServletException class is set in the
javax.servlet.error.exception attribute of the javax.servlet.ServletRequest object. The
exception thrown in the servlet can be acquired using the getRootCause method of the
javax.servlet.ServletException class.

When the exception class thrown in the servlet is a class other than java.lang.Error or an inherited class
The exception thrown in the servlet is set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.

(b) When an exception is thrown in the JSP file

■ When the error page is a JSP file

When the error page is specified in the <error-page> tag of web.xml
The error page specified in the <error-page> tag of web.xml is described separately for JSP 2.0 and later
versions and JSP 1.2 version.

JSP 2.0 and later versions
The exception thrown in the JSP file is set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.

JSP 1.2
If the exception class thrown in the JSP file is one of the following classes, the exception thrown in the JSP
file is set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.

• java.io.IOException or an inherited class

• java.lang.RuntimeException or an inherited class

• javax.servlet.ServletException or an inherited class

If the exception class thrown in the JSP file is other than the above-mentioned classes, the exception of the
javax.servlet.ServletException class is set in the javax.servlet.error.exception
attribute of the javax.servlet.ServletRequest object. The exception thrown in the JSP file can be
acquired using the getRootCause method of the javax.servlet.ServletException class.

When the error page is specified in the errorPage attribute of the page directive
The error page specified in the errorPage attribute of the page directive is described separately for the case in
which true is specified and when false is specified in the isErrorPage attribute of the page directive in
the error page.

6. Implementation of Servlets and JSPs

314

When true is specified in the isErrorPage attribute of the page directive in the error page
The exception thrown in the JSP file is set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.

When false is specified in the isErrorPage attribute of the page directive in the error page
A value is not set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.

■ When the error page is a Servlet

When the error page is specified in the <error-page> tag of web.xml
The exception thrown in a servlet is the same as in the case in which the error page is a JSP file when the error
page is specified in the <error-page> tag of web.xml.

When the error page is specified in the errorPage attribute of the page directive
A value is not set in the javax.servlet.error.exception attribute of the
javax.servlet.ServletRequest object.

(19) Operating Web applications containing binary data
Note the following items to the Web applications containing binary data:

• When executing the requests to the binary data sent from the client
Do not acquire PrintWriter from the response object in the filter applied in the request to the binary data.

• When the servlets or JSPs that process the requests sent from the client are to be dispatched
Do not acquire PrintWriter from the response object in the following locations:

• In the filter applied in the request to the binary data

• In the servlets or JSPs to be dispatched to the binary data
Reference note

Binary data means static contents in which the MIME type mapped to the extension does not begin with "text/"
or static contents for which mapping does not exist.

(20) Notes related to response character encoding
If the character encoding of the response body in the JSPs or servlets is UTF-16 (16 bit UCS conversion format), the
character encoding might not be displayed correctly by the browser. In this case, use UTF-16BE (big-endian byte
order of the 16 bit UCS conversion format) or UTF-16LE (little-endian byte order of the 16 bit UCS conversion
format) for the character encoding of the JSPs or servlets.

(21) Return values of the getServerName method and getServerPort method of the
javax.servlet.ServletRequest interface
This point describes the return values of the getServerName method and the getServerPort method.

In Servlet 2.4 and later specifications, the return values of the getServerName method and the getServerPort
method differ depending on the availability of the Host header. The following table lists the return values of the
getServerName method and the getServerPort method in the Servlet 2.4 and later specifications:

Table 6‒9: Return values of the getServerName method and getServerPort method (In Servlet 2.4 or later
specifications)

Presence of Host
header Return value of the getServerName method Return value of the getServerPort method

Yes Part before the colon (:) of the Host header Part after the colon (:) of the Host header

No Resolved server name or IP address Port number of the server that receives the
connection with the client

6. Implementation of Servlets and JSPs

315

In Application Server, the return values of the getServerName method and the getServerPort method are
acquired depending on the combination of the HTTP requests and the functionality used. Note that when the Host
header is not included in the HTTP 1.1 request, 400 error occurs according to the HTTP 1.1 specifications.
Furthermore, the HTTP 1.1 specifications define that if the request URI of the request line is an absolute URI, use the
host of the request URI for the host and ignore the contents of the Host header. Though not explicitly mentioned in
the Servlet specifications, the host name included in the request line URI is given priority based on the HTTP
specifications.

The following table lists the return values of the getServerName method and the getServerPort method
obtained depending on the combination of the HTTP requests and the functionality used. For details on the return
values of the getServerName method and getServerPort method when the gateway specification
functionality is used, see Table 6-9.

Table 6‒10: Return values of the getServerName method and getServerPort method (In the application
server)

HTTP request

Functionality used Return value of the
getServerName method

Return value of the getServerPort
method

Presence
of the
Host

header

URI type
of the

request
line

Yes Absolute
URI

Web server integration Host name of request line Port number of request line

In-process HTTP server Host name of request line Port number of request line

Relative
URI

Web server integration Host name of Host header Port number of Host header

In-process HTTP server Host name of Host header Port number of Host header

No Absolute
URI

Web server integration Host name of request line Port number of request line

In-process HTTP server Host name of request line Port number of request line

Relative
URI

Web server integration Host name or IP address of the Web
server#2

Port number of the Web server

In-process HTTP server Host name or IP address of the J2EE
server#1

Port number of the in-process HTTP
server

#1
Return value of the java.net.InetAddress.getLocalHost method or the getHostName method.

#2
Value specified in the ServerName directive when Cosminexus HTTP Server is used. For details on the ServerName directive,
see the uCosminexus Application Server HTTP Server User Guide.

The following table lists the return values of the getServerName method and the getServerPort method when
you use the gateway specification functionality:

Table 6‒11: Return values of the getServerName method and getServerPort method when you use the
gateway specification functionality (in the Application Server)

HTTP request

Functionality used Return value of the
getServerName method

Return value of the getServerPort
method

Presence
of the
Host

header

URI type
of the

request
line

Yes Absolute
URI

Web server integration Host name of request line Port number of request line

In-process HTTP server Host name of request line Port number of request line

Relative
URI

Web server integration Host name of Host header Port number of Host header

In-process HTTP server Host name of Host header Port number of Host header

6. Implementation of Servlets and JSPs

316

HTTP request

Functionality used Return value of the
getServerName method

Return value of the getServerPort
method

Presence
of the
Host

header

URI type
of the

request
line

No Absolute
URI

Web server integration Host name specified in the gateway
specification functionality

Port number specified in the gateway
specification functionality

In-process HTTP server Host name of request line Port number of request line

Relative
URI

Web server integration Host name specified in the gateway
specification functionality

Port number specified in the gateway
specification functionality

In-process HTTP server Host name specified in the gateway
specification functionality

Port number specified in the gateway
specification functionality

(22) Acquiring the root cause exception specified in the constructor of the
javax.servlet.ServletException class
With the Application Server, you can acquire the root cause exception specified in the constructor
ServletException (String, Throwable) or ServletException (Throwable) using the
getCause method. Note that you can also acquire the exception using the getRootCause method. However, with
versions prior to 07-60 version, the getCause method returns null.

This point describes the compatibility parameters and notes related to the acquisition of the root cause exception
specified in the constructor of the javax.servlet.ServletException class.

• Compatibility parameters
To perform the same operations as are operated with the versions prior to 07-60 version, specify true in the
compatibility parameter webserver.servlet_api.exception.getCause.backcompat in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file. For details on
the parameters, see the uCosminexus Application Server Definition Reference Guide.
The following table lists the differences in the return values of the getCause method and the getRootCause
method depending on the value specified in the compatibility parameter
webserver.servlet_api.exception.getCause.backcompat.

Table 6‒12: Differences in the return values of the getCause method and getRootCause method
depending on the value specified in
webserver.servlet_api.exception.getCause.backcompat

Method

Value specified in
webserver.servlet_api.exception.getCause.backcompat

true false

getCause() N Y

GetRemoteUser() Y Y

Legend:
Y: Returns the root cause exception
N: Returns null

Note that the contents specified in the compatibility parameter are also applied to the operations of the
getCause method and the getRootCause method of the javax.servlet.jsp.JspException class.

• Notes
When the root cause exception can be acquired by implementing the getCause method, you cannot invoke
initCause(Throwable) for the ServletException object generated by the constructor
ServletException (String, Throwable) or ServletException (Throwable). If
initCause (Throwable) is invoked, the java.lang.IllegalStateException exception is thrown.

6. Implementation of Servlets and JSPs

317

(23) Notes related to the execution of the flush method for the
javax.servlet.ServletOutputStream object
With the Application Server, even if the flush method is executed after executing the close method for the
javax.servlet.ServletOutputStream object obtained from the javax.servlet.ServletResponse
object, the java.io.IOException exception is not thrown.

(24) Normalizing request URIs
With Application Server, the character strings included in request URIs are used in the following matching processes
after normalizing the request URIs:

• Matching context path and context root

• Matching URL pattern of servlets and JSPs

• Matching default mapping

• Matching static contents

• Matching URL pattern of filter

• Matching with the <error-page> tag of web.xml or with the errPage attribute of the page directive of
JSPs

• Matching URL pattern for restricting access

• Determining URL for login authentication

• Forwarding and including requests

• Matching URL pattern for HTTP response compression filter

• Matching URL pattern to control the number of concurrently executing threads in the URL group

• Error page customization of the in-process HTTP server

• Request distribution by redirecting the in-process HTTP server

(25) Return value of the getRequestURI and getRequestURL methods of the
javax.servlet.http.HttpServletRequest interface
The normalized URL is considered as a return value in the getRequestURI and getRequestURL methods of the
javax.servlet.http.HttpServletRequest interface.

(26) Specifying a Servlet or JSP mapped to a URL in the welcome file
When a request URL must be forwarded to the welcome file without matching it with a Servlet or JSP mapped to the
URL, the forwarding-destination welcome file is selected as follows in the Web container:

First of all, from the specified welcome file name, the static contents and JSP file candidate are selected on priority.
If no corresponding item exists, the candidate of the Servlet or JSP for which URL mapping is performed is selected.

The notes on the welcome file are as follows:

■ Limitations based on the welcome file forwarding method

The welcome file is forwarded based on HTTP redirect (the browser redirects to HTTP status code 302). This
forwarding method has some limitations that must be noted when designing the URL.

• When a POST request is received, the information of the request body sent from the browser cannot be inherited
in the welcome file at the forwarding destination. Only when the posted information is in the form input format
(Content-Type is application/x-www-form-urlencoded), the information can be inherited by
assigning to the query string of the forwarding-destination URL of the welcome file created by the Web
container. However, even in this case, consideration must be given to the fact that when the information of the
request body is large in size, the forwarding-destination URL becomes too long, and the information is visible as
is in the address bar of the browser in the form of the query string.

6. Implementation of Servlets and JSPs

318

• When the doGet method is not implemented in the Servlet of the forwarding-destination welcome file, 400
Bad Request (for other than HTTP/1.1) or 405 Method Not Allowed (for HTTP/1.1) is displayed on the
browser.

• When you invoke the include method of the javax.servlet.RequestDispatcher interface from the
Web application, then in spite of specifying the directory in which the welcome file exists as the URL to be
included, the contents of the welcome file of the forwarding destination are not inserted.

■ Adding the welcome file in an environment for which JSP pre-compilation is complete

When adding the JSP file specified in the welcome file to a Web application for which JSP pre-compilation is
complete, you must again perform JSP pre-compilation after adding the JSP file. When you do not perform JSP pre-
compilation again, the welcome file is not forwarded properly.

■ Specifying a servlet whose servlet class cannot be referenced in the welcome file

Do not specify a servlet whose servlet class cannot be referenced in the welcome file. When you specify a servlet
whose servlet class cannot be referenced, the welcome file is not forwarded properly.

■ Requesting the welcome file to a path in which no directory exists

When a request is sent to the path of a directory that does not exist as a resource within the Web application, the
welcome file is not forwarded even when the request URL ends with a forward slash (/).

(27) Starting and stopping order of the servlet, filter and listener
If you start a Web application, perform the initialization process in the order below before starting the receipt of
requests, according to the Servlet 2.4 specifications. In Cosminexus Application Server, the initialization process is
performed in the same order even in Web applications of Servlet2.3 or earlier versions. The order of starting the
servlets, filters, and listeners at the time of starting the Web application is as follows:

1. Starting the listener (generating an instance#1, invoking methods of the @PostConstruct annotation and the
contextInitialized method of ServletContextListener#2)

2. Starting the filter (generating an instance#1, invoking the methods of @PostConstruct annotation and the init
method)

3. Starting Servlet/JSP specified in the load-on-startup tag (generating an instance#1, invoking method of the
@PostConstruct annotation and the init method)

#1: In Servlet 3.0 or later, you can dynamically add the servlets, filters, and listeners by API calling. However, for the
servlets, filters, and listeners for which the definition is added by the API calling that specifies the instances, the
instance has already been generated and hence the Web container does not generate an instance.

#2: Even if an exception occurs while invoking the contextInitialized() method of the listener, the system
outputs the message of KDJE39103-E and continues the process of starting the Web application.

Note that for servlets for which the execution of the initialization process at the time of Web application startup is not
specified with the load-on-startup element in web.xml, the system generates the instances of the servlet and invokes
the init() method at the time of the initial request execution.

At this time, the instance generation and the init() method invocation of the servlet is performed before the filter.

The order of stopping the servlets, filters, and listeners at the time of stopping the Web application is as follows:

1. Stopping the already started Servlet/JSP (invoking the destroy method or the methods of the @PreDestroy
annotation)

2. Stopping the filter (invoking the destroy method or the methods of the @PreDestroy annotation)

3. Stopping the listener (invoking the methods of the @PreDestroy annotation)

(28) Accessing the static contents within a Web application
You can use any one of the methods such as GET, HEAD, POST, TRACE, and OPTIONS, to access the static contents
within a Web application.

6. Implementation of Servlets and JSPs

319

When you use the POST method, same details of the static contents are sent as a response, as when you use the GET
method.

(29) Precautions related to character encoding
In the same Web application, use the same character encoding in the error page specified in web.xml as the character
encoding used for the servlets and JSPs that use character encoding in the HTTP response.

(30) Return value when only the part after equal (=) sign is used in the query character string
When only the part after equal (=) sign is specified in the query character string of a request (for example, in the case
of), the return value of the Servlet API that obtains the request parameter of
javax.servlet.ServletRequest differs depending on the type of Web server in use.

The following are the respective return values of Servlet APIs for each type of the Web server:

• When using the Web server linkage functionality of a simple Web server

• getParameter method
When you specify a blank character (""), the parameter specified after the equal sign ("=") is returned.

• getParameterMap method
The java.util.Map object that includes the parameter for which a blank character ("") acts as a key, is
returned.

• getParameterNames method
The java.util.Enumeration object that includes a blank character (""), is returned.

• getParameterValues method
When you specify a blank character (""), the parameter specified after the equal sign ("=") is returned.

• When using the in-process HTTP server

• getParameter method
Even if you specify a blank character (""), null is returned.

• getParameterMap method
A blank java.util.Map object is returned.

• getParameterNames method
A blank java.util.Enumeration object is returned.

• getParameterValues method
Even if you specify a blank character (""), null is returned.

(31) containsHeader method of javax.servlet.http.HttpServletResponse instance
The following response headers are sometimes automatically set to responses, by the Web container. You cannot use
the containsHeader method of the javax.servlet.http.HttpServletResponse interface to check
whether such response headers are set for responses.

• For Web server linkage

• Content-Length
• Content-Type
• Set-Cookie

• For the in-process HTTP server

• Connection
• Content-Language
• Content-Length
• Content-Type

6. Implementation of Servlets and JSPs

320

• Date
• Server
• Set-Cookie
• Transfer-Encoding

(32) Precautions related to the libraries of Application Server
If you include the libraries of Application Server in J2EE applications, it may lead to incorrect operations during the
start and execution of the application import, due to reasons like a conflict in the library version. Therefore, do not
include the libraries of Application Server in a J2EE application, except for cases where inclusion of the libraries is
specified as a method of using the product.

6.2.2 Precautions for implementing servlets
This subsection describes the precautions for implementing servlets.

(1) Notes for using the I/O stream

• Specify a value in the range of 0x00 to 0xFF in the argument of the print(char c) method of the
ServletOutputStream class. If you specify a value outside the range,
java.io.CharConversionException is thrown.

• In the ServletInputStream class, the mark method and reset method are not supported. Also, the
markSupported method always returns false.

• If data is read from the ServletInputStream class and then forwarded, the data read from the forwarded
ServletInputStream class is treated as the data that was read before forwarded. Also, if all the data is read
from the ServletInputStream class before forwarded, the request parameter becomes null at the forwarded
destination.

(2) Notes when setting locale
If Locale.JAPANESE is specified in the setLocale method of the ServletResponse class, charset of
Content-Type header becomes Shift_JIS.

(3) Notes for acquiring URI
In the getRequestURI method of the HttpServletRequest class, the optimized URI is returned. For
example, xxx//yyy/zzz is converted to xxx/yyy/zzz and xxx/yyy/../zzz is converted to xxx/zzz.

(4) Operations when reading of the POST data fails
If a Web server fails to read the POST data, the servlets operating in the Web container generate an
IllegalStateException exception when invoking the following ServletRequest class methods:

• getParameter method

• getParameterNames method

• getParameterValues method

• getParameterMap method

Also, when a system receives form data having Content-Type as multipart/form-data, the KDJE39336-E message is
output and an IllegalStateException exception occurs, at the time of invoking the above-mentioned methods
or the following methods of the HttpServletRequest class. At this time, check whether the size of the received
form data is correct and if the size is correct, revise the setup value of
webserver.connector.limit.max_post_form_data.

• getPart method

6. Implementation of Servlets and JSPs

321

• getParts method

(5) Notes when reporting events for changes in attributes
In the ServletContextAttributeListener interface, HttpSessionAttributeListener interface,
and ServletRequestAttributeListener interface, events might be reported even when the attributes used
internally by the Web container are added, deleted, and updated. Reference the attribute names of the reported events
and ignore them if the attribute name is not used in the Web application.

(6) Notes for using the ServletContext interface

• java.util.Set obtained by the getResourcePaths method of the ServletContext interface is used
for the reference. Do not add or delete elements for java.util.Set. If the add, addAll, clear, remove,
and removeAll methods are used, the IllegalStateException exception might be thrown.

• In the argument of the getContext method of the ServletContext interface, specify the URL that uses the
existing context root name. If a URL that uses a non-existent context root name is used, the operations might not
function properly.

• In the getResource method and the getResourceAsStream method of the ServletContext interface,
specify the resources included in the relevant Web application. If resources outside the relevant Web application
are specified, the operations might not function properly.

(7) Notes for accessing the directory included in the Web application
When accessing the directory included in the Web application, do not specify the query string and POST data since
you might not be able to acquire them from the redirect destination resource.

(8) Notes for using the ServletRequest interface

• The getRemoteHost method of the ServletRequest interface returns the host name of the client that sends
the request, but if the settings are such that the Web server cannot resolve or does not resolve the host name, the IP
address is returned.
In the default settings, the Web server settings are not specified, so the IP address is returned. To acquire the host
name, you must change the Web server settings. However, if you change the settings, the response might be
delayed for resolving the host name. For details on how to change the Web server settings, see the uCosminexus
Application Server HTTP Server User Guide.

(9) Notes on implementing processing that should not be executed multiple times in the
process

If processing that should not be executed multiple times in one process is described in a servlet, specify settings such
that the execution of the servlet and the processing is not parallel. Especially, in the initialization process for starting
the communication with OTM, resident threads that do not exit even after the instance is deleted might be generated.
For example, every time the ORB.init method that is the initialization function of Cosminexus TPBroker is
invoked, a resident thread for monitoring is generated for the garbage collection and this thread lasts until the process
ends. Therefore, if the ORB.init method is executed more number of times than necessary in one process, there
might be adverse effects such as the unnecessary garbage collection processes increase and the performance of the
entire system declines greatly.

To prevent such events, when you describe processing that you want to execute only once in one process in the
servlet, you must first determine whether that processing is already executed in the process. Specifically, in an
optional class, prepare a static variable as a condition flag that stores the status of whether certain processing is
already executed. By executing the processing only if the value of the static variable means 'Not Executed' and
changing the value to one that means 'Executed', you can limit the execution frequency of that processing to only once
in one process. However, note the following two points:

• When using the static variable in the optional class, do not specify the following settings in
usrconf.properties or hitachi_web.properties:
- webserver.context.reloadable=true

6. Implementation of Servlets and JSPs

322

- webserver.jsp.recompilable=true
If the above settings are specified, the instance of that class is automatically destroyed and re-generated, and
therefore, the value of the static variable is also initialized along with this setting. For details on the settings of
usrconf.properties and hitachi_web.properties, see the uCosminexus Application Server
Definition Reference Guide.

• Specify the keyword synchronized in the method for executing this processing so that while a certain thread
references the value of the static variable that is a condition flag and then changes the value, another thread will
not execute similar processing. The following is an coding example in which this method is used such that the
initialization function ORB.init method of Cosminexus TPBroker is invoked only once:

static org.omg.CORBA.ORB _orb=null;
public static synchronized org.omg.CORBA.ORB getORB(String[] args, Properties
props) {
 if(_orb==null) {
 _orb=org.omg.CORBA.ORB.init(args, props) ;
 }
return _orb;
}

(10) Precautions for using the gateway specification functionality
You can use the gateway specification functionality that reports the gateway information to the Web container and
correctly redirects the information to the welcome file and FORM authentication window. For details on the gateway
specification functionality, see 4.10 Notification of gateway information to a Web container.

If you use the gateway specification functionality, some servlet API functions behave differently. For each used
method, the following points describe the precautions for servlet API functions in the gateway specification
functionality:

• sendRedirect method of the javax.servlet.http.HttpServletResponse interface
If relative URL is specified in the argument and the request is without the Host header, the host name and port
number of the redirect destination URL is the value specified in the gateway specification functionality. If relative
URL is specified in the argument and if the scheme is considered as https in the gateway specification
functionality, the scheme of the redirect destination URL is always https.

• getRequestURL method of the javax.servlet.ServletRequest interface
If you specify the settings for scheme to be considered as https in the gateway specification functionality, the
return value is always a URL beginning with https://.

• getServerName method of the javax.servlet.ServletRequest interface
If the host name of the redirect destination URL is specified in the gateway specification functionality and if the
request does not have a Host header, the return value is the specified value.

• getServerPort method of the javax.servlet.ServletRequest interface
If the port number of the redirect destination URL is specified in the gateway specification functionality and if the
request does not have a Host header, the return value is the specified value. If the host name of the redirect
destination URL is specified in the gateway specification functionality and if the port number is omitted, the
return value is 80 if the request scheme is http and 443 if the request scheme is https.

• getScheme method of the javax.servlet.ServletRequest interface
If the scheme is considered as https in the gateway specification functionality, the return value is always
https.

• isSecure method of the javax.servlet.ServletRequest interface
If the scheme is considered as https in the gateway specification functionality, the return value is always true.

• getAttribute method of the javax.servlet.ServletRequest interface
Even if the scheme is considered as https in the gateway specification functionality, the following attributes
cannot be acquired:

• javax.servlet.request.cipher_suite (if Microsoft IIS is used as the Web server, regardless of
the use of the gateway specification functionality, this attribute cannot be acquired)

• javax.servlet.request.key_size
• javax.servlet.request.X509Certificate

6. Implementation of Servlets and JSPs

323

(11) Notes on using the gateway
When gateways such as SSL accelerator and load balancer are used, the return value of the following servlet API
functions is the IP address and host name of the gateway instead of the IP address and host name of the client.

• getRemoteAddr method of the javax.servlet.ServletRequest interface

• getRemoteHost method of the javax.servlet.ServletRequest interface

(12) Unique Hitachi attributes registered in ServletContext objects
The Web container registers the information required for controlling the Web application in the attributes of the
javax.servlet.ServletContext object. The attribute names acquired by the getAttributeNames
method of the ServletContext interface in the Web application also include the attribute names registered by the
Web container.

When you register the attributes in the ServletContext object in the Web application, do not use the key names
starting with the following strings:

• org.apache.catalina
• com.hitachi.software.web
• jspx

Also, attributes defined in the Java EE specifications are also added in ServletContext, so do not register the
attributes with same key names.

(13) Notes on using the proxy acquisition method of the ServletRequest class
The following methods of the javax.servlet.ServletRequest interface are the methods for acquiring the
information about the client who sent the request or the proxy passed last, but in an environment where the reverse
proxy is used, the information to be acquired is the reverse proxy information.

• getRemoteAddr method

• getRemoteHost method

• getRemotePort method

(14) Notes on executing the reset method of the javax.servlet.ServletResponse interface
After executing the getWriter method of the javax.servlet.ServletResponse interface, if the reset
method is executed, for the character encoding specified in the Content-Type of the HTTP response, specify the same
character encoding once again by using one of the following API functions (all from the
javax.servlet.ServletResponse interface):

• setContentType method

• setLocale method

• setCharacterEncoding method#

#
A method added in the Servlet 2.4 specifications.

In Servlet 2.4 and later specifications, when you set the character encoding by using these API functions, the API
functions must be invoked before executing the getWriter method. However, only when the reset method is
executed after executing the getWriter method, you can set the character encoding using these API functions until
the getWriter method is invoked once again.

(15) Operations when 0 is specified in the argument of the setMaxInactiveInterval method
If you specify 0 in the argument of the setMaxInactiveInterval method of
javax.servlet.http.HttpSession interface, the session does not timeout.

6. Implementation of Servlets and JSPs

324

(16) mark operations of java.io.BufferedReader
When you use the in-process HTTP server functionality, java.io.BufferedReader obtained with the
getReader method of javax.servlet.ServletRequest does not support mark operations. The
markSupported method returns false.

(17) Operations when 1 is specified in the argument of the setVersion method
If you specify 1 in the argument of the setVersion method of javax.servlet.http.Cookie class, the Set-
Cookie2 header is added to the response when the Web server integration functionality is used, but the Set-Cookie
header is added when the in-process HTTP server functionality is used.

(18) Specifying the path in the getRequestDispatcher method
If a relative path that does not start with a forward slash (/) is specified in the argument of the
getRequestDispatcher method of javax.servlet.ServletRequest interface, the path becomes the
relative path from the URL pattern specified in the servlet mapping of this servlet. If the URL pattern ends with a
forward slash (/), the path becomes the relative path from the parent directory.

For example, if you execute the getRequestDispatcher method by specifying "hello.html" from the
servlet where the servlet mapping is specified in "/a/b/", "/a/hello.html" is obtained.

(19) Notes on using the setBufferSize method to change the buffer size
The servlet buffer used for sending a response is maintained for each request processing thread. If you execute the
setBufferSize method of javax.servlet.ServletResponse interface to change the buffer size, the
changed buffer size is applied to all the requests processed by the relevant thread containing the other Web
applications on the same J2EE server. When you use the setBufferSize method of
javax.servlet.ServletResponse to change the buffer size, estimate the memory usage after considering
that the memory-of-buffer-size number-of-request-processing-thread is secured. Note that the buffer that has been
acquired once is valid until update is performed by the setBufferSize method from the Web application for each
processing thread.

(20) Notes for Content-Type header of the HTTP response
If the Content-Type is not explicitly specified in a servlet with the setContentType method of the
javax.servlet.ServletResponse interface, the Content-Type header is not created. Therefore, you cannot
check the character encoding of the HTTP response from the "charset=" field of the Content-Type header.

(21) Precautions related to the getId method of the javax.servlet.http.HttpSession interface
In the Web applications compliant with specifications prior to Servlet 2.4 version, the operations when the getId
method of the disabled javax.servlet.http.HttpSession object is invoked differ in the Servlet
specifications and the Application Server. The operations to be performed in these cases are as follows:

Servlet specifications
The java.lang.IllegalStateException exception is thrown.

Application server
Null is returned.

(22) Precautions related to the methods of the javax.servlet.ServletRequest interface and
javax.servlet.http.HttpServletRequest interface
When the information acquired with the methods listed in the following table is output in the response, the
information must be sanitized:

6. Implementation of Servlets and JSPs

325

Table 6‒13: Methods that require the acquired information to be sanitized

Interface name Method name

javax.servlet.ServletRequest getCharacterEncoding()

getContentType()

getInputStream()

getParameter(java.lang.String name)

getParameterMap()

getParameterNames()

getParameterValues(java.lang.String name)

getProtocol()

getReader()

getServerName()

javax.servlet.http.HttpServletRequest getCookies()

getHeader(java.lang.String name)

getHeaderNames()

getHeaders(java.lang.String name)

getMethod()

getPathInfo()

getPathTranslated()

getQueryString()

getRequestedSessionId()

getRequestURI()

getRequestURL()

getServletPath()

(23) Precautions related to the getLocale(getLocales) method of the
javax.servlet.ServletRequest interface
The java.util.Locale object that can be obtained with the getLocale method or getLocales method of
the javax.servlet.ServletRequest interface is created from the value of the Accept-Language header of the
HTTP request.

The Web Container checks if the locale of the Accept-Language header value (ISO language code, ISO country code,
or variants) contains characters other than alphabetic characters. If the locale contains non-alphabetic characters, the
locale is determined to be invalid, the KDJE39546-W message is output in the message log for each invalid locale,
and the locale is ignored.

If an Accept-Language header containing an invalid locale is received, the getLocale method or getLocales
method returns only the java.util.Locale object with the correct locale. If all the locales specified in the
Accept-Language header are invalid, it is considered that the Accept-Language header does not exist and the default
server locale is returned.

