
uCosminexus Application Server

System Design Guide

3020-3-Y04-10(E)

■ Relevant program products
See the manual uCosminexus Application Server Overview.

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law, and USA export
control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.

AMD is a trademark of Advanced Micro Devices, Inc.

All Borland brand and product names are trademarks or registered trademarks of Borland Software Corporation in the United States and other
countries.

CORBA is a registered trademark of Object Management Group, Inc. in the United States.

HP-UX is a product name of Hewlett-Packard Development Company, L.P. in the U.S. and other countries.

IIOP is a trademark of Object Management Group, Inc. in the United States.

Intel is a trademark of Intel Corporation in the U.S. and/or other countries.

JBoss and Hibernate are registered trademarks of Red Hat, Inc.

Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

OMG, CORBA, IIOP, UML, Unified Modeling Language, MDA, and Model Driven Architecture are either registered trademarks or
trademarks of Object Management Group, Inc. in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates.

Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc., in the United States
and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VisiBroker is a trademark or registered trademark of Micro Focus IP Development Limited or its subsidiaries or affiliated companies in the
United Kingdom, United States, and other countries.

VMware and vCenter Server are registered trademarks or trademarks of VMware, Inc. in the United States and/or other jurisdictions.

Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

The other company names and product names are either trademarks or registered trademarks of the respective companies. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used by the
manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use of a trademark
in this document should not be regarded as affecting the validity of the trademark.

■ Microsoft product name abbreviations
This manual uses the following abbreviations for Microsoft product names.

Abbreviation Full name or meaning

Microsoft IIS Microsoft IIS 7.0 Microsoft(R) Internet Information Services 7.0

Microsoft IIS 7.5 Microsoft(R) Internet Information Services 7.5

SQL Server SQL Server 2005 Microsoft(R) SQL Server 2005

SQL Server 2008 Microsoft(R) SQL Server 2008

Microsoft(R) SQL Server 2008 R2

SQL Server 2012 Microsoft(R) SQL Server 2012

SQL Server JDBC Driver SQL Server JDBC Driver Microsoft(R) SQL Server JDBC Driver 3.0

Abbreviation Full name or meaning

SQL Server JDBC Driver SQL Server JDBC Driver Microsoft(R) JDBC Driver 4.0 for SQL Server

Windows Windows Server
2008

Windows Server
2008 x86

Microsoft(R) Windows Server(R) 2008 Standard 32-bit

Microsoft(R) Windows Server(R) 2008 Enterprise 32-bit

Windows Server
2008 x64

Microsoft(R) Windows Server(R) 2008 Standard

Microsoft(R) Windows Server(R) 2008 Enterprise

Windows Server
2008 R2

Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server
2012

Windows Server
2012 Standard

Microsoft(R) Windows Server(R) 2012 Standard

Windows Server
2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Datacenter

Windows XP Microsoft(R) Windows(R) XP Professional Operating
System

Windows Vista Windows Vista
Business

Microsoft(R) Windows Vista(R) Business (32-bit)

Windows Vista
Enterprise

Microsoft(R) Windows Vista(R) Enterprise (32-bit)

Windows Vista
Ultimate

Microsoft(R) Windows Vista(R) Ultimate (32-bit)

Windows 7 Windows 7 x86 Microsoft(R) Windows(R) 7 Professional (32-bit)

Microsoft(R) Windows(R) 7 Enterprise (32-bit)

Microsoft(R) Windows(R) 7 Ultimate (32-bit)

Windows 7 x64 Microsoft(R) Windows(R) 7 Professional (64-bit)

Microsoft(R) Windows(R) 7 Enterprise (64-bit)

Microsoft(R) Windows(R) 7 Ultimate (64-bit)

Windows 8 Windows 8 x86 Windows(R) 8 Pro (32-bit)

Windows(R) 8 Enterprise (32-bit)

Windows 8 x64 Windows(R) 8 Pro (64-bit)

Windows(R) 8 Enterprise (64-bit)

Windows Server Failover Cluster Windows Server(R) Failover Cluster

Note that Windows 32 bit and Windows 64 bit are sometimes respectively referred to as Windows x86 and Windows x64.

■ Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The software
described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of the terms and
conditions governing your use of the software and documentation, including all warranty rights, limitations of liability, and disclaimers of
warranty.

Material contained in this document may describe Hitachi products not available or features not available in your country.

No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in Japan.

■ Issued
Aug. 2013: 3020-3-Y04-10(E)

■ Copyright
All Rights Reserved. Copyright (C) 2013, Hitachi, Ltd.

Summary of amendments

The following table lists changes in the manual 3020-3-Y04-10(E) for uCosminexus Application Server 09-50,
uCosminexus Application Server(64) 09-50, uCosminexus Client 09-50, uCosminexus Developer 09-50,
uCosminexus Service Architect 09-50, uCosminexus Service Platform 09-50, uCosminexus Service Platform(64)
09-50 and product changes related to the manual:

Addition and Changes Change Location

The description for using the common SQL Server JDBC Driver as the JDBC driver for the SQL Server
versions was changed.

2.5.2, 2.6.2

The execution of batch jobs in integration with JP1/Advanced Shell is now supported. 4.2.1, 4.2.2

The formula for the basic number of threads in the resource estimation of the J2EE server processes and
batch servers was changed.

5.2.1(1), 6.2.1(1)

The formula for the amount of virtual memory used in the J2EE servers and batch servers was changed. 5.3, 6.3

A description was added for the code cache area in the memory space to be used with JavaVM. 7.1.2

A description was added for the verification method and the action to be taken when the auto-release
processing of Explicit memory blocks takes a long time.

7.2.1, 7.13, 7.13.6

A description was added for the concept of applying the Explicit Memory Management functionality to
the HTTP session-related objects efficiently.

7.2.2, 7.10.1, Appendix A,
Appendix B

A description of "Allocating the objects responsible for increasing the memory size of the Tenured area to
the Explicit heap" was added to the tuning procedure.

7.2.2

A description was added for the resolution method when the Permanent area is compressed due to
software references in the development environment.

7.8

The description of the automatic allocation configuration file for using Hibernate was deleted. 7.12

The description of notes was moved from Release Notes. 3.16, 4.1.3, 5.3, 6.3, 7.1.1,
7.1.2, 7.1.3

In addition to the above changes, minor editorial corrections have been made.

Preface
For details on the prerequisites before reading this manual, see the manual uCosminexus Application Server Overview.

■ Non-supported functionality
Some functionality described in this manual are not supported. Non-supported functionality includes:

• Audit log functionality

• Compatibility functionality

• Cosminexus Component Transaction Monitor

• Cosminexus DABroker Library

• Cosminexus Reliable Messaging

• Cosminexus TPBroker and VisiBroker

• Cosminexus Web Service - Security

• Cosminexus XML Security - Core functionality

• JP1 linkage functionality

• Management portal functionality

• Migration functionality

• SOAP applications complying with specifications other than JAX-WS 2.1

• uCosminexus OpenTP1 linkage functionality

• Virtualized system functionality

• XML Processor high-speed parse support functionality

■ Non-supported compatibility functionality
"Compatibility functionality" in the above list refers to the following functionality:

• Basic mode

• Check of JSP source compliance (cjjsp2java) with the JSP1.1 and JSP1.2 specifications

• Database connection using Cosminexus DABroker Library

• EJB client application log subdirectory exclusive mode

• J2EE application test functionality

• Memory session failover functionality

• Servlet engine mode

• Simple Web server functionality

• Switching multiple existing execution environments

• Using EJB 2.1 and Servlet 2.4 annotation

I

Contents

1 Purpose and Flow of Designing an Application Server System 1

1.1 Purpose of designing an Application Server system 2

1.2 Flow of system design 3

1.2.1 For applications that execute online processing (J2EE applications) 3

1.2.2 For applications that execute batch processing (batch applications) 4

2 Preparing for System Design 5

2.1 Items to be determined before designing a system 6

2.2 Identifying the types of business 7

2.3 Determining the functionality to be used (when executing online processing) 8

2.3.1 Process configuration 8

2.3.2 Configuration of a J2EE server 10

2.3.3 J2EE applications and J2EE component 11

2.3.4 J2EE container 13

2.3.5 J2EE service 13

2.3.6 J2EE resource 14

2.3.7 Cosminexus JPA Provider 15

2.3.8 Container extension library 15

2.3.9 Server operation mode 15

2.4 Determining the functionality to be used (for executing batch processing) 16

2.4.1 Process configuration 16

2.4.2 Configuration of a batch server 17

2.4.3 Batch application 18

2.4.4 Batch service 19

2.4.5 J2EE service 20

2.4.6 J2EE resource 20

2.4.7 Container extension library 20

2.5 Determining the application configuration that suits the system purpose (for operations that
execute online processing) 21

2.5.1 Determining the J2EE applications to be executed 21

2.5.2 Determining the processes to be used and preparing the required software 22

2.6 Determining the application configuration that suits the system purpose (for businesses that
execute batch processing) 26

2.6.1 Determining batch applications to be executed 26

2.6.2 Determining the processes to be used and preparing the required software 26

2.7 Determining the operation method 29

2.7.1 Operations of a system integrated with JP1 29

2.7.2 Operations of system integrated with cluster software 29

i

3 Determining the System Configuration (J2EE Application Execution Platform) 31

3.1 Points to be considered when determining the system configuration 32

3.1.1 Purpose and configuration of the system 32

3.1.2 Procedure for designing the system configuration 33

3.1.3 Concept of system configuration 38

3.2 Description of the system configuration 41

3.3 Determining the configuration of an application 43

3.3.1 Configuration of an application and the access points 43

3.3.2 Resource types and resource adapters 47

3.4 Determining the configuration of the client and the server 54

3.4.1 Configuration with servlets and JSPs as access points (for Web server integration) 54

3.4.2 Configuration where servlets and JSPs are used as access points (when using the in-process HTTP
server) 56

3.4.3 Configuration with Session Beans and Entity Beans as access points 57

3.4.4 Configuration where Stateless Session Bean is used as access point when using CTM 59

3.5 Determining integration between servers 61

3.5.1 Integration between servers invoking Session Bean and Entity Bean 61

3.5.2 Integration between the servers that invokes Stateless Session Bean through CTM 63

3.6 Determining the transaction type 66

3.6.1 Configuration when using a local transaction 66

3.6.2 Configuration when using a global transaction 68

3.6.3 Configuration when using transaction context propagation 70

3.7 Determining the load balancing method by the load-balancing cluster 72

3.7.1 Load balancing with a load balancer in case of Web server integration (in the case of servlet or JSP) 72

3.7.2 Load balancing with the load balancer when using in-process HTTP server (for Servlet/JSP) 74

3.7.3 Load balancing with the CORBA Naming Service (in the case of Session Beans and Entity Beans) 75

3.7.4 Load balancing when using CTM (for Stateless Session Bean) 76

3.8 Determining the configuration for asynchronous communication between servers 80

3.8.1 Configuration in which a Message-driven Bean is used as the access point (when using Cosminexus
JMS provider) 80

3.8.2 Configuration in which a Message-driven Bean is used as the access point (when using TP1/Message
Queue) 81

3.8.3 Configuration when using a Message-driven Bean as an access point (when using Cosminexus RM) 83

3.8.4 Load balancing using the Message-driven Bean instance pool (when using TP1/Message Queue) 85

3.9 Determining the deployment of the operation management process 87

3.9.1 Configuration wherein the Management Server is deployed on each Management Server 87

3.9.2 Configuration for deploying Management Server on each machine 89

3.9.3 Configuration when operating with commands 91

3.10 Determining the inheritance of session information 92

3.10.1 Configuration using a database (database session failover functionality) 92

3.10.2 Configuration in which the EADs server is allocated to a computer different from the J2EE server
(EADs session failover functionality) 94

Contents

ii

3.10.3 Configuration in which the EADs server is allocated to the same computer as the J2EE server (EADs
session failover functionality) 96

3.10.4 Configuration where many SFO servers exist in a system (Memory session failover functionality) 98

3.10.5 Configuration where only a single SFO server exists in a system (Memory session failover
functionality) 100

3.11 Determining node switching when cluster software is used and an error occurs 104

3.11.1 Configuration in which executing node and standby node of Application Server are in 1-to-1 ratio
(when transaction service is not used) 105

3.11.2 Configuration in which executing node and standby node of Application Server are in 1-to-1 ratio
(when using transaction service) 107

3.11.3 Configuration in which executing node and standby node of Management Server are in 1-to-1 ratio 108

3.11.4 Configuration in which executing node and standby node of Application Server are mutually standby 110

3.11.5 Configuration using server exclusive for recovery (N-to-1 recovery system) 112

3.11.6 Configuration in which the executing node and standby node of the host unit management model are
in an N-to-1 ratio 116

3.12 Deploying a process for the output of the performance analysis trace file 119

3.13 Determining integration with products other than Application Server 121

3.13.1 Configuration when using JP1 for operations 121

3.13.2 Configuration for invoking a Message-driven Bean from SUP of OpenTP1 using the TP1 inbound
integrated function 121

3.13.3 Configuration in which a Stateless Session Bean is invoked from other than an EJB client using the
CTM gateway function 123

3.14 Managing optional processes with operation management 125

3.15 Determining other configurations 127

3.15.1 Configuration with a Web server and Application Server deployed on different machines 127

3.15.2 Configuration where the load is balanced by using a redirector 129

3.15.3 Configuration where the CORBA Naming Service is invoked as an out-process 131

3.16 TCP/UDP port numbers used by Application Server processes 132

4 Determining the System Configuration (Batch Application Execution Platform) 139

4.1 Points to be considered when determining the system configuration 140

4.1.1 Purpose and configuration of system 140

4.1.2 Procedure for designing the system configuration 140

4.1.3 Precautions for the TCP/UDP port used in a system for executing batch applications 142

4.2 System configuration when using a batch server 144

4.2.1 System configuration of a system that does not use the scheduling functionality of batch applications 144

4.2.2 System configuration of a system that uses the scheduling functionality of batch applications 145

5 Estimating Resources to be Used (J2EE Application Execution Platform) 149

5.1 Resources used for each system configuration 150

5.1.1 Resources used for deploying Web server and J2EE server on the same machine 150

5.1.2 Resources used when Web server and J2EE server are deployed on different machines 153

5.1.3 Resources used for the in-process HTTP server functionality 157

5.1.4 Resources used by the database 158

Contents

iii

5.1.5 Resources used by Management Server 158

5.1.6 Resources used for the memory session failover functionality 160

5.1.7 Resources used for CTM 162

5.2 Resources used for each process 168

5.2.1 Estimating the resources used by J2EE server 168

5.2.2 Estimating the resources used by Administration Agent 173

5.2.3 Estimating the resources used by performance tracer 174

5.2.4 Estimating the resources used by CTM 178

5.3 Estimating virtual memory usage 183

6 Estimating Resources to be Used (Batch Application Execution Platform) 185

6.1 Resources used for each system configuration 186

6.1.1 Resources used for deploying batch server 186

6.1.2 Resources used by the database 189

6.1.3 Resources for using CTM 190

6.2 Resources used for each process 195

6.2.1 Estimating the resources used by batch server 195

6.2.2 Estimating the resources used by Administration Agent 196

6.2.3 Estimating the resources used by performance tracer 196

6.2.4 Estimating the resources used by CTM 196

6.3 Estimating virtual memory usage 197

7 JavaVM Memory Tuning 199

7.1 Overview of garbage collection and JavaVM memory management 200

7.1.1 Mechanism of garbage collection 200

7.1.2 Configuring the memory space used in JavaVM and the JavaVM options 205

7.1.3 Relation between the occurrence of garbage collection and memory space 208

7.2 Overview of tuning to prevent the occurrence of full garbage collection 210

7.2.1 Concept of tuning 210

7.2.2 Tuning procedure 211

7.3 Java heap tuning 214

7.3.1 How to estimate the memory size of Java heap 214

7.3.2 How to set the memory size in Java heap 215

7.3.3 How to check the usage of memory size of Java heap 215

7.4 Estimating the memory size of the Tenured area in Java heap 217

7.4.1 Calculating the memory size required by an application 217

7.4.2 Reason for adding the memory size of the New area in Java heap 217

7.5 Estimating the memory size of the New area in Java heap 219

7.5.1 Estimating the memory size of the Survivor area in Java heap 219

7.5.2 Estimating the memory size of the Eden area in Java heap 221

7.6 Determining the handling of objects that exist for a fixed time period in Java heap 222

Contents

iv

7.6.1 How to save in the New area in Java heap 222

7.6.2 How to save in the Tenured area in Java heap 222

7.6.3 How to save in the Explicit heap 223

7.7 Deciding the maximum size or the initial size of Java heap 224

7.8 Estimating the memory size of the Permanent area in Java heap 225

7.9 How to analyze the factors of a full garbage collection using the extended verbosegc information 226

7.9.1 Overview of the output format of extended verbosegc information 226

7.9.2 Example of output of extended verbosegc information when full garbage collection occurs 226

7.10 Explicit heap tuning 230

7.10.1 How to estimate the memory size of Explicit heap (Estimating memory size used in J2EE server) 230

7.10.2 Memory size used by the object for communicating with redirector 230

7.10.3 Memory size used by the object related to the HTTP session 231

7.10.4 Impact of using the Explicit Memory Management functionality when estimating memory size 233

7.10.5 How to estimate using statistical information 234

7.11 Estimating the memory size when using the explicit management heap functionality in the
application 239

7.11.1 Determine whether to use the explicit management heap functionality in the application 239

7.11.2 Estimation concept 239

7.11.3 Memory size used in the application 239

7.12 Determining the usage of the Explicit heap using the automatic allocation functionality of the
Explicit Memory Management functionality 242

7.13 Errors that occur during the application of the Explicit Memory Management functionality and
the solutions 245

7.13.1 Investigating the usage (snapshot) of Explicit heap at a certain point 245

7.13.2 Investigating the transition of usage status 246

7.13.3 Checking and measures when there is an overflow from the Explicit heap 247

7.13.4 Checking and measures when the initialization of the Explicit memory block fails 249

7.13.5 Checks and measures when an object is transited to the Java heap during the explicit release
processing of the Explicit memory block 250

7.13.6 Checks and measures when the automatic release processing of the Explicit memory block takes a
long time 251

8 Performance Tuning (J2EE Application Execution Platform) 257

8.1 Points to be considered for performance tuning 258

8.1.1 Viewpoints for performance tuning 258

8.1.2 Tuning procedure 259

8.1.3 Items that can be tuned for each type of application 260

8.2 Tuning Method 263

8.3 Optimizing the number of concurrent executions 264

8.3.1 Concept of number of concurrent executions control and pending queue control 264

8.3.2 Procedure for requesting the maximum number of concurrent executions and pending queue 266

8.3.3 Controlling the number of request-processing threads in a Web server 266

8.3.4 Controlling the number of concurrent executions of a Web application 267

Contents

v

8.3.5 Controlling the number of concurrently executed threads in a Enterprise Bean 269

8.3.6 Controlling the number of concurrent executions using CTM 271

8.3.7 Tuning parameter for optimizing the number of concurrent executions 273

8.4 Optimizing the method of invoking the Enterprise Bean 278

8.4.1 Using the local interface 278

8.4.2 Using the functionality for optimizing the local invocation of the remote interface 279

8.4.3 Using the pass by reference functionality of the remote interface 279

8.4.4 Tuning parameters for optimizing the method of invoking the Enterprise Bean 279

8.5 Optimizing the database access method 281

8.5.1 Using connection pooling 281

8.5.2 Using statement pooling 284

8.5.3 Tuning parameters for optimizing the method of accessing the database 286

8.6 Setting a timeout 288

8.6.1 Points where a timeout can be set 288

8.6.2 Setting the timeout in a Web front-end system 293

8.6.3 Setting a timeout in the back-end system 294

8.6.4 Setting the transaction timeout 295

8.6.5 Setting up a timeout in DB Connector 296

8.6.6 Setting the database timeout 297

8.6.7 Setting the method timeout in the J2EE application 301

8.6.8 Tuning parameters for setting the timeout 304

8.7 Optimizing the operations of the Web application 311

8.7.1 Separating the deployment of the static contents and the Web application 311

8.7.2 Caching static contents 315

8.7.3 Distributing the requests using the redirector 316

8.7.4 Tuning parameters for optimizing the operations of the Web application 316

8.8 Optimizing the operation of CTM 319

8.8.1 Tuning the monitoring interval of the operation state of CTM domain managers and CTM daemons 319

8.8.2 Tuning the monitoring interval of the load status 320

8.8.3 Setting up a timeout lock for CTM daemon 320

8.8.4 Setting up a priority order for the requests distributed with CTM 320

8.8.5 Tuning parameters for optimizing the operation of CTM 320

8.9 Tuning other items 323

9 Performance Tuning (Batch Application Execution Platform) 325

9.1 Points to be considered for performance tuning 326

9.1.1 Viewpoints of performance tuning 326

9.1.2 Tuning procedure 326

9.1.3 Tuning items 327

9.2 Tuning procedure 328

9.2.1 Tuning a batch server 328

Contents

vi

9.2.2 Tuning a resource 328

9.3 Setting up timeouts 329

9.3.1 Points where you can set up a timeout 329

9.3.2 Setting up the transaction timeout 331

9.3.3 Tuning parameters for setting up the timeout 331

9.4 Setting up the threshold value to be used to control garbage collection 333

9.4.1 Purpose of setting up a threshold value 333

9.4.2 Concept of setting up the threshold value 333

9.4.3 Tuning parameters for setting up the threshold value to be used for controlling a garbage collection 335

Appendixes 337

A. Efficient Usage of the Explicit Heap Used in an HTTP Session 338

A.1 Considering the life span of the objects stored in an HTTP session 338

A.2 Considering the update frequency of the objects stored in an HTTP session 340

A.3 Considering the timing at which an HTTP session is created 343

B. Effect on the Explicit Memory Management Functionality Due to the Life Span of the Objects
Allocated to the Explicit heap 344

B.1 Effect on the automatic release processing of the Explicit memory block 344

B.2 Effect on the memory usage of the Explicit heap 345

B.3 Relation between the reference relationship and the life span of objects allocated to the Explicit heap 346

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the
Recommended Procedures 347

C.1 Tuning parameter for optimizing the number of concurrent executions (methods other than the
recommended procedures) 347

C.2 Tuning parameters for optimizing the method of invoking the Enterprise Bean (methods other than the
recommended procedures) 350

C.3 Tuning parameters for optimizing the methods of accessing the database (methods other than the
recommended procedures) 350

C.4 Tuning parameters for specifying the timeout (methods other than the recommended procedures) 351

C.5 Tuning parameters for optimizing the operations of the Web application (methods other than the
recommended procedures) 353

C.6 Tuning parameters for optimizing the operation of CTM (methods other than the recommended
procedures) 355

C.7 Tuning parameters for a persistent connection (methods other than the recommended procedures) 356

C.8 Tuning parameters for setting up the threshold value that causes full garbage collection of the batch
server (methods other than the recommended procedures) 357

D. Glossary 358

Index 359

Contents

vii

1 Purpose and Flow of Designing an
Application Server System
This chapter describes the purpose of designing a Cosminexus Application Server
system, the items that must be determined, and the flow of designing an Application
Server system.

1

1.1 Purpose of designing an Application Server system
Cosminexus Application Server is a product used to build an application server that is an application execution
environment conforming to Java and CORBA industry standards. The application server forms the base of a business
system.

The requirements of a business system are as follows:

• Realize a system with high reliability and availability
The system needs to be reliable and available for performing stable operations without any interruptions in the
business system.

• Ensure security
When a user (who manages or operates the system) builds and operates system operations and when an end user
uses the system-provided services, various security-related threats are anticipated. For protecting the system from
threats, the system needs to be designed in a physically safe configuration, and operators need to abide by the
operation rules.

• Achieve high processing performance
A prompt and assured response is required for processing the requirements from multiple clients such as Web
clients and for processing mission-critical requirements in the business back-end system such as EJB clients.

To build a system that meets the above requirements, you must analyze the purpose and features of the system before
building the system, estimate the resources to be used in the system, and determine the optimal system configuration.
Furthermore, before starting the actual system operations, you must create procedures for ensuring security, and you
actually verify and tune the operations in the expected runtime.

From the above tasks, Application Server system design aims at enabling the business systems running on Application
Server to operate in an optimal state. This manual describes the following information that is to be determined and
considered when designing a system for Application Server:

• How to determine a system configuration

• How to determine a secure system

• How to implement performance tuning

1. Purpose and Flow of Designing an Application Server System

2

1.2 Flow of system design
This section describes the flow of designing an Application Server system.

The concept of system design differs depending on whether the applications to be executed on that system are the
applications that execute online processing (J2EE applications) or applications that execute batch processing (batch
applications).

The flow of each system design is described below.

1.2.1 For applications that execute online processing (J2EE applications)
Design a system as per the flow shown in the following figure. For details about each procedure, see the chapter or
manual described in the Reference column.

Figure 1‒1: Flow of system design (for executing J2EE applications)

#
For the respective references, see the locations described in the following table.

System design Reference manual Reference section

Preparing for system design This manual Chapter 2

Determining the system configuration Chapter 3

Determining a secure system uCosminexus Application Server Security Management
Guide

Chapter 4

Estimating resources This manual Chapter 5

1. Purpose and Flow of Designing an Application Server System

3

System design Reference manual Reference section

System setup uCosminexus Application Server System Setup and Operation Guide

Performance tuning This manual Chapter 7, Chapter 8

Starting system operations uCosminexus Application Server System Setup and Operation Guide

1.2.2 For applications that execute batch processing (batch applications)
Design a system as per the flow shown in the following figure. For details about each item, see the chapter or manual
described in the Reference column.

Figure 1‒2: Flow of system design (for executing batch applications)

#
For the respective reference information, see the Reference manual and Reference section described in the
following table.

System design Reference manual Reference section

Preparing for system design This manual Chapter 2

Determining the system configuration Chapter 4

Estimating resources Chapter 6

System setup uCosminexus Application Server System Setup and
Operation Guide

4.6

Performance tuning This manual Chapter 7, Chapter 9

Starting system operations uCosminexus Application Server System Setup and
Operation Guide

4.6.3

1. Purpose and Flow of Designing an Application Server System

4

2 Preparing for System Design
This chapter explains the items that you must determine and prepare before you start
designing a system.

5

2.1 Items to be determined before designing a system
This section describes the items that you must determine before designing an Application Server system.

Identify the following before you start the system design operations. Based on this determination result, you determine
a system configuration and implement the performance tuning described in chapter 3 onwards.

• Identifying the types of business
Identify the types of business to be executed on the system. Decide the format of the applications, configuration,
and required software depending on the types of business.

• Determining the application configuration based on the system purpose
Based on the purpose of the system, you determine the functionality to be used, identify the configuration of the
applications to be executed, and prepare the necessary software.

• Determining the operation method
In an Application Server system, you use an operation management process called the Management Server to run
multiple server processes in a batch.
When you determine the operation methods, apart from Application Server systems, you must determine how to
operate the entire system including the programs other than Application Server.

2. Preparing for System Design

6

2.2 Identifying the types of business
Identify the types of businesses to be executed on the system.

You can execute the following two types of businesses on Application Server systems:

• Online business
This type of business processes requests sent from clients via a network.

• Batch business
This type of business processes routine or periodic work in batch.

The format of an application to be executed or a server process that executes the application differs depending on the
types of business. The following table describes the correspondence of the business types, application formats, and
server processes that execute applications:

Table 2‒1: Correspondence of the business types, application formats, and server processes that execute
applications

Business type Format of application Server process that executes the application

Online business J2EE application J2EE server

Batch business Batch application Batch server

Tip
The contents of the system design to be implemented subsequently differ depending on the business type. Implement the
required system design according to the business type. The following table describes the contents of the system design to be
executed as per the business type and the corresponding reference sections in this manual:

Table 2‒2: Contents of the system design to be executed according to the types of business and
reference sections in this manual

Contents of system design
Type of business

Online business Batch business

Preparing for
system design

Determining the application
configuration

Section 2.5 Section 2.6

Determining the operation
method

Section 2.7

Determining the system configuration Chapter 3 Chapter 4

Performance tuning Chapter 8 Chapter 9

Tuning of JavaVM Chapter 7, Section 7.3, Section 7.10

2. Preparing for System Design

7

2.3 Determining the functionality to be used (when
executing online processing)

This section describes the process configuration of Application Server for executing J2EE applications, and the
configuration of a J2EE server.

2.3.1 Process configuration
The following figure shows the processes that configure Application Server for executing J2EE applications:

Figure 2‒1: Processes that configure Application Server for executing J2EE applications

Reference note
Note that for building a system, match these processes with the requirements of the system, and then deploy one or multiple
processes on each machine within the system.

Each process is described as follows. The numbers in the figure correspond to (1) to (6) in the following description:

(1) J2EE server
A J2EE server is a process that serves as a J2EE application execution platform. The multiple program modules such
as J2EE applications, J2EE containers, J2EE services, and J2EE resources configure the J2EE server. Also, the J2EE
containers are divided into EJB containers and Web containers according to the provided functionality. The details
about the program modules configuring the J2EE server are described in 2.3.2 Configuration of a J2EE server.

(2) Web server
A Web server is a process that executes the processing related to receiving requests from the Web browser and
sending data to the Web browser. You must use the Web server for systems that access the J2EE application running
on a J2EE server from the Web browser#. You can also access servlets, JSPs, or static contents included in the J2EE
application from the Web browser.

2. Preparing for System Design

8

In Application Server, you can use Cosminexus HTTP Server or Microsoft IIS as a Web server. Cosminexus HTTP
Server is one of the component software of Application Server. For details about the functionality of Cosminexus
HTTP Server, see the uCosminexus Application Server HTTP Server User Guide.

#
When using the functionality (in-process HTTP server functionality) for sending and receiving requests directly
between the J2EE server and the Web browser without passing through the Web server, the processes
corresponding to Web servers are not required, as the in-process HTTP server functionality is the Web containers
functionality. For details, see 5. In-process HTTP Server in the uCosminexus Application Server Web Container
Functionality Guide.

(3) CTM
A CTM is a group of processes used for scheduling the requests for Session Bean within the J2EE application. On
using CTM, the requests from the client can be distributed and scheduled appropriately. As a result, you can control
the load on the server, increase the system availability, and promote the business without delay.

You use multiple processes such as CTM daemons, CTM regulators, and CTM domain managers to implement the
CTM functionality. Also, use the CORBA Naming Service as a Naming Service for implementing functions.

For details on the CTM functionality, see 3. Scheduling and Load Balancing of Requests from CTM in the
uCosminexus Application Server Expansion Guide.

Tip
You can use CTM only with the products that contain Cosminexus Component Transaction Monitor in the component
software. For details on the available products, see 2.2 Component software in the manual uCosminexus Application Server
Overview.

(4) PRF daemon (Performance tracer)
Application Server outputs trace information to a buffer when processing a request. You can also expand the trace
target so that applications in addition to Application Server also output trace information to a buffer. A PRF daemon
(performance tracer) is an I/O process that outputs the trace information (output to the buffer) to a file.

The trace information file output by the PRF daemon is useful for verifying bottlenecks of the system and determining
troubleshoot efficiency.

For details about the PRF daemon functionality, see 7. Performance Analysis by using Performance Analysis Trace in
the uCosminexus Application Server Maintenance and Migration Guide.

(5) Administration Agent
Administration Agent is an agent function that starts the logical server on each host and updates the setup file, instead
of an administrator. Note that the logical server is a server or a cluster that is managed by Management Server.

(6) Management Server
Management Server is a process that issues instructions to Administration Agent deployed on each host of the
management domain and executes operation management of the entire management domain.

(7) Other processes
In addition to the above (1) to (6) processes, the following processes are used depending on their functionality:

• SFO server
An SFO server is a process required when using the memory session failover functionality, which is the
functionality used for compatibility with older versions. For details, see 6. Functionality for Compatibility with the
Extension Function (Memory Session Failover Functionality) in the uCosminexus Application Server
Compatibility Guide.

• User server
A user server is any service or process defined by user. The user server can be defined as the logical server
(logical user server), and thereby specific services and processes can be managed by Management Server. As a

2. Preparing for System Design

9

result, you can manage the services and processes in a batch in the Management Server in the same way as with
the other logical servers.

2.3.2 Configuration of a J2EE server
A J2EE server is a Java application executing the following six program modules:

• J2EE applications (such as servlets, JSPs, and Enterprise Beans)

• J2EE containers

• J2EE services
Such as JNDI, JavaMail, JTA, JPA, RMI-IIOP, JDBC, Naming management, Transaction Management, and
security

• J2EE resources

• Cosminexus JPA provider

• Container extension library

Servlets, JSPs, and Enterprise Beans configure the J2EE application. The user develops the J2EE application as per
the business contents. Note that the program modules other than the J2EE applications are the modules provided by
Application Server.

The following figure shows the structure of a J2EE server:

Figure 2‒2: Structure of a J2EE server

The following sections give an overview of each module of the J2EE server:

2. Preparing for System Design

10

2.3.3 J2EE applications and J2EE component
One or more J2EE components configure the J2EE application. This subsection describes the J2EE applications and
J2EE components.

(1) Relation between J2EE application and J2EE components
The user application programs such as servlets, JSPs, and Enterprise Beans configure the J2EE application. The J2EE
application runs in the J2EE container.

The servlets, JSPs, and Enterprise Beans configuring the J2EE application are called J2EE components.

The following figure shows the relation between the J2EE application and J2EE components:

Figure 2‒3: Relation between the J2EE application and J2EE components

(2) Structure of a J2EE application
A J2EE application has a structure with three layers. The following figure shows the structure of a J2EE application:

Figure 2‒4: Structure of a J2EE application

The smallest units of the J2EE application are the files in layer 3 (files enclosed with a dotted line in the figure). Layer
3 includes files such as the class files and JSP files.

The files in layer 2 are the packages of the files in layer 3. For example, in the above figure, the EJB-JAR file in layer
2 is formed by packaging an Enterprise Bean and a DD (ejb-jar.xml) that belong in layer 3.

Furthermore, the respective files packaged in layer 2 form the J2EE application in layer 1.

The packaged files of layer 1 and layer 2 are as follows. The numbers in the figure correspond to the numbers in the
following explanation:

2. Preparing for System Design

11

Reference note
The file formats and DTDs of the DDs are predetermined by the respective layers.

A DD indicates the file wherein the definition information when deploying applications in the operating environment is
coded. For an EJB-JAR file, the DD is ejb-jar.xml, for a Web application, the DD is web.xml, and for a J2EE
application, the DD is application.xml.

Note that for using annotations in an Enterprise Bean, ejb-jar.xml is not required.

(a) J2EE application

Multiple EJB-JARs, Web applications, library JARs, and a single DD (application.xml) configure a J2EE
application.

The J2EE application that can be executed on the J2EE server is in archive format and in exploded archive format.

• J2EE application in archive format
This is a J2EE application containing application entities such as EJB and servlet in the work directory of J2EE
server. To import the J2EE application in archive format in the J2EE server and to make the application
executable from client, you must assemble and deploy J2EE applications in EAR or ZIP format.

• J2EE application in exploded archive format
This is a J2EE application containing application entities such as EJB and servlet in the file or directory based on
the fixed rules that are external to the J2EE server. To import the J2EE application of exploded archive format in
the J2EE server and to make the application executable from the client, you must deploy J2EE applications.
Reference note

• An assemble is an assembly operation used for positioning the EJB-JAR that is not operated independently, as one
component of an application. In an assemble, the EJB-JAR is imported as one component to build the J2EE
application. Furthermore, apart from the EJB-JAR, you can also include the WAR files, library JARs as a
component of the J2EE application.
For J2EE application of exploded archive format, assembly in EAR format or ZIP format is not required.

• A deploy means making the J2EE application executable from the client.

(b) EJB-JAR

An EJB-JAR is packaged in an EJB-JAR file format. Multiple Enterprise Beans and a single DD (ejb-jar.xml)
configure an EJB-JAR. Note that when using annotations in Enterprise Bean, a DD (ejb-jar.xml) is not required.

(c) Web application

A Web application is packaged in a WAR file format. Multiple servlets, JSPs, HTML documents, and a single DD
(web.xml) configure the Web application.

(d) Library JAR

A library JAR is packaged in a JAR file format. Multiple common libraries configure the Library JAR. A common
library is a library where you can use J2EE components in the J2EE application in common. Apart from the files
defined under the <module> tag of the DD (application.xml) in the J2EE application, the JAR files with the
extension in lower case (.jar) are considered as the library JAR.

(3) Developing J2EE application and J2EE components
In a J2EE application, to use the functionality as an execution platform provided by Application Server, you must
execute the application according to the functionality used. Furthermore, Application Server provides a Developer as a
product for developing the J2EE application and J2EE components.

For details about how to develop the J2EE applications and J2EE components, see the uCosminexus Application
Server Application Development Guide.

2. Preparing for System Design

12

2.3.4 J2EE container
A J2EE container is a server platform for running the J2EE application. An EJB container and Web container
configure the J2EE container.

A J2EE component runs on the J2EE container using the APIs provided by the Web container and EJB container. The
Web container and EJB container provided by Application Server are compliant with Java EE 6. As a result, you
can build a full-fledge key business application complying with Java EE quickly and easily. For details about the
versions of each API, see 2.3.9 Server operation mode.

(1) Web container
A Web container is a server platform used for executing servlets and JSPs. The Web container receives access from
the Web client, and provides services according to a request.

The Web container provides servlets and APIs for JSP.

(2) EJB container
An EJB container is a server platform used for controlling the execution of Enterprise Bean, and provides various
services for Enterprise Bean. The EJB container provides APIs for EJB.

2.3.5 J2EE service
A J2EE service provides following functions and APIs:

1. Transaction Management, security management, and naming management functionality

2. APIs of JNDI, JDBC, JTA, JPA, RMI-IIOP, JavaMail, and JMS

The J2EE service is used as one of the component functionality of the J2EE container, and provides functions and
APIs to J2EE components such as servlets, JSPs, and Enterprise Beans. The APIs of the J2EE service are used either
directly by J2EE components or through the J2EE container.

The following figure shows the position of a J2EE service:

Figure 2‒5: Position of a J2EE service

In a J2EE service, apart from the functions of the component software of Application Server, you can also use the
functions provided by products other than Application Server. The following table describes the software products or
the component software of Application Server used for implementing the J2EE service:

2. Preparing for System Design

13

Table 2‒3: Products or component software used for implementing the J2EE service

Classification Product or component software

Service Naming management Cosminexus Component Container#

Cosminexus TPBroker#Transaction Management

Security Cosminexus Component Container#

API JNDI

JTA

JPA

JavaMail

RMI-IIOP Cosminexus TPBroker#

JDBC Standard Extension HiRDB Type4 JDBC Driver

Cosminexus DABroker Library#

Oracle JDBC Thin Driver

SQL Server Driver for JDBC

JDBC

JMS Cosminexus RM#

TP1/Message Queue - Access

#
Component software of Application Server.

2.3.6 J2EE resource
For a J2EE server, you can use resources such as the database, OpenTP1, SMTP server, and the JavaBeans resource.
A J2EE resource is used to establish a connection with these resources.

For J2EE resources handled on Application Server, the resource adapters and a mail configuration used for
establishing the connection with an external resource, are provided. Apart from these resources, there are JavaBeans
resources that you can use as internal resources#1.

• Resource adapters
The following are the resource adapters according to the types of resources used for establishing a connection:

• DB Connector
Used in establishing a connection with the database.

• DB Connector for Cosminexus RM and Cosminexus RM
Used in establishing a connection with the queue in the database.

• uCosminexus TP1 Connector
Used in establishing a connection with the SPP of OpenTP1.

• TP1/Message Queue - Access
Used in establishing a connection with the TP1/Message Queue.

• Resource adapter compliant with other Connector 1.0 or Connector 1.5#2

Used in establishing a connection with any resource.

• Mail configuration
Used in establishing a connection with the SMTP server.

• JavaBeans resource
Resource that you can use as an internal resource.

For details about the J2EE resources, see 3. Resource Connections and Transaction Management in the uCosminexus
Application Server Common Container Functionality Guide.

2. Preparing for System Design

14

#1
Besides this, the data source used in a basic mode is provided as a mode for compatibility. For details about the
data source, see 2.4 Resource connections in the basic mode in the uCosminexus Application Server Compatibility
Guide.

#2
You can use a resource adapter corresponding to the communication model of Outbound. For details, see 3.16.8
Settings to be done when using the connector 1.5 compliant resource adaptor in the uCosminexus Application
Server Common Container Functionality Guide.

2.3.7 Cosminexus JPA Provider
A JPA implementation provided by Application Server is called as Cosminexus JPA provider. You can use
Cosminexus JPA provider for executing JPA applications on Application Server.

For details about the Cosminexus JPA provider, see 6. Cosminexus JPA Provider in the uCosminexus Application
Server Common Container Functionality Guide.

2.3.8 Container extension library
A common library used in Enterprise Beans, servlets, and JSPs is called as container extension library. You can use
this library to invoke a user-created common library from the Enterprise Beans, servlets, and JSPs.

For details about the container extension library, see 14. Container Extension Library in the uCosminexus Application
Server Common Container Functionality Guide.

2.3.9 Server operation mode
The operation modes of the server includes a J2EE server mode and a servlet engine mode. Furthermore, the J2EE
server mode includes 1.4 mode and basic mode. Among these modes, the basic mode and servlet engine mode are
provided as operation mode for compatibility.

The description about the operation modes of the server provided in this manual will become the explanation of all 1.4
modes. For details about the basic mode and servlet engine mode, see the uCosminexus Application Server
Compatibility Guide.

A Web container running in the 1.4 mode integrates with other elements of the Java EE, and operates as one of the
J2EE server. In such cases, you can use some of the Java EE-related API provided by Java EE, from the Web
application running on the Web container.

For details on Java EE and J2EE functions that can be used in the 1.4 mode, see 4.6.2 Standard specifications
supported by Application Server in the manual uCosminexus Application Server Overview.

2. Preparing for System Design

15

2.4 Determining the functionality to be used (for
executing batch processing)

This section describes the process configuration of Application Server for executing batch applications, and the
configuration of a batch server.

2.4.1 Process configuration
The following figure shows the process for configuring Application Server for executing batch applications:

Figure 2‒6: Process for configuring Application Server for executing batch applications

Reference note
For building a system, match these processes with the requirements of the system, and then deploy one or multiple processes
on each machine within the system.

Each process is described as follows. The numbers in the figure correspond to (1) to (5) in the following explanation:

(1) Batch server
A batch server is a process that serves as a batch application execution platform. Multiple program modules such as
batch applications, batch services, J2EE services, and J2EE resources configure the batch server. For details about the
program modules configuring the batch server, see 2.4.2 Configuration of a batch server.

(2) CTM
A CTM is a group of processes used for scheduling the execution of batch applications. On using CTM, the execution
of a batch application can be distributed and scheduled appropriately. As a result, you can execute multiple batch
applications concurrently irrespective of the number of batch servers

You use multiple processes such as CTM daemons, CTM regulators, and CTM domain managers to implement the
functions of CTM. Also, use the CORBA Naming Service as a Naming Service for implementing functions.

For details on the CTM functionality, see 3. Scheduling and Load Balancing of Requests from CTM in the
uCosminexus Application Server Expansion Guide.

2. Preparing for System Design

16

Tip
You can use CTM only with the products that contain Cosminexus Component Transaction Monitor in the component
software. For details on the available products, see 2.2 Component software in the manual uCosminexus Application Server
Overview.

(3) PRF daemon (Performance tracer)
Application Server outputs trace information to a buffer when processing a request. You can also expand the trace
target so that applications in addition to Application Server also output trace information to a buffer. A PRF daemon
(Cosminexus Performance Tracer) is an I/O process that outputs the trace information (output to the buffer) to a file.
The trace information file output by the PRF daemon is useful for verifying bottlenecks of the system and improving
the troubleshoot efficiency.

For details about the PRF daemon functionality, see 7. Performance Analysis by using Performance Analysis Trace in
the uCosminexus Application Server Maintenance and Migration Guide.

(4) Administration Agent
Administration Agent is an agent function that starts the logical server on each host and updates the setup file, instead
of an administrator. Note that the logical server is a server or a cluster that is managed by Management Server.

(5) Management Server
Management Server is a process that issues instructions to Administration Agent deployed on each host of the
management domain and executes operation management of the entire management domain.

Reference note
For executing batch processing, other than the above (1) to (5) processes, you can use a process called user server according
to the purpose of the system. A user server is any service or process defined by user. The user server can be defined as the
logical server (logical user server), and thereby specific services and processes can be managed by Management Server. As
a result, you can manage the services and processes in a batch in the Management Server alike the other logical servers.

2.4.2 Configuration of a batch server
A batch server is a Java application executing the following five program modules:

• Batch applications

• Batch services

• J2EE services
Such as JNDI, JTA, RMI-IIOP, JDBC, Naming management, and Transaction Management

• J2EE resources

• Container extension library

A batch application is a Java application in which batch processing is implemented. The user develops the batch
application based on the business contents. Note that the program modules other than the batch applications are the
modules provided by Application Server.

The following figure shows the structure of a batch server:

2. Preparing for System Design

17

Figure 2‒7: Structure of batch server

In a batch server, you can use the following Java EE and J2EE functions:

• JDBC 2.0 core / JDBC 2.0 option package

• JDBC 3.0#1

• JDBC 4.0#1, #2

• Connector 1.0 (DB Connector)#3

• JTA 1.0.1 (however, only local)#4

#1
A JDBC driver used for establishing a connection must support the functions defined in the specifications for the
relevant version.

#2
Only Oracle JDBC Thin Driver can be used to establish a connection.

#3
You can use a DB Connector without transaction or with local transaction.

#4
When LocalTransaction is specified in transaction-support of the resource adapter DD (ra.xml),
and a JavaVM is not invoked in the business logic remotely, you can use a local transaction.

Also, the following EJBs can be invoked from the batch server. However, you can invoke EJB remotely and not
locally:

• EJB 2.0

• EJB 2.1

• EJB 3.0

The following sections give an overview of each module of the batch server:

2.4.3 Batch application
A batch application is a Java application in which batch processing is implemented. You can execute one batch
application for one batch server.

2. Preparing for System Design

18

You use the batch execution commands provided with Application Server to start a batch application. In the batch
server, after receiving a request for executing a batch application using the batch execution command, start the batch
application.

Also, if you use the scheduling function of the batch application, the execution request for batch application is
controlled using the schedule queue and automatically distributed to the batch server. When you want to start multiple
applications concurrently using the scheduling function of the batch application, you need not be aware of the number
of batch servers or the batch server on which the application is to be executed. Furthermore, prepare the batch server
for each batch application when you do not use the scheduling function of the batch application.

For details about the batch application, see 2. Executing Applications by Using Batch Server in the uCosminexus
Application Server Expansion Guide.

2.4.4 Batch service
Application Server for executing batch applications provides a batch service. A batch service is a function used for
executing batch applications. The following figure shows the functions provided in the batch service:

Figure 2‒8: Functions provided in the batch service

• Batch application execution function
This function is provided for starting a batch application and for forced termination of a batch application.

• EJB access function
This function is provided for accessing EJB of J2EE server from the batch application. An EJB access function
uses a J2EE service.

• Resource connection function
This function is provided for establishing a connection from a batch application to the database. The resource
connection function uses the J2EE service and J2EE resources.

• Garbage collection control function
This function is provided for controlling the execution of a garbage collection when resources are in exclusion
state in the batch application.

• Naming management function
This function is provided for setting a name when referencing EJB or resources. The naming management
function uses a J2EE service.

• Batch application scheduling function
This function is provided for scheduling the execution of a batch application using CTM.

For details about the respective functionality provided by a batch service, see 2.3 Batch application execution
functionality in the uCosminexus Application Server Expansion Guide.

2. Preparing for System Design

19

2.4.5 J2EE service
A J2EE service provides following functions and APIs:

1. Transaction Management and naming management functionality

2. APIs of JNDI, JDBC, JTA, RMI-IIOP

The J2EE service is used for establishing a connection from a batch application to the database and for invoking an
EJB.

In a J2EE service, apart from the functions of the component software of Application Server, you can also use the
functions provided by products other than Application Server. The following table describes the software products or
the component software of Application Server used for implementing the J2EE service:

Table 2‒4: Products or component software used for implementing the J2EE service

Classification Product or component software

Service Naming management Cosminexus Component Container#

Cosminexus TPBroker#Transaction Management

API JNDI Cosminexus Component Container#

JTA

RMI-IIOP Cosminexus TPBroker#

JDBC Standard Extension HiRDB Type4 JDBC Driver

Cosminexus DABroker Library#

Oracle JDBC Thin Driver

SQL Server Driver for JDBC

JDBC

#
Component software of Application Server.

2.4.6 J2EE resource
A J2EE resource is used to establish a connection with resources. In a batch server, you can use a database as a
resource. For establishing a connection with the database, you use resource adapters among the J2EE resources
handled by Application Server.

For details about the J2EE resources, see 3. Resource Connections and Transaction Management in the uCosminexus
Application Server Common Container Functionality Guide.

2.4.7 Container extension library
A common library used by an application is called a container extension library. You can use this library to invoke a
user-created common library from the batch application.

For details about the container extension library, see 14. Container Extension Library in the uCosminexus Application
Server Common Container Functionality Guide.

2. Preparing for System Design

20

2.5 Determining the application configuration that suits
the system purpose (for operations that execute
online processing)

This section explains the application configuration to be determined as per the system objectives. The configuration
for J2EE applications and the required software are also described in this section.