6. Implementation of Servlets and JSPs

326

(24) Return value of the getServerName method of javax.servlet.http.HttpServletRequest
interface
The return value of the getServerName method of the javax.servlet.http.HttpServletRequest
interface differs from the value of the Host header set by the HTTP client, when the Host header is rewritten by
uCosminexus Application Server HTTP Server User Guide and reverse proxy.

(25) Setting the response header in an include destination servlet of Servlet 2.4 or earlier
version
In Servlet 2.4 or earlier versions, the settings of all response headers in the include destination servlet are ignored
according to the specifications. However, in Application Server, the settings of the response header in getSession
are enabled even when Servlet 2.4 is used.

(26) Content format of static contents without MIME mapping
For static contents without MIME mapping, Content-Type is not assigned.

(27) Timing of accessing the HTTP session
When a request to which a session ID is added is sent to the Web container, the HTTP session access time is refreshed
to the current time. However, this update is not carried out when a session timeout has already occurred or the session
has been disabled.

The HTTP session time is used for the following cases:

• The return value of the getLastAccessedTime() method of the
javax.servlet.http.HttpSession interface
The getLastAccessedTime() method of the javax.servlet.http.HttpSession interface returns
the timing of accessing the HTTP session at the time of previous update.

• HTTP session timeout
When the difference between the current time and the time of accessing the HTTP session exceeds the timeout
value, a timeout occurs for the HTTP session. As the timeout monitoring for the HTTP session is executed at an
interval of 30 seconds, a timeout does not always occur at the correct timeout time.

(28) Precautions related to acquiring a value of the Content-Length header
When an HTTP request does not include the Content-Length header, the return value of the
getContentLength() method of javax.servlet.ServletRequest and the return value when "Content-
Length" is specified in the argument, in the getIntHeader() method of
javax.servlet.http.HttpServletRequest differ in the Servlet specifications and Application Server.
The respective return values are as follows:

Servlet specification
Returns -1.

Application Server
Returns 0.

6.2.3 Precautions related to the specifications that are added or changed
in the Servlet 3.0 specifications

This subsection describes precautions on using specifications that were added or changed in Servlet 3.0 for
Application Server. For details on Servlet 3.0 and Servlet 2.5 specifications, see the respective specifications (Servlet
3.0 specifications and Servlet 2.5 specifications).

6. Implementation of Servlets and JSPs

327

(1) Specifications where Servlet 3.0 functionalities and Application Server functionalities are
combined

This subsection describes specifications where functionalities added in Servlet 3.0 and functionalities of Application
Server are combined.

(a) Functionality for setting the Web application version

You cannot set the version to 3.0 in the Web application version setting functionality.

(b) JSP pre-compile under META-INF/resources

Although it is now possible with Servlet 3.0 specifications to include JSP files in the hierarchy of the META-INF/
resources inside a JAR file, you cannot execute JSP pre-compile for Web applications that have a JSP in the
META-INF/resources hierarchy. If you execute the JSP pre-compile, the JSP in the META-INF/resources
hierarchy is not pre-compiled, and an error occurs on executing the request.

(c) Reloading an application that uses Servlet 3.0

Reloading of an application that uses Servlet 3.0 functionalities has the following constraints:

• If an application contains a JAR file that has static contents (also includes the JSP) in META-INF/resources,
even if you update and reload the JAR file, the pre-update static contents in META-INF/resources of the JAR
file can only be accessed. If you reload an application that contains a JAR file that has static contents in META-
INF/resources, the KDJE39556-W message is output.

! Important note
With version 09-00-02 or earlier, if you reload the following applications, the operation is not guaranteed.

• When you reload an application that contains an implementation class of the
ServletContainerInitializer interface, the KDJE39557-W message is output.

• When you reload an application that contains servlets added by the dynamic servlet definitions, filters, or listeners,
the KDJE39558-W message is output.

(d) Using the run-as functionality in servlets defined by using API

You cannot use the run-as functionality in a servlet defined by using an API. Settings are ignored if you:

• use the @RunAs annotation in a servlet class.

• call the setRunAsRole method of the ServletRegistration.Dynamic interface.

(e) Monitoring the execution time of servlets or filters defined by using APIs

You cannot use the execution time monitoring functionality of the J2EE application for the servlets or filters defined
by using APIs. Even if you define the method-observation-timeout tag in the cosminexus.xml file, the tag is
ignored.

(f) Continuation of the HTTP session when the Web application is invoked

The operation regarding the continuation of an HTTP session when the Web application is invoked is the same as in
the case of Servlet 2.5 specifications. For details, see 6.2.4(6) Continuation of the HTTP session when the Web
application is invoked.

(g) Request redirecting when the cookie name of the session is changed

When the Web container is deployed in a cluster configuration, you can distribute requests by using the Redirector.
The Redirector references the session ID added to each request and distributes the requests in such a way that the
requests from the same Web client are redirected to the same Web container. However, if you change the session
cookie name from the default name JSESSIONID to some other name, requests from the same Web client might not
be redirected to the same Web container.

6. Implementation of Servlets and JSPs

328

(2) Collaborating Servlet 3.0 and CDI
When you want to combine Servlet 3.0 and CDI to use them together, use a web.xml that is compatible with Servlet
3.0. A web.xml of any other version cannot be used in combination with CDI.

(3) Combining filters or listeners defined by using an API with @PostConstruct or
@PreDestroy annotations

You cannot use the @PostConstruct or @PreDestroy annotations in filters or listeners defined with APIs. Such
annotations are ignored if used.

(4) When there is no content to include
In Servlet 3.0, default servlets (servlets provided by the container to provide static content) are included. If there is no
content to be included, the system throws the FileNotFoundException exception. If the exception is not
handled in the user program, the response is not committed and the status code 500 is returned.

Application Server does not support this specification. The same status code 404 as in versions prior to 08-70 is
returned.

(5) Using escape sequence
Do not use an escape sequence (\b, \t, \n, \f, \r,\" ,\',\\)for input characters in API or the properties newly
added in Servlet 3.0. If you use the escape sequence, new lines might get randomly added in the log thus affecting the
layout of the log.

(6) Defining dynamic servlets
The following points describe how the behavior of dynamic servlets differs from the Servlet 3.0 specifications when
the dynamic servlets are defined and used in Application Server:

(a) Defining servlets, filters, or listeners

• When you add a filter by using both API and web.xml, and set the filter mapping method isMatchAfter defined
in the API for the other filter mapping to false, the API definition is called first when a request is processed.

• When you define a listener by using both API and web.xml, the listener defined in the web.xml is read first
when the application starts and the listener is generated. When you want to delete the listener, the definition in the
API is read first.

• When you specify a NULL character ("") for the URL pattern and call the addMapping(String...
urlPatterns) method of the javax.servlet.ServletRegistration interface, only the context name
is used for accessing the servlet. If the context name is also a NULL character (""), the servlet cannot be accessed.

• Do not call the addServlet() method by specifying a servlet name already defined in web.xml or the same
servlet name as that created by the servlet class with the @WebServlet annotation.

• If the setMultipartConfig() method is called and the @MultipartConfig annotation is specified for
the same servlet in a user application, the value specified in the setMultipartConfig() method is used.
Similarly, if the setServletSecurity() method is called and the @ServletSecurity annotation is also
specified for the same servlet in a user application, the value specified in the setServletSecurity()
method is used.

• You cannot acquire or set a role by using the getRunAsRole() or the setRunAsRole(String
roleName) method. Furthermore, no warning or error message is output.

• If you register a servlet or a filter with an already registered name, the KDJE39552-W message is output when the
application starts and the operation continues.

• If a URL pattern contains a linefeed code, the KDJE39555-W message is output when the application starts and
the operation continues.

6. Implementation of Servlets and JSPs

329

(b) Defining by using the ServletContainerInitializer interface

When you define using the ServletContainerInitializer interface in Application Server, the following
points differ from the Servlet 3.0 specifications:

• You can deploy a JAR file that contains a class with the ServletContainerInitializer interface
implemented in the following locations:

1. The WEB-INF/lib directory in the WAR file included in the application

2. A location other than WEB-INF/lib directory

If you want to deploy a JAR file that contains a class with the ServletContainerInitializer interface
implemented in a location other than the WEB-INF/lib directory, you must specify the absolute path of the JAR
file in the following property of usrconf.properties.
webserver.ServletContainerInitializer_jar.include.path
The following example shows how to set the path:

webserver.ServletContainerInitializer_jar.include.path=C:/Program Files/
HITACHI/Cosminexus/foo/lib/bar.jar

• The search range of the @HandlesTypes annotation class is limited to the WAR file that contains the
implementation class of the ServletContainerInitializer interface. Search can be executed in classes
within the WEB-INF/classes directory and the JAR files present in the WEB-INF/lib directory of WAR.

• If the JAR file that contains a class with the ServletContainerInitializer interface implemented
cannot be read or processed, the KDJE39548-E message is output when you attempt to start the application and
the application fails to start.

• When search is performed for a class that extends or implements a class specified with the @HandlesTypes
annotation, or for a class to which the annotation of the class specified with the @HandlesTypes annotation is
attached, if the class fails to load, the KDJE39549-W message is output and the start processing of the application
continues.

• If a JAR file that you specified in
webserver.ServletContainerInitializer_jar.include.path and that contains a class with the
ServletContainerInitializer interface implemented is not found, or if a JAR file or files cannot be
read, the KDJE39553-W message is output when the application starts and the process continues. The
KDJE39553-W message is output for each JAR file specified in Web server.
ServletContainerInitializer_jar.include.path.

• If the JAR file that you specified in
webserver.ServletContainerInitializer_jar.include.path and that contains a class with the
ServletContainerInitializer interface implemented is not found in the class path, the KDJE39554-W
message is output when the application starts and the process continues. The KDJE39554-W message is output for
each JAR file that is specified in webserver.ServletContainerInitializer_jar.include.path.

Also, implementation class information of the ServletContainerInitializer interface, defined in the
javax.servlet.ServletContainerInitializer file, is read as described below.

• Only the class coded in the first line is read and the classes coded from second line onwards are ignored.

(7) About file upload
If you use the file upload functionality with Application Server, the following points differ from the Servlet3.0
specifications:

• If the multipart config element is set in both web.xml and @MultipartConfig annotations, the element
defined in the web.xml is given priority.

• If you execute the file upload with a request other than the one with the request type multipart/form-data, the
javax.servlet.ServletException exception is thrown. The following table describes the mapping
between the type of requests that execute file upload and the corresponding execution result.

6. Implementation of Servlets and JSPs

330

Table 6‒14: Type of requests that execute file upload and the corresponding execution result

Request type specified in web.xml or @MultipartConfig
annotation Execution result

Other than mime-multipart The javax.servlet.ServletException exception is
thrown.

mime-multipart other than multipart/form-data The javax.servlet.ServletException exception is
thrown.

multipart/form-data File upload is executed. No exception is thrown.

• When you define MultipartConfigElement in the program, it functions in the same way as when you
define it in web.xml. However, if you specify a NULL character ("") in the location, files are stored in the work
directory of the Web application.

• If the size of the uploaded file is greater than the value specified in the file-size-threshold tag in the web.xml or
the fileSizeThreshold attribute of the @MultipartConfig annotation, temporary files are generated for
a part of the objects included in the request. A temporary file is saved with a unique name that begins with
upload and has a .tmp extension.
Example: upload__5f8d5c62_1316c5ef08b__8000_00000012.tmp.
Temporary files are deleted when the request is completely processed. However, if a temporary file is open, or if
the J2EE server is not shut down properly, or if the system shuts down, the file might not get deleted. Delete the
file manually from the path specified in the location.
If a temporary file is generated with the same name as a file created manually by the user, the file created by the
user is overwritten by the temporary file.

• You can use the Part objects inside a request. The Part objects are deleted once the request is completely
processed. If you save the Part objects in the session for later use, the operation is not guaranteed.

(8) Deploying static resources
This point describes the deployment of static resources and the points that differ from the Servlet 3.0 specifications
when the static resources are used with Application Server.

• When a JAR file that contains static resources cannot be read or processed, the KDJE39548-E message is output
when you attempt to start the application and the application fails to start.

• If a specified JAR file has an invalid format, the KDJE39550-E message is output when the application starts, and
the process continues.

• If an invalid JAR file or a file that cannot be read is included in WEB-INF/lib, the KDJE39551-W message is
output when the application starts, the JAR file is ignored, and the process continues.

(9) About API
The following points differ from the Servlet 3.0 specifications if APIs are used with Application Server.

• Among the APIs that are added in Servlet3.0, the APIs that are not listed in the following table can be used with
Application Server 09-00. For details on APIs, see the Servlet3.0 specifications. If you use any of the non-
supported APIs listed in the following table, Application Server throws the
java.lang.UnsupportedOperationException exception.

Table 6‒15: Non-supported APIs (Servlet 3.0)

No. Package Class Interface/
Class Method Functionality

1 javax.serv
let

AsyncContext Interface All methods Asynchronous servlet

2 AsyncListener Interface All methods Asynchronous servlet

3 ServletContext Interface getJspConfigDescriptor JSP

4 ServletRequest Interface startAsync Asynchronous servlet

6. Implementation of Servlets and JSPs

331

No. Package Class Interface/
Class Method Functionality

5 javax.serv
let

ServletRequest Interface isAsyncStarted Asynchronous servlet

6 isAsyncSupported Asynchronous servlet

7 getAsyncContext Asynchronous servlet

8 getDispatcherType Asynchronous servlet

9 AsyncEvent Class All methods Asynchronous servlet

10 ServletRequestWrapper Class startAsync Asynchronous servlet

11 isAsyncStarted Asynchronous servlet

12 isAsyncSupported Asynchronous servlet

13 getAsyncContext Asynchronous servlet

14 getDispatcherType Asynchronous servlet

15 Registration Interface setAsyncSupported Asynchronous servlet

16 javax.serv
let.descri
ptor

JspConfigDescriptor Interface All methods JSP

17 JspPropertyGroupDescri
ptor

Interface All methods JSP

18 TaglibDescriptor Interface All methods JSP

• You cannot use the APIs added in Servlet 3.0 in Web applications that are compatible with Servlet 2.5. Because
the program does not check if the correct APIs are being used, the operation is not guaranteed.

• You cannot use SSL in the SessionTrackingMode. You can use only COOKIE and URL with Application Server.

(10) Omitting the web.xml
You can omit web.xml in Servlet 3.0 for the following applications:

• Web applications that contain static contents and JSP only (excluding listeners, servlets, and filters)

• Web applications with listeners, servlets, and filters defined with annotations

(11) Changing an HTTP Cookie name that indicates a session ID
When changing the HTTP Cookie name that indicates the session ID, you cannot specify csfcfc in the Cookie
name.

Also, the following are the conditions for the characters that you can use. If you violate these conditions, KDJE39559-
W is output. This may also lead to incorrect operations of the session, therefore use the characters that conform to the
conditions.

• Use ASCII characters, excluding the following characters.
"#", "(", ")", "<", ">", "@", ",", ";", ":", "\", "/", """, "[", "]", "?", "=", "{", "}"

• You cannot use the space or control characters.

• You cannot use $ at the beginning of a character string.

(12) HTTP Cookie names available in Web applications
You cannot use the following names for HTTP Cookies you use in a Web application. Note that the Cookie names are
not case sensitive.

• An HTTP Cookie name used as the session ID of an HTTP session. The default name is JSESSIONID.

• An HTTP Cookie name that represents a global session. The default name is GSESSIONID.

6. Implementation of Servlets and JSPs

332

• The same name as an HTTP Cookie name appended with a server ID by using the append server ID functionality
of the J2EE server.

• The HTTP Cookie name csfcf used internally in the J2EE server.

(13) Class specified in the <servlet-class> element
If you want to omit the servlet-class element in the web.xml, you must include the subclass of
javax.servlet.http.HttpServlet in which you have specified the @WebServlet annotation in the Web
application, and specify the name of the servlet for which you have omitted the servlet-class element in the name
attribute. If, the corresponding HttpServlet class is not available, the KDJE39339-E message is output and the servlet
class fails to load.

(14) Class specified in the filter-class element
If you want to omit the filter-class element in web.xml, you must include the implementation class of
javax.servlet.Filter in which you have specified the @WebServlet annotation in the Web application, and
specify the name of the filter for which you have omitted the filter-class element in the filterName attribute. If
the corresponding Filter class is not available, the KDJE39340-E message is output and the application fails to start.

(15) Changing the Path attribute of an HTTP Cookie indicating a session ID
When you change the Path attribute of an HTTP Cookie indicating a session ID, and the HTTP Cookie name or the
Path attribute indicating a session ID duplicates that of another Web application, the HTTP Cookie value indicating
the session ID might be overwritten or deleted, and the HTTP session can no longer be inherited.

(16) Characters that can be used in the Path attribute and the Domain attribute of an HTTP
Cookie indicating a session ID
Note that the following are the conditions for characters that can be used in the Path attribute and Domain attribute
of an HTTP Cookie indicating a session ID. If the following conditions are not satisfied, the KDJE39559-W message
is output. If you use invalid characters, it might result in an abnormal behavior of the session. Therefore, use
characters that satisfy the following conditions:

• For the Path attribute, you can use only ASCII characters excluding control characters and semicolons (;).

• For the Domain attribute, you can use only alphanumeric characters, hyphens (-), and periods (.).

6.2.4 Precautions related to added and changed specifications in the
Servlet 2.5 specifications

This subsection describes the precautions for using the specifications that were added and changed in Servlet 2.5 on
the Application Server. For details on the Servlet 2.5 specifications and Servlet 2.4 specifications, see the respective
specifications (Servlet 2.5 specifications and Servlet 2.4 specifications).

(1) XML schema changes of web.xml
On the Application Server, the XML schema of web.xml is changed according to the Servlet 2.5 specifications.

(2) Precautions related to omission of web.xml
The description about the omission of web.xml is added in the Servlet 2.5 specifications.

On the Application Server, when the Web application only contains JSP and static contents, you can omit web.xml.
The Web application version in which web.xml is omitted is considered as 2.5. Also, when web.xml is omitted,
you can omit the WEB-INF directory.

This point describes the precautions when web.xml is omitted. For the omission of web.xml, see 11.4.5 Operations
related to Web applications in which web.xml is omitted in the uCosminexus Application Server Common Container
Functionality Guide.

6. Implementation of Servlets and JSPs

333

(a) Omitting web.xml when servlets and filters are included in the Web application

The servlets and filters require the mapping to be defined in web.xml, so if web.xml is omitted, the servlets and
filters do not operate.

(b) Omitting web.xml when listener is included in the Web application

The following listeners need to be defined in web.xml, so if web.xml is omitted, the listeners do not operate:

• javax.servlet.ServletContextListener
• javax.servlet.ServletContextAttributeListener
• javax.servlet.ServletRequestListener
• javax.servlet.ServletRequestAttributeListener
• javax.servlet.http.HttpSessionListener
• javax.servlet.http.HttpSessionAttributeListener

However, the following listeners are not defined in web.xml, so even if web.xml is omitted, the listeners operate:

• javax.servlet.http.HttpSessionBindingListener
• javax.servlet.http.HttpSessionActivationListener

Also, if the listener is defined in the tag library, even if web.xml is omitted, the listener is executed.

(c) Setting the Web application properties in the execution environment

If web.xml is omitted, you cannot set properties with the server management commands and property files.

(d) Settings for mapping

Even if web.xml is omitted, the settings for mapping of files with extensions jsp and jspx, the default welcome
file, session timeout, and default mime-mapping are enabled. Regardless of the settings for enabling or disabling
the default servlet mapping, you cannot use the default servlet mapping.

(e) Using filters

In Web applications where web.xml is omitted, you cannot use filters. Therefore, functionality that require the built-
in filter, such as the HTTP response compression functionality and the memory session failover functionality cannot
be used.

(3) Specifying a null character string in the <load-on-startup> element
In the web.xml schema defined in the Servlet 2.5 specifications, the value that can be specified in the <load-on-
startup> element was changed.

On the Application Server, the value that can be specified in the <load-on-startup> element is controlled by the
servlets corresponding to the version information of the Servlet specifications described in web.xml. The following
table lists the values that can be specified in the <load-on-startup> element for each servlet version.

Table 6‒16: Values that can be specified in the <load-on-startup> element

Servlet version Specifiable values

Servlet 2.5 Integer or null character string. If a null character string is specified, the servlet is not loaded as in the case
when the <load-on-startup> element is not specified.

Servlet 2.4 Integer. Specified value same as 07-60.

Note that if you specify a value that cannot be specified, the importing of the J2EE application will fail.

6. Implementation of Servlets and JSPs

334

(4) Scope of specifying the HTTP method in the <security-constraint> element
In the web.xml schema defined in the Servlet 2.5 specifications, the contents that can be specified in the <http-
method> element in the <security-constraint><web-resource-collection> element were changed.
The following table lists the specifiable contents:

Table 6‒17: Contents specifiable in the <http-method> element in the <security-constraint><web-resource-
collection> element

Servlet version Specifiable contents

Servlet 2.5 One-byte alphanumeric characters (0-9, A-Z, a-z) and special characters (! # $ % & ' * + - . ^ _ ` | ~) can be
specified one or more times.

Servlet 2.4 Either GET, POST, PUT, DELETE, HEAD, OPTIONS, or TRACE.

Specify the HTTP method of the request in the <http-method> element in the <security-
constraint><web-resource-collection> element.

The HTTP method of the request supported in the application server is same as the contents supported in the servlet
corresponding to the version information of the Servlet specifications described in web.xml. However, the HTTP
method of the request supported in the Web application compliant with the Servlet 2.5 specifications differs
depending on the Web server used. The HTTP method of the request supported in the Application Server is as
follows, for each Web server:

Table 6‒18: HTTP method of the request supported in the Application Server

Servlet
version Web server used Specifiable contents

Servlet
2.5

Cosminexus HTTP Server and
Microsoft IIS

Some of the methods that can be used in HTTP1.1#.

In-process HTTP server All the methods that can be used in HTTP1.1.

Servlet
2.4

Cosminexus HTTP Server, Microsoft
IIS, In-process HTTP server

Either GET, POST, PUT, DELETE, HEAD, OPTIONS, or TRACE.

#
For details on the methods that can be specified, see Appendix A.2 Error status codes returned by the Redirector.

If you specify a value that cannot be specified, an attempt to import the J2EE application will fail.

(5) Using annotations
Application Server supports the annotations defined in the Servlet 2.5 specifications. For using annotations, see 12.
Using Annotations in the uCosminexus Application Server Common Container Functionality Guide.

(6) Continuation of HTTP session when the Web application is invoked
The Servlet 2.5 specifications contain a description to continue the session in both the following cases when the
session is created in the servlets and JSPs called in the cross context:

• Invoking cross context by a direct request for the associated context

• Invoking cross context by dispatch (invocation of the forward method and include method of the
javax.servlet.RequestDispatcher interface)

However, in the Application Server, you cannot continue an HTTP session used when the Web application is invoked.

(7) Specifying all the servlets in filter mapping
The Servlet 2.5 specifications contain a description about the specification of one-byte asterisk (*) in the <servlet-
name> element in the <filter-mapping> element of web.xml.

6. Implementation of Servlets and JSPs

335

By specifying an asterisk (*) in the <servlet-name> element in the <filter-mapping> element of web.xml,
you can invoke the filter for the requests to all the servlets.

An example of definition in web.xml is as follows:

<filter-mapping>
<filter-name>All Filter</filter-name>
<servlet-name>*</servlet-name>
</filter-mapping>

In this example, the filter with filter name All Filter is invoked for the requests to all the servlets.

! Important note

In the Web applications compliant with the Servlet 2.4 specifications, the one-byte asterisk (*) specified in the filter
mapping did not have a special meaning. However, in the Web applications compliant with the Servlet 2.5 specifications,
asterisk (*) implies all the servlets. Note that there is no method to specify only the servlets with servlet name asterisk (*).

In the application server, if one-byte asterisk (*) is specified in the <filter-mapping><servlet-name>
element of web.xml, a filter is invoked for all the requests to the Web applications containing the relevant
web.xml.

(8) Disabling the invocation of the setCharacterEncoding method of the
javax.servlet.ServletRequest interface

The Servlet 2.5 specifications clearly specify that the invocation of the setCharacterEncoding method is
disabled after invoking the getReader method of the javax.servlet.ServletRequest interface.

The Application Server follows the Servlet 2.5 specifications regardless of the servlet version. The invocation of the
setCharacterEncoding method is disabled after the getReader method is invoked and the following contents
are not changed:

• Character encoding used in the BufferedReader object acquired with the getReader method

• Return value of the getCharacterEncoding method

With versions prior to the version 07-60, the return value of the getCharacterEncoding method was changed by
invoking the setCharacterEncoding method after the getReader method was invoked, but in 08-00, the
return value is not changed regardless of the servlet version.

(9) Changing the URL that forms the return value of the getRequestURL method of the
javax.servlet.http.HttpServletRequest interface

The Servlet 2.5 specifications clearly specify that when the getRequestURL method of the
javax.servlet.http.HttpServletRequest interface is invoked in the forwarding destination, the path
used for acquiring the javax.servlet.RequestDispatcher object is applied as the URL that becomes the
return value and not the URL path specified in the client.

On Application Server, the URL that becomes the return value is determined as per the servlet corresponding to the
version information of the Servlet specifications described in web.xml.

In the Servlet 2.5 specifications, the path specified in the argument of the getRequestDispatcher method of the
javax.servlet.ServletRequest interface invoked for acquiring the
javax.servlet.RequestDispatcher object becomes the return value. In the Servlet 2.4 specifications, the
path of the request URL becomes the return value.

(10) Operations when the getId method of the javax.servlet.http.HttpSession interface is
invoked
In the Servlet 2.5 specifications, the specification is deleted related to the
java.lang.IllegalStateException exception that is thrown when the getId method of the disabled
javax.servlet.http.HttpSession object is invoked.

6. Implementation of Servlets and JSPs

336

On Application Server, the value that is returned when the getId method of the disabled
javax.servlet.http.HttpSession object was invoked, is controlled by the servlet as per the version
information of the Servlet specifications coded in web.xml.

In the case of the Servlet 2.5 specifications, the return value is session ID and in the case of the Servlet 2.4
specifications, the return value is null same as in the case of version 07-60.

(11) Invocation of cross context between Web applications with different servlet versions
When the cross context is invoked between Web applications with different servlet versions, depending on the servlet
version in the invocation source and invocation destination, there are methods in which the operations of the
invocation destination are different. The following table describes the operations for each method at the invocation
destination of the cross context when the cross context is invoked between the Web applications with different servlet
versions:

Table 6‒19: Operations at the invocation destination of the cross context between the Web applications
with different servlet versions (getRequestURL method of the
javax.servlet.http.HttpServletRequest interface)

Servlet version of the Web application Operations at the invocation
destination of the cross context Reference

Invocation source Invocation destination

Servlet 2.5 Version prior to Servlet
2.4

The operations follow the Servlet 2.5
specifications.

6.2.4 (9)

Versions prior to Servlet
2.4

Servlet 2.5 The operations follow the Servlet 2.4
specifications.

Table 6‒20: Operations at the invocation destination of the cross context between the Web applications
with different servlet versions (getId method of the disabled javax.servlet.http.HttpSession
object)

Servlet version of the Web application Operations at the invocation
destination of the cross context Reference

Invocation source Invocation destination

Servlet 2.5 Version prior to Servlet
2.4

The operations follow the Servlet 2.5
specifications and return the session
ID.

6.2.4 (10)

Versions prior to Servlet
2.4

Servlet 2.5 The operations follow the Servlet 2.4
specifications and return null.

(12) Setting a response header in the include destination servlet
According to the Servlet 2.5 specifications, the settings of the response header in the include destination servlet are
enabled only for getSession. However, in Application Server, the settings of the response header in
getSession are enabled even when Servlet 2.4 is used.

6.2.5 Precautions related to added and changed specifications in the
Servlet 2.4 specifications

This subsection describes the precautions for using the specifications that has been added and changed in Servlet 2.4
on the Application Server. For details on the Servlet 2.4 specifications and Servlet 2.3 specifications, see the
respective specifications (Servlet 2.4 specifications and Servlet 2.3 specifications).

(1) Using X-Powered-By header
The X-Powered-By header added in the Servlet 2.4 specifications is not added to the response.

6. Implementation of Servlets and JSPs

337

(2) Notes on using the forward method of the java.servlet.RequestDispatcher interface
If you execute the forward method of the javax.servlet.RequestDispatcher class acquired with the
getRequestDispatcher method of the javax.servlet.ServletRequest interface and
javax.servlet.ServletContext interface, the following key attributes are added to the request object.
However, the key attributes are not added in the forward method of the RequestDispatcher object acquired
with the getNamedDispatcher method of the javax.servlet.ServletContext interface.

• javax.servlet.forward.request_uri
• javax.servlet.forward.context_path
• javax.servlet.forward.servlet_path
• javax.servlet.forward.path_info#1

• javax.servlet.forward.query_string#2

#1
This attribute is not added when the HTTP request received by the Web container does not contain the additional
path information.

#2
This attribute is not added when the request URI of the HTTP request received by the Web container does not
contain the query string.

These attributes are added by the Web container. The event of adding an attribute is not reported to
javax.servlet.ServletRequestAttributeListener. For details on the values of the added attributes,
see the Servlet 2.4 specifications.

(3) Deprecated javax.servlet.SingleThreadModel interface
The javax.servlet.SingleThreadModel interface is no longer recommended from the Servlet 2.4
specifications.

With the Application Server, you can use the javax.servlet.SingleThreadModel interface regardless of the
Web application version. However, see the Servlet 2.4 specifications, note the reason for which this interface is
deprecated, and then use the interface.