For details about the application functions that can be implemented on Application Server, see the description about
classification of functions in the following manuals:

• 1.1 Functionality Classification in the uCosminexus Application Server Web Container Functionality Guide

• 1.1 Functionality Classification in the uCosminexus Application Server EJB Container Functionality Guide

• 1.1Functionality Classification in the uCosminexus Application Server Common Container Functionality Guide

• 1.1 Functionality Classification in the uCosminexus Application Server Expansion Guide

• 1.1 Functionality Classification in the uCosminexus Application Server Security Management Guide

• 1.1 Functionality Classification in the uCosminexus Application Server Operation, Monitoring, and Linkage
Guide

• 1.1 Functionality Classification in the uCosminexus Application Server Maintenance and Migration Guide

• 1.1 Functionality Classification in the uCosminexus Application Server Compatibility Guide

2.5.1 Determining the J2EE applications to be executed
In this step, you determine the J2EE applications to be executed on a system.

You determine the basic components of a system configuration by identifying the application configuration suitable
for the purpose of the system. For example, if you use a Web browser for the client, the application that you would use
would be a Web application consisting of servlets and JSPs so that the application receives requests from the Web
browser. You can also consider an application that will invoke the Enterprise Beans from servlets and JSPs, as and
when required. In this case, the system would be a Web client system and you would need to determine the
deployment of the Web server and the integration method for invoking Application Server from the Web server.

Also, if you are building a system that forms the basic component of a business system, you could also consider a
configuration that uses EJB client applications for the client. You can also determine the usage of CTM depending on
the types of Enterprise Bean of the calling destination.

For more details about the relation between the types of components included in an application and the system
configuration, see 3.3 Determining the configuration of an application. For details about how to determine the system
configuration when executing J2EE applications, see 3. Determining the System Configuration (J2EE Application
Execution Platform).

For details about the functions that you can use according to the purpose of the system, see the description about
purpose of the system and their corresponding functions in the following manuals:

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server Web
Container Functionality Guide

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server EJB
Container Functionality Guide

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server
Common Container Functionality Guide

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server
Expansion Guide

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server
Operation, Monitoring, and Linkage Guide

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server
Maintenance and Migration Guide

2. Preparing for System Design

21

For details about the application development procedures, see the uCosminexus Application Server Application
Development Guide.

Reference note
Server operation mode

Hitachi recommends that you run the server in J2EE server mode (1.4 mode). You can also run the server in the servlet
engine mode and the basic mode depending on the application type, but note that the basic mode is a compatibility mode.

2.5.2 Determining the processes to be used and preparing the required
software

In Application Server systems, the system configuration is determined on the basis of the types of processes to be used
and their deployment.

A Web front-end system and a back-end system configure Application Server systems. The Web front-end system
uses a Web browser as the client. The back-end system uses an EJB client as the client. For details about the system
classification, see 3.1.1 Purpose and configuration of the system.

The following subsection first explains the processes and software that would be required based on the classification
of the system. Next, it describes the processes, modules, and software that would be required depending on the
functions to be used. For details about how to deploy the processes, modules, and software on the system, see 3.
Determining the System Configuration (J2EE Application Execution Platform).

(1) Processes required depending on the system classification
The processes required depending on the system classification are described as follows. These are processes that are
required regardless of the functionality used. Application Server provides these processes.

Processes required for a Web front-end system
The processes required for a Web front-end system are as follows:

• Web server#

• J2EE server

• PRF daemon

The Web server included in Application Server is Cosminexus HTTP Server. A Web browser is used for the
client.

#
If you are using in-process HTTP servers, Web server processing is not required.
Tip

Guidelines for selecting the Web server

In a Web client system, you can process requests from a Web client using any one of the following Web servers:

• Web server integrated with a redirector (Web server integration)
Integrate with Application Server or a Web server containing a redirector module to process requests. The
requests that the Web server receives are sent to the J2EE server through the redirector module.
You can use Cosminexus HTTP Server or Microsoft IIS.

• In-process HTTP server
Processing requests on the HTTP server that functions within the processes of the J2EE server provided as a
part of Web container function. You can receive requests from Web clients directly on J2EE servers.

Hitachi recommends that you use the Web servers integrated with redirector on Application Server. In default
settings, the Web server integrated with the redirector is also used. For building systems that emphasize on
performance, you specifically determine the usage of in-process HTTP servers.

The following table describes the characteristics of respective Web servers. Use this information as the guideline
for selecting Web servers.

2. Preparing for System Design

22

Table 2‒5: Guidelines for selecting the Web server

Points for Comparison Web server integrated with a
redirector In-process HTTP server

Functionality available
as a Web server

Good

You can use various functionality
provided by Cosminexus HTTP Server
(Web server based on Apache
functionality) or Microsoft IIS.

Basic

Only minimum functions are provided
with an objective of accessing Web
applications configured with servlets,
JSPs, or HTML.#1

Simplified build and
operation

Good

Web server environment settings are
necessary for building a system. You
need to start and stop the Web server for
operations. However, you can build or
run the Web server using the commands
of the Smart Composer functionality,
and hence, the complex operations are
not required.

Good

Environment settings of Web servers
for the setup, startup, and termination
of the Web server for operations are
not required.

Access performance for
static contents such as
HTML and JPEG

Good

You can enable optimal performance by
deploying the static contents on the Web
server.

If you deploy the static contents on the
Web container, the access is through the
redirector, so the access process takes
time.

Good

You can ensure optimal performance
because you can access without
passing through the redirector.

Access performance for
dynamic contents such
as servlets and JSPs

Basic

The access process through the
redirector takes time.

Good

You can ensure optimal performance
because you can access without
passing through the redirector.

Notes If you connect to the internet, from the
security point of view, Hitachi
recommends that you use a
configuration securing DMZ and deploy
a reverse proxy on the front-end.

Furthermore, if you do not deploy a
reverse proxy, you can get the same
advantage by deploying a Web server
with an embedded redirector on the
DMZ.#2

While connecting to the Internet,
select the configuration that ensures
DMZ with the objective of security,
and make sure to set up the
deployment of reverse proxy at the
front-end.#2

#1
For details about the functions that you can use with in-process HTTP server, see 5.2.2 Functions that can be
used with the in-process HTTP server in the uCosminexus Application Server Web Container Functionality
Guide.

#2
For the deployment of a Web server on DMZ, see 3.3 Determining the deployment of reverse proxy on DMZ in
the uCosminexus Application Server Security Management Guide.

Processes required for a back-end system
The processes required for a back-end system are as follows:

• J2EE server

• PRF daemon

The system uses an EJB client for the back-end system client. EJB client refers to Servlets, JSPs, other Enterprise
Beans, EJB client applications, or other business systems that invoke the Enterprise Beans.

2. Preparing for System Design

23

If you are using an EJB client application as an EJB client, you can build the client machine for Windows by using
uCosminexus Client. You can invoke the PRF daemon as and when required, whether you use Application Server
or uCosminexus Client software.
Reference note

For the system using CTM, you can use any client such as clients of TPBroker or TPBroker Object Transaction Monitor
other than EJB client.

(2) Processes and modules required depending on the functions to be used
This subsection describes the processes and modules that are required depending on the functions to be used. Some of
these processes and modules are provided by Application Server and some are provided by software other than
Application Server.

Among the processes required for each function to be used, the following table describes the processes those are
provided by Application Server. You can invoke these processes on the machine where Application Server is installed.

Table 2‒6: Processes and modules required for each function (provided by Application Server)

Functions Necessary processes

Use CTM in the integration between the servers/Distribute the load using
CTM

CTM daemon

CTM regulator

CTM domain manager

Global CORBA Naming Service

Smart Agent

Management using the Management Server Management Server

Administration Agent

Improving availability using the memory session failover functionality SFO server

Invoking the CORBA Naming Service in the out-process CORBA Naming Service

Among the processes and modules required for each function to be used, Table 2-7 and Table 2-8 describe the
processes and modules provided by products other than Application Server.

Table 2‒7: Modules required for each function (provided by the products other than Application Server)
and software to be provided

Functions Modules Provided by Remarks

Connecting to the
database

(HiRDB)

HiRDB Run Time • HiRDB Run Time This module is required for using
the Cosminexus DABroker Library
as a JDBC driver.

HiRDB Type4 JDBC
Driver

• HiRDB Server Version 9

• HiRDB Server with
Additional Function
Version 9

• HiRDB/Run Time Version
9

• HiRDB/Developer's Kit
Version 9

• HiRDB Developer's Suite
Version 9

• HiRDB/Parallel Server
Version 8

• HiRDB/Single Server
Version 8

This module is required for using
the HiRDB Type4 JDBC Driver as
a JDBC driver.

2. Preparing for System Design

24

Functions Modules Provided by Remarks

Connecting to the
database

(HiRDB)

HiRDB Type4 JDBC
Driver

• HiRDB Run Time Version
8

• HiRDB/Developer's Kit
Version 8

This module is required for using
the HiRDB Type4 JDBC Driver as
a JDBC driver.

Connecting to the
database

(Oracle)

Oracle JDBC Thin Driver • Oracle JDBC Thin Driver This module is required for using
the Oracle JDBC Thin Driver as a
JDBC driver.

Connecting to the
database

(SQL Server)

SQL Server JDBC Driver • SQL Server JDBC Driver This module is required for using
the SQL Server JDBC Driver as a
JDBC driver.

Connecting to the
database

(XDM/RD E2)

HiRDB Type4 JDBC
Driver

• HiRDB/Parallel Server
Version 8

• HiRDB/Single Server
Version 8

• HiRDB Run Time Version
8

• HiRDB/Developer's Kit
Version 8

This module is required for using
the HiRDB Type4 JDBC Driver as
a JDBC driver.

Connecting to the EADs
server

EJB client • uCosminexus Elastic
Application Data store
Client for Java 02-00

--

Connecting to the
Message Queue server

TP1/Message Queue -
Access

• TP1/Message Queue -
Access

--

Connecting to the SPP
of OpenTP1

uCosminexus TP1
Connector

• uCosminexus TP1
Connector

--

TP1/Client/J • TP1/Client/J --

Legend:
--: Not applicable.

Note:
The modules are included in the J2EE server processes for the operation.

Table 2‒8: Processes required for each function (provided by products other than Application Server) and
software to be provided

Function Necessary processes Software to be provided

Switch the node using cluster software
when an error occurs

Windows Server Failover Cluster Windows Server Failover Cluster

HA monitor HA monitor

2. Preparing for System Design

25

2.6 Determining the application configuration that suits
the system purpose (for businesses that execute
batch processing)

This section describes how to determine an application configuration that suits the system purpose. The configuration
for batch application and the required software are also described in this section.

For details about the application functions that can be implemented on Application Server, see the description about
classification of functions in the following manuals:

• 1.1 Classification of functions in the uCosminexus Application Server Web Container Functionality Guide

• 1.1 Classification of functions in the uCosminexus Application Server EJB Container Functionality Guide

• 1.1 Classification of functions in the uCosminexus Application Server Common Container Functionality Guide

• 1.1 Classification of functions in the uCosminexus Application Server Expansion Guide

• 1.1 Classification of functions in the uCosminexus Application Server Security Management Guide

• 1.1 Classification of functions in the uCosminexus Application Server Operation, Monitoring, and Linkage Guide

• 1.1 Classification of functions in the uCosminexus Application Server Maintenance and Migration Guide

• 1.1 Classification of functions in the uCosminexus Application Server Compatibility Guide

2.6.1 Determining batch applications to be executed
Determine batch applications to be run on the system. Batch applications are Java applications that are executed as
batch processes and in which routine and periodic processes are implemented.

The basic part of the system configuration is determined depending on the process contents implemented in batch
applications. For example, when you implement a process that references and updates data in a database, you must
determine a method for managing the transactions and method for connecting the resources. When you implement a
process that invokes business process programs (Enterprise Beans) on another J2EE server, you must also determine
an integration method between servers.

For details about how to determine the system configuration when executing batch applications, see the manual 4.
Determining the System Configuration (Batch Application Execution Platform).

For details about the functions that you can use according to the purpose of the system, see the description about the
purpose of the system and their corresponding functions in the following manuals:

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server Web
Container Functionality Guide

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server EJB
Container Functionality Guide

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server
Common Container Functionality Guide

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server
Expansion Guide

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server
Operation, Monitoring, and Linkage Guide

• 1.2 Correspondence between the objectives and functions of a system in the uCosminexus Application Server
Maintenance and Migration Guide

2.6.2 Determining the processes to be used and preparing the required
software

In Application Server systems, the system configuration is determined according to the types of the processes to be
used and their deployment.

2. Preparing for System Design

26

In this section, first of all, the necessary processes and software are described. After that the processes, modules, and
software required for the functions that you want to use are described. Note that the methods of deploying these
processes, modules, and software are described in 4. Determining the System Configuration (Batch Application
Execution Platform).

(1) Required processes
The required processes are as follows. These processes are required commonly and have no relation to the functions to
be used. The processes are provided by Application Server.

• Batch server

• PRF daemon

(2) Processes and modules required for the functions to be used
The processes and modules required for the functions to be used are described here. Some of these processes and
modules are provided by Application Server and some are provided by software other than Application Server.

Among the processes required for each function to be used, the following table describes the processes that are
provided by Application Server. You can invoke these processes on the machine where Application Server is installed.

Table 2‒9: Processes and modules required for each function (provided by Application Server)

Functions Necessary processes

Management using the Management Server Management Server

Administration Agent

Scheduling the execution of the batch application using CTM CTM daemon

CTM regulator

CTM domain manager

Global CORBA Naming Service

Smart Agent

Among the processes and modules required for each function to be used, Table 2-10 and Table 2-11 describe the
processes and modules provided by products other than Application Server.

Table 2‒10: Modules required for each function (provided by products other than Application Server) and
software to be provided

Functions Modules Provided by Remarks

Connecting to the
database

(HiRDB)

HiRDB Run Time • HiRDB Run Time This module is required for
using the Cosminexus
DABroker Library as a JDBC
driver.

HiRDB Type4 JDBC
Driver

• HiRDB Server Version 9

• HiRDB Server with Additional Function
Version 9

• HiRDB/Run Time Version 9

• HiRDB/Developer's Kit Version 9

• HiRDB Developer's Suite Version 9

• HiRDB/Parallel Server Version 8

• HiRDB/Single Server Version 8

• HiRDB/Run Time Version 8

• HiRDB/Developer's Kit Version 8

This module is required for
using the HiRDB Type4
JDBC Driver as a JDBC
driver.

2. Preparing for System Design

27

Functions Modules Provided by Remarks

Connecting to the
database

(Oracle)

Oracle JDBC Thin Driver • Oracle JDBC Thin Driver This module is required for
using Oracle JDBC Thin
Driver as a JDBC driver.

Connecting to the
database

(SQL Server)

SQL Server JDBC Driver • SQL Server JDBC Driver This module is required for
using the SQL Server JDBC
Driver as a JDBC driver.

Connecting to the
database

(XDM/RD E2)

HiRDB Type4 JDBC
Driver

• HiRDB/Parallel Server Version 8

• HiRDB/Single Server Version 8

• HiRDB/Run Time Version 8

• HiRDB/Developer's Kit Version 8

This module is required for
using the HiRDB Type4
JDBC Driver as a JDBC
driver.

Note:
The module is included and executed in the processing of batch servers.

Table 2‒11: Processes required for each function (provided by products other than Application Server) and
software to be provided

Function Necessary processes Software to be provided

Switch the node using cluster software
when failure occurs

Windows Server Failover Cluster Windows Server Failover Cluster

HA monitor HA monitor

2. Preparing for System Design

28

2.7 Determining the operation method
This section describes the items to be considered when you determine operation methods of Application Server
systems.

In the operations of Application Server systems, you can use a process called Management Server. If you are using
Management Server, you can handle multiple processes configuring Application Server systems as a logical server,
and execute the processes in a batch.

A business system is generally built by combining Application Server as well as other systems that are built using
other programs. When you determine an operation method, apart from Application Server systems, you must
determine how to operate the entire system including these programs.

2.7.1 Operations of a system integrated with JP1
When you operate a system by using Management Server, you can integrate Management Server with JP1 programs
(Hitachi middleware programs for integrated system management) and realize the following system operations:

• Centralized monitoring of an entire system that is integrated with JP1/IM

• Automatic operations of an entire system that is integrated with JP1/AJS

For details about the functionality that can be implemented by integrating with each JP1 program, see the
uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

Note that even if you operate a system without using Management Server, you can still automatically operate a system
that is using JP1/AJS. However, in this case, you must define items such as the server management commands from
scratch as JP1/AJS jobs.

2.7.2 Operations of system integrated with cluster software
If you integrate a system with cluster software, automatic node switching can be performed when a failure occurs.

In Application Server systems, you can use the following cluster software for each OS:

• In Windows
Windows Server Failover Cluster

• In AIX, HP-UX, or Linux
HA monitor

In Solaris, you cannot operate systems integrated with cluster software.

For integrating with cluster software, you must operate systems using the Management Server.

For details about configurations of the operating system integrated with the cluster software, see 3.11 Determining
node switching when cluster software is used and an error occurs.

2. Preparing for System Design

29

3 Determining the System
Configuration (J2EE Application
Execution Platform)
This chapter describes the system configuration when building a J2EE application
execution platform. Along with the flow of system design, this chapter describes the
standard pattern of the system configuration of respective design items. This chapter
also describes the components, processes, and the processing flow that need to be
identified at the respective points.

For determining the system configuration of a batch application execution platform,
see 4. Determining System Configuration (Batch Application Execution Platform).

31

3.1 Points to be considered when determining the
system configuration

This section describes the points that must be considered when determining the configuration of a system that uses
Application Server.

When determining the system configuration, depending on the functionality that would be used in the J2EE
application, you need to identify the processes required for achieving that functionality, and appropriately deploy the
processes on each machine. At this point, you also need to give sufficient consideration to the requirements of an
Application Server system including reliability and availability.

3.1.1 Purpose and configuration of the system
The systems built using Application Server can be classified into the following two types, depending on the
requirements and features of the intended business and the J2EE application that will run on the system:

• Web front-end system

• Back-end system

A Web front-end system is a system (in the case of web-based system) that receives requests sent from a Web browser
that acts as the front-end and processes such requests. In this system, servlets, JSPs, and Enterprise Beans run in a
J2EE server that runs on the Application Server system.

A Back-end system runs behind the Web front-end system and executes business services that are common to multiple
business systems. The following components, applications, or systems send requests to the back-end system:

• A servlet, JSP, or Enterprise Bean running on the Web front-end system

• EJB client applications running on the EJB client machine

• Other business systems

The Application Server system consists of one or more Web front-end systems and back-end systems, depending on
the purpose and scale.

The following figure shows an example of the configuration of a Web front-end system and back-end system:

3. Determining the System Configuration (J2EE Application Execution Platform)

32

Figure 3‒1: Example configuration of a Web front-end system and a back-end system

When determining the system configuration of the Application Server system, first, determine the basic configuration.
This includes determining the combination of systems required to form the entire system. Next, identify the purpose of
each constituent system and the points that will be accessed from the client. Further, determine how the software and
the processes should be deployed in order to fulfill the common requirements of reliability, performance and
extensibility that are expected of any Application Server, as well as the system specific requirements such as
connectivity with EIS and load balancing, and thus, design the optimum system configuration.

3.1.2 Procedure for designing the system configuration
Design the system configuration in the order given below:

3. Determining the System Configuration (J2EE Application Execution Platform)

33

Figure 3‒2: Flow for designing the system configuration (for a J2EE application execution platform)

(1) Determining the application configuration
Specify the configuration of components used in an application running on each system and decide which components
of the application will serve as the access points. For details, see 3.3 Determining the configuration of an application.

Access points are the components that operate as the request-receiving window of the application, in the case of
remote access from the client. The system configuration that can be implemented is determined, based on the type of
the access point components.

Determine whether an application is to be connected to a database or other resources. The resource adapter to be used
is determined, based on the resource to be connected.

The items that need to be determined in designing the rest of the system configuration differ according to the type of
access point components determined here. The following table describes the items that need to be determined for
various access point components:

3. Determining the System Configuration (J2EE Application Execution Platform)

34

Table 3‒1: Items to be determined for various access point components

Design items

Types of access point components

Reference

Web front-
end

system
Back-end system

Servlet or
JSP

Session
Bean /

Entity Bean

Stateless
Session

Beam when
using CTM

Message-

driven

Bean

Configuration of the client and server Y Y Y -- Section 3.4

Method of integration between servers -- R R -- Section 3.5

Transaction type Y Y Y Y Section 3.6

Load balancing method as per the load-
balancing cluster

R R R -- Section 3.7

Asynchronous communication between the
servers

-- -- -- Y Section 3.8

Deploying the operation management
process

Y Y Y Y Section 3.9

Configuration for inheriting the session
information

R R -- -- Section 3.10

Configuration for node switching using
cluster software

R R R R Section 3.11

Deploying a firewall R R R R #2

Deploying a reverse proxy on DMZ R#1 -- -- -- #3

Deploying a process that outputs the
performance analysis trace file

Y Y Y Y Section 3.12

Integrating with products other than
Application Server

R R R R Section 3.13

Operation management of the optional
processes

R R R R Section 3.14

Legend:
Y: Item that needs to be determined.
R: Item that needs to be determined, if required.
--: Item that need not be determined.

#1
Must determine, when you use in-process HTTP servers as Web servers in a system connected to the Internet.

#2
See 3.2 Determining the configuration for using firewalls in the uCosminexus Application Server Security Management Guide.

#3
See 3.3 Determining the allocation of a reverse proxy on DMZ in the uCosminexus Application Server Security Management
Guide.

(2) Determining the client and server configuration
Specify the correspondence between the client and the server, depending on the access point components. The
Application Server instances that are deployed in the system function as a client and as a server, depending on role of
each instance.

The following figure shows the concept of the client and the server configuration:

3. Determining the System Configuration (J2EE Application Execution Platform)

35

Figure 3‒3: Concept of the client and the server configuration

In the case of this configuration, the AP server 1 is the server for the web client and the access point is the servlet or
JSP. AP server 1 is also the client for AP server 2. AP server 2 is the server for AP server 1 and the access point is the
Enterprise Bean.

For details, see 3.4 Determining the configuration of the client and the server.

(3) Determining the method of server integration
In the case of multiple servers, determine whether to perform server integration and if integration is performed, the
way in which the integration would take place. Server integration refers to invoking and processing the access point
components of other servers from the multiple servers that are arranged vertically as seen from the client.

The following figure shows the concept of server integration:

Figure 3‒4: Concept of server integration

In the case of this configuration, the AP server 1 and the AP server 2 become the clients for the AP server 3 and
invoke a Session Bean of AP server 3 from their respective servlets, JSPs, or Message-driven Beans.

If required, along with server integration, revise the form of the application such as division of application. Even when
performing integration between multiple systems, you need to determine the method of integration between servers
present in the respective systems.

For details, see 3.5 Determining integration between servers.

(4) Determining the transaction type
In the case of a system that uses a database or other resources, determine the transaction type to be used, depending on
the number of resources for which the transaction management has to be performed. For details, see 3.6 Determining
the transaction type.

3. Determining the System Configuration (J2EE Application Execution Platform)

36

(5) Determining the load balancing method based on the load-balancing cluster
To increase the availability of the system, determine whether the load is to be balanced by the load-balancing cluster
configuration. When balancing the load, determine the implementation method depending on the type of the access
point components. For details, see 3.7 Determining the load balancing method by the load-balancing cluster.

(6) Determining the configuration for asynchronous communication between servers
When asynchronous communication takes place between Application Server instances by using a Message-driven
Bean, determine the system configuration corresponding to the product that is used. At the same time, determine the
load balancing by the Message-driven Bean. For details, see 3.8 Determining the configuration for asynchronous
communication between servers.

(7) Determining the deployment of the operation management process
If you are using the operation management process (Management Server), determine on which server machine the
Management Server is to be deployed, depending on the scope of management. For details, see 3.9 Determining the
deployment of the operation management process.

(8) Determining the inheritance of the session information
If an error occurs in the J2EE application or the J2EE server running on the Web front-end system, determine the
configuration for inheriting the session information in another J2EE server. For details, see 3.10 Determining the
inheritance of session information.

(9) Determining the configuration for node switching when cluster software is used and an
error occurs

Determine a configuration in which cluster software executes node switching to continue system operations when an
error occurs in an Application Server or when you want to perform system maintenance. You can determine a
configuration (mutual standby configuration) in which the executing node and the standby node are mutually switched
over. For details, see 3.11 Determining node switching when cluster software is used and an error occurs.

Note that you cannot use this configuration for Solaris.

(10) Determining the deployment of a firewall
Determine the deployment of a firewall for ensuring the security of the Application Server instances and the resources.
Deploy a firewall in front of the access point components to prevent invalid access to these access points. You decide
the points for deploying a firewall based on the access points.

For details on allocating a basic firewall, see 3.2 Determining the configuration for using firewalls in the uCosminexus
Application Server Security Management Guide.

For details about the security configuration containing an intrusion detection system, see 4.11.2 Allocating firewall
and intrusion detection system in the uCosminexus Application Server Security Management Guide.

(11) Determining the deployment of a reverse proxy on DMZ
In the case of a system that is connected to the Internet, determine the deployment of a reverse proxy on DMZ to
ensure the security of the Application Server instances and the resources. For details, see 3.3 Determining the
allocation of a reverse proxy on DMZ in the uCosminexus Application Server Security Management Guide.

(12) Deploying a process for the output of the performance analysis trace file
Determine the deployment of a PRF daemon (performance tracer) that is a process used for performance analysis. For
details, see 3.12 Deploying a process for the output of the performance analysis trace file.

3. Determining the System Configuration (J2EE Application Execution Platform)

37

(13) Determining the integration with products other than Application Server
Determine the integration with products other than Application Server, such as JP1 for centralized monitoring,
configuration management, or automatic execution of the system, as and when required. For details, see 3.13
Determining integration with products other than Application Server.

(14) Managing optional processes with operation management
Determine the deployment of a user server when you want to manage user-defined optional processes by using the
Management Server as a user server. For details, see 3.14 Managing optional processes with operation management.

(15) Determining other configurations
Consider the configurations other than those determined up to (14). Determine the system configuration that is
compatible with a system built on the Application Server of a version earlier than 07-00, as and when required. For
details, see 3.15 Determining other configurations.

3.1.3 Concept of system configuration
This subsection describes the basic concept when you determine a system configuration. An execution environment
that is built in the Application Server is configured of multiple processes. Each process has multiple layers for each
provided functionality. These layers are called the functionality layers.

In the execution environment, you can deploy each functionality layer on different servers. You need to determine the
deployment, depending on the scale and purpose of the system.

The following figure shows an example of deploying the functionality layers:

Figure 3‒5: Example of deploying the functionality layers

The concept of a configuration with the following functionality layers deployed in the execution environment is
explained below:

• Web server

3. Determining the System Configuration (J2EE Application Execution Platform)

38

• Web container

• CTM

• EJB container

• JCA

• EIS

• Naming Service

• Management Server

(1) Deploying a Web server and a Web container (J2EE server)
In addition to sending the HTTP requests to the Web container, a Web server processes the static contents included in
the business process. The web container operates as a part of the J2EE server and functions as a base for executing the
servlet and JSP. The Web server and the Web container can be deployed either on the same host or on different hosts.

If you are using an in-process HTTP server, a Web server is not required.

Hitachi recommends that you deploy one Web server for each J2EE server on which the Web container runs. In the
case of load balancing, Hitachi recommends that you deploy the load balancer in front of the Web server.

After doing this, determine the system configuration by referring to the following explanation:

• 3.4.1 Configuration with servlets and JSPs as access points (for Web server integration)

• 3.4.2 Configuration where servlets and JSPs are used as access points (when using in-process HTTP server)

• 3.15.1 Configuration with a Web server and Application Server deployed on different machines

(2) Deployment of CTM and EJB containers (J2EE server)
The CTM is the functionality that uses the OLTP technology for scheduling the requests from a client. The EJB
container is a functionality that operates as a part of J2EE server, and provides the system level services such as
execution and communication of Enterprise Beans and transaction management.

The CTM executes the scheduling process of IIOP requests sent to the EJB container and load balancing process. The
CTM is a special functionality layer for processing IIOP requests, and therefore, the CTM is not required to be
deployed on the EJB container and other hosts. The data transfer between the CTM executes the load balancing of
IIOP requests. However, only the load balancing of Stateless Session Beans is executed by the CTM.

Hitachi recommends that you configure the respective load-balancing cluster configuration by setting up the ratio of
CTM and EJB containers as one to many. This setup increases the throughput. You can build a system having higher
expandability and performance. With cluster configurations, you can perform the partial degeneration and partial
restoration, if an error occurs. The reliability and also the availability increase with cluster configurations.

Based on this, reference the following subsections and decide the system configuration:

• 3.4.4 Configuration where Stateless Session Bean is used as access point when using CTM

• 3.7.4 Load balancing when using CTM (for Stateless Session Bean)

(3) Deploying JCA and EIS
JCA provides a supporting function for connecting to the EIS of the existing system and the database.

The connection pooling process for EIS is executed in JCA. When EIS is built on one server, the relationship between
JCA and EIS is many-to-one. If EIS is built on multiple servers, the relationship between JCA and EIS becomes
many-to-many. When failure occurs in the EIS connection, the reliability and availability of the system is ensured,
because JCA supports the function for automatic recovery.

(4) Deploying the Naming Service
The Naming Service provides the naming management function to enable the use of an object by its name. The
Cosminexus TPBroker provides the Naming Service. Hitachi recommends that you invoke the Naming Service by the
in-process of the J2EE server.

3. Determining the System Configuration (J2EE Application Execution Platform)

39

You can use invoking by the in-process to reduce the number of processes in the Application Server. Furthermore, the
individual start and stop processes are no longer required and operability will improve.

(5) Deploying the operation management process
Management Server contains the functionality for operation management of the entire Application Server system.
Deploy one Management Server instance on the domain where the operation management and monitoring of the
system are to be performed. Although, this manual describes the configuration where you deploy Management Server
on a host other than the one on which the other J2EE server processes are deployed, you may also deploy
Management Server on the same host.

Invoke Administration Agent on the respective hosts where the processes, for which operation management and
monitoring are to be performed, are deployed. Administration Agent executes the operation in each host on receiving
the instructions from Management Server.

The operation administrator uses the Smart Composer functionality or Management Server commands for
management. These commands are executed on the same host where Management Server is deployed.

For details about the system configuration where the operation management process is deployed, see 3.9 Determining
the deployment of the operation management process.

3. Determining the System Configuration (J2EE Application Execution Platform)

40

3.2 Description of the system configuration
Chapter 3 describes various system configuration patterns used for determining the system configuration as well as the
features of the respective patterns. This section describes the common points to be considered for each system
configuration pattern that you need to check before reading the explanation about the system configurations. The
legend items that are used in the system configuration figures of this chapter are also explained. Read the following
sections after checking these legend items.

Reference note
The legend items described here are also applicable to, 4. Determining the System Configuration (Batch Application
Execution Platform), and 4.11.2 Deploying the firewall and the intrusion detection system in the uCosminexus Application
Server Security Management Guide.

(1) Common points to be considered for the system configurations described in this chapter
Note the following common points for each system configuration:

• This chapter describes the system configuration using Application Server. You can read the terminology used in
this chapter for the products that you use, as and when required.
The products that you use and products used in this chapter are described in the following table:

Table 3‒2: Products to be used and products used in this chapter

Products to be used Products described in this chapter

uCosminexus Developer# Application Server

uCosminexus Service Architect#

uCosminexus Service Platform

#
You must read this as is when you use this product in a test environment.

• Most of the examples of system configurations show the deployment of one Application Server for each role.
However, in the case of actual configuration, Hitachi recommends that you implement a cluster configuration by
using the load balancer for scalability and availability. This will help to avoid complete suspension of the service
whenever problems occur and server maintenance is required. For details about the configuration where load
balancing is implemented, see 3.7 Determining the load balancing method by the load-balancing cluster.

• This chapter describes examples where Management Server is used for performing operations. When you perform
an operation without using Management Server, the following processes are unnecessary so you need not read the
description:

• Management Server

• Administration Agent

The machine that starts only those processes that are required for operation management is called the Management
Server machine. Note that the management sever machine is only required when you use Management Server for
performing operations.

• This chapter mainly cites examples of configurations that involve Web server integration when the access point is
either a servlet or JSP. If you are using an in-process HTTP server, the following process is not required, and
therefore, you can omit the process when reading:

• Web server

• The PRF daemon is a process that outputs a performance analysis trace file. Always deploy the PRF daemon on
the Application Server and if required, also deploy the PRF daemon on the EJB client. For details about the
deployment of a PRF daemon, see 3.12 Deploying a process for the output of the performance analysis trace file.

(2) Legend items used for system configuration figures
This subsection shows the legend items used in the system configuration figures of chapter 3 and chapter 4.

3. Determining the System Configuration (J2EE Application Execution Platform)

41

Figure 3‒6: Legend items used for system configuration figures

The color that indicates the host also indicates the host type for operation management by Management Server.

Figure 3‒7: Legend items used for figures in system configuration (classification of the host)

The legend items that are not explained here are given in the respective figures.

3. Determining the System Configuration (J2EE Application Execution Platform)

42

3.3 Determining the configuration of an application
This section describes how to determine the configuration of applications.

You can classify the applications based on the type of components to be configured. Each classification has its access
points as seen from the client side. This section describes the type of components constituting the application, the
access point components in each application, and the resource adapter type corresponding to the type of connected
resources.

3.3.1 Configuration of an application and the access points
This subsection describes the type of components that constitute an application and the access points of the respective
configurations.

An application consists of the following three types of components:

• Servlet and JSP

• Session Bean and Entity Bean

• Message-driven Bean

(1) Application consisting of servlets and JSPs
The servlets and JSPs are components for dynamic generation of the presentation displayed on the Web browser of a
client machine. They are accessed from the Web browser (that acts as a client) through the Web server using HTTP or
HTTPS protocols.

In an application consisting of servlets and JSPs, servlets or JSPs deployed in the front form the access point
components as seen from the client side.

The following figure shows an application consisting of servlets and JSPs:

Figure 3‒8: Application consisting of servlets and JSPs

Note: For other legend items, see 3.2 Description of the system configuration.

Other components, such as JavaBeans and Java class, can be invoked from servlets or JSPs. Session Beans and Entity
Beans can also be invoked. In such cases also, servlets or JSPs deployed in the front form the access point components
as seen from the client side.

3. Determining the System Configuration (J2EE Application Execution Platform)

43

Figure 3‒9: Access points when other components are invoked from servlets and JSPs

Note: For other legend items, see 3.2 Description of the system configuration.

This application mainly runs on the Web front-end system.

(2) Application consisting of Session Beans and Entity Beans
Session Beans and Entity Beans are components for implementing the business logic. They are accessed from the EJB
client by RMI-IIOP. EJB client is a general name for the components used for invoking the Enterprise Bean. These
components include the EJB client applications running on the client machine and the servlets, JSPs, Session Beans,
Entity Beans, or Message-driven Beans running on another J2EE server.

In an application consisting of Session Beans and Entity Beans, the Session Beans or Entity Beans deployed in the
front form the access point components.

The following figure shows an application consisting of Session Beans and Entity Beans:

Figure 3‒10: Application consisting of Session Beans and Entity Beans

Note: For other legend items, see 3.2 Description of the system configuration.

3. Determining the System Configuration (J2EE Application Execution Platform)

44

Other components, such as JavaBeans and Java class, can be invoked from the Session Beans or Entity Beans. Other
Session Beans and Entity Beans can also be invoked. In such cases also, the Session Beans or Entity Beans deployed
in the front form the access point components as seen from the client.

Figure 3‒11: Access points when other components are invoked from the Session Beans or Entity Beans

Note: For other legend items, see 3.2 Description of the system configuration.

This application mainly runs on the back-end system.

(3) Application configured with Message-driven Beans
The Message-driven Beans are components for implementing the business logic in a message-driven system. The
access can be in any of the following ways:

• Access through Cosminexus JMS provider

• Access through TP1/Message Queue and TP1/Message Queue - Access

• Access through the database (HiRDB or Oracle) and Cosminexus RM

• Access through TP1 inbound integration

In a system configuration with the Message-driven Bean as the access point, you require any one of the following as a
resource adapter:

• CJMSP resource adapter#

• TP1/Message Queue - Access

• Cosminexus RM#

Use Cosminexus RM in combination with the DB Connector for Cosminexus RM#

• TP1 inbound adapter#

Resource adapter provided by Application Server.

In the case of an application consisting of Message-driven Beans, the Message-driven Beans form the access point
components.

The following figures show an application consisting of Message-driven Beans:

3. Determining the System Configuration (J2EE Application Execution Platform)

45

Figure 3‒12: Application configured with Message-driven Bean (through Cosminexus JMS provider)

Note: For other legend items, see 3.2 Description of the system configuration.

Figure 3‒13: Application configured with Message-driven Bean (through TP1/Message Queue - Access)

Note: For other legend items, see 3.2 Description of the system configuration.

Figure 3‒14: Application configured with Message-driven Bean (through Cosminexus RM)

Note: For other legend items, see 3.2 Description of the system configuration.

Figure 3‒15: Application configured with Message-driven Bean (through TP1 inbound integration)

Note: For other legend items, see 3.2 Description of the system configuration.

Other components, such as JavaBeans and Java class, can be invoked from the Message-driven Beans. Session Beans
and Entity Beans can also be invoked. In such cases, component that is the access point as seen from the client, is the
Message-driven Bean. The following figure shows an example:

3. Determining the System Configuration (J2EE Application Execution Platform)

46

Figure 3‒16: Access point when invoking other components from Message-driven Bean (through TP1/
Message Queue - Access)

Note: For other legend items, see 3.2 Description of the system configuration.

Figure 3‒17: Access points when other components are called from the Message-driven Beans (through
Cosminexus RM)

Note: For other legend items, see 3.2 Description of the system configuration.

This application mainly runs on the back-end system.

3.3.2 Resource types and resource adapters
You can connect with the following resources in the Application Server system:

• Database (HiRDB, Oracle, SQL Server or XDM/RD E2)

• TP1/Message Queue of OpenTP1

• SPP of OpenTP1

3. Determining the System Configuration (J2EE Application Execution Platform)

47

• SUP of OpenTP1

• CJMSP Broker of Cosminexus JMS provider

• Mail configuration

• JavaBeans resources

SUP of OpenTP1 is connected as Inbound. Note that the resource adapter is not required when you use a mail
configuration or JavaBean Resources.

The resource adapters used for various types of resources connected by the application are explained as follows:

Tip
In Application Server, you can use resource adapters conforming to Connector 1.0 or Connector 1.5 specifications.

For details about using resource adapters other than those described here, check the description for the resource adapter
being used.

(1) Resource adapter for connecting to the database (when the JDBC interface is used)
Use DB Connector as the resource adapter when connecting to the database using the JDBC interface. When you use
the DB Connector, you can use the JDBC interface for accessing the database from servlets, JSPs, Session Beans,
Entity Beans, or Message-driven Beans.

Application Server can access HiRDB, Oracle, SQL Server, or XDM/RD E2 databases using resource adapters. The
following figures show the respective configurations when you access each type of database with a resource adapter:

• Configuration for accessing HiRDB
When connecting to HiRDB, the HiRDB Type4 JDBC Driver is required on the same machine where a J2EE
server is installed.
The following figure shows the configuration for accessing HiRDB:

Figure 3‒18: Configuration for accessing HiRDB with a resource adapter (for using the HiRDB Type4
JDBC Driver)

Note: For other legend items, see 3.2 Description of the system configuration.

• Configuration when accessing Oracle
When connecting to Oracle, Oracle JDBC Thin Driver is required on the same machine where the J2EE server is
installed.
The following figure shows the configuration for accessing Oracle:

3. Determining the System Configuration (J2EE Application Execution Platform)

48

Figure 3‒19: Configuration for accessing Oracle with a resource adapter (for using the Oracle JDBC
Thin Driver)

Note: For other legend items, see 3.2 Description of the system configuration.

• Configuration for accessing the SQL Server
When connecting to SQL Server, the JDBC driver for SQL Server is required on the same machine as the J2EE
server.
The following figure shows the configuration when accessing the SQL Server:

Figure 3‒20: Configuration for accessing the SQL Server with a resource adapter

Note: For other legend items, see 3.2 Description of the system configuration.

• Configuration for accessing XDM/RD E2
When connecting to XDM/RD E2, the HiRDB Type4 JDBC Driver is required on the same machine where the
J2EE server is installed.
The following figure shows the configuration required when accessing XDM/RD E2:

3. Determining the System Configuration (J2EE Application Execution Platform)

49

Figure 3‒21: Configuration when accessing XDM/RD E2 with a resource adapter (for using the HiRDB
Type4 JDBC Driver)

Note: For other legend items, see 3.2 Description of the system configuration.

(2) Resource adapter for connecting to the database (when the JMS interface is used)
If you are using the JMS interface for connecting to the database, use DB Connector for Cosminexus RM as the
resource adapter. DB Connector for Cosminexus RM is a resource adapter for integrating with Cosminexus RM. If
you use Cosminexus RM, you can access the queues implemented on the database from a servlet, JSP, Session Bean,
Entity Bean, or Message-driven Bean, by using the JMS interface. In such a case, the Cosminexus RM libraries run on
the J2EE server and the queue data is saved in the database. Cosminexus RM is component software of Application
Server.

The following figures separately show the configuration for accessing the HiRDB and Oracle databases with
Cosminexus RM:

Figure 3‒22: Configuration for accessing HiRDB with Cosminexus RM

Note: For other legend items, see 3.2 Description of the system configuration.

3. Determining the System Configuration (J2EE Application Execution Platform)

50

Figure 3‒23: Configuration for accessing Oracle with Cosminexus RM

Note: For other legend items, see 3.2 Description of the system configuration.

(3) Resource adapter for connecting to TP1/Message Queue of OpenTP1
When connecting to TP1/Message Queue, which is the message queuing function of OpenTP1, use TP1/Message
Queue - Access as the resource adapter. If you use TP1/Message Queue - Access, TP1/Message Queue can be
accessed using a JMS interface from a servlet, JSP, Session Bean, Entity Bean, or Message-driven Bean. In such
cases, TP1/Message Queue - Access is required on the same machine as the J2EE server.

The following figure shows the configuration for accessing TP1/Message Queue using resource adapter:

Figure 3‒24: Configuration when accessing TP1/MessageQueue using resource adapter

Note: For other legend items, see 3.2 Description of the system configuration.

(4) Resource adapter for connecting to SPP of OpenTP1
When connecting to SPP (Service Providing Program) of OpenTP1, use uCosminexus TP1 Connector and TP1/
Client/J as resource adapters. If you are using uCosminexus TP1 Connector and TP1/Client/J, access to SPP of
OpenTP1 is possible from a servlet, JSP, Session Bean, Entity Bean, or Message-driven Bean. In such cases,
uCosminexus TP1 Connector and TP1/Client/J must be on the same machine as the J2EE server.

The following figure shows the configuration for accessing SPP of OpenTP1 using resource adapter:

3. Determining the System Configuration (J2EE Application Execution Platform)

51

Figure 3‒25: Configuration when accessing SPP of OpenTP1 using resource adapter

Note: For other legend items, see 3.2 Description of the system configuration.

(5) Resource adapter for connecting to SUP of OpenTP1
When connecting to SUP (Service Using Program) of Open TP1 by the TP1 inbound integrated function, use TP1
inbound adapter as the resource adapter. If you use the TP1 inbound integrated function, you can access a Message-
driven Bean running on a J2EE server as inbound from SUP of OpenTP1. In such cases, a TP1 inbound adapter must
be on the same machine as the J2EE server.

The following figure shows the configuration when accessing as inbound from SUP of OpenTP1 using resource
adapter:

Figure 3‒26: Configuration when accessing as inbound from SUP of OpenTP1 using resource adapter

Note: For other legend items, see 3.2 Description of the system configuration.

(6) Resource adapter for connecting to CJMSP Broker of Cosminexus JMS provider
When connecting to CJMSP Broker of Cosminexus JMS provider, use CJMSP resource adapter as the resource
adapter. If you use the CJMSP resource adapter, you can access CJMSP Broker using the JMS interface from servlets,
JSPs, Session Beans, Entity Beans, or Message-driven Beans. In such cases, a CJMSP resource adapter must be on the
same machine as the J2EE server.

The following figure shows the configuration for accessing CJMSP Broker using resource adapter:

3. Determining the System Configuration (J2EE Application Execution Platform)

52

Figure 3‒27: Configuration when accessing CJMSP Broker using resource adapter

Note: For other legend items, see 3.2 Description of the system configuration.

3. Determining the System Configuration (J2EE Application Execution Platform)

53

3.4 Determining the configuration of the client and the
server

This section describes the configuration types for the client and server, the processes deployed on each machine in the
respective cases and the features of the respective configurations.

To determine the configuration of the client and server, you need to decide the relationship between the client side that
calls the procedure and the server side that receives the call. You then need to identify the access points of the
application running on the server side.

The client and server configurations where the following components act as access points are explained below. The
details of the configuration in which servlets and JSPs act as access points are explained by classifying into two cases;
one where Web server integration is used, and one where an in-process HTTP server is used.

• Servlet and JSP

• Session Bean and Entity Bean

• Stateless Session Bean when using CTM

Hereafter, the machine with Application Server deployed is called the Application Server machine and the machine
that is used as the client is called the client machine.

3.4.1 Configuration with servlets and JSPs as access points (for Web
server integration)

This subsection describes a Web-based system configuration with servlets and JSPs as the access points. This
configuration is called the Web client configuration. You can use this configuration in a Web front-end system. The
configuration for Web server integration is explained here.

When connecting to the Internet with this configuration, from the security point of view Hitachi recommends that you
deploy a Web server with a reverse proxy function on the DMZ, apart from deploying the Web server on the same
machine as the Application Server. For details, see 3.3 Determining the deployment of reverse proxy on DMZ in the
uCosminexus Application Server Security Management Guide.

(1) Features of the system configuration
This system configuration is applicable in a Web front-end system, when the requests sent from the Web browser are
processed in Application Server.

You can build the most basic web client configuration by using client machines and one Application Server machine.
The following figure shows an example of a web client configuration built with one Application Server machine:

3. Determining the System Configuration (J2EE Application Execution Platform)

54

Figure 3‒28: Example of a web client configuration built with one Application Server machine (in the case
of Web server integration)

Note: For other legend items, see 3.2 Description of the system configuration.

Feature
A Web browser is the only software used in the client.

Flow of requests
The servlets and JSPs forming the access points run on the J2EE server. These components are accessed from the
Web browser through the Web server.

(2) Processes and required software on the respective machines
This subsection describes the software and the processes required on the respective machines. For details about the
processes required for connecting to the resources, see 3.6 Determining the transaction type.

(a) Application server machine

You need to install Application Server on the Application Server machine.

The processes required are as follows:

• Web server

• J2EE server

• Administration Agent

• PRF daemon

Application Server contains the Web server, Cosminexus HTTP Server. In Windows, you can also use Microsoft IIS
as the Web server. In this case, you need Microsoft IIS software.

(b) Management Server machine

You need to install Application Server on the Management Server machine.

Invoke the following process:

• Management Server

3. Determining the System Configuration (J2EE Application Execution Platform)

55

(c) Web client machine

The Web client machine requires a Web browser.

3.4.2 Configuration where servlets and JSPs are used as access points
(when using the in-process HTTP server)

This subsection describes the web-based system configuration where servlets and JSPs are used as access points. The
explanation of the configuration using the in-process HTTP server is also mentioned in this subsection.

When connecting to the Internet with this configuration, set up the deployment of a Web server having a reverse proxy
function on the DMZ from the security point of view. For details, see 3.3 Determining the deployment of reverse
proxy on DMZ in the uCosminexus Application Server Security Management Guide.

(1) Features of the system configuration
A system configuration applied when processing requests sent from the Web browser on the Application Server, in
Web front-end systems.

The most basic Web client configuration can be built with a client machine and one Application Server machine. If
you are using the in-process HTTP server, there is no need to start a Web server at the front-end of the J2EE servers.
Use functions of HTTP servers on J2EE servers.

The following figure shows the Web client configuration using the in-process HTTP server:

Figure 3‒29: Example of Web client configuration built on one Application Server machine (for using in-
process HTTP server)

Note: For other legend items, see 3.2 Description of the system configuration.

Features
A Web browser is the only software used by clients.
From the Web browser, direct access to the J2EE server is possible without using Web servers, and hence, the
Web browser has a merit of higher performance. Moreover, operations are simple because you need not start a
Web server.
If you are using an in-process HTTP server, you must consider the following points:

• Only minimum functions are supported by the in-process HTTP server as the Web server operation. Therefore
if various functions of a Web server are required, this configuration is not appropriate. Select the configuration
linked to the Web server embedded with a redirector module. For details about the functions that can be used

3. Determining the System Configuration (J2EE Application Execution Platform)

56

on the in-process HTTP server, see 5.2.2 Functions that can be used on the in-process HTTP server in the
uCosminexus Application Server Web Container Functionality Guide.

• HTTPS is not supported by the in-process HTTP server. Therefore, for using SSL, use the SSL function of the
Web server embedded with the proxy module deploying proxy server at the front-end or deploying SSL
accelerator at the front-end.

• From the security point of view, deploy a reverse proxy at front-end, for systems connected to Internet. For
details about the configuration deploying a reverse proxy, see 3.3 Determining the deployment of reverse
proxy on DMZ in the uCosminexus Application Server Security Management Guide.

Request flow
Operate servlets and JSPs that are used as access points, on the J2EE server. These components are directly
accessed from the Web browser.

(2) Process and software required for each machine
This subsection describes the software and processes required on the respective machines. For details about processes
required to connect to resource, see 3.6 Determining the transaction type.

(a) Application server machine

You must install Application Server on the Application Server machine.

The required processes are as follows:

• J2EE server

• Administration Agent

• PRF daemon

(b) Management Server machine

You must install Application Server on the Management Server machine.

The process to be started is as follows:

• Management Server

(c) Web client machine

A Web client machine must have a Web browser.