(4) setLocale method of the javax.servlet.ServletResponse interface
The character encoding is set in the Content-Type header of the HTTP response by the setLocale method of the
javax.servlet.ServletResponse interface. In the Servlet 2.4 specifications, the conditions for enabling the
set character encoding have been changed.

The conditions enabled in the Application Server is described separately for Servlet 2.4 and later versions and Servlet
2.3.

Servlet 2.4 and later versions
All the following conditions must be fulfilled:

• The character encoding is set before the HTTP response is committed.

• The character encoding is set before the getWriter method is invoked.

• The character encoding is set before the setCharacterEncoding method is invoked.

• The character encoding is not set by the setContentType method.

When the conditions are not fulfilled, the setLocal method does not set the character encoding of the response
only by setting the locale in the ServletResponse class.

Servlet 2.3
The following condition must be fulfilled:

• The character encoding is set before the HTTP response is committed#.

6. Implementation of Servlets and JSPs

338

#

• When the character encoding is set before the response is committed, the character encoding is set regardless
of whether the setting is specified before or after the getWriter method is invoked.

• When the character encoding is set before the response is committed, the character encoding is set regardless
of whether the character encoding is set with the setContentType method.

(5) javax.servlet.UnavailableException
The javax.servlet.UnavailableException exception indicates that usage is permanently unavailable. The
specifications of the HTTP response code when the servlets and JSPs that threw the
javax.servlet.UnavailableException exception are accessed have been post scripted in the Servlet 2.4
specifications.

The HTTP response codes when the servlets and JSPs that threw the exception are accessed in the Application Server
are described separately for Servlet 2.4 and later versions and Servlet 2.3.

Servlet 2.4 and later versions
404 error.

Servlet 2.3
503 error.

(6) sessionDestroyed method of the javax.servlet.http.HttpSessionListener interface
The timing for invoking the sessionDestroyed method of the
javax.servlet.http.HttpSessionListener interface has been changed in the Servlet 2.4 specifications.

The timing when this method is invoked on the Application Server is described separately for Servlet 2.4 and later
versions and Servlet 2.3.

Servlet 2.4 and later versions
The method is executed before the session is destroyed.

Servlet 2.3
The method is executed after the session is destroyed.

Note that when session timeout is disabled, the listener related to the session is reported in the following order. The
order for each Web application version is as follows:

In Servlet 2.4 and later versions

1. sessionDestroyed() method of the javax.servlet.http.HttpSessionListener interface

2. valueUnbound() method of the javax.servlet.http.HttpSessionBindingListener
interface

3. attributeRemoved() method of the
javax.servlet.http.HttpSessionAttributeListener interface

In Servlet 2.3

1. valueUnbound() method of the javax.servlet.http.HttpSessionBindingListener
interface

2. attributeRemoved() method of the
javax.servlet.http.HttpSessionAttributeListener interface

3. sessionDestroyed() method of the javax.servlet.http.HttpSessionListener interface

(7) sendRedirect method of the javax.servlet.http.HttpServletResponse interface
The conditions for using the sendRedirect method of the
javax.servlet.http.HttpServletResponse interface have been changed in the Servlet 2.4 specifications.

To execute this method on the Application Server normally, all the following conditions must be fulfilled:

6. Implementation of Servlets and JSPs

339

• The method is executed before the response is committed.

• An appropriate URL is specified in the argument.

The controlling of errors if these conditions are not fulfilled is described separately for Servlet 2.4 and later versions
and Servlet 2.3.

Servlet 2.4 and later versions
If the conditions are not fulfilled, the java.lang.IllegalStateException exception is thrown.

Servlet 2.3

• When the response is already committed
The java.lang.IllegalStateException exception is thrown.

• When an invalid URL is specified in the argument
The response code is 404.

(8) Status message of HTTP status code 302
In the Servlet 2.4 specifications, SC_FOUND is added in the javax.servlet.http.HttpServletResponse
interface as the constant indicating HTTP status code 302. Furthermore, for downward compatibility,
SC_MOVED_TEMPORARILY defined in the Servlet 2.3 specifications can be used as it is.

On the Application Server, SC_FOUND and SC_MOVED_TEMPORARILY can be used regardless of any Web
application version.

Note that the status message Found is used in the Web container in the following cases:

• When 302 is returned in the Web application

• When the default error page is output (in the HTML text)

(9) HttpSession timeout during the execution of the service method of the servlet
In the Servlet 2.4 specifications, specifications are post scripted for the timeout in the
javax.servlet.http.HttpSession interface during the execution of the service method.

On Application Server, regardless of the Web application version, the HttpSession does not timeout when the
requests are being processed in the Web application.

Also, by controlling the number of concurrently executing threads in the Web applications or URL groups, the
HttpSession does not timeout even when the request is pending. However, note that in the case of a pending
request due to the controlling of the number of concurrently executing threads in the Web container, the
HttpSession times out.

(10) Control when exception occurs in the listener
The description about the occurrence of an exception in the listener is added in the Servlet 2.4 specifications.

The control when an exception occurs in the listener if the Application Server is used is described separately for
Servlet 2.4 and later versions and Servlet 2.3.

Servlet 2.4 and later versions
Even when there are multiple listeners for processing the relevant events, the listener after the one in which the
exception occurred is not executed.

Servlet 2.3
The thrown exception is caught by the Web container. If multiple listeners are registered, the registered listeners
are executed serially, as in normal cases, after the exception is caught.

(11) Commonly used external library (Extension)
The description about the handling of the MANIFEST file described when using the external library in the Web
application has been changed in the Servlet 2.4 specifications.

6. Implementation of Servlets and JSPs

340

On the Application Server, the existence of the MANIFEST file and the contents of the MANIFEST file are not
checked regardless of the Web application version.

(12) Using the cross context between the Web applications with different servlet versions
The following table lists the operations after the requests using the cross context are forwarded and included between
the Web applications with different servlet versions:

Table 6‒21: Operations after forwarding and after including

Item No.

Addition functionality
of Servlet 2.4
specifications/

Functionality with
differences in the
Web application

version

Operations at the request forward destination/ include destination

forward/ include from 2.4 to 2.3#1 forward/ include from 2.3 to 2.4#2

1 Application of filters
during forward and
during include

When you want to further implement forward or
include from the servlets or JSPs after forward/
include is implemented, the Servlet 2.4 specifications
are applied and you can use the filter.

When you want to further implement
forward or include from the servlets or
JSPs after forward/ include is
implemented, the Servlet 2.3
specifications are applied and you
cannot use the filter.

2 Invocation of
javax.servlet.Se
rvletRequestAttr
ibuteListener

The Servlet 2.4 specifications are applied and you
can use the listener when you add attributes to the
request.

The Servlet 2.3 specifications are
applied and you cannot use the listener
when you add attributes to the request.

3 JSP compilation JSP compilation is executed as an application
corresponding to Servlet 2.3.

JSP compilation is executed as an
application corresponding to Servlet
2.4.

4 setLocale method of
the
javax.servlet.Se
rvletResponse
interface

The Servlet 2.4 specifications are applied and when
all the following conditions are fulfilled, the settings
for character encoding are enabled:

• The character encoding is set before the response
is committed.

• The character encoding is set before the
getWriter method is invoked.

• The character encoding is set before the
setCharacterEncoding method is
invoked.

• The character encoding is not set with the
setContentType method.

The Servlet 2.3 specifications are
applied and the settings for character
encoding are applied if specified
before the response is committed.

5 Dispatch to servlets and
JSPs that throw the
javax.servlet.Un
availableExcepti
on indicating that the
usage is permanently
unavailable

The Servlet 2.3 specifications are applied and a
response with status 503 is returned.

The Servlet 2.4 specifications are
applied and a response with status 404
is returned.

6 sessionDestroyed
method of the
javax.servlet.ht
tp.HttpSessionLi
stener interface

The Servlet 2.4 specifications are applied and the
method is executed before the HTTP session is
destroyed.

The Servlet 2.3 specifications are
applied and the method is executed
after the HTTP session is destroyed.

7 Specification of an
invalid URL in the
sendRedirect
method of the
javax.servlet.ht

The Servlet 2.4 specifications are applied and the
java.lang.IllegalStateException
exception is thrown.

The Servlet 2.3 specifications are
applied and status 404 is set in the
response.

6. Implementation of Servlets and JSPs

341

Item No.

Addition functionality
of Servlet 2.4
specifications/

Functionality with
differences in the
Web application

version

Operations at the request forward destination/ include destination

forward/ include from 2.4 to 2.3#1 forward/ include from 2.3 to 2.4#2

7 tp.HttpServletRe
sponse interface

The Servlet 2.4 specifications are applied and the
java.lang.IllegalStateException
exception is thrown.

The Servlet 2.3 specifications are
applied and status 404 is set in the
response.

8 Listener definition to be
used

In the case of the following listeners, the listener
defined in the application at the forward or
include destination will operate:

• javax.servlet.ServletContextAttri
buteListener

In the case of the following listeners, the listener
defined in the application that invokes the forward
or include method will operate:

• javax.servlet.ServletRequestAttri
buteListener

• javax.servlet.http.HttpSessionLis
tener

• javax.servlet.http.HttpSessionAtt
ributeListener

In the case of the following listeners,
the listener defined in the application
at the forward or include
destination will operate:

• javax.servlet.ServletCo
ntextAttributeListener

In the case of the following listeners,
the listener defined in the application
that invokes the forward or
include method will operate:

• javax.servlet.http.Http
SessionListener

• javax.servlet.http.Http
SessionAttributeListene
r

9 Operations when an
exception occurs in the
listener in the
application at the
forward or include
destination when
multiple listeners are
defined in web.xml
for processing the
relevant events

In the case of the following listeners, the Servlet 2.4
specifications are applied and the listeners after the
one in which an exception was thrown are not
executed:

• javax.servlet.ServletRequestAttri
buteListener

• javax.servlet.http.HttpSessionLis
tener

• javax.servlet.http.HttpSessionAtt
ributeListener

In the case of the following listeners, the Servlet 2.3
specifications are applied, the thrown exception is
caught, and then the process moves to the next
registered listener, as in normal operations:

• javax.servlet.ServletContextAttri
buteListener

In the case of the following listeners,
the Servlet 2.4 specifications are
applied and the listeners after the one
in which an exception was thrown are
not executed:

• javax.servlet.ServletCo
ntextAttributeListener

In the case of the following listeners,
the Servlet 2.3 specifications are
applied, the thrown exception is
caught, and then the process moves to
the next registered listener, as in
normal operations:

• javax.servlet.http.Http
SessionListener

• javax.servlet.http.Http
SessionAttributeListene
r

10 Status code of response
that displays the error
page specified in
web.xml

The Servlet 2.4 specifications are applied and the
response of the status code used when an error
occurs is returned.

The Servlet 2.3 specifications are
applied and a response with status 200
is returned.

#1
Indicates the cases when forward or include is implemented from applications corresponding to Servlet 2.4 to applications
corresponding to Servlet 2.3.

#2
Indicates the cases when forward or include is implemented from applications corresponding to Servlet 2.3 to applications
corresponding to Servlet 2.4.

6. Implementation of Servlets and JSPs

342

(13) When calling Session Bean of EJB 3.0 from the Web application of Servlet 2.4
When you call an EJB 3.0 Session Bean from a Servlet 2.4 Web application, do not specify the ejb-ref tag or
ejb-local-ref. tag in web.xml. Instead, specify the @EJB annotation or @EJBs annotation in the servlet class.

The J2EE server executes DI of Enterprise Bean for the servlet.

6.2.6 Precautions for implementing JSPs
This subsection describes the precautions for implementing JSPs.

(1) Notes for using the include directive

• To include a file in the include directive of the JSP file, specify encoding in the JSP file that forms the include
source.

• To include a static file such as HTML in JSP, use the include directive instead of the include action. Use the
include action to include dynamic pages such as JSPs and servlets.

(2) Notes for using the tag library

• When you create a tag library, make sure that you add the package name with the package statement at the
beginning of the class file that describes the tag library. If the package name is not added, that tag library does not
function normally.

• Specify either NESTED, AT_BEGIN, or AT_END in the <scope> tag element in the <variable> tag in the tag
library descriptor (TLD file). If other values are specified, the default value NESTED is assumed and executed.

• When you implement the tag handler of the tag library, specify settings such that the doStartTag method, the
doAfterBody method, and the doEndTag method return the return value defined in the specifications. If a
value other than the return value defined in the specifications is returned, the default return value is assumed. The
default return value is the return value returned when the methods of the
javax.servlet.jsp.tagext.TagSupport or javax.servlet.jsp.tagext.BodyTagSupport
class are not overridden. For example, in the class that implements the BodyTag interface (or class that inherits
the BodyTagSupport class), if the doStartTag method returns EVAL_PAGE as the return value, it is
assumed that the default return value EVAL_BODY_BUFFERED is returned.

• When the Web application version is 2.3 and when a custom tag with attributes specified in the tag handler of the
tag library is implemented, if you specify the same attribute in the JSP custom tag multiple times, the setter
method of the relevant tag handler is invoked for the specified number of times. If a setter method that
overwrites a normally specified value is implemented, the attribute value coded later is enabled.

• Do not specify a null character string as a tag element in the tag library descriptor (TLD) file. Examples of
specifying null character strings are cases where no string is coded between the beginning tag and ending tag (for
example, <param-name></param-name>) or cases where a tag with a null element (for example, <param-
name />) is coded. If a null character string is specified for a tag element, operation is not guaranteed.

• Use an absolute path to specify the xsi:schemaLocation attribute in the Tag Library Descriptor (TLD) file.

• When you use the extension element of tags or a tag library in the TLD file, and specify the
xsi:schemaLocation attribute with a relative path, operation is not guaranteed.

(3) Notes for coding the <%=%> tag
When using the <%= %> tag in JSP, make sure that you do not include a semicolon (;) in the tag. If the semicolon is
entered, an error occurs during JSP compilation.

(4) Access based on URL specification and mapping definition
When you access the JSP file path directly by specifying the URL and when you access the path using a URL with the
mapping defined, separate instances are generated in each case. Therefore, note that the jspInit method is executed
in each instance. If the specification in the in the <load-on-startup> tag is to load the instance during startup,
the instance loaded during startup is same as the one that is accessed using the URL with the mapping defined.

6. Implementation of Servlets and JSPs

343

(5) Notes for using the <jsp:plugin> tag
Make sure that you specify the plugin action or the code attribute of the <jsp:plugin> tag in the JSP document on
the JSP page. If omitted, a compilation error occurs.

(6) Version attributes in the JSP document
In the JSP document, describe the information about the version used as the attribute of the <jsp:root> tag.
However, the scope of functionality available in JSP is in accordance with the version information of web.xml of the
Web application containing the relevant JSP.

For example, even if the JSP document describes <jsp:root version="1.2">, you can use JSP EL added in
the JSP 2.0 specifications.

(7) Mapping of URI and TLD files specified in the uri attribute of the taglib directive
The URI specified in the uri attribute of the taglib directive is mapped using one of the following methods as per
the JSP specifications. You cannot map the same URI to a different TLD file. If the URI is duplicated, the following
numbering is considered as the priority order and the mapping with a higher priority order is enabled:

1. Implicit mapping of JSTL and JSF URI (Web application of Servlet 2.5 or later specifications)

2. Mapping of URI specified in the <taglib-uri> element of the <taglib> element in web.xml with the TLD
file specified in the <taglib-location> element

3. Mapping of the URI specified in the <uri> element of the TLD file in the Web application with the same TLD
file

4. Mapping of the URI specified in the <uri> element of the TLD file stored under the /META-INF directory of
the library JAR (in the case of the cjjspc command, the JAR file specified in the -classpath option) with
the same TLD file

The examples of description of directory structures and files used when the URI and TLD files are mapped as
specified from step 2 to 4 are as follows:

(a) Mapping of the URI specified in the <taglib-uri> element of the <taglib> element in web.xml and the TLD file
specified in the <taglib-location> element (in 2.)

An example of description of the directory structure and files in the case of point 2 is as follows:

In the case of point 2, the TLD file is stored in the Web application. The example of the directory structure in point 2
is as follows:

Figure 6‒3: Directory structure (in the case of point 2.)

The following figure shows the mapping of the URI specified in the uri attribute of the taglib directive and the
TLD file for this directory structure.

6. Implementation of Servlets and JSPs

344

Figure 6‒4: Mapping of the URI and TLD file (in the case of point 2.)

The correspondence of data in the figure is explained below:

1. The prefix specified in the taglib directive is specified in the tag prefix.

2. The value specified in the <name> element of the TLD file is associated with the JSP file prefix.

3. The uri specified in the taglib directive of the JSP file is specified in the <taglib-uri> element of
web.xml.

4. The name of the TLD file to be mapped is specified in the <taglib-location> element of web.xml.

(b) When mapping the URI specified in the <uri> element of the TLD file and the same TLD file

An example of description of the directory structure and files in the case of points 3 or 4 is described here.

In the case of point 3, the TLD file is stored in the Web application. The example of the directory structure in point 3
is as follows:

6. Implementation of Servlets and JSPs

345

Figure 6‒5: Directory structure (in the case of point 3)

In the case of point 4, the TLD file is stored under the /META-INF directory of library JAR. The example of the
directory structure in point 4 is as follows:

Figure 6‒6: Directory structure (in the case of point 4)

The following figure shows the mapping of the URI specified in the uri attribute of the taglib directive and the
TLD file in the directory structure for the points 3 or 4:

Figure 6‒7: Mapping of the URI specified in the <uri> element of the TLD file and the same TLD file (in the
case of points 3 or 4)

The correspondence of data in the figure is explained below:

1. The prefix specified in the taglib directive is specified in the tag prefix.

6. Implementation of Servlets and JSPs

346

2. The value specified in the <name> element of the TLD file is associated with the JSP file prefix.

3. The uri specified in the taglib directive of the JSP file is specified in the <url> element of TLD file.

If a duplicate URI is detected, the following messages are output for the Web applications and the relevant mapping is
ignored:

Table 6‒22: Messages output and the output conditions in the case of URI duplication

Message ID Output conditions

KDJE39314-W In the case of the J2EE server mode, servlet engine mode, or cjjspc command
This message is output when the contents of the <uri> element described in the
TLD files are duplicated with the contents of the <taglib-uri> element in
web.xml or the contents of the <uri> element described in another TLD file.

In the case of the cjjsp2java command
This message is output when the contents of the <uri> element described in the
TLD file are duplicated with the uri contents specified in the command argument -
taglib or the contents of the <uri> element described in another TLD file.

KDJE39315-W This message is output when the contents of the <uri> element described in the TLD
file are duplicated with the contents of the <uri> element described in another TLD
file.

KDJE39316-W This message is output when another <taglib> element is specified containing the
<taglib-uri> element that duplicates with the contents of <taglib> element
specified in web.xml.

KDJE39325-W This message is output when the contents of the <taglib-uri> element of web.xml
or the contents of the <uri> element described in another TLD file is duplicated with
the URI of the tag library (JSTL, and JSF) in the Java EE specifications.

KDJE39326-W This is message is output when the contents of the <uri> element of the TLD file stored
in the library JAR (in the case of the cjjspc command, JAR file specified in the -
classpath option) are duplicated with the contents of the <taglib-uri> element
of web.xml or the contents of the <uri> element described in another TLD file.

(8) Notes for including a dynamic page in JSP
To include dynamic pages such as JSPs and servlets in JSP, use the include action instead of the include method of
javax.servlet.RequestDispatcher.

(9) Coding the internal subset to the DOCTYPE declaration in the TLD file
Do not code the internal subset for the DOCTYPE declaration in the TLD file (tag library descriptor).

You can only specify absolute URI as the URI specified in the xsi:schemaLocation attribute with the tag
element extension or the element extension of the tag library. Do not reference definitions other than DTD/ XML
schema defined in the Java EE specifications with purposes other than tag element extension or the element extension
of the tag library.

(10) Specifying the external subset URI in the JSP document and XML tag file
When you specify the DOCTYPE declaration, you can only specify the absolute URI as the external subset URI. Also,
when you reference the external entity defined in the XML1.0 specifications, you can only specify the absolute URI as
the URI specified in the external entity declaration. You cannot reference the external subset and external entity with
the relative URI specified.

(11) Values of the javax.servlet.jsp.jspException attribute of the javax.servlet.ServletRequest
object
When an exception is thrown in the JSP file and if the error page is specified in the errorPage attribute of the
page directive, the exception is described in the JSP specifications if the error page is set in the

6. Implementation of Servlets and JSPs

347

javax.servlet.jsp.jspException attribute of the javax.servlet.ServletRequest object, but the
exception is also set when the error page is specified in the errorPage attribute of the page directive.

(12) Precautions related to the TLD file version
In 07-00 or later versions, the version of the TLD file (JSP version to which the TLD file corresponds) is checked
during JSP translation. Therefore, if the TLD file version is a JSP of a level higher than the version of JSP and TLD
file corresponding to the Web application version, an error occurs in JSP translation. Also, in JSP 1.2 and in JSP 2.0 or
later specifications, the schema language must be defined in the TLD file.

The TLD file version is determined from the schema language described in the TLD file. However, if the schema
language is not defined, the TLD file version is determined from the Web application version.

The following table lists the versions of TLD file when the schema language is not defined in the TLD file:

Table 6‒23: TLD file version when the schema language is not defined

Version of the Web application TLD file version

2.2 1.1

2.3 1.2

2.4 2.0

2.5 2.1

(13) Character encoding supported in JSP
This point describes the character encoding that can be used in the JSP file and tag file.

(a) In the case of the JSP page

The character encoding that can be used on the JSP page and the specification method of character encoding is
described below:

• Character encoding that can be used on the JSP page
The character encoding supported by JavaVM can be used. For details on the character encoding supported by
JavaVM, see the JDK documentation.
However, the character encoding where the alphanumeric characters, such as UTF-16, are expressed in multiple
bytes, must fulfill the following two conditions:

• The Web application is compliant with Servlet 2.4/ JSP 2.0 or later specifications.

• BOM is added at the beginning of the JSP file.

• Specification method of character encoding
You can specify the character encoding you want to use in the JSP page by choosing one or more methods from
the methods described below:

• Add BOM at the beginning of the JSP page (in the case of Web applications compliant with Servlet 2.5/JSP
2.1 or later specifications).

• Specify the character encoding in the <page-encoding> element in the <jsp-property-group>
element of web.xml (in the case of Web applications compliant with Servlet 2.4/JSP 2.0 or later
specifications).

• Specify the character encoding in the pageEncoding attribute of the page directive (in the case of Web
applications compliant with Servlet 2.3/JSP 1.2 or later specifications).

• Specify the character encoding in the contentType attribute of the page directive.

The strings that can be specified are the character encoding described in the canonical name for java.nio API and
canonical name for java.lang API and their alias names.
Make sure that the character encoding you want to specify matches with the character encoding used on the JSP
page.

6. Implementation of Servlets and JSPs

348

(b) In the case of the JSP document (in the case of the Web applications compliant with Servlet 2.4 or later
specifications)

The character encoding that can be used in the JSP documents in the Web application compliant with the Servlet 2.4
or later specifications and the specification method of the character encoding to be used is described below:

• Character encoding that can be used in the JSP document
You can use the character encoding# supported by the Cosminexus XML Processor.
However, for JSP documents without the extension jspx, if the <is-xml> element is not specified in the <jsp-
property-group> element of web.xml, ISO-10646-UCS-4 cannot be used in the character encoding of the
JSP document.
However, the character encoding where the alphanumeric characters, such as UTF-16, are expressed in multiple
bytes, must fulfill the following two conditions:

• BOM is added at the beginning of the JSP document

• If ISO-10646-UCS-2 is used, ISO-10646-UCS-2 of big-endian is used

• Specification method of character encoding
Specify the character encoding used in the JSP document in the encoding attribute of the XML declaration. The
specifiable strings are the character encoding# supported by the Cosminexus XML Processor.
However, for JSP documents without the extension jspx, if the <is-xml> element is not specified in the <jsp-
property-group> element of web.xml, specify the character encoding you want to use by choosing one or
more methods from the methods described below:

• Specify the character encoding in the encoding attribute of the XML declaration.

• Specify the character encoding in the <page-encoding> element in the <jsp-property-group>
element of web.xml.

• Specify the character encoding in the pageEncoding attribute of the page directive.

The strings that can be specified are the character encoding described in the canonical name for java.nio API and
canonical name for java.lang API and their alias names.
Make sure that the character encoding you want to specify matches with the character encoding used in the JSP
document.

Note
For the character encoding supported by the Cosminexus XML Processor, see 1.3.2 Character codes that can be
processed in the uCosminexus Application Server XML Processor User Guide.

(c) In the case of the JSP document (in the case of the Web applications compliant with Servlet 2.3
specifications)

The character encoding that can be used in the JSP documents in the Web application compliant with the Servlet 2.3
specifications and the specification method of the character encoding to be used is as follows:

• Character encoding that can be used in the JSP document
You can use the character encoding supported by the Cosminexus XML Processor. For on character encoding
supported by the Cosminexus XML Processor, see 1.3.2 Character codes that can be processed in the
uCosminexus Application Server XML Processor User Guide.
However, the character encoding where the alphanumeric characters, such as UTF-16, are expressed in multiple
bytes cannot be used.

• Specification method of character encoding
You can specify the character encoding you want to use in the JSP document by choosing both or one of the
methods described below:

• Specify the character encoding in the encoding attribute of the XML declaration.

• Specify the character encoding in the pageEncoding attribute of the page directive.

The strings that can be specified are the character encoding described in the canonical name for java.nio API and
canonical name for java.lang API and their alias names.
Make sure that the character encoding you want to specify matches with the character encoding used in the JSP
document.

6. Implementation of Servlets and JSPs

349

(d) In the case of the tag file with standard syntax

The character encoding that can be used in the tag file with the standard syntax and the specification method of the
character encoding to be used is described below:

• Character encoding that can be used in the tag file
You can use the character encoding supported by JavaVM. For details on the character encoding supported by
JavaVM, see the JDK documentation.
However, for the character encoding where the alphanumeric characters, such as UTF-16, are expressed in
multiple bytes, BOM must be added at the beginning of the tag file.

• Specification method of character encoding
You can specify the character encoding you want to use in the tag file by choosing both or one of the methods
described below:

• Add BOM at the beginning of the tag file (in the case of the Web applications compliant with Servlet 2.5/JSP
2.1 or later specifications).

• Specify the character encoding in the pageEncoding attribute of the tag directive (in the case of the Web
applications compliant with Servlet 2.4/JSP 2.0 or later specifications).

The strings that can be specified are the character encoding described in the canonical name for java.nio API and
canonical name for java.lang API and their alias names.
Make sure that the character encoding you want to specify matches with the character encoding used in the tag
file.

(e) In the case of the tag file with XML syntax

The character encoding that can be used in the tag file with the XML syntax and the specification method of the
character encoding to be used is described below:

• Character encoding that can be used in the tag file
You can use the character encoding# supported by the Cosminexus XML Processor.

• Specification method of character encoding
Specify the character encoding to be used in the tag file according to the XML1.0 specifications. The strings that
can be specified are the character encoding# supported by the Cosminexus XML Processor.
Make sure that the character encoding you want to specify matches with the character encoding used in the tag
file.

Note:
For the character encoding supported by the Cosminexus XML Processor, see 1.3.2 Character codes that can be
processed in the uCosminexus Application Server XML Processor User Guide.

(f) Default character encoding

If the character encoding is not explicitly specified in the JSP file or tag file, the JSP is processed using the default
character encoding.

Note that even in this case, make sure that the default character encoding matches with the character encoding used in
the tag file. The following table lists the default character encoding for the Servlet and JSP specifications:

Table 6‒24: Default character encoding

Specifications JSP page JSP document Tag file with
standard syntax

Tag file with XML
syntax

Servlet 2.2/ JSP1.1 ISO-8859-1 ISO-8859-1 -- --

Servlet 2.3/ JSP 1.2 ISO-8859-1 ISO-8859-1 -- --

Servlet 2.4 or later/ JSP 2.0, JSP 2.1 ISO-8859-1 UTF-8 ISO-8859-1 UTF-8

Legend:
--: Not applicable

6. Implementation of Servlets and JSPs

350

You can also set the default character encoding by using the setup functionality for default character encoding. For
details, see 2.6 Functionality for setting up the default character encoding.

(14) Notes on using the setProperty action
Do not specify an invalid value in the setProperty action in the JSP page or in the name attribute of the jsp:setProperty
tag in the JSP document. Operation is not guaranteed if you specify an invalid value in the name attribute of the
jsp:setProperty tag.

(15) Specifying a null character string in an attribute of a JSP tag
Do not specify a null character string in an attribute of a directive or action tag in a JSP page or in a tag that begins
with "jsp:" in a JSP document.

(16) Precautions related to coding the scriptlet before and after the template text of JSP
When you want to code a scriptlet that includes a control character such as an if statement before and after the
template text of JSP, you must enclose the scriptlet explicitly in "{}" (curly brackets).

As a result of the JSP compilation, a one-lined JSP template text does not necessarily become a one lined statement in
the Java file. It is sometimes output as a multi-lined statement. Therefore, if you do not code a scriptlet that includes a
control character such as an if statement before and after the template text of JSP, by enclosing it explicitly in the
"{}" (curly brackets), unintended operations might occur.

(17) Precautions related to using the scriptlet
When you code the Java code in a JSP by using a scriptlet and you want to code the return statement or throw
statement in the scriptlet, code within a block such as an if statement.

(18) Translation error when the EL is disabled
If the JSP includes a character string such as ${aaa, which is incorrect as an EL, an invalid EL translation error
occurs even when you set the EL to a disabled status.