3.4.3 Configuration with Session Beans and Entity Beans as access
points

This subsection describes a system configuration where the Session Beans and Entity Beans act as access points and
an EJB client application operates on a client. This configuration is called an EJB client configuration.

(1) Features of the system configuration
You can build the most basic EJB client configuration by using client machines and one Application Server machine.

The following figure shows an example of an EJB client configuration built with one Application Server machine:

3. Determining the System Configuration (J2EE Application Execution Platform)

57

Figure 3‒30: Example of EJB client configuration built with one Application Server machine

Note: For other legend items, see 3.2 Description of the system configuration.

Feature
In Windows, you can use uCosminexus Client to build the environment on the client machine.

Flow of requests
The Session Beans and Entity Beans forming the access points run on the J2EE server. The requests from the EJB
client application are sent to the access points by RMI-IIOP to invoke a Session Bean and Entity Bean. At this
point, the EJB client application searches (lookup) for names from the Naming Service running on the J2EE server
and accesses a Session Bean and Entity Bean.

(2) Required software and processes to be invoked on the respective machines
This subsection describes the required software and the processes to be invoked on the respective machines. For
details about the processes used for connecting to the resources, see 3.6 Determining the transaction type.

(a) Application server machine

You need to install Application Server on the Application Server machine.

Invoke the following processes:

• J2EE server

• Administration Agent

• PRF daemon

(b) Management Server machine

You need to install Application Server on the Management Server machine.

Invoke the following process:

• Management Server

(c) EJB client machine

You need to install Application Server or uCosminexus Client (in the case of Windows) on the EJB client machine.

3. Determining the System Configuration (J2EE Application Execution Platform)

58

The process thus invoked is the process of the EJB client application.

3.4.4 Configuration where Stateless Session Bean is used as access
point when using CTM

This subsection describes about the system configuration where a Stateless Session Bean is used as the access point
when you use CTM.

Reference note
An example of EJB client configuration is explained here where an EJB client application is used as the client. When you
use the CTM gateway function, you can implement a configuration where an EJB application on the J2EE server is directly
invoked from a client application other than an EJB client. For details about the configurations, see 3.13.3 Configuration in
which a Stateless Session Bean is invoked from other than an EJB client using the CTM gateway function.

(1) Features of the system configuration
This system configuration is one of the EJB client configurations. The scheduled requests are transmitted by CTM to a
Stateless Session Bean, which is the access point.

The following figure shows an example of EJB client configuration when using CTM:

Figure 3‒31: Example of EJB client configuration when using CTM

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• Request scheduling is executed by the CTM and the system operations such as executing service lock and
controlling the concurrent execution count can be executed.

• Start two or more J2EE servers. If an error occurs on a J2EE server, the system operation can be continued by
executing degeneration operation.

3. Determining the System Configuration (J2EE Application Execution Platform)

59

• In Windows, the environment of the client machine can be built using uCosminexus Client.

Requests flow
A Stateless Session Bean, which is the access point, operates on the J2EE server.
The requests from the EJB client application are transmitted through the CTM and invoke the Stateless Session
Bean. In such cases, the EJB client application looks up the name from the global CORBA Naming Service and
accesses Stateless Session Bean.

(2) Required software and processes to be started on each machine
This subsection describes the required software and processes to be started on the respective machines. For details
about the processes to connect to a resource, see 3.6 Determining the transaction type.

(a) Application server machine

You must install Application Server on the Application Server machine.

The processes to be started are as follows:

• J2EE server

• Administration Agent

• PRF daemon

• Global CORBA Naming Service

• CTM processes (CTM daemon and CTM regulator)

• CTM domain manager

• Smart Agent

(b) Management Server machine

You must install Application Server on Management Server machines.

The process to be started is as follows:

• Management Server

(c) EJB client machine

You must install Application Server or uCosminexus Client (in Windows) on EJB clients.

The process to be started is the processing for EJB client application.

3. Determining the System Configuration (J2EE Application Execution Platform)

60

3.5 Determining integration between servers
This section describes the configuration types for integrating the applications running on J2EE servers that run on
multiple Application Server machines, and also describes the processes deployed on each machine for respective
configuration types. This section also describes the features of the respective configurations.

In a system that consists of multiple Application Server machines, the Application Server machine on which the caller
application is running is called the client-side application server and the Application Server machine on which the
invoked application is running is called the server-side application server.

This subsection describes the configuration involving integration between the following two servers:

• Integration between servers that invoke Session Beans and Entity Beans

• Integration between the servers that invoke Stateless Session Bean through CTM

3.5.1 Integration between servers invoking Session Bean and Entity
Bean

This subsection describes the configuration for invoking Session Beans and Entity Beans from the J2EE server that
runs on another Application Server machine.

(1) Features of the system configuration
In this configuration, the Application Server instance on the client side invokes the Application Server instance on the
server side. An application consisting of servlets, JSPs, Entity Beans, Session Beans, or Message-driven Beans runs
on the client-side application server. The access point component of the server side is either a Session Bean or an
Entity Bean. The invocation from the client-side application is executed by RMI-IIOP.

The following figure shows an example configuration of integration between servers that invoke Session Beans and
Entity Beans:

3. Determining the System Configuration (J2EE Application Execution Platform)

61

Figure 3‒32: Example of the configuration for integration between servers that invoke Session Bean and
Entity Bean

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• You can use this configuration for integrating the applications. Use the configuration for invoking the server
application from multiple client applications.

• You can also use this configuration for integrating the systems. If an already built client system and server
system are changed as per this configuration, you can invoke the applications between the systems.

Flow of requests
The client side J2EE server sends the requests to the Session Beans or Entity Beans forming the server side access
points.
At this point, the Session Beans or Entity Beans are accessed in the client side by looking up the names from the
CORBA Naming Service that is invoked as an in-process in the J2EE server on the server-side application server.

(2) Required software and the processes to be invoked in the respective machines
This subsection provides information about the required software and the processes to be invoked in the respective
machines when integrating the servers that invoke Session Beans or Entity Beans. For details about the processes
required for connecting to the resources, see 3.6 Determining the transaction type.

(a) Client-side application server machine (execution environment of servlets or JSPs)

You need to install Application Server on client-side application server machine that operates the servlets and JSPs.

Invoke the following processes:

• Web server

3. Determining the System Configuration (J2EE Application Execution Platform)

62

• J2EE server

• Administration Agent

• PRF daemon

(b) Client-side application server machine (execution environment of Message-driven Beans)

You need to install Application Server on the client-side application server machine that operates the Message-driven
Bean. To use TP1/Message Queue - Access as a resource adapter, you must install TP1/Message Queue - Access. If
you use Cosminexus RM, you need not install TP1/Message Queue - Access separately because TP1/Message Queue -
Access is included in Application Server.

Invoke the following processes:

• J2EE server

• Administration Agent

• PRF daemon

(c) Server-side application server machine

You need to install Application Server on the server-side application server machine.

Invoke the following processes:

• J2EE server

• Administration Agent

• PRF daemon

(d) Management Server machine

You need to install Application Server on the Management Server machine.

Invoke the following process:

• Management Server

3.5.2 Integration between the servers that invokes Stateless Session
Bean through CTM

This subsection describes a configuration using CTM, when you invoke Stateless Session Beans from a J2EE server
exists on another Application Server through CTM.

(1) Features of the system configuration
This is the configuration in which the Application Server on the server side is invoked from the Application Server on
the client side through CTM. The application configured with servlet, JSP, Entity Bean. Session Bean, or Message-
driven Bean operates on the Application Server at the client side. Stateless Session Bean is the access point
component at server side. Invoking from the application at client side is executed by RMI-IIOP.

The following figure shows an example of the configuration of integration between the servers that invoke Stateless
Session Bean through CTM:

3. Determining the System Configuration (J2EE Application Execution Platform)

63

Figure 3‒33: Example of configuration of integration between servers that invoke Stateless Session Bean

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• This is a configuration used in the integration between applications. This configuration is suitable when
invoking a server application from multiple client applications.

• This can also be used for integration between the systems. Since this system configuration includes the already
built client side system and the server side system, the application can be invoked between the systems.

Request flow
The requests of a Stateless Session Bean, which is the access point at server side, are sent from the J2EE server at
client side through CTM.
The name from the global CORBA Naming Service of the server-side application is looked up at the client side
and the Stateless Session Bean is accessed through CTM.
The request through CTM can be appropriately distributed to a Stateless Session Bean running on the J2EE server
by CTM.

(2) Required software and process to be started on each machine
This subsection describes the required software and the processes to be started on the respective machine when
integrating between the servers that invoke Stateless Session Beans through CTM. For details about the processes
required for connecting to the resources, see 3.6 Determining the transaction type.

3. Determining the System Configuration (J2EE Application Execution Platform)

64

(a) Application server machine at client side (Execution environment of Servlet/JSP)

You must install Application Server on the Application Server machine at client side where the servlet and JSP
operate.

The processes to be started are as follows:

• Web server

• J2EE server

• Administration Agent

• PRF daemon

(b) Application server machine at client side (Execution environment of Session Bean)

You must install Application Server on the Application Server machine at client side that operates Session Bean.

The processes to be started are as follows:

• J2EE server

• Administration Agent

• PRF daemon

(c) Application server machine at server side

You must install Application Server on the Application Server machine at server side.

The processes to be started are as follows:

• J2EE server

• Administration Agent

• PRF daemon

• Global CORBA Naming Service

• CTM processes (CTM daemon and CTM regulator)

• CTM domain manager

• Smart Agent

(d) Management Server machine

You must install Application Server on the Management Server machine.

The process to be started is as follows:

• Management Server

3. Determining the System Configuration (J2EE Application Execution Platform)

65

3.6 Determining the transaction type
This section describes the system configuration for each transaction type.

Use a local transaction when only one resource participates in the transaction. Use a global transaction when multiple
resources participate in the transaction. In an integrated server configuration, you can also use transaction context
propagation, when the respective J2EE servers connect to different resources.

For details about the mapping between the connected resources and the resource adapters, see 3.3.2 Resource types
and resource adapters.

Reference note
Although this section describes the configuration of each transaction type that is started by Application Server, you can also
start a transaction by using a EJB client application. When starting a transaction by using an EJB client application, you will
require Application Server on the EJB client machine.

3.6.1 Configuration when using a local transaction
This subsection describes the configuration when only one resource participates in the transaction.

(1) Features of the system configuration
In this configuration, one resource manager is accessed from a single J2EE application consisting of servlets, JSPs,
and Session Beans, through a resource adapter. The resource manager manages the transaction used for accessing the
resource manager from the application. The transaction type is a local transaction that does not use an XA interface.

The following figure shows an example configuration when using a local transaction:

Figure 3‒34: Example configuration when using a local transaction

Note: For other legend items, see 3.2 Description of the system configuration.

Features
In this configuration, one resource manager will be accessed from the application. A two-phase commit is not
required.

3. Determining the System Configuration (J2EE Application Execution Platform)

66

Flow of accessing the resource manager from the application through the resource adapter
Servlets and JSPs that are accessed from the Web browser through the Web server locally invoke a Session Bean
existing in the same application. A Session Bean accesses the resource manager (HiRDB in the case of the figure)
through the resource adapter.

(2) Required software and the processes to be invoked on the respective machines
This subsection describes the required software and the processes to be invoked on the respective machines when you
use a local transaction:

(a) Application server machine

You need to install Application Server on the Application Server machine.

The following software is required for connecting to the resource manager:

Resource manager to be connected to Required software

HiRDB HiRDB Run Time or HiRDB Type4 JDBC Driver

Oracle Oracle Client or Oracle JDBC Thin Driver

SQL Server JDBC driver for SQL Server

XDM/RD E2 HiRDB Run Time or HiRDB Type4 JDBC Driver

TP1/Message Queue TP1/Message Queue - Access

SPP of OpenTP1 uCosminexus TP1 Connector

TP1/Client/J

Invoke the following processes:

• Web server

• J2EE server

• Administration Agent

• PRF daemon

(b) Machine on which the resource manager is running

Install any of the following software on the machine on which the resource manager is running:

• HiRDB (when connecting to HiRDB)

• Oracle (when connecting to Oracle)

• SQL Server (when connecting to SQL Server)

• XDM/RD E2 (when connecting to XDM/RD E2)

• TP1/Message Queue (when connecting to TP1/Message Queue)

• TP1/Server Base (when connecting to SPP of OpenTP1)

Invoke the required processes in the respective resource managers.

(c) Management Server machine

You need to install Application Server on the Management Server machine.

Invoke the following process:

• Management Server

(d) Web client machine

A Web browser is required on the Web client machine.

3. Determining the System Configuration (J2EE Application Execution Platform)

67

3.6.2 Configuration when using a global transaction
This subsection describes the configuration, when multiple resources participate in a transaction.

(1) Features of the system configuration
In this configuration, multiple resource managers are accessed from a single J2EE application consisting of Session
Beans, through the resource adapter. The J2EE server manages the transaction that is used for accessing the resource
manager from the application. The transaction type is a global transaction that uses an XA interface.

The following figure shows an example configuration when you use a global transaction. The following figure shows
an example of the configuration of a system using CTM:

Figure 3‒35: Example configuration when using a global transaction

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• In this configuration, multiple resource managers will be accessed from the application. A two-phase commit
is required.

• You need to implement this configuration even in a system where the applications that access the single
resource manager and applications that access multiple resource managers are mixed.

Flow of accessing the resource manager from the application through the resource adapter
A Stateless Session Bean that is accessed from the EJB client application accesses the resource manager through
the resource adapter.

3. Determining the System Configuration (J2EE Application Execution Platform)

68

(2) Required software and the processes to be invoked on the respective machines
This subsection describes the required software and the processes to be invoked on the respective machines when you
use a global transaction:

(a) Application server machine

You need to install Application Server on the Application Server machine.

The following software is required for connecting to the resource manager:

Resource manager to be connected to Required software

HiRDB HiRDB Run Time or HiRDB Type4 JDBC Driver

Oracle Oracle Client or Oracle JDBC Thin Driver

TP1/Message Queue TP1/Message Queue - Access

SPP of OpenTP1 uCosminexus TP1 Connector

TP1/Client/J

Note: You cannot use SQL Server and XDM/RD E2 in a global transaction.

Invoke the following processes:

• J2EE server

• Administration Agent

• PRF daemon

In a configuration where CTM is used, you must install Application Server and start the global CORBA Naming
Service, CTM processes, CTM domain manager, and Smart Agent apart from the above processes. For details, see
3.5.2 Integration between the servers that invokes Stateless Session Bean through CTM.

(b) Machine on which the resource manager is running

You install any of the following software on the machine on which the resource manager is running. You cannot use
SQL Server and XDM/RD E2 in a global transaction.

• HiRDB (when connecting to HiRDB)

• Oracle (when connecting to Oracle)

• TP1/Message Queue (when connecting to TP1/Message Queue)

• TP1/Server Base (when connecting to SPP of OpenTP1)

Invoke the processes required on the respective resource managers.

(c) Management Server machine

You need to install Application Server on the Management Server machine.

Invoke the following process:

• Management Server

(d) EJB client machine

You need to install Application Server or the uCosminexus Client (in the case of Windows) on the EJB client
machine.

Invoke the processes of the EJB client application.

3. Determining the System Configuration (J2EE Application Execution Platform)

69

3.6.3 Configuration when using transaction context propagation
This subsection describes the configuration where the respective J2EE servers connect to the different resources in the
case of an integrated server configuration. Use transaction context propagation in this configuration. Note that CTM
cannot be used for this configuration.

(1) Features of the system configuration
In this configuration, integration between servers is performed with multiple J2EE applications. This subsection
describes an example of integrating servers using a J2EE application that consists of servlets, JSPs, and Session Beans
and a J2EE application that consists of only Session Beans. The application that consists of servlets, JSPs, and Session
Beans runs on the client-side application server and the J2EE application that consists of Session Beans runs on the
server-side application server.

The respective J2EE applications access different resource managers through the resource adapter. In such a case, the
J2EE server manages the transactions used when accessing the resource managers. The transaction type is global
transaction that uses an XA interface.

In configurations where Stateless Session Bean is invoked by CTM, transaction context propagation cannot be used.

The following figure shows an example of the configuration when you use transaction context propagation. In this
example, the J2EE applications access the database and SPP of OpenTP1.

Figure 3‒36: Example configuration when using transaction context propagation

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• This configuration is applicable when accessing multiple resource managers from applications where server
integration is performed.

• You need to implement this configuration when linking servers in a system where applications that access a
single resource manager and applications that access multiple resource managers are coexist.

3. Determining the System Configuration (J2EE Application Execution Platform)

70

Flow of accessing the resource manager from the application through a resource adapter
The servlets and JSPs that are accessed from the Web browser through the Web server, locally invoke a Session
Bean existing in the same application. This Session Bean starts the transaction, accesses the database, and then
invokes a Session Bean running on the J2EE server that runs on the server-side application server. The invoked
Session Bean that runs on the server-side application server accesses SPP of OpenTP1. A Session Bean running
on the client-side application server commits the transaction when the control returns from the server-side Session
Bean.

(2) Required software and the processes to be invoked on the respective machines
The required software and the processes invoked when you use transaction context propagation are same as 3.6.2
Configuration when using a global transaction. However, if you are using transaction propagation of context, CTM
cannot be used.

3. Determining the System Configuration (J2EE Application Execution Platform)

71

3.7 Determining the load balancing method by the load-
balancing cluster

This section describes the configuration used for load balancing by the load-balancing cluster.

Load balancing is implemented as explained below. The method that can be implemented depends on the type of
access point component.

• Use a load balancer (in the case of servlet or JSP)

• Use a Naming Service (in the case of Session Bean or Entity Bean)

• Use CTM (for Stateless Session Bean)

The configuration where load balancer is used is classified in two cases; one when linked to Web server and another
when you use an in-process HTTP server. For details about load balancing when the access point is a Message-driven
Bean, see 3.8.4 Load balancing using the Message-driven Bean instance pool (when using TP1/Message Queue).

3.7.1 Load balancing with a load balancer in case of Web server
integration (in the case of servlet or JSP)

This subsection describes the configuration where the load balancer (layer 5 switch) balances the load. You can use
this method when the servlets or JSPs are the access points.

This subsection describes Web server integration.

(1) Features of the system configuration
You can use this configuration when the access point of the application running on the J2EE server is either a servlet
or JSP.

You can implement load balancing by registering the target Application Server in a load balancer. You can distribute
the client access load by registering multiple Application Server instances.

The following figure shows an example configuration of load balancing using a load balancer:

3. Determining the System Configuration (J2EE Application Execution Platform)

72

Figure 3‒37: Example configuration of load balancing using a load balancer (in the case of Web server
integration)

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• Scalability and availability of servlets and JSPs can be ensured.

• When a problem occurs in a specific Application Server or when maintenance is required, system fall back is
possible by stopping the access from the load balancer to the corresponding Application Server.

Flow of requests
Requests are sent from the Web browser to the servlets and JSPs forming the access points on the J2EE server
through the load balancer and the Web server. At this point, the load balancer distributes the access from the Web
browser to the Web servers running on the respective Application Server machines. The load balancer also
controls the relationship between the Sticky and Affinity HTTP sessions.
Reference note

• When using HTTPS, you need to deploy an SSL accelerator in front of the load balancer when using the contents
(such as a header) of the request to sort out the requests in the load balancer.

• When using the Smart Composer functionality, you can also deploy the load balancer in a redundant configuration.

(2) Required software and the processes to be invoked in the respective machines
The required software and the processes to be invoked in the respective machines when you use a load balancer are
same as in the configuration with servlets and JSPs as the access points. See 3.4.1 Configuration with servlets and
JSPs as access points (for Web server integration).

3. Determining the System Configuration (J2EE Application Execution Platform)

73

3.7.2 Load balancing with the load balancer when using in-process
HTTP server (for Servlet/JSP)

This subsection describes the configuration where load balancing is executed by load balancer (layer 5 switch). This
method is used when servlets or JSPs are the access points.

This subsection describes the in-process HTTP server function.

(1) Features of system configuration
This configuration can be used when servlets or JSPs are the access points of the applications running on J2EE
servers.

The load balancing can be implemented by registering the Application Server instance that is the target of the load
balancer. You can register multiple Application Server instances to reduce the distribute the load created by access
from the clients.

The following figure shows the configuration of load balancing using the load balancer:

Figure 3‒38: Example of the configuration of load balancing using the load balancer (for using in-process
HTTP server)

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• The scalability and the availability of servlets and JSPs can be secured.

• If an error occurs on a particular Application Server, or if maintenance is required, you can stop accessing the
relevant Application Server with the load balancer and can execute the degeneration operation of the system.

• As J2EE servers can be directly accessed from a Web browser without using Web servers, the performance is
high in this configuration. Moreover, the operation is simple because you need not start Web servers.
However, you must take care of the functions and the configuration that you can use. When connecting to the
Internet, set up the deployment of the web server embedded with the reverse proxy at the front-end. For

3. Determining the System Configuration (J2EE Application Execution Platform)

74

details, see 3.4.2 Configuration where servlets and JSPs are used as access points (when using in-process
HTTP server).

Request flow
The request is sent from the Web browser to the access point servlets and JSPs on the J2EE server through the
load balancer. In such cases, the load balancer distributes the access from the Web browser to J2EE servers
running on the respective Application Server machines. Note that the load balancer also controls the correlation of
Sticky and Afinity of HTTP.
Reference note

When you use HTTPS, you must set up the deployment of the SSL accelerator at the front-end of load balancer.

(2) Required software and process to be started on each machine
If you are using load balancer, the required software and processes to be started on the respective machines is same as
in configurations where servlets and JSPs are the access points. For details, see 3.4.2 Configuration where servlets and
JSPs are used as access points (when using in-process HTTP server).

3.7.3 Load balancing with the CORBA Naming Service (in the case of
Session Beans and Entity Beans)

This subsection describes the configuration where load is balanced by using the round robin search functionality of the
CORBA Naming Service present on the J2EE server (in-process), when the access point component is either a Session
Bean or an Entity Bean.

(1) Features of the system configuration
You can use this configuration when the access point of the application running on the J2EE server is either a Session
Bean or an Entity Bean. The EJB client application is the client. The EJB client application distributes the request
distribution destinations by looking up the object reference in the round robin format from the logical Naming Service
registered in the system properties. The Session Bean and Entity Bean, however, need to be started with the same
name (same optional name) in the respective J2EE servers.

The EJB client application accesses the same J2EE server from the time the Naming Service of the J2EE server is
looked up in the round robin format until the Naming Service is looked up again.

The following figure shows an example configuration of load balancing with a Session Bean and an Entity Bean as the
access points:

3. Determining the System Configuration (J2EE Application Execution Platform)

75

Figure 3‒39: Example configuration of load balancing with a Session Bean and an Entity Bean as the
access points

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• Scalability and availability of a Session Bean and an Entity Bean can be ensured.

• You can prepare multiple Application Server instances and then select and access the CORBA Naming
Service in the round robin format from the EJB client, and thus distribute the load.

• When an error occurs in a specific Application Server or when maintenance is required, the corresponding
Application Server is not accessed after the EJB client application detects the termination of the J2EE server.
As a result, reduced system operation is possible.

Flow of requests
Requests are sent from the EJB client application to a Session Bean and an Entity Bean forming the access points
on the J2EE server. At this point, the EJB client application selects the Naming Service of the J2EE server in the
round robin format and looks up the object reference.

(2) Required software and the processes to be invoked on the respective machines
The required software and the processes to be invoked on the respective machines during load balancing with the
CORBA Naming Service are the same as in the configuration that uses Session Beans and Entity Beans as the access
points. See 3.4.3 Configuration with Session Beans and Entity Beans as access points.

3.7.4 Load balancing when using CTM (for Stateless Session Bean)
This is a configuration for load balancing using CTM when the access point component is Stateless Session Bean.

3. Determining the System Configuration (J2EE Application Execution Platform)

76

(1) Features of the system configuration
This configuration is implemented using CTM when the access point of the application running on the J2EE server is
Stateless Session Bean. This subsection describes the cases when clients are the EJB client applications.

An EJB client application looks up the object reference in round robin format from global the CORBA Naming
Service registered in the system properties, and deploys the distribution destination of requests. However, you must
start the Stateless Session Bean with the same name (same alias) on each J2EE server.

The following figure shows an example of the configuration of load balancing using CTM for Stateless Session
Beans:

Figure 3‒40: Example of configuration of load balancing by CTM for Stateless Session Beans

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• High availability can be secured by implementing load balancing of Stateless Session Beans.

• Load balancing between the J2EE servers can be implemented by looking up the global CORBA Naming
Service in round robin format from an EJB client and by distributing the requests by CTM.

• Stateless Session Beans can be easily scaled out, and therefore, a higher operation usage rate of Application
Server can be achieved.

3. Determining the System Configuration (J2EE Application Execution Platform)

77

• If an error occurs on a particular J2EE server, degeneration operation of the system is possible by scheduling
the requests on the other J2EE server by CTM. The J2EE server, where the error is detected, cannot be
accessed from the EJB client application.

Requests flow
The request is sent through CTM from the EJB client to the Stateless Session Bean on the J2EE server, which is
the access point. In such cases, the EJB client looks up the name of the EJBHome object reference of the Stateless
Session Bean from the global CORBA Naming Service. After that, the request is distributed to the J2EE server on
the appropriate Application Server machine by CTM.

When balancing the load using CTM, the global CORBA Naming Service can be deployed on an independent
machine. The machine where the global CORBA Naming Service is deployed is called the integrated naming
scheduler server..

The following figure shows the configuration of a system where an integrated naming scheduler server is deployed:

Figure 3‒41: Example of configuration of load balancing by CTM for Stateless Session Bean (when
deploying integrated naming scheduler server)

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• High availability can be secured by implementing the load balancing of Stateless Session Beans.

• The availability of the Naming Service can be secured by creating a replica of the integrated naming scheduler
server and multiple deployments.

3. Determining the System Configuration (J2EE Application Execution Platform)

78

• Load balancing between J2EE servers is implemented by looking up the global CORBA Naming Service in
round robin format from the EJB client and by distributing the requests using CTM.

• Since Stateless Session Beans can be easily scaled out, the operation rate of the application also improves. It is
not required to change the list of the global CORBA Naming Service defined by EJB client during scale out.

• If an error occurs on a particular J2EE server, degeneration operation of the system is possible by scheduling
the requests on the other J2EE server using CTM. The J2EE server, where the error is detected, cannot be
accessed from the EJB client application.

• The EJB client looks up the name of the EJBHome object reference of the Stateless Session Bean from the
global CORBA Naming Service on the integrated naming scheduler server. After that, the process is
distributed to the CTM daemon of Application Server.

(2) Required software and processes to be started on each machine
This subsection describes the required software and processes to be started on the respective machines, for load
balancing using CTM.

(a) Application server machine

You must install Application Server on the Application Server machine.

The processes to be started are as follows:

• J2EE server

• Administration Agent

• PRF daemon

• Global CORBA Naming Service

• CTM processes (CTM daemon and CTM regulator)

• CTM domain manager

• Smart Agent

(b) Integrated naming scheduler server machine

For the system configuration where integrated naming scheduler server is deployed, you must install Application
Server on the integrated naming scheduler server machine.

The processes to be started are as follows. It is not required to start the J2EE server.

• Global CORBA Naming Service

• CTM processes (CTM daemon)

• CTM domain manager

• Smart Agent

• Administration Agent

• PRF daemon

(c) Management Server machine

You must install Application Server on the Management Server machine.

The process to be started is as follows:

• Management Server

(d) EJB client machine

You must install Application Server or uCosminexus Client (In Windows) on the EJB client machine.

The process of EJB client application is to be started.

3. Determining the System Configuration (J2EE Application Execution Platform)

79

3.8 Determining the configuration for asynchronous
communication between servers

This section describes the system configuration when there is an asynchronous communication between servers using
a Message-driven Bean. The Message-driven Bean is the access point.

System configurations where a Message-driven Bean is used for asynchronous communication include the system
configurations using Cosminexus JMS provider, system configurations using TP1/Message Queue, and system
configurations using Cosminexus RM. JMS provider and Cosminexus RM are component software of Application
Server. In a system using Cosminexus RM, you cannot distribute loads using the instance pool of the Message-driven
Bean.

3.8.1 Configuration in which a Message-driven Bean is used as the
access point (when using Cosminexus JMS provider)

This subsection describes the configuration where a Message-driven Bean of the J2EE server is invoked using
Cosminexus JMS provider.

In this configuration, Application Server on receiving machine is invoked via CJMSP Broker from Application Server
on the sending machine that sends the message. An application configured with servlets, JSPs, Entity Beans, Session
Beans, or Message-driven Beans operates in Application Server on the sending machine. The component that is the
access point on the receiving machine is a Message-driven Bean.

(1) Features of the system configuration
This configuration is one of the most basic message-driven systems.

The following figure shows an example of the message-driven system configuration for using Cosminexus JMS
provider:

Figure 3‒42: Example of the message driven system configuration (for using Cosminexus JMS provider)

3. Determining the System Configuration (J2EE Application Execution Platform)

80

Note: For other legend items, see 3.2 Description of the system configuration.

Features
In Application Server on the sending machine, J2EE client applications that use a JMS interface and CJMSP
resource adapter are used for sending messages.

Request flow
The Message-driven Bean, which is the access point, operates on the J2EE server of Application Server on the
receiving machine. The CJMSP resource adapter library in the resource adapter operates on the J2EE server of
Application Server on the sending machine and the receiving machine.
The request message from the J2EE application of Application Server on the sending machine is sent through
CJMSP Broker, and the Message-driven Bean on Application Server on the receiving machine is invoked.
Note that you can allocate Application Server for the sending machine, Application Server for the receiving
machine, and CJMSP Broker on the same machine.

(2) Required software and processes to be started on each machine
This subsection describes the required software and processes to be started on the respective machines.

(a) Application Server machine (Application Server machine on the sending machine)

You must install Application Server on the Application Server machine (Application Server machine on the server
machine).

The following are the processes to be started:

• J2EE server

• Administration Agent

• PRF daemon

(b) Application Server machine (Machine for allocating CJMSP Broker)

You must install Application Server on the machine where CJMSP Broker is allocated.

CJMSP Broker is the process to be started. Furthermore, Management Server does not manage the CJMSP Broker.

(c) Application Server machine (Application Server machine on the receiving machine)

You must install Application Server on the client machine (Application Server machine on the client machine).

The processes to be started are as follows:

• J2EE server

• Administration Agent

• PRF daemon

(d) Management Server machine

You must install Application Server on the Management Server machine.

The process to be started is as follows:

• Management Server

3.8.2 Configuration in which a Message-driven Bean is used as the
access point (when using TP1/Message Queue)

This subsection describes configurations in which a Message Queue server operated by TP1/Message Queue is used as
the access point.

3. Determining the System Configuration (J2EE Application Execution Platform)

81

(1) Features of the system configuration
This configuration is one of the most basic message-driven systems.

The following figure shows an example of the message-driven system configuration for using TP1/Message Queue:

Figure 3‒43: Example of the message driven system configuration (for using TP1/Message Queue)

Note: For other legend items, see 3.2 Description of the system configuration.

Features
A Message Queue client application and TP1/Message Queue that send TP1/Message Queue messages are used at
the client. Note that the Message Queue client application is a J2EE application that uses a JMS interface.

Request flow
The Message-driven Bean, which is the access point, operates on the J2EE server of the Application Server at the
server side. TP1/Message Queue - Access library, which exists in the resource adapter, operates on the J2EE
server of the Application Server at the server side, and on the J2EE server of the Application Server at the client
side.
The request message (message) is sent from the J2EE application of the Application Server at the client side
through TP1/Message Queue, and invokes the Message-driven Bean on the Application Server at the server side.

(2) Required software and processes to be started on each machine
This subsection describes the required software and processes to be started on the respective machines. For details
about the processes to connect to resource, see 3.6 Determining the transaction type.

(a) Application server machine (Application Server machine at server side)

You must install Application Server and TP1/Message Queue - Access on the Application Server machine
(Application Server machine at the server side).

The processes to be started are as follows:

3. Determining the System Configuration (J2EE Application Execution Platform)

82

• J2EE server

• Administration Agent

• PRF daemon

(b) Message Queue server machine

You must install TP1/Message Queue on the Message Queue server machine.

The process of TP1/Message Queue must be started.

(c) Application server machine (Application Server machine at client side)

You must install Application Server and TP1/Message Queue - Access on the client machine (Application Server
machine at the client side).

The processes to be started are as follows:

• J2EE server

• Administration Agent

• PRF daemon

(d) Management Server machine

You must install Application Server on the Management Server machine.

The process to be started is as follows:

• Management Server

3.8.3 Configuration when using a Message-driven Bean as an access
point (when using Cosminexus RM)

This subsection describes the configuration when using a database (HiRDB or Oracle) that is integrated with
Cosminexus RM, as the client.

(1) Features of the system configuration
This is one of the most basic message-driven systems.

The following figure shows an example configuration of a message-driven system when using Cosminexus RM:

3. Determining the System Configuration (J2EE Application Execution Platform)

83

Figure 3‒44: Example configuration of a message-driven system (when using Cosminexus RM)

Note: For other legend items, see 3.2 Description of the system configuration.

Features
This configuration uses the client application of Cosminexus RM that sends messages to Cosminexus RM and the
database server as a client. The Cosminexus RM client application refers to a J2EE application that uses a JMS
interface.

Flow of requests
The Message-driven Bean forming the access point runs on the J2EE server of the server-side application server.
The library of Cosminexus RM that acts as the resource adapter runs on the J2EE server of the server-side
application server as well as the J2EE server of the client-side application server.
The requests (messages) from the J2EE application of the client-side application server are sent through the
queues implemented on the database to invoke the Message-driven Bean that runs on the server-side application
server.

(2) Required software and the processes to be invoked on the respective machines
This paragraph describes the required software and the processes to be invoked on the respective machines. For details
about the processes used for connecting to the resources, see 3.6 Determining the transaction type.

(a) Server-side application server machine

You need to install Application Server on the server-side application server machine.

Invoke the following processes:

• J2EE server

3. Determining the System Configuration (J2EE Application Execution Platform)

84

• Administration Agent

• PRF daemon

(b) Database server machine

You need to install either HiRDB or Oracle on the database server machine.

Invoke the HiRDB or Oracle processes.

(c) Client machine (client-side application server machine)

You need to install Application Server on the client machine (client-side application server machine).

Invoke the following processes:

• J2EE server

• Administration Agent

• PRF daemon

(d) Management Server machine

You need to install Application Server on the Management Server machine.

Invoke the following process:

• Management Server

3.8.4 Load balancing using the Message-driven Bean instance pool
(when using TP1/Message Queue)

This subsection describes the load balancing according to the instance pool count of Message-driven Beans for each
J2EE server, when the access point component is a Message-driven Bean.

Load balancing with this configuration is possible only when you access Message-driven Beans using TP1/Message
Queue. When accessing Message-driven Beans using Cosminexus RM, the load balancing with the instance pool of
Message-driven Beans is not possible.

(1) Features of the system configuration
In this configuration, the access point of the application running on the J2EE server is a Message-driven Bean, and
this configuration can be used for message-driven systems. When the message from the Message Queue client arrives
in TP1/Message Queue on the Message Queue server, the Message-driven Bean is invoked depending on the number
of instances of Message-driven Beans pooled on the J2EE server.

The following figure shows an example of the configuration of load balancing for Message-driven Beans:

3. Determining the System Configuration (J2EE Application Execution Platform)

85

Figure 3‒45: Example of configuration of load balancing for Message-driven Bean

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• Load balancing of Message-driven Beans leads to high availability.

• Loading of the Application Server can be balanced by preparing multiple Application Server instances.

• If an error occurs in the Application Server at server side or if the maintenance of the Application Server is
required, the J2EE server on the Application Server of the relevant TP1/Message Queue cannot be accessed
enabling the degeneration operation.

Request flow
The request (message) is sent to the access point Message-driven Bean on the J2EE server of the Application
Server at the server side from the J2EE application running on the J2EE server of the Application Server at the
client side, through TP1/Message Queue. When a message arrives in TP1/Message Queue, the Message-driven
Bean on the J2EE server of the Application Server that exists at the server side is invoked. The requests are
distributed according to the instance pool count of Message-driven Beans.

(2) Required software and processes to be started on each machine
The required software and processes to be started when balancing the load using the instance pool of Message-driven
Beans is the same as for configurations in which a Message-driven Bean is used as the access point. For details, see
3.8.2 Configuration in which a Message-driven Bean is used as the access point (when using TP1/Message Queue).

3. Determining the System Configuration (J2EE Application Execution Platform)

86

3.9 Determining the deployment of the operation
management process

This section describes the deployment of Management Server, a process used for operation management. Management
Server is a process used to manage and operate the entire Application Server system configured on various hosts in a
batch. You can use Management Server to perform the environment settings of servers on each host and run the
servers in a batch. Also, you can understand the state of the entire system using Management Server.

The configurations explained here are as follows:

• Configuration wherein Management Server is deployed on a Management Server machine (Management Server
Model)

• Configuration wherein the Management Server is deployed on each machine (Model for managing each host)

• Configuration when operating with commands

Note that the machine on which Management Server is deployed in the Management Server model is called the
management server.

Reference note

• You use the agent program called Management Agent to monitor or collect the statistics of J2EE servers, SFO servers,
or batch servers using the Management Server functionality. Include one agent program each in a J2EE server, SFO
server, or batch server on the host to be monitored. Also, include one agent program each in a J2EE server included in a
cluster, when using cluster configuration.

• When a LAN where a server for business is deployed and a LAN where a server for management are deployed
separately, you can also place the Management Server in the LAN where the server for management is deployed. You
must take care of the environment settings when the LANs are separated and when one machine connects to multiple
network segments. For details, see, Appendix D Notes for Setting the Environment for Connecting to the Multiple
Network Segments of a Single Machine in the uCosminexus Application Server Management Portal Guide.

3.9.1 Configuration wherein the Management Server is deployed on
each Management Server

This subsection describes the configuration where you deploy a single Management Server on a domain, when
performing operations using Management Server.

(1) Features of the system configuration
In this configuration, the management server machine is deployed for each domain on a system that consists of
multiple Application Server instances. You can perform operation management and monitoring of each domain
(Management domain) that is already defined in Management Server. Management Server on the management server
machine executes the management operations based on Administration Agent deployed on each Application Server
machine.

The following figure shows an example of a configuration wherein Management Server is deployed on the
Management Server machine. In this example, the resource manager to be connected to is omitted.

3. Determining the System Configuration (J2EE Application Execution Platform)

87

Figure 3‒46: Example of configuration for deploying the Management Server on a management server

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• Suitable for batch operation of the systems.

• Hitachi recommends that you prepare the machine for an isolated management server. You can, however,
deploy Management Server on a single Application Server machine in the system.

(2) Processes invoked on the respective machines
This subsection describes the required software and processes to be invoked on the respective machines, in the case of
a configuration wherein Management Server is deployed on a Management Server machine.

(a) Management Server machine

You need to install Application Server on the management server machine.

Invoke the following process:

• Management Server

3. Determining the System Configuration (J2EE Application Execution Platform)

88

Tip
If the management server machine cannot be prepared, you can configure a system where an Application Server
instance present in the domain also performs the dual function of Management Server.

In such a case, deploy the processes of Management Server on the Application Server machine that functions as the
Management Server machine.

(b) Application server machine

For performing the operation management on each Management Server, invoke the following process on the
respective Application Server machine:

• Administration Agent

The required software and the processes to be invoked on the Application Server machine are different for each
system configuration, depending on the used functions. Deploy the required software and the processes, depending on
the used functions.

3.9.2 Configuration for deploying Management Server on each machine
This subsection describes the configuration wherein you deploy Management Server on each Application Server
machine, when performing operations using Management Server.

(1) Features of the system configuration
In this configuration, Management Server is deployed on each Application Server machine in a system that has
multiple Application Server machines. You can perform operation management and can monitor each Application
Server system. The Management Server executes the management operations based on Administration Agent.

The following figure shows an example of the configuration for deploying Management Server on each machine. In
this example, the resource managers to be connected are omitted.

3. Determining the System Configuration (J2EE Application Execution Platform)

89

Figure 3‒47: Example of configuration for deploying the Management Server on each machine

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• Suitable for operations on each Application Server machine.

(2) Required software and processes to be invoked on the respective machines
This subsection describes the required software and processes to be invoked on the respective machines in the case of
a configuration wherein Management Server is deployed on each machine.

(a) Application server machine

For performing the operation management on each machine, invoke the following processes on the respective
Application Server machines:

• Management Server

• Administration Agent

The required software and processes to be invoked on the Application Server machine are different for each system
configuration, depending on the functions used. You deploy the required software and processes, depending on the
used functions.

3. Determining the System Configuration (J2EE Application Execution Platform)

90

3.9.3 Configuration when operating with commands
This subsection describes the configuration when operating without using the Management Server.

When Management Server is not used, operate Application Server by editing the definition file and by executing the
server management commands. In such a case, you do not require Administration Agent and Management Server on
the respective Application Server instances. You consider this configuration, when managing a system using operation
support software other than Application Server.

3. Determining the System Configuration (J2EE Application Execution Platform)

91

3.10 Determining the inheritance of session information
This section describes the system configuration used for inheriting session information. As a prerequisite for this
configuration, the J2EE servers have to be made redundant by the load balancer.

The following are the three types of configurations for inheriting session information:

• Configuration using a database (When using the database session failover functionality)

• Configuration using an EADs server (When using the EADs session failover functionality)
For a configuration using an EADs server, you can use the following two types of configurations:

• Configuration in which the EADs server is allocated to a computer different from the J2EE server

• Configuration in which the EADs server is allocated to the same computer as the J2EE server

• Configuration using a SFO server (When using the memory session failover functionality)
You can deploy one or many systems on SFO server when using a configuration with SFO server. To minimize
the effect of any error occurring in the SFO server, Hitachi recommends that you deploy one SFO server for one
J2EE application. This section describes the following two types of configuration:

• Configuration when many SFO servers exist in a system

• Configuration when there is only one SFO server in a system

3.10.1 Configuration using a database (database session failover
functionality)

This subsection describes the configuration where session information is inherited using a database.

(1) Features of system configuration
You use a database for saving the session information. If a database is used for saving the business information, you
can use the same database for saving the session information.

The following figure shows an example of a configuration where session information is inherited using a database:

3. Determining the System Configuration (J2EE Application Execution Platform)

92

Figure 3‒48: Example of a configuration where session information is inherited using a database

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• When an error occurs in a specific J2EE server, the session information is inherited in a separate J2EE server.

• When an error occurs in a database server, the session information saved in the database is left as is. You can
use that information after restarting the database server.

Flow of requests
The global session information in the J2EE server is duplicated and managed in the database.
A J2EE server receives the request and when the session is established, the global session information saved in the
database is locked. After completing the processing of the J2EE application, the global session information of the
database is updated in accordance with the global session information contents of the J2EE server. The lock is
then released.
When there is an error in the J2EE server, the global session information saved in the database is acquired from
another J2EE server, and the session information is inherited.

(2) Processes invoked on the respective machines
This point describes the software and processes required on the respective machines:

3. Determining the System Configuration (J2EE Application Execution Platform)

93

(a) Application Server machine

You must install the software required for establishing a connection with the database when using the database session
failover functionality. The following table describes the required software:

Database used Required software

HiRDB HiRDB Type4 JDBC Driver

Oracle Oracle JDBC Thin Driver

Software other than those mentioned in the above table and any other processes to be invoked differ in each system
configuration, depending on the functions to be used. Deploy the required software and processes as per the functions
to be used.

(b) Database server machine

Install any of the following software on a machine where the database will run:

• HiRDB (When connecting to HiRDB)

• Oracle (When connecting to Oracle)

Start the processes required in respective databases.

(c) Management Server machine

You must install Application Server on the Management Server machine.

The process to be invoked is as follows:

• Management Server

(d) Web client machine

A Web browser is required on the Web client machine.

3.10.2 Configuration in which the EADs server is allocated to a computer
different from the J2EE server (EADs session failover
functionality)

This subsection describes a configuration in which the EADs server is allocated to a computer different from the J2EE
server and the session information is inherited.

(1) Features of the system configuration
Allocate the EADs server used for storing the session information to a computer different from the J2EE server. Also,
operate the EADs client, used for exchanging the data between the J2EE server and EADs server, on the J2EE server.

3. Determining the System Configuration (J2EE Application Execution Platform)

94

Figure 3‒49: Example of a configuration using an EADs server allocated to a computer different from the
J2EE server and inheriting the session information

For other legend items, see 3.2 Description of the system configuration.

Features

• When an error occurs in a specific J2EE server, the session information can be inherited in another J2EE
server.

• Even if an error occurs in an EADs server, the EADs servers are multiplexed, so the session information does
not disappear. A connection is automatically established with another multiplexed EADs server, and therefore,
you can use the session information stored in the EADs server cache to continue the business as it is.

Flow of requests
The global session information on a J2EE server is duplicated and managed with an EADs server.
When the J2EE server receives a request and the processing of the J2EE application is complete, the global
session information on the EADs server is updated according to the contents of the global session information on
the J2EE server.
If an error occurs in the J2EE server, the global session information stored in the EADs server cache is obtained
from another J2EE server and the session information is inherited.

(2) Processes invoked on each computer
This subsection describes the software and processes required on each computer.

3. Determining the System Configuration (J2EE Application Execution Platform)

95

(a) Application Server computer

To use the EADs session failover functionality, you must install the EADs client used for connecting to the EADs
server. The following table describes the required software:

Classification Required software

EADs client Elastic Application Data store Client for Application Server 02-00

(b) EADs server computer

Install the following software on the computer where the EADs server will run:

Classification Required software

EADs server Elastic Application Data store for Application Server 02-00

(c) Management Server computer

You must install Application Server on the Management Server computer.

The process to be invoked is as follows:

• Management Server

(d) Web client computer

A Web browser is required on the Web client computer.

3.10.3 Configuration in which the EADs server is allocated to the same
computer as the J2EE server (EADs session failover functionality)

This subsection describes a configuration in which the EADs server is allocated to the same computer as the J2EE
server and the session information is inherited.

(1) Features of the system configuration
Allocate the EADs server used for storing the session information to the same computer as the J2EE server. This
configuration is applicable when Linux is used as the OS.

Also, operate the EADs client, used for exchanging data between the J2EE server and EADs server, on the J2EE
server.

The following figure shows an example configuration for using an EADs server allocated to the same computer as the
J2EE server and inheriting the session information.

3. Determining the System Configuration (J2EE Application Execution Platform)

96

Figure 3‒50: Example configuration for using an EADs server allocated to the same computer as the J2EE
server and inheriting the session information

For other legend items, see 3.2 Description of the system configuration.

Features

• When an error occurs in a specific J2EE server, the session information can be inherited in another J2EE
server.

• Even if an error occurs in an EADs server, the EADs servers are multiplexed, so the session information does
not disappear. A connection is automatically established with another multiplexed EADs server, and therefore,
you can use the session information stored in the EADs server cache to continue the business as is.

Flow of requests
The global session information on a J2EE server is duplicated and managed with an EADs server.
When the J2EE server receives a request and the processing of the J2EE application is complete, the global
session information on the EADs server is updated according to the contents of the global session information on
the J2EE server.
If an error occurs in the J2EE server, the global session information stored in the EADs server cache is obtained
from another J2EE server and the session information is inherited.

(2) Processes invoked on each computer
This subsection describes the software and processes required on each computer.

3. Determining the System Configuration (J2EE Application Execution Platform)

97

(a) Application Server computer

To use the EADs session failover functionality, you must install the EADs server, and the EADs client used for
connecting to the EADs server. The following table describes the required software:

Classification Required software

EADs server Elastic Application Data store for Application Server 02-00

EADs client Elastic Application Data store Client for Application Server 02-00

(b) Management Server computer

You must install Application Server on the Management Server computer.

The process to be invoked is as follows:

• Management Server

(c) Web client computer

A Web browser is required on the Web client computer.

3.10.4 Configuration where many SFO servers exist in a system
(Memory session failover functionality)

This subsection describes the configuration where many SFO servers exist in a system.

(1) Features of the system configuration
Prepare an SFO server for each J2EE application running on the J2EE server. We recommend that you deploy the
J2EE application and the SFO server in a one-to-one relationship. This can help to minimize the effect of a problem
occurring in the SFO server. On the other hand, if a single SFO server is deployed for multiple J2EE applications, you
cannot inherit the session information of all the J2EE applications corresponding to that SFO server when an error
occurs in the SFO server.

SFO server applications run on the SFO server.

The following figure shows an example configuration when multiple SFO servers exist in a system. In this example,
the SFO servers and the J2EE servers are deployed on different machines. In this configuration, the machines with the
SFO servers deployed, are called the session failover servers.

3. Determining the System Configuration (J2EE Application Execution Platform)

98

Figure 3‒51: Example configuration when multiple SFO servers exist in a system

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• If an error occurs in a specific J2EE server, the session information can be inherited in another J2EE server.

• Similarly, if an error occurs in an SFO server, only the corresponding J2EE application is affected.

Flow of requests
The SFO server manages the global session information present on the J2EE server as redundant information.
When a J2EE server receives a request and a session is established, the global session information present on the
SFO server is locked by the filter for session failover on the J2EE server. When the processing of the J2EE
application ends, the global session information present on the SFO server is updated as per the contents of the
global session information present on the J2EE server. After this, the filter for session failover releases the lock on
the global session information present on the SFO server.
If an error occurs in a J2EE server, another J2EE server obtains the global session information present on the SFO
server and the session information is inherited.

(2) Processes invoked on the respective machines
The following subsections explain the software and the processes required on the respective machines:

3. Determining the System Configuration (J2EE Application Execution Platform)

99

(a) Application server machine

The required software and the processes to be invoked when using the memory session failover functionality differ in
each system configuration, depending on the function that is used. Deploy the required software and the processes as
per the functions used.