The following table lists the EL starting characters for which the translation error occurs for each version of the JSP
specifications.

Table 6‒25: TableEL starting character for which the translation error occurs

Version of the JSP specifications EL starting character

JSP2.1 '$', '#'

JSP2.0 '$'

JSP1.2 None

(19) Coding schemaLocation in the TLD file
For schemaLocation coded in the TLD file, you must specify either of the values given in the following table,
depending on the version of TLD.

Version of TLD Value to be specified in schemaLocation

2.0 "http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/
web-jsptaglibrary_2_0.xsd"

2.1 "http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-jsptaglibrary_2_1.xsd"

6. Implementation of Servlets and JSPs

351

6.2.7 Precautions related to added and changed specifications in the
JSP 2.1 specifications

This subsection describes the precautions for using the specifications that were added and changed in JSP 2.1 on the
application server. For details on the JSP 2.1 specifications and JSP 2.0 specifications, see the respective
specifications (JSP 2.1 specifications and JSP 2.0 specifications).

(1) EL2.1
The EL of the JSP 2.1 specifications integrates the EL of the JSP 2.0 specifications and the EL of the JSF1.1
specifications.

The EL syntax and API functions are determined as the EL 2.1 specifications and variables such as the implicit object
defined in the JSP 2.1 specifications and JSF1.2 specifications can be used through the API functions of EL.

The following are the addition of the functionality related to EL of JSP 2.1 specifications. The changes in the
specifications are described later.

• EL in #{} format

• Adding elements to TLD

• Adding options for downward compatibility

(a) EL in #{} format

In addition to the EL in ${} format that is a JSP 2.0 specification, you can describe EL in #{} format that is an EL of
JSF1.1 specification as the functionality of JSP 2.1 specification.

Timing for evaluating EL in #{} format

• EL in #{} format is not evaluated during JSP output.

• javax.el.ValueExpression or javax.el.MethodExpression that are the EL objects are
passed to the tag handler by the Web Container instead of the evaluation result of EL. The methods of the
passed object are evaluated at any time depending on the implementation of the tag handler.

(b) Adding elements to TLD

In the JSP 2.1 specifications, the following elements were added in the <attribute> element of the TLD file in
order to show whether it is a tag attribute that expects the #{} format:

• <deferred-value> element

• <type> element in the <deferred-value> element

• <deferred-method> element

• <method-signature> element in the <deferred-method> element

Also, the attributes corresponding to the TLD elements specified here were added to the attribute directive of the tag
file.

(c) Adding options for downward compatibility

In the JSP 2.1 specifications, if EL in #{} format is described in the following locations along with the addition of the
#{} format in the EL2.1 specifications, a translation error occurs:

• Template text of the JSP file or tag file

• Attribute value of the custom tag that is not a delay estimation

On the application server, if true is specified for the following elements or attribute values, the translation error will
not occur even if EL of the #{} format exists in the template text or in the attribute value of the custom tag that does
not have delayed evaluation. #{} is output as it is in a string.

• <deferred-syntax-allowed-as-literal> element in the <web-app><jsp-config><jsp-
property-group> element of web.xml

6. Implementation of Servlets and JSPs

352

• deferredSyntaxAllowedAsLiteral attribute of the page and tag directive

The following table describes whether a translation error occurs for the #{} EL when the settings in web.xml are
combined with the settings in page and tag directive:

Table 6‒26: Presence or absence of translation errors when the settings in web.xml are combined with the
settings in page and tag directive

<deferred-syntax-allowed-as-literal> element of
web.xml

deferredSyntaxAllowedAsLiteral attribute of the page and tag directive

true false Not specified

true Y -- Y

false Y -- --

Not specified Y -- --

Legend:
Y: Translation error does not occur and #{} EL is output as it is
--: Translation error occurs

Note:
The settings in the page and tag directive are given higher priority than the settings in web.xml.

(2) Functionality for deleting unwanted white spaces
In the JSP 2.1 specifications, functionality was added to delete the unwanted white spaces included in the JSP
template text. In the application server, this functionality is supported according to the JSP 2.1 specifications.

If you specify true in the following element or attribute values, the template text with only white spaces is deleted
when JSP is output.

• <trim-directive-whitespaces> element in the <web-app><jsp-config><jsp-property-
group> element of web.xml

• trimDirectiveWhitespaces attribute of the page and tag directive

However, the white spaces in continuation with the template text that is not a white space are not deleted.

Table 6‒27: Enabling or disabling of the functionality for deleting white spaces when the settings in
web.xml are combined with the settings in page and tag directive

<trim-directive-whitespaces> element of
web.xml

trimDirectiveWhitespaces attribute of page and tag directive

true false Not specified

true Y -- Y

false Y -- --

Not specified Y -- --

Legend
Y: Functionality for deleting the white spaces is enabled
--: Functionality for deleting the white spaces is disabled

Note:
The settings in the page and tag directive are given higher priority than the settings in web.xml.

Note that if the trimDirectiveWhitespaces attribute is set in the page directive of the JSP document or the tag
directive of the XML syntax, the attribute is processed as follows depending on the setup value.

• If the setup value is true or false, the settings of the trimDirectiveWhitespaces attribute are ignored and
normal processing is performed.

• If an invalid value other than true or false is specified as the setup value, a translation error occurs.

6. Implementation of Servlets and JSPs

353

Example of deleting white spaces

The following figure shows an example wherein a template text with only white spaces exists between the JSP
elements:

Figure 6‒8: Example wherein template text with only white spaces exists

The taglib directive from the first to fourth line is not output, and therefore is ignored. The new line from the first
new line, second new line, and one-byte space in the third line forms a template text with white spaces only.

The fourth new line in the JSP page is not deleted since this is the white space continuing after the template text that is
not a white space. Therefore, if the functionality for deleting white spaces is enabled, the text is output from the fourth
new line up to [EOF].

(3) Functionality for setting a unique identifier in the tag handler
In the JSP 2.1 specifications, a functionality is added to set a unique identifier for each translation (file included in the
JSP and include directive) in the tag handler. You can use this functionality by implementing the JspIdConsumer
interface in the tag handler. The package name of the JspIdConsumer interface is
javax.servlet.jsp.tagext.

During the JSP execution, the Web Container uses the setJspId method of the interface and sets the identifier for
the tag handler that implements this interface. The identifier is determined during the JSP compilation, and therefore,
the identifier might be changed in the processing of each request.

Use the string id<N> as the unique identifier. <N> indicates an integer value. <N> is allocated in the range of 0 to
2,147,483,647.

(4) Adding API functions for JSP
In the JSP 2.1 specifications, the following classes and methods are added.

• Class added in the JSP 2.1 specifications

6. Implementation of Servlets and JSPs

354

Package name Class name

javax.servlet.jsp JspApplicationContext

• Class that adds constructors in the JSP 2.1 specifications

Package name Class name

javax.servlet.jsp.tagext TagAttributeInfo

• Methods added in the JSP 2.1 specifications

Package name Class name Method name

javax.servlet.jsp JspFactory getJspApplicationContext

javax.servlet.jsp.tagext TagAttributeInfo getDescription

isDeferredValue

isDeferredMethod

getExpectedTypeName

getMethodSignature

TagLibraryInfo getTagLibraryInfos

(5) Using annotations
The application server supports annotations defined in the JSP 2.1 specifications. For using annotations, see 12. Using
Annotations in the uCosminexus Application Server Common Container Functionality Guide.

(6) Method of determining the tag file version
The elements that can be described in the tag file were added in the JSP 2.1 specifications, so clarification of the tag
file version is necessary. Therefore, in the application server, the tag file version is determined according to the JSP
2.1 specifications.

However, the tag file version must match in each tag file. The operations do not function properly if TLD files of
different versions are used to execute the same tag file.

Note that even if versions that form the version determining elements of TLD file and implicit.tld are different,
if the versions determined by the actual usage method match in each file, the operations are performed without a
problem.

For example, as described in the following table, even if the versions of the TLD file and implicit.tld are
different, the operations are performed without a problem when the tag file is used by always using TLD or when
directory is always specified and used from JSP:

Table 6‒28: Example when the versions of the version determining elements are different

Version determining elements Versions

TLD file that references a tag file 2.1

implicit.tld of the directory that deploys the tag file 2.0

(7) Elements that can be specified in the tag attributes
In the JSP 2.1 specifications, if rtexprvalue is false in the tag attribute settings, you cannot specify the expression
of scripting elements in the tag attributes even if deferredValue or deferredMethod is true.

In the application server, even if the rtexprvalue is false in the tag attribute settings, you can specify the
expression of scripting elements in the tag attributes if deferredValue or deferredMethod is true. The following table
describes the compliance between the tag attribute settings in the application server and the specifiable elements:

6. Implementation of Servlets and JSPs

355

Table 6‒29: Compliance between the tag attribute settings and the specifiable elements

Tag attribute settings Specifiable elements

rtexprvalue deferredValue or deferredMethod Strings
Expressi
on (<%=

%>)
EL(${}) EL(#{})

false false Y -- -- --

true false Y Y Y --

false true Y Y -- Y

true true Y Y Y Y

Legend:
Y: Can be specified
--: Cannot be specified

(8) Referencing an error page
The operations when the same JSP page is specified in the errorPage attribute of the page directive as the
transition destination when an error occurs in the JSP page are as follows:

Table 6‒30: Operations when the same JSP page is specified in the errorPage attribute of the page
directive as the transition destination when an error occurs in the JSP page

Version of the Servlet
specifications/ JSP

specifications
Contents

Servlet 2.5/JSP 2.1 As in the case of the JSP 2.1 specifications, a translation error occurs#.

Servlet 2.4/JSP 2.0 JSP is accessed. If an exception occurs, action is not taken for the exception and if the exception occurs
infinitely, a stack overflow error may occur.

#
A translation error does not occur in cases other than when the transition destination in the case of an error is specified with only
the file name and when the relative path from the context root is specified.

(a) Example of specification of transition destination when a translation error occurs

An example of specification of transition destination when an error occurs in the JSP page forming the translation
error in the following file configuration is as follows:

If you specify the same JSP page (example.jsp) in the transition destination used when an error occurs in the JSP
page example.jsp with one of the following methods, a translation error occurs.

• JSP page is specified with only the file name
Example of specification: <%@ page isErrorPage="true" errorPage="example.jsp" %>

• JSP page is specified with the relative path from the context root
Example of specification: <%@ page isErrorPage="true" errorPage="/jsp/example.jsp" %>

(b) Error that occurs when the transition destination in the case of mutual error is specified between different
pages

The following JSP pages are assumed to exist:

• JSP page A: The transition destination used when an error occurs is set in the JSP page B.

6. Implementation of Servlets and JSPs

356

• JSP page B: The transition destination used when an error occurs is set in the JSP page A.

If an error occurs in the JSP page A and an error also occurs in the JSP page B, an exception is thrown and the page
moves to JSP page A. In the structure described here, if an exception occurs infinitely, the stack overflow error occurs.

(9) Handling of a tag file with the same name in non-extensions
The tag files have two types of extensions - .tag and .tagx. Do not deploy tag files with the same names and only
different extensions such as example.tag and example.tagx.

In the JSP2.1 specifications, if tag files with the same names and only different extensions are deployed, the tag
library is disabled.

In the application server, even if tag files with the same names and only different extensions are deployed, the tag
library is not disabled. However, the tag file uses the files searched from the file system. In the case of tag files with
the same names and only different extensions, note that the files searched previously are used and the file search order
does not function properly.

(10) Changing the API specifications
In the application server, the API specifications are changed according to the API specification changes in the JSP 2.1
specifications. For details on the changes in the javax.servlet.jsp.JspException operations, see 6.2.13 (2)
Invocation of initCause(Throwable) for objects generated in javax.servlet.ServletException and
javax.servlet.jsp.JspException.

If non-typesafe methods compliant with versions prior to JSP 2.0 are used for API functions with generic names used
in the Web application classes, you can use the classes as they are even in 08-00 and later versions without any
changes in the method operations. Note that a warning message (unchecked warning) will occur in the javac
command during compilation, but the warning message does not affect operations. By applying
annotation@SuppressWarnings("unchecked") in the places where the warning message occurs, the warning message
will not occur.

(11) Method of setting up the character encoding for the JSP page and tag file
As per the JSP 2.1 specifications, settings are added for the addition of BOM in the setup method of the character
encoding for the JSP page and standard syntax tag files in the application server.

The JSP pages are controlled as per the JSP specifications to which the Web application conforms. The tag files are
controlled as per the JSP specifications corresponding to the tag file version. The following table describes the method
of distinction between the character encoding for the JSP pages and tag files.

Table 6‒31: Method of distinction between the character encoding for the JSP pages and tag files

Version of JSP
specifications Contents

JSP 2.1 The character encoding is set as per the JSP 2.1 specifications. However, UTF-32 BOM is not supported.

JSP 2.0 The settings for character encoding cannot be specified in the addition of BOM.

If necessary, you can specify the character encoding in the <page-encoding> element in the <jsp-
property-group> element of web.xml or in the pageEncoding attribute in the page and tag
directive.

For details on the character encoding in JSP files and tag files, see 6.2.6 (13) Character encoding supported in JSP.

In the JSP pages and tag files of the Web applications compliant with the Servlet 2.5 or later specifications, you can
use one of the following methods to specify whether or not to set the character encoding in the addition of BOM:

• Method of specification using the Easy Setup definition file
In the value of the parameter webserver.jsp.jsp_page.bom.enabled in the <configuration> tag
of the logical J2EE server (j2ee-server), specify true to enable and false to disable the character encoding in the
addition of BOM.

• Method of specification using the cjjspc command

6. Implementation of Servlets and JSPs

357

In the cjjspc command, specify the -jsppagedisablebom option that enables the character encoding in the
addition of BOM and implement JSP pre-compilation.

In the JSP pages and tag files of the Web applications compliant with the Servlet 2.5 or later specifications, if the
character encoding is not set in the addition of BOM, the character encoding for JSP pages is set as per the Servlet 2.4
specifications.

(12) Mapping of the TLD file and URI
The mapping of the TLD file and URI is controlled as per the JSP specifications to which the Web application
conforms. The following table lists the method of mapping the TLD file with URI for each version of the JSP
specifications.

Table 6‒32: Method of mapping the TLD file and URI

Version Mapping methods

Servlet 2.5 (JSP 2.1) JSTL and JSF URI are automatically mapped as per the JSP 2.1 specifications. The URI to be mapped
are as follows:

• http://java.sun.com/jsp/jstl/core

• http://java.sun.com/jsp/jstl/xml

• http://java.sun.com/jsp/jstl/fmt

• http://java.sun.com/jsp/jstl/sql

• http://java.sun.com/jsp/jstl/functions

• http://java.sun.com/jstl/core

• http://java.sun.com/jstl/xml

• http://java.sun.com/jstl/fmt

• http://java.sun.com/jstl/sql

• http://java.sun.com/jstl/core_rt

• http://java.sun.com/jstl/xml_rt

• http://java.sun.com/jstl/fmt_rt

• http://java.sun.com/jstl/sql_rt

• http://java.sun.com/jsf/core

• http://java.sun.com/jsf/html

Servlet 2.4 (JSP 2.0) The TLD file and URI are not mapped automatically. If JSTL and JSF are used, deploy the TLD file
with the JSTL and JSF specifications as in the case of normal TLD files.

In Web applications compliant with the Servlet 2.5 or later specifications, automatic mapping is processed at top
priority, so you cannot overwrite the mapping of the TLD file and URI.

Therefore, in the application server, you can use one of the following methods to specify whether to map the TLD file
and URI automatically:

• Method of specification using the Easy Setup definition file
In the value of the parameter webserver.jsp.tld.mapping.java_ee_tag_library.enabled in
the <configuration> tag of the logical J2EE server (j2ee-server), specify true to enable and false to disable
automatic mapping.

• Method of specification using the cjjspc command
In the cjjspc command, specify the -nojavaeetaglib option that disables automatic mapping and
implement JSP pre-compilation.

If you want to use multiple versions of tag libraries for each Web application, disable automatic mapping using these
methods. If you disable automatic mapping, you can mix libraries of multiple versions by deploying the libraries in
respective Web applications.

6. Implementation of Servlets and JSPs

358

(13) EL escape sequence
In the JSP 2.1 specifications, "#{" is added to the string indicating the start of EL.

The JSP pages and JSP documents are controlled as per the JSP specifications to which the Web applications conform.
The tag files are controlled as per the JSP specifications corresponding to the tag file version. Also, the control differs
depending on whether the EL settings are enabled.

The following table describes the controlling of the escape sequence that expresses "#" as a string for each version of
the servlet and JSP specifications.

Table 6‒33: Controlling of the escape sequence expressing # as a string

Versions of Servlet
specifications/ JSP

specifications

Specifications

When EL settings are enabled When EL settings are disabled

\$ output \# output \$ output \# output

Servlet 2.5/JSP 2.1 $ # $ #

Servlet 2.4/JSP 2.0 $ \# $ \#

In the Web applications compliant with Servlet 2.5 specifications, "\#" is output as # by the escape sequence
regardless of the conditions as in the case of "\$". Therefore, if you want to output "\#", you must describe "\\#".

For details on the escape sequence specifications of "\$"in the JSP 2.0 specifications, see 6.2.8 (15) Escape sequence
of EL (Expression Language).

(14) Changing the processing for Enum type in EL
The processing corresponding to the Enum type object defined in the Java SE 5 specifications was added from the EL
of JSP 2.1 specifications.

The JSP pages and JSP documents are controlled as per the JSP specifications to which the Web applications conform.
The tag files are controlled as per the JSP specifications corresponding to the tag file version.

The following table describes the processing for the Enum type in EL for each version of the servlet and JSP
specifications in the application server.

Table 6‒34: Processing for the Enum type in EL

Versions of Servlet
specifications/ JSP

specifications
Contents

Servlet 2.5/JSP 2.1 Processed as per the JSP 2.1 specifications.

Servlet 2.4/JSP 2.0 In spite of Enum type, the processing is performed like other objects as per the JSP 2.0 specifications.

However, if you use API functions of EL defined in the JSP 2.0 specifications, but deprecated in the JSP 2.1
specifications, the API functions are processed in the range of EL functionality in JSP 2.0 specifications, regardless of
the Web application version.

(15) Changing the processing of <, >, lt, and gt operators in EL
The JSP pages and JSP documents are controlled as per the JSP specifications to which the Web applications conform.
The tag files are controlled as per the JSP specifications corresponding to the tag file version.

The following table describes the processing of <, >, lt, and gt operators in EL in the application server for each
version of the servlet and JSP specifications.

6. Implementation of Servlets and JSPs

359

Table 6‒35: Processing of <, >, lt, and gt operators in EL

Versions of Servlet
specifications/ JSP

specifications
Contents

Servlet 2.5/JSP 2.1 The <, >, lt, and gt operators are processed as per the JSP 2.1 specifications.

Servlet 2.4/JSP 2.0 The <, >, lt, and gt operators are processed as per the JSP 2.0 specifications.

However, if you use API functions of EL defined in the JSP 2.0 specifications, but deprecated in the JSP 2.1
specifications, the API functions are processed in the range of EL functionality in JSP 2.0 specifications, regardless of
the Web application version.

(16) Changing the API functions of EL
This point describes the API functions of EL for JSP specifications in the application server.

Corresponds to the API functions added in the JSP 2.1 specifications. When you use the EL functionality added in the
JSP 2.1 specifications, use the API function of the javax.el package.

When you use the API functions of EL defined in the JSP 2.0 specifications, EL is evaluated as per the EL
specifications defined in the JSP 2.0 specifications.

6.2.8 Precautions related to added and changed specifications in the
JSP 2.0 specifications

This subsection describes the precautions for using the specifications that were added and changed in JSP 2.0 on the
application server. For details on the JSP 2.0 specifications and JSP 1.2 specifications, see the respective
specifications (JSP 2.0 specifications and JSP 1.2 specifications).

(1) Default extension of JSP documents
In the JSP 2.0 specifications, the standard extension of JSP documents is jspx. In the Web Container used on the
application server, a file with extension jspx is handled as a JSP document even if URL mapping is not defined in
web.xml using default mapping.

(2) Output destination of the Java source files and class files of the tag file
Like a JSP file, Java source files and class files are generated by JSP compilation for a tag file. The Java source files
and class files are output in the directory to output the JSP compilation result.

You can change the directory to output the JSP compilation result. Note that you must change the output destination
directory when the path of the generated Java source files and class files exceeds the upper limit for the OS.

For details on the directory to output the JSP compilation result, see 2.5.5(2) Output destination of JSP compilation
results when the JSP pre-compilation functionality is used and see 2.5.6(3) Output destination of JSP compilation
results when the JSP pre-compilation functionality is not used.

(3) Multiple assignment of evaluation API functions for JSP EL expression
In the JSP 2.0 specifications, the following API functions are provided as the API functions for performing the syntax
analysis and evaluating the EL expression:

• evaluate method of the javax.servlet.jsp.el.ExpressionEvaluator class

• evaluate method of the javax.servlet.jsp.el.Expression class

In the JSP 2.0 specifications, you cannot specify multiple EL expressions from these API functions, but in the
application server, you can specify multiple EL expressions.

6. Implementation of Servlets and JSPs

360

(4) JSP files and tag files coded in the XML syntax

• Character encoding
If the character encoding of the JSP document is specified in Web application version 2.4, specify the character
encoding in the XML declaration.
In the case of the JSP 1.2 specifications, the character encoding of the file was specified in the pageEncoding
attribute of the page directive or the charset value of the contentType attribute, but from the JSP 2.0 specifications,
changes were made such that the character encoding is specified in the XML declaration.

• Prefix of the standard action
The JSP standard action is identified by http://java.sun.com/JSP/Page of the XML name space. Consequently,
standard action must be specified in the prefix of the XML name space. An example of description wherein the
prefix is assumed as jsp is described below.

<?xml version="1.0" ?>
<jsp:root
 xmlns:jsp=http://java.sun.com/JSP/Page
 version="2.0">
 <jsp:directive.page import="java.util.* "/>
 <jsp:useBean id="name" class="test.Bean"/>

</jsp:root>

• Handling the <jsp:root> element
From the JSP 2.0 specifications, even if the <jsp:root> element is not specified in the root element, the
<jsp:root> element is handled as a JSP file or tag file of the XML syntax.
In the JSP 1.2 specifications, <jsp:root> had to be specified in the root element as a condition for the JSP
document, but from JSP 2.0 specifications, changes were made so that even if <jsp:root> is not specified,
when the value of <jsp-config><jsp-property-group><is-xml> defined in web.xml is true or
when the extension is jspx and tagx, <jsp:root> is handled as JSP with XML syntax format.

(5) Deprecated isThreadSafe attribute of the page directive
The isThreadSafe attribute of the page directive is deprecated in the JSP 2.0 specifications since the
javax.servlet.SingleThreadModel interface is deprecated.

In the application server, you can use the isThreadSafe attribute of the page directive regardless of the Web
application version. However, in the Servlet 2.4 specifications, note the cause due to which the
javax.servlet.SingleThreadModel interface is deprecated, and then use.

(6) Default ContentType value of HTTP response in JSP documents
In JSP 2.0 specifications, a postscript has been added that the when the JSP document is used, the value of the default
ContentType is text/xml.

In the application server, text/xml is operated as the default value in JSP 2.0 and later versions and text/html is
operated as the default value in JSP 1.2.

(7) Deploying the tag library descriptor (TLD file)
In the JSP 2.0 specifications, the provisions regarding the deployment location of the tag library descriptor is added.

In the application server, the KDJE39289-W message may be output when the Web application starts and during JSP
compilation depending on the directory deployed. However, the Web application is executed without an error.

The message output conditions are described below:

Deployed directory

• Not under /WEB-INF directory

• Under /WEB-INF/classes directory

• Under /WEB-INF/lib directory

6. Implementation of Servlets and JSPs

361

The time when the message is output

• When the applicable tag library descriptor is specified in the <taglib><taglib-location> tag of
web.xml and the Web application is started

• When compiling JSP that directly specifies and uses the applicable tag library descriptor in the tag library
declaration

(8) XML view information that can be acquired with the getInputStream method of the
javax.servlet.jsp.tagext.PageData class

The specifications of the XML view information that can be acquired with the getInputStream method of the
javax.servlet.jsp.tagext.PageData object were changed in the JSP 2.0 specifications. The
getInputStream method is specified and used in the third argument of the validate method of the
javax.servlet.jsp.tagext.TagLibraryValidator class.

The changes in the application server are described as follows for the JSP 2.0 and later versions and JSP 1.2:

(a) jsp:id attribute

JSP 2.0 and later versions
The jsp:id attribute is added.

JSP 1.2
The jsp:id attribute is not added.

(b) Character encoding of XML view

JSP 2.0 and later versions
The character encoding of XML view is always considered as UTF-8, the character code is considered as UTF-8,
and the XML declaration is output.

JSP 1.2
The character encoding of XML view is always considered as UTF-8, the character code is considered as UTF-8,
and the XML declaration is not output.

(c) pageEncoding attribute of the page directive

JSP 2.0 and later versions
The value of the pageEncoding attribute is set in UTF-8. If the pageEncoding attribute does not exist, the
pageEncoding attribute is added.

JSP 1.2
The value of the pageEncoding attribute is not changed.

(d) contentType attribute of the page directive

JSP 2.0 and later versions
Set the value set in the setContentType method of the ServletResponse class in the value of the
contentType attribute. If the contentType attribute does not exist, the contentType attribute is added.

JSP 1.2
The value of the contentType attribute is not changed.

(9) Default character coding of files included in the include directive
In the JSP 2.0 specifications, a postscript has been added that the pageEncoding attribute of the page directive is only
applied to the file that describes the pageEncoding attribute.

In the application server, regardless of the Web application version, if the character code is not specified in the include
destination file while including the file in the include directive, the character code at the include source is applied to
the include destination file.

6. Implementation of Servlets and JSPs

362

(10) Conflicting character codes in the JSP documents
The specifications when the character code specified for the XML declaration in the JSP document differs from the
character code specified in the pageEncoding attribute of the page directive in the JSP document, have been added in
the JSP 2.0 specifications. This description is not present in the JSP 1.2 specifications.

The control when the character codes in the application server are different will be separately described for JSP 2.0
and later versions and JSP 1.2.

JSP 2.0 and later versions
A translation error occurs.

JSP 1.2
The pageEncoding attribute of the page directive is used.

(11) Default value of HTTP response character code in the JSP documents
The default character code of HTTP response used when the contentType attribute of the page directive does not exist
in the JSP document and when the CHARSET value does not exist in the attribute has been added in the JSP 2.0
specifications.

The default value in the application server will be separately described for JSP 2.0 and later versions and JSP 1.2.

JSP 2.0 and later versions
UTF-8 is used.

JSP 1.2
ISO-8859-1 is used.

(12) Specification of multiple pageEncoding attributes of the page directive
The specifications for multiple pageEncoding attributes of the page directive are changed in the JSP 2.0 specifications.

In JSP 2.0 specifications, multiple pageEncoding attributes can be specified for each translation (files included in the
JSP and include directive). A specification was also added that if multiple pageEncoding attributes are specified in the
same JSP file, a compilation error occurs.

In the application server, regardless of the Web application version, you can specify multiple pageEncoding attributes
in each translation. In this case, the value specified in each file is applied to the applicable file. Also, the specification
of multiple pageEncoding attributes in the same JSP file differs in the JSP 2.0 and later versions and in JSP 1.2. The
specifications in the application server will be described separately for JSP 2.0 and later versions and for JSP 1.2.

JSP 2.0 and later versions
The pageEncoding attribute can be specified only once in one file. If multiple pageEncoding attributes are
specified, a compilation error occurs.

JSP 1.2
Multiple pageEncoding attributes can be specified in one file. The value described first is applied.

(13) When uri that is not registered in the taglib map is described in the tag library declaration
of the JSP document
Specifications were added in the JSP 2.0 specifications for the operations when the tag library is declared in the JSP
document using the name space and the specified uri is not found in the taglib map (mapping of the uri and tag library
descriptor).

The operations in the application server will be described separately for JSP 2.0 and later versions and JSP 1.2.

JSP 2.0 and later versions
If the specified uri is not registered in the taglib map, the action defined in the uri name space is handled without
being analyzed (output as text).

JSP 1.2

• When the uri is an absolute URI
A translation error occurs.

6. Implementation of Servlets and JSPs

363

• When the uri is not an absolute URI
The TLD file (tag library descriptor) is searched and used as the path in the Web application. If the TLD file
does not exist, a translation error occurs.

(14) Character code in JSP documents
The method for determining the file character code in the JSP document was changed in the JSP 2.0 specifications.

The method for determining the character code in the application server will be described separately for JSP 2.0 and
later versions and JSP 1.2.

JSP 2.0 and later versions
The XML declaration is followed according to the XML 1.0 specifications. If the XML declaration is not present,
the default value is UTF-8.

JSP 1.2
The pageEncoding attribute of the page directive is followed. If the pageEncoding attribute does not exist, the
character code specified in the contentType attribute charset= is followed. If both do not exist, the default value is
ISO-8859-1.

(15) Escape sequence of EL (Expression Language)
The JSP specifications and the specifications for the Web Container used in the application server are described below
for the JSP 2.0 specification of escape sequence that expresses "$" included in "${", indicating the start of EL, as a
string.

In the Web Container used on the application server, "\$" is output as "$" using the escape sequence. If you want to
output "\$", code as "\\$".

The operations when "\$" is coded will be described separately for JSP 2.0 and JSP 1.2.

JSP 2.0
In the JSP 2.0 specifications, if the EL settings are disabled, "$" need not be considered as the starting character of
EL and "\" is not handled as a control code. When operating in JSP 2.0, the output result of "\$" differs depending
on whether the EL settings are enabled. The following table describes the output results of "\$" when the
operations are performed in JSP 2.0.

Table 6‒36: Output results of "\$" when the operations are performed in JSP 2.0

Enabling/ Disabling of EL settings Specifications Output results

Enabled JSP 2.0 specifications "$"

Web Container used in the application server "$"

Disabled JSP 2.0 specifications "\$"

Web Container used in the application server "$"

To disable the EL settings, use one of the following methods:

• Specify true in the isELIgnored attribute of the page directive.

• Specify true in the isELIgnored attribute of the tag directive.

• Specify true in the <el-ignored> tag of web.xml.

JSP 1.2
In the JSP 1.2 specifications, "$" is not a reserved word. "\" is not handled as a control code, therefore, "\$" is
output as "\$".
In the Web Container used in the application server, "\" is handled as a control code even when operations are
performed in JSP1.2, so "\$" is output as "$". However, when "\$" is used in the attribute value of the JSP
document format, "\$" is output as "\$".
The following table describes the output result of "\$" when operations are performed in JSP 1.2.

6. Implementation of Servlets and JSPs

364

Table 6‒37: Output result of "\$" when operations are performed in JSP 1.2

Specifications Output results

JSP 1.2 specifications "\$"

Web Container used in the application server "$"

(16) Type of EL evaluation results
The JSP specifications and application server specifications for the type of EL evaluation results specified in the
custom tag attribute are described below.

JSP 2.0 specifications
The EL evaluation result is converted to the expected type of custom tag attribute.

Application server
The EL evaluation result is converted to the type of the setter method argument corresponding to the custom
tag attribute. The type element defined in the TLD attribute is not used for type conversion.
If the description location of EL is the tag file, the EL evaluation result is converted to the type specified in the
type attribute of the attribute directive.

The examples when the types of EL evaluation results differ in the JSP specifications and the application server are
described below.

Example:

• Custom tag attribute name: attr
• Signature of the custom tag setter: void setAttr(java.lang.String hoge)
• Value of type element of the attr attribute in TLD: java.lang.Integer

In this example, the type of EL evaluation result is as follows:

JSP 2.0 specifications
The type is converted to java.lang.Integer.

Application server
The type is converted to java.lang.String.

6.2.9 Precautions for implementing JSPs of the JSP 1.2 specifications
This subsection describes the important points to be noted when implementing JSPs of the JSP 1.2 specifications.

These notes are not applicable to the JSP implementation of JSP 2.0 or later.

(1) Notes on using JSP documents
The notes on using JSP documents are as follows:

• In a JSP document, specify a valid value in the xmlns:jsp attribute of the jsp:root tag as described in the JSP
1.2 specifications. If you specify an invalid value outside the scope described in the JSP 1.2 specifications, that
value is ignored.

• You must specify 1.2 in the version attribute of the jsp:root tag in the JSP document.

• In a JSP document, you must specify only the valid values for tag attributes as described in the JSP 1.2
specifications. Any invalid value specified in tag attributes is ignored.

• In a JSP document, you must specify all the tag attributes that are specified as mandatory in the JSP 1.2
specifications. If you omit any of the mandatory attributes, the operation is not guaranteed.

• In JSP documents, you must not code the tags as child tags if they are not allowed to be described as child tags.
If you inappropriately code tags as child tags, operation is not guaranteed.

6. Implementation of Servlets and JSPs

365

• A JSP document with the UTF-8 character code cannot be used if BOM is added to the document. If you want to
use the UTF-8 character code for a JSP document, you must not add the BOM. A JSP document with the UTF-8
character code and BOM added to it results in a compilation error.

(2) Notes on using the pageEncoding attribute of the page directive
You need to only code the correct value for the pageEncoding attribute in the page directive of a JSP page or
<jsp:directive.page> tag of a JSP document once

However, no error occurs even if you code the pageEncoding attribute in the page directive of a JSP page or
jsp:directive.page tag of a JSP document more than once.

(3) Notes on using standard actions
You cannot code a tag that starts with "jsp:" and that is not a tag included in the JSP 1.2 specifications.

(4) Notes on using custom tags
You must not define duplicate attributes in a tag. The operation is not guaranteed if you define duplicate attributes
within a tag in a JSP page.

(5) Notes on using a tag library
If you specify webserver.xml.validate=false for a property, the tag library descriptor (TLD file) is not
validated. Although no error might be output and the operation is continued even if you use a TLD file that does not
comply with the specifications (XML schema definitions), the operation is not guaranteed.

You must properly follow the specifications (XML schema definitions) when coding the TLD file.

(6) Notes on using the plugin action
You must specify only a value specified in the JSP 1.2 specifications for a plugin action in a JSP page, or for the type
attribute of the jsp:plugin tag of a JSP document. If you specify a value that is not specified in the JSP 1.2
specifications, the output value of the type attribute will be NULL.

(7) Notes on using the params action
As coding the jsp:param tag is mandatory according to the specifications, if you code the params action or the
jsp:params tag, you must also code the jsp:param tag.

However, if you code the params action in the JSP page of a JSP document, or if you code the jsp:params tag in a JSP
document, no error occurs even if you do not code the jsp:param tag element.

6.2.10 Precautions related to the specifications that are added or
changed in the EL2.2 specifications

This subsection describes the points to be noted when using added or changed EL2.2 specifications with Application
Server. For details on the EL2.2 specifications, see EL2.2 Specifications.

• Although Application Server 09-00 supports EL2.2, both EL2.1 and EL2.2 implementations are available. You
can switch the implementation by specifying the following parameter in the Easy Setup definition file. You must
specify the parameter in the configuration tag of the logical J2EE server in the Easy Setup definition file.
webserver.jsp.el2_2.enabled
For details on the webserver.jsp.el2_2.enabled parameter, see 4.6 Easy Setup definition file in the
uCosminexus Application Server Definition Reference Guide.

• If multiple methods with the same number of parameters are specified in a single Bean, the type conversion is
done based on the method that is defined first. Accordingly, if the type of the argument when calling a method
matches a method that is defined first, the method is called without any problem; otherwise, if the argument type
does not match, ELException is thrown.

6. Implementation of Servlets and JSPs

366

6.2.11 Points to remember when upgrading the version of an existing
Web application to the Servlet 3.0 specifications

This subsection describes tasks you need to perform and precautions you need to take when upgrading the version of a
Web application from Servlet 2.5 to Servlet 3.0 specifications. For details on the Servlet 3.0 specifications, see Servlet
3.0 Specifications.

(1) Specifications added or changed in the Servlet 3.0 and JSP 2.2 specifications
For details on the precautions to be taken when using the additions or changes made in the Servlet 3.0 specifications,
see 6.2.3 Precautions related to the specifications that are added or changed in Servlet 3.0 specifications.

The specifications added based on the JSP 2.2 specifications are not supported. However, as the web.xml schema
described in JSP 2.2 is supported, even if you add the JSP 2.2 tags in web.xml, the tags are ignored but no error is
reported.

(2) Migrating web.xml
Modify the definitions in web.xml according to the Servlet 3.0 specifications. For details, see Java Servlet
Specification v3.0. For specification related changes, see 6.2.3 Precautions related to the specifications that are added
or changed in Servlet 3.0 specifications.

6.2.12 Points to remember when upgrading the version of an existing
Web application to the Servlet 2.5 specifications

This subsection describes the operations and precautions required for upgrading the version of Web applications
corresponding to the Servlet 2.4 specifications to the Servlet 2.5 specifications. For details on the Servlet 2.5
specifications, see the Servlet 2.5 specifications.

(1) Specifications added and changed in Servlet 2.5 specifications and JSP 2.1 specifications
For details on the Servlet 2.5 specifications and precautions related to added and changed specifications in the JSP 2.1,
see 6.2.4 Precautions related to added and changed specifications in the Servlet 2.5 specifications or 6.2.7
Precautions related to added and changed specifications in the JSP 2.1 specifications respectively.

(2) Migration of web.xml
web.xml is modified to the definition specified in the Servlet 2.5 specifications. For details, see Java Servlet
Specification v2.5. Furthermore, for details on changing the specifications, see 6.2.4 Precautions related to added and
changed specifications in the Servlet 2.5 specifications.

(3) Size of classes generated from JSP
The functionality of JSP 2.1 specifications is applied to the classes generated from the JSP included in the Web
applications compliant with Servlet 2.5 specifications. Therefore, the contents of the Java source files and class files
generated from JSP are changed.

In this case, note that the number of lines in the Java source file, the size of the methods included in the classes
generated from JSP, or the usage of the Permanent area may increase.

6.2.13 Precautions related to Web applications when migrating from a
previous version of Application Server to 09-00

This subsection describes the precautions related to Web applications when migrating from a previous version of
Application Server to 09-00.

6. Implementation of Servlets and JSPs

367

(1) Version information acquiring API supported by the Web Container
In the Servlet API listed in the following table, you can acquire the version information of the Servlet specifications
supported by the Web Container.

Table 6‒38: Version information acquiring API supported by the Web Container

Interface/Class name Method name

javax.servlet.ServletContext getMajorVersion

getMinorVersion

javax.servlet.jsp.JspEngineInfo getSpecificationVersion

Even if the Web application version is earlier than Servlet 2.5/JSP 2.0, the version of the servlet specifications
supported by the Web container is Servlet 3.0/JSP 2.1. Accordingly, the servlet APIs described above return Servlet
3.0/JSP 2.1 as the servlet version. Note that the APIs retrieve information irrespective of the operating mode of the
server.

(2) Invocation of initCause(Throwable) for objects generated in
javax.servlet.ServletException and javax.servlet.jsp.JspException

You cannot invoke initCause(Throwable) for the following objects:

• ServletException object generated in the constructors ServletException(String, Throwable)
and ServletException(Throwable) of javax.servlet.ServletException

• JspException object generated in the constructors JspException(String, Throwable) and
JspException(Throwable) of javax.servlet.jsp.JspException

If you want to invoke initCause(Throwable), set up the compatibility properties in the Easy Setup definition
file. For details on the settings, see 6.2.1 (22) Acquiring the root cause exception specified in the constructor of the
javax.servlet.ServletException class.

Operations when the setCharacterEncoding method of the javax.servlet.ServletRequest interface is invoked

After invoking the getReader method of the javax.servlet.ServletRequest interface, if you invoke the
setCharacterEncoding method of the javax.servlet.ServletRequest interface, the return value of
the getCharacterEncoding method is not changed. For details, see 6.2.4 (8) Disabling the invocation of the
setCharacterEncoding method of the javax.servlet.ServletRequest interface.

(3) Operations when the ServletConfig object maintained by the javax.servlet.GenericServlet
class is null

If ServletConfig maintained by the javax.servlet.GenericServlet class as the instance variable is null, the
exceptions thrown by the following methods differ in each version:

• getInitParameter(String)
• getInitParameterNames()
• getServletContext()
• getServletName()

The exceptions thrown by these methods will be described below for each version.

Versions prior to 07-60
java.lang.NullPointerException

08-00 or later
java.lang.IllegalStateException
'ServletConfig has not been initialized.' is output as the exception message.

These exceptions are thrown when both the following conditions are fulfilled:

6. Implementation of Servlets and JSPs

368

• When the servlet that inherited javax.servlet.GenericServlet overrides init(ServletConfig)

• When super.init(ServletConfig) is not invoked in the overridden init(ServletConfig) or when
super.init(ServletConfig) is invoked by specifying null in the argument

(4) Log output by the init method and destroy method of the javax.servlet.GenericServlet
class

If you initialize or terminate the servlet that does not override the init method and destroy method of the
javax.servlet.GenericServlet class, the log is output in the servlet log. For details on the log that is
output, see 5.1.1(17) Messages output when the init method and destroy method are not overridden.

However, the operations when the ServletConfig that has the javax.servlet.GenericServlet class in the
instance variable is null differ with the versions prior to 07-60 and with 08-00. The differences in operations in each
version are described below.

Versions prior to 07-60
Log output fails and the java.lang.NullPointerException exception is thrown.

08-00 or later
An exception is not thrown. The log is also not output.

(5) Log output by the init method and destroy method of the javax.servlet.GenericServlet
class

If you initialize or terminate the servlet that does not override the init method and destroy method of the
javax.servlet.GenericServlet class, the log is output in the servlet log. For details on the log that is
output, see 6.2.1 (17) Messages output when the init method and destroy method are not overridden.

However, the operations when the ServletConfig that has the javax.servlet.GenericServlet class in the
instance variable is null differ with the versions prior to 07-60 and with 08-00or later. The differences in operations in
each version are described below.

Versions prior to 07-60
Log output fails and the java.lang.NullPointerException exception is thrown.

08-00or later
An exception is not thrown. The log is also not output.

(6) Searching the TLD file in the library JAR
In 08-00or later, you can search the TLD file included in the library JAR and use the tag library present in the library
JAR. If the library JAR contains the TLD file, you can use the TLD file that could not be used in the previous version,
so the following operating changes occur:

• If the URI described in the <uri> element of the TLD file present in the library JAR is duplicated with the URI
described in web.xml and another TLD file, a warning message is output. The URI and TLD file mapping
described in the TLD file present in the library JAR is disabled.

• If the URI described in the TLD file present in the library JAR is specified in the uri attribute of the JSP taglib
directive, you can perform the JSP translation. Note that with versions prior to 07-60, a translation error occurs
during the JSP translation.

For details, see 2.3.4 Storing the tag library in the J2EE applications.

(7) Searching the TLD file in the JAR file specified in the class path in the cjjspc command
In 08-00or later, during the JSP compilation using the cjjspc command, you can search the TLD file within the
JAR file specified in the class path in the -classpath option and can use the tag library that exist within the JAR
file. If the JAR file specified in the class path includes TLD files, you can use the TLD files that you could not use
with the versions prior to the 07-60 version. As a result, the following events occur:

6. Implementation of Servlets and JSPs

369

• If the URI described in the <uri> element of the TLD file that exists within the JAR file specified in the class
path is duplicated with the URI described in web.xml and another TLD file, a warning message is output. The
URI and TLD file mapping described in the TLD file that exists within the JAR file specified in the class path is
disabled.

• If the URI described in the TLD file that exists within the JAR file specified in the class path is specified in the
uri attribute of the JSP taglib directive, you can perform the JSP translation. Note that with versions prior to
the 07-60 version, a translation error occurs during the JSP translation.

For details, see 2.3.4 Storing the tag library in the J2EE applications.

(8) Deleting the HTTP Cookie indicating the session ID of the HTTP session
When the HTTP session is disabled in the Web application, the operations for the HTTP Cookie information that the
Web client maintains differ with the versions prior to the 07-60 version and in the 08-00 or later. The differences in
operations for each version are as follows:

08-00 or later
The HTTP Cookie information that the Web client maintains is deleted. Also, the sending of the session ID for a
disabled HTTP session is controlled.

Versions prior to 07-60
The HTTP Cookie information that the Web client maintains is not deleted. Therefore, even after the HTTP
session is disabled, sending of the disabled session ID might continue.

For details on deleting the HTTP Cookie, see 2.7.4 Deleting invalid session IDs maintained by the Web client.

When performing upgrade installation from the versions prior to the 07-60 version and in the 08-00 or later, the
settings for the following parameter are added to the settings of the already setup J2EE server:

webserver.session.delete_cookie.backcompat=true

By adding these settings, the HTTP Cookie information is no longer deleted and the operations are same as the
versions prior to the 07-60 version. For details on the parameters, see 2.4 usrconf.properties (User property file for
J2EE servers) in the uCosminexus Application Server Definition Reference Guide.

6.2.14 Points to remember when upgrading the version of an existing
Web application to the Servlet 2.4 specifications

This subsection describes the operations and precautions required for upgrading the version of Web applications
corresponding to the Servlet 2.2 specifications or Servlet 2.3 specifications to the Servlet 2.4 specifications. For details
on the Servlet 2.4 specifications, see the Servlet 2.4 specifications.

(1) Migration of web.xml
The web.xml file created according to the Servlet 2.2 specifications or Servlet 2.3 specifications is modified to the
definition specified in the Servlet 2.4 specifications. For the points changed in the Servlet 2.4 specifications, see 5.2.5
Notes on specifications added or changed in Servlet 2.4 or later versions (web.xml) in the uCosminexus Application
Server Application and Resource Definition Reference Guide.

(2) Modification to code corresponding to the Servlet 2.4 specifications
In Servlet 2.4 specifications, specifications are added and changed from Servlet 2.2 and Servlet 2.3. Check the added
and changed points and modify in the code corresponding to the Servlet 2.4 specifications. For details on the points
that are added and changed in the Servlet 2.4 specifications, see 6.2.5 Precautions related to added and changed
specifications in the Servlet 2.4 specifications.

Furthermore, even in the JSP 2.0 specifications, the specifications are added and changed from JSP 1.2. Check the
added and changed points and modify to the code corresponding to the JSP 2.0 specifications. For details on the points
that are added and changed in the JSP 2.0 specifications, see 6.2.8 Precautions related to added and changed
specifications in the JSP 2.0 specifications.

6. Implementation of Servlets and JSPs

370

(3) Migration from J2EE server mode to servlet engine mode
The Web applications corresponding to the Servlet 2.4 specifications cannot be executed in the servlet engine mode.
Consequently, if the servlet engine mode is used, the migration must be performed to the J2EE server mode.

For migrating from the servlet engine mode to the J2EE server mode, see 3. Servlet engine mode in the uCosminexus
Application Server Compatibility Guide.

(4) JSP syntax check
The JSP files contained in the Web applications corresponding to the Servlet 2.4 specifications conform to the JSP 2.0
specifications. In the JSP 2.0 specifications, the syntax check is performed even more strictly than in JSP 1.2
specifications. Therefore, errors that are not reported in the Web applications of the Servlet 2.3 specifications are now
reported.

When you upgrade the versions of Web applications corresponding to the Servlet 2.2 specifications or Servlet 2.3
specifications to the Servlet 2.4 specifications, compile JSP using the cjjspc command and confirm that errors do
not occur. If a compilation error is reported, make corrections according to the contents of the reported errors.

For details on the cjjspc command, see 2.5.2 Methods for performing JSP pre-compilation.

6.2.15 Using annotations in servlets
In the Application Server, you can use annotations in the servlets. For annotations supported in Application Server,
see 2. Annotations and Dependency Injections Supported in Application Server in the uCosminexus Application Server
AP Reference Guide.

6.2.16 Precautions related to size limitations for JavaVM methods
If a method exceeding 64 KB exists in JavaVM, an error occurs during the generation of the class file or the
java.lang.LinkageError exception occurs when the class is loaded. Therefore, the byte code for one method
must have a size within 64 KB.

Also, even if the size is within 64 KB, if a method with an extremely big size exists, the following adverse effects
might occur:

• GC processing takes extremely long time.

• JIT compilation takes extremely long time.

• JIT compilation consumes extremely large amount of memory.

In the Web application, the byte code of one method might exceed 64 KB due to the auto-generated java source code.
The following points describe the auto-generation of the java source code and the reviewing method when the method
size is big.

(1) Auto-generation of the java source code
The auto-generation of the java source code is as follows:

• Auto-generation in the JSP specifications
In the JSP specifications, the java source code is automatically generated in the _jspService method or the
doTag method from the contents described in the JSP file or tag file.

• Auto-generation when the custom tag is used in the Application Server
In the Application Server, if the custom tag is used, the processing of the custom tag and contents described in the
body are changed into a method and the java source code is automatically generated.
The custom tag can be converted into a method when the processing of the custom tag or all the custom tags
included in the body fulfill the following conditions:

• The attribute and body are scriptless.

• The script variable is not defined.

6. Implementation of Servlets and JSPs

371

(2) Reviewing method when the method size is big
When the number of lines of the methods for auto-generated java source code exceeds 1000 lines, including the
comments and blank lines, the messages KDJE39231-W and KDJE39333-W are output.

If a message is output, review the body contents of the JSP file, tag file, or the custom tag.

The following are the reviewing methods for each location to be reviewed:

• When the size of the JSP file contents is big
Divide the JSP file using dynamic include (include action).

• When the size of the tag file contents is big
Implement one of the followings:

• Divide the tag files used from the JSP file into multiple tag files.

• Divide the tag files such that another tag file is invoked from the tag file.

• When the size of the custom tag body is big
Divide the custom tag using dynamic include (include action).

6. Implementation of Servlets and JSPs

372

6.3 Precautions for JSP migration
This section describes notes when moving JSP.

With the versions prior to 07-00 and with version 07-00 and later versions, the JSP compilation operations are
different. On the Application Server, the JSP contents are checked according to the JSP specifications during the JSP
translation, therefore, the errors might occur during the JSP translation and migration cannot be performed. In such a
case, if you use the JSP translation backward compatibility function, you can set the same JSP compilation operations
with the versions prior to 07-00 and with version 07-00 and later versions and ensure that the errors do not occur.

Specify the definition for the JSP translation backward compatibility function in the Easy Setup definition file. For the
specified contents, see the following points. You can also define the JSP translation backward compatibility function
in the options when executing the cjjspc command. For details on how to specify the options when executing the
cjjspc command, see the uCosminexus Application Server Command Reference Guide.

The following table describes the organization of this section.

Table 6‒39: Organization of this section (Precautions for JSP migration)

Title Reference

Precautions related to the definition of script variables for the custom tag 6.3.1

Precautions related to the class attributes of the <jsp:useBean> tag 6.3.2

Precautions related to the Expression check of the tag attribute values 6.3.3

Precautions related to Expression specified in the tag attribute values 6.3.4

Precautions related to the prefix attribute of the taglib directive 6.3.5

6.3.1 Precautions related to the definition of script variables for the
custom tag

This subsection describes the precautions when defining the script variables in the JSP custom tag, the differences in
the operations of the JSP compilation depending on the usage of the JSP translation backward compatibility function,
and also describes the definition of the JSP translation backward compatibility function.

(1) Notes

■ Notes for specifying the scope

If the script variable name and the script variable scope are repeated in multiple custom tags, the JSP compilation
results differ depending on the versions of the Application Server. Specify the script variable scope using one of the
followings:

• Subclass of javax.servlet.jsp.tagext.TagExtraInfo class

• Scope element in the variable element of the TLD file

The followings are the differences in operations in each Application Server version when script variables with the
same names are specified in the JSP custom tag:

• With versions prior to 07-00
Perform variable declaration of the script variable in the Java code generated from JSP corresponding to the
custom tag from the second time onwards.

• With version 07-00 and later versions
Do not perform variable declaration of the script variable in the Java code generated from JSP corresponding to
the custom tag from the second time onwards.

The following is an example wherein the scope is AT_BEGIN and custom tag <my:foo> defines the script variable
of the variable name (var) specified in the attribute id:

6. Implementation of Servlets and JSPs

373

Example of definition

<my:foo id="var" type="String">
 <%=var%>
</my:foo>

<my:foo id="var" type="String">
 <%=var%>
</my:foo>

• With versions prior to 07-00
Perform variable declaration with the script variable var in the Java code generated from JSP corresponding to
the second custom tag. In this case, the range of scope 'AT_BEGIN' in each custom tag is as follows:

Therefore, compilation error occurs during the compilation of the Java source generated from JSP.

• With version 07-00 and later versions
Do not perform variable declaration with the script variable var in the Java code generated from JSP
corresponding to the second custom tag. In this case, the range of scope 'AT_BEGIN' in each custom tag is as
follows:

Therefore, even if the script variables of the same name are defined in the same scope, the compilation of the
Java source generated from JSP is executed normally.

■ Notes for coding the scriptlet

When the Java source is generated from JSP, the Java code described in the scriptlet is not analyzed. Therefore, if you
define the process for which the script variable scope is changed before and after the custom tag or in the body
scriptlet, the JSP compiled results might return an error depending on the version of the Application Server version.

• Example of compilation error when the scope is 'AT_BEGIN'
In this example, script variable of variable name (var) specified in the attribute id is defined in the custom tag
<my:foo> and scope 'AT_BEGIN'.

<% if(flag) { %>

 <my:foo id="var" type="String">
 <%=var%>
 </my:foo>

<% } else { %>

 <my:foo id="var" type="String">
 <%=var%>
 </my:foo>

6. Implementation of Servlets and JSPs

374

<% } %>

The operations for each Application Server version in this example are as follows:

• With versions prior to 07-00
Perform variable declaration with script variable var in the Java code generated from JSP corresponding to the
second custom tag. Therefore, error does not occur even when referencing the second script variable var.
JSP compilation is executed normally.

• With version 07-00 and later versions
In the second custom tag, the analysis is that the script variable var is already declared. In this case, variable
declaration will not be performed with variable var in the Java code generated from JSP corresponding to the
custom tag. Therefore, an error occurs in the reference of the second script variable var.

(2) Differences in JSP compilation operations depending on the usage of the JSP translation
backward compatibility function

The differences in the compilation operations when the JSP translation backward compatibility function is used and
when the function is not used with version 07-00 and later versions are as follows:

When the script variable name and the script variable scope is repeated in multiple custom tags:

• Use the JSP translation backward compatibility function
Perform variable declaration of script variables in Java code generated from JSP corresponding to the custom
tag from the second time onwards.

• Do not use the JSP translation backward compatibility function
Do not perform variable declaration of script variables in Java code generated from JSP corresponding to the
custom tag from the second time onwards.

(3) Defining the JSP translation backward compatibility function
To define the JSP translation backward compatibility function, specify the following parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

webserver.jsp.translation.backcompat.customAction.declareVariable
Specifies whether or not to output the variable declaration of the script variables corresponding to the second
custom tag in the Java code generated from the JSP file.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

6.3.2 Precautions related to the class attributes of <jsp:useBean> tag
This subsection describes the precautions related to the class attributes of the <jsp:useBean> tag, differences in
JSP compilation operations depending on the usage of the JSP translation backward compatibility function, and the
definition of the JSP translation backward compatibility function.

(1) Notes
In the <jsp:useBean> tag, JSP specifications define that class attribute is the implementation class name of the
object. Complying with these specifications, the following checks are implemented during the JSP translation for the
classes specified in the class attribute, with the version 07-00 and later versions:

• The class modifier is public.

• The class modifier is not an interface.

• The class modifier is not abstract.

• The method modifier is public and a constructor that is not an argument exists.

6. Implementation of Servlets and JSPs

375

Therefore, when a class that does not meet these check items is specified in the class attribute, the JSP compilation
results are different with the versions prior to 07-00 and with version 07-00 and later versions.

The following is an example of JSP wherein the implementation class is specified in the include source and an
interface is specified in the include destination:

• test1.jsp (include source)

<jsp:useBean id="bean" scope="request" class="test.TestBean"/>
<jsp:include page="test1_included.jsp"/>

• test1_included.jsp (include destination)

<jsp:useBean id="bean" scope="request" class="test.TestBeanIF"/>

Note:
test.TestBean specified in the class attribute is an implementation class compliant with the JSP
specifications and test.TestBeanIF becomes the interface of test.TestBean.

The operations for each Application Server version in this example are as follows:

• With versions prior to 07-00
Since the check is not implemented during JSP translation, the servlet generated from the JSP file is executed.
In the servlet generated from the JSP file, the existing script variables are searched with "bean" specified in the id
attribute. In the above description, since the same script variables are already defined in the include source
(test1.jsp), the existing object (instance of the test.TestBean class) is used without being instantiated
from the class (test.TestBeanIF interface) specified in the class attribute. Therefore, the operations are
executed normally.

• With version 07-00 and later versions
The checks for the class specified in the class attribute are implemented for test1_included.jsp during JSP
translation, therefore, an error occurs in JSP translation.

(2) Differences in JSP compilation operations depending on the usage of the JSP translation
backward compatibility function

The differences in the compilation operations when the JSP translation backward compatibility function is used and
when the function is not used with version 07-00 and later versions are as follows:

When a class name that cannot be instantiated is specified in the class attribute

• Use the JSP translation backward compatibility function
Bean can be acquired without the id attribute value specified in the <jsp:useBean> tag from the second
time onwards without resulting in an error.

• Do not use the JSP translation backward compatibility function
An error occurs during JSP translation.

(3) Defining the JSP translation backward compatibility function
To define the JSP translation backward compatibility function, specify the following parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

webserver.jsp.translation.backcompat.taglib.noCheckPrefix
Specifies whether or not to check the class property value of the <jsp:useBean> tag during JSP translation.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

6. Implementation of Servlets and JSPs

376

6.3.3 Precautions related to the Expression check of the tag attribute
values

This subsection describes the precautions related to the Expression check of the tag attribute values, differences in JSP
compilation operations depending on the usage of the JSP translation backward compatibility function, and the
definition of the JSP translation backward compatibility function.

(1) Notes
In the JSP specifications, the tag attributes specified in the Expression have been limited. With the version 07-00 and
later versions, if Expression is specified in the attributes other than the attributes that can specify Expression without
using the JSP translation backward compatibility function, an error will occur during the JSP translation. However, the
versions prior to 07-00 do not check whether the Expression can be specified during the JSP translation. As a result, <
%= and %> indicating Expression are recognized as strings and an error does not occur. Therefore, if Expression is
specified in attributes other than the attributes that can specify the Expression, the JSP compiled results are different
with the version 07-00 and its prior and later versions.

When using JSP that specifies Expression in the attributes other than the attributes that can specify Expression, make
sure that you set up the JSP translation backward compatibility function.