(b) Session failover server machine

You need to install Application Server on the session failover server machine.

Invoke the following processes:

• SFO server

• Administration Agent

• PRF daemon

(c) Management server machine

You need to install Application Server on the management server machine.

Invoke the following process:

• Management Server

(d) Web client machine

A Web client machine requires a Web browser.

3.10.5 Configuration where only a single SFO server exists in a system
(Memory session failover functionality)

This subsection describes the configuration where only a single SFO server exists in the system.

(1) Features of the system configuration
Provide a single SFO server for the multiple J2EE applications running on the J2EE server.

SFO server applications run on the SFO server.

The following figure shows an example configuration when only a single SFO server exists in the system. In this
example, the SFO server and the J2EE servers are deployed on different machines.

3. Determining the System Configuration (J2EE Application Execution Platform)

100

Figure 3‒52: Example configuration when only a single SFO server exists in a system (when a session
failover server is deployed)

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• If a problem occurs in a specific J2EE server, the session information can be inherited in another J2EE server.

• If a problem occurs in the SFO server, the session information cannot be inherited by all J2EE applications
running on the system.

Flow of requests
The SFO server manages the global session information present on the J2EE server as redundant information.
When a J2EE server receives a request and a session is established, the global session information present on the
SFO server is locked by the filter for the session failover that is present on the J2EE server. When the processing
of the J2EE application finishes, the global session information present on the SFO server is updated as per the
contents of the global session information present on the J2EE server. After this, the filter for the session failover
releases the lock on the global session information present on the SFO server.
If an error occurs in the J2EE server, another J2EE server obtains the global session information present on the
SFO server and the session information is inherited.

You can deploy the SFO server on the same machine as the J2EE server.

The following figure shows an example configuration with the SFO server deployed on the same machine as the J2EE
server:

3. Determining the System Configuration (J2EE Application Execution Platform)

101

Figure 3‒53: Example configuration with the SFO server deployed on the same machine as the J2EE
server

Note: For other legend items, see 3.2 Description of the system configuration.

The features and flow of requests are similar to the deployment of the session failover server as a separate machine.

! Important note

In this configuration, you can handle the process failure in the J2EE server, but you cannot handle the hardware failure on
the Application Server 1 machine. To handle hardware failure on the Application Server machine, deploy the SFO server on
a separate machine.

(2) Processes to be invoked on the respective machines
The following subsections explain the software and the processes required on the respective machines:

(a) Application server machine

The required software and the processes invoked when using the session failover function are different for each
system configuration, depending on the function used. Deploy the required software and processes as per the functions
used.

Invoke the following process when the SFO server is deployed in the same machine as the J2EE server:

• SFO server

(b) Session failover server machine

You need to install Application Server on the session failover server machine.

3. Determining the System Configuration (J2EE Application Execution Platform)

102

Invoke the following processes:

• SFO server

• Administration Agent

• PRF daemon

If the SFO server is deployed on the same machine as the J2EE server, you do not need the session failover server
machine.

(c) Management server machine

You need to install Application Server on the management server machine.

Invoke the following process:

• Management Server

(d) Web client machine

A Web client machine requires a Web browser.

3. Determining the System Configuration (J2EE Application Execution Platform)

103

3.11 Determining node switching when cluster software
is used and an error occurs

This subsection describes the system configuration for switching nodes when cluster software is used and an error
occurs.

In Application Server systems, the respective OS uses the following cluster software:

• In Windows
Windows Server Failover Cluster

• In AIX, HP-UX, or Linux
HA monitor

• In Solaris
The system linked to the cluster software cannot be operated.

In systems configured with Application Server, the following configurations can be realized using cluster software.
Note that these configurations must be operated using Management Server.

• Configuration where executing node and standby node of Application Server are in 1-to-1 ratio
This configuration consists of one Application Server machine in the standby node for one Application Server
machine in the executing node. If an error occurs on the Application Server machine in the executing node and the
machine stops or if Administration Agent ends, the cluster software starts the Application Server machine in the
standby node, and the processes are switched. Whether a shared disk device is necessary depends on whether you
use a transaction service. Note that when you use Windows Server Failover Cluster, you need a shared disk device
even if a transaction service is not used.

• Configuration where executing node and standby node of management server are in a 1-to-1 ratio
This configuration consists of one management server machine in the standby node corresponding to one
management server machine in the executing node. If an error occurs on the management server machine in the
executing node, and the machine stops or if the Management Server process ends, the cluster software starts the
management server machine in the standby node, and the processes are switched.

• Configuration in which the executing node and standby node of Application Server are at mutual standby
This is one of the configurations where the executing node and the standby node of Application Server are in 1-
to-1 ratio. Deploy a J2EE server of the same type on each Application Server machine, and start a different J2EE
server. Each Application Server instance will function as the standby node for each other while operating as the
executing node. If an error occurs in any of the nodes, the nodes are switched. As a result, operations with very
little wastage are possible on a few Application Server machines.
With this configuration, Management Server is started on each Application Server machine, and their respective
different management domains are controlled.

• Configuration where one standby node is used for N executing nodes (configuration in which a recovery
server is used)
If a global transaction is used in a configuration where J2EE servers are redundant, this system configuration is
used to conclude transactions when an error occurs on a specific J2EE server.
Use a load balancer to make N J2EE servers redundant.

• Configuration where the executing node and standby node of the host unit management model have an n-
to-1 ratio
This system is used for allocating many executing nodes (1-to-N machines) of Application Server (Host) instances
and one machine in the standby node, and allocating the respective Management Server and Administration Agent
instances. When there is a failure on an Application Server machine in the executing node, you can continue the
business by performing node switching to the Application Server machine in the standby node.

3. Determining the System Configuration (J2EE Application Execution Platform)

104

3.11.1 Configuration in which executing node and standby node of
Application Server are in 1-to-1 ratio (when transaction service is
not used)

This subsection describes the configuration where the executing node and standby node of Application Server are in a
1-to-1 ratio, and the transaction service is not used.

(1) Features of the system configuration
This is a system configuration that does not use transaction service when using local transaction.

This subsection also describes the configuration in which Application Server performs the node switching. For details
about the configuration in which the node switching is performed by Management Server, see 3.11.3 Configuration in
which executing node and standby node of Management Server are in 1-to-1 ratio.

The following figure shows an example of configuration where transaction service is not used:

Figure 3‒54: Example of system configuration where executing node and standby node are in 1-to-1 ratio
and cluster software is used (when transaction service is not used)

3. Determining the System Configuration (J2EE Application Execution Platform)

105

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• The executing node and standby node are configured in a 1-to-1 ratio.

• A shared disk device is not required when you use HA monitor. However, a shared disk device is required
when you use Windows Server Failover Cluster. The above figure shows the configuration with HA monitor.

• When the database has a cluster configuration and if Application Server identifies only the virtual address
(Logical address), you can still establish the connection.

• For details about allocating Management Server and Application Server on the same machine, see 3.11.3
Configuration in which executing node and standby node of Management Server are in 1-to-1 ratio.

Flow of requests
The client recognizes one machine for both the Application Server instance in the executing node and instance in
the standby node. All the requests are sent to the Application Server in the executing node.

Node switching flow
Node switching is executed when there is a failure in the Application Server machine in executing node. Node
switching is executed when the OS or Administration Agent is down. Also, node switching is performed when a
command is executed explicitly for node switching, or when there is an event where node switching is to be
performed for cluster software.
On executing node switching, Administration Agent of Application Server in the standby node and the processes
that were stopped until then are started.

(2) Processes to be invoked on the respective machines
The following subsections describe the software and processes required on the respective machines:

(a) Application Server machine (executing node)

The following are the processes that must be started for using the cluster software:

• Administration Agent

The required software and the processes to be invoked on the Application Server machine are different for each
system configuration depending on the used functions. Allocate the required software and processes depending on the
used functions.

(b) Application Server machine (standby node)

You must match the configuration of software installed on the Application Server machine in the standby node with
the executing node. However, the process will not start unless node switching takes place.

(c) Management Server machine

You must install Application Server on the Management Server machine.

Invoke the following process:

• Management Server

(d) Client machine

Install the following software on client machine:

For Web client configuration
Web browser

For EJB client configuration
uCosminexus Client (in Windows), Application Server

3. Determining the System Configuration (J2EE Application Execution Platform)

106

3.11.2 Configuration in which executing node and standby node of
Application Server are in 1-to-1 ratio (when using transaction
service)

This subsection describes the configuration where the executing node and the standby node of Application Server are
in 1-to-1 ratio and the transaction service is used.

(1) Features of the system configuration
This is a system configuration that uses a transaction service when using a global transaction. A shared disk device is
required in such cases.

This subsection also describes the configuration where node switching is performed by Application Server. For details
about the configuration where node switching is performed by Management Server, see 3.11.3 Configuration in which
executing node and standby node of Management Server are in 1-to-1 ratio.

The following figure shows an example of a configuration where a transaction service is used:

Figure 3‒55: Example of system configuration where executing node and standby node of Application
Server are in 1-to-1 ratio and cluster software is used (when transaction service is used)

Note: For other legend items, see 3.2 Description of the system configuration.

3. Determining the System Configuration (J2EE Application Execution Platform)

107

Features

• The executing node and standby node are configured in a 1-to-1 ratio.

• A shared disk device is required.

• When the database has a cluster configuration and if Application Server identifies only the virtual address
(Logical address), you can still establish the connection.

• For details about allocating Management Server and Application Server on the same machine, see 3.11.3
Configuration in which executing node and standby node of Management Server are in 1-to-1 ratio.

Flow of requests
The client recognizes one machine for both the Application Server instance in the executing node and the instance
in the standby node. All the requests are sent to Application Server in the executing node.

Node switching flow
Node switching is executed when there is a failure in the Application Server machine in executing node. Node
switching is executed when the OS or Administration Agent is down. Also, node switching is performed when a
command is executed explicitly for node switching, or when there is an event where node switching is to be
performed for cluster software.
On executing node switching, Administration Agent of Application Server in the standby node and the processes
that were stopped until then, are started. Also, the information saved to the shared disk is inherited for transaction
information.

(2) Processes to be invoked on the respective machines
The software and processes required on respective machines are the same as when the transaction service is not used.

3.11.3 Configuration in which executing node and standby node of
Management Server are in 1-to-1 ratio

This subsection describes the node switching of Management Server. The executing node and the standby node of the
management server are in a 1-to-1 Ratio.

(1) Features of the system configuration
The following figure shows an example of the configuration in which the executing node and the standby node of
Management Server are in 1-to-1 ratio.

3. Determining the System Configuration (J2EE Application Execution Platform)

108

Figure 3‒56: Example of the system configuration in which the executing node and the standby node of
the management server are set to 1-to-1 ratio using cluster software

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• The executing node and the standby node are configured in a 1-to-1 ratio. Deploy Management Server on the
respective machines.

• When you use the Windows Server Failover Cluster, a shared disk device is required.

Node switching flow
Node switching is executed when an error occurs on the Management Server machine of the executing node. Node
switching is executed when the OS or Management Server is down. In other cases, node switching is executed
when a command for node switching is execute explicitly, and when an event occurs where the node switching of
cluster software is required.
When the node switching is executed, the processes of Management Server on the Management Server machine in
the standby node are invoked.

(2) Process to be started on the respective machines
This subsection describes about the software required and the process to be started on the respective machines.

(a) Application server machine

The required software and the processes to be started on the Application Server differ in each system configuration
according to the used functions. Deploy the required software and processes according to the used functions.

(b) Management server machine (executing node)

You must install Application Server on the Management Server machine.

3. Determining the System Configuration (J2EE Application Execution Platform)

109

The process to be started is as follows:

• Management Server

(c) Management server machine (standby node)

Match the configuration of the software installed on the Application Server machine in the standby node with the
executing node. However, the process will not start until the node switching occurs.

(d) Client machine

Install the following software on the client machine:

For Web client configuration
Web browser

For EJB client configuration
uCosminexus Client (in Windows), Application Server

3.11.4 Configuration in which executing node and standby node of
Application Server are mutually standby

This subsection describes the configuration in which the executing node and the standby node of Application Server
are in 1-to-1 ratio and the respective Application Server instances are standby for each other while being operated as
the executing node. This configuration is called a mutual standby configuration. Note that the system structured with
this configuration is called a mutual node switching system.

(1) Features of the system configuration
This is one of the configurations in which one Application Server machine in the standby node is prepared for one
Application Server machine in the executing node. However, a different J2EE server is operated as the executing node
instead of stopping the Application Server in the standby node. This is called mutual standby..

When you deploy a J2EE server of the same type on each Application Server machine and start a different J2EE
server, the respective Application Server instances operate as an active node and a standby node for each other. If an
error occurs on any of the machines, the nodes are switched and processes of both J2EE servers are executed on the
other Application Server machine.

The prerequisites of this configuration are as follows:

• The CORBA Naming Service must be started in the in-process

• When you use a global transaction, you must store the transaction status file on the shared disk

• Operate using Management Server

Management Server is deployed one by one on the same machine as Application Server and is started on both the
hosts. The respective Management Server manages different management domains. The scope of the respective
management domains is within the Application Server machine where Management Server is deployed.

The following figure shows an example of the mutual node switching system. In this example, the transaction service
is used. The shared disk is required when you use the transaction service.

3. Determining the System Configuration (J2EE Application Execution Platform)

110

Figure 3‒57: Example of the configuration of mutual node switching system (for using transaction service)

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• The executing node and the standby node of this configuration are in a 1-to-1 ratio. Management Server is
deployed on the respective machines.

• Define two virtual hosts in one management domain (one machine). The system is built by considering these
virtual hosts as the host of Application Server in the executing node and the host of Application Server in the
standby node.

• One Administration Agent controls starting and stopping of the respective hosts in the management domain.
However, the IP address allocated to the respective virtual hosts is different from the IP address that is actually
used in the operation. Hence, it is defined in such a way that it is appears to operate on a different host.

• The IP addresses for each Application Server operation are dynamically allocated by the cluster software. For
sending the request from Management Server to Administration Agent, an IP address that does not move to
the other node after node switching is used.

3. Determining the System Configuration (J2EE Application Execution Platform)

111

• When you use a global transaction, a shared disk device is required. A shared disk is required for each virtual
host.

• The figure shows a LAN divided into virtual host units, but division is not required.

Node switching flow
If an error occurs on any of the Application Server machines, node switching is executed. The node switching is
executed if an error occurs in Management Server, Administration Agent, or the Cluster software. Furthermore,
node switching is also executed when a command for node switching is executed explicitly, and when an event
occurs where the node switching of the cluster software becomes mandatory.
When the node switching is executed, Administration Agent of the Application Server machine in the standby
node starts the processes of the logical server that were stopped until now.
For example, as shown in the figure, if an error occurs in Application Server 1, node switching to Application
Server 2 is executed by the cluster software, and processes of the J2EE server 1 and other logical servers are
started on Application Server by the Administration Agent of Application Server 2.

(2) Processes to be started on each machine
This subsection describes the required software and processes of the respective machines.

(a) Application server machine (executing node1/standby node 2)

You must install Application Server on the Application Server machine.

The processes that must be started on the application server machine in a mutual node switching system are as
follows:

• Administration Agent

• Management Server

The other required software and processes of Application Server differ for each system configuration according to the
used functions. Deploy the required software and processes as per the used functions.

Start the process of virtual host 1 only for node switching.

(b) Application server machine (standby node 1/executing node 2)

The configuration of the software and processes to be installed on the Application Server machine in the standby node
should be executing node1/standby node 2.

For the node switching of processes, start the process of virtual host 2 only.

(c) Client machine

Install the following software on the client machine:

For Web client configuration
Web browse

For EJB client configuration
uCosminexus Client (in Windows), Application Server

3.11.5 Configuration using server exclusive for recovery (N-to-1 recovery
system)

This subsection describes the configuration with one machine in the standby node for N machines in the executing
nodes (server exclusive for recovery). This configuration is called an N-to-1 recovery system.

(1) Features of the system configuration
This is a system configuration for resolving the transaction and releasing the resources when there is a problem in
certain J2EE server and a global transaction is used in a configuration with redundant J2EE servers. Use load balancer
to create redundant J2EE servers for N machines.

3. Determining the System Configuration (J2EE Application Execution Platform)

112

The prerequisites of this configuration are as follows:

• Used in a system using global transaction

• The CORBA Naming Service is started as in-process

• The status file of transaction is saved to shared disk

• The operations are performed using Management Server

Application Server is subject to node switching in N-to-1 recovery system.

The resource adapters used in executing node are required for standby node as well when configuring N-to-1 recovery
system. The following three types of configurations are described as an example for allocation of resource adapters
and relation with system configuration:

• When the configuration of J2EE applications and resource adapters is the same for N executing node machines

• When the configurations of J2EE applications differ and all resource adapters are identical for N executing node
machines

• When the configurations of J2EE applications and resource adapters differ for N executing node machines

The following are the examples of respective configurations:

Figure 3‒58: Example of system configuration of N-to-1 recovery system (when configuration of J2EE
applications and resource adapters is same for N executing node machines)

3. Determining the System Configuration (J2EE Application Execution Platform)

113

Note: For other legend items, see 3.2 Description of the system configuration.

Figure 3‒59: Example of system configuration of N-to-1 recovery system (when configuration of J2EE
applications differ and all resource adapters are identical for N executing node machines)

Note: For other legend items, see 3.2 Description of the system configuration.

3. Determining the System Configuration (J2EE Application Execution Platform)

114

Figure 3‒60: Example of system configuration of N-to-1 recovery system (when configuration of J2EE
applications and resource adapters differ for N executing node machines)

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• The executing node and standby node are in an N-to-1 ratio.

• A shared disk device is required. A volume group for the number of executing nodes (N) is required in the
shared disk device.

• The CORBA Naming Service is started as in-process.

• The same resource adapters as in the executing node are required in the standby node. If a separate resource
adapter is imported for each J2EE server in the executing node, you must import respective resource adapters
for J2EE server in the standby node.
Also, a J2EE application is not required in the J2EE server on the standby node.

• When the database has a cluster configuration and if Application Server identifies only the virtual address
(Logical address), you can still establish the connection.

Node switching flow
When there is a failure in any of the J2EE servers started by Application Server in the executing node and when a
J2EE server of the server exclusive for recovery is started by cluster software, the transaction used by the failed

3. Determining the System Configuration (J2EE Application Execution Platform)

115

J2EE server is stopped. Thereafter, the cluster software of the J2EE server machine that failed and the cluster
services of the corresponding standby nodes are stopped.

(2) Processes to be started on each machine
This subsection describes the required software and processes of the respective machines.

(a) Application Server machine (executing node)

You must install Application Server on the Application Server machine in the executing node.

The processes that must be started for using cluster software are as follows:

• Administration Agent

The required software and the processes to be invoked in the Application Server machine are different for each system
configuration, depending on the used functions. Allocate the required software and the processes depending on the
used functions.

(b) Application Server machine (Standby node)

You must install Application Server on the Application Server machine in the standby node.

Also, import all the resource adapters imported by J2EE server on Application Server machine of executing node.

The Application Server machine of standby node is in cold standby status.

However, the process does not start unless node switching takes place. When node switching is performed, the J2EE
server process is started in recovery mode.

(c) Management Server machine

You must install Application Server on the Management Server machine.

Invoke the following process:

• Management Server

(d) Client machine

You must install the following software on Client machine:

For a Web client configuration
Web browser

For an EJB client configuration
uCosminexus Client (In Windows), Application Server

3.11.6 Configuration in which the executing node and standby node of
the host unit management model are in an N-to-1 ratio

This subsection describes the configuration where node switching is performed for the host unit management model.

(1) Features of the system configuration
Configure the host unit management model in an N-to-1 ratio. The following is an example of the system
configuration:

3. Determining the System Configuration (J2EE Application Execution Platform)

116

Figure 3‒61: Example of the system configuration of node switching system for host unit management
model using cluster software

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• Configuration where N machines for the executing node and one machine for the standby node of Application
Server are allocated, and Management Server and Administration Agent are respectively allocated.

• Logical servers are allocated on separate hosts; however, externally they act as one logical server, whereas the
Management Server instances operate on separate hosts and each has a respective management domain.
Define one virtual host in one management domain, and respectively configure a host for the active node
Application Server and a host for the standby node Application Server.

• Use the virtual IP address allocated by the cluster software as IP address used for operations of each
Application Server, and use the actual IP address as the IP address of Management Server and Administration
Agent.

• A shared disk device is required for using a global transaction. One shared disk is required for each virtual
host.

3. Determining the System Configuration (J2EE Application Execution Platform)

117

Reference note
The virtual host controls the starting and stopping of Application Server according to Administration Agent. The
same IP address as the IP address used for operations is allocated, and the virtual host is defined in such a manner
so that visually it seems to be the same host.

Node switching flow
Node switching is execute when there is a failure on the Application Server machine in the executing node.
Execute node switching when there is a failure in Management Server, Administration Agent, or cluster software.
On executing node switching, the Administration Agent and Management Server are started by cluster software of
Application Server machine of standby node. The processes of the logical server that were stopped until then are
started by the started Administration Agent.

(2) Processes to be started on each machine
This subsection describes the required software and processes of the respective machines.

(a) Application Server machine (executing node/ standby node)

You must install Application Server on the Application Server machine.

The processes that must be started on the Application Server machine of a node switching system in the host unit
management model are as follows:

• Administration Agent

• Management Server

Depending on the functions to be used, the software required on the Application Server machine and the processes to
be invoked differ for each system configuration. Allocate the software and processes required according to the
functions used.

(b) Client machine

You must install the following software on the client machine:

For Web client configuration
Web browser

For EJB client configuration
uCosminexus Client (In Windows), Application Server

3. Determining the System Configuration (J2EE Application Execution Platform)

118

3.12 Deploying a process for the output of the
performance analysis trace file

This section describes the deployment of a program that outputs the performance analysis trace file. This process must
be deployed always on the Application Server system. Make sure that you deploy the process on the Application
Server machine. You may or may not deploy the process on the EJB client machine.

The performance analysis trace file is output by the PRF daemon (performance tracer).

(1) Features of the system configuration
Deploy the PRF daemon on a machine with Application Server and the EJB client application running.

The following figure shows an example of deploying the PRF daemon:

Figure 3‒62: Example of deploying the PRF daemon

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• The trace file for analyzing the system performance can be output.

• The trace file can be used for identifying the points where error has occurred.

Mechanism to output the performance analysis trace
When a request is processed between the client and the server, each functionality layer of Application Server or
the EJB client application outputs the performance analysis information in a buffer. The PRF daemon outputs this
trace information in the files of each machine. You can use Management Server to collect the trace information
output in the files.

(2) Required software and the processes to be invoked on the respective machines
Invoke the following process to output the performance analysis trace file:

3. Determining the System Configuration (J2EE Application Execution Platform)

119

• PRF daemon

The other required software and the processes to be invoked in Application Server are different for each system
configuration, depending on the functionality used. Deploy the required software and processes as per the
functionality used.

3. Determining the System Configuration (J2EE Application Execution Platform)

120

3.13 Determining integration with products other than
Application Server

This section describes the system configuration for integrating with products other than Cosminexus Application
Server.

The following configuration is explained here:

• Configuration when using JP1 for operation
This configuration uses JP1 as the operation management program.

• Configuration for invoking Message-driven Beans from SUP of OpenTP1 using the TP1 inbound integrated
function
Configuration for invoking Message-driven Beans of Application Server from SUP of OpenTP1 using the TP1
inbound integrated function.

• Configuration where Stateless Session Beans are invoked from a client other than the EJB client using the CTM
gateway function.
Configuration where TPBroker client or TPBroker OTM client is used as client.

3.13.1 Configuration when using JP1 for operations
This subsection describes the deployment of the operation management program when you use JP1 for operations.

When integrating with JP1/IM or using functionality, such as custom job definition and scenarios, provided by
Application Server to integrate with JP1/AJS, Management Server must be used to perform operations. For details
about determining a system configuration using Management Server, see 3.9.1 Configuration wherein the
Management Server is deployed on each Management Server or 3.9.2 Configuration for deploying Management
Server on each machine and deploy the JP1 programs. For details about the programs required for integrating with
JP1, see 12. System Operations Linked with JP1 in the uCosminexus Application Server Operation, Monitoring, and
Linkage Guide.

Note that if you use JP1/AJS, you can integrate the system without using Management Server, when you define a job
or a scenario without using the Application Server functionality. In this case, first study the system configuration
described in 3.9.3 Configuration when operating with commands, see the JP1 manuals, and then decide the system
configuration.

3.13.2 Configuration for invoking a Message-driven Bean from SUP of
OpenTP1 using the TP1 inbound integrated function

This subsection describes the configuration for invoking a Message-driven Bean of a J2EE server from SUP of an
OpenTP1 system using the TP1 inbound integrated function.

(1) Features of the system configuration
The is one type of message driven system.

The following figure shows an example of a message driven system configuration using the TP1inbound integrated
function.

3. Determining the System Configuration (J2EE Application Execution Platform)

121

Figure 3‒63: Example of message driven system configuration (when using the TP1 inbound integrated
function)

Note: For other legend items, see 3.2 Description of the system configuration.

Features
The TP1 inbound adapter running on a J2EE server receives the requests sent by SUP running on TP1/Server Base
and executes the process. You can access the Message-driven Bean on the J2EE server from SUP by the same
procedure# as invoking the SPP.

#
Some of the procedures are different. For details, see 4. Calling Application Server from Open TP1 (TP1
Inbound Linkage Functionality) in the uCosminexus Application Server Common Container Functionality
Guide.

Request flow
The Message-driven Bean, which is the access point, and the library of the TP1 inbound adapter, which is the
resource adapter, run on the J2EE server of Application Server.
The TP1 inbound adapter of Application Server receives the requests from SUP running on TP1/Server Base of
the OpenTP1 system and invokes the Message-driven Bean.

(2) Processes to be invoked and software required on the respective machines
This subsection describes the software required on the respective machines and processes to be started.

(a) Application Server machine

You must install Application Server on the Application Server machine (Application Server on the server machine).

Invoke the following processes:

• J2EE server

• Administration Agent

• PRF daemon

(b) OpenTP1 system (TP1/Server Base)

You must install TP1/ Server Base on the OpenTP1 system.

You must invoke the processes required for SUP execution.

3. Determining the System Configuration (J2EE Application Execution Platform)

122

(c) Management Server machine

You must install Application Server on the Management Server machine.

Invoke the following process:

• Management Server

3.13.3 Configuration in which a Stateless Session Bean is invoked from
other than an EJB client using the CTM gateway function

For a system using CTM, the J2EE application operating on the Application Server machine is invoked from the
following client other than the EJB client:

• TPBroker client
Client application developed with TPBroker Version 5 or later.

• TPBroker OTM client
Client application developed with TPBroker Object Transaction Monitor.

For details about how to develop the client application to invoke the application on the J2EE server from these clients,
see the documentation for the CORBA/OTM gateway function of CTM.

In this configuration, CTM provides a function as a gateway to invoke the J2EE application from TPBroker client or
TPBroker OTM client.

The following figure shows an example of a system configuration that invokes the J2EE application through CTM
from TPBroker client or TPBroker OTM client:

Figure 3‒64: Example of configuration that invokes J2EE application through CTM from TPBroker client or
TPBroker OTM client

Note: For other legend items, see 3.2 Description of the system configuration.

The request from the TPBroker client or TPBroker OTM client is passed to the J2EE application on the J2EE server
through the processes provided by CTM.

3. Determining the System Configuration (J2EE Application Execution Platform)

123

Among the CTM processes, the process of receiving requests is different for TPBroker client and TPBroker OTM
client. For TPBroker client, the CTM regulator process receives the request. For TPBroker OTM client, the request is
received by the OTM gateway process. The CTM regulator process and OTM gateway process are started
concurrently when starting the CTM daemon.

3. Determining the System Configuration (J2EE Application Execution Platform)

124

3.14 Managing optional processes with operation
management

This section describes a system configuration in which Management Server can manage operations of a user-defined
optional process. In such a configuration, you deploy the optional process as a user server defined as a logical server.
A user server that is defined as a logical server is called a logical user server. When an optional process is defined as a
logical user server, you can use the Smart Composer functionality commands for starting, stopping, and monitoring
the status of the optional process.

(1) Features of the system configuration
In this system configuration, a user server defined as a logical server is deployed on a system where Management
Server performs operation management. You can deploy a Management Server instance to be used for operation
management either on the management server or on each machine. For details about deploying Management Server,
see 3.9 Determining the deployment of the operation management process.

The following figure shows an example of a configuration for deploying the user server. In this configuration
example, a user optional process is executed on the Application Server machine. This user optional process is defined
and deployed as a logical user server so that Management Server can manage the process.

Figure 3‒65: Example of a configuration with a user server deployed

Note: For other legend items, see 3.2 Description of the system configuration.

3. Determining the System Configuration (J2EE Application Execution Platform)

125

Feature

• You can use the Management Server to perform operation management of an optional process.

(2) Processes to be invoked on the respective machines
The software required on the respective machines and the processes to be invoked in a configuration with an optional
process deployed as a user server are explained below:

(a) Application server machine

Depending on the functions to be used, the software required on the Application Server machine and the processes to
be invoked are different for each system configuration. Deploy the software and processes required for each function.

(b) Management server machine

You need to install Application Server on the Management Server machine.

Invoke the following process:

• Management Server

3. Determining the System Configuration (J2EE Application Execution Platform)

126

3.15 Determining other configurations
This section describes configurations other than those previously described.

Tip
The configurations explained in this section are configurations such as those that ensure compatibility with earlier versions,
but that are not recommended for version 07-00 or later. When a new system is configured with Application Server version
07-00 or later, Hitachi recommends that you use a previously described configuration.

The following table describes the relation between the configuration for compatibility and configurations recommended for
version 07-00 or later for implementing similar functions:

Table 3‒3: Relation between the configurations for compatibility and the recommended
configurations

Configuration for compatibility Configuration recommended in
version 07-00 and later

Reference for the recommended
configuration

Configuration where the Web server
and the Application Server are
deployed on different machines

Hitachi recommends deploying the
redirector module-embedded Web
server and the J2EE server on the
same machine.

• 3.4.1 Configuration with servlets
and JSPs as access points (for
Web server integration)#1

Configuration where the load is
balanced by using a redirector

Hitachi recommends using a load
balancer to distribute the load for a
servlet or JSP.

• 3.7.1 Load balancing with a load
balancer in case of Web server
integration (in the case of servlet
or JSP)

Configuration where the CORBA
Naming Service is invoked as an out-
process

Hitachi recommends invoking the
CORBA Naming Service as an in-
process.

--#2

Legend:
--: Not applicable.

#1
For details on the configuration for Web server integration, see 3.3.1 Allocating reverse proxy during Web server
integration in the uCosminexus Application Server Security Management Guide, as and when required.

#2
Can be used in all the configurations explained in sections 3.4 to 3.14 and in all the configurations described in 3.
System Configurations that Ensure Security in the uCosminexus Application Server Security Management Guide.

For details about other configurations for compatibility, see 2. Basic Mode and 3. Servlet Engine Mode in the
uCosminexus Application Server Compatibility Guide.

3.15.1 Configuration with a Web server and Application Server deployed
on different machines

This subsection describes a web-based system configuration with the servlets and JSPs as the access points. In this
system configuration, a Web server with an embedded redirector module and Application Server are deployed on
different machines.

For setting up multiple Web redirector environments, use the functionality provided by Management Server.

(1) Features of the system configuration
This system configuration is applicable for a Web front-end system where the requests sent from the Web browser are
processed in Application Server.

In a web client configuration, the Web server and Application Server can be deployed separately on different
machines. The following figure shows an example of a web client configuration where the Web server and
Application Server are deployed on different machines:

3. Determining the System Configuration (J2EE Application Execution Platform)

127

Figure 3‒66: Example of a web client configuration where the Web server and Application Server are
deployed on different machines

Note: For other legend items, see 3.2 Description of the system configuration.

Features
Performance is improved by separating the machine where the static contents such as HTML files are deployed
from the machine that executes the web applications such as servlets and JSPs. For details about how to deploy the
static contents and the Web applications separately, see 8.7.1 Separating the deployment of the static contents and
the Web application.

Flow of requests
The servlet and the JSP that are the access points run on the J2EE server. Requests from the Web browser are sent
to the access points through the Web server and invoke the servlet and JSP.

(2) Processes and required software on the respective machines
This paragraph describes the software and the processes required on the respective machines. For details about the
processes required for connecting to resources, see 3.6 Determining the transaction type.

(a) Web server machine

You must install the following software on the Web server machine:

• Application Server

The following processes are necessary:

• Web server

• Management Server

• Administration Agent

• PRF daemon

Application Server includes Cosminexus HTTP Server. In Windows, you can also use Microsoft IIS as the Web
server. In this case, you need Microsoft IIS software.

3. Determining the System Configuration (J2EE Application Execution Platform)

128

Also, Application Server includes component software that provides a redirector module (Component Container -
Redirector). You can install only this Component Container - Redirector. For details on how to install this module, see
Appendix I Installing the Redirector Functionality in the uCosminexus Application Server System Setup and Operation
Guide.

(b) Application Server machine

You need to install Application Server on the Application Server machine.

Invoke the following processes:

• J2EE server

• Management Server

• Administration Agent

• PRF daemon

(c) Web client machine

A Web client machine requires a Web browser.

3.15.2 Configuration where the load is balanced by using a redirector
This subsection describes the configuration where the redirector that is registered in the Web server balances the load
when the access point component is either a servlet or JSP.

(1) Features of the system configuration
You can use this configuration, when the access point of the application running on a J2EE server is a servlet or JSP.
Distribute the load by the redirector that is registered in the Web server. Load balancing can be implemented by
registering the target Application Server in the configuration file of the redirector.

The following figure shows an example configuration where the load is balanced by using a redirector:

3. Determining the System Configuration (J2EE Application Execution Platform)

129

Figure 3‒67: Example configuration where the load is balanced by using a redirector

Note: For other legend items, see 3.2 Description of the system configuration.

Features

• Scalability and availability of the servlet and JSP can be secured. You can prepare multiple Application Server
instances and then distribute the access from the client by the redirector, and thus distribute the load.

• The Web server where the redirector is registered has to be deployed on a machine that is different from the
machine where the Application Server is deployed.

• If an error occurs in a specific Application Server instance or if maintenance is required, system fall back is
possible by stopping the access to the corresponding Application Server from the redirector.
Tip

The use of a load balancer enables highly efficient load balancing without applying any load on the machine where
the Web server is running.

Flow of requests
Requests are sent from the Web browser to the servlets and JSPs, running on the J2EE server and acting as the
access points, through the Web server. At this point, the redirector registered in the Web server distributes the
requests to the J2EE server that is a constituent element of the load-balancing cluster, in a round robin format.

(2) Required software and the processes to be invoked in the respective machines
The required software and the processes to be invoked when balancing the load by using a redirector are the same as
in the configuration in which the Web server and Application Server are deployed separately, from among the
configurations that use a servlet and JSP as access points. See 3.15.1 Configuration with a Web server and Application
Server deployed on different machines.

3. Determining the System Configuration (J2EE Application Execution Platform)

130

3.15.3 Configuration where the CORBA Naming Service is invoked as an
out-process

In Application Server, you can invoke CORBA Naming Service as in-process and also as out-process of the J2EE
server.

The following figure shows an example configuration where CORBA Naming Service is invoked as out-process.

Figure 3‒68: Example configuration with CORBA Naming Service invoked as out-process

Note: For other legend items, see 3.2 Description of the system configuration.

When building a new system with version 07-00 or later, however, Hitachi recommends invoking the CORBA
Naming Service as an in-process.For details about how to start an in-process, see the description about starting the
J2EE server in the uCosminexus Application Server System Setup and Operation Guide.

3. Determining the System Configuration (J2EE Application Execution Platform)

131

3.16 TCP/UDP port numbers used by Application Server
processes

This subsection describes the TCP/UDP port numbers used by Application Server processes.

When the port number is not explicitly defined, a port number is automatically assigned by Application Server to a
port with the default value (Floating).

The following table describes the TCP/UDP port numbers used by Application Server. Depending on the OS being
used, the firewall setting may be at the host level instead of the network level. In the case of such firewalls, filtering
takes place for all communication other than that with the localhost (127.0.0.1), including communication within the
same host. In such cases, even for the ports that communicate only within the host, you need to set the filter settings so
as to permit that communication.

Table 3‒4: TCP/UDP port numbers used by Application Server

No. Processes Explanation Default
values

(1) J2EE server or SFO
server

Request reception port of an EJB container. (Floating
)

(2) Management communication port.# 8080

(3) A port for request reception from the Web server (redirector).# 8007

(4) Transaction recovery processing communication port when using
transaction services.

Required when using transaction services.

20302

(5) Request reception port of the Naming Service that is invoked by the in-
process.

900

(6) Request reception port of in-process HTTP server.

Mandatory when using in-process HTTP server.

80

(7) Request reception port of the RMI registry. 23152

(8) A port for the event reception during application integration between
multiple systems using shared queue.

20351

(9) Request reception port when acquiring operation information. (Floating
)

(10) A port awaiting RPC request from OpenTP1. 23700

(11) A port awaiting the synchronization request from OpenTP1. 23900

(12) Management Agent A port used for the communication of Management agent. (Floating
)

(13) Smart agent Port environment variable for communication of smart agent. 14000

(14) Naming Service Request reception port argument of Naming Service (use Cosminexus
TPBroker).

900

(15) Administration Agent

Server Communication
Agent

A port used by the Administration Agent in the communication with the
Management Server.

20295

(16) A port used by Server Communication Agent for communicating with
Virtual server manager.

20580

(17) Management Server An http port of the Management Server. 28080

(18) A port for termination request of Management Server.

Required for communication within the host.

28005

3. Determining the System Configuration (J2EE Application Execution Platform)

132

No. Processes Explanation Default
values

(19) Management Server A port for internal communication of Management Server.

Required for communication within the host.

28009

(20) A port for connection to the Manager remote management function. 28099

(21) A port for client connection to the Manager remote management function. (Floating
)

(22) Cosminexus HTTP
Server

An http port of Cosminexus HTTP Server. 80

(23) An https port of Cosminexus HTTP Server. 443

(24) Server management
command

A port with which the server management command communicates with
the J2EE server.

(Floating
)

(25) CTM regulator Basic value of the port where CTM regulator receives requests from the
EJB client. Use basic value + process count only.

Mandatory when using CTM.

(Floating
)

(26) CTM daemon Port where the CTM daemon receives the requests from the EJB client.

Mandatory when using CTM.

(Floating
)

(27) Port for communication by CTM daemon with other daemon or J2EE
server.

Mandatory when using CTM.

20138

(28) CTM domain manager Port for communication by CTM domain manager with other CTM
domain manager.

Mandatory when using CTM, to communicate TCP and UDP (broadcast).

20137

(29) CJMSP Broker Port of broker of Cosminexus JMS provider for receiving requests from
resource adapter or commands.

7676

(30) Port of broker of Cosminexus JMS provider for establishing connection
with resource adapter.

(Floating
)

(31) Port of broker of Cosminexus JMS provider for establishing connection
with commands.

(Floating
)

(32) Management Server Virtual server manager (Management Server) of 08-50 mode is a process
port (Agent for vCenter Server), which runs internally to connect to
vCenter Server.

28089

(33) Internal communication port of Management Server used from HCSC-
Manager.

28900

#
Not used by SFO server.

The following figure shows the TCP/UDP port numbers used by the Application Server process. (x) corresponds to
the item numbers in the table:

3. Determining the System Configuration (J2EE Application Execution Platform)

133

Figure 3‒69: TCP/UDP port numbers used by Application Server

Note: For other legend items, see 3.2 Description of the system configuration.

The following table lists the locations for specifying port numbers. The item number in the table corresponds to the
item number in the figure.

Table 3‒5: Locations for specifying the TCP/UDP port numbers used in Application Server

No. Definition files Setup target Parameter name#1

(1) Easy Setup definition file Logical J2EE server (j2ee-
server)

Logical SFO server (sfo-
server)

vbroker.se.iiop_tp.scm.iiop
_tp.listener.port

(2) Easy Setup definition file Logical J2EE server (j2ee-
server)

ejbserver.http.port

3. Determining the System Configuration (J2EE Application Execution Platform)

134

No. Definition files Setup target Parameter name#1

(3) Easy Setup definition file Logical J2EE server (j2ee-
server)

webserver.connector.ajp13.p
ort

(4) Easy Setup definition file Logical J2EE server (j2ee-
server)

Logical SFO server (sfo-
tier)

ejbserver.distributedtx.rec
overy.port

(5) Easy Setup definition file Logical J2EE server (j2ee-
server)

Logical SFO server (sfo-
tier)

inprocess.ns.port

(6) Easy Setup definition file Logical J2EE server (j2ee-
server)

webserver.connector.inproce
ss_http.port

(7) Easy Setup definition file Logical J2EE server (j2ee-
server)

Logical SFO server (sfo-
server)

ejbserver.rmi.naming.port

(8) Connector attribute file Cosminexus RM RMSHPort#3 specified in the
<config-property> tag#2

(9) Easy Setup definition file Logical J2EE server (j2ee-
server)

Logical SFO server (sfo-
server)

ejbserver.rmi.remote.listen
er.port

(10) Connector property file TP1 inbound adapter scd_port#4 specified in <config-
property> tag#3

(11) Connector property file TP1 inbound adapter scd_port#4 specified in <config-
property> tag#3

(12) Easy Setup definition file Logical J2EE server (j2ee-
server)

Logical SFO server (sfo-
server)

mngagent.connector.port

(13) Easy Setup definition file Logical smart agent (smart-
agent)

smartagent.port

(14) Easy Setup definition file Logical J2EE server (j2ee-
server)

Logical SFO server (sfo-
server)

ejbserver.naming.port

(15) Adminagent.properties Administration Agent adminagent.adapter.port key

(16) sinaviagent.properties
#4

Server Communication Agent sinaviagent.port key

(17) mserver.properties Management Server webserver.connector.http.po
rt key

(18) mserver.properties Management Server webserver.shutdown.port key

(19) mserver.properties Management Server webserver.connector.ajp13.p
ort key

(20) mserver.properties Management Server com.cosminexus.mngsvr.manag
ement.port key

3. Determining the System Configuration (J2EE Application Execution Platform)

135

No. Definition files Setup target Parameter name#1

(21) mserver.properties Management Server com.cosminexus.mngsvr.manag
ement.listen.port key

(22) Easy Setup definition file Logical Web server (web-
server)

Listen

(23) Easy Setup definition file Logical Web server (web-
server)

Listen

(24) usrconf.properties (system
property file for server management
command)

Server management command vbroker.se.iiop_tp.scm.iiop
_tp.listener.port key

(25) Easy Setup definition file Logical CTM (component-
transaction-monitor)

ctm.RegOption

(26) Easy Setup definition file Logical CTM (component-
transaction-monitor)

ctm.EjbPort

(27) Easy Setup definition file Logical CTM (component-
transaction-monitor)

ctm.port

(28) Easy Setup definition file Logical CTM domain manager
(ctm-domain-manager)

cdm.port

(29) config.properties CJMSP Broker imq.portmapper.port key

(30) config.properties CJMSP Broker imq.jms.tcp.port key

(31) config.properties CJMSP Broker imq.admin.tcp.port key

(30) Easy Setup definition file Logical J2EE server (j2ee-
server)

ejbserver.jca.adapter.tp1.b
ind_host key

(32) vmx.properties Virtual server manager of
08-50 mode (Management
Server)

vmx.vcenterserver.agent.por
t key

(33) mserver.properties Management Server ejbserver.naming.port key

Legend:
--: Not applicable

#1
If the setup file is an Easy Setup definition file, specify the value specified in <param-name> in the <configuration> tag.

#2
RMSHPort is a configuration property specified in the property definition of the resource adapter Cosminexus RM. For details
about RMSHPort, see 6. Configuration Properties in the manual Cosminexus Reliable Messaging.

#3
scd_port and trn_port are the configuration properties specified in the property definition of the resource adapter TP1
inbound adapter. For details about scd_port and trn_port, see 4.12.2 Setting up a resource adapter in the uCosminexus
Application Server Common Container Functionality Guide.

#4
For details about Server Communication Agent, see the documents related to Server Communication Agent.

Reference note
The following table describes the locations for specifying TCP/UDP port numbers when setting up Application Server:

Table 3‒6: Locations for specifying TCP/UDP port numbers when setting up Application Server

No. Setup location when setting up by editing the file

(1) vbroker.se.iiop_tp.scm.iiop_tp.listener.port key in usrconf.properties

3. Determining the System Configuration (J2EE Application Execution Platform)

136

No. Setup location when setting up by editing the file

(2) ejbserver.http.port key in usrconf.properties

(3) webserver.connector.ajp13.port key in usrconf.properties

(4) ejbserver.distributedtx.recovery.port key in usrconf.properties

(5) ejbserver.naming.port key in usrconf.properties

(6) webserver.connector.inprocess_http.port key of usrconf.properties

(7) ejbserver.rmi.naming.port key in usrconf.properties

(8) RMSHPort#1 specified in the <config-property> tag of the Connector property file

(9) ejbserver.rmi.remote.listener.port key of usrconf.properties

(10) scd_port specified in the <config-property> tag of the resource adapter of Connector property file of
TP1 inbound adapter

(11) trn_port specified in the <config-property> tag of the resource adapter of Connector property file of
TP1 inbound adapter

(12) mngagent.connector.port key in the mngagent.real-server-name.properties file

(13) Environment variable OSAGENT_PORT

(14) • When auto-starting CORBA Naming Service in in-process or out-process
ejbserver.naming.port key of usrconf.properties

• When manually starting CORBA Naming Service
Specify -Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=port-number in the
command argument of the nameserv command.

(15) adminagent.adapter.port key in adminagent.properties

(16) sinaviagent.port key in sinaviagent.properties

(17) webserver.connector.http.port key in mserver.properties

(18) webserver.shutdown.port key in mserver.properties

(19) webserver.connector.ajp13.port key in mserver.properties

(20) com.cosminexus.mngsvr.management.port key in mserver.properties

(21) com.cosminexus.mngsvr.management.listen.port key in mserver.properties

(22) Listen directive or Port directive of httpsd.conf

(23) Listen directive or Port directive of httpsd.conf

(24) vbroker.se.iiop_tp.scm.iiop_tp.listener.port key in usrconf.properties (system
properties file for server management commands)

(25) Argument of the ctmregltd command or ctmstart command - CTMEjbPort

(26) Argument of the ctmstart command - CTMEjbPort

(27) Argument of the ctmstart command - CTMPort

(28) Argument of the ctmdmstart command - CTMPort.

(29) imq.portmapper.port key in config.properties

(30) imq.jms.tcp.port key in config.properties

(31) imq.admin.tcp.port key in config.properties

3. Determining the System Configuration (J2EE Application Execution Platform)

137

No. Setup location when setting up by editing the file

(32) vmx.vcenterserver.agent.port key in vmx.properties

(33) ejbserver.naming.port key in mserver.properties

#1
RMSHPort is a configuration property specified in the property definition of the resource adapter Cosminexus RM. For
details about RMSHPort, see 6. Configuration Properties in the manual Cosminexus Reliable Messaging.

#2
For the details about Server Communication Agent, see the documents related to Server Communication Agent.

! Important note

Notes on the standby port for a server (In UNIX)

In UNIX, when all the following conditions are satisfied, a connection might be successfully established with a TCP port
that is not in a standby status:

• An attempt is made to establish a connection with a port that is not in a standby status

• The host itself is the connection target, and the port is in the range of the temporary port numbers (the range of port
numbers that are dynamically allocated by the OS)

When this event occurs, the assumed process communication cannot be executed and a timeout occurs. To avoid this event,
specify a value outside the range of the temporary port numbers as the standby port of the server. You can check the range
of the temporary port numbers in the following files:

In AIX
Minimum value (32768): no -o tcp_ephemeral_low
Maximum value (65535): no -o tcp_ephemeral_high

In Linux
/proc/sys/net/ipv4/ip_local_port_range

For details on how to set up the standby port of a server, see the documentation for the OSs.

3. Determining the System Configuration (J2EE Application Execution Platform)

138

4 Determining the System
Configuration (Batch Application
Execution Platform)
This chapter explains how to determine a system configuration when building the
batch application execution platform. The standard system configuration patterns are
described according to the flow of system designing. This chapter also describes the
components, processes, and the processing flow that you must consider.

For determining the system configuration of the J2EE application execution platform,
see 3. Determining the System Configuration (J2EE Application Execution Platform).

139

4.1 Points to be considered when determining the
system configuration

This section describes the points to be considered for determining the system configuration, when you use Application
Server as a batch application execution platform.

4.1.1 Purpose and configuration of system
The batch application execution platform is an environment to execute batch applications implemented as Java
applications. The batch applications are implemented as Java applications that do not use the J2EE applications such
as JSPs, servlets, and Enterprise Beans. Note that you can invoke Enterprise Beans running on J2EE servers from
batch applications.

The batch applications run on batch servers. The resource adapters used when connecting the batch application to the
resource also run on batch servers.

The batch applications are executed with batch execution commands.

The following figure shows a system configuration for executing batch applications. In this figure, two batch servers
are operating on one application server for each batch application.

Figure 4‒1: Example of a system configuration for executing batch applications

Besides this, when you connect to Enterprise Beans running on J2EE server from batch applications, you can also
connect to back-end systems executing online processing. For details about back-end systems, see 3.1.1 Purpose and
configuration of the system.

4.1.2 Procedure for designing the system configuration
Design the system configuration according to the following procedure:

4. Determining the System Configuration (Batch Application Execution Platform)

140

Figure 4‒2: Flow of designing the system configuration (for a batch application execution platform)

(1) Determining the format for starting the application
Determine the format for starting batch applications. Choose from the following two types:

• Starting on batch servers
This is the format for starting Java applications on batch servers. You can reduce overhead involved in starting
JavaVM using a batch server that is a resident-type JavaVM process. Also, you can use CTM to schedule the
execution of the batch applications running on the batch server.
When applications run on batch servers, you can also use DB Connector as the resource adapter.

• Starting individually using the cjclstartap command
This is the format for starting Java applications in the same way as Java commands. For this format, you must
start JavaVM each time batch applications are executed.

If you choose to start the application on batch servers, it will lead to the following items to be determined. If you
choose to use the cjclstartap command, the following items to be determined will not be applicable:

(2) Determining the method of using a transaction
For connecting to resources, determine the method of using a transaction. Choose from the following two types:

• Using a DB Connector
In this method, a DB Connector is used that is a resource adapter provided in the Application Server. You can use
connection pooling and statement pooling as the functionality of the DB Connector. You can also use the
functionality to control the occurrence of full garbage collection. Note that you can manage a local transaction on
batch servers.

• Directly using a JDBC driver
In this method, the processing required for managing the transaction is implemented using APIs provided in a
JDBC driver.

For details about the configuration of the resource adapter and resources if you are using DB Connectors, see 3.3.2
Resource types and resource adapters. However, for a batch server, you can connect only to the database, as a
resource.

4. Determining the System Configuration (Batch Application Execution Platform)

141

(3) Checking the security settings
Start the batch server after disabling security protection with SecurityManager.

(4) Deploying a process to output the performance analysis trace file
Check if the PRF daemon (performance tracer) that is a process to output the performance analysis trace file is
deployed. Deploy a PRF daemon on each batch server.

(5) Determining the methodology for operating management and operation monitoring
Check if the Management Server that is a process for executing operating management and operation monitoring is
deployed. For a batch application execution platform, the Management Server is deployed on the same machine as the
batch server (use the host unit management model).

(6) For using other functionality
Determine the following configurations according to the functionality to be used:

• Configuration in which servers are integrated
Determine this configuration when you want to invoke an Enterprise Bean running on the J2EE server from the
batch application. See 3.5 Determining integration between the servers.

• Configuration for node switching using cluster software when a failure occurs
Determine this configuration for node switching on batch servers.
See the following explanation:

• 3.11.4 Configuration in which executing node and standby node of Application Server are mutually standby.

When reading the description provided in the above references, please substitute J2EE server for batch server.

4.1.3 Precautions for the TCP/UDP port used in a system for executing
batch applications

This subsection describes the TCP/UDP port used in a system for executing batch applications for each process. The
following table describes the TCP/UDP port used in a system for executing batch applications:

Table 4‒1: TCP/UDP port used in a system for executing batch applications

No.#1 Process Explanation

(1) Batch server Request-receiving port of the EJB container.

(2) Communication port for management.

(3) Port for receiving requests from the Web server (redirector).

(5) Request-receiving port of the Naming Service invoked with in-process.

(7) Request receiving port of the RMI registry.

(9) Port for receiving requests when acquiring the operation information.

(13) Smart Agent#2 Port environment variable for Smart Agent communication.

Smart Agent is required for the two-way communication through UDP.

(25) CTM regulator#2 Fiducial value of the port where the CTM regulator receives requests from the EJB client.
Only fiducial value + number of processes are used.

Required when CTM is used.

(26) CTM daemon#2 Port where CTM daemon receives requests from the EJB client.

Required when CTM is used.

4. Determining the System Configuration (Batch Application Execution Platform)

142

No.#1 Process Explanation

(27) CTM daemon#2 Port for communicating CTM daemons with other daemons and J2EE servers.

Required when CTM is used.

(28) CTM domain
manager#2

Port for communicating the CTM domain manager with other CTM domain managers.

Required for TCP and UDP communication (broadcast) when CTM is used.

Note
When you are instructed to use Smart Agent, some ports other than those described in the above table are used to communicate
with the Smart Agent. For details on the Smart Agent, see the manual Borland(R) Enterprise Server VisiBroker(R) Programmers
Reference.

#1
Corresponds to the numbers in Table 3-4 TCP/UDP port number used by Application Server of 3.16 TCP/UDP port numbers
used by Application Server processes.

#2
This process is required for using the scheduling functionality of batch applications.

In the following cases, make sure that the used ports are not duplicated:

• When concurrently using the J2EE server and batch server on the same machine

• When concurrently using multiple batch servers on the same machine

For details about the TCP/UDP ports used in each process, see 3.16 TCP/UDP port numbers used by Application
Server process.

! Important note

Notes on the standby port for a server (In UNIX)

In UNIX, when all the following conditions are satisfied, a connection might be successfully established with the TCP port
that is not in a standby mode:

• An attempt is made to establish a connection with a port that is not in a standby status

• The host itself is the connection target, and the port is in the range of the temporary port numbers (range of port numbers
that are dynamically allocated by the OS)

When this event occurs, the assumed process communication cannot be executed and a timeout occurs. To avoid this event,
specify a value outside the range of the temporary port numbers as the standby port of the server. You can check the range
of the temporary port numbers in the following files:

In AIX
Minimum value (32768): no -o tcp_ephemeral_low
Maximum value (65535): no -o tcp_ephemeral_high

In Linux
/proc/sys/net/ipv4/ip_local_port_range

For details on how to set up the standby port of a server, see the documentation for the OSs.

4. Determining the System Configuration (Batch Application Execution Platform)

143

4.2 System configuration when using a batch server
This section describes the system configuration when you use a batch server. The system configuration for using a
batch server differs depending on whether to use the scheduling functionality of the batch application.

4.2.1 System configuration of a system that does not use the scheduling
functionality of batch applications

This subsection describes the system configuration that does not use the scheduling functionality of the batch
applications, for using a batch server.

(1) Features of system configuration
This is a system configuration for using a batch server and not a CTM. In this case, the batch server is deployed on the
Application Server. The batch server is built and operated as a Web system (j2ee-tier) of the Smart Composer
functionality. Use batch execution commands to execute a batch application.

The following figure shows an example of the system configuration for deploying a batch server. In this example,
HiRDB is accessed from the batch application using a resource adapter.

Figure 4‒3: Example of the system configuration for deploying a batch server

For other legend items, see 3.2 Description of the system configuration..

Features
You can use a DB Connector for connecting to a resource.

Flow of the process
The batch application executed accesses HiRDB via the DB Connector on the batch server.

(2) Processes and software required on each machine
The software and processes required on each machine are as follows:

(a) Application server machine

You must install Application Server on the Application Server machine. Note that for the development environment,
you must install Developer.

4. Determining the System Configuration (Batch Application Execution Platform)

144

Products required for integration with JP1/Advanced Shell:

• JP1/Advanced Shell

• Products required for integration with JP1/AJS (for executing JP1/Advanced Shell via JP1/AJS)

The following processes are to be started:

• Batch server

• PRF daemon

• Management Server

• Administration Agent

• JP1/Advanced Shell processes (for integration with JP1/Advanced Shell)

When connecting to the database, you also require the software for connecting to the database that you want to use.
For details about the products required to connect to the database, see 3.6.1 Configuration when using a local
transaction. However, you can use only the following databases as resources in a batch server:

• HiRDB

• Oracle

• SQL Server

• XDM/RD E2

(b) Database server machine

For details about the products required in a database server machine, see the explanation about the machine on which
the resource manager operates, in the section 3.6.1 Configuration when using a local transaction. However, you can
use only the following databases as resources in a batch server:

• HiRDB

• Oracle

• SQL Server

• XDM/RD E2

4.2.2 System configuration of a system that uses the scheduling
functionality of batch applications

This subsection describes the system configuration that uses the scheduling functionality of the batch applications, for
using a batch server.

(1) Features of system configuration
This is a system configuration for using a batch server and CTM. In this case, the batch server and CTM are deployed
on the Application Server. The batch server and CTM is built and operated as a Web system (ctm-tier) of the Smart
Composer functionality. You use batch execution commands for executing batch applications. A batch application
executed by directly by command is scheduled using a CTM, and then distributed to the batch servers.

The following figure shows an example of the system configuration for using a CTM. In this example, two batch
servers are deployed and the execution request of the batch application is scheduled using a CTM.

4. Determining the System Configuration (Batch Application Execution Platform)

145

Figure 4‒4: Example of system configuration for using CTM

For other legend items, see 3.2 Description of the system configuration..

Features
You can execute multiple batch execution commands concurrently by scheduling the execution requests of a batch
application using a CTM. Moreover, you must not use batch execution commands for specifying a batch server.
Therefore, you can change the number of concurrent executions of the batch server without changing the job
definition.
Note that even in this system configuration, you can integrate the system with Batch Job Execution Server or JP1/
Advanced Shell.

Flow of the process
A batch application executed by directly by the batch execution command is registered as an execution request of
the batch application in the schedule queue of CTM. The execution request of the batch application in the schedule
queue is distributed to an appropriate batch server using CTM. Note that the execution request of the batch
application is retained (standby) in the schedule queue when the batch server, where the execution request is to be
distributed, does not exist.

(2) Processes and software required on each machine
The software and processes required on each machine are as follows:

(a) Application server machine

You must install Application Server on an Application Server machine. Note that for the development environment,
you must install Developer.

Additionally, you must also install the following products to execute the batch applications using JP1/AJS, and control
the jobs integrated with Batch Job Execution Server or JP1/Advanced Shell:

Products required for integration with JP1/AJS

• JP1/Base

4. Determining the System Configuration (Batch Application Execution Platform)

146

• JP1/AJS - Agent

• JP1/AJS - Manager

• JP1/AJS - View

Products required for integration with Batch Job Execution Server

• Batch Job Execution Server

• Products required for integration with JP1/AJS

Products required for integration with JP1/Advanced Shell

• JP1/Advanced Shell

• Products required for integration with JP1/AJS (for executing JP1/Advanced Shell via JP1/AJS)

The following processes are to be started:

• Batch server

• PRF daemon

• Global CORBA Naming Service

• Group of CTM processes (CTM daemons and CTM regulators)

• CTM domain manager

• Smart Agent

• Management Server

• Administration Agent

• Batch Job Execution Server processes (for integration with Batch Job Execution Server)

• JP1/Advanced Shell processes (for integration with JP1/Advanced Shell)

When connecting to the database, you also require the software for connecting to the database to be used. For details
about the products required for connecting to the database, see 3.6.1 Configuration when using a local transaction.
However, you can use only the following databases as resources in a batch server:

• HiRDB

• Oracle

• SQL Server

• XDM/RD E2

(b) Database server machine

For details about the products required in a database server machine, see the description about the machine on which
the resource manager operates, in the subsection 3.6.1 Configuration when using a local transaction. However, you
can use only the following databases as resources in a batch server:

• HiRDB

• Oracle

• SQL Server

• XDM/RD E2

4. Determining the System Configuration (Batch Application Execution Platform)

147

5 Estimating Resources to be Used
(J2EE Application Execution
Platform)
This chapter describes how to estimate the resources and virtual memory used in the
systems for executing J2EE applications. Reference this chapter for calculating the
disk and memory capacity required for operating a system. For details about
estimating the resources and memory used for a batch application execution platform,
see 6. Estimating Resources to be Used (Batch Application Execution Platform).

149

5.1 Resources used for each system configuration
Set up of the hosting environment components, such as the OS and database, might be required for operating the
system. This section describes the resources used for each system configuration and the estimates for the required
resources, as the resources required in a system differ as per the system configuration. The following table describes
the reference locations for the resources used for each system configuration and resource estimates:

Table 5‒1: References of resources used for each system configuration and resource estimates

Resources used for each system configuration Reference

Resources used for deploying Web server and J2EE server on same machine 5.1.1

Resources used when Web server and J2EE server are deployed on different machines 5.1.2

Resources used for the in-process HTTP server functionality 5.1.3

Resources used by database 5.1.4

Resources used by Management Server 5.1.5

Resources used for the memory session failover functionality# 5.1.6

Resources used for CTM 5.1.7

#
The memory used by a J2EE server increases when you use the memory session failover functionality.

Tip
For a Windows system, among the items described in this section, see only 5.1.4 Resources used by the database. Note that
there are no particular restrictions on the number of processes available in the system, shared memory, number of file
descriptors, and the number of threads available in a Windows system or process.

For details about the estimation of resources used for each process, see 5.2 Resources used for each process.

For details about the required virtual memory, see 5.3 Estimating virtual memory usage. For details about the disk
occupancy, see the release notes of Application Server.

5.1.1 Resources used for deploying Web server and J2EE server on the
same machine

This subsection describes the estimation of resources used for each OS when the Web server and J2EE server are
deployed on the same machine.

Note that the Example of option settings in each table of estimation of resources used differs according to the OS and
the kernel versions in use. Reference the manual of the OS being used and set up the estimates based on the estimation
formula in the table. The settings are not required when the corresponding kernel parameter is not applicable in the OS
being used.

(1) In AIX
The following table describes the estimation of resources used in AIX:

Table 5‒2: Estimation of resources used (In AIX)

System resource Parameter Requirement Example of option
settings

Shared memory -- PrfTraceBufferSize#1 1,024 +
18,496 + maximum-number-of-concurrently-
processed-requests#2 14 1,024

--

5. Estimating Resources to be Used (J2EE Application Execution Platform)

150

System resource Parameter Requirement Example of option
settings

Number of
processes

-- maximum-number-of-concurrently-processed-
requests#2 2 + 5

--

Number of threads -- maximum-number-of-concurrently- processed-
requests#2 2 + 41 + number-of-J2EE-server-
threads#3

--

Number of file
descriptors

nofiles number-of-J2EE-server-file-descriptors#3 + 76 +
maximum-number-of-concurrently-processed-
requests#2 4

/etc/security/
limits

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
Specify the maximum number of threads that can be processed concurrently in the Web server.

#3
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

(2) In HP-UX
The following table describes the estimation of resources used in HP-UX:

Table 5‒3: Estimation of resources used (In HP-UX)

System resource Parameter Requirement Example of option settings

Shared memory shmmax PrfTraceBufferSize#1 1,024
+ 18,496 + maximum-number-of-
concurrently- processed-requests#2 14

 1,024

kctune shmmax= 1073741824

Number of
processes

nproc maximum-number-of-concurrently-
processed-requests#2 2 + 5

kctune nproc=4200

Number of threads nkthread maximum-number-of-concurrently-
processed-requests#2 2 + 41 +
number-of-J2EE-server-threads #3

kctune nkthread= 8416

Number of file
descriptors

nfile number-of-J2EE-server-file-descriptors#3

+ 76 + maximum-number-of-
concurrently-processed-requests#2 4

kctune nfile= 65536

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
Specify the maximum number of requests that can be processed concurrently in the Web server.

#3
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

151

(3) In Linux
The following table describes the estimation of resources used in Linux:

Table 5‒4: Estimation of resources used (In Linux)

System resource Parameter Requirement Example of option
settings

Shared memory SHMMAX PrfTraceBufferSize#1 1,024 +
18,496 + maximum-number-of-concurrently-
processed-requests#2 14 1,024

/proc/sys/kernel/
shmmax

Number of
processes

threads-max#3 maximum-number-of-concurrently-processed-
requests#2 2 + 5

/proc/sys/kernel/
threads-max

Number of threads threads-max#3 maximum-number-of-concurrently-processed-
requests#2 2 + 41 + number-of-J2EE-server-
threads#4

--

Number of file
descriptors

fs.file-max number-of-J2EE-server-file-descriptors#4 + 76 +
maximum-number-of- concurrently-processed-
requests#2 4

/proc/sys/fs/file-
max

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
Specify the maximum number of requests that can be processed concurrently in the Web server.

#3
Specify the total of number of processes and threads in the threads-max parameter.

#4
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

(4) In Solaris
The following table describes the estimation of resources used in Solaris:

Table 5‒5: Estimation of resources used (In Solaris)

System resource Parameter Requirement Example of option
settings

Shared memory shminfo_shmmax PrfTraceBufferSize#1 1,024 + 18,496
+ maximum-number-of-concurrently- processed-
requests#2 14 1,024

/etc/system

Number of
processes

max_nprocs maximum-number-of-concurrently-processed-
requests#2 2 + 5

/etc/system

Number of threads -- maximum-number-of-concurrently-processed-
requests#2 2 + 41 + number-of-J2EE-server-
threads#3

--

Number of file
descriptors

rlim_fd_max number-of- J2EE-server-file-descriptors#3 + 76 +
maximum-number-of-concurrently-processed-
requests#2 4

/etc/system

5. Estimating Resources to be Used (J2EE Application Execution Platform)

152

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
Specify the maximum number of requests that can be processed concurrently in the Web server.

#3
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

5.1.2 Resources used when Web server and J2EE server are deployed
on different machines

This subsection describes the estimation of resources used for each OS when the Web server and J2EE server are
deployed on different machines. When deploying the Web server and J2EE server on different machines, estimate the
resources used respectively for the Web server machine and the Application Server machine.

Note that the Example of option settings in each table of estimation of resources used differs according to the OS and
the kernel versions in use. Reference the manual of the OS being used and set up the estimates based on the estimation
formula in the table. The settings are not required when the corresponding kernel parameter is not applicable in the OS
being used.

(1) In AIX
This section describes the estimation of resources used by the Web server machine and the Application Server
machine in AIX.

(a) Estimation of resources used by the Web server machine

The following table describes the estimation of resources used by the Web server machine:

Table 5‒6: Estimation of resources used by the Web server machine (In AIX)

System resource Parameter Requirement Example of option
settings

Shared memory -- PrfTraceBufferSize#1 1,024 +
18,496 + maximum-number-of-concurrently-
processed-requests#2 14 1,024

--

Number of
processes

-- maximum-number-of-concurrently- processed-
requests#2 2 + 4

--

Number of threads -- maximum-number-of-concurrently-processed-
requests#2 2 + 35

--

Number of file
descriptors

nofiles maximum-number-of-concurrently-processed-

requests#2 4 + 75
/etc/security/
limits

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
Specify the maximum number of requests that can be processed concurrently in the Web server.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

153

(b) Estimation of resources used by the Application Server machine

The following table describes the estimation of resources used by the Application Server machine:

Table 5‒7: Estimation of resources used by the Application Server machine (In AIX)

System resource Parameter Requirement Example of option
settings

Shared memory -- PrfTraceBufferSize#1 1,024 +
18,496

--

Number of
processes

-- 4 --

Number of threads -- number-of-J2EE-server-threads #2 + 34 --

Number of file
descriptors

nofiles number-of-J2EE-server-file-descriptors#2 + 43 /etc/security/
limits

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

(2) In HP-UX
This section describes the estimation of resources used by the Web server machine and the Application Server
machine in HP-UX:

(a) Estimation of resources used by the Web server machine

The following table describes the estimation of resources used by the Web server machine:

Table 5‒8: Estimation of resources used by the Web server machine (In HP-UX)

System resource Parameter Requirement Example of option settings

Shared memory shmmax PrfTraceBufferSize#1 1,024
+ 18,496 + maximum-number-of-
concurrently- processed-requests#2 14

 1,024

kctune shmmax= 1073741824

Number of
processes

nproc maximum-number-of-concurrently-
processed-requests#2 2 + 4

kctune nproc=4200

Number of threads nkthread maximum-number-of-concurrently-
processed-requests#2 2 + 35

kctune nkthread= 8416

Number of file
descriptors

nfile maximum-number-of-concurrently-
processed-requests#2 4 + 75

kctune nfile= 65536

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
Specify the maximum number of requests that can be processed concurrently in the Web server.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

154

(b) Estimation of resources used by the Application Server machine

The following table describes the estimation of resources used by the Application Server machine:

Table 5‒9: Estimation of resources used by the Application Server machine (In HP-UX)

System resource Parameter Requirement Example of option settings

Shared memory shmmax PrfTraceBufferSize#1 1,024 +
18,496

kctune shmmax= 1073741824

Number of
processes

nproc 4 kctune nproc=4200

Number of threads nkthread number-of-J2EE-server-threads #2 + 34 kctune nkthread= 8416

Number of file
descriptors

nfile number-of-J2EE-server-file-descriptors#2 +
43

kctune nfile= 65536

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

(3) In Linux
This section describes the estimation of resources used by the Web server machine and the Application Server
machine in Linux.

(a) Estimation of resources used by the Web server machine

The following table describes the estimation of resources used by the Web server machine:

Table 5‒10: Estimation of resources used by the Web server machine (In Linux)

System resource Parameter Requirement Example of option
settings

Shared memory SHMMAX PrfTraceBufferSize#1 1,024 +
18,496 + maximum-number-of-concurrently-
processed-requests#2 14 1,024

/proc/sys/kernel/
shmmax

Number of
processes

threads-max#3 maximum-number-of-concurrently-processed-
requests#2 2 + 4

/proc/sys/kernel/
threads-max

Number of threads threads-max#3 maximum-number-of-concurrently-processed-
requests#2 2 + 35

--

Number of file
descriptors

fs.file-max maximum-number-of-concurrently-processed-
requests#2 4 + 75

/proc/sys/fs/file-
max

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
Specify maximum number of requests that can be processed concurrently in the Web server.

#3
Specify total number of processes and threads in the threads-max parameter.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

155

(b) Estimation of resources used by the Application Server machine

The following table describes the estimation of resources used by the Application Server machine:

Table 5‒11: Estimation of resources used by the Application Server machine (In Linux)

System resource Parameter Requirement Example of option
settings

Shared memory SHMMAX PrfTraceBufferSize#1 1,024 +
18,496

/proc/sys/kernel/
shmmax

Number of
processes

threads-max#2 4 /proc/sys/kernel/
threads-max

Number of threads threads-max#2 number-of-J2EE-server-threads#3 + 34 --

Number of file
descriptors

fs.file-max number-of-J2EE-server-file-descriptors#3 + 43 /proc/sys/fs/file-
max

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
Specify the total of number of processes and threads in the threads-max parameter.

#3
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

(4) In Solaris
This section describes the estimation of resources used by the Web server machine and Application Server machine in
Solaris.

(a) Estimation of resources used by the Web server machine

The following table describes the estimation of resources used by the Web server machine:

Table 5‒12: Estimation of resources used by the Web server machine (In Solaris)

System resource Parameter Requirement Example of option
settings

Shared memory shminfo_shmmax PrfTraceBufferSize#1 1,024 +
18,496 + maximum-number-of-concurrently-
processed-requests#2 14 1,024

/etc/system

Number of
processes

max_nprocs maximum-number-of-concurrently-processed-
requests#2 2 + 4

/etc/system

Number of threads -- maximum-number-of-concurrently-processed-
requests#2 2 + 35

--

Number of file
descriptors

rlim_fd_max maximum-number-of-concurrently-processed-
requests#2 4 + 75

/etc/system

Legend:
--: Not applicable.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

156

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
Specify the maximum number of requests that can be processed concurrently in the Web server.

(b) Estimation of resources used by the Application Server machine

The following table describes the estimation of resources used by the Application Server machine:

Table 5‒13: Estimation of resources used by the Application Server machine (In Solaris)

System resource Parameter Requirement Example of option
settings

Shared memory shminfo_shmmax PrfTraceBufferSize#1 1,024 +
18,496

/etc/system

Number of
processes

max_nprocs 4 /etc/system

Number of threads -- number-of-J2EE-server-threads#2 + 34 --

Number of file
descriptors

rlim_fd_max number-of-J2EE-server-file-descriptors#2 + 43 /etc/system

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

5.1.3 Resources used for the in-process HTTP server functionality
This subsection describes the estimation of resources used for each OS when using the in-process HTTP server
functionality. Estimate the resources used by the Application Server machine when using the in-process HTTP server
functionality.

(1) In AIX
For details about the estimation of resources used by the Application Server machine in AIX, see 5.1.2(1)(b)
Estimation of resources used by the Application Server machine.

(2) In HP-UX
For details about the estimation of resources used by the Application Server machine in HP-UX, see 5.1.2(2)(b)
Estimation of resources used by the Application Server machine.

(3) In Linux
For details about the estimation of resources used by the Application Server machine in Linux, see 5.1.2(3)(b)
Estimation of resources used by the Application Server machine.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

157

(4) In Solaris
For details about the estimation of resources used by the Application Server machine in Solaris, see 5.1.2(4)(b)
Estimation of resources used by the Application Server machine.

5.1.4 Resources used by the database
This subsection describes the estimation of resources used by the DBMS.

For details about the required virtual memory, see 5.3 Estimating virtual memory usage. For details about disk
occupancy, see the Release notes of Application Server or Developer.

The following table describes the estimation of resources used by the DBMS:

Table 5‒14: Estimation of resources used by DBMS

DBMS Used resources Requirement

HiRDB Maximum number of
concurrent connections
(pd_max_users)

Oracle Maximum number of
concurrent connections
(PROCESSES)

#1
n is the total number of resource adapters deployed on the J2EE server in the system.

#2
Specifies the value of the MaxPoolSize parameter in the Connector property file.

#3
If one of the following conditions is applicable, multiply by 2:

1. Use XATransaction in the transaction support level.

2. Use a connection# within the transaction that is managed by Application Server to access the database.

3. Before the transaction of step 2 concludes, use the connection# outside the transaction to access the database.

This connection is the one that is acquired from the DB Connector in step 1 and is the same connection.

#4
Add 1 only for the resource adapters with XATransaction specified in the transaction support level.

#5
+ indicates connections that might temporarily exceed the maximum value for theconnection pools. The
details are as follows:

• When using the functionality for detecting a connection failure
When implementing the functionality to detect a connection failure, the unused connections removed from a
connection pool are not counted as the connections within the connection pool. Therefore, the total number of
connections in a connection pool and the unused connections removed from the connection pool might
temporarily exceed the maximum number of connections in the connection pool.

• When using the cjclearpool command
In the normal mode, the connections being used that are removed from a connection pool are not included in
the connection count. Therefore, the total number of connections in the connection pool and the used
connections removed from the connection pool might exceed the maximum value for the connection pool.

5.1.5 Resources used by Management Server
This subsection describes the estimation of resources used by Management Server for each OS.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

158

Note that the Example of option settings in each table of estimation of resources used differs according to the OS and
the kernel versions in use. Reference the manual of the OS being used and set up the estimates based on the estimation
formula in the table. The settings are not required when the corresponding kernel parameter is not applicable in the OS
being used.

(1) In AIX
The following table describes the estimation of resources used by Management Server:

Table 5‒15: Estimation of resources used by Management Server (In AIX)

System resource Parameter Requirement Example of option settings

Number of
processes

-- 5 --

Number of threads -- 56 --

Number of file
descriptors

nofiles 43 + number-of-J2EE-servers /etc/security/limits

Legend:
--: Not applicable.

(2) In HP-UX
The following table describes the estimation of resources used by Management Server:

Table 5‒16: Estimation of resources used by Management Server (In HP-UX)

System resource Parameter Requirement Example of option settings

Number of
processes

nproc 5 kctune nproc= 4200

Number of threads nkthread 56 kctune nkthread= 8416

Number of file
descriptors

nfile 43 + number-of-J2EE-servers kctune nfile= 65536

(3) In Linux
The following table describes the estimation of resources used by Management Server:

Table 5‒17: Estimation of resources used by Management Server (In Linux)

System resource Parameter Requirement Example of option settings

Number of
processes

threads-max# 5 /proc/sys/kernel/threads-max

Number of threads threads-max# 56 --

Number of file
descriptors

fs.files-
max

43 + number-of-J2EE-servers /proc/sys/fs/file-max

Legend:
--: Not applicable.

#
Specify the total number of processes and threads in the threads-max parameter.

(4) In Solaris
The following table describes the estimation of resources used by Management Server:

5. Estimating Resources to be Used (J2EE Application Execution Platform)

159

Table 5‒18: Estimation of resources used by Management Server (In Solaris)

System resource Parameter Requirement Example of option settings

Number of
processes

maxuprc 5 /etc/system

Number of threads -- 56 --

Number of file
descriptors

rlim_fd_max 43 + number-of-J2EE- servers /etc/system

Legend:
--: Not applicable.

5.1.6 Resources used for the memory session failover functionality
The following subsection describes the estimation of resources used by the session failover server machine when
using the memory session failover functionality.

Note that the Example of option settings in each table of estimation of resources used differs according to the OS and
the kernel versions in use. Reference the manual of the OS being used and set up the estimates based on the estimation
formula in the table. The settings are not required when the corresponding kernel parameter is not applicable in the OS
being used.

The memory used by J2EE server increases when you use the memory session failover functionality. The formula for
calculating the increase in memory of J2EE server unit is as follows:

Increase-in-memory-of-J2EE-server-unit(Unit: megabytes)
= total-increase-in-memory-of-Web-application-units + 1.5

The total of increase in memory of Web application unit is the total of the increase in memory used in respective Web
applications. You can obtain the increase in memory used in Web applications by the following formula:

Increase-in-the-memory-of-Web-applications(Unit:Megabytes)
= maximum-number-of-concurrently-executed-threads#1 maximum-size-of-global-session-information#2 1.5

#1
The value differs depending on whether the concurrently executed threads are setup for a Web Application unit. The following
table describes the value specified for the maximum number of concurrently executed threads:

Table 5‒19: Value specified for the maximum number of concurrently executed threads

Settings of number of concurrently executed
threads of Web Application unit

Value specified in maximum number of concurrently executed
threads

Setup Maximum-number-of-concurrently-executed-threads-of-Web-
Application-unit

Not setup Maximum-number-of-concurrently-executed-threads-of-Web-container-
unit

For details about the maximum number of concurrently executed threads of a Web Application unit, see 2.17 Controlling the
maximum number of concurrently executed threads for each Web application in the uCosminexus Application Server Web Container
Functionality Guide.

#2
Value of setup parameter (GSInfosLengthMax) for memory session failover functionality set up in the DD (web.xml). For
details about the GSInfosLengthMax parameter, see 6. Functionality for Compatibility with Extension Function (Memory
Session Failover Functionality) in the uCosminexus Application Server Compatibility Guide.

(1) In AIX
The following table describes the estimation of resources used the by session failover server machine:

5. Estimating Resources to be Used (J2EE Application Execution Platform)

160

Table 5‒20: Estimation of resources used by the session failover server machine (In AIX)

System resource Parameter Requirement Example of option
settings

Shared memory -- PrfTraceBufferSize#1 1,024 +
18,496

--

Number of
processes

-- 4 --

Number of threads -- number-of-SFO-server-threads#2 + 34 --

Number of file
descriptors

nofiles number-of-SFO-server-file-descriptors#2 + 43 /etc/security/
limits

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
The number of threads and file descriptors of SFO server are same as that of the J2EE server. For calculating the number of
threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE server.

(2) In HP-UX
The following table describes the estimation of resources used by the session failover server machine:

Table 5‒21: Estimation of resources used by the session failover server machine (In HP-UX)

System resource Parameter Requirement Example of option settings

Shared memory shmmax PrfTraceBufferSize#1 1,024
+ 18,496

kctune shmmax= 1073741824

Number of
processes

nproc 4 kctune nproc=4200

Number of threads nkthread number-of-SFO-server-threads#2 + 34 kctune nkthread= 8416

Number of file
descriptors

nfile number-of-SFO-server-file-descriptors#2 +
43

kctune nfile= 65536

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
The number of threads and file descriptors of SFO server are same as that of the J2EE server. For calculating the number of
threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE server.

(3) In Linux
The following table describes the estimation of resources used by the session failover server machine:

Table 5‒22: Estimation of resources used by the session failover server machine (In Linux)

System resource Parameter Requirement Example of option
settings

Shared memory SHMMAX PrfTraceBufferSize#1 1,024 + 18,496 /proc/sys/kernel/
shmmax

5. Estimating Resources to be Used (J2EE Application Execution Platform)

161

System resource Parameter Requirement Example of option
settings

Number of
processes

threads-max#2 4 /proc/sys/kernel/
threads-max

Number of threads threads-max#2 number-of-SFO-server-threads#3 + 34 --

Number of file
descriptors

fs.file-max number-of-SFO-server-file-descriptors#3 + 43 /proc/sys/fs/file-
max

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
Specify the total number of processes and threads in the threads-max parameter.

#3
The number of threads and file descriptors of SFO server are same as that of the J2EE server. For calculating the number of
threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE server.

(4) In Solaris
The following table describes the estimation of resources used by the session failover server machine:

Table 5‒23: Estimation of resources used by the session failover server machine (In Solaris)

System resource Parameter Requirement Example of option
settings

Shared memory shminfo_shmmax PrfTraceBufferSize#1 1,024 +
18,496

/etc/system

Number of
processes

max_nprocs 4 /etc/system

Number of threads -- number-of-SFO-server-threads#2 + 34 --

Number of file
descriptors

rlim_fd_max number-of-SFO-server-file-descriptors#2 + 43 /etc/system

Legend:
--: Not applicable.

#1
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
The number of threads and file descriptors of SFO server are same as that of the J2EE server. For calculating the number of
threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE server.

5.1.7 Resources used for CTM
The following subsection describes the estimation of resources used for CTM, for each OS.

Note that the Example of option settings in each table of estimation of resources used differs according to the OS and
the kernel versions in use. Reference the manual of the OS being used and set up the estimates based on the estimation
formula in the table. The settings are not required when the corresponding kernel parameter is not applicable in the OS
being used.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

162

(1) In AIX
The following table describes the estimation of resources used for CTM:

Table 5‒24: Estimation of resources used for CTM (In AIX)

System resource Parameter Requirement Example of option
settings

Shared memory -- PrfTraceBufferSize#1 1,024 + 18,496 +
shared-memory-of-CTM-domain-manager#2 + shared-
memory-of-CTM-daemon#2

--

Number of
processes

-- 7 + number-of-J2EE-servers#3 --

Number of threads -- 72 + (number-of-J2EE-server-threads#4 + 7)
number-of-J2EE-servers#3 + number-of-threads-required-
for-CTM- daemon#5

--

Number of file
descriptors

nofiles 88 + (number-of-J2EE-server-file-descriptors#4 + 6)
 number-of-J2EE-servers#3 + number-of-file-

descriptors-required-for-CTM- daemon#5

/etc/security/
limits

Legend:
--: Not applicable.

#1
Specify the buffer memory size of the performance tracer in the range from 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
For calculating the values, see 5.1.7(1)(a) Formula for calculating the file size for a shared memory.

#3
Indicates the value specified in the <j2ee-server-count> tag of Easy Setup definition file.

#4
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

#5
For calculating the number of threads and file descriptors required in the CTM daemon, see 5.1.7(1)(b) Formula for calculating
the number of threads and file descriptors required in the CTM daemon.

(a) Formula for calculating the file size for a shared memory
You must calculate the shared memory of the CTM domain manager and CTM daemon to calculate file size of shared
memory. The respective formula for calculations is as follows:

Use the following value for variable values in the calculations formula. For details about the parameters starting with
ctm., see 4.18 Parameters that can be specified in the logical CTM in the uCosminexus Application Server
Definition Reference Guide.

Values used in the formula for calculations:
-CTMMaxCTM: 64
-CTMQueueCount: ctm.QueueCount
-CTMClientConnectCount: 256
-CTMServerConnectCount: ctm.ServerConnectCount
-CTMEntryCount: -CTMClientConnectCount + -CTMServerConnectCount
-CTMServerCacheSize: ctm.ServerCacheSize
-CTMQueueRegistCount: ctm.QueueRegistCount
-CTMDispatchParallelCount: ctm.DispatchParallelCount

5. Estimating Resources to be Used (J2EE Application Execution Platform)

163

■ Formula for calculating file size for shared memory of CTM domain manager

The formula for calculating the file size for the shared memory of the CTM domain manager is as follows:

File-size-for-shared-memory(Unit: Bytes) =
1,018,320 + (2,362 -CTMMaxCTM specified-value)

■ Formula for calculating file size for shared memory of CTM daemon

For the CTM daemon, you must secure files for shared memory of fixed length and files for shared memory of
variable lengths in each CTM daemon. The formula for the respective calculations is as follows:

File-size-for-shared-memory-of-fixed-length (Unit: Bytes) =
551,840+(1,208 -CTMQueueCount specified-value)

File-size-for-shared-memory-of-variable-length (Unit: Bytes) =
1,027,008
+(928 -CTMClientConnectCount specified-value)
+(256 -CTMServerConnectCount specified-value)
+(512 -CTMEntryCount specified-value)
+(1,024 -CTMServerCacheSize specified-value)
+(512 -CTMQueueCount specified-value)
+(544 -CTMQueueCount specified-value -CTMQueueRegistCount specified-value)
+(512 -CTMDispatchParallelCount specified-value)

(b) Formula for calculating the number of threads and file descriptors required in the CTM daemon
For calculating the number of threads and file descriptors, you must calculate the number of threads and file
descriptors required in the CTM daemon. The formula for the respective calculations is as follows:

■ Formula for calculating number of threads in the CTM daemon

Maximum-value =
(A 4+B 3+C 2+D E+F+G+ 32) / 0.8
Legend:

• A: -CTMMaxCTM value (Value specified in ctmdmd to which the ctmd belongs)

• B: -CTMClientConnectCount value

• C: -CTMServerConnectCount value

• D: -CTMQueueCount value

• E: -CTMQueueRegistCount value

• F: -CTMDispatchParallelCount value

• G: Total number of EJB clients issuing Create

■ Formula for calculating number of file descriptors required in the CTM daemon

Maximum-value =
(A 2+B 4+C 2+D E+F number-of-EJB-interfaces +G+100) / 0.8
Legend:

• A:-CTMMaxCTM value (Value specified in ctmdmd to which the ctmd belongs)

• B: -CTMClientConnectCount value

• C: -CTMServerConnectCount value

• D: -CTMQueueCount value

• E: -CTMQueueRegistCount value

• F: -CTMDispatchParallelCount value

5. Estimating Resources to be Used (J2EE Application Execution Platform)

164

• G: Total number of EJB clients issuing Create

(2) In HP-UX
The following table describes the estimation of resources used for CTM:

Table 5‒25: Estimation of resources used for CTM (In HP-UX)

System resource Parameter Requirement Example of option settings

Shared memory shmmax PrfTraceBufferSize#1 1,024
+ 18,496 + shared-memory-of-CTM-
domain-manager#2 + shared-memory-of-
CTM-daemon#2

kctune shmmax= 1073741824

Number of
processes

nproc 7 + number-of-J2EE-servers#3 kctune nproc=4200

Number of threads nkthread 72 +(number-of-J2EE-server-threads#4 +
7) number-of-J2EE-servers#3 +
number-of-threads-required-in-CTM-
daemon#5

kctune nkthread= 8416

Number of file
descriptors

nfile 88 + (number-of-J2EE-server-file-
descriptors#4 + 6) number-of-J2EE-
servers#3 + number-of-file-descriptors-
required-in-CTM-daemon#5

kctune nfile= 65536

#1
Specify the buffer memory size of the performance tracer in the range from 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
For calculating the values, see 5.1.7(1)(a) Formula for calculating the file size for a shared memory.

#3
Indicates the value specified in the <j2ee-server-count> tag of the Easy Setup definition file.

#4
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

#5
For calculating the number of threads and file descriptors required in the CTM daemon, see 5.1.7(1)(b) Formula for calculating
the number of threads and file descriptors required in the CTM daemon.

(3) In Linux
The following table describes the estimation of resources used for CTM:

Table 5‒26: Estimation of resources used for CTM (In Linux)

System resource Parameter Requirement Example of option
settings

Shared memory SHMMAX PrfTraceBufferSize#1 1,024 +
18,496 + shared-memory-of-CTM-domain-
manager#2 + shared-memory-of-CTM-daemon#2

/proc/sys/kernel/
shmmax

Number of
processes

threads-max 7 + number-of-J2EE-servers#3 /proc/sys/kernel/
threads-max

Number of threads threads-max 72 + (number-of-J2EE-server-threads#4 + 7)
 number-of-J2EE-servers#3 + number-of-

threads-required-in-CTM-daemon#5

--

5. Estimating Resources to be Used (J2EE Application Execution Platform)

165

System resource Parameter Requirement Example of option
settings

Number of file
descriptors

fs.file-max 88 + (number-of-J2EE-server-file-descriptors#4 +
6) number-of-J2EE-servers#3 + number-of-
file-descriptors-required-in-CTM-daemon#5

/proc/sys/fs/file-
max

Legend:
--: Not applicable.

#1
Specify the buffer memory size of the performance tracer in the range from 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
For calculating the values, see 5.1.7(1)(a) Formula for calculating the file size for a shared memory.

#3
Indicates the value specified in the <j2ee-server-count> tag of the Easy Setup definition file.

#4
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

#5
For calculating the number of threads and file descriptors required in the CTM daemon, see 5.1.7(1)(b) Formula for calculating
the number of threads and file descriptors required in the CTM daemon.

(4) In Solaris
The following table describes the estimation of resources used for CTM:

Table 5‒27: Estimation of resources used for CTM (In Solaris)

System resource Parameter Requirement Example of option
settings

Shared memory shminfo_shmmax PrfTraceBufferSize#1 1,024 +
18,496 + shared-memory-of-CTM-domain-
manager#2 + shared-memory-of-CTM-daemon#2

/etc/system

Number of
processes

max_nprocs 7 + number-of-J2EE-servers#3 /etc/system

Number of threads -- 72 + (number-of-J2EE-server-threads#4 + 7)
 number-of-J2EE-servers#3 + number-of-

threads-required-in-CTM-daemon#5

--

Number of file
descriptors

rlim_fd_max 88 + (number-of-J2EE-server-file-descriptors#4

+ 6) number-of-J2EE-servers#3 + number-
of-file-descriptors-required-in-CTM-daemon#5

/etc/system

Legend:
--: Not applicable.

#1
Specify the buffer memory size of the performance tracer in the range from 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
For calculating the values, see 5.1.7(1)(a) Formula for calculating the file size for a shared memory.

#3
Indicates the value specified in the <j2ee-server-count> tag of Easy Setup definition file.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

166

#4
For calculating the number of threads and file descriptors of the J2EE server, see 5.2.1 Estimating the resources used by J2EE
server.

#5
For calculating the number of threads and file descriptors required in the CTM daemon, see 5.1.7(1)(b) Formula for calculating
the number of threads and file descriptors required in the CTM daemon.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

167

5.2 Resources used for each process
This section describes the estimation of the required amount of resources used in each process of Application Server.

5.2.1 Estimating the resources used by J2EE server
This subsection describes how to estimate the number of threads and file descriptors of the J2EE server process.

The calculation formula when EJB is described in Session Bean is as follows:

Reference note
The number of threads and file descriptors of SFO server are same as that of the J2EE server. Calculate the number of
threads and file descriptors using calculation formula of J2EE server.

(1) Number of threads
The formula for calculating number of threads is as follows. The total of (a) and (b) is the number of threads used by
J2EE server.

(a) Basic number of threads

The formula is as follows:

• When invoking the CORBA Naming Service as in-process and when using the in-process HTTP server
Maximum-number-of-threads = 70+A+B+C+D+E+F+G+H+I+K+L+M+N+O+P+Q+R+S

• When invoking CORBA Naming Service as in-process and when using Cosminexus HTTP Server
Maximum-number-of-threads = 68+A+B+C+D+E+F+G+H+I+J+K+L+M+O+P+Q+R+S

Legend:

• A: Total number of deployed Entity Beans

• B: Maximum number of instances of Message-driven Bean when using Message-driven Bean (Total of instances
when multiple Message-Driven Beans exist) #

#: Value of <pooled-instance><maximum> in the Message-Driven Bean property file

• C: Maximum-number-of-EJB-clients-performing-remote-invocation 2+Total-number-of-maximum-concurrent-
requests-of-each-EJB-client +1

• D: Number of threads of CORBA Naming Service (=number-of-connections-between-client-and-CORBA-
Naming-Service 2+number-of-requests-received-concurrently +number-of-threads-generated-during-
initialization (if the value of vbroker.agent.enableLocator is true, then 6, if the value is false, then
4) +1)
However, added only when CORBA Naming Service is invoked as in-process (Specify inprocess in the
ejbserver.naming.startupMode key of usrconf.properties).

• E: Maximum number of database connections used concurrently
If the connection pooling functionality is used, the maximum number of connection pools (value of
MaxPoolSize specified in the Hitachi Connector Property file. Total of connection pools if there are multiple
resource adapters) is used as the value.
If the connection pooling functionality is not used, the value is obtained from the maximum number of concurrent
requests or the number of connections used for each request (if one connection is used for one request, the
maximum number of concurrent requests is used as the value).

• F: Maximum number of concurrently executed transactions, if the JTA transaction is used (one thread is used for
each transaction in which a transaction timeout occurs. In the case of one request in one transaction, the maximum
number of concurrent requests is used as the value)

• G: Maximum-number-of-connection-pools# (total of connection pools if there are multiple resource adapters #)
2
#: Value of MaxPoolSize specified in the Hitachi Connector Property file

5. Estimating Resources to be Used (J2EE Application Execution Platform)

168

• H: Number of resource adapters using the connection pooling functionality

• I: Number of threads used for the conclusion and recovery processing of a global transaction (add 16 if a global
transaction is used)

• J: Number of clients connected concurrently to a Web server (total of clients if multiple Web servers are used)
If a Web server is restarted while a request is being processed, and a large number of requests are received after
the server is restarted, the generated threads might exceed this value.

• K: Number of clients connected concurrently to a simple Web server
However, the number of clients connected concurrently are specified as 5 when the clients connected concurrently
to a simple Web server are less than 5 and when they are 100 and above, 100 is specified.

• L: Number of deployed Web applications

• M: Number of threads used in the automatic reload functionality of a J2EE application
Specify one of the following values:

• For ejbserver.deploy.context.reload_scope=app, and
ejbserver.deploy.context.check_interval=1 or more
Number-of-running-J2EE-applications-in-exploded-archive-format + Number-of-WARs-included-in-
running-J2EE-applications-in-exploded-archive-format 2

• For ejbserver.deploy.context.reload_scope=web, and
ejbserver.deploy.context.check_interval=1 or more
Number-of-WARs-included-in-running-J2EE-applications-in-exploded-archive-format 2

• For ejbserver.deploy.context.reload_scope=jsp, and
ejbserver.deploy.context.check_interval=1 or more
Number-of-WARs-included-in-running-J2EE-applications-in-exploded-archive-format

• N: Number of threads of an in-process HTTP server (Added only when the in-process HTTP server functionality
is used. The number of threads of an in-process HTTP server can be controlled by the J2EE server user definitions
(usrconf.properties)) #

#
Maximum value: Value of webserver.connector.inprocess_http.max_connections
Regular value: Number-of-concurrent-requests-from-Web-client + value-of-
webserver.connector.inprocess_http.min_spare_threads

• O: Number of threads of the TP1 inbound adapters calculated using the following formula: (4 + number-of-
threads-specified-in-TP1-inbound-adapter-property-rpc_max_thread_count + number-of-threads-specified-in-
TP1-inbound-adapter-property-trn_max_thread_count + total-number-of-deployed-Message-driven-Bean-
(services)-integrated-with-TP1-inbound-adapters + number-of-threads-specified-in-TP1-inbound-adapter-
property-MaxTPoolSize)
Add only when using the TP1 inbound integrated functionality. This thread count can be controlled by the Hitachi
Connector Property file. The number 4 added at the beginning is the number of threads used internally for the TP1
inbound integrated functionality.

• P: Sum of the maximum number of thread pools used for invoking the asynchronous Session Beans (Value of
<cosminexus-app><ejb-async-props><max-thread-pool-size> in cosminexus.xml)

• Q: Sum-of-the-number-of-J2EE-applications-containing-asynchronous-Session-Beans 2

• R: If settings are specified to start the thread that manages the reply receiving thread
(vbroker.ce.iiop.ccm.htc.threadStarter=true), add 5.

• S: Add the following value if settings are specified to control the closing of connections when a timeout occurs
(vbroker.ce.iiop.ccm.htc.readerPerConnection=true):
(Number-of-J2EE-servers-with-remote-invocation-destination-EJBs + 1) 2 If CTM is used, add the
following values in addition to the above:

• For scheduling of J2EE applications
Number-of-running-J2EE-applications + 1

• For scheduling of Stateless Session Beans
Number-of-Stateless-Session-Beans-to-be-scheduled + 1

5. Estimating Resources to be Used (J2EE Application Execution Platform)

169

The following figure shows the example estimation when CORBA Naming Service is started as in-process and
Cosminexus HTTP Server is used.

Figure 5‒1: Example estimation of the number of threads when Cosminexus HTTP Server is used

The following is an example of estimating the number of threads for using Cosminexus HTTP Server shown in the
figure.

Formula for calculating the number of threads, when CORBA Naming Service is started as in-process and
Cosminexus HTTP Server is used

Maximum-number-of-threads = 68+A+B+C+D+E+F+G+H+I+J+K+L+M+O+P+Q+R+S

The results calculated using the above formula and the contents that are set up are as follows:

Maximum-number-of-threads = 68+0+0+1+5+72+72+144+2+0+72+5+2+0+0+0+0+0+0=443

Table 5‒28: Contents estimated for the number of threads when Cosminexus HTTP Server is used
(Example)

Setup item Set value Explanation

A 0 Sets 0 because Entity Bean is not used.

B 0 Sets 0 because Message-driven Bean is not used.

C 1 A remote invocation is not performed. Also, if the EJB is invoked
locally from a Web application, the threads are not generated for
executing the EJBs.

D 4+1 Such as C, the EJB client-related value is 0.

E 48+24 --

5. Estimating Resources to be Used (J2EE Application Execution Platform)

170

Setup item Set value Explanation

F 72 Sets the value of
webserver.connector.ajp13.max_threads, which is
the maximum number of concurrent requests, if there is one request
in one transaction.

G (48+24) 2 --

H 2 --

I 0 Sets 0 because the global transaction is not used.

J 72 Sets the value of MaxClient in the case of a Web server (Linux).

K 5 Sets the minimum value because the simple Web server is not
used.

L 2 --

M 0 Sets 0 because the application is not in the exploded archive
format.