(2) Differences in JSP compilation operations depending on the usage of the JSP translation
backward compatibility function

The following are the differences in the compilation operations when the JSP translation backward compatibility
function is used and when the function is not used with version 07-00 and later versions:

When Expression is specified in the attribute value of the tag that does not permit the specification of the Expression

• Use the JSP translation backward compatibility function
The Expression specified in the attribute value of the tag that does not permit the specification of the
Expression is handled as a string.

• Do not use the JSP translation backward compatibility function
An error occurs during JSP translation.

(3) Defining the JSP translation backward compatibility function
To define the JSP translation backward compatibility function, specify the following parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

webserver.jsp.translation.backcompat.tag.noCheckRtexprvalue
Specifies whether or not to determine if the Expression is specified in the attribute value of the tag that cannot
specify the Expression.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

6.3.4 Precautions related to Expression specified in the tag attribute
values

This subsection describes the precautions related to Expression specified in the tag attribute values, differences in JSP
compilation operations depending on the usage of the JSP translation backward compatibility function, and the
definition of the JSP translation backward compatibility function.

(1) Notes
When specifying the Expression in the attribute value of the tag, specify as "<%= scriptlet_expr %>" or '<
%= scriptlet_expr %>'.

6. Implementation of Servlets and JSPs

377

If the tag attribute value starts with "<%= (or '<%=) and does not end with %>" (or %>'), the value enclosed within "
(or ') is handled as a string with versions prior to the 07-00 version. For example, if an optional string exists between
%> and ", the value enclosed within " is handled as a string. However, with version 07-00 and later versions, %>" (or
%>') is handled as the end of the attribute value, therefore, an error occurs during JSP translation.

If the tag attribute value starts with "<%= (or '<%=) and does not end with %>" (or %>'), make sure that you set up
the JSP translation backward compatibility function.

(2) Differences in JSP compilation operations depending on the usage of the JSP translation
backward compatibility function

The differences in the compilation operations when the JSP translation backward compatibility function is used and
when the function is not used with version 07-00 and later versions are described below:

When the tag attribute value starts with "<%= (or '<%=) and does not end with %>" (or %>')

• Use the JSP translation backward compatibility function
The attribute value enclosed within " (or ') is processed as a string.

• Do not use the JSP translation backward compatibility function
The attribute value enclosed within " (or '), is processed as an Expression.

(3) Defining the JSP translation backward compatibility function
To define the JSP translation backward compatibility function, specify the following parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file.

webserver.jsp.translation.backcompat.tag.rtexprvalueTerminate
Specifies whether or not to handle as a string the value enclosed within " (or ') of the attribute value in which the
tag attribute value starts with "<%= or '<%= and does not end with %>" (%>' when started with '<%).

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

6.3.5 Precautions related to the prefix attribute of the taglib directive
This subsection describes the precautions related to the prefix attribute of the taglib directive, differences in JSP
compilation operations depending on the usage of the JSP translation backward compatibility function, and the
definition of the JSP translation backward compatibility function.

(1) Notes
In the JSP specifications, you cannot use a custom tag that uses the prefix specified in the taglib directive before the
taglib directive. The version 07-00 and later versions check whether the custom tag that uses the prefix specified in the
taglib directive is coded before the taglib directive according to the JSP specifications. If the custom tag that uses the
prefix specified in the taglib directive is coded before the taglib directive, an error occurs during translation. However,
with versions prior to 07-00, this check is not performed, therefore, the coded custom tag is handled as a string.

Therefore, if the custom tag is coded using the prefix specified in the taglib directive before the taglib directive, the
JSP compiled results are different with the versions prior to 07-00 and with version 07-00 and later versions.

If the custom tag that uses the prefix specified in the taglib directive is coded before the taglib directive, make sure
that you set up the JSP translation backward compatibility function.

(2) Differences in JSP compilation operations depending on the usage of the JSP translation
backward compatibility function

The differences in the compilation operations when the JSP translation backward compatibility function is used and
when the function is not used with version 07-00 and later versions are as follows:

6. Implementation of Servlets and JSPs

378

When the custom tag that uses the prefix specified in the taglib directive is coded before the taglib directive

• Use the JSP translation backward compatibility function
The custom tag is handled as a string and not as a custom tag.

• Do not use the JSP translation backward compatibility function
An error occurs during JSP translation.

(3) Defining the JSP translation backward compatibility function
To define the JSP translation backward compatibility function, specify the following parameter in the
<configuration> tag of the logical J2EE server (j2ee-server) in the Easy Setup definition file:

webserver.jsp.translation.backcompat.useBean.noCheckClass
Specifies whether or not to execute the check process of the class attribute value of the <jsp:useBean> tag
during JSP translation.

For details on the Easy Setup definition file and the parameters to be specified, see the uCosminexus Application
Server Definition Reference Guide.

6. Implementation of Servlets and JSPs

379

Appendixes

381

A. Error Status Code
This appendix describes the error status codes returned by the Web container, redirector, and in-process HTTP server.

The location where the error occurs depends on the used Web server. Reference the error status code according to the
location where the error has occurred. The following table describes the used Web servers and the corresponding
locations where the error has occurred.

Table A‒1: Used Web server and the corresponding location where the error occurred

Cosminexus HTTP Server to be used

Location where the error occurred

Web container Redirector HTTP In-process
HTTP server

Hitachi Web Server or Microsoft IIS Y Y N

In-process HTTP server Y N Y

Legend:
Y: Error occurs
N: Error does not occur

A.1 Error status codes returned by the Web container
When the client accesses a non-existent resource or a servlet in which an exception occurred, the Web container
returns an error status code. The following table describes the error status codes returned by the Web container, and
the conditions for returning the error status codes.

Table A‒2: Error status codes returned by the Web container and conditions for returning the error status
codes

Error status codes Conditions for returning the error status code

400 Bad Request The error status code 400 is returned in either of the following cases:

• When a client directly sends a request to a resource that is specified as the login page used
for Form authentication, and the user is successfully authenticated from the login page that
is displayed as a result of the request

• When the access satisfies all the following three conditions:

1. The version of HTTP is "HTTP/1.0".

2. The servlet to be accessed inherits javax.servlet.http.HttpServlet.

3. The HTTP method at the access is not overwritten by the servlet.

• When an access is made by a request header with a Content-Length header value of greater
than 2147483647 or smaller than 0

• When an access is made by a request header with a non-numeric Content-Length header
value

• When an access is made by a request header containing multiple Content-Length headers

• When request URIs cannot be normalized

401 Unauthorized The error status code 401 is returned when a resource that requires Basic authentication is
accessed as follows:

• The access uses an invalid user ID or password.

• The access does not include authentication information (the Authorization header).

403 Forbidden Error status code 403 is returned, when any of the following conditions is applicable:

• When a resource that requires the Basic or Form authentication is accessed using an
unauthenticated user name

A. Error Status Code

382

Error status codes Conditions for returning the error status code

403 Forbidden • When a resource that does not permit any access is accessed without any role-name element
for the auth-constraint element being specified in web.xml#1

• When static contents are accessed by using the PUT or DELETE method

• When a resource whose <transport-guarantee> element in web.xml is set to
INTEGRAL or CONFIDENTIAL is accessed via http#2

404 Not Found Error status code 404 is returned when any of the following is accessed:

• When a non-existent resource is accessed

• When a servlet or a JSP file in which javax.servlet.UnavailableException
occurs, is accessed#3

405 Method Not Allowed Error status code 405 is returned in the case of an access that satisfies all of the following three
conditions:

• When the HTTP version is "HTTP/1.1"

• When the servlet to be accessed inherits javax.servlet.http.HttpServlet
• When the HTTP method during access does not get overridden by the corresponding servlet

412 Precondition Failed Error status code 412 is returned, when the static contents that do not match the conditions
specified in If-Match header or If-Unmodified-Since header, are accessed.

413 Request Entity Too Large Error status code 413 is returned when the size of the request body exceeds the upper-limit
value.

416 Requested Range Not Satisfiable Error status code 416 is returned, when the static contents that use the value of an invalid Range
header applicable to any of the following cases, are accessed:

• The value of Range header does not begin with "byte"

• A numeric character and "-" is not used in range definition

• The specified range is not appropriate

500 Internal Server Error Error status code 500 is returned, when any of the following conditions is applicable:

• When a servlet or a JSP file in which an exception occurs, is accessed#4

• When a JSP file whose compilation failed is accessed

• When deleted static contents are accessed#5

• When I/O error occurs when accessing the static contents

• When a resource protected by <auth-constraint> element is accessed, when the
definition of web.xml is invalid#6

501 Not Implemented Error status code 501 is returned, when the static contents or the servlet that inherits
javax.servlet.http.HttpServlet is accessed by an HTTP method other than the
GET, HEAD, POST, PUT, DELETE, OPTIONS, and TRACE method.

503 Service Unavailable Error status code 503 is returned, when any of the following conditions is applicable:

• When there is no space in the pending queue of requests#7

• When a servlet or JSP file in which javax.servlet.UnavailableException
occurs, is accessed#8

• When a Web container being shut down is accessed

• When a Web application that is in abnormal state due to an unexpected error or exception, is
accessed

• When only the Web container server is running and any Web applications are not running in
the Web container server, and the Web application that was not started is accessed.

#1
Applicable when the Web application is version 2.4 or later.

A. Error Status Code

383

#2
This applies to the case when the port number of the https, used by the URL an access is forwarded to, is not set for the
webserver.connector.redirect_https.port key in usrconf.properties.

#3
Applicable when the version of the Web application is 2.4 or later, and javax.servlet.UnavailableException
indicating the permanent unavailability occurs, and the exception is not caught in the servlet and JSP file.

#4
Applicable in the following cases:

• When the version of the Web application is 2.4 or later
When exception is not caught in servlets or JSPs

• When the version of the Web application is 2.3
When the error page is not specified in the <error-page> tag of web.xml, or in the page directive of a JSP file, and the
exception is not caught in the servlet or JSP file

#5
Applicable when the reload functionality of the Web application, re-compilation functionality of the JSP file, or the reload
functionality of J2EE application is not used.

#6
Applicable when the <role-name> element is defined in the <auth-constraint> element of web.xml, and the
<login-config> element is not defined. If the application is started in this state, warning message KDJE39150-W is output
to the console window, and in the message log.

#7
Applicable when the settings to control the number of concurrently executing threads in the Web application, or in the URL
group are specified.

#8
Applicable in the following cases:

• When the version of Web application is 2.4 or later
When javax.servlet.UnavailableException indicating the temporary unavailability occurs, and the exception is not
caught in the servlets or JSPs

• When the version of Web application is 2.3
When the error page is not specified in <error-page> tag of web.xml, or in the page directive of JSP file, and the exception
is not caught in the servlet or JSP file

A.2 Error status codes returned by the Redirector
When a timeout occurs during a data transaction with the Web container, and when the coding of the definition file
contains an error, the redirector returns an error status code. The following tables describe the error status codes
returned by the redirector and the conditions for returning the error status code, for each type of Web server.

Table A‒3: Error status codes returned by the redirector and the occurrence conditions (for Cosminexus
HTTP Server)

Error status codes Conditions for returning the error status code

400 Bad Request The error status code 400 is returned in either of the following cases:

• When the port number of Host header of the request is invalid

• When the request method is not POST#1

• When the request does not have a Content-Length header (for a POST request, the body is a
chunk format)#1

• When the Content-Length header value of the request exceeds the upper limit of the POST
data size set in the POST request sending destination worker #1

500 Internal Server Error Error status code 500 is returned, when any of the following conditions is applicable:

• When there is a coding error in the contents of mod_jk.conf#2

• When there is a failure in reading, or a coding error in the contents of
workers.properties#1

A. Error Status Code

384

Error status codes Conditions for returning the error status code

500 Internal Server Error • When the request header exceeds 16 KB#3

• When failed to establish connection with the Web container

• When timeout occurs during establishment of a connection to the Web container

• When an error occurs during sending data to the Web container

• When timeout occurs during sending data to the Web container

• When an error occurs during receiving data from the Web container

• When timeout occurs during receiving data from the Web container

• When timeout occurs in reading the POST data from the client

• When an unsupported HTTP method#4 is specified in the request

#1
Applicable when the default worker is not specified in the distribution by the POST data size.

#2
Applicable only in Windows. The web server fails to start in UNIX.

#3
Might be applicable when a request header of a total size of 16 KB or more can be received according to the settings for
limitations of request headers in Cosminexus HTTP Server.

#4
For details on whether the HTTP method is supported or not, see Table A-5.

Table A‒4: Error status codes returned by the redirector and the occurrence conditions (for Microsoft IIS)

Error status codes Conditions for returning the error status code

400 Bad Request Error status code 400 is returned, when any of the following conditions is applicable:

• When the request URL contains a % (percent sign) and the two characters after the %
(percent sign) do not express hexadecimals (characters other than A-F, a-f, or 0-9)

• When the port number of Host header of the request is invalid

403 Forbidden Error status code 403 is returned, when any of the following conditions is applicable:

• When the request URL begins with "hitachi_ccfj"#1

• When the request URL contains "%2F"#1

500 Internal Server Error Error status code 500 is returned, when any of the following conditions is applicable:

• When there is a coding error in the contents of isapi_redirect.conf
• When there is failure in reading, or a coding error in the contents of
workers.properties

• When the request header exceeds 16 KB#2

• When failed to establish connection with the Web container

• When timeout occurs during establishment of a connection to the Web container

• When an error occurs during sending data to the Web container

• When timeout occurs during sending data to the Web container

• When an error occurs during receiving data from the Web container

• When timeout occurs during receiving data from the Web container

• When timeout occurs in reading the POST data from the client

• When an unsupported HTTP method#3 is specified in the request

#1
Not case-sensitive.

#2
Might be applicable when a request header of a total size of 16 KB or more can be received according to the settings for
limitations of request headers in Microsoft IIS.

A. Error Status Code

385

#3
For details on whether the HTTP method is supported or not, see Table A-5.

Support for the request HTTP methods in the redirector
The following table lists the request HTTP methods that are supported in the redirector.

Table A‒5: Support for the request HTTP methods in the redirector

HTTP method Supported or not

OPTIONS Y

GET Y

HEAD Y

POST Y

PUT Y

DELETE Y

TRACE Y

CONNECT --#

PROPFIND Y

PROPPATCH Y

MKCOL Y

COPY Y

MOVE Y

LOCK Y

UNLOCK Y

ACL Y

REPORT Y

VERSION-CONTROL Y

CHECKIN Y

CHECKOUT Y

UNCHECKOUT Y

SEARCH Y

Methods available in HTTP1.1 other than above-mentioned methods --#

Legend:
Y: Supported
--: Not supported

#
The redirector returns a status 500 error to a request that specifies an unsupported HTTP method. Furthermore, the message
KDJE41001-E is output.

A.3 Error status codes returned by the in-process HTTP server
When the size of the request from the client exceeds the upper limit and if the value is invalid, the in-process HTTP
server returns the error status code. The following table describes the error status codes returned by the in-process
HTTP server, and the conditions for returning the error status codes.

A. Error Status Code

386

Table A‒6: Error status codes returned by the in-process HTTP server and the occurrence conditions

Error status codes Conditions for returning the error status code

400 Bad Request Error status code 400 is returned, when any of the following conditions is applicable:

• When the request HTTP version is 1.1 and the Host header does not exist

• When the port number of Host header of the request is invalid

• When the size of the request header exceeds the upper limit

• When the number of request headers exceeds the upper limit

• When the request URI is invalid

• When an attempt to decode the request URI has failed

• When the request URI cannot be normalized

• When the Content-Length header value of the request is greater than 2147483647 or smaller
than or 0

• When the Content-Length header value of the request is a non-numeric value

• When multiple Content-Length headers are specified for the request

• When the HTTP version of the request line is not supported

403 Forbidden The error status code 403 is returned when a resource whose <transport-guarantee>
element in web.xml is set to INTEGRAL or CONFIDENTIAL is accessed via http.

405 Method Not Allowed Error status code 405 is returned when access is made from an HTTP method that is not
permitted

413 Request entity too large Error status code 413 is returned when the request body size exceeds the upper limit.

414 Request-URI too large Error status code 414 is returned when the length of the request line exceeds the upper limit.

500 Internal Server Error Error status code 500 is returned when an attempt to read the file fails and the file is returned
with the status code 200 by the redirect functionality.

501 Not Implemented Error status code 501 is returned when the transfer-encoding header value of the request is not
supported.

503 Service Unavailable Error status code 503 is returned when an attempt is made to process the requests exceeding the
upper limit of flow control.

A. Error Status Code

387

B. Precautions related to Cosminexus HTTP Server Settings
This appendix describes the precautions related to the Cosminexus HTTP Server settings.

B.1 Precautions for restarting Cosminexus HTTP Server
If the cause of a failure that occurred while restarting Cosminexus HTTP Server exists in the Easy Setup definition file
(if the Smart Composer functionality is not used, the redirector definition file (mod_jk.conf) or the workers file
(workers.properties)), the message is output to one of the following:

• Start command execution window or event log of Cosminexus HTTP Server

• When Cosminexus HTTP Server is started, stopped, or restarted from the Command Prompt, the message is
output to the Start command execution window.

• When Cosminexus HTTP Server is started, stopped, or restarted from the service, the message is output in the
event log. This is applicable only in Windows.

• Error log files for Cosminexus HTTP Server
By default, error log files are output to the following locations:

• In Windows
Cosminexus HTTP Server -installation-directory\logs\error.log

• In UNIX
/opt/hitachi/httpsd/logs/error.log

The following table describes each of the output messages:

Table B‒1: Messages output in the Start command execution window or event log of Cosminexus HTTP
Server

Message Cause and Action

JkWorkersFile file_name invalid# The file name specified in the JkWorkersFile key is invalid. Correct the value specified in
the JkWorkersFile key, and then restart the Web server.

Can't find the workers file specified# The specified workers file cannot be found. Check whether the file specified in the
JkWorkersFile key exists, and then restart the Web server.

Content should start with /# The first character in the URL pattern is not forward slash (/). Correct the first character of the
URL pattern specified in the JkMount key to forward slash (/), and then restart the Web
server.

JkOptions: Illegal option 'a...a' The value (a...a) specified in the JkOption key is invalid.

Correct the value specified in the JkOption key, and then restart the Web server.

a...a takes b...b arguments, The number of values that can be specified in the key shown in a...a is b...b.

Correct the number of values that are specified in the key shown in a...a, and then restart the
Web server.

a...a must be On or Off The value that can be specified in the key shown in a...a is either On or Off.

Change the value specified in the key shown in a...a to On or Off, and then restart the Web
server.

JkModulePriority: Invalid value
specified.a...a

The value a...a specified in the JkModulePriority key is invalid. Specify the correct value
in the JkModulePriority key, and then restart the Web server.

#
This message is output only in UNIX.

B. Precautions related to Cosminexus HTTP Server Settings

388

Table B‒2: Error log files of Cosminexus HTTP Server

Message Description and action

[Time] [emerg] Memory error The memory is insufficient.

Secure the memory that the system can use, and then restart the Web server.

[Time] [emerg] Error while opening
the workers#

One of the following problems occurred:

• Opening of the workers file failed.
Check whether read permission is included in the access permission of the file specified in
the JkWorkersFile key, and then restart the Web server.

• The contents of the workers file are invalid.
Correct the contents of the workers file, and then restart the Web server.

[Time] [emerg] Error while checking
the mod_jk.conf#

The description in the redirector definition file is inappropriate. Check the message output in the
redirector, and then restart the Web server.

#
This message is output only in UNIX.

B.2 Precautions related to the redirector log
• If there is no permission to write the Cosminexus HTTP Server execution account in the log output destination

directory, the request is processed normally, but the log is not output.

• In Windows, by default the log output destination directory (Cosminexus-installation-directory\CC\web
\redirector\logs) of the redirector does not exist. Therefore, when Cosminexus HTTP Server starts, the
access permission of the directory that is one level higher (redirector directory) is inherited, the logs directory is
generated, and an attempt is made to output the log. At this time, if there is no write permission for the
Cosminexus HTTP Server execution account, the log is not output. In this case, generate the logs directory and set
the access permission or set the access permission for the directory that is one level higher (redirector directory).
Furthermore, when the log output destination directory of the redirector is changed and the specified path exists
only halfway, set the access permission for the existing lowest directory or create the directory corresponding to
the specified path completely and set the access permission for the lowest directory.

B.3 Precautions for upgrading Cosminexus HTTP Server
When Cosminexus HTTP Server is upgraded, you must restart Cosminexus HTTP Server to reflect the changes in the
redirector for Cosminexus HTTP Server. For details on how to restart Cosminexus HTTP Server, see the uCosminexus
Application Server HTTP Server User Guide.

B. Precautions related to Cosminexus HTTP Server Settings

389

C. Microsoft IIS Settings
This appendix describes how to specify the settings when integrating with a Web server using Microsoft IIS.

C.1 Microsoft IIS 7.0 or Microsoft IIS 7.5 settings
This subsection describes how to specify the settings for Microsoft IIS 7.0 or Microsoft IIS 7.5 when integrating with
a Web server using Microsoft IIS.

To integrate a J2EE server with Microsoft IIS 7.0 or Microsoft IIS 7.5:

1. Install a role service

2. Add the ISAPI and CGI limitations

3. Add an ISAPI filter

4. Set the handler mapping

5. Add a virtual directory

6. Set an application pool in the Server node

7. Set an application pool in the Site node

8. Set the access permissions for the log output destination directory of the redirector

9. Start the Web site
Reference note

• Some of the window notations are different in Microsoft IIS 7.0 and Microsoft IIS 7.5. In the procedures hereafter,
the description is based on the notations for Microsoft IIS 7.5. If you are using Microsoft IIS 7.0, read the notations
as described in the following table:

Window notations in Microsoft IIS 7.5 Window notations in Microsoft IIS 7.0

Server Manager Server Manager

Internet Information Service (IIS) Manager Internet Information Service (IIS) Manager

ISAPI Filter ISAPI Filter

Filter Name Filter Name

Handler Mapping Handler Mapping

Worker Process Worker Process

• The window configuration of Internet Information Service (IIS) Manager used in the settings of Microsoft IIS
7.0 or Microsoft IIS 7.5 is as follows:

C. Microsoft IIS Settings

390

Specify the settings in the Connections window, Features View, and Actions window according to the following
procedure:

(1) Installing a role service
When using Microsoft IIS 7.0 or Microsoft IIS 7.5, you must install a role service according to the usage. To install a
role service:

1. In the Start menu, from All Programs - Management Tools, start Server Manager.

2. Under Server Manager, select Roles, and then under Web Server (IIS), click Add Role Service.

3. In the Add Role Service dialog box, select the following role services:

• Static contents

• Existing documents

• Reference directory

• HTTP error

• ISAPI extension

• ISAPI filter

• IIS management console

4. Click Install.

5. Click Close.
Installation is complete.

(2) Adding the ISAPI and CGI limitations
To add the limitations of ISAPI and CGI:

1. In the Start menu, from All Programs - Management Tools, start Internet Information Service (IIS)
Manager.

2. In the Features View server, from the Home page, double-click ISAPI and CGI Limitations.

C. Microsoft IIS Settings

391

3. In the ISAPI and CGI Limitations page, under the Actions window, click Add.

4. In the Add ISAPI or CGI Limitations dialog box, perform the following operations:

• In ISAPI or CGI Path, specify the DLL (Cosminexus-installation-directory\CC\web\redirector
\isapi_redirect.dll) of the redirector.

• In Description, enter ISAPI.

• Check the Allow Execution of Extension Path checkbox.

5. Click the OK button.
Close the Add ISAPI or CGI limitations dialog box to apply the settings.

(3) Adding an ISAPI filter
To add an ISAPI filter:

1. In the Features View site, from the Home page, double-click ISAPI Filter.

2. In the ISAPI Filter page, under the Actions window, click Add.

3. In the Add ISAPI Filter dialog box, perform the following operations:

• In Filter Name, enter hitachi_ccfj.

• In Executable File, specify the DLL (Cosminexus-installation-directory\CC\web\redirector
\isapi_redirect.dll) of the redirector.

4. Click the OK button.
The Add ISAPI Filter dialog box closes, and the settings are applied.

(4) Setting the handler mapping
To set the handler mapping:

1. In the Features View site, from the Home page, double-click Handler Mapping.

2. In the Handler Mapping page, select ISAPI-dll, and then in the Actions window, click Edit.

3. In the Edit Module Map dialog box, perform the following operations:

• In the Requested Path, enter *.dll.

• In Executable File, specify the DLL (Cosminexus-installation-directory\CC\web\redirector
\isapi_redirect.dll) of the redirector.

If the handler mapping is already set, the Edit Script Map dialog box will run; however, the operation contents are
the same.

4. Click the OK button.

5. In the message dialog box for confirming whether or not to enable the editing of the module map, click the Yes
button to enable the ISAPI extension functionality.

6. In the Handler Mapping page, select ISAPI-dll, and then in the Actions window, click Edit Access Permission
of Functionality.

7. In the Edit Access Permission of Functionality dialog box, check all access permissions including Read, Script,
and Execute.

8. Click the OK button.
The Edit Access Permission of Functionality dialog box closes, and the settings are applied.

(5) Adding a virtual directory
Add a virtual directory named hitachi_ccfj. To add the virtual directory:

1. In the Connections window, expand the Site node, and click the site for adding the virtual directory.

2. In the Actions window, click Display Virtual Directory.
The Virtual Directory page appears.

C. Microsoft IIS Settings

392

3. In the Virtual Directory page, under the Actions window, click Add Virtual Directory.

4. In the Add Virtual Directory dialog box, perform the following operations:

• In Alias, enter hitachi_ccfj.

• In Physical path, specify the directory in which the DLL (Cosminexus-installation-directory\CC\web
\redirector\isapi_redirect.dll) of the redirector is saved.

5. Click the OK button.
The Add Virtual Directory dialog box closes, and the settings are applied.

(6) Setting an application pool in the Server node
To set an application pool in the Server node:

1. In the Connections window, expand the Server node, and then click Application Pool.

2. In the Application Pool page, select the application pool to be used, and then in the Actions window, click
Detailed Settings.

3. In the Detailed Settings dialog box, perform the following operation:

• In Enable 32-bit Application, specify True (This specification is necessary only to run the Redirector of
Windows x86 on Windows x64 OS).

• In Maximum Number of Worker Processes#, specify the maximum number of processes for processing
requests in Microsoft IIS.

#
In this manual, the execution processes of the Web container are also referred to as Worker processes;
however, the Worker processes set here are the processes used to process requests in Microsoft IIS.

4. Click the OK button.
The Detailed Settings dialog box closes, and the settings are applied.

(7) Setting an application pool in the Site node
To set an application pool in the Site node:

1. In the Connections window, expand the Site node, and then click the site in which to specify the application pool.

2. In the Actions window, click Detailed Settings.

3. In the Detailed Settings dialog box, enter Application Pool.
In Application Pool, specify the name of the application pool set in (6) Setting an application pool in the Server
node.

4. Click the OK button.
The Detailed Settings dialog box closes, and the settings are applied.

(8) Setting access permissions for the log output destination directory of the redirector
In the log output destination directory of the redirector, you must add the permission for writing to the execution
account of the application pool of Microsoft IIS. Set the access permissions for the log output destination directory of
the redirector from Explorer.

Specify the execution account of the application pool in the Detailed Settings dialog box of the application pool, under
ID. If the default ID is specified, add the write permission for the IIS_IUSRS group.

The default IDs are as follows:

• Microsoft IIS 7.0: NetworkService
• Microsoft IIS 7.5: ApplicationPoolIdentity

Note that during new installation, by default, the log output destination directory of the redirector (Cosminexus-
installation-directory\CC\web\redirector\logs) does not exist. Therefore, either create the logs directory and

C. Microsoft IIS Settings

393

set the access permission, or set the access permission for the directory that is one level higher (redirector
directory).

Also, when the log output destination directory of the redirector is changed and the specified path exists up to only
halfway, either set the access permission for the existing lowermost directory, or create all directories corresponding
to the specified path and set the access permission for the lowermost directory.

(9) Starting the Web site
To start the Web site of Microsoft IIS:

1. In the Connections window, expand the Site node, and then click the site to be started.

2. In the Actions window, click Start. If the site is already started, click Restart.
The Web site either starts or is restarted.

(10) Notes
This subsection describes the notes on setting Microsoft IIS 7.0 or Microsoft IIS 7.5.

(a) Notes on replication of configuration settings in multiple environments

In Microsoft IIS 7.0 or Microsoft IIS 7.5, you can save the configuration settings in the web.config file. Also,
based on the saved web.config file, you can replicate the configuration settings in multiple environments using
xcopy.

However, for a configuration environment in which the redirector is used, you cannot set the redirector when
replicating the settings in multiple environments using xcopy. Even when you specify the same configuration
settings for multiple environments using xcopy, set the redirector manually in each environment.

(b) Notes on customizing the error page

If you have specified the settings for returning a custom error page in the error page of Microsoft IIS 7.0 or Microsoft
IIS 7.5, the customization of the error page by the <error-page> tag of web.xml might be disabled. If you want to
enable the customization of the error page by the <error-page> tag of web.xml, disable the settings of custom error
page in the error page of Microsoft IIS 7.0 or Microsoft IIS 7.5.