O 0 Sets 0 because the TP1 inbound adapter is not used.

P 0 Sets 0 because the asynchronous Session Bean is not used.

Q 0 Sets 0 because the asynchronous Session Bean is not used.

R 0 Sets 0 because the settings for receiving the response message
using a dedicated thread are not specified.

S 0 Sets 0 because the settings for controlling the closing of
connections are not specified.

(b) Number of threads used according to JavaVM option specifications

According to JavaVM option specifications, calculate the maximum number of threads using the following formula.
Add A only when -XX:+UseParNewGC option is specified, and add B only when -XX:
+HitachiUseExplicitMemory option is specified.

Maximum-number-of-threads = A + B

Legend:

• A: Number of threads used by parallel copy garbage collection.

• (Value specified in -XX:ParallelGCThreads option. When this option is not specified, the default value
of -XX:ParallelGCThreads option based on the number of logical CPUs. Note that the value is
determined by the number of logical CPUs that exist when starting the J2EE server. Hence, the number of
threads does not change even if the number of logical CPUs changes after the server is started.)

• B: Number of threads used by the explicit management heap functionality (The number of logical CPUs.
However, this number is 8 when the number of logical processors is 8 or more. This number is determined by
the number of logical CPUs that exist when starting the J2EE server. Hence, the number of threads does not
change even if the number of logical CPUs changes after the server is started.)

For the JavaVM options, see the following sections in the uCosminexus Application Server Definition Reference
Guide:

• 16.5 Java HotSpot VM options that can be specified in Cosminexus

• -XX:[+|-]HitachiUseExplicitMemory (Explicit management heap functionality option)

(2) Number of file descriptors
The formula for calculating number of file descriptors is as follows:

maximum-number-of-file-descriptors: (139+A+B 3+C+D+E 2+F+G+H+I+J 2+K+L) / 0.8

5. Estimating Resources to be Used (J2EE Application Execution Platform)

171

Legend:

• A: Number of database connections

• B: Number of EJB client processes

• C: Number of clients connected concurrently to a Web server (However, when the number of clients connected
concurrently to a Web server are greater than the maximum number of concurrently executed threads of a Web
container (Value specified in webserver.connector.ajp13.max_threads key of
usrconf.properties), specify as number of clients connected concurrently to a Web server + 1)

• D: Maximum number of concurrently executed threads of a Web container

• E: Number of clients connected concurrently to a simple Web server

• F: 4, when the in-process HTTP server functionality is enabled and 0 when the functionality is disabled

• G: Number of clients connected concurrently to an in-process HTTP server

• H: Number of file descriptors used by the TP1 inbound adapters calculated using the following formula (add only
when you use the TP1 inbound integrated functionality. Also, the fixed value calculated at the beginning shows
the number of file descriptors in the TP1 inbound integrated functionality)

• In JDK 6 on Linux
12 + value-specified-in-TP1-inbound-adapter-property max_connections
+value-specified-in-TP1-inbound-adapter-property trn_max_connections
+total-of-values-specified-in <pooled-instance><maximum> of-each-MDB (services)-Message-driven-
Bean-attribute file 3
+number-of-threads-specified-in-TP1-inbound-adapter-property rpc_max_thread_count 3
+number-of-threads-specified-in-TP1-inbound-adapter-property trn_max_thread_count 3

• In the case of other systems
8+ value-specified-in-TP1-inbound-adapter-property max_connections
+value-specified-in-TP1-inbound-adapter-property trn_max_connections
+total-of-values-specified-in <pooled-instance><maximum> of-each-MDB (services)-Message-driven-
Bean-attribute file 2
+number-of-threads-specified-in-TP1-inbound-adapter-property rpc_max_thread_count 2
+number-of-threads-specified-in-TP1-inbound-adapter-property trn_max_thread_count 2

• I: Number of JAR files included in J2EE application

• J: Number of resource adapters

• K: Number of JAR files specified in add.class.path key of usrconf.cfg
• L: Number of JAR files included in WEB-INF/lib of a Web application

(3) Estimating number of threads of CORBA Naming Service (When invoking as in-process)
This section describes the estimation of number of threads of CORBA Naming Service generated on J2EE server
when invoking the CORBA Naming Service as in-process while invoking the J2EE server.

Estimate the number of threads of CORBA Naming Service as follows when invoking the CORBA Naming Service as
in-process:

Total-number-of-threads = number-of-threads + worker-threads-generated-during-initialization

(a) Number of threads generated during initialization

The number of threads generated during initialization is 6, when the value of vbroker.agent.enableLocator
key of usrconf.properties is true and 4, when the value is false. The
vbroker.agent.enableLocator key is setup as true automatically when the CTM integration functionality
is enabled (true is specified in ejbserver.ctm.enabled key)

(b) Number of worker threads

The number of worker threads is the total of number-of-requests-received-concurrently + 1 and number-of-
connections-between-client-and-CORBA-Naming-Service 2.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

172

The keys related to worker threads are as follows:

• vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax
• vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin
• vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle

These keys are specified as value of ejbserver.naming.exec.args key of usrconf.properties. For
details on the keys, see the manuals Borland(R) Enterprise Server VisiBroker(R) Developers Guide and Borland(R)
Enterprise Server VisiBroker(R) Programmers Reference.

The number of worker threads when maximum value is specified in the
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMax key is the total of maximum-value-
specified-in-this-key and number-of-connections-between-client-and-CORBA-Naming-Service.

However, when minimum value of worker threads is specified in the
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMin key, and when the total number of
worker threads is not within that minimum value, consider the number of worker threads equal to the minimum value.

When the maximum value is not specified, the worker threads increase in multiples. However, the worker threads
lapse when they exceed the time specified in the
vbroker.se.iiop_tp.scm.iiop_tp.dispatcher.threadMaxIdle key (Default value is 300 seconds)
from the time they are idle, resulting in reduction in the number of threads with the reduction in load.

When the maximum value of number of worker threads is specified and when the number of threads is the same as the
maximum number of worker threads, do not perform error handling for the requests received from this point of time
but continue the process as follows:

• Continue the process for received requests.

• Do not read() the new requests from the socket and retain these requests in the receive buffer of TCP and send
buffer at the client side. When the TCP buffer is full, the requests would wait to be sent from the client side.

When the worker thread being processed is NULL (Responded), the next request reception is processed.

5.2.2 Estimating the resources used by Administration Agent
This subsection describes the estimation of resources used by Administration Agent for each OS.

(1) In Windows
The formula for calculating number of threads when using Windows is as follows:

• Formula for calculating number of threads
Number-of-threads-used = 30+7 number-of-logical-servers#

#: Consider the number of logical servers as 2 when calculating logical CTM.
Legend:

• 30: Number of threads used by Administration Agent

• 7: Number of threads used by Administration Agent for one logical server

The formula for calculating the number of threads when the logical server is in running status is as follows:

• Formula for calculating number of threads at usual time
Number-of-threads-used = 30+5 number-of-logical-servers#

#: Consider the number of logical servers as 2 when calculating logical CTM.
Legend:

• 30: Number of threads used by Administration Agent

• 5: Number of threads used by Administration Agent for one logical server

5. Estimating Resources to be Used (J2EE Application Execution Platform)

173

(2) In UNIX
This section describes the formula for calculating the number of threads and file descriptors required when using
UNIX.

(a) Number of threads

The formula for calculating number of threads is as follows:

• Formula for calculating number of threads
Number-of-threads-used = 30+5 number-of-logical-servers#

#: Consider the number of logical servers as 2 when calculating logical CTM.
Legend:

• 30: Number of threads used by Administration Agent

• 5: Number of threads used by Administration Agent for one logical server

The formula for calculating the number of threads when the logical server is in running status is as follows:

• Formula for calculating number of threads at usual time
Number-of-threads-used = 30+5 number-of--logical-servers#

#: Consider the number of logical servers as 2 when calculating logical CTM.
Legend:

• 30: Number of threads used by Administration Agent

• 5: Number of threads used by Administration Agent for one logical server

(b) Number of file descriptors

The formula for calculating the number of file descriptors is as follows:

• Formula for calculating number of file descriptors
Number-of-file-descriptors-used = 20+number-of-processes-configuring-the-logical-server 6
Legend:

• 20: Number of file descriptors used by Administration Agent

• 6: Number of file descriptors used by Administration Agent for one process each for configuring logical
server

The formula for calculating number of file descriptors when the logical server is in running status is as follows:

• Formula for calculating number of file descriptors at usual time
Number-of-file-descriptors-used = 20+number-of-processes-configuring-the-logical-server 3
Legend:

• 20: Number of file descriptors used by Administration Agent

• 3: Number of file descriptors used by Administration Agent for one process each for configuring logical
server

5.2.3 Estimating the resources used by performance tracer
This subsection describes the estimation of resources used by performance tracer for each OS.

(1) In Windows
This section describes the estimation of resources used by performance tracer when using Windows.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

174

(a) File size for shared memory

Calculate the file size (Unit: Bytes) for shared memory used by performance tracer for each PRF daemon. The
formula for calculating is as follows:

• Formula for calculating shared memory for each PRF daemon
File-size-for-shared-memory = -PrfTraceBufferSize-specified-value 1,024+18,496

(b) Disk occupancy of %PRFSPOOL%

Formula for calculating disk occupancy of %PRFSPOOL% is as follows:

• Formula for calculating disk occupancy of %PRFSPOOL%
Disk-occupancy = 2.0 MB
+ {(-PrfTraceBufferSize-specified-value + 20KB) 5
+ -PrfTraceFileSize-specified-value -PrfTraceCount-specified-value r} n
+ 224 KB (256+m)
+ 1,120 KB (64 + p)
Legend:

• n: Number of PRF daemons

• m: Number of running performance trace output processes and number of performance trace output processes
that did not terminate normally
In a performance tracer, the internal trace is output to a file as the maintenance information for each
performance trace output process. This file is created when a process starts, but the file remains if the process
has abnormal termination. The file is deleted when a PRF daemon is invoked and every 24 hours after the PRF
daemon is invoked, but 256 files remain without being deleted. Therefore, the maximum number of files is
"256 + number-of-performance-trace-output-processes-executed-in-24-hours".

• p: Number of commands and daemon processes used in the running performance analysis trace
In a performance tracer, the internal trace is output to a file as the maintenance information for each command
and daemon used in the performance analysis trace. This file is created when a process starts. The file is
deleted when a PRF daemon is invoked and every 24 hours after the PRF daemon is invoked, but 64 files
remain without being deleted. Therefore, the maximum number of files is "64 + number-of-command-and-
daemon-processes-used-in-performance-analysis-trace-executed-in-24-hours".

• r: Backup coefficient
This value calculates the PRF trace backup. If you specify -PrfNoBackUp 0 in the invocation option for
the cprfstart command, the backup coefficient is 2, and in all other cases, the backup coefficient is 1.

The above mentioned disk capacity is a rough indicator. As a result, create the %PRFSPOOL% with enough excess
space.

(2) In AIX
You must consider the following values and set up the kernel parameter to use the performance tracer when using
AIX. If the settings are not done properly, the processes of performance tracer cannot be invoked or while running the
processes they might terminate abnormally due to insufficient resources. For the kernel parameter settings, see the
manual of the OS being used.

(a) File size for shared memory

Calculate the file size for the shared memory (Unit: Bytes) used by performance tracer for each PRF daemon. The
formula for calculating is as follows:

• Formula for calculating shared memory for each PRF daemon
File-size-for-shared-memory = -PrfTraceBufferSize-specified-value 1,024+18,496

Set up the file size for shared memory using the environment variable EXTSHM. Set up in such a way so that shared
memory allocated is greater than the value calculated in the formula for calculations.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

175

(b) Number of file descriptors

Set up the number of file descriptors in nofiles of the /etc/security/limits file. Set up the number of file
descriptors used when invoking the PRF daemon as 32 and above.

(c) Disk occupancy of $PRFSPOOL

The formula for calculating the disk occupancy of $PRFSPOOL is as follows:

• Formula for calculating disk occupancy of $PRFSPOOL
Disk-occupancy = 2.0 MB
+ {(-PrfTraceBufferSize-specified-value + 20KB) 5
+ -PrfTraceFileSize-specified-value -PrfTraceCount-specified-value r} n
+ 224 KB (256+m)
+ 1,120 KB (64 + p)
Legend:

• n: Number of PRF daemons

• m: Number of running performance trace output processes and number of performance trace output processes
that did not terminate normally
In a performance tracer, the internal trace is output to a file as the maintenance information for each
performance trace output process. This file is created when a process starts, but the file remains if the process
has abnormal termination. The file is deleted when a PRF daemon is invoked and every 24 hours after the PRF
daemon is invoked, but 256 files remain without being deleted. Therefore, the maximum number of files is
"256 + number-of-performance-trace-output-processes-executed-in-24-hours".

• p: Number of commands and daemon processes used in the running performance analysis trace
In a performance tracer, the internal trace is output to a file as the maintenance information for each command
and daemon used in the performance analysis trace. This file is created when a process starts. The file is
deleted when the PRF daemon is invoked and every 24 hours after the PRF daemon is invoked, but 64 files
remain without being deleted. Therefore, the maximum number of files is "64 + number-of-command-and-
daemon-processes-used-in-performance-analysis-trace-executed-in-24-hours".

• r: Backup coefficient
This value calculates the PRF trace backup. If you specify -PrfNoBackUp 0 in the invocation option for
the cprfstart command, the backup coefficient is 2, and in all other cases, the backup coefficient is 1.

The above mentioned disk capacity is a rough indicator. As a result, create the $PRFSPOOL with enough excess
space.

(3) In HP-UX
You must consider the following values and set up the kernel parameter to use the performance tracer when using HP-
UX. If the settings are not done properly, the processes of performance tracer cannot be invoked or while running the
processes they might as well terminate abnormally due to insufficient resources. For the kernel parameter settings, see
the manual of the OS being used.

(a) File size for shared memory

Calculate the file size for shared memory (Unit: Bytes) used by performance tracer for each PRF daemon. The
formula for calculating is as follows:

• Formula for calculating shared memory for each PRF daemon
File-size-for-shared-memory = -PrfTraceBufferSize-specified-value 1,024+18,496

Set up the file size for shared memory by shmmax of Kernel Configuration. Set up in such a way so that shared
memory allocated is greater than the value calculated in formula for calculations.

(b) Number of file descriptors

Set up the number of file descriptors by maxfiles of Kernel Configuration. Set up the number of file descriptors
used when invoking the PRF daemon as 32 and above.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

176

(c) Disk occupancy of $PRFSPOOL

The formula for calculating the disk occupancy of $PRFSPOOL is same as AIX. Reference the formula for
calculations of AIX.

(4) In Linux
You must consider the following values and set up the kernel parameter to use the performance tracer when using
Linux. If the settings are not done properly, the processes of performance tracer cannot be invoked or while running
the processes they might as well terminate abnormally due to insufficient resources. For the kernel parameter settings,
see the manual of the OS being used.

(a) File size for shared memory

Calculate the file size for shared memory (Unit: Bytes) used by performance tracer for each PRF daemon. The
formula for calculating is as follows:

• Formula for calculating shared memory for each PRF daemon
File-size-for-shared-memory = -PrfTraceBufferSize-specified-value 1,024+18,496

Set up the file size for shared memory in kernel.shmmax of /etc/sysctl.conf file. Set up in such a way so
that shared memory allocated is greater than the value calculated in formula for calculations.

(b) Number of file descriptors

Set up the number of file descriptors in nofiles of /etc/security/limits.conf file. Set up the number of
file descriptors used when invoking the PRF daemon as 32 and above.

(c) Disk occupancy of $PRFSPOOL

The formula for calculating the disk occupancy of $PRFSPOOL is same as AIX. Reference the formula for
calculations of AIX.

(5) In Solaris
You must consider the following values and set up the kernel parameter to use the performance tracer when using
Solaris. If the settings are not done properly, the processes of performance tracer cannot be invoked or while running
the processes they might as well terminate abnormally due to insufficient resources. For the kernel parameter settings,
see the manual of the OS being used.

(a) File size for shared memory

Calculate the file size for shared memory (Unit: Bytes) used by performance tracer for each PRF daemon. The
formula for calculating is as follows:

• Formula for calculating shared memory for each PRF daemon
File-size-for-shared-memory = -PrfTraceBufferSize-specified-value 1,024+18,496

Set up the file size for shared memory in shmsys:shminfo_shmmax of /etc/system file. Set up in such a way
so that shared memory allocated is greater than the value calculated in formula for calculations.

(b) Number of file descriptors

Set up the number of file descriptors in rlim_fd_max of /etc/system file. Set up the number of file descriptors
used when invoking the PRF daemon as 32 and above.

(c) Disk occupancy of $PRFSPOOL

The formula for calculating the disk occupancy of $PRFSPOOL is same as AIX. Reference the formula for
calculations of AIX.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

177

5.2.4 Estimating the resources used by CTM
This subsection describes the estimation of resources used by CTM for each OS. You cannot use CTM in batch
application execution environment.

(1) In Windows
This section describes the estimation of resources used by CTM in Windows.

(a) File size for shared memory

This section describes the formula for calculating file size for shared memory (Unit: Bytes) using CTM. You must
secure more than one shared memory for CTM daemon. There are files for shared memory with fixed length and
variable length in the CTM daemon unit. The formula for calculating the respective file size is as follows:

• Formula for calculating file size for shared memory of CTM domain manager
File-size-for-shared-memory = 1,018,320 + (2,362 -CTMMaxCTM-specified-value)

• Formula for calculating file size for shared memory of CTM daemon
The files for shared memory with fixed length and variable length must be secured in the CTM daemon unit for
CTM daemon.

• File-size-for-shared-memory-with-fixed-length =
551,840+(1,208 -CTMQueueCount-specified-value)

• File-size-for-shared-memory-with-variable-length =
1,027,008
+ (928 -CTMClientConnectCount-specified-value)
+ (256 -CTMServerConnectCount-specified-value)
+ (512 -CTMEntryCount-specified-value)
+ (1,024 -CTMServerCacheSize-specified-value)
+ (512 -CTMQueueCount-specified-value)
+ (544 -CTMQueueCount-specified-value) -CTMQueueRegistCount-specified-value)
+ (512 -CTMDispatchParallelCount-specified-value)

(b) Statistics information file size

The formula for calculating statistics information file size (Unit: Bytes) is as follows:

• Formula for calculating statistics information file size required from online start to end
File-size = A + B
Legend:

• A: (number-of-requests-executed-from-online-start-to-end) (information-output-for-one-request)
• B: (time-from-online-start-to-end(minutes) / acquired-interval-specified-in-ctmstsstart -
CTMInterval) (volume-of-statistics-information-output-once-for-CTM-node-unit, queue-unit)

The formula for calculating volume of information output by one request and volume of statistics information output
once for CTM node unit, queue node unit is as follows:

• Formula for calculating volume of information output by one request
Volume-of-information =((80 + A + B + C + D + 63)/ 64 64) 3
Legend:

• A: Length of domain of CTM domain name that manages application executing requests

• B: Length of CTM identifier of CTM daemon that manages application executing requests

• C: Length of queue name

• D: Length of operation name

• Formula for calculating volume of statistics information output once for CTM node unit, queue unit

5. Estimating Resources to be Used (J2EE Application Execution Platform)

178

Volume-of-statistics-information = (2,144 + 344 number-of-queues + 63) / 64 64

(c) Disk occupancy of %CTMSPOOL%

The formula for calculating disk occupancy of %CTMSPOOL% is as follows:

• Formula for calculating disk occupancy of %CTMSPOOL%
Disk-occupancy = 7.0MB
+ (18.5MB + 1.0MB -CTMLogFileSize-specified-value -CTMLogFileCount-specified-value)
 n

+(1KB + 0.5KB k) (m + l)
+1KB m j
+224KB p
+1,120KB (64 + q)
+file-size-for-shared-memory-of-CTM-domain-manager 5
+file-size-for-shared-memory-of-CTM-daemon 5 n
+core-size-of-CTM-domain-manager
+core-size-of-CTM-daemon n
+core-size-of-CTM-regulator 3 m
+core-size-of-OTM-gateway 3 l
+ (-CTMStatsFileSize-specified-value -CTMStatsFileCount-specified-value) n
Legend:

• j: Total of EJBs

• k: Number of clients that you can connect to CTM regulator and OTM gateway (-
CTMClientConnectCount option specified value)

• l: Total of OTM gateways

• m: Total of CTM regulators

• n: Total of CTM daemons

• p: Number of processes of user applications being invoked and number of processes of user applications that
did not terminate normally
In CTM, the internal trace is output to a file as maintenance information for each user application. This file is
created while invoking the process. The file for internal trace output is created while invoking the process and
remains as it is when the process does not terminate normally. The file deletion process is executed while
invoking the CTM domain manager and after 24 hours each on invoking the CTM domain manager. However,
256 files are not deleted and left as is, resulting in the maximum number of files to 256 + number-of-
processes-being-invoked.

• q: Number of processes of system being invoked
In CTM, the internal trace is output to a file as maintenance information for each process. This file is created
while invoking the process. The file deletion process is executed while invoking the CTM domain manager
and after 24 hours each on invoking the CTM domain manager. However, 64 files are not deleted and left as is
and therefore the maximum number of files is 64 + number-of-processes-being-invoked.

The above mentioned disk capacity is a rough indicator. As a result, create the %CTMSPOOL% with enough excess
space.

(2) In AIX
You must consider the following values and set up the kernel parameters to use CTM when using AIX. If the settings
are not done properly, the CTM process cannot be invoked or while running the CTM processes they might as well
terminate abnormally due to insufficient resources. For the kernel parameter settings, see the manual of the OS being
used.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

179

(a) File size for shared memory

Set up the file size for shared memory by the environment variable EXTSHM. Set up in such a way so that the shared
memory allocated is greater that the value calculated by formula for calculations. The formula for calculations is the
same as that for Windows. Reference the formula for calculations for Windows.

(b) Statistics information file size

The formula for calculating statistics information file size is the same as the one for Windows. Reference the formula
for calculations for Windows.

(c) Number of file descriptors

Based on the options during invocation, add the number of file descriptors that you can use in the process as per the
following formula for calculations in the CTM daemon. When the value set up in OS is not within the maximum value
of file descriptors required in a CTM daemon setup by formula for calculations, the process invocation terminates with
an error. Based on the formula for calculations, change the nofiles of /etc/security/limits.conf file.

• Formula for calculating maximum value of number of file descriptors required in the CTM daemon
Maximum-value = (A 2 + B 4 + C 2 + D E + F number-of- EJBs + G +
100)/0.8
Legend:

• A: -CTMMaxCTM value (Value specified in ctmdmd to which the ctmd belongs)

• B:-CTMClientConnectCount value

• C:-CTMServerConnectCount value

• D:-CTMQueueCount value

• E:-CTMQueueRegistCount value

• F:-CTMDispatchParallelCount value

• G: Total number of EJB clients issuing Create

(d) Disk occupancy of $CTMSPOOL

The formula for calculating disk occupancy of $CTMSPOOL is as follows:

• Formula for calculating disk occupancy of $CTMSPOOL
Disk-occupancy = 7.0MB
+(18.5MB + 1.0MB -CTMLogFileSize-specified-value -CTMLogFileCount-specified-value)
 n

+(1KB + 0.5KB k) (m + l)
+1KB m j
+224KB p
+1,120KB (64 + q)
+file-size-for-shared-memory-of-CTM-domain-manager 5
+file-size-for-shared-memory-of-CTM-daemon 5 n
+core-size-of-CTM-domain-manager
+core-size-of-CTM-daemon n
+core-size-of-CTM-regulator 3 m
+core-size-of-OTM-gateway 3 l
+(-CTMStatsFileSize-specified-value -CTMStatsFileCount-specified-value) n
Legend:

• j: Total number of EJBs

• k: Total number of clients that can be connected to CTM regulator and OTM gateway (-
CTMClientConnectCount option specified value)

• l: Total number of OTM gateways

5. Estimating Resources to be Used (J2EE Application Execution Platform)

180

• m: Total number of CTM regulators

• n: Number of CTM daemons

• p: Number of processes of user applications being invoked and number of processes of user applications that
did not terminate normally
In CTM, the internal trace is output to a file as maintenance information for each user application. The file for
internal trace output is created while invoking the process and remains as it is when the process does not
terminate normally. The file deletion process is executed while invoking the CTM domain manager and after
24 hours each on invoking the CTM domain manager. However, 256 files are not deleted and left as it is,
resulting in the maximum number of files to 256 + number-of-processes-being -invoked.

• q: Number of processes in system that is being invoked
In CTM, the internal trace is output to a file as maintenance information for each process. This file is created
while invoking the process. The file deletion process is executed while invoking the CTM domain manager
and after 24 hours each on invoking the CTM domain manager. However 64 files are not deleted and left as it
is, resulting in the maximum number of files to 64 + number-of-processes-being-invoked.

The above mentioned disk capacity is a rough indicator. As a result, create the $CTMSPOOL with enough excess
space.

(3) In HP-UX
You must consider the following values and set up the kernel parameters to use CTM when using HP-UX. If the
settings are not done properly, the CTM processes cannot be invoked or while running the processes they might as
well terminate abnormally due to insufficient resources. For the kernel parameter settings, see the manual of the OS
being used.

(a) File size for shared memory

Set up the file size for shared memory by shmmax of Kernel Configuration. Set up in such a way so that the shared
memory allocated is greater that the value calculated by formula for calculations. The formula for calculations is the
same as that for Windows. Reference the formula for calculations for Windows.

(b) Statistics information file size

The formula for calculating statistics information file size is the same as the one for Windows. Reference the formula
for calculations for Windows.

(c) Number of file descriptors

Set up the number of file descriptors by maxfiles of Kernel Configuration. Change the maxfiles based on the
formula for calculations. The formula for calculations is same as that of AIX. Reference the formula for calculations
of AIX.

(d) Number of threads

In the CTM daemon, the threads are created for invoking the J2EE server, invoking J2EE applications and for requests
from the EJB client. Change the maximum value of threads that can be used by max_thread_proc of Kernel
Configuration based on the formula for calculations.

• Formula for calculating maximum value of threads required in the CTM daemon
Maximum-value = (A 4 + B 3 + C 2 + D E + F + G + 32) / 0.8
Legend:

• A:-CTMMaxCTM value (Value specified in ctmdmd to which the ctmd belongs)

• B:-CTMClientConnectCount value

• C:-CTMServerConnectCount value

• D:-CTMQueueCount value

• E:-CTMQueueRegistCount value

• F:-CTMDispatchParallelCount value

5. Estimating Resources to be Used (J2EE Application Execution Platform)

181

• G: Total number of EJB clients issuing Create

(e) Disk occupancy of $CTMSPOOL

The formula for calculating disk occupancy of $CTMSPOOL is same as AIX. Reference the formula for calculations of
AIX.

(4) In Linux
You must consider the following values and set up the kernel parameters to use CTM when using Linux. If the
settings are not done properly, the CTM processes cannot be invoked or while running the processes they might
terminate abnormally due to insufficient resources. For the kernel parameter settings, see the manual of the OS being
used.

(a) File size for shared memory

Set up the file size for shared memory by kernel.shmmax of /etc/sysctl.conf file. Set up in such a way so
that the shared memory allocated is greater that the value calculated by formula for calculations. The formula for
calculations is the same as that for Windows. Reference the formula for calculations for Windows.

(b) Statistics information file size

The formula for calculating statistics information file size is the same as the one for Windows. Reference the formula
for calculations for Windows.

(c) Number of file descriptors

Set up the number of file descriptors by nofiles of /etc/security/limits.conf file. Change the
nofiles based on the formula for calculations. The formula for calculations is the same as that for AIX. Reference
the formula for calculations for AIX.

(d) Disk occupancy of $CTMSPOOL

The formula for calculating disk occupancy of $CTMSPOOL is the same as that for AIX. Reference the formula for
calculations for AIX.

(5) In Solaris
You must consider the following values and set up the kernel parameters to use CTM when using Solaris. If the
settings are not done properly, the CTM processes cannot be invoked or while running the processes they might as
well terminate abnormally due to insufficient resources. For the kernel parameter settings, see the manual of the OS
being used.

(a) File size for shared memory

Set up the file size for shared memory by shmsys:shminfo_shmmax of /etc/system file. Set up in such a
way so that the shared memory allocated is greater that the value calculated by formula for calculations. The formula
for calculations is the same as that for Windows. Reference the formula for calculations for Windows.

(b) Statistics information file size

The formula for calculating statistics information file size is the same as the one for Windows. Reference the formula
for calculations for Windows.

(c) Number of file descriptors

Set up the number of file descriptors by rlim_fd_max of /etc/system file based on the formula for
calculations. Change the rlim_fd_max based on the formula for calculations. The formula for calculations is same
as that of AIX. Reference the formula for calculations of AIX.

(d) Disk occupancy of $CTMSPOOL

The formula for calculating disk occupancy of $CTMSPOOL is same as that of the AIX. Reference the formula for
calculations of AIX.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

182

5.3 Estimating virtual memory usage
This section describes how to estimate the virtual memory that is used. For details about the option for invoking
JavaVM used in the formula for calculating the virtual memory usage, see 7.1.2 Configuring the memory space used
in JavaVM and the JavaVM options.

Moreover, when you use the explicit management heap functionality, apart from the contents described here, you must
provide the estimation of the memory size used by the explicit management heap functionality. For details on
estimating the memory size used by the explicit management heap functionality, see 7.10. Explicit heap tuning.

(1) Formula for calculating virtual memory usage
The formula for calculating (Unit: Megabytes) virtual memory usage is as follows:

Virtual-memory-usage-of-J2EE-server = A + B + C + (D + 10) E + F + G
Legend:

• A: Java heap size
The default value is the value specified in the -Xms option when invoking JavaVM. This value is extended up to
the maximum value specified in the -Xmx option when invoking JavaVM on running J2EE server.

• B: Permanent area size
The default value is the value specified in the -XX:PermSize option when invoking JavaVM. This value is
extended up to the maximum value specified in the -XX:MaxPermSize option when invoking JavaVM on
running J2EE server.

• C: Area size used by native program
The value used differs for each OS. The following table describes the value of the area size used by native
programs for each OS:

Table 5‒29: List of values of the area size used by native programs

OS type
Value of area used

(Unit: megabytes)

Windows 300

AIX 400

HP-UX 400

Linux (x86) 400

Linux (AMD64 & Intel EM64T) 600

• D: Number of J2EE server threads
Number of threads used by J2EE server. For details about the number of threads used by J2EE server, see 5.2.1
Estimating the resources used by J2EE server.

• E: Stack area size
This is the value specified in the -Xss option while invoking JavaVM.

• F: Explicit heap size
The size of Explicit heap used by explicit heap management functionality. This value can be extended up to the
maximum value specified in -XX:HitachiExplicitHeapMaxSize when invoking the J2EE server.
See 13.2 Audit log definition file in the uCosminexus Application Server Definition Reference Guide.

• G: Maximum size of the code cache area
This value is specified in the option -XX:ReservedCodeCacheSize, when JavaVM is invoked.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

183

(2) Notes when calculating the virtual memory usage

• For the configuration using memory session failover functionality, you must add the size of the Old area and New
areas of JavaVM on the SFO server to the virtual memory required for the J2EE server. For details, see 6.15.2
Settings of the option to start SFO server in the uCosminexus Application Server Compatibility Guide.

• The value of the area size used by native program keeps on changing. The value changes in the following cases:

• When you change the trace size of ORB

• When you change the value of area size used by JDBC driver

• When you change the value of area size used by native library of products in use

In such cases, add the memory used for each product to the value of the area size used by native programs.
Calculate the memory used for each product as per the documents of the products in use.

• The virtual memory used in the standard configuration of the batch server might exceed the estimates due to the
impact of the software products in use. Add this exceeded value to the value of the virtual memory used. To
calculate the increased memory, calculate the memory used for each product according to the documentation of
the software products.

• In Linux, the system slows down if the memory swap file size is insufficient. We recommend that you specify the
real memory size as the upper limit of the virtual memory.

5. Estimating Resources to be Used (J2EE Application Execution Platform)

184

6 Estimating Resources to be Used
(Batch Application Execution
Platform)
This chapter describes how to estimate the resources and the virtual memory used in
the systems for executing the batch applications. Reference this chapter for
calculating the disk and memory capacity required for operating a system.

For details about estimating the resources and memory used for a J2EE application
execution platform, see 5. Estimating Resources to be Used (J2EE Application
Execution Platform).

185

6.1 Resources used for each system configuration
Set up of the hosting environment components, such as the OS and database, might be required for operating the
system. This section describes the resources used for each system configuration and the estimates for the required
resources, as the resources required in a system differ as per the system configuration. The following table describes
the reference locations for the resources used for each system configuration and resource estimates:

Table 6‒1: References of resources used for each system configuration and resource estimates

Resources used for each system configuration Reference

Resources used for deploying batch server 6.1.1

Resources used by database 6.1.2

Resources for using CTM 6.1.3

6.1.1 Resources used for deploying batch server
This subsection describes the estimation of the resources used for deploying batch servers for each OS. When
deploying the batch servers, estimate the resources used by the machine on which the batch servers is deployed.

Note that the Example of option settings in each table of estimation of resources used differs according to the OS and
the kernel versions in use. Reference the manual of the OS being used and set up the estimates based on the estimation
formula in the table. The settings are not required when the corresponding kernel parameter is not applicable in the OS
being used.

Furthermore, for details about the estimation of the resources used for each process, see 6.2 Resources used for each
process.

For details about the required virtual memory, see 6.3 Estimating virtual memory usage. For details about the disk
occupancy, see the release notes of Application Server.

(1) In AIX
The following table describes the estimation of resources used by the Application Server machine in AIX:

Table 6‒2: Estimation of the resources used by the Application Server machine (In AIX)

System resource Parameter Requirement Example of option
settings

Service unit#1 Shared memory -- PrfTraceBufferSize#2 1,024 +
18,496

--

Number of
processes

-- 4 --

Number of threads -- number-of-batch- server-threads#3+34 --

Number of file
descriptors

nofiles number-of-batch-server-file-descriptors#3 +
43

/etc/security/
limits

Management
Server

Number of
processes

-- 5 --

Number of threads -- 56 --

Number of file
descriptors

nofiles 43 + number-of-batch-servers /etc/security/
limits

Legend:
--: Not applicable.

6. Estimating Resources to be Used (Batch Application Execution Platform)

186

#1
Service unit indicates the following:
Batch-server + Performance-tracer

#2
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#3
For calculating the number of threads and file descriptors of the batch server, see 6.2.1 Estimating the resources used by batch
server.

(2) In HP-UX
The following table describes the estimation of resources used by the Application Server machine in HP-UX:

Table 6‒3: Estimation of the resources used by the Application Server machine (In HP-UX)

System resource Parameter Requirement Example of option settings

Service unit#1 Shared memory shmmax PrfTraceBufferSize#2
1,024 + 18,496

kctune shmmax= 1073741824

Number of
processes

nproc 4 kctune nproc=4200

Number of
threads

nkthread number-of-batch-server- threads#3 +
34

kctune nkthread= 8416

Number of file
descriptors

nfile number-of-batch-server-file-
descriptors#3 + 43

kctune nfile= 65536

Management
Server

Number of
processes

nproc 5 kctune nproc=4200

Number of
threads

nkthread 56 kctune nkthread= 8416

Number of file
descriptors

nfile 43 + number-of-batch-servers kctune nfile= 65536

#1
Service unit indicates the following:
Batch-server + Performance-tracer

#2
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#3
For calculating the number of threads and file descriptors of the batch server, see 6.2.1 Estimating the resources used by batch
server.

(3) In Linux
The following table describes the estimation of resources used by the Application Server machine in Linux:

Table 6‒4: Estimation of the resources used by the Application Server machine (In Linux)

System resource Parameter Requirement Example of option
settings

Service unit#1 Shared memory SHMMAX PrfTraceBufferSize#2 1,024 +
18,496

/proc/sys/
kernel/shmmax

6. Estimating Resources to be Used (Batch Application Execution Platform)

187

System resource Parameter Requirement Example of option
settings

Service unit#1 Number of
processes

threads-max#3 4 /proc/sys/
kernel/threads-
max

Number of
threads

threads-max#3 number-of- batch-server-threads#4 + 34 --

Number of file
descriptors

fs.file-max number-of-batch-server-file-descriptors#4 +
43

/proc/sys/fs/
file-max

Management
Server

Number of
processes

threads-max#3 5 /proc/sys/
kernel/threads-
max

Number of
threads

threads-max#3 56 --

Number of file
descriptors

fs.files-max 43 + number-of-batch-servers /proc/sys/fs/
file-max

Legend:
- : Not applicable.

#1
Service unit specifies the following:
Batch-server + Performance-tracer

#2
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#3
Specify the total of number of processes and threads in the threads-max parameter.

#4
For calculating the number of threads and file descriptors of the batch server, see 6.2.1 Estimating the resources used by batch
server.

(4) In Solaris
The following table describes the estimation of resources used by the Application Server machine in Solaris:

Table 6‒5: Estimation of the resources used by the Application Server machine (In Solaris)

System resource Parameter Requirement Example of option
settings

Service unit#1 Shared memory shminfo_shmmax PrfTraceBufferSize#2 1,024 +
18,496

/etc/system

Number of
processes

max_nprocs 4 /etc/system

Number of
threads

-- number-of-batch-server-threads#3 + 34 --

Number of file
descriptors

rlim_fd_max number-of-batch-server-file-descriptors#3 +
43

/etc/system

Management
Server

Number of
processes

maxuprc 5 /etc/system

Number of
threads

-- 56 --

6. Estimating Resources to be Used (Batch Application Execution Platform)

188

System resource Parameter Requirement Example of option
settings

Management
Server

Number of file
descriptors

rlim_fd_max 43 + number-of-batch-servers /etc/system

Legend:
- : Not applicable.

#1
Service unit specifies the following:
Batch-server + Performance-tracer

#2
Specify the buffer memory size of performance tracer in the range of 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#3
For calculating the number of threads and file descriptors of the batch server, see 6.2.1 Estimating the resources used by batch
server.

6.1.2 Resources used by the database
This section describes the estimation of resources used by the DBMS.

For details about the required virtual memory, see 6.3 Estimating virtual memory usage. For details about the disk
occupancy see release notes of Application Server or Developer.

The following table describes the estimation of the resources used by the DBMS:

Table 6‒6: Estimation of resources used by DBMS

DBMS Used resources Requirement

HiRDB Maximum number of
concurrent connections
(pd_max_users)

Oracle Maximum number of
concurrent connections
(PROCESSES)

#1
n is the total number of resource adapters deployed on the batch server in the system.

#2
Specify the value of the MaxPoolSize parameter in the Connector property file.

#3
Multiply by the value 2 if the following conditions are applicable:

1. Use XATransaction in the transaction support level.

2. Use the connection# within the transaction managed by Application Server to access the database.

3. Before the transaction of step 2 concludes, use the connection# outside the transaction to access the database.

#: This connection is the one that is acquired from the DB Connector in step1 and is the same connection.

#4
Add 1 only for the resource adapters with XATransaction specified in the transaction support level.

#5
+ indicates connections that might temporarily exceed the maximum value for the connection pools. The
details are as follows:

• When the functionality for detecting a connection failure is used

6. Estimating Resources to be Used (Batch Application Execution Platform)

189

When implementing the functionality to detect a connection failure, the unused connections removed from a
connection pool are not counted as the connections within the connection pool. Therefore, the total number of
connections in a connection pool and the unused connections removed from the connection pool might
temporarily exceed the maximum number of connections in the connection pool.

• When the cjclearpool command is used
In the normal mode, the used connections that are removed from a connection pool are not included in the
connection count. Therefore, the total number of connections in the connection pool and the used connections
removed from the connection pool might exceed the maximum value for the connection pool.

6.1.3 Resources for using CTM
The following subsection describes the estimation of resources used for CTM (Scheduling functionality for batch
applications), for each OS.

Note that the Example of option settings in each table of estimation of resources used differs according to the OS and
the kernel versions in use. Reference the manual of the OS being used and set up the estimates based on the estimation
formula in the table. The settings are not required when the corresponding kernel parameter is not applicable in the OS
being used.

(1) In AIX
The following table describes the estimation of resources used for CTM.

Table 6‒7: Estimation of the resources used for CTM (In AIX)

System resource Parameter Requirement Example of option
settings

Share memory -- PrfTraceBufferSize#1 1,024 +
18,496 + shared-memory-of-CTM-domain-
manager#2 + shared-memory-of-CTM-daemon#2

--

Number of processes -- 7 + Number-of- batch -servers#3 --

Number of threads -- 72 + (number-of-batch-server-threads#4 + 7) x
number-of-batch-servers#3 + number- of-threads-
required-for-CTM-daemon#5

--

Number of file
descriptors

nofiles 88 + (number-of-batch-server-file-descriptors#4 +
6) x number-of-batch-servers#3 + number-of file-
descriptors-required-for-CTM-daemon#5

/etc/security/
limits

Legend:
-- : Not applicable.

#1
Specify the buffer memory size of the performance tracer from 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus
Application Server Definition Reference Guide.

#2
For calculating the values, see 6.1.3(1)(a) Formula for calculating file size for shared memory.

#3
Indicates the value specified in the <j2ee-server-count> tag of Easy Setup definition file.

#4
For calculating the number of threads and file descriptors of the batch server, see 6.2.1 Estimating the resources used by batch
server.

#5
For calculating the number of threads and file descriptors required in the CTM daemon, see 6.1.3(1)(b) Formula for calculating
number of threads and file descriptors required in the CTM daemon.

6. Estimating Resources to be Used (Batch Application Execution Platform)

190

(a) Formula for calculating file size for shared memory

You must calculate the shared memory of the CTM domain manager and CTM daemon to calculate file size of shared
memory. The respective formula for calculations is as follows:

Use the following value for variable values in the calculations formula. For details about the parameters starting with
ctm., see 4.6 Easy Setup definition file in the uCosminexus Application Server Definition Reference Guide.

Values used in the formula for calculations:
-CTMMaxCTM: 64
-CTMQueueCount: ctm.QueueCount
-CTMClientConnectCount: 256
-CTMServerConnectCount: ctm.ServerConnectCount
-CTMEntryCount: -CTMClientConnectCount + -CTMServerConnectCount
-CTMServerCacheSize: ctm.ServerCacheSize
-CTMQueueRegistCount: ctm.QueueRegistCount
-CTMDispatchParallelCount: ctm.DispatchParallelCount

■ Formula for calculating file size for shared memory of CTM domain manager

The formula for calculating the file size for shared memory of the CTM domain manager is as follows:

File-size-for-shared-memory(Unit: Bytes) =
1,018,320 + (2,362 x -CTMMaxCTM specified-value)

■ Formula for calculating file size for shared memory of CTM daemon

For CTM daemon, you must secure files for shared memory of fixed length and files for shared memory of variable
length in each CTM daemon. The formula for the respective calculations is as follows:

File-size-for-shared-memory-of-fixed-length (Unit: Bytes) =
551,840 + (1,208 x -CTMQueueCount specified-value)

File-size-for-shared-memory-of-variable-length (Unit: Bytes) =
1,027,008
+ (928 x -CTMClientConnectCount specified-value)
+ (256 x -CTMServerConnectCount specified-value)
+ (512 x -CTMEntryCount specified-value)
+ (1,024 x -CTMServerCacheSize specified-value)
+ (512 x -CTMQueueCount specified-value)
+ (544 x -CTMQueueCount specified-value x -CTMQueueRegistCount specified- value)
+ (512 x -CTMDispatchParallelCount specified-value)

(b) Formula for calculating number of threads and file descriptors required in the CTM daemon

For calculating the number of threads and file descriptors, you must calculate the number of threads and file
descriptors required in the CTM demon. The formula for the respective calculations is as follows:

■ Formula for calculating number of threads required in the CTM daemon

Maximum-value =
(A x 4 + Bx3 + Cx2 + DxE + F + G + 32) / 0.8
Legend:

• A: -CTMMaxCTM value (Value specified in ctmdmd to which ctmd belongs)

• B: -CTMClientConnectCount value

• C: -CTMServerConnectCount value

• D: -CTMQueueCount value

6. Estimating Resources to be Used (Batch Application Execution Platform)

191

• E: -CTMQueueRegistCount value

• F: -CTMDispatchParallelCount value

• G: Total number of EJB clients that issued Create

■ Formula for calculating number of file descriptors required in the CTM daemon

Maximum-value =
(A x 2 + B x 4 + C x 2 + D x E + F x number-of-EJB-interface + G + 100) / 0.8
Legend:

• A: -CTMMaxCTM value (Value specified in ctmdmd to which ctmd belongs)

• B: -CTMClientConnectCount value

• C: -CTMServerConnectCount value

• D: -CTMQueueCount value

• E: -CTMQueueRegistCount value

• F: -CTMDispatchParallelCount value

• G: Total number of EJB clients that issued 'Create'

(2) In HP-UX
The following table describes the estimation of resources used for CTM:

Table 6‒8: Estimation of the resources used for CTM (In HP-UX)

System resource Parameter Requirement Example of option
settings

Shared memory Shmmax PrfTraceBufferSize#1 1,024 +
18,496 + shared-memory-of-CTM-domain-
manager#2 + shared-memory-of-CTM-daemon#2

kctune shmmax=
1073741824

Number of processes Nproc 7 + number-of-batch-servers#3 kctune nproc=4200

Number of threads Nkthread 72 + (number-of-batch-server-threads#4 + 7) x
number-of-batch-servers#3 + number-of-thread-
required-in-CTM-daemon#5

kctune nkthread=
8416

Number of file
descriptors

nfile 88 + (number-of-batch-server-file-descriptors#4 +
6) x number-of-batch-servers#3 + number-of-file-
descriptors-required-in-CTM-daemon#5

kctune nfile=
65536

#1
Specify the buffer memory size of the performance tracer from 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus Application
Server Definition Reference Guide.

#2
For calculating the value, see 6.1.3(1)(a) Formula for calculating file size for shared memory.

#3
Indicates the value specified in the <j2ee-server-count> tag of the Easy Setup definition file.

#4
For calculating the number of threads and file descriptors of the batch server, see 6.2.1 Estimating the resources used by batch
server.

#5
For calculating the number of threads and file descriptors required in the CTM daemon, see 6.1.3(1)(b) Formula for calculating
number of threads and file descriptors required in the CTM daemon.

6. Estimating Resources to be Used (Batch Application Execution Platform)

192

(3) In Linux
The following table describes the estimation of the resources used for CTM:

Table 6‒9: Estimation of the resources used for CTM (In Linux)

System resource Parameter Requirement Example of option
settings

Shared memory SHMMAX PrfTraceBufferSize#1 1,024 +
18,496 + shared-memory-of-CTM-domain-
manager#2 + shared-memory-of-CTM-daemon#2

/proc/sys/kernel/
shmmax

Number of processes threads-max 7 + number-of-batch-servers#3 /proc/sys/kernel/
threads-max

Number of threads threads-max 72 + (number-of-batch-server-threads#4 + 7) x
number-of-batch-servers#3 + number-of-threads-
required-in-CTM-daemon#5

--

Number of file
descriptors

fs.file-max 88 + (number-of-batch-server-file-descriptors#4 +
6) x number-of-batch-servers#3 + number-of-file-
descriptors-required-in-CTM-daemon#5

/proc/sys/fs/file-
max

Legend:
-: Not applicable.

#1
Specify the buffer memory size of the performance tracer from 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus Application
Server Definition Reference Guide.

#2
For calculating the values, see 6.1.3(1)(a) Formula for calculating file size for shared memory.

#3
Indicates the value specified in the <j2ee-server-count> tag of the Easy Setup definition file.

#4
For calculating the number of threads and file descriptors of the batch server, see 6.2.1 Estimating the resources used by batch
server.

#5
For calculating the number of threads and file descriptors required in the CTM daemon, see 6.1.3(1)(b) Formula for calculating
number of threads and file descriptors required in the CTM daemon.

(4) In Solaris
The following table describes the estimation of the resources used for CTM:

Table 6‒10: Estimation of resources used for CTM (In Solaris)

System resource Parameter Requirement Example of option
settings

Shared memory shminfo_shmmax PrfTraceBufferSize#1 1,024 +
18,496 + shared-memory-of-CTM-domain-
manager#2 + shared-memory-of-CTM-daemon#2

/etc/system

Number of processes max_nprocs 7 + number-of-batch-servers #3 /etc/system

Number of threads -- 72 + (number-of-batch- server-threads#4 + 7) x
number-of-batch-servers#3 + number-of-threads-
required-in-CTM-daemon#5

--

6. Estimating Resources to be Used (Batch Application Execution Platform)

193

System resource Parameter Requirement Example of option
settings

Number of file
descriptors

rlim_fd_max 88 + (number-of-batch-server-file-descriptors #4

+ 6) x number-of-batch-servers#3 + number- of-
file-descriptors-required-in-CTM-daemon#5

/etc/system

Legend:
-: Not applicable.

#1
Specify the buffer memory size of the performance tracer from 512 kilobytes to 102,400 kilobytes. For details about
PrfTraceBufferSize, see 4.15 Parameters that can be specified in the logical performance tracer in the uCosminexus Application
Server Definition Reference Guide.

#2
For calculating the value, see 6.1.3(1)(a) Formula for calculating file size for shared memory.

#3
Indicates the value specified in the <j2ee-server-count> tag of the Easy Setup definition file.

#4
For calculating the number of threads and file descriptors of the batch server, see 6.2.1 Estimating the resources used by batch
server.

#5
For calculating the number of threads and file descriptors required in the CTM daemon, see 6.1.3(1)(b) Formula for calculating
number of threads and file descriptors required in CTM daemon.

6. Estimating Resources to be Used (Batch Application Execution Platform)

194

6.2 Resources used for each process
This section describes the estimation of the required amount of resources used in each process of Application Server.

6.2.1 Estimating the resources used by batch server
This subsection describes how to estimate the number of threads and file descriptors of the batch server. Reference
this subsection when calculating the disk and memory capacity required for operating Application Server.

(1) Number of threads
The formula for calculating the number of threads is as follows. The total of (a) and (b) is the number of threads used
by the batch server.

(a) Basic number of threads

Maximum-number-of-threads = 68 + A + B + C + D + E + F + G + H + I
Legend:

• A: Number of threads of CORBA Naming Service (= Number-of-connections-between-the-client-and-CORBA-
Naming-Service 2 + Number-of-requests-received-concurrently + Number-of-threads-generated-during-
initialization (If the vbroker.agent.enableLocator value is true, 6, if the value is false, 4) +
1)
However, the threads are calculated only when CORBA Naming Service is invoked as inprocess (inprocess is
specified in the ejbserver.naming.startupMode key of usrconf.properties).
For details about the estimation of number of threads of CORBA Naming Service, see 5.2.1(3) Estimating number
of threads of CORBA Naming Service (When invoking as in-process).

• B: Maximum number of database connections used concurrently
If the connection pooling functionality is used, the maximum number of connection pools (value of
MaxPoolSize specified in the Hitachi Connector Property file. Total of connection pools if there are multiple
resource adapters) is used as the value.
If the connection pooling functionality is not used, the value is obtained from the maximum number of concurrent
requests or the number of connections used for each request (if one connection is used for one request, the
maximum number of concurrent requests is used as the value).

• C: Maximum number of concurrently executed transactions, if the JTA transaction is used (one thread is used for
each transaction in which a transaction timeout occurs. In the case of one request in one transaction, the maximum
number of concurrent requests is used as the value)

• D: Maximum-number-of-connection-pools (total of connection pools if there are multiple resource adapters#)
2
#: Value of MaxPoolSize specified in the Hitachi Connector Property file

• E: Number of resource adapters using the connection pooling functionality

• F: Number of threads used for the conclusion and recovery processing of a global transaction (add 16, if a global
transaction is used)

• G: Number of concurrently connected clients to simple Web servers (however, when the number of concurrently
connected clients to simple Web servers is below 5, 5 is specified and when it is above 100, 100 is specified)

• H: If settings are specified to start the thread that manages the reply receiving thread
(vbroker.ce.iiop.ccm.htc.threadStarter=true), add 5.

• I: Add the following value if settings are specified to control the closing of connections when a timeout occurs
(vbroker.ce.iiop.ccm.htc.readerPerConnection=true):
(Number-of-J2EE-servers-with-remote-invocation-destination-EJBs + 1) 2
If CTM is used, add the following values in addition to the above:

• For scheduling of J2EE applications
Number-of-running-J2EE-applications + 1

6. Estimating Resources to be Used (Batch Application Execution Platform)

195

• For scheduling of Stateless Session Beans
Number-of-Stateless-Session-Beans-to-be-scheduled + 1

(b) Number of threads used according to JavaVM option specifications

According to JavaVM option specifications, use the following formula for calculation. Add A only when -XX:
+UseParNewGC option is specified, and add B only when -XX:+HitachiUseExplicitMemory option is
specified.

Maximum-number-of-threads = A + B

Legend:

• A: Number of threads used by parallel copy garbage collection. (Value specified in -
XX:ParallelGCThreads option. When this option is not specified, the default value of -
XX:ParallelGCThreads option based on the number of logical CPUs. Note that the value is determined
by the number of logical CPUs that exist when starting the J2EE server. Hence, the number of threads does
not change even if the number of logical CPUs changes after the server is started.)

• B: Number of threads used by the explicit management heap functionality (The number of logical CPUs.
However, this number is 8 when the number of logical processors is 8 or more. This number is determined by
the number of logical CPUs that exist when starting the J2EE server. Hence, the number of threads does not
change even if the number of logical CPUs changes after the server is started.)

For JavaVM options, see the following sections in the uCosminexus Application Server Definition Reference Guide:

• 16.5 Java HotSpot VM options that can be specified in Cosminexus

• -XX:[+|-]HitachiUseExplicitMemory (Explicit management heap functionality option)

(2) Number of file descriptors
The formula for calculating the numbers of file descriptors is as follows:

Maximum-number-of-file-descriptors = (139 + A + B 2 + C 2 + D) / 0.8

Legend:

• A: Number of database connections.

• B: Number of concurrently connected clients to simple Web servers

• C: Number of resource adapters

• D: Number of JAR files specified in add.class.path key of usrconf.cfg

6.2.2 Estimating the resources used by Administration Agent
The estimation of the resources used by Administration Agent is the same as that for the J2EE application execution
platform. For details about the estimation of resources used by Administration Agent, see 5.2.2 Estimating the
resources used by Administration Agent.

6.2.3 Estimating the resources used by performance tracer
The estimation of the resources used by the performance tracer is the same as that for the J2EE application execution
platform. For details about the estimation of resources used by performance tracer, see 5.2.3 Estimating the resources
used by performance tracer.

6.2.4 Estimating the resources used by CTM
The estimation of the resources used by CTM is the same as that for the J2EE application execution platform. For
details about the estimation of resources used by CTM, see 5.2.4 Estimating the resources used by CTM.

6. Estimating Resources to be Used (Batch Application Execution Platform)

196

6.3 Estimating virtual memory usage
This section describes how to estimate the virtual memory that is used. For details about the option for invoking
JavaVM used in the formula for calculating the virtual memory usage, see 7.1.2 Configuring the memory space used
in JavaVM and the JavaVM options.

Moreover, when you use the explicit management heap functionality, apart from the contents described here, you must
provide the estimation of the memory size used by the explicit management heap functionality. For details on
estimating the memory size used by the explicit management heap functionality, see 7.10. Explicit heap tuning.

(1) Formula for calculating virtual memory usage
The formula for calculating (Unit: Megabytes) virtual memory usage is as follows:

Virtual-memory-usage-of-batch-server = A + B + C + (D + 10) E + F + G

Legend:

• A: Java heap size
The default value is the value specified in the -Xms option when invoking JavaVM. This value is extended up to
the maximum value specified in the -Xmx option when invoking JavaVM on running J2EE server.

• B: Permanent area size
The default value is the value specified in the -XX:PermSize option when invoking JavaVM. This value is
extended up to the maximum value specified in the -XX:MaxPermSize option when invoking JavaVM on
running J2EE server.

• C: Area size used by native program
The value used differs for each OS. The following table describes the value of the area size used by native
program for each OS:

Table 6‒11: List of values of the area size used by native program

OS type
Value of area used

(unit: megabytes)

Windows 300

AIX 400

HP-UX 400

Linux (x86) 400

Linux (AMD64 & Intel EM64T) 600

• D: Number of batch server threads
Number of threads used by the batch server. For details about the number of threads used by batch server, see
6.2.1Estimating the resources used by batch server.

• E: Stack area size
This is the value specified in the -Xss option when invoking JavaVM.

• F: Explicit heap size
This is the size of the Explicit heap used in the explicit management heap functionality. This value can be
extended up to the maximum value specified in -XX:HitachiExplicitHeapMaxSize when invoking
JavaVM on running J2EE server. Note that by default Explicit heap is invalid.
See 13.2 Audit log definition file in the uCosminexus Application Server Definition Reference Guide.

• G: Maximum size of the code cache area
Specify this value in the -XX:ReservedCodeCacheSize option, when invoking JavaVM.

(2) Notes when calculating the virtual memory usage

• The value of the area size used by native programs keeps on changing. The value changes in the following cases:

6. Estimating Resources to be Used (Batch Application Execution Platform)

197

• When you change the trace size of ORB

• When you change the value of area size used by JDBC driver

• When you change the value of area size used by native library of products in use

In such cases, add the memory used for each product to the value of the area size used by native programs.
Calculate the memory used for each product as per the documents of the products in use.

• The virtual memory used in the standard configuration of the batch server, might exceed the estimates due to the
impact of the software products in use. Add this exceeded value to the value of the virtual memory used. To
calculate the increased memory, calculate the memory used for each product as per the documents of the software
products.

• In Linux, the system slows down if the memory swap file size is insufficient. We recommend that you specify the
real memory size as the upper limit of the virtual memory.

6. Estimating Resources to be Used (Batch Application Execution Platform)

198

7 JavaVM Memory Tuning
To improve the processing performance of systems, you must properly tune JavaVM
as Java VM is the platform for the infrastructure. Hitachi JavaVM (called JavaVM
hereafter) manages two types of memory spaces.

This chapter describes memory management in garbage collection and JavaVM, and
the tuning of the Java heap and Explicit heap.

199

7.1 Overview of garbage collection and JavaVM memory
management

The purpose of tuning JavaVM is to improve the system performance. The system performance will especially
increase if you tune the garbage collection mechanism to enable proper memory management.

This section explains the following as the prerequisite knowledge for JavaVM tuning:

• Mechanism of garbage collection

• Configuration of memory space allocated to JavaVM and the JavaVM options

• Relation between the occurrence of a garbage collection and free memory space

7.1.1 Mechanism of garbage collection
This subsection explains the mechanism of garbage collection.

(1) What is garbage collection?
Garbage Collection is a technology that automatically collects the memory area that is no longer required by a
program and makes the memory area available for use by other programs.

The processing of the program stops in the middle of garbage collection execution. Consequently, whether the garbage
collection can be run appropriately or not, tremendously impacts the system performance.

The Java objects created in the program using new, occupy the memory space that is managed by JavaVM. The time
period from the point where Java object gets created up to the point where it becomes redundant is called the lifespan
of a Java object.

There are two types of Java objects; those with a short lifespan and those with a long lifespan. In the case of a Java
application running on the server, a number of Java objects are created by request and response, or by transaction
management. These Java objects have a short lifespan, as they become redundant when the processing ends. On the
other hand, the Java objects that are continuously being used while the application is running have a long lifespan.

For effectively executing garbage collection, you need to make the memory collection effective by executing garbage
collection for the objects with short life spans. Avoiding unnecessary execution of garbage collection for repeatedly
used objects with long lifespans helps to prevent the deterioration of system performance. This is implemented by
generation-wise garbage collection.

In generation-wise garbage collection, the Java objects are managed by separating them into two areas; the New area
that stores objects with a short lifespan, and the Tenured area that stores objects with a long lifespan. The New area is
further divided into the Eden area that holds objects that have been recently created using new, and the Survivor area
that holds objects that have not been collected even after garbage collection has run multiple times. The Java objects
of the New area for which garbage collection is executed more than a fixed number of times are considered as the Java
objects that are required for a long period, and those Java objects move to the Tenured area.

The following figure shows an overview of the memory space and the Java objects managed by the generation-wise
garbage collection:

7. JavaVM Memory Tuning

200

Figure 7‒1: Overview of the memory space and the Java objects managed by generation-wise garbage
collection

The garbage collection executed by the generation-wise garbage collection is of the following two types:

• Copy garbage collection
A copy garbage collection targets only the Eden area and the Survivor area. The copy garbage collection occurs
when you use the Eden area for creating Java objects.
You can select serial copy garbage collection and parallel copy garbage collection by specifying the Java HotSpot
VM option.
Execution of parallel copy garbage collection is possible at a high speed because processing of serial copy garbage
collection is executed in parallel. However, if you select parallel copy garbage collection, Explicit management
heap functionality cannot be used.
Serial copy garbage collection is selected by default. Note that contents described in this chapter are applicable to
both types of copy garbage collection.

! Important note
With Application Server, you can select serial garbage collection and parallel garbage collection (UseParNewGC).
You cannot use other parallel garbage collection, concurrent garbage collection, and incremental garbage collection.

• Full garbage collection
A full garbage collection targets the entire JavaVM specific area, including the Tenured area. The full garbage
collection occurs when the Tenured area is used up to a constant size.

Generally, a copy garbage collection can be processed in a shorter time period as compared to a full garbage
collection.

The garbage collection processing is described as follows with an example of a certain Java object (object A):

Processing executed in the Eden area
After creating an object A, the object A is destroyed if not used when the first copy garbage collection is executed.
If object A is used when first copy garbage collection is executed, the object A moves from the Eden area to the
Survivor area.

Processing executed in the Survivor area
The object A that moved to the Survivor area, moves from the Survivor area to the Tenured area even when the
copy garbage collection is executed for several times afterwards. The threshold value for frequently moving the
object differs according to the used state of the JavaVM options and the Java heap. In Figure 7-1, the threshold
value is assumed to be n times.
After moving to the Survivor area, if object A is not used when the copy garbage collection is executed less than n
times, then the object A is destroyed by that copy garbage collection.

7. JavaVM Memory Tuning

201

Processing executed in the Tenured area
Once the object A is moved to the Tenured area, the object A cannot be destroyed by the copy garbage collection,
because the copy garbage collection is executed only for the Eden area and the Survivor area.

If objects are moved as mentioned above, then the used size of the Tenured area increases. However, a full garbage
collection occurs when the Tenured area is used up to a constant size.

While tuning JavaVM, the appropriate settings of the size and ratio of the respective memory spaces in JavaVM will
help to prevent the movement of unnecessary objects to the Tenured area, and thereby prevent the frequent occurrence
of a full garbage collection.

(2) Relation between the lifespan of an object and its age
The number of times copy garbage collection is executed for an object is called the age of the object.

The following figure shows the relation between the lifespan and the age of an object:

Figure 7‒2: Relation between the lifespan and the age of an object

After the application has started, the initialization process has finished, and the copy garbage collection has been
executed a number of times, the objects with a long lifespan that are required for a long period, move to the Tenured
area. As a result, shortly after starting the application, the Java heap reaches a stable state and most of the Java objects
that get created are the objects that have a short lifespan. Especially, if the tuning of the New area has been performed
appropriately, then after the Java heap stabilizes, a majority of the objects that are objects with a short lifespan get
collected during the first copy garbage collection.

(3) Mechanism of copy garbage collection
In JavaVM, the memory space of the New area for which copy garbage collection is executed, is divided into the Eden
area and the Survivor area. The Survivor area is furthermore divided into the From space and the To space. The From
space and the To space have the same memory size.

The following figure shows the configuration of the New area:

Figure 7‒3: Configuration of the New area

7. JavaVM Memory Tuning

202

An Eden area is the area where the objects created using new are stored initially. When new is executed in a program,
memory from the Eden area is allocated.

When the Eden area becomes full, copy garbage collection is executed. The following processing is performed in copy
garbage collection:

1. Among the Java objects existing in the Eden area and the From space of the Survivor area, the objects that are in
use are copied to the To space of the Survivor area. The Java objects that are not in use are destroyed.

2. The To space and the From space of the Survivor area are swapped.

As a result, the Eden area and the To space become empty, and the objects that are in use remain in the From space.

The following figure shows the movement of objects when copy garbage collection is executed:

Figure 7‒4: Movement of objects that occurs during copy garbage collection

In this way, when copy garbage collection occurs, the objects that are in use move to and fro between the From space
and the To space. If the objects with a long lifespan continue to move to and fro, however, copy processing becomes
an overhead. To prevent this, set a threshold value for the frequency of switching the Java objects between the From
space and the To space, so that the Java objects whose age has reached the threshold value move to the Tenured area.

(4) Saving objects
The activity of moving those Java objects whose age has not reached the threshold value to the Tenured area, is called
Saving. Saving occurs when the number of in-use objects in the Eden area and the From space increase and the
memory size of the To space, where these objects will be moved to, is not sufficient to hold those objects during copy
garbage collection. In such a case, the objects that could not move to the To space move to the Tenured area.

7. JavaVM Memory Tuning

203

Figure 7‒5: Saving objects

When the objects are saved, the objects with a short lifespan that originally were not supposed to be saved in the
Tenured area, get saved in the Tenured area. If this repeats, the objects that were supposed to be collected by copy
garbage collection keep getting accumulated in the memory space, thereby increasing the memory usage of Java heap,
and finally a full garbage collection occurs.

The following figure shows the change in memory usage when the objects are saved:

Figure 7‒6: Change in memory usage when the objects are saved

In full garbage collection, a system might stop from a few seconds to 10 seconds.

As a result, when determining the configuration of the memory space and memory size, you must achieve a balance
between the Eden area and the Survivor area, so that the objects are not saved.

(5) Area where garbage collection is not executed (Explicit heap area that uses the Explicit
Memory Management functionality)

With JavaVM, you can use the area called the Explicit heap, in addition to the Eden area, Survivor area, and Tenured
area. A garbage collection is not executed in the Explicit heap area.

Specify objects to be saved in the Explicit heap area using the automatic allocation setup file and the Explicit Memory
Management functionality API. At the timing of the specified objects being moved from the Survivor area to the
Tenured area, the specified objects are moved to the Explicit heap area. You can specify the objects with a long
lifespan that are not recovered by copy garbage collection, to reduce the memory usage of the Tenured area and to
prevent the occurrence of a full garbage collection. You can also create the specified objects in the Explicit heap area
using the automatic allocation setup file of the Explicit Memory Management functionality or the Explicit Memory
Management functionality API.

For details about the Explicit Memory Management functionality, see 8. Preventing the occurrence of full garbage
collection using the Explicit Memory Management functionality in the uCosminexus Application Server Expansion
Guide.

7. JavaVM Memory Tuning

204

! Important note

You cannot use the Explicit management heap functionality when the -XX:+UseParNewGC option is specified.

7.1.2 Configuring the memory space used in JavaVM and the JavaVM
options

This subsection explains the configuration of the memory space used in JavaVM and the JavaVM options.

JavaVM uses two types of memory space; JavaVM specific area and OS specific area.

The following figure shows the configuration of the memory space used by JavaVM. The numbers in the figure
correspond to the numbers in Table 7-1.

Figure 7‒7: Configuration of memory space used by JavaVM

The respective areas are explained below. The area formed by combining the Eden area, the Survivor and the Tenured
area is called the Java heap.

Eden area
Java objects that are created by new are initially stored in the DefNew::Eden area.

Survivor area
Among the Java objects stored in the New area, the DefNew::Survivor area stores those Java objects that are not
destroyed when copy garbage collection is executed. The From space and the To space configure the Survivor
area. The size of the From space and the To space is same.

Tenured area
The Tenured area is a memory space that stores Java objects that are considered to be necessary for a longer
duration. The Java objects for whom a copy garbage collection is executed more than the specified number of
times in the Survivor area and that were not destroyed, are moved to this area.

Permanent area
The Permanent area stores the information of class that has been loaded.

Explicit heap area
The Explicit heap area stores Java objects for which a full garbage collection is not executed. The Explicit heap
area is the JavaVM-specific memory space and the Explicit heap area is allocated only when using the Explicit
Memory Management functionality.

C heap area
The C heap area is used by JavaVM. The C heap is also used by the native library that is called by JNI.

7. JavaVM Memory Tuning

205

Reference note
Maximum size of the C heap area (In AIX)

In AIX, when you use the JNI to execute the program for invoking JavaVM, set up the maximum size of the C heap
area with one of the following methods. If no method is specified, the default value of the shell datasize resource
becomes the maximum size of the C heap area.

• Specify the C heap area size in the value of the datasize resource in shell, and then execute the program.
For csh (C shell): limit datasize C-heap-area-size
For sh (default shell) and ksh: ulimit -d C-heap-area-size

• Specify -bmaxdata: C-heap-area-size in the linkage option for program generation.

• Specify the MAXDATA value in the environment variable LDR_CNTRL, and then execute the program.
For csh (C shell): setenv LDR_CNTRL MAXDATA=C-heap-area-size
For sh (default shell) and ksh: export LDR_CNTRL=MAXDATA=C-heap-area-size

• Use the setrlimit() system call to implement the processing for setting up the C heap area size from within a
program.

The examples includes the following area:

Code cache area
This area stores the JIT compilation code generated by JIT compilation.
JavaVM speeds up the processing by JIT compiling and executing the Java methods with a large invocation
count and loop count.
Reference note

Maximum size of the code cache area

Specify the maximum size of the code cache area in the ReservedCodeCacheSize option.

Specify a value greater than the default value in the ReservedCodeCacheSize option. For details on the
default value, see 16.4 Default values of the Java HotSpot VM options that can be specified with Application Server
in the uCosminexus Application Server Definition Reference Guide.

Also, if the code cache area has depleted or might deplete, consider extending the code cache area.

Note the following points when you extend the code cache area:

• You cannot estimate the size of the JIT compilation code by calculation. Therefore, actually measure the
amount of the code cache area used in the Java application execution environment, consider the amount of the
code cache area (maximum 500 KB for 32 bit, and maximum 2 MB for 64 bit) to be used by the system, and
then estimate the maximum size of the code cache area.

• For estimating the usage of the virtual memory, see 5.3 Estimating virtual memory usage or 6.3 Estimating
virtual memory usage.

Stack area
Stack area for Java threads.
Reference note

Stack area size of the main thread

To change the stack area size of the main thread, set up a value greater than the value specified in -Xss.

The following table describes the JavaVM options that specify the size and ratio of the respective areas. The numbers
in the table correspond to the numbers in Figure 7-7.

Table 7‒1: JavaVM options for specifying the size and ratio of the JavaVM memory space

No. Option name Meaning of the option

1 -Xmxsize Sets the maximum size of Java heap.

2 -Xmssize Sets the initial size of Java heap.

3 -XX:MaxPermSize=size Sets the maximum size of the Permanent area.

4 -XX:PermSize=size Sets the initial size of the Permanent area.

7. JavaVM Memory Tuning

206

No. Option name Meaning of the option

5 -Xmnsize Sets the initial value and the maximum value of the New area.

6 -XX:
[+|-]HitachiAutoExplicitMemory

Allocates the memory used in Explicit memory block when starting
the JavaVM using automatic allocation function.#

7 -
XX:HitachiExplicitHeapMaxSize=siz
e

Sets the maximum size of the Explicit heap area#.

8 -Xsssize Sets the maximum size of one stack area.

9 -XX:ReservedCodeCacheSize=size Sets the maximum size of the code cache area from among the areas
used by JavaVM.

10 -XX:NewRatio=value Sets the ratio of the Tenured area with respect to the New area.

If the value is 2, the ratio of the New area and the Tenured area
becomes 1:2.

11 -XX:SurvivorRatio=value Sets the ratio of the Eden area with respect to From space and To
space of the Survivor area.

If 8 is set in value, the ratio of the Eden area, From space, and To
space becomes 8:1:1.

12 -XX:TargetSurvivorRatio=value Sets a target value for the ratio occupied by the Java objects in the
Survivor area after a copy garbage collection is executed.

13 -XX:MaxTenuringThreshold=value Sets the maximum value for frequency of switching the Java objects
in the From space and To space, when executing a copy garbage
collection.

The Java objects, for which the frequency of switching exceeds the
set number of times, are moved to the Tenured area.

Note:
The unit of size is bytes.

#
The prerequisite options for using the explicit management heap functionality must be enabled. For details, see 7.10. Explicit
heap tuning.

Reference note
Set the JavaVM options at the following places:

Table 7‒2: Location for setting the JavaVM options

Target How to set Location for setting

J2EE server Smart Composer
functionality

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
add.jvm.arg

Batch server Smart Composer
functionality

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
add.jvm.arg

SFO server Smart Composer
functionality

Definition file
Easy Setup definition file

7. JavaVM Memory Tuning

207

Target How to set Location for setting

SFO server Smart Composer
functionality

Setup target
Logical SFO server (sfo-server)

Parameter name
add.jvm.arg

EJB Client Application Edit file Definition file
usrconf.cfg#

Parameter name
add.jvm.arg key

#
The file that is activated when the cjclstartap command is used for starting.

Tip
The default value of the respective options depends on the OS. For details about the default values of options, see 16.4
Default values of Java HotSpot VM options that can be specified in Cosminexus in the uCosminexus Application Server
Definition Reference Guide.

! Important note

OutOfMemory occurs if any of the Java heap area, the Permanent area and the C heap area is insufficient, and as long as
the memory shortage is not resolved, the state where the operations cannot be performed normally, will continue for long.

By specifying the following options when OutOfMemory occurs, the impact of OutOfMemory on the system can be
reduced:

• -XX:+HitachiOutOfMemoryAbort (forceful termination when OutOfMemory occurs)

• -XX:+HitachiOutOfMemoryHandling (OutOfMemory handling functionality)

Functionality for forceful termination when OutOfMemory occurs is a functionality for forcefully terminating the
J2EE server when OutOfMemory occurs due to reason such as insufficient Java heap and Perm heap. If
OutOfMemory occurs due to insufficient memory in Java heap area, the Permanent area and the C heap area, this
function forcefully terminates the J2EE server, and then automatically restarts it. This helps in fast recovery of a J2EE
server so that that server can operate successfully.

OutOfMemory handling functionality is a functionality for which the functionality of forceful termination when
OutOfMemory occurs is a prerequisite. Even if you are using the functionality of forceful termination when
OutOfMemory occurs, you can continue the execution of J2EE server, if specific conditions are met by using this
functionality.

If OutOfMemory occurs due to insufficient Java heap while allocating the large number of objects or while allocating
huge objects in request processing, use the OutOfMemory handling functionality to continue the execution of J2EE
server.

For details about the option, see -XX:[+|-]HitachiOutOfMemoryAbort (forceful termination option) and -XX:
+HitachiOutOfMemoryHandling (OutOfMemory handling option) in the uCosminexus Application Server Definition
Reference Guide.

7.1.3 Relation between the occurrence of garbage collection and
memory space

A garbage collection occurs in accordance with the usage of the memory space. This subsection describes the times at
which a garbage collection occurs

! Important note

If you use the RMI to register and reference a remote object, a garbage collection might occur periodically. You can specify
the timing for garbage collection in milliseconds in one of the following properties. The default value is 3600000
milliseconds (1 hour).

7. JavaVM Memory Tuning

208

• sun.rmi.dgc.client.gcInterval property

• sun.rmi.dgc.server.gcInterval property

To change the time at which a garbage collection will occur, specify any value in milliseconds in one of the properties. Note
that you can specify a value in the range from 1 to Long.MAX_VALUE-1. For details, see the relevant page (http://
download.oracle.com/javase/6/docs/technotes/guides/rmi/sunrmiproperties.html).

(1) Timing of occurrence of copy garbage collection
A copy garbage collection occurs at the following timings:

1. When there is insufficient space for allocation of the Eden area

2. When the -copygc option is specified in the jheapprof command and executed

(2) Timing of occurrence of full garbage collection
A full garbage collection occurs at the following timings:

1. When the memory size being used in the New area (total of the Eden area and the Survivor area) exceeds the
unused memory size for maximum value of the Tenured area, and the free space for allocation to the Eden area is
insufficient

! Important note
A full garbage collection is not required to occur at the above timing. In such cases, JavaVM determines whether to
initiate a full garbage collection based on the following values:

• The average value is weighed and calculated according to the time when the copy garbage collection occurred for
the objects moved from the New area to the Tenured area during a past copy garbage collection

2. When an attempt to move objects from the New area (total of the Eden area and the Survivor area) to the Tenured
area fails as a result of copy garbage collection

3. When there is an allocation request of memory size (size of Java object) that exceeds the individual unused
memory size of the New area and the Tenured area

4. When one of the following occurs as a result of the copy garbage collection:

• When the unused memory size of the allocated Tenured area falls below 10,000 bytes

• When the allocated Tenured area is extended due to the transfer of objects to the Tenured area during the copy
garbage collection

5. When the java.lang.System.gc() method is executed

6. When the memory size to be allocated to the Permanent area exceeds the unused memory size of the allocated
Permanent area.

7. When the javagc command is executed.

8. When the jheapprof command is executed.

Ensure that mainly above step 1 and step 3 do not occur while JavaVM is being tuned.

Reference note
You can use the extended verbosegc information for checking the occurrence factors of the full garbage collection. For
details about how to check the factors for occurrence of full garbage collection, see 7.9 How to analyze the factors of a full
garbage collection using the extended verbosegc information.

7. JavaVM Memory Tuning

209

7.2 Overview of tuning to prevent the occurrence of full
garbage collection

This section describes the concept of Java heap and Explicit heap tuning, and the tuning procedures to prevent the
occurrence of full garbage collection.

The details of how to tune the Java heap and Explicit heap are described in 7.3 to 7.13.

Reference note
Tuning does not differ depending on the difference in copy garbage collection.

7.2.1 Concept of tuning
Usually, you can process copy garbage collection in lesser time interval than full garbage collection.

You can avoid the occurrence of full garbage collection for the entire Java heap by implementing copy garbage
collection to New area and recovering adequate memory. However, avoiding the occurrence of full garbage collection
is related to the reduction in stop frequency of system and improving the processing performance. To achieve these
objectives, you must set appropriate size or ratio of memory space in the JavaVM options.

You allocate some of the objects of the Tenured area to Explicit heap that is managed by the Explicit Memory
Management functionality, and effectively prevent the occurrence of a full garbage collection. The Explicit heap can
be used from applications by using the automatic allocation configuration file or Explicit Memory Management APIs,
and is also used from J2EE servers. The automatic release functionality is enabled with the default settings of the
Explicit Memory Management functionality. When the automatic release functionality is enabled, JavaVM
automatically calls back the Explicit heap area memory. The automatic release processing might not finish for a long
time depending on how the Explicit heap is used. Therefore, the Explicit Memory Management functionality must be
used appropriately and the Explicit heap memory size must be tuned suitably so that the automatic release processing,
which does not end for a long time, does not occur. For details on the automatic release processing, see 8.7 Releasing
Explicit memory blocks when the automatic release functionality is enabled in the uCosminexus Application Server
Expansion Guide.

Based on this information, you can implement JavaVM tuning for the following two points:

• Avoid the occurrence of full garbage collection to the possible extent

• To avoid occurrence of unwanted copy garbage collection after stopping the frequent occurrence of full garbage
collection

The following figure shows the relation of ideal memory usage and lapsed time.

Figure 7‒8: Relation of ideal memory usage and lapsed time

In this figure, all the objects with short lifespan are recovered by copy garbage collection and the objects are not
expanded or deleted. Therefore, the memory size after executing copy garbage collection is fixed. You can thereby
implement operations in stable status without occurrence of full garbage collection.

7. JavaVM Memory Tuning

210

In the JavaVM tuning, the tuning is performed by estimating memory size used in each area of memory space used by
JavaVM, with this status as an ideal status.

Tip
Tuning standards

Figure 7-8 shows an ideal example where full garbage collection does not occur even once. Actually, estimate the
occurrence of copy garbage collection 10 to 20 times for a single occurrence of full garbage collection and accordingly
implement the tuning.

7.2.2 Tuning procedure
This subsection describes the tuning procedures for Java heap and Explicit heap to prevent the occurrence of full
garbage collection.

Execute the Step (1) always. Execute the Step (2) to (4) after Step (1) when you use the Explicit Memory
Management functionality for Explicit heap. From step (5) onwards, check the description for the respective step and
implement the step as and when required.

The following figure shows the tuning procedure of Java heap and Explicit heap:

Figure 7‒9: Tuning procedure of Java heap and Explicit heap

(1) Java heap tuning
Determine how to prevent the occurrence of a full garbage collection by tuning the Java heap. For details about the
Java heap tuning, see 7.3 Java heap tuning.

When you do not use the Explicit heap area, implement the J2EE server tests after performing Java heap tuning. If a
full garbage collection occurs frequently even after proper estimation of Java heap memory, confirm that there are no
problems in tuning such as the Survivor area is full. If the problem occurs even after reviewing the Java heap tuning,
determine the usage of Explicit heap using the Explicit Memory Management functionality. Proceed with step (2) for
using Explicit heap.

(2) Explicit heap tuning
To use the Explicit heap area by the Explicit Memory Management functionality, estimate the memory of the Explicit
heap area. For details about the Explicit heap tuning, see 7.10 Explicit heap tuning.

7. JavaVM Memory Tuning

211

In J2EE servers, there are default settings to use the Explicit Memory Management functionality. Also, the objects
responsible for increasing the memory size of the Tenured area, including the HTTP session-related objects and the
objects for communication with the redirector, are set in such a way so that they are allocated to the Explicit heap.
Therefore, always estimate the Explicit heap memory size required for the objects allocated by J2EE server. However,
it is not effective if the Explicit Memory Management functionality is used without properly estimating the memory
size of Explicit heap.

(3) Confirming the estimation results from statistical information
When using the Explicit Memory Management functionality, execute the J2EE server tests after estimating the
JavaVM memory properly in step (1) and step (2). Confirm the use status of Explicit heap by collecting the statistical
information obtained in the tests. For details about estimating the Explicit heap based on statistical information, see
7.10.5 How to estimate using statistical information.

Reference note
Execute the J2EE server tests and confirm the following points when occurrence of full garbage collection cannot be
reduced.

• Whether there are any problems in Java heap tuning such as the Survivor area is full
Check whether the value estimated in step (1) is a correct value.

• Whether the Explicit heap is full
Check whether the value estimated in step (2) is a correct value.

• Whether the Web application configuration is correct
Depending on the Web application configuration, (How to use APIs in applications) the Explicit Memory Management
functionality for the objects related to the HTTP session might not be effective. For details, see 8.14 Notes on using the
Explicit Memory Management functionality in the uCosminexus Application Server Expansion Guide.

If the Explicit Memory Management functionality is not effective even after you re-estimate the memory size of the Java
heap and Explicit heap, and the automatic release processing is taking a long time, see Appendix A Efficient Usage of the
Explicit Heap Used in an HTTP session to revise the application design. As an efficient usage of the Explicit heap, this
appendix describes the points you might consider in an application design in order to efficiently apply the Explicit Memory
Management functionality to the HTTP session-related objects and how to check the log for this purpose.

Proceed to step (4) if the problem is not yet resolved after all these confirmations.

(4) Confirming increase in memory size of the Tenured area
Start the application and check the memory size of the Tenured area. While checking, use the statistical information
acquired in step (3) or the information acquired in extended verbosegc information. For details about how to acquire
the extended verbosegc information, see 5.7.2 Acquiring extended verbosegc information in the uCosminexus
Application Server Maintenance and Migration Guide.

(5) Allocating the objects responsible for increasing the memory size of the Tenured area to
the Explicit heap

If the frequency of full garbage collection and an increase in the memory size of the Tenured area is checked in step
(3) and (4) and the full garbage collection needs to be controlled, consider allocating the objects responsible for
increasing the memory size of the Tenured area to the Explicit heap. The objects to be studied here are not the "objects
that a J2EE server allocates to the Explicit heap by default", but the other "objects created on a Java application". By
allocating these objects to the Explicit heap instead of the Java heap, you can expect to reduce the occurrence
frequency of a full garbage collection. For details on how to identify the objects responsible for increasing the
memory size of the Tenured area, see 7.12(2) When the cause of an increase in the used size of the Tenured area is not
known.

The method of allocating the objects responsible for increasing the memory size of the Tenured area to the Explicit
heap, includes the following two types:

• Using the APIs of the Explicit Memory Management functionality

• Using the automatic allocation functionality of the Explicit Memory Management functionality

For details on how to use the APIs of the Explicit Memory Management functionality, see 8.12 Implementing a Java
program using the APIs of the Explicit Memory Management functionality, and for details on how to use the automatic

7. JavaVM Memory Tuning

212

allocation functionality of the Explicit Memory Management functionality, see 8.13.2 Using the Explicit Memory
Management functionality with the automatic allocation configuration file in the uCosminexus Application Server
Expansion Guide.

If you use this functionality to allocate new objects to the Explicit heap, the memory size of the Explicit heap
increases. Therefore, you must review the memory size of the Explicit heap again. Proceed to step (6).

(6) Reviewing memory size of entire Explicit heap
Run the application modified in step (5), and review the memory size of entire Explicit heap used by J2EE servers and
applications. For details about the review methods, see 7.11 Estimating the memory size when using the explicit
management heap functionality in the application.

Tip
For effectively avoiding the occurrence of a full garbage collection using Explicit Memory Management functionality, you
must avoid the overflow of objects from Explicit heap. Please confirm the following:

• Set Discard session (by invoking invalidate method) and appropriate session timeout in the Web application.

• The Explicit heap area of appropriate memory size can be allocated separately besides the Java heap area.

For details about the confirmation and measures when the Explicit heap overflow occurs, see 7.13.3 Checking and measures
when there is an overflow from the Explicit heap.

The further sections describe about the Java heap tuning and Explicit heap tuning. For notes other than those mentioned in
this document, see 8. Preventing the Occurrence of Full Garbage Collection using the Explicit Memory Management
functionality in the uCosminexus Application Server Expansion Guide.

7. JavaVM Memory Tuning

213

7.3 Java heap tuning
This section describes about the Java heap tuning.

7.3.1 How to estimate the memory size of Java heap
When tuning JavaVM, you need to properly estimate the memory size of each area of JavaVM specific area.

Estimate the following memory sizes:

• Memory size of the entire Java heap

• Memory size of the Tenured area

• Memory size of the Survivor area

• Memory size of the Eden area

In addition, estimate the Permanent area, as and when required.

When the size of existing objects after executing copy garbage collection is greater than the size of the Survivor area,
the Survivor area becomes full and some of the objects are promoted to the Tenured area on one execution of copy
garbage collection. Also, when the size of the Survivor area is small and the usage of the Survivor area increases, the
Java objects with a short lifespan (objects with a lifespan lesser than the copy garbage collection interval or objects
with a lifespan one to two times of the copy garbage collection interval) are promoted to the Tenured area with
multiple executions of copy garbage collection.

Tip
When you are able to confirm the following problems, you will understand that a full garbage collection occurs due to the
insufficient Survivor area. Also, the extended verbosegc information is output to the JavaVM log file when garbage
collection occurs, if the option is set when starting the J2EE server.

• When the objects with a short lifespan are identified as a reason for increase in the Tenured area

• When it is confirmed that the Survivor area is full during the execution of copy garbage collection in the extended
verbosegc information

• When it is observed that the age for promoting objects is always one in extended verbosegc information if specifying -
XX:+HitachiVerboseGCPrintTenuringDistribution.

To avoid such problems, you must reduce the setup value of the -XX:SurvivorRatio option, and optimize the ratio of
the Eden area and the Survivor area.

When estimating consider these points and first calculate the memory size of the Tenured area and the New area, and
based on this memory size, calculate the memory size of the entire Java heap.

The following figure shows the order for estimating the memory size. Estimate in the sequence of the numbers given
in the figure:

Figure 7‒10: Order for estimating the memory size

The estimation procedures are given below. The numbers correspond to the numbers in the figure.

1. Estimate the memory size used in the Tenured area.
For details about how to estimate, see 7.4 Estimating the memory size of the Tenured area in Java heap.

2. Estimate the memory size used in the Survivor area.
For details about how to estimate, see 7.5.1 Estimating the memory size of the Survivor area in Java heap.

7. JavaVM Memory Tuning

214

3. Estimate the memory size used in the Eden area.
For details about how to estimate, see 7.5.2 Estimating the memory size of the Eden area in Java heap.

4. Calculate the memory size of the entire New area by adding 2. and 3.

5. Determine the handling of objects that exist for a fixed time period, and add the necessary memory size to the
memory size of either the Tenured area or the New area.
For details about how to determine, see 7.6 Determining the handling of objects that exist for a fixed time period
in Java heap.

6. Calculate the memory size of entire Java heap by totaling 1, 4, and 5.

7. When required, estimate the memory size of the Permanent area.
For details about how to estimate, see 7.8 Estimating the memory size of the Permanent area in Java heap.

7.3.2 How to set the memory size in Java heap
Specify the estimated memory size with the options described in 7.1.2 Configuring the memory space used in JavaVM
and the JavaVM options. Shown below is how to set the memory size of the respective areas:

Memory size of the entire Java heap
Specify the maximum size with the -Xmxsize option and then specify the initial size with the -Xmssize
option.

Memory size of the Tenured area
Specify the division ratio of the Tenured area and the New area for the entire Java heap with the -
XX:NewRatio=value option. For example, in the case of -XX:NewRatio=5, the memory size specified with
the -Xmxsize option is divided as follows:
Memory size of the New area: Memory size of the Tenured area = 1:5

Memory size of the Survivor area and the Eden area
Specify the division ratio of the Survivor area and the Eden area for entire New area with the -
XX:SurvivorRatio=value option. Specify the division ratio with a numeric value that indicates how many
times the Eden area is to be allocated for the From space and the To space of the Survivor area. For example, in
case of -XX:SurvivorRatio=2, the memory size of the New area decided by the -XX:NewRatio=value
option is divided as follows:
Memory size of the Eden area : Memory size of the From space : Memory size
of the To space = 2:1:1

Memory size of the Permanent area
Specify the maximum size with the -XX:MaxPermSize=size option and then specify the initial size with the -
XX:PermSize=size option.

7.3.3 How to check the usage of memory size of Java heap
Keep tuning the respective memory sizes while measuring the memory usage by actually running the application. In
the Application Server, you can output the detailed memory size of each area when garbage collection is executed in
the form of extended verbosegc information by specifying the XX:+HitachiVerboseGC option in the
usrconf.cfg file and invoking the J2EE server. Tune on the basis of this output.

The main contents that can be output in the form of extended verbosegc information are as follows:

• Date and time of occurrence of a garbage collection

• Garbage collection type

• Garbage collection information#1

• Elapsed time of garbage collection

• Eden information#1

• Survivor information#1

• Tenured information#1

7. JavaVM Memory Tuning

215

• Perm information#1

• Garbage collection factors#2

#1
The usage area length and the area size before and after garbage collection are output.

#2
Output, when the -XX:+HitachiVerboseGCPrintCause option is specified.

For details about the output examples of extended verbosegc information and how to analyze the factors responsible
for full garbage collection, see 7.9 How to analyze the factors of a full garbage collection using the extended
verbosegc information. For details about the options, see -XX:[+|-]HitachiVerboseGC (extended verbosegc
information output option) in the uCosminexus Application Server Definition Reference Guide.

Note that with Application Server, you can initiate a full garbage collection at any time by using the javagc
command. In this case, you can output the same contents as the extended verbosegc information, by specifying the -v
option. For details about the javagc command, see javagc (forced occurrence of garbage collection) in the
uCosminexus Application Server Command Reference Guide.

7. JavaVM Memory Tuning

216

7.4 Estimating the memory size of the Tenured area in
Java heap

This section explains how to estimate the memory size of the Tenured area.

Estimate the memory size of the Tenured area in the following manner:

Memory-size-of-the-Tenured-area

= memory-size-required-by-the-application + memory-size-of-the-New-area

Described below is how to calculate the memory size required by the application.

Also describes the reason for adding the memory size of the New area to estimated memory size.

7.4.1 Calculating the memory size required by an application
The memory size of the Tenured area is estimated based on the minimum memory size required by an application. If
the required memory size cannot be allocated, OutOfMemoryError occurs and JavaVM stops.

The memory size required by an application can be decided based on the used memory size after full garbage
collection that can be checked from the extended verbosegc information displayed during the execution of full garbage
collection. This is based on the consideration that the memory size, after full garbage collection has deleted all
unnecessary objects from the entire Java heap, is close to the memory size required by the application.

The following example of output shows the extended verbosegc information when full garbage collection is executed:

...
[VGC]Wed May 11 23:12:05 2005[Full GC 31780K->30780K(32704K), 0.2070500secs]
[DefNew::Eden: 3440K->1602K(3456K)][DefNew::Survivor:58K->0K(64K)][Tenured: 28282K-
>29178K(29184K)][Perm:1269K->1269K(4096K)][cause:ObjAllocFail][User: 0.0156250 secs]
[Sys: 0.0312500 secs]
...

From the information that follows 'Full GC', check the information '->30780K' that is output after executing a garbage
collection. Here, we understand that the memory size of 30,780 kilobytes is required after executing full garbage
collection.

Collect the extended verbosegc information of numerous full garbage collections and consider the information with
the largest area after executing the garbage collection, as the memory size required by the application.

7.4.2 Reason for adding the memory size of the New area in Java heap
In the memory size of the Tenured area, Hitachi recommends you to add the memory size of the New area to the
minimum required memory size of the application. This is to prevent frequent occurrence of full garbage collection, as
the unused memory size of the Tenured area is lesser than the used memory size of the New area.

Usually a copy garbage collection occurs when the Eden area becomes full. At that point, the Java objects in use that
exist in the Eden area and the From space of the Survivor area try to move to the To space of the Survivor area. If,
however, the unused area of the Tenured area is lesser than the memory size that is in use in the Eden area and the
Survivor area, and all the Java objects of the New area are promoted, the Java objects in use do not move to the
Tenured area. At this point, JavaVM starts generating a full garbage collection and tries to increase the unused
memory size of the Tenured area.

To prevent this, apart from the memory size required by application, add the memory size equivalent to the New area,
in the Tenured area.

The following figure shows this concept:

7. JavaVM Memory Tuning

217

Figure 7‒11: Reason for adding the memory size of the New area

• An example of occurrence of a full garbage collection, when the objects cannot be promoted:
The free space in the memory of the Tenured area (the area besides the memory area required by the application)
is lesser than the memory size of the New area. Therefore, when the number of objects moving from the Eden area
and From space is large, the objects cannot be promoted. In such a case, a full garbage collection occurs.

• An example, wherein the objects can certainly be promoted:
The free space in the memory of the Tenured area (the area besides the memory area required by the application)
is allocated equivalent to the size same as the New area. Therefore, even when the number of objects moving from
the Eden area and From space is large, the objects can be promoted.

For details about estimating the memory size of the New area, see 7.5 Estimating the memory size of the New area in
Java heap.

Tip
When checked with the help of extended verbosegc information, if a full garbage collection occurs frequently without
occurrence of a copy garbage collection, it can be concluded that the memory size of Tenured area is lesser than the objects
saved from the New area. This situation occurs when the size of the New area is increased. Modify the memory size of the
Tenured area, as and when required. Also modify the relation between the Eden area and the Survivor area of the New area.

7. JavaVM Memory Tuning

218

7.5 Estimating the memory size of the New area in Java
heap

This section describes how to estimate the memory size of the New area.

Estimate the memory size of the New area as follows:

Memory-size-of-the-New-area

= memory-size-of-the-Survivor-area + memory-size-of-the-Eden-area

This section describes about how to estimate the memory size of the Survivor area and the Eden area.

7.5.1 Estimating the memory size of the Survivor area in Java heap
Tune the memory size of the Survivor area while checking the usage of the Survivor area, by actually running the
application.

The flow of tuning is as follows:

1. Estimate the memory size used for the request and response processing in the application, and specify this
memory size in the memory size of the Survivor area, and then execute the application.
At this point, to output the information used for tuning, specify the -XX:
+HitachiVerboseGCPrintTenuringDistribution option and invoke the J2EE server.

2. Check the memory usage based on the memory size allocated to the Survivor area and the actual memory usage
when the application is running.
When the memory usage is close to 100%, the in-use objects from the New area and the From space of the
Survivor area can no longer enter the To space when executing a copy garbage collection, and the objects are
saved. In such a case, consider increasing the Survivor area.

3. Check the age distribution of the objects of the Survivor area.
If you increase the memory size of the Survivor area and threshold value required for promoting, it leads to delay
in promoting the objects. Storing the objects with a long lifespan continuously in the Survivor area causes
deterioration in the performance. On the other hand, if you reduce the memory size of the Survivor area, and
reduce the threshold value required for promoting, the object promoting becomes faster. However, promoting the
objects with a short lifespan causes increase in the occurrence frequency of a full garbage collection.
In such a case, consider balancing both the memory size of the Survivor area, and the threshold value for
promoting the objects.

The respective tuning operations are explained below:

(1) Estimating the memory size used in the request and response processing
The Survivor area stores the objects with a short lifespan. In case of applications running on the server side, the
Survivor area can be considered as an area that stores the objects with a short lifespan that are used for processing a
request and response. As a result, for estimating the memory size of the Survivor area, consider the maximum size of
objects with a short lifespan that exist at a certain point, or in other words, consider the maximum size of the memory
used for processing a request and response, at a certain point of time. For example, in case of an application
configured with stateless servlets, the memory size of the Survivor area can be considered as the-maximum-memory-
size-used-for-processing-one-request the-number-of-concurrent-executions-of-the-request.

(2) Checking the memory usage
Set the value that is estimated from (1) Estimating the memory size used in the request and response processing, as the
memory size of the Survivor area, and then execute the application. Check the memory usage for memory size
allocated to the Survivor area from the memory usage at runtime.

Reference note
You cannot directly specify the memory size of the Survivor area.

7. JavaVM Memory Tuning

219

To specify the memory size of the Survivor area, you must first specify the maximum size of Java heap by the -Xmx option,
then use the -XX:NewRatio=value option to specify ratio that divides the memory size of Java heap into the New area
and the Tenured area, and finally specify the ratio with respect to the Eden area, by the -XX:SurvivorRatio=value
option.

You can check the memory usage with the extended verbosegc information.

The following example of output shows the extended verbosegc information for copy garbage collection at runtime:

...
[VGC]Wed May 11 23:12:05 2005[GC 27340K->27340K(32704K), 0.0432900 secs][DefNew::Eden:
3440K->0K(3456K)][DefNew::Survivor: 58K->64K(64K)][Tenured: 23841K->27282K(29184K)]
[Perm: 1269K->1269K(4096K)][cause:ObjAllocFail][User: 0.0156250 secs][Sys: 0.0312500
secs]
...

DefNew::Survivor: 58K->64K(64K) implies the-memory-size-before-executing-a-garbage-collection -> the-
memory-size-after-executing-a-garbage-collection (allocated-memory-size). In this case, 64 KB is already in use in
the Survivor area of 64 KB, and therefore, the usage becomes 100%. This indicates insufficient memory size of the To
space in copy garbage collection, and the Java object is saved. While saving, the object with a short lifespan that is not
to be stored in the Tenured area originally, is stored, and this causes frequent occurrence of a full garbage collection.
In such a case, consider increasing the memory size of the Survivor area. Estimate the memory size of the new
Survivor area in the following manner:

Memory-size-of-the-new-Survivor-area

= memory-size-of-the-existing-Survivor-area + total-size-of-the-saved-Java-object

The total-size-of-the-saved-Java-object can be approximated with the increased memory size of the Tenured area after
the garbage collection is executed. For example, Tenured: 23841K->27282K(29184K) indicates the increased
memory size of the Tenured area, and becomes 27,282 KB - 23,841 KB =3,441 KB.