(c) Points to be noted when using along with other filters

If Microsoft IIS receives requests that are to be forwarded to the Web container, the Redirector for Microsoft IIS
changes the request URL information to be used in the ISAPI filter. Therefore, the request URL received by Microsoft
IIS cannot be retrieved in the ISAPI filter if the ISAPI filter is executed after the Redirector for Microsoft IIS.
Accordingly, you must make the settings in such a way that the filter is executed before the Redirector for Microsoft
IIS, and the filter can retrieve the URL requests received by Microsoft IIS. To change the execution order, you can set
the execution priority of the Redirector for Microsoft IIS by setting the value of the filter_priority key in the
isapi_redirect.conf file (Operation Definition file of the Redirector for Microsoft IIS) to "Medium" or
"Low". For details on the filter_priority key of the isapi_redirect.conf file (Operation Definition file of the
Redirector for Microsoft IIS) see 9.2 isapi_redirect.conf file (Operation Definition file of the Redirector for Microsoft
IIS) in the uCosminexus Application Server Definition Reference Guide.

C. Microsoft IIS Settings

394

D. Main Functionality Changes in Each Version
This subsection describes the main functionality changes in each version of Application Server earlier than version
09-50. A purpose oriented description of changes is given here. For the main functionality changes in version 09-50,
see 1.4 Main updates in the functionality of Application Server 09-50.

The descriptions are as follows:

• The main functionality that is changed in Application Server 08-00 and the overview are described. For details on
the functionality, see the description in the Reference column of the following table. The Reference column
specifies the main locations where the functionality is described.

• If the details on the changed items are described in this manual, the Reference column lists the description location
(section) of this manual. If the description is in another manual, the name of that manual is mentioned. Note that
uCosminexus Application Server is omitted in the description of each manual name.

D.1 Main functionality changes in 09-00

(1) Simplifying implementation and setup
The following table describes the items that were changed to simplify implementation and setup:

Table D‒1: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Reference

Changed the unit of the setup
and operation target in the
virtual environment

The units to be operated when you set up and operate the
virtual environment have been changed from the virtual
server to the virtual server group. You can now define the
information of a virtual server group in a file and register
multiple virtual servers to a management unit in a batch.

Virtual System Setup
and Operation Guide

1.1.2

Removed the restrictions on
environments that can be built
by using the Setup Wizard

Removed the restrictions on the environment that can be
built by using the Setup Wizard. You can now unset up and
set up any of the existing environments set up with a
different functionality, by using the Setup Wizard.

System Setup and
Operation Guide

2.2.3

Simplification of the procedure
for removing an installed
environment

Added functionality (mngunsetup command) for
removing the system environment that is set up by using
Management Server, thereby simplifying the removal
procedure.

System Setup and
Operation Guide

4.1.37

Management Portal
User Guide

3.6, 5.4

Command Reference
Guide

mngunsetup
(Deleting the
Management
Server
configuratio
n
environment

)

(2) Supporting standard and existing functionality
The following table describes the items that were changed to support standard and existing functionality:

Table D‒2: Changes made for supporting standard and existing functionality

Item Overview of changes Reference manual Reference

Supporting Servlet 3.0 Servlet 3.0 is now supported. This manual Chapter 6

Supporting EJB 3.1 EJB 3.1 is now supported. EJB Container
Functionality Guide

Chapter 2

D. Main Functionality Changes in Each Version

395

Item Overview of changes Reference manual Reference

Supporting JSF 2.1 JSF 2.1 is now supported. This manual Chapter 3

Supporting JSTL 1.2 JSTL 1.2 is now supported. This manual Chapter 3

Supporting CDI 1.0 CDI 1.0 is now supported. Common Container
Functionality Guide

Chapter 9

Using Portable Global JNDI
names

You can now look up objects for which Portable Global
JNDI names are used.

Common Container
Functionality Guide

2.4

Supporting JAX-WS 2.2 JAX-WS 2.2 is now supported. Web Service
Development Guide

1.1, 16.1.5,
16.1.7,
16.2.1,
16.2.6,
16.2.10,
16.2.12,
16.2.13,
16.2.14,
16.2.16,
16.2.17,
16.2.18,
16.2.20,
16.2.22,
19.1, 19.2.3,
37.2, 37.6.1,
37.6.2,
37.6.3

Supporting JAX-RS 1.1 JAX-RS 1.1 is now supported. Web Service
Development Guide

1.1, 1.2.2,
1.3.2, 1.4.2,
1.5.1, 1.6,
2.3, Chapter
11, Chapter
12, Chapter
13, Chapter
17, Chapter
24, Chapter
39

(3) Maintaining and improving reliability
The following table describes the items that were changed for maintaining and improving reliability:

Table D‒3: Changes for maintaining and improving reliability

Item Overview of changes Reference manual Reference

Using TLSv1.2 for SSL/TLS
communication

You can now use RSA BSAFE SSL-J to execute the
SSL/TLS communication with a security protocol
containing TLSv1.2.

Security Management
Guide

7.3

(4) Maintaining and improving operation performance
The following table describes the items that were changed for maintaining and improving operation performance:

Table D‒4: Changes for maintaining and improving operation performance

Item Overview of changes Reference manual Reference

Monitoring the total pending
queues of the entire Web
container

You can now monitor the total pending queues of the entire
Web container when the total is output to the operation
information.

Operation,
Monitoring, and
Linkage Guide

Chapter 3

D. Main Functionality Changes in Each Version

396

Item Overview of changes Reference manual Reference

Output of the trace based
performance analysis for
applications (user extended
trace)

The trace based performance analysis used for analyzing the
processing performance of user-developed applications can
now be output without changing the applications.

Maintenance and
Migration Guide

Chapter 7

Operations performed by using
the user script in a virtual
environment

The user-created script (user script) can now be executed on
a virtual server at any time

Virtual System Setup
and Operation Guide

7.8

Improving the management
portal

Changes have been made so that the messages describing
the procedure are now displayed on the following
management portal windows:

• Deploy the preference information window

• Start window for the Web server, J2EE server, and SFO
server

• Batch start, batch restart, and startup windows for Web
server cluster and J2EE server cluster

Management Portal
User Guide

10.11.1,
11.9.2,
11.10.2,
11.11.2,
11.11.4,
11.11.6,
11.12.2,
11.13.2,
11.13.4,
11.13.6

Adding restart functionality for
operation management
functionality

You can now set the automatic restart in the operation
management functionality (Management Server and
Administration Agent). Due to the automatic restart
functionality, it is now possible to continue operations even
if an error occurs in the operation management
functionality. The procedure for automatic start setting has
also been changed.

Operation,
Monitoring, and
Linkage Guide

2.4.1, 2.4.2,
2.6.3, 2.6.4

Command Reference
Guide

mngautorun
(Set up/
canceling
the set up of
autostart
and
autorestart)

(5) Other purposes
The following table describes the items that were changed for other purposes:

Table D‒5: Changes due to other purposes

Item Overview of changes Reference manual Reference

Changing the unit for switching
log output files

You can now change log output files by date. Maintenance and
Migration Guide

3.2.1

Changing the Web server name The name of the Web server included in Application Server
has been changed to uCosminexus HTTP Server.

HTTP Server User
Guide

--

Supporting a direct connection
with the API (SOAP
architecture) in BIG-IP

Direct connection is now supported by using APIs (SOAP
architecture) in BIG-IP (load balancer).

Note that the procedure for setting up the connection
environment of the load balancer has been changed for
using a direct connection through APIs.

System Setup and
Operation Guide

4.7.3,
Appendix K

Virtual System Setup
and Operation Guide

2.1,
Appendix C

Security Management
Guide

8.2, 8.4, 8.5,
8.6, 18.2,
18.3, 18.4

Legend:
--: Reference the entire manual.

D.2 Main functionality changes in 08-70

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify installation and setup.

D. Main Functionality Changes in Each Version

397

Table D‒6: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Reference

Improving the Management
portal

The changes have been made to enable the user to set the
property (settings of the Connector property file) for
defining the resource adapter attributes and perform the
connection test in the management portal window. Also,
you can now use the Management portal window to upload
J2EE applications (ear file and zip file) on Management
Server.

First Step Guide 3.5

Management Portal
User Guide

--

Adding functionality for
implicitly importing the import
property for the page/tag
directive

You can now use the functionality for implicitly importing
the import property of the page/tag directive.

This manual 2.3.7

Support for automating the
environment settings
corresponding to the JP1
products in a virtual
environment

The changes have been made so that when Application
Server is set up on a virtual server, the environment settings
of JP1 products can be automatically set for the virtual
server by using the hook script.

Virtual System Setup
and Operation Guide

7.7.2

Improving the Integrated user
management functionality

When using a database in a user information repository, you
can now connect to the database with the JDBC driver of
database products. The database connection through the
JDBC driver of Cosminexus DABroker Library is not
supported anymore.

You can now set the integrated user management
functionality using the Easy Setup definition file and the
management portal windows.

The Active Directory now supports double byte characters
such as Japanese language in DN.

Security Management
Guide

Chapter 5,
14.3

Management Portal
User Guide

3.5, 10.9.1

Enhancing HTTP Server
settings

You can now directly set the directive (settings of
httpsd.conf) that defines the operation environment of
HTTP Server using the Easy Setup definition file and the
management portal windows.

System Setup and
Operation Guide

4.1.21

Management Portal
User Guide

10.10.1

Definition Reference
Guide

4.13

Legend:
--: Reference the entire manual.

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table D‒7: Changes made for supporting standard and existing functionality

Item Overview of changes Reference manual Reference

Adding the items to be
specified in ejb-jar.xml

You can now specify a class level interceptor and a method
level interceptor in ejb-jar.xml.

EJB Container
Functionality Guide

2.15

Supporting the parallel copy
garbage collection

You can now select the parallel copy garbage collection. Definition Reference
Guide

16.5

Supporting the global
transaction of the Inbound
resource adapter conforming to
the Connector 1.5
specifications

You can now use Transacted Delivery in resource
adapters conforming to the Connector 1.5 specifications.
This enables the participation of EIS invoking the Message-
driven Bean in the global transaction.

Common Container
Functionality Guide

3.16.3

Supporting MHP of a TP1
inbound adapter

You can now use MHP as the OpenTP1client that invokes
Application Server by using the TP1 inbound adapter.

Common Container
Functionality Guide

Chapter 4

D. Main Functionality Changes in Each Version

398

Item Overview of changes Reference manual Reference

Supporting the FTP inbound
adapter of the cjrarupdate
command

An FTP inbound adapter has been added to the resource
adapters that can be upgraded by using the cjrarupdate
command.

Command Reference
Guide

2.2

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving reliability.

Table D‒8: Changes for maintaining and improving reliability

Item Overview of changes Reference manual Reference

Improving the database session
failover functionality

The user can now select a mode that does not obtain the
lock of the database in which the global session information
is stored in a performance-centric system. Also, exclusive
requests for references can now be defined without updating
the database.

Expansion Guide Chapter 6

Expansion of a process for the

OutOfMemory handling
functionality

A process for the OutOfMemory handling functionality has
been added.

Maintenance and
Migration Guide

2.5.7

Definition Reference
Guide

16.2

Adding the memory saving
functionality for the Explicit
heap used in an HTTP session

A functionality to minimize the amount of the Explicit heap
memory used in the HTTP session has been added.

Expansion Guide 8.11

(4) Maintaining and improving operability
The following table describes the items that are changed with the purpose of maintaining and improving the
operability.

Table D‒9: Changes with the purpose of maintaining and improving the operability

Item Overview of changes Reference manual Reference

Supporting an user
authentication using JP1
products in the virtual
environment (handling cloud
operations)

The administration and authentication of users using a
virtual server manager can now be performed by using the
authentication server of JP1 products when integrating JP1.

Virtual System Setup
and Operation Guide

1.2.2,
Chapter 3,
Chapter 4,
Chapter 5,
Chapter 6,
7.9

(5) Other purposes
The following table describes the items that are changed for other purposes.

Table D‒10: Changes for other purposes

Item Overview of changes Reference manual Reference

Supporting a direct connection
using APIs (REST
Architecture) to the load
balancing functionality

A direct connection using APIs (REST architecture) is now
supported as a method to connect to the Load balancing
functionality.

ACOS (AX2500) has been added in the types of available
load balancing functions.

System Setup and
Operation Guide

4.7.2, 4.7.3

Virtual System Setup
and Operation Guide

2.1

Definition Reference
Guide

4.5

Improving response timeout
when collecting snapshot logs
and collection targets

You can now stop the snapshot log collection (timeout) at a
specified time. The contents collected as primary delivery
data have been changed.

Maintenance and
Migration Guide

Appendix A

D. Main Functionality Changes in Each Version

399

D.3 Main functionality changes in 08-53

(1) Simplifying implementation and setup
The following table describes the items that are changed to simplify installation and setup.

Table D‒11: Changes made for simplifying implementation and setup

Item Overview of changes Reference manual Reference

Setting up a virtual
environment supporting various
hypervisors

You can now set up Application Server on a virtual server
implemented by using various hypervisors.

An environment in which multiple hypervisors co-exist is
also supported now.

Virtual System Setup
and Operation Guide

Chapter 2,
Chapter 3,
Chapter 5

(2) Supporting standard and existing functionality
The following table describes the items that are changed to support the standard and existing functionality.

Table D‒12: Changes made for supporting the standard and existing functionality

Item Overview of changes Reference manual Reference

Invocation from OpenTP1
supporting the transaction
integration

You can now integrate transactions when the Message-
driven Bean running on Application Server is invoked from
OpenTP1

Common Container
Functionality Guide

Chapter 4

JavaMail The mail receiving functionality, which uses the APIs
conforming to JavaMail 1.3 by integrating with the mail
server conforming to POP3, is now available.

Common Container
Functionality Guide

Chapter 8

(3) Maintaining and improving reliability
The following table describes the items that are changed for maintaining and improving the reliability.

Table D‒13: Changes made for maintaining and improving reliability

Item Overview of changes Reference manual Reference

Enhancing the JavaVM
troubleshooting functionality

You can now use the following functionality as the JavaVM
troubleshooting functionality:

• You can now change the operations when
OutOfMemoryError occurs.

• You can now set up an upper limit for the amount of the
C heap allocated during the JIT compilation.

• You can now set up the maximum thread count.

• Output items of the extended verbosegc information
have been extended.

Maintenance and
Migration Guide

Chapter 4,
Chapter 5,
Chapter 9

(4) Maintaining and improving operability
The following table describes the items that are changed with the purpose of maintaining and improving the
operability.

Table D‒14: Changes made for maintaining and improving operability

Item Overview of changes Reference manual Reference

Supporting JP1/ITRM JP1/ITRM, a product that uniformly manages the IT
resources, is now supported.

Virtual System Setup
and Operation Guide

1.3, 2.1

D. Main Functionality Changes in Each Version

400

(5) Other purposes
The following table describes the items that are changed for other purposes.

Table D‒15: Changes for other purposes

Item Overview of changes Reference manual Reference

Supporting Microsoft IIS 7.0
and Microsoft IIS 7.5

Microsoft IIS 7.0 and Microsoft IIS 7.5 are now supported
as Web servers.

-- --

Supporting HiRDB Version 9
and SQL Server 2008

The following products are now supported as the database:

• HiRDB Server Version 9

• HiRDB/Developer's Kit Version 9

• HiRDB/Run Time Version 9

• SQL Server 2008

Also, SQL Server JDBC Driver is now supported as the
JDBC driver corresponding to SQL Server 2008.

Common Container
Functionality Guide

Chapter 3

Legend:
--: Not applicable.

D.4 Main functionality changes in 08-50

(1) Enhancing ease of installation and construction
The following table describes the items that are changed with the purpose of enhancing ease of installation and
construction:

Table D‒16: Changes with the purpose of enhancing ease of installation and construction

Item Overview of changes Reference manual Reference

Changing the tags with
mandatory specification in
web.xml at the Web service
provider side

Changed the specification of the listener tag, servlet
tag, and servlet-mapping tag in web.xml at the Web
Service provider side from mandatory to optional.

Definition Reference
Guide

2.4

Using the network resources of
the logical server

Added a functionality for accessing the network resources
and network drives on other hosts from the J2EE
application.

Operation,
Monitoring, and
Linkage Guide

1.2.3, 5.2,
5.7

Simplifying the execution
procedure of sample programs

Simplified the execution procedure of sample programs by
providing some sample programs in the EAR format.

First Step Guide 3.5

System Setup and
Operation Guide

Appendix M

Improving the operation of the
window of management portal

Changed the update interval of the window from "Do not
update" to "Three seconds".

Management Portal
User Guide

7.4.1

Improving the Setup Wizard
completion window

Changes have been made to display the Easy Setup
definition file and the HITACHI Connector Property file
used for setup in the window displayed during completion
of the Setup Wizard.

System Setup and
Operation Guide

2.2.6

Setting up the virtual
environment

Added the procedure for setting up Application Server on a
virtual server implemented by using hypervisors.#

Virtual System Setup
and Operation Guide

Chapter 3,
Chapter 5

#
When setting up in the 08-50 mode, see Appendix D Settings for Using the Virtual Server Manager in the 08-50 Mode in the
uCosminexus Application Server Virtual System Setup and Operation Guide.

D. Main Functionality Changes in Each Version

401

(2) Supporting standard and existing functionality
The following table describes the items that are changed with the purpose of supporting standard and existing
functionality:

Table D‒17: Changes with the purpose of supporting standard and existing functionality

Item Overview of changes Reference manual Reference

Supporting invocation from
OpenTP1

Enabled the invocation of the Message-driven Bean
operating on the Application Server from OpenTP1.

Common Container
Functionality Guide

Chapter 4

Supporting JMS Enabled the use of the Cosminexus JMS provider
functionality compliant with JMS1.1 specifications.

Common Container
Functionality Guide

Chapter 7

Supporting Java SE 6 Enabled the use of the Java SE 6 functionality. Maintenance and
Migration Guide

5.5, 5.8.1

Supporting the use of generics Enabled the use of generics in EJB. EJB Container
Functionality Guide

4.2.19

(3) Maintaining and improving reliability
The following table describes the items that are changed with the purpose of maintaining and improving reliability:

Table D‒18: Changes with the purpose of maintaining and improving reliability

Item Overview of changes Reference manual Reference

Improving the usability of the
Explicit Memory Management
functionality

Enabled easy usage of the Explicit Memory Management
functionality by using the Automatic Deployment setup file.

System Design Guide 7.1.1, 7.6.3,
7.10.5,
7.11.1

Expansion Guide Chapter 8

Blocking the database session
failover functionality in the
URI unit

Enabled specification of requests that are to be set outside
the scope of the database session failover functionality
during the use of the functionality in the URI unit.

Expansion Guide 5.6.1

Monitoring failures in the
virtual environment

Enabled the monitoring of virtual servers and detecting the
occurrence of failures in a virtual system.

Virtual System Setup
and Operation Guide

Appendix D

(4) Maintaining and improving operability
The following table describes the items that are changed with the purpose of maintaining and improving operability:

Table D‒19: Changes with the purpose of maintaining and improving operability

Item Overview of changes Reference manual Reference

Omitting the
management user
account

Enabled the omission of the input of the
user login ID and password in the
management portal, commands of the
Management Server, and commands of
the Smart Composer functionality.

System Setup and
Operation Guide

4.1.15

Management Portal User
Guide

2.2, 7.1.1, 7.1.2, 7.1.3, 8.1, 8.2.1,
Appendix F.2

Command Reference
Guide

1.4, mngsvrctl (Starting, stopping,
and setting up the Management
Server), mngsvrutil (Management
commands of the Management
Server), 8.3, cmx_admin_passwd
(Setting the management user
account of the Management Server)

Operating the virtual
environment

Added the procedure for executing batch
startup, batch stop, scale-in, and scale-
out of multiple virtual servers in a virtual
system.#

Virtual System Setup and
Operation Guide

Chapter 4, Chapter 6

D. Main Functionality Changes in Each Version

402

#
When operating in the 08-50 mode, see Appendix D Settings for Using the Virtual Server Manager in the 08-50 Mode in the
uCosminexus Application Server Virtual System Setup and Operation Guide.

(5) Other purposes
The following table describes the items that are changed for other purposes:

Table D‒20: Changes for other purposes

Item Overview of changes Reference manual Reference

Statistical functionality for
unused objects within the
Tenured area

Enabled the identification of only unused objects within the
Tenured area.

Maintenance and
Migration Guide

9.8

Base point object list output
functionality for Tenured
increment factors

Enabled the output of information of the object that acts as
the base point of unused objects identified using the
statistical functionality for unused objects within the
Tenured area.

9.9

Class-wise statistical
information analysis
functionality

Enabled the output of class-wise statistical information in
the CSV format.

9.10

Cluster node switching due to
detection of excess auto restart
frequency of the logical server

Enabled node switching when the logical server stops
abnormally (when the auto restart frequency is exceeded, or
when a failure is detected when the auto restart frequency is
set to 0) in the case of cluster configuration in which
Management Server is a target for monitoring node
switching.

Operation,
Monitoring, and
Linkage Guide

18.4.3,
18.5.3,
20.2.2,
20.3.3,
20.3.4

Node switching system for the
host unit management model

Enabled node switching for the host unit management
model during system operation linked with cluster software.

Chapter 20

Supporting ACOS (AX2000,
BS320)

Added ACOS (AX2000, BS320) in the types of available
load balancers.

System Setup and
Operation Guide

4.7.2, 4.7.3,
4.7.5, 4.7.6,
Appendix K,
Appendix K.
2

Definition Reference
Guide

4.5, 4.6.2,
4.6.4, 4.6.5,
4.6.6, 4.10.1

Adding transaction attributes
that can be specified in a
Stateful Session Bean
(SessionSynchronization) when
performing transaction
management in CMT

Changes have been made to specify Supports,
NotSupported, and Never as transaction attributes in a
Stateful Session Bean (SessionSynchronization) when
performing transaction management in CMT.

EJB Container
Functionality Guide

2.7.3

Forced termination of the
Administration Agent during
the occurrence of
OutOfMemoryError

Enabled forced termination of the Administration Agent
during the occurrence of OutOfMemoryError in JavaVM.

Maintenance and
Migration Guide

2.5.8

Asynchronous parallel
processing of threads

Enabled the implementation of the asynchronous timer
processing and asynchronous thread processing using
TimerManager and WorkManager.

Expansion Guide Chapter 10

D.5 Main functionality changes in 08-00
This section describes the main functionality changes in Application Server 08-00. These changes are described below
with reference to the purpose of change.

The description contents are as follows:

D. Main Functionality Changes in Each Version

403

• The main functionality that have been changed in Application Server 08-00 and an overview of the changes is
described below. For details about the functionality, check the Reference. The Reference column describes the
main description locations of the functionality.

• Cosminexus Application Server has been omitted from the manual names described in the Reference column.

(1) Improvement of development productivity
The following table describes the items changed with the purpose of improving the development productivity:

Table D‒21: Changes made with the purpose of improving the development productivity

Item Overview of changes Reference manual Reference

Simplification of migration
from other Application Server
products

Enabled the use of the following functionality for smooth
migration from other Application Server products:

• Enabled the judgment of upper limit of the HTTP
sessions through an exception.

• Enabled the inhibition of occurrence of a translation
error when the ID of JavaBeans is duplicate, and when
the upper-case characters and lower-case characters are
different in the attribute name of the custom tag and in
the TLD definition.

This manual 2.3, 2.7.5

Provision of
cosminexus.xml

Enabled the start of J2EE applications without setting the
properties after importing them into the J2EE server by
describing the properties unique to the Cosminexus
Application Server in cosminexus.xml.

Common Container
Functionality Guide

11.3

(2) Support of standard functionality
The following table describes the items changed with the purpose of supporting the standard functionality:

Table D‒22: Changes made with the purpose of supporting the standard functionality

Item Overview of changes Reference manual Reference

Servlet 2.5 support Supported Servlet 2.5. This manual 2.2, 2.5.4,
2.6, Chapter
6

JSP 2.1 support Supported JSP 2.1. This manual 2.3.1, 2.3.3,
2.5, 2.6,
Chapter 6

JSP debug Enabled the execution of JSP debugging in the development
environment using MyEclipse. #

This manual 2.4

Storage of the tag library in the
library JAR, and TLD mapping

Enabled the search of TLD files within the library JAR by
the Web container during the start of the Web application,
and their subsequent automatic mapping, when the tag
libraries are stored in the library JAR.

This manual 2.3.4

Omission of
application.xml

Enabled the omission of application.xml in a J2EE
application.

Common Container
Functionality Guide

11.4

Combined use of annotations
and DDs

Enabled the combined use of annotations and DDs, and also
enabled the update of annotation contents in the DD.

Common Container
Functionality Guide

12.5

Conformance of annotations to
Java EE 5 standard (default
interceptor)

Enabled the storage of the default interceptor in the library
JAR. Also enabled the execution of DI from the default
interceptor.

Common Container
Functionality Guide

11.4

Reference resolution of
@Resource

Enabled the reference resolution of resources with
@Resource.

Common Container
Functionality Guide

12.4

D. Main Functionality Changes in Each Version

404

Item Overview of changes Reference manual Reference

JPA support Supported JPA specifications. Common Container
Functionality Guide

Chapter 5,
Chapter 6

#
In version 09-00 and later, you can use the JSP debug functionality in the development environment using WTP.

(3) Maintenance and improvement of reliability
The following table describes the items changed with the purpose of maintaining or improving reliability:

Table D‒23: Changes made with the purpose of maintaining or improving reliability

Item Overview of changes Reference manual Reference

Persistence of session
information

Enabled the inheritance of session information of an HTTP
session by saving the information in the database.

Expansion Guide Chapter 5,
Chapter 6

Inhibition of a full garbage
collection

Enabled the inhibition of occurrence of a full garbage
collection by deploying the objects responsible for the full
garbage collection outside the Java heap.

Expansion Guide Chapter 8

Client performance monitor The time required for client processing can now be checked
and analyzed.

-- --

Legend:
--: This functionality has been deleted in version 09-00.

(4) Maintenance and improvement of operability
The following table describes the items that are changed with the purpose of maintaining and improving operability.

Table D‒24: Changes made with the purpose of maintaining and improving operability

Item Overview of changes Reference manual Reference

Improving the operability of
applications on the
management portal

The server management commands and management portal
can now be interoperated for application and resource
operations.

Management Portal
User Guide

1.1.3

(5) Other purposes
The following table describes the items changed with some other purpose:

Table D‒25: Changes made with other purposes

Item Overview of changes Reference manual Reference

Deletion if disabled HTTP
Cookies

Enabled the deletion of disabled HTTP Cookies. This manual 2.7.4

Failure detection in the Naming
Service

Enabled prompt detection of the error by the EJB client,
when a failure occurs in the Naming Service.

Common Container
Functionality Guide

2.9

Connection failure detection
timeout

Enabled the specification of the timeout period for a
connection failure detection timeout.

Common Container
Functionality Guide

3.15.1

Oracle11g support Enabled the use of Oracle11g as a database. Common Container
Functionality Guide

Chapter 3

Scheduling of batch processing Enabled the scheduling of execution of batch applications
by CTM.

Expansion Guide Chapter 4

D. Main Functionality Changes in Each Version

405

Item Overview of changes Reference manual Reference

Batch processing log The retry frequency and retry interval can now be specified
for the size and number of log files of the batch execution
command and the failure of exclusive processing of the log.

Definition Reference
Guide

3.6

snapshot log Changed the collection contents of the snapshot log. Web Container
Functionality Guide

Appendix A.
1, Appendix
A.2

Publication of protected area of
method cancellation

Published the contents of protected area list that is outside
the scope of method cancellation.

Operation,
Monitoring, and
Linkage Guide

Appendix C

Pre-statistical garbage
collection selection
functionality

Enabled the selection of whether or not to execute a garbage
collection before the output of class-wise statistical
information.

Web Container
Functionality Guide

9.7

Tenuring distribution
information output
functionality of the Survivor
area.

Enabled the output of tenuring distribution information of
Java objects of the Survivor area to the Hitachi JavaVM log
file.

Web Container
Functionality Guide

9.11

Finalize retention cancellation
functionality

Enabled the cancellation of retention of the finalize
processing of JavaVM after monitoring its status.

-- --

Change of the maximum heap
size of server management
commands

Changed the maximum heap size used by server
management commands.

Definition Reference
Guide

5.2, 5.3

Action for cases when un-
recommended display names
are specified

Provided the output of messages when un-recommended
display names are specified in J2EE applications.

Messages KDJE42374-
W

Legend:

--: This functionality is deleted in 09-00.

D. Main Functionality Changes in Each Version

406

E. Glossary
Terminology used in this manual

For the terms used in the manual, see the uCosminexus Application Server and BPM/ESB Platform Terminology Guide .

E. Glossary

407

Index

A
about jsf 165
Access based on URL specification and mapping definition

343
Applicable conditions 60
Applicable locations 60
Application Server

functionality 1

B
Bean Validation 165
bind address specification functionality 239, 284
built-in filter 84

C
cache of static contents

controlling 149
caching static content 9, 149
changing

setting of the maximum number of concurrently
executing thread of Web application 145

Character code in JSP documents 364
Character encoding defined in the Servlet specifications 65
Character encoding defined in the Servlet specifications

(JSP file) 65
Character encoding defined in the Servlet specifications

(Response) 65
Character encoding setting method defined in the Servlet

specifications 63
Character encoding setting method defined in the Servlet

specifications (Servlet 2.3/ JSP 1.2) 65
Character encoding setting method defined in the Servlet

specifications (Servlet 2.4/JSP 2.0) 64
Classification of functionality 2
Combinations of character encoding settings and valid

settings 59
Commonly used external library (Extension) 340
Common precautions for implementing servlets and JSPs

306
communication timeout

overview 281
setting 231
when receiving request 281
when request is received by Web container 228
When request is received by Web server 225
when request is sent by redirector 225
when sending and receiving request 225
when sending response 282

Communication timeout (in-process HTTP server) 11, 281
Communication timeout (Web server integration) 10
compilation result

maintaining 39
compiling and executing JSP files and tag files 157
concurrent connection

maximum number 121
number of dedicated thread 121

concurrently executing thread
controlling the number 9
number of dedicated thread 113
number of shared thread 114
overview of controlling the number 112
parameter for controlling the number 113
Size of a pending queue 113

concurrently executing thread
maximum number 113

Conditions for using the HTTP response compression filter
89

confirming
operational status of Web application 144

Conflicting character codes in JSP documents 363
connecting

database 9, 102
context 248
context root 248
Controlling access by limiting hosts that are allowed access

285
Controlling access by limiting HTTP-enabled methods 289
Controlling access by limiting the hosts that are allowed

access 11
Controlling access by limiting the HTTP-enabled methods

11
Controlling access by limiting the request data size 11, 287
Controlling communication by Persistent Connection 279
Controlling communication with Web client by Persistent

Connection 279
Controlling flow of requests by controlling number of

concurrent connections from Web client 269
Controlling flow of requests by controlling number of

concurrently executing threads 273
Controlling number of concurrent connections from Web

client 269
Controlling number of connections from Web client 262
Controlling the communication with the Web client by

using Persistent Connection 11
Controlling the flow of requests by controlling the number

of concurrent connections from the Web client 11
Controlling the flow of requests by controlling the number

of concurrently executed threads 11
Controlling the number of connections from the Web client

11
Control when exception occurs in the listener 340
Cookie

adding a server ID 76
Customizing access log of in-process HTTP server 298
Customizing responses to Web client using HTTP

responses 291
Customizing responses to the Web client using HTTP

responses 11
customizing session parameters 77
Customizing the error page (Web server integration) 10
Customizing the HTTP response header 291

409

D
database

connecting 9, 102
Default character coding of files included in include

directive 362
Default ContentType value of HTTP response in JSP

documents 361
Default extension of JSP documents 360
default mapping 22
default pending queue size 122
Default value of HTTP response character code in JSP

documents 363
default worker 216
Deploying tag library descriptor (TLD file) 361
Deprecated isThreadSafe attribute of page directive 361
Deprecated javax.servlet.SingleThreadModel interface 338
development investigation log 185
distributing request by URL pattern

overview 197

E
enabling HTTP response compression functionality

condition 89
Enterprise Bean

invocation method 100
error page customization 9, 148, 240

mechanism 241
overview 240
precaution 246

Error page customization (in-process HTTP server) 12, 292
Error page settings when an exception occurs 311
error page that can be customized 292
error status code 384
Error status codes returned by in-process HTTP server 386
Escape sequence of EL (Expression Language) 364
event listener 9, 83
executing

JSP EL 26
tag file 26

Executing the applications that use the HTTP response
compression filter 91

execution platform for application
functionality 4

Explanation of the functionality described in this manual 13
expression language functionality 166

F
filter

example of recommended filter chain 86
restriction on an HTTP response compression filter

86
restriction on the filter for session failover 85

filtering
request and response 9, 84

functionality
Application Server 1
gateway specification 251, 295
that serves as execution platform for application 4

Functionality and corresponding manuals 5

Functionality available in the in-process HTTP server 260
Functionality corresponding to the purpose of the system 8
Functionality for operating and maintaining the application

execution platform 5
Functionality for setting the default character encoding 8
Functionality for setting up the default character encoding

57

G
gateway specification functionality 323

H
HTTP response compression filter 88

Overview of HTTP response compression filter 88
precondition 81, 89

HTTP response compression functionality 9, 88
httpsd.conf 195
HttpSession

adding server ID 76
HttpSession object 70

setting the upper limit 74, 77
HttpSession timeout during the execution of the service

method of the servlet 340

I
Implementation of default character encoding (For Servlet

specifications) 63
Implementation of servlets and JSPs 303
implicitly importing import attribute of page/tag directive32
Improving the performance when using the PrintWriter and

JSPWriter class 310
information to be referred when changing maximum

number of concurrently executing threads of Web
application 144

init
timing to execute 23

in-process HTTP server 258, 259
In-process HTTP server functionality 11
integrating

EJB container 9, 100
isapi_redirect.conf 195

J
javax.servlet.UnavailableException 339
jsf and jstl functionality 9
JSF application 165
JSP 21
JSP compilation result 41

deleting 50, 52
generating 50, 52
lifecycle 49, 52
output destination 50
Version check 47

JSP compilation result without using JSP pre-compilation
maintaining 52
Point to be noted when Web application is un-

deployed 52
JSP debug functionality 8, 35

Index

410

JSP EL 26
JSP execution functionality 8, 25
JSP pre-compile

cjstartapp command 42
JSP pre-compilation

cjjspc command 41
elements of web.xml 46
example 43
handling JSP files 47
implemented check 45
mapping with command 43
note 48
performing method 40
precondition 40
processing during execution 45

JSP pre-compilation functionality 39
overview 39

JSP pre-compilation functionality and maintaining
compilation results 8

JSP translation 25
JSP translation backward compatibility function 373
JSTL 165

L
Limiting the hosts that are allowed access 285
Limiting the request data size 287
load balancer 206
Log and trace output by in-process HTTP server 298
logical view 179

M
main functionality changes in 08-50 401
main functionality changes in 09-00 395
main functionality changes in Application Server 08-00 403
maintaining

compilation result 39
main updates in functionality of Application Server 09-50

15
ManagedBean 166
mechanism of controlling number of concurrently

executing thread (URL group) 129
memory size used by JSF application for explicit memory

management area 171
Microsoft IIS Settings 390
mod_jk.conf 195
Multiple assignment of evaluation API functions for JSP

EL expression 360

N
normalizing request URIs 318
Notes for accessing the directory included in the Web

application 322
Notes for acquiring URI 321
Notes for coding the <%=%> tag 343
Notes for using Cookies 310
Notes for using the <jsp:plugin> tag 344
Notes for using the I/O stream 321
Notes for using the include directive 343
Notes for using the ServletContext interface 322

Notes for using the ServletRequest interface 322
Notes for using the tag library 343
Notes on accessing files 311
Notes on executing reset method of

javax.servlet.ServletResponse interface 324
Notes on implementing processing that should not be

executed multiple times in the process 322
Notes on referencing error information by

javax.servlet.error.XXXXX 310
notes on using explicit memory management functionality

in JSF application 171
Notes on using forward method of

java.servlet.RequestDispatcher interface 338
Notes on using gateway 324
Notes on using proxy acquisition method of ServletRequest

class 324
notes on using session failover functionality in JSF

application 172
Notes on using transaction and JDBC connection 309
Notes on using URLConnection class 311
Notes related to acquisition of class loader 311
Notes related to display of input values with special

meanings 310
Notes related to error page display after commit 310
Notes related to loading of native library 311
Notes related to package name specification 310
noteswhendeployingandundeployingwebapplications 22
Notes when reporting events for changes in attributes 322
noteswhensettinglocale 321
number of concurrently executing thread

dynamic change 141
number of dedicated threads 124, 134
Number of shared threads in a Web application (When

control of the number of concurrently executing threads
in each URL group is not specified) 114

Number of shared threads in a Web application (When
control of the number of concurrently executing threads
in each URL group is specified) 114

number of thread
error processing of static content and request 115

O
Operations when character encoding is specified with

multiple ranges 58
Operations when reading of the POST data fails 321
Output destination of Java source files and class files of tag

file 360
Output of log and trace 12, 298
Overview of controlling number of connections from Web

client 262
Overview of controlling number of request processing

threads 264
Overview of in-process HTTP server 259

P
Parsing query character string query 23
performance tuning

in operational status of each Web application 141
persistent connection 279
point

Index

411

during Web server integration 196
Points to remember when upgrading version of existing

Web application to Servlet 2.4 specifications 370
Points to remember when upgrading version of existing

Web application to Servlet 2.5 specifications 367
POST request-distributing worker 214
POST request-forwarding worker 214
Precautions for implementing JSPs 343
Precautions for implementing servlets 321
precautions for implementing servlets and JSPs 306
Precautions for JSP migration 373
Precautions for restarting cosminexus http Server 388
Precautions for upgrading cosminexus http server 389
Precautions for using the gateway specification

functionality 323
Precautions related to cosminexus http server settings 388
Precautions related to added and changed specifications in

JSP 2.0 specifications 360
Precautions related to added and changed specifications in

the JSP 2.1 specifications 352
Precautions related to added and changed specifications in

the Servlet 2.4 specifications 337
Precautions related to added and changed specifications in

the Servlet 2.5 specifications 333
Precautions related to class attributes of <jsp:useBean> tag

375
Precautions related to default character encoding 67
Precautions related to definition of script variables for

custom tag 373
Precautions related to Expression check of tag attribute

values 377
Precautions related to Expression specified in tag attribute

values 377
Precautions related to prefix attribute of taglib directive 378
Precautions related to redirector log 389
Precautions related to size limitations for JavaVM methods

371
Precautions related to the TLD file version 348
Precautions related to Web applications when migrating

from previous version of Application Server to 09-00 367

R
redirector 190
request distribution 10, 191, 217

mechanism 191
method 193
pattern transferring request 192
POST data size 214
round-robin format 206
type of URL pattern 199
URL pattern 197, 275
with redirector 11, 275

request distribution by POST data size
example 214
overview 214

request distribution in round-robin format
example 206

request processing thread 11, 264
response customization 275
retrying sending of request 226

return value of getRequestURI and getRequestURL
methods of javax.servlet.http.HttpServletRequest
interface 318

Return values for each Servlet API argument for executing
URL rewrite 80

S
Scope of character encoding settings 59
sendRedirect method of the

javax.servlet.http.HttpServletResponse interface 339
server ID addition functionality 76
service

timing to execute 23
servlet 21
servlet buffer

sending response 23
servlet filter 84
servlet mapping 22
session

Objects managing the session information 69
sessionDestroyed method of the

javax.servlet.http.HttpSessionListener interface 339
session ID

adding a server ID 76
session ID 70
session management functionality 9, 69
setLocale method of the javax.servlet.ServletResponse

interface 338
setting communication timeout

when response is received by redirector 230
when response is sent by Web container 229
when response is sent by Web server 231
when sending and receiving response 229

setting for Web application 58
setting number of concurrently executing thread

137
example (Web application) 125

Settings for each J2EE server 58
Setting the permissions for generating user threads 111
shared thread

method to calculate number 114
size of object registered in http session by JSF application

171
size of pending queue

example (URL group) 137
example (Web application) 125

Specifiable character encoding 63
Specification of multiple pageEncoding attributes of page

directive 363
Specifying the IP address (in-process HTTP server) 11
Specifying the IP address (In-process HTTP server) 284
Specifying the IP address (Web server integration) 239
Specifying the IP address (Web server integration) 10
Status message of HTTP status code 302 340
Support for the request HTTP methods in the redirector 386

T
tag file 26
thread

Control units of the number of threads 112

Index

412

translation error 25
Type of EL evaluation results 365

U
unique Hitachi attributes registered in ServletContext object

324
Units for setting the default character encoding 58
URI decode functionality 153
uriworkermap.properties 195
URL group

controlling number of concurrently executing
thread 129

maximum number of concurrently executing thread
132

number of dedicated thread 133
pending queue 133

URL pattern
mapping 129
mapping order 130
setting 133

User-defined file for setting the request distribution method
(When the Smart Composer functionality is not used) 194

User-defined file for setting the request distribution method
(When the Smart Composer functionality is used) 194

user thread 107
Using annotations in servlets 371
Using the in-process HTTP server 259
Using the user threads 107
using user thread 9, 311
Using X-Powered-By header 337
usrconf.properties 195

V
version attributes in the JSP document 344
version setup functionality of web applications 156
viewing top page 10, 248

W
Web application 21

changing maximum number of concurrently
executing threads according to time zone 141

changing maximum number of concurrently
executing threads corresponding to access status

141
controlling number of concurrently executing

thread 119
deploying 21
maximum number of concurrently executing thread

120
note on controlling number of concurrently

executing thread 127
number of dedicated thread 120
size of pending queue 122
un-deploying 21
when number of concurrently executing threads are

changed dynamically 146
Web application execution functionality 8, 21
Web container 19, 20

controlling number of concurrently executing
thread 117

creating thread 9, 103
creating thread number 103
creating thread total number 104
creating thread type 103
error status code 382
notification of gateway information 10, 12, 251, 295
number of shared thread 114

Web container functionality 8
web redirector 395
webserver.connector.ajp13.max_threads 118
webserver.connector.inprocess_http.max_execute_threads

118
webserver.container.server_id.enabled 78
webserver.container.server_id.name 78
webserver.container.server_id.value 78
webserver.session.cookie_config.http_only 77
webserver.session.cookie_config.name 77
webserver.session.max.log_interval 78
webserver.session.max.throwHttpSessionLimitExceededEx

ception 78
webserver.session.server_id.enabled 78
webserver.session.server_id.value 78
webserver.session.tracking_mode 77
When uri that is not registered in taglib map is described in

tag library declaration of JSP document 363
white space 25
worker definition file 193
workerprocess 191
workers.properties 194

X
XML view information that can be acquired with

getInputStream method of
javax.servlet.jsp.tagext.PageData class 362

Index

413

	Web Container Functionality Guide
	Summary of amendments
	Preface
	Contents
	1. Application Server Functionality
	1.1 Classification of functionality
	1.1.1 Functionality that serves as an execution platform for the applications
	1.1.2 Functionality for operating and maintaining the application execution platform
	1.1.3 Functionality and corresponding manuals

	1.2 Functionality corresponding to the purpose of the system
	1.2.1 Web Container Functionality
	1.2.2 JSF and JSTL functionality
	1.2.3 Web server integration functionality
	1.2.4 In-process HTTP server functionality

	1.3 Explanation of the functionality described in this manual
	1.3.1 Meaning of classifications
	1.3.2 Examples of tables describing the classification

	1.4 Main updates in the functionality of Application Server 09-50

	2. Web Container
	2.1 Organization of this chapter
	2.2 Web application execution functionality
	2.2.1 Deploying and un-deploying web applications
	2.2.2 Notes when deploying and un-deploying web applications

	2.3 JSP execution functionality
	2.3.1 Overview of JSP execution functionality
	2.3.2 Executing a tag file
	2.3.3 Executing JSP EL
	2.3.4 Storing the tag library in the J2EE applications
	2.3.5 Checking the attribute name of the custom tag
	2.3.6 Checking the duplication of the id attribute of the <jsp:useBean> tag
	2.3.7 Implicitly importing the import attribute of the page/tag directive

	2.4 JSP debug functionality
	2.4.1 Mechanism of JSP debug functionality
	2.4.2 Procedure of using the JSP debug functionality
	2.4.3 Execution environment settings (J2EE server settings)
	2.4.4 Precautions for using the JSP debug functionality

	2.5 JSP pre-compilation functionality and maintaining compilation results
	2.5.1 Overview of the JSP pre-compilation functionality
	2.5.2 Methods for performing JSP pre-compilation
	2.5.3 Examples of applying JSP pre-compilation
	2.5.4 Processing during execution of JSP pre-compilation
	2.5.5 Lifecycle and output destination of JSP compilation results
	2.5.6 JSP Compilation results when JSP pre-compilation functionality is not used
	2.5.7 Class names in JSP compilation results
	2.5.8 Execution environment settings (J2EE server settings)

	2.6 Functionality for setting up the default character encoding
	2.6.1 Units for setting the default character encoding
	2.6.2 Applicable locations and conditions for default character encoding
	2.6.3 Application of character encoding during JSP pre-compilation
	2.6.4 Specifiable character encoding
	2.6.5 Implementation of default character encoding (For Servlet specifications)
	2.6.6 Definition in the DD
	2.6.7 Execution environment settings
	2.6.8 Precautions related to default character encoding

	2.7 Session management functionality
	2.7.1 Objects managing the session information
	2.7.2 Session ID format
	2.7.3 Session management method
	2.7.4 Deleting invalid session IDs maintained by the Web client
	2.7.5 Setting the upper limit for the number of HttpSession objects
	2.7.6 Adding a server ID to the session ID and Cookie
	2.7.7 Definition in cosminexus.xml
	2.7.8  Execution environment settings
	2.7.9 Precautions related to session management

	2.8 Event listener of an application
	2.9 Functionality of filtering requests and responses
	2.9.1 Servlet filter provided by Application Server (built-in filter)
	2.9.2 Examples of recommended filter chain
	2.9.3 Definition in the DD
	2.9.4 Execution environment settings (Web application settings)

	2.10 HTTP response compression functionality
	2.10.1 Overview of HTTP response compression filter
	2.10.2 Conditions for using the HTTP response compression filter
	2.10.3 Executing the applications that use the HTTP response compression filter
	2.10.4 Definition in the DD
	2.10.5 Examples of the DD definitions
	2.10.6 Execution environment settings (Web application settings)

	2.11 Integrating with an EJB container
	2.11.1 Enterprise Bean invocation method
	2.11.2 Implementation for integrating with an EJB Container
	2.11.3 Execution environment settings (J2EE server settings)

	2.12 Connecting to the database
	2.13 Creating threads by a Web container
	2.13.1 Types and number of the threads created
	2.13.2 Total number of threads created

	2.14 Using the user threads
	2.14.1 Availability of the functionality in user threads
	2.14.2 Setting the permissions for generating user threads

	2.15 Overview of controlling the number of concurrently executing threads
	2.15.1 Control units of the number of threads
	2.15.2 Parameters for controlling the number of concurrently executing threads
	2.15.3 Number of threads used in error processing of static contents and requests

	2.16 Controlling the number of concurrently executing threads in the Web container
	2.16.1  Mechanism for controlling the number of concurrently executing threads (Web container)
	2.16.2 Execution environment settings (J2EE server settings)

	2.17 Controlling the number of concurrently executing threads in the Web application
	2.17.1 Mechanism for controlling the number of concurrently executing threads (Web applications)
	2.17.2 Parameters required for controlling the number of concurrently executing threads (Web applications)
	2.17.3 Guidelines for the settings for number of concurrently executing threads (Web applications)
	2.17.4 Definition in cosminexus.xml
	2.17.5 Execution environment settings
	2.17.6 Example of setting the number of concurrently executing threads and the size of a pending queue (Web application)
	2.17.7 Notes on controlling the number of concurrently executing threads in the Web application

	2.18 Controlling the number of concurrently executing threads in the URL group
	2.18.1 Mechanism of controlling the number of concurrently executing threads (URL Group)
	2.18.2 Mapping of URL patterns
	2.18.3  Parameters required for controlling the number of concurrently executing threads (URL group)
	2.18.4 Guidelines for setting the number of concurrently executing threads (URL group)
	2.18.5 Definition in cosminexus.xml
	2.18.6 Execution environment settings (Web application settings)
	2.18.7 Example of setting the number of concurrently executing threads and the size of a pending queue (URL Group)

	2.19 Dynamic change in the number of concurrently executing threads
	2.19.1 Overview of dynamically changing the number of concurrently executing threads
	2.19.2 Flow of dynamically changing the number of concurrently executing threads
	2.19.3 Operations of a Web application when the number of concurrently executing threads are changed dynamically
	2.19.4 Precautions related to dynamically changing the number of concurrently executing threads

	2.20 Error page customization
	2.21 Caching the static contents
	2.21.1 Controlling the cache of static contents
	2.21.2 Definition in the DD (Settings for each Web application)
	2.21.3 Execution environment settings

	2.22 URI decode functionality
	2.22.1 Overview of URI decode functionality
	2.22.2 Execution environment settings (J2EE server settings)
	2.22.3 Precautions for using the URI decode functionality

	2.23 Version setup functionality of Web applications
	2.23.1 Overview of the version setup functionality of Web applications
	2.23.2 Compiling and executing JSP files and tag files
	2.23.3 Execution environment settings
	2.23.4 Precautions for using the version setup functionality of Web applications

	2.24 Precautions related to the Web container

	3. Using JSF and JSTL
	3.1 Organization of this chapter
	3.2 Overview of JSF and JSTL
	3.2.1 Overview of JSF
	3.2.2 JSTL

	3.3 JSF and JSTL functionality
	3.3.1 JSF functionalities
	3.3.2 JSTL functionality
	3.3.3 Proprietary functionalities of Application Server
	3.3.4 Collaboration with other functionalities of Application Server

	3.4 Setting up the class path (setting up the development environment)
	3.4.1 File storage location
	3.4.2 Setting up the class path

	3.5 Definition in the DD
	3.5.1 Standard context parameters
	3.5.2 Proprietary context parameters of Application Server
	3.5.3 Servlet settings

	3.6 JSF applications development flow
	3.6.1 Procedure for developing JSF applications
	3.6.2 Procedure for using the Bean Validation from JSF

	3.7 Using log (development investigation log) for debugging
	3.8 Setting up the execution environment
	3.9 To output and check the troubleshooting information
	3.10 Notes on using JSF and JSTL

	4. Web Server Integration
	4.1 Organization of this chapter
	4.2 Distributing requests with the Web server (Redirector)
	4.2.1 Mechanism of request distribution with the Redirector
	4.2.2 User-defined file for setting the request distribution method (When the Smart Composer functionality is used)
	4.2.3 User-defined file for setting the request distribution method (When the Smart Composer functionality is not used)
	4.2.4 Points to be considered during Web server integration

	4.3 Distributing requests by URL pattern
	4.3.1 Overview of distributing requests by URL pattern
	4.3.2 Types of URL patterns and priority of applicable patterns
	4.3.3 Execution environment settings (When the Smart Composer functionality is used)
	4.3.4 Execution environment settings (When the Smart Composer functionality is not used)

	4.4 Distributing requests by the round-robin format
	4.4.1 Overview of distributing requests by the round-robin format
	4.4.2 Examples of request distribution in the round-robin format
	4.4.3 Defining request distribution in the round robin format
	4.4.4 Execution environment settings (When the Smart Composer functionality is used)
	4.4.5 Execution environment settings (When the Smart Composer functionality is not used)
	4.4.6 Precautions related to request distribution in the round-robin format

	4.5 Distributing requests by the POST data size
	4.5.1 Overview of distributing requests by the POST data size
	4.5.2 Examples of distributing requests by the POST data size
	4.5.3 Request distribution conditions
	4.5.4 Definition for distributing requests by the POST data size
	4.5.5 Execution environment settings (When the Smart Composer functionality is used)
	4.5.6 Execution environment settings (When the Smart Composer functionality is not used)

	4.6 Communication timeout (Web server integration)
	4.6.1 Communication timeout when sending and receiving a request
	4.6.2 Setting the communication timeout when sending and receiving a response
	4.6.3 Setting the communication timeout
	4.6.4 Setting the communication timeout when sending and receiving a request (When the Smart Composer functionality is used)
	4.6.5 Setting the communication timeout when sending and receiving a request (When the Smart Composer functionality is not used)
	4.6.6 Setting the communication timeout when sending and receiving a response (When the Smart Composer functionality is used)
	4.6.7 Setting the communication timeout when sending and receiving a response (When the Smart Composer functionality is not used)

	4.7 Specifying the IP address (Web server integration)
	4.7.1 Bind address specification functionality
	4.7.2 Execution environment settings (J2EE server settings)
	4.7.3 Precautions for specifying the IP address in Web server integration

	4.8 Error page customization with the Web server integration functionality
	4.8.1 Overview of error page customization
	4.8.2 Mechanism of error page customization
	4.8.3 Execution environment settings (When the Smart Composer functionality is used)
	4.8.4 Execution environment settings (When the Smart Composer functionality is not used)
	4.8.5 Precautions related to error page customization

	4.9 Viewing the top page by specifying the domain name
	4.9.1 Viewing the top page by specifying the domain name
	4.9.2 Execution environment settings (When the Smart Composer functionality is used)
	4.9.3 Execution environment settings (When the Smart Composer functionality is not used)

	4.10 Notification of gateway information to a Web container
	4.10.1 Gateway specification functionality
	4.10.2 Execution environment settings (When the Smart Composer functionality is used)
	4.10.3 Execution environment settings (When the Smart Composer functionality is not used)
	4.10.4 Precautions related to reporting the gateway information to a Web Container

	5. In-Process HTTP Server
	5.1 Organization of this chapter
	5.2 Overview of in-process HTTP server
	5.2.1 Using the in-process HTTP server
	5.2.2 Functionality available in the in-process HTTP server
	5.2.3 Execution environment settings (J2EE server settings)

	5.3 Controlling the number of connections from the Web client
	5.3.1 Overview of controlling the number of connections from the Web client
	5.3.2 Execution environment settings (J2EE server settings)

	5.4 Controlling the number of request processing threads
	5.4.1 Overview of controlling the number of request processing threads
	5.4.2 Execution environment settings (J2EE server settings)

	5.5 Controlling the flow of requests by controlling the number of concurrent connections from the Web client
	5.5.1 Controlling the number of concurrent connections from the Web client
	5.5.2 Execution environment settings (J2EE server settings)

	5.6 Controlling the flow of requests by controlling the number of concurrently executing threads
	5.6.1 Overview of controlling the flow of requests by controlling the number of concurrently executing threads
	5.6.2 Execution environment settings (J2EE server settings)

	5.7 Request distribution with the redirector
	5.7.1 Distributing requests by URL pattern
	5.7.2 Response customization
	5.7.3 Execution environment settings (J2EE server settings)
	5.7.4 Precautions related to request distribution with the redirector

	5.8 Controlling the communication with the Web client by persistent connection
	5.8.1 Controlling communication by Persistent Connection
	5.8.2 Execution environment settings (J2EE server settings)

	5.9 Communication timeout (In-process HTTP server)
	5.9.1 Overview of the communication timeout
	5.9.2 Execution environment settings (J2EE server settings)

	5.10 Specifying the IP address (In-process HTTP server)
	5.10.1 Bind address specification functionality
	5.10.2 Execution environment settings (J2EE server settings)
	5.10.3 Precautions related to IP address specification in the in-process HTTP server

	5.11 Controlling access by limiting the hosts that are allowed access
	5.11.1 Limiting the hosts that are allowed access
	5.11.2 Execution environment settings (J2EE server settings)

	5.12 Controlling access by limiting the request data size
	5.12.1 Limiting the request data size
	5.12.2 Execution environment settings (J2EE server settings)

	5.13 Controlling access by limiting the HTTP-enabled methods
	5.13.1 Limiting the HTTP-enabled methods
	5.13.2 Execution environment settings (J2EE server settings)

	5.14 Customizing responses to the Web client using HTTP responses
	5.14.1 Customizing the HTTP response header
	5.14.2 Execution environment settings (J2EE server settings)

	5.15 Error page customization (In-process HTTP server)
	5.15.1 Error page that can be customized
	5.15.2 Implementation required for customizing the error page
	5.15.3 Execution environment settings (J2EE server settings)
	5.15.4 Precautions related to error page customization

	5.16 Notification of gateway information to a Web container
	5.16.1 Gateway specification functionality
	5.16.2 Execution environment settings (J2EE server settings)
	5.16.3 Precautions related to reporting the gateway information to the Web container

	5.17 Output of log and trace
	5.17.1 Log and trace output by the in-process HTTP server
	5.17.2 Customizing the access log of the in-process HTTP server

	6. Implementation of Servlets and JSPs
	6.1 Support range of the functionalities that are added or changed in Servlet specifications and JSP specifications
	6.2 Precautions for implementing servlets and JSPs
	6.2.1 Common precautions for implementing servlets and JSPs
	6.2.2 Precautions for implementing servlets
	6.2.3 Precautions related to the specifications that are added or changed in the Servlet 3.0 specifications
	6.2.4 Precautions related to added and changed specifications in the Servlet 2.5 specifications
	6.2.5 Precautions related to added and changed specifications in the Servlet 2.4 specifications
	6.2.6 Precautions for implementing JSPs
	6.2.7 Precautions related to added and changed specifications in the JSP 2.1 specifications
	6.2.8 Precautions related to added and changed specifications in the JSP 2.0 specifications
	6.2.9 Precautions for implementing JSPs of the JSP 1.2 specifications
	6.2.10 Precautions related to the specifications that are added or changed in the EL2.2 specifications
	6.2.11 Points to remember when upgrading the version of an existing Web application to the Servlet 3.0 specifications
	6.2.12 Points to remember when upgrading the version of an existing Web application to the Servlet 2.5 specifications
	6.2.13 Precautions related to Web applications when migrating from a previous version of Application Server to 09-00
	6.2.14 Points to remember when upgrading the version of an existing Web application to the Servlet 2.4 specifications
	6.2.15 Using annotations in servlets
	6.2.16 Precautions related to size limitations for JavaVM methods

	6.3 Precautions for JSP migration
	6.3.1 Precautions related to the definition of script variables for the custom tag
	6.3.2 Precautions related to the class attributes of <jsp:useBean> tag
	6.3.3 Precautions related to the Expression check of the tag attribute values
	6.3.4 Precautions related to Expression specified in the tag attribute values
	6.3.5 Precautions related to the prefix attribute of the taglib directive

	Appendixes
	A. Error Status Code
	A.1 Error status codes returned by the Web container
	A.2 Error status codes returned by the Redirector
	A.3 Error status codes returned by the in-process HTTP server

	B. Precautions related to Cosminexus HTTP Server Settings
	B.1 Precautions for restarting Cosminexus HTTP Server
	B.2 Precautions related to the redirector log
	B.3 Precautions for upgrading Cosminexus HTTP Server

	C. Microsoft IIS Settings
	C.1 Microsoft IIS 7.0 or Microsoft IIS 7.5 settings

	D. Main Functionality Changes in Each Version
	D.1 Main functionality changes in 09-00
	D.2 Main functionality changes in 08-70
	D.3 Main functionality changes in 08-53
	D.4 Main functionality changes in 08-50
	D.5  Main functionality changes in 08-00

	E. Glossary

	Index