If you increase the memory size of the Survivor area, the threshold value required for promoting the Java objects
increases, and thereby, the object promotion becomes difficult. For details, see (3) Checking and estimating the age
distribution of objects. As a result, the number of Java objects that are not collected by copy garbage collection
increases and hence, estimate and setup the -XX:TargetSurvivorRatio=value in the following manner:

New -XX:TargetSurvivorRatio=<value>

= existing--XX:TargetSurvivorRatio=<value> (memory-size-of-the-existing-Survivor-area-and-memory-size-of-the-new-
Survivor-area)

(3) Checking and estimating the age distribution of objects
Check the age distribution of the objects of the Survivor area, and ensure that the objects with a long lifespan do not
continue to exist, or the objects with a short lifespan are not being promoted. You can check the age distribution of
objects with the help of the output results of the -XX:+HitachiVerboseGCPrintTenuringDistribution
option.

If you specify the -XX:+HitachiVerboseGCPrintTenuringDistribution option in usrconf.cfg
when invoking the J2EE server, the used state of the Survivor area is output to the Java VM log file when copy
garbage collection occurs. The output example is as follows:

[PTD]Wed May 28 11:45:23 2008[Desired survivor:5467547 bytes][New threshold:3]
[MaxTenuringThreshold:31][age1:1357527][age2:1539661]

Following the New threshold, the minimum age of the Java objects promoted by the next copy garbage collection
is output. In this example, the Java object whose age is 3 or more is promoted by the next copy garbage collection.
Following the age<numeric value>: is the total of memory size used by the Java objects, whose age is between
one and that age in the Survivor area. In this example, if the memory size of the Java object with age 1 is 1,357,527
bytes, total 1,539,661 bytes of the memory size of both Java objects with age 1 and 2 is displayed. Also, it is
concluded that the memory size of the Java object with age 2 is 182,134 (1,539,661-1,357,527) bytes if

7. JavaVM Memory Tuning

220

calculated back from the total. Generally, the age distribution of the object in the Survivor area is similar to the
following graph:

Figure 7‒12: Age distribution of the objects in the Survivor area

The 'Size' in the graph is a total size of the Java object of a certain 'Age'. Also, the 'Total size' is a total size of the Java
objects up to a certain 'Age'.

In this graph, the size that the Java object in the Survivor area occupies, decreases as the age increases. Also, the size
that is reduced when age is increased by 1 year, becomes larger, as lesser the age, and based on this, the following
conclusions are drawn:

• The size occupied in the Survivor area becomes larger, as lesser the age of the Java object

• Easy to collect the object by garbage collection, as lesser the age of the Java object

In this example, the Java object with age 6 or above is hardly collected by the copy garbage collection. Therefore, a
copy garbage collection can be performed for the Java object having less possibility of being collected, if the threshold
value for the Java object promotion is above age 7, and this leads to deterioration in the performance. On the other
hand, if the threshold value for the Java object promoting is less than age 2, the object having higher possibility of
being collected by the copy garbage collection can be promoted, and this causes increase in the occurrences of full
garbage collection. In this example, the threshold value for promoting is between 5 to 6 age that implies a balanced
threshold value.

The trend of the graph differs depending on the system, and therefore, you must check the age distribution of the
objects in the Survivor area, and decide a suitable promoting age of the objects for each system.

The threshold value for the Java object promoting changes dynamically for each copy garbage collection, and is
decided based on the -XX:MaxTenuringThreshold=value option, and the memory size of the Survivor area and
the value set in the -XX:TargetSurvivorRatio=value option. The -XX:MaxTenuringThreshold=value
option is the maximum age of the threshold value required for promoting. Whenever the age of the Java object
exceeds this value, the Java objects are promoted without fail. The -XX:TargetSurvivorRatio=value option is
a target value of the memory usage of the Survivor area. To set the memory usage of the Survivor area closer to the
target value, the JavaVM decides the threshold value required for object promoting. Specifically, searches for n that
indicates the target usage of the total size of Java object from age 1 to n when the copy garbage collection is
completed, and sets the threshold value for promoting in next copy garbage collection, to n. The default value of -
XX:TargetSurvivorRatio=value is 50%. If the memory usage of the Survivor area is greater, you can use the
Survivor area more effectively, and therefore, it is easy to save the objects as the free space of the Survivor area is not
available.

7.5.2 Estimating the memory size of the Eden area in Java heap
The memory size of the Eden area affects the interval that causes a copy garbage collection. If the memory size of the
Eden area is large, the interval of occurrence of copy garbage collection becomes long. The time taken for the copy
garbage collection is affected by the number of objects in use, but is not much affected by the memory size of the
Eden area. For this reason, allocate enough memory size for the Eden area to prevent a frequent occurrence of the
copy garbage collection. This is effective for improving performance.

7. JavaVM Memory Tuning

221

7.6 Determining the handling of objects that exist for a
fixed time period in Java heap

The explanation in the previous sections is based on the assumptions that the objects are to be saved in the following
way in their respective areas, depending on the lifespan of the objects:

• Save the objects with a long lifespan that are necessary for the operations of the applications in the Tenured area.

• Save the objects with a short lifespan that are used for the request and response processing in the New area.

However, there are objects used for a fixed time period with an intermediate lifespan. Although such objects do not
have a long lifespan, copy garbage collection is executed a number of times for them.

When estimating the memory size, you must estimate assuming that these objects are to be stored either in the New
area or the Tenured area.

The respective features are shown below. Depending on the type of the application and the purpose, estimate which
memory size is to be increased.

7.6.1 How to save in the New area in Java heap
This subsection describes how to manage objects that exist for a fixed time period, in the New area. In the memory
size of the New area, add the memory size for these objects that exist for a fixed time, and then estimate.

If you increase the New area size and prevent the movement of objects to the Tenured area, you can even prevent the
occurrence of a full garbage collection. However, since the number of objects in use within the New area increases
when executing copy garbage collection, the Copy processing within the New area takes time, and the time taken for
executing one copy garbage collection increases. If the execution time of copy garbage collection is longer than the
execution time of full garbage collection, you need to re-estimate the memory size. Depending on the setting of
memory size, the area being used by the objects with a short lifespan that originally had to be collected by a copy
garbage collection, might become insufficient and the objects might get saved in the Tenured area. In such a case, a
full garbage collection occurs at the end.

You can use the extended verbosegc information to check whether the objects that exist for a fixed time period can be
managed in the New area. Run the application and with the help of extended verbosegc information that is output,
ensure that the memory size of the Tenured area does not increase immensely after the occurrence of copy garbage
collection.

In case of failure in managing the objects in the New area, the system performance declines immensely. Also, there
are limitations for the maximum age of objects managed in the New area (Limitations differ according to the platform
and version. For details, see -XX:MaxTenuringThreshold=value of 16.4 Default values of Java HotSpot VM
options that can be specified in Cosminexus in the uCosminexus Application Server Definition Reference Guide.). If
you realize that the objects are not being managed in New area, consider saving and managing the objects that exist
for a fixed time period, in the Tenured area. For details about how to manage objects in the Tenured area, see 7.6.2
How to save in the Tenured area in Java heap.

7.6.2 How to save in the Tenured area in Java heap
You can use the -XX:MaxTenuringThreshold=value option for setting the maximum age of objects that are
managed in the New area. For example, if you specify -XX:MaxTenuringThreshold=2, all the objects for
which the third copy garbage collection is executed, move to the Tenured area.

If you use this method, the objects for which a copy garbage collection is executed become less in number and the
execution time can be reduced. A full garbage collection occurs periodically, when the Tenured area becomes full,
since several objects move to the Tenured area. To operate the system with stability, forcibly initiate a full garbage
collection when the load on the system is less. Shown below is how to forcibly initiate a full garbage collection:

• Call the System.gc() method within the program.

• Execute the javagc command.
For details about the javagc command, see javagc (forced occurrence of garbage collection) in the
uCosminexus Application Server Command Reference Guide.

7. JavaVM Memory Tuning

222

7.6.3 How to save in the Explicit heap
This subsection describes how to save and manage the objects that exists for a fixed time period, in the Explicit heap
by changing Java programs and not by performing tuning. The Explicit heap is an area for which a garbage collection
is not executed. You can use Explicit heap to prevent the movement of objects to the Tenured area and minimize the
occurrence of a full garbage collection. You can also use automatic allocation setup file to allocate the object directly
in Explicit heap. For details, see 7.10 Explicit heap tuning. On Application Server, the objects related to HTTP session
are managed by Explicit heap.

7. JavaVM Memory Tuning

223

7.7 Deciding the maximum size or the initial size of Java
heap

If you have estimated the Tenured area and the New area, then based on the estimated area, decide the maximum size
and the initial size of Java heap.

Decide the maximum size of Java heap in the following manner:

Maximum-size-of-Java-heap

= memory-size-of-the-Tenured-area + memory-size-of-the-New-area

When setting the memory size of Java heap, first, specify the maximum size of Java heap, including the size of the
extended area, in the -Xmx option. Next, specify the initial size of the Java heap in the -Xms option. The size
specified in the -Xms option has to be lesser than that specified in the -Xmx option.

At the time of startup, JavaVM allocates only that much memory area as the Java heap that has been specified in the -
Xms option. Later, if memory area more than what is specified in the -Xms option is required during execution of an
application, JavaVM keeps adding and allocating the heap area until it reaches the size specified in the -Xmx option.
Conversely, if there is some unnecessary memory space in an application, then JavaVM keeps reducing the area that
has been allocated as the Java heap, until it reaches the size specified in the -Xms option.

For stable operations of a system, Hitachi recommends that you specify the same value in the -Xmx option and the -
Xms option.

7. JavaVM Memory Tuning

224

7.8 Estimating the memory size of the Permanent area
in Java heap

This section explains about estimating the memory size of the Permanent area. Permanent area stores the classes that
have been loaded.

As mentioned in 7.1.2 Configuring the memory space used in JavaVM and the JavaVM options, the memory size of
the Permanent area is allocated separately from the memory size specified by the -Xmx option (Java heap).

For details about the default values, see 16.4 Default values of Java HotSpot VM options that can be specified in
Cosminexus in the uCosminexus Application Server Definition Reference Guide.

The method for estimating the usage of the Permanent area is as follows:

■ Method of estimating the usage of the Permanent area

The memory usage in the Permanent area is almost the total size of the class files loaded in the J2EE server. In case of
Application Server, you can perform estimations on the basis of the sum of following class file size:

1. All the class files under WEB-INF/classes
2. All the class files included in the JAR files under WEB-INF/lib
3. All the class files generated as a result of JSP compilation

4. All the class files included in EJB-JAR

5. If container extension library, library JAR, and reference library are being used, then all the class files included in
the JAR files that are added

6. Class files created by containers
Permanent-areas-after-starting-application - Permanent-areas-before-registering-application. To perform this
calculation, you must actually start the J2EE server and check the permanent areas.

7. Class files (system class files) provided in Application Server
The sum of the system class files is approximately 120 MB.

8. Class files provided in the JDK
The total size of the files provided in the JDK is approximately 90 MB.

Specify the memory size of the Permanent area in the -XX:MaxPermSize=size option and the -
XX:PermSize=size option. For details about the default values of these options, see 16.4 Default values of Java
HotSpot VM options that can be specified in Cosminexus in the uCosminexus Application Server Definition Reference
Guide.

Note that the usage of the Permanent area might temporarily increase while importing the application.

Reference note
Resolution method when the Permanent area is compressed due to software references in the development
environment

Due to software references, the release of the Permanent area might be delayed when an application is un-deployed.
Therefore, when you repeatedly deploy and un-deploy applications in the development environment, the Permanent area
might be compressed due to the delay in the release of the Permanent area. Specify the following option to resolve the
compression of the Permanent area due to software references:

• -XX:SoftRefLRUPolicyMSPerMB=0

If you specify 0 in the -XX:SoftRefLRUPolicyMSPerMB option, all software references are disabled. A software
reference is often used as a cache for performance improvement, so the performance of an application might deteriorate due
to the specification of this option. Therefore, specify this option only when the Permanent area is compressed in the
development environment.

7. JavaVM Memory Tuning

225

7.9 How to analyze the factors of a full garbage
collection using the extended verbosegc information

This section explains how to analyze the factors responsible for a full garbage collection by using the extended
verbosegc information. The extended verbosegc information is the log information of JavaVM that can be output
by specifying the -XX:+HitachiVerboseGC option that is a JavaVM option. In addition to the information that is
useful for tuning, the information that is also useful for analyzing the cause of errors, is output.

You can check the following information, by referring to the extended verbosegc information when tuning:

• Memory size used by each area before and after executing a garbage collection

• Factors responsible for occurrence of a garbage collection

You can output further detailed information by combining the -XX:+HitachiVerboseGC option with another
JavaVM option. For details about the -XX:+HitachiVerboseGC option and other JavaVM extended options, see
16.2 Details on JavaVM extended options in the uCosminexus Application Server Definition Reference Guide.

7.9.1 Overview of the output format of extended verbosegc information
The extended verbosegc information is output when a copy garbage collection occurs and also when a full garbage
collection occurs.

When a copy garbage collection occurs, 'GC' is output as the type of garbage collection. When a full garbage
collection occurs, 'Full GC' is output as the type of garbage collection. After the type, area-length-before-the-garbage-
collection -> area-length-after-the-garbage-collection (allocated-area-size) is output for the respective areas.

Example of output of extended verbosegc information when a full garbage collection occurs is shown hereafter. The
factors responsible for occurrence of the garbage collection and the CPU time of the GC thread are also output to the
extended verbosegc information.

For details about the output format of the extended verbosegc information and the respective options, see 16. Start
Option of JavaVM in the uCosminexus Application Server Definition Reference Guide.

7.9.2 Example of output of extended verbosegc information when full
garbage collection occurs

This subsection explains the output of extended verbosegc information when full garbage collection occurs.

(1) An example of output when the memory size being used in the New area (total of the
Eden area and the Survivor area) exceeds the unused memory size for the maximum
value of the Tenured area

An example of output of extended verbosegc information is shown below. The part in bold shows the factors
responsible for occurrence of a full garbage collection.

...
[VGC]Wed May 11 23:12:05 2005[GC 27340K->27340K(32704K), 0.0432900 secs][DefNew::Eden:
3440K->0K(3456K)][DefNew::Survivor: 58K->58K(64K)][Tenured: 23841K->27282K(29184K)]
[Perm: 1269K->1269K(4096K)][cause:ObjAllocFail][User: 0.0156250 secs][Sys: 0.0312500
secs]
[VGC]Wed May 11 23:12:05 2005[Full GC 30780K->30780K(32704K), 0.2070500 secs]
[DefNew::Eden: 3440K->1602K(3456K)][DefNew::Survivor: 58K->0K(64K)][Tenured: 27282K-
>29178K(29184K)][Perm: 1269K->1269K(4096K)][cause:ObjAllocFail][User: 0.0156250 secs][Sys:
0.0312500 secs]
...

The following conclusions are drawn from this output example:

7. JavaVM Memory Tuning

226

• The memory size being used in the New area (3440 K + 58 K=3498 K) has exceeded the unused memory
size for the maximum value of the Tenured area (29184 K - 27282 K = 1902 K).

• The cause of full garbage collection is failure to allocate the object.

(2) When an attempt to move objects from the New area (total of the Eden area and the
Survivor area) to the Tenured area fails as a result of a copy garbage collection

The following is an example of output of the extended verbosegc information. The part in bold shows the factors
responsible for the occurrence of a full garbage collection.

...
[VGC]<Thu Oct 20 11:04:42 2011>[GC 26418K->26418K (29696K), 0.0000000 secs][DefNew::Eden:
8188K->8188K(8192K)][DefNew::Survivor: 1021K->1021K(1024K)][Tenured:17208K->17208K (20480K)]
[Perm: 2277K->2277K(12288K)][cause:ObjAllocFail][User: 0.0000000 secs][Sys: 0.0000000 secs]
[IM: 877K, 1104K, 0K][TC: 9][DOE: 0K, 0]
[VGC]<Thu Oct 20 11:04:42 2011>[Full GC 26418K->6450K(29696K), 0.0156250 secs][DefNew::Eden:
8188K->0K(8192K)][DefNew::Survivor:1021K->0K(1024K)][Tenured:17208K->6450K(20480K)][Perm:
2277K->2277K(12288K)][cause:PromotionFail][User: 0.0156250 secs][Sys: 0.0000000 secs][IM: 925K,
1104K, 0K][TC: 9][DOE: 0K, 0]

The following conclusion (1)is drawn from this example of output:

• The cause of full garbage collection is failure to move objects from the New area to the Tenured area due to copy
garbage collection.

(3) An example of output when the memory size to be allocated (size of the Java objects
created by new) exceeds the unused memory size of the Tenured area

An example of output of extended verbosegc information is shown below. The part in bold shows the factors
responsible for occurrence of a full garbage collection.

...
[VGC]Wed May 11 23:53:18 2005[GC 28499K->28490K(32704K), 0.0540590 secs][DefNew::Eden:
808K->0K(3456K)][DefNew::Survivor: 64K->62K(64K)][Tenured: 27626K->28428K(29184K)]
[Perm: 1269K->1269K(4096K)][cause:ObjAllocFail][User: 0.0156250 secs][Sys: 0.0312500
secs]
[VGC]Wed May 11 23:53:18 2005[Full GC 28490K->8959K(32704K), 0.1510380 secs]
[DefNew::Eden: 0K->0K(3456K)][DefNew::Survivor: 62K->0K(64K)][Tenured: 28428K-
>8959K(29184K)][Perm: 1269K->1269K(4096K)][cause:ObjAllocFail][User: 0.0156250 secs][Sys:
0.0312500 secs]
...

The following conclusions are drawn from this example of output:

• An attempt was made to create a Java object whose memory size exceeds the unused memory size of the Tenured
area (29184 K - 28428 K = 756 K) with new.

• The cause of the full garbage collection is failure to allocate the object.

(4) An example of output when the unused memory size of the allocated Tenured area falls
below 10,000 bytes as a result of the copy garbage collection

An example of output of extended verbosegc information is shown as follows. The part in bold shows the factors
responsible for the occurrence of a full garbage collection.

...
[VGC]Fri-May-25-15-:-21-:-33-2007[GC 15436K->15416K(19840K), 0.0111825 secs]
[DefNew::Eden: 4413K->0K(4416K)][DefNew::Survivor: 512K->509K(512K)][Tenured: 10511K-

7. JavaVM Memory Tuning

227

>14906K(14912K)][Perm: 1976K->1976K(8192K)][cause:ObjAllocFail][User: 0.0000000 secs][Sys:
0.0000000 secs]
[VGC]Fri-May-25-15-:-21-:-33-2007 [Full GC 15416K->8622K(19840K), 0.0284614 secs]
[DefNew::Eden: 0K->0K(4416K)][DefNew::Survivor: 509K->0K(512K)][Tenured: 14906K-
>8622K(14912K)][Perm: 1976K->1976K(8192K)][cause:ObjAllocFail][User: 0.0312500 secs]
[Sys: 0.0000000 secs]
...

The following conclusions are drawn from this example of output:

• The used memory size of the Tenured area increased from 10511 KB to 14906 KB due to the transfer of objects
from the New area to the Tenured area in the first copy garbage collection. As a result, the unused memory size of
the allocated Tenured area became 14912 KB - 14906 KB = 6 KB and fell below 10,000 bytes
(approximately 10 K bytes).

• The reason for the first copy garbage collection is the object allocation failure. The first copy garbage collection
and second full garbage collection occur consecutively before the control returns to the Java program.

(5) An example of output when the allocated Tenured area is extended due to the transfer of
objects to the Tenured area during copy garbage collection

An example of output of extended verbosegc information is shown as follows. The part in bold shows the factors
responsible for occurrence of a full garbage collection.

...
[VGC]Fri-May-25-15-:-42-:-00-2007[GC 12745K->10151K(15872K), 0.0048346 secs]
[DefNew::Eden: 4416K->0K(4416K)][DefNew::Survivor: 137K->512K(512K)][Tenured: 8192K-
>9639K(10944K)][Perm: 1976K->1976K(8192K)][cause:ObjAllocFail][User: 0.0156250 secs]
[Sys: 0.0000000 secs]
[VGC]Fri-May-25-15-:-42-:-00-2007[GC 14563K->14536K(19072K), 0.0104957 secs]
[DefNew::Eden: 4412K->0K(4416K)][DefNew::Survivor: 512K->510K(512K)][Tenured: 9639K-
>14026K(14144K)][Perm: 1976K->1976K(8192K)][cause:ObjAllocFail][User: 0.0156250 secs][Sys:
0.0000000 secs]
[VGC]Fri-May-25-15-:-42-:-00-2007[Full GC 14536K->8610K(19072K), 0.0287254 secs]
[DefNew::Eden: 0K->0K(4416K)][DefNew::Survivor: 510K->0K(512K)][Tenured: 14026K-
>8610K(14144K)][Perm: 1976K->1976K(8192K)][cause:ObjAllocFail][User: 0.0312500 secs]
[Sys: 0.0000000 secs]
...

The following conclusions are based on this example of output:

• The Tenured area must be at least 14,026 KB or more due to the movement of objects from the New area to the
Tenured area in the second copy garbage collection. Therefore, the size of the allocated Tenured area is extended
from 10,944 KB to 14,144 KB.

• The reason for the second copy garbage collection is object allocation failure. The second copy garbage collection
and third full garbage collection occur consecutively before the control returns to the Java program.

(6) An example of output when the java.lang.System.gc() method is executed in an
application

An example of output of extended verbosegc information is shown below. The part in bold shows the factors
responsible for occurrence of a full garbage collection.

...
[VGC]Mon Apr 18 20:36:29 2005[Full GC 330K->150K(3520K), 0.0387690 secs][DefNew::Eden:
330K->0K(2048K)][DefNew::Survivor: 0K->0K(64K)][Tenured: 0K->150K(1408K)][Perm: 1266K-
>1266K(4096K)][cause:System.gc][User: 0.0156250 secs][Sys: 0.0312500 secs]
...

7. JavaVM Memory Tuning

228

The following conclusion is drawn from this example of output:

• The cause of full garbage collection is calling the java.lang.System.gc() method in J2EE applications or
batch applications.

(7) An example of output when the memory size to be allocated to the Permanent area
exceeds the unused memory size of the allocated Permanent area

An example of output of extended verbosegc information is shown below. The part in bold shows the factors
responsible for occurrence of a full garbage collection.

...
[VGC]Mon Apr 18 20:36:29 2005[Full GC 57051K->25121K(129792K), 0.5531230 secs]
[DefNew::Eden: 40943K->0K(41088K)][DefNew::Survivor: 1280K->0K(1280K)][Tenured:
14827K->25121K(87424K)][Perm: 20479K->20479K(20480K)][cause:PermAllocFail][User:
0.0156250 secs][Sys: 0.0312500 secs]
...

The following conclusions are drawn from this example of output:

• The memory size to be allocated to the Permanent area exceeded the unused memory size of the allocated
Permanent area (20480 K - 20479 K = 1 K).

• The cause of the full garbage collection is failure to allocate the Permanent heap.

(8) An example of output for the case when the javagc command is executed
An example of output of the extended verbosegc information is shown below. The part in bold shows the factors
responsible for occurrence of a full garbage collection.

...
[VGC]Mon Apr 18 21:46:50 2005[Full GC 369K->189K(3520K), 0.0403010 secs][DefNew::Eden:
369K->0K(2048K)][DefNew::Survivor: 0K->0K(64K)][Tenured: 0K->189K(1408K)][Perm: 1266K-
>1266K(4096K)][cause:JavaGC Command][User: 0.0156250 secs][Sys: 0.0312500 secs]
...

The following conclusion is drawn from this example of output:

• The cause of full garbage collection is execution of the javagc command.

(9) An example of output for the case when the jheapprof command is executed
An example of output of extended verbosegc information is shown below. The part in bold shows the factors
responsible for occurrence of a full garbage collection.

...
[VGC]Mon Apr 18 21:46:50 2005[Full GC 369K->189K(3520K), 0.0403010 secs][DefNew::Eden:
369K->0K(2048K)][DefNew::Survivor: 0K->0K(64K)][Tenured: 0K->189K(1408K)][Perm: 1266K-
>1266K(4096K)][cause:JHeapProf Command][User: 0.0156250 secs][Sys: 0.0312500 secs]
...

The following conclusion is drawn from this example of output:

• The cause of full garbage collection is execution of the jheapprof command.

7. JavaVM Memory Tuning

229

7.10 Explicit heap tuning
This section describes about the Explicit heap tuning.

7.10.1 How to estimate the memory size of Explicit heap (Estimating
memory size used in J2EE server)

The settings to use the Explicit Memory Management functionality are required as a prerequisite for tuning Explicit
heap. The Explicit Memory Management functionality is enabled when -XX:+HitachiUseExplicitMemory is
specified as the start option of JavaVM. In J2EE servers, there are default settings to use the Explicit Memory
Management functionality. Also, the objects responsible for increasing the memory size of the Tenured area are set to
be allocated in Explicit heap. Therefore, always estimate the memory size of Explicit heap required for the objects
allocated by J2EE servers.

If the memory size of Explicit heap is not estimated properly, the Explicit Memory Management functionality is not
effective.

In a J2EE server, deploy the following objects that cause increase in the memory size of the Tenured area, in Explicit
heap:

• Object for communicating with redirector

• Object related to the HTTP session

You can calculate the memory size of Explicit heap used by the object for communicating with redirector, from the
setup value of the definition file. For details about how to estimate, see 7.10.2 Memory size used by the object for
communicating with redirector.

The memory size of Explicit heap used by the object related to HTTP session is actually estimated after acquiring
information by running an application. For details about how to estimate, see 7.10.3 Memory size used by the object
related to the HTTP session.

As a result of estimating the memory size of the Explicit heap, if the memory size of the Explicit heap used by the
HTTP session-related objects is extremely large, see Appendix A Efficient Usage of the Explicit Heap Used in an
HTTP session to revise the application design.

7.10.2 Memory size used by the object for communicating with redirector
The memory size of Explicit heap used by the object for communicating with redirector is estimated by the following
formula:

Memory-size-used-by-the-object-for-communicating-with-redirector
=memory-size-used-in-one-connection# number-of-connections-with-the-redirector

#
The memory size used in one connection differs depending on the use of the automatic allocation functionality of
the Explicit Memory Management functionality. The following is the memory size used in one connection
depending on the use of the automatic allocation functionality of the Explicit Memory Management functionality.

Table 7‒3: Memory size used in one connection depending on the use of the automatic allocation
functionality of the Explicit Memory Management functionality

Item
number

Whether the automatic allocation functionality of
the Explicit Memory Management functionality is

used
Memory size used in one connection

1 Y 144 kilobytes

2 -- 128 kilobytes

Legend:
Y: Automatic allocation functionality of the Explicit Memory Management functionality is used.

7. JavaVM Memory Tuning

230

--: Automatic allocation functionality of the Explicit Memory Management functionality is not used.

Use the maximum connections setup in the Web server as number-of-connections-with-the-redirector when system
configuration of the Web server and Web container is arranged in a 1-to-1 ratio.

Location for setting maximum connections differs depending on the Web server and the type of the OS used. The
following table describes the setup locations:

Table 7‒4: Setup locations of maximum connections

Web server OS Setup location

Cosminexus HTTP Server Windows ThreadsPerChild directive of httpsd.conf (Cosminexus HTTP
Server definition file)

UNIX MaxClients directive of httpsd.conf (Cosminexus HTTP Server
definition file)

Microsoft IIS Windows 'Maximum connections' set in the performance tag of the Web site
property.

7.10.3 Memory size used by the object related to the HTTP session
! Important note

Note that by this procedure you cannot estimate the memory size when using the functionality for reducing Explicit heap
memory size utilized by an HTTP session. Follow the procedure described in 7.10.5 How to estimate using statistical
information(1) for the memory size if you are using functionality for reducing Explicit heap memory size utilized by an
HTTP session.

The memory size of the Explicit heap used by HTTP session-related objects is estimated with the following formula:

Memory-size-of-the-Explicit-heap-used-by-HTTP-session-related-objects
= Memory-size-of-the-Explicit-heap-used-in-the-HTTP-session + Memory-size-of-the-
Explicit-heap-area-used-in-the-Web-container

The memory size of the Explicit heap used by the HTTP session is estimated with the following formula:

Memory-size-of-the-Explicit-heap-used-in-the-HTTP-session
= Memory-size-used-in-one-session#1 Number-of-sessions-required-in-the-system

The memory size of the Explicit heap area used in the Web container for the HTTP session is estimated with the
following formula:

Memory-size-of-the-Explicit-heap-area-used-in-the-Web-container
= Size-of-the-objects-used-for-managing-the-HTTP-sessions#2 (Number-of-Web-
applications#3 + 2)

#1
Memory-size-used-in-one-session is equivalent to the size of one Explicit memory block. To estimate the size of
one Explicit memory block, actually run the application and check the usage of the Explicit heap. Note that the
minimum size of the Explicit memory block differs depending on the use of the automatic allocation functionality
of the Explicit Memory Management functionality. The following table describes the minimum size of the
Explicit memory block depending on the use of the automatic allocation functionality of the Explicit Memory
Management functionality.

Table 7‒5: Minimum size of the Explicit memory block depending on the use of the automatic allocation
functionality of the Explicit Memory Management functionality

Item
number

Whether the automatic allocation functionality of
the Explicit Memory Management functionality is

used
Minimum size of Explicit memory block

1 Y 16 kilobytes

7. JavaVM Memory Tuning

231

Item
number

Whether the automatic allocation functionality of
the Explicit Memory Management functionality is

used
Minimum size of Explicit memory block

2 -- 64 kilobytes

Legend:
Y: Automatic allocation functionality of the Explicit Memory Management functionality is used.
--: Automatic allocation functionality of theExplicit Memory Management functionality is not used.
You can extend the Explicit memory block in 64 kilobyte units. Therefore, the size would be "size-of-one-Explicit-
memory-block memory-size-used-in-one-session". Also, estimate the size by adding 16 kilobytes when using
the automatic allocation functionality of theExplicit Memory Management functionality.

#2
Size-of-the-objects-used-for-managing-the-HTTP-sessions is the minimum size of the Explicit memory block
described in Table 7-5.

#3
Number-of-Web-applications shows the number of running Web applications.

(1) Estimation procedure
The estimation procedure is as follows:

1. Change the J2EE server settings in such a way so that the object for communicating with redirector is not
deployed in the Explicit heap.
Perform J2EE server settings in a parameter for setting up the user property for the J2EE server of a logical J2EE
server in the Easy Setup definition file. The setup value is as follows:

Value specified in param-name
ejbserver.server.eheap.ajp13.enabled

Value specified in param-value
false

2. Start the application that creates the HTTP session, and then execute the processes up to the last process executed
immediately before the session annulment (such as logout).

3. Execute the javagc command to generate a full garbage collection.

4. Check the information generated after executing a full garbage collection that is output to the event log of the
explicit management heap functionality.
The event log of the explicit management heap functionality is output to a file or directory specified in the -
XX:HitachiExplicitMemoryJavaLog option which is the startup option of JavaVM. The default output
destination is as follows:

In Windows
Cosminexus-installation-directory\CC\server\public\ejb\J2EE-server-name\logs
\ehjavalogn.log

In UNIX
/opt/Cosminexus/CC/server/public/ejb/J2EE-server-name/logs/ehjavalogn.log

Check the size used in Explicit heap and the number of Explicit memory blocks required in the series of
businesses.
While calculating the memory size, check the following items from among the output items of the event log:

• Allocated size of the Explicit heap

• Number of Explicit memory blocks

For details about the contents of the Explicit Memory Management functionality event logs, see 5.11 Event log of
the Explicit Memory Management functionality in the uCosminexus Application Server Maintenance and
Migration Guide. These items are output when garbage collection occurs and are included in use status of Explicit
heap.

5. Based on contents checked in step (4), calculate the size of one Explicit memory block.

7. JavaVM Memory Tuning

232

You can calculate the size using the following formula:

Size-of-one-Explicit-memory-block
=allocated-size-of-Explicit-heap/number-of-Explicit-memory-blocks

size-of-one-Explicit-memory-block is equivalent to the memory size used in one session.

6. Calculate the total memory size of Explicit heap used in the HTTP session by multiplying the value calculated in
step (5) with the number of sessions required in business.

(2) Estimation example
This point shows an estimation example based on the output example of event log of the explicit management heap
functionality. An output example of the explicit management heap functionality is as follows:

Output example of event log of explicit management heap functionality:

[ENS]Thu Oct 21 14:55:50 2007[EH: 12672K->12800K(12800K/65536K)][E/F/D: 200/0/0]
[cause:GC][CF: 0]

In this example, the allocated size of Explicit heap is 12,800 Kilobytes, and the number of Explicit memory block is
200. If this value is applied according to step (5) of (1) Estimation procedure, it is displayed as follows:

Estimation example of Explicit memory block size:
Size-of-one-Explicit-memory-block
= allocated-size-of-Explicit-heap-(12,800 Kilobytes)/number-of-Explicit-
memory-size-(200)
=64 Kilobytes

The value multiplied with the number of sessions assumed in the businesses is considered as the total memory size of
Explicit heap used in the HTTP session.

7.10.4 Impact of using the Explicit Memory Management functionality
when estimating memory size

The use of a function from the Application Server functions has impact on the memory size of the Explicit heap area.
The following table describes how the estimations are affected when you use a specific function:

Table 7‒6: Impact on estimations according to the use of functions

No
. Function Difference in the Explicit heap area according to

the usage of function
Impact on
estimation

1 Automatic release function of Explicit Memory
Management (-XX:
+HitachiExplicitMemoryAutoReclai
m option)

When enabled
JavaVM uses the "size-of-the-Survivor-area-of-
java-heap 2" areas in the Explicit heap area.

When disabled
JavaVM does not use the Explicit heap area.

The estimated size of
the final Explicit
heap area when the
function is enabled, is
a value where "size-
of-the-Survivor-area-
of-Java-heap 2" is
added to the
estimated size
calculated from the
statistical
information.

2 Automatic allocation functionality of the
Explicit Memory Management functionality (-
XX:+HitachiAutoExplicitMemory
option)

When enabled
The minimum size of Explicit memory block is
16 kilobytes.

When disabled
The minimum size of Explicit memory block is
64 kilobytes.

Furthermore, how to allocate the Explicit heap area
differs depending on the enabling and disabling of

The information
related to Explicit
heap size that is
output to statistical
information differs
depending on the
enabling and
disabling of function.

7. JavaVM Memory Tuning

233

No
. Function Difference in the Explicit heap area according to

the usage of function
Impact on
estimation

2 Automatic allocation functionality of the
Explicit Memory Management functionality (-
XX:+HitachiAutoExplicitMemory
option)

function. However, enabling and disabling does not
have an impact on the estimations.

When enabled
The memory size specified in the -
XX:HitachiExplicitHeapMaxSize
option is allocated when starting the process.

When disabled
Only the required memory size is allocated when
acquiring the Explicit memory block.

The information
related to Explicit
heap size that is
output to statistical
information differs
depending on the
enabling and
disabling of function.

7.10.5 How to estimate using statistical information
You can use the statistical information to check the actual usage of Explicit heap with a J2EE server after J2EE server
starts operating and for implementing the J2EE server tests. This subsection describes the procedure for checking the
usage of Explicit heap using statistical information.

For details about the output contents of the statistical information and the settings to output the statistical information,
and output destination of the statistics file, see 3.3 Functionality to output statistics files in the uCosminexus
Application Server Operation, Monitoring, and Linkage Guide.

(1) Concept of estimations using statistical information
When estimating using statistical information, the memory size of the Explicit heap area required in the system is as
follows:

1. Memory size of the Explicit heap area used in HTTP session

2. Memory size of the Explicit heap area used in container excluding the area mentioned in point 1.

3. Memory size of the Explicit heap area used in applications and JavaVM

4. Memory size (size-of-the-Survivor-area-of-Java-heap 2) of the Explicit heap area used to manage Explicit
memory block by JavaVM

You can confirm the memory size of points 1. to 3. from statistical information. In point 4., you can use the memory
size of size-of-the-Survivor-area-of-Java-heap 2 when the automatic release function of Explicit Memory
Management is enabled.

The following table describes the examples using the Explicit heap area mentioned in the points 1 to 3. The points 1 to
3 correspond to the item numbers 1 to 3 in the table:

Table 7‒7: Concrete example of items using the Explicit heap area

No. Explicit heap area Concrete example of using the Explicit heap area

1 The Explicit heap area used in a HTTP
session

HTTP session

2 The Explicit heap area used in a
container

• Objects used for communicating with the redirector

• Objects used for managing HTTP sessions

3 The Explicit heap area used in
applications and JavaVM

• Application

• JavaVM

(2) Precautions when acquiring statistical information used in estimation
Acquire the statistical information used for estimations in the actual environment or an environment same as the actual
environment.

7. JavaVM Memory Tuning

234

When the following items differ from the actual environment, you cannot estimate the appropriate memory size using
the statistical information:

• Properties set up in each definition file and values specified in options

• Number of Web applications registered on a server

• Number of connections with the redirector

• Size of the data processed by business applications

• Data processed at regular intervals

Furthermore, specify an option to set a maximum value for the size of the Explicit heap area to avoid completely used
status of the Explicit heap area when acquiring the statistical information for estimation.

When you acquire statistical information in a status where maximum size of the Explicit heap area is insufficient, the
Explicit heap area would be in a completely used state. You cannot estimate properly if the statistical information is
acquired in a state whereby the Explicit area is completed used. You can confirm whether the Explicit heap area is in a
completed used status by checking that the value of EHeapSize.HighWaterMark of statistical information is
same as the value of maximum size of the Explicit heap area. The Explicit heap area is in completed used status when
the value of EHeapSize.HighWaterMark of statistical information is same as the value of maximum size of the
Explicit heap area.

(3) How to estimate
The following points describe how to estimate based on the statistical information:

(a) Memory size of the Explicit heap area used by HTTP session

You can acquire the memory size used by the HTTP sessions from the formulas for the memory size of the Explicit
heap used by the HTTP sessions that are described in the 7.10.3 Memory size used by the object related to the HTTP
session. Here, you can confirm the "Memory size used on one session" included in formula from the statistical
information.

Memory size used in one session corresponds to the "Maximum size of Explicit memory block" output to statistical
information. In the "Maximum size of Explicit memory block", the size of maximum items used is output from the
Explicit memory block released in the statistical information collection interval. Therefore, round-out in unit of 64
kilobytes and estimate the Explicit heap. Additionally, when using the automatic allocation functionality of the
Explicit Memory Management functionality, add 16 kilobytes, and then estimate the Explicit heap.

When estimating, please see the following values. Also, the number of sessions required in the system correspond to
"Number of Explicit memory blocks":

• Maximum size of Explicit memory blocks acquired in HTTP session (Value of
HTTPSessionEMemoryBlockMaxSize.HighWaterMark)

• Number of Explicit memory blocks acquired in HTTP session (Value of
HTTPSessionEMemoryBlockCount.HighWaterMark)

(b) Memory size of the Explicit heap area used in container

The memory size of the Explicit heap area used in the container corresponds to "Explicit heap size used in container"
of statistical information. Use the maximum value (value of ContainerEHeapSize.HighWaterMark) from the
acquired value for the statistical information used for estimation.

(c) Memory size of the Explicit heap area used in applications and JavaVM

The memory size of the Explicit heap area used in applications and JavaVM corresponds to "Explicit heap size used in
applications" value of statistical information. Use the maximum value
(ApplicationEHeapSize.HighWaterMark) from the acquired value for the statistical information used for
estimation.

(4) Procedure to confirm the statistical information
This point describes the procedure to confirm the statistical information. This point also describes the confirmation
procedures with estimation formula of statistical information in (3) as an example. For details about the output

7. JavaVM Memory Tuning

235

contents of the statistical information file, see 3.3 Functionality to output statistics file in the uCosminexus Application
Server Operation, Monitoring, and Linkage Guide.

Estimation formula

memory-size-of-the-required-Explicit-heap-area
=(value-where-HTTPSessionEMemoryBlockMaxSize.HighWaterMark-is-rounded-out-in-64-
kilobytes-unit
HTTPSessionEMemoryBlockCount.HighWaterMark)

+ ContainerEHeapSize.HighWaterMark
+ ApplicationEHeapSize.HighWaterMark
+ size-of-the-Survivor-area-of-Java-heap
2(only-when-explicit-memory-management-automatic-release-function-is-enabled)

The following points describe how to confirm the respective values:

(a) Memory size of the Explicit heap area used by HTTP session

Confirm the memory size of the Explicit heap area used by HTTP session from the
HTTPSessionEMemoryBlockMaxSize.HighWaterMark and
HTTPSessionEMemoryBlockCount.HighWaterMark values output to statistical information file of JavaVM.

The following figure shows an example to output statistical information of memory size of the Explicit heap area used
by HTTP sessions:

Figure 7‒13: Example to output statistical information of memory size of the Explicit heap area used by
HTTP sessions

The maximum value of HTTPSessionEMemoryBlockMaxSize.HighWaterMark is 410472 bytes (400.85
kilobytes) acquired at 11:00:31 in the 1. in above figure.

If you round-out this value in unit of 64 kilobytes, the value would be 448 kilobytes. The maximum value of
HTTPSessionEMemoryBlockCount.HighWaterMark is 57 acquired at 11:04:31 in the 2. in above figure.

The value acquired by multiplying these two values would be the memory size of the Explicit heap area used by
HTTP session.

(b) Memory size of the Explicit heap area used in container

Confirm the memory size of the Explicit heap area used by the container from
ContainerEHeapSize.HighWaterMark value output to statistical information file of JavaVM.

The following figure shows an example to output statistical information of memory size of the Explicit heap area used
in container:

7. JavaVM Memory Tuning

236

Figure 7‒14: Example to output statistical information of memory size of the Explicit heap area used in
container

The maximum value of ContainerEHeapSize.HighWaterMark is 6815744 bytes (6656 kilobytes) acquired
after 10:50:31 in the 1. in above figure.

This is the memory size of the Explicit heap area used in container.

(c) Memory size of the Explicit heap area used by applications and JavaVM

Confirm the memory size of the Explicit heap area used by applications and JavaVM from
ApplicationEHeapSize.HighWaterMark value output to statistical information file of JavaVM.

The following figure shows an example to output statistical information of memory size of the Explicit heap area used
by applications and JavaVM:

7. JavaVM Memory Tuning

237

Figure 7‒15: Example to output statistical information of memory size of the Explicit heap area used by
applications and JavaVM

The maximum value of ApplicationEHeapSize.HighWaterMark is 2424832 bytes (2368 kilobytes)
acquired at 10:53:31 in the 1. in above figure.

(d) Memory size of the required Explicit heap area

The following is the memory size of the required Explicit heap area acquired from the statistical information described
in (a) to (c):

448 (kilobytes) 57 + 6656 (kilobytes) + 2368 (kilobytes)=34560 (kilobytes) 34
megabytes

When the auto-release functionality of Explicit Memory Management is enabled, a value with "Survivor-area-size-of-
Java-heap 2" added becomes the final estimated size of the Explicit heap area.

7. JavaVM Memory Tuning

238

7.11 Estimating the memory size when using the explicit
management heap functionality in the application

When there is an object that causes an increase in the memory size of the Tenured area in the application created by
user, the corresponding object can be deployed in the Explicit heap. This section describes about how to estimate the
memory size when using the explicit management heap functionality in the application.

Tip
The description of this section corresponds to all the Java applications that run on JavaVM including the J2EE server.
However, when you want to use only the Explicit heap used in the J2EE server, you are not required to read this section.
However, you can see this section as and when required.

7.11.1 Determine whether to use the explicit management heap
functionality in the application

If a full garbage collection occurs frequently even when the procedures described in Java Heap Tuning and 7.10.1
How to estimate the memory size of Explicit heap (Estimating memory size used in J2EE server) are executed,
determine the use of explicit management heap functionality in the application.

Firstly, determine the object that causes the occurrence of a full garbage collection. If full garbage collection can be
controlled by deploying a specific object in the Explicit heap, then use the explicit management heap functionality.

However, you must know the life-cycle of the object to be deployed in the Explicit heap. Determine the applicability
when the timing to create the object and the timing when the object is no longer required is clear in the Java program.

To apply the explicit management heap functionality, use the automatic allocation setup file and explicit management
heap functionality API. For details about avoiding a full garbage collection using the Explicit Memory Management
functionality, see 8. Preventing the Occurrence of Full Garbage Collection using the Explicit Memory Management
functionality in the uCosminexus Application Server Expansion Guide.

7.11.2 Estimation concept
The memory size of the Explicit heap used in an application is estimated before you operate an application. Actually
the memory size is estimated by checking an event log of the explicit management heap functionality after the
application is operated. For details about how to estimate, see 7.11.3 Memory size used in the application.

When investigating the usage of the Explicit heap after the application is operated or is being developed, use the
JavaVM log file and Java APIs. For details about the procedures for investigating after application development or
operations, see 7.13 Errors that occur during the application of the Explicit Memory Management functionality and
the solutions.

Reference note
The information that you can use for estimating memory size is also output to the statistical information. For details about
the tuning of memory size using statistical information, see 7.10.5 How to estimate using statistical information.

This section also describes the correspondence between items output to statistical information and items output to thread
dump.

7.11.3 Memory size used in the application
Estimate the memory size used in the application and memory size setup in the -
XX:HitachiExplicitHeapMaxSize option before starting the operations.

The memory size is estimated by executing the test after running the application that has implemented the explicit
management heap functionality, and then confirming the output log. The estimated value is setup in the -
XX:HitachiExplicitHeapMaxSize option of execution environment used in the actual operating environment.

This subsection describes the two types of estimation methods according to the environment used for executing the
test.

7. JavaVM Memory Tuning

239

Following are the prerequisites when the test is executed using any of the method:

Prerequisites for estimation

• Set up enough size for the maximum size of the Explicit heap and then execute the test.

• In -XX:HitachiExplicitMemoryLogLevel option, do not set none.

For details about the output item of the event log used for estimation, see 5.11 Event log of the Explicit Memory
Management functionality in the uCosminexus Application Server Maintenance and Migration Guide.

(1) When you can execute the test in an environment equivalent to the actual operating
environment

When the test can be executed in an environment equivalent to the actual operating environment, the maximum value
of allocated memory size of Explicit heap output to the event log, is considered as the memory size of Explicit heap.

The procedure for checking is as follows:

1. Execute the application in usual manner in the test environment.
If a garbage collection occurs when an application is running, the event log of the explicit management heap
functionality is output.

2. Check whether the value of allocated memory size (<EH_TOTAL>) of Explicit heap is maximum among all the
records (row) of the event log output.

Consider this value as the memory size of the Explicit memory heap. However, when the auto-release functionality of
Explicit Memory Management is enabled, use the value with "Survivor-area-size 2" added, as the Explicit heap
memory size.

(2) When the test is executed in the small scale environment as compared to the actual
operating environment

When the test is executed in the small scale environment as compared to the actual operating environment, estimate
the memory size required in the actual operating environment using the following formula:

Explicit-memory-size-in-the-actual-operating-environment
= (maximum-size-of-the-Explicit-heap)/ (number-of-Explicit-memory-blocks) number-
of-Explicit-memory-blocks-in-the-actual-operating-environment + Survivor-area-size 2#

#
Add "Survivor-area-size 2" when the auto-release functionality of Explicit Memory Management is enabled.

The procedure for checking is as follows:

1. Execute the application in usual manner in the test environment.
If a garbage collection occurs when an application is running, the event log of the explicit management heap
functionality is output.

2. Check whether the value of allocated memory size (<EH_TOTAL>) of Explicit heap is maximum among all the
records (row) of the event log output. Also, check the number of valid Explicit memory blocks (Total of
<AC_NUM> and <DA_NUM>) output to the same record.

3. Divide the value of <EH_TOTAL> checked in step (2) with (<AC_NUM>+<DA_NUM>).
You can calculate a rough size for one Explicit memory block.

4. Multiply the maximum number of Explicit memory block calculated in the actual operating environment by the
value calculated in step (3).

#
This method can be applied when the size of each Explicit memory block in development environment and actual
environment is same and only the number is different.
Moreover, when Explicit heap is used for multiple purpose, you must check the Explicit heap for each purpose
(the state where explicit memory block is not used other than the purpose of estimation).

7. JavaVM Memory Tuning

240

Tip
The following table describes the correspondence of items output to thread dump and items output to statistical
information:

Table 7‒8: Correspondence of items output to thread dump and statistical information

Item output to thread dump Item output to statistical
information Output contents

<EH_TOTAL> EHeapSize Allocated memory size of Explicit
heap

<AC_NUM>+<DA_NUM> EMemoryBlockCount Number of valid Explicit memory
blocks output to same records

7. JavaVM Memory Tuning

241

7.12 Determining the usage of the Explicit heap using
the automatic allocation functionality of the Explicit
Memory Management functionality

This section describes how to determine the usage of the Explicit heap using the automatic allocation functionality of
the Explicit Memory Management functionality.

You can easily use the Explicit Memory Management functionality, if you use the automatic allocation function for
the Explicit heap area that uses the Explicit Memory Management functionality. Hitachi recommends that you use the
automatic allocation function in the following cases:

(1) When there are objects that cause increase in the Tenured area in the application
When there are objects that cause increase in the Tenured area in the application, Hitachi recommends that you use the
automatic allocation setup file and allocate the objects to Explicit heap. A good example of Java program, with which
you can determine the object allocation, is as follows:

01:package abcd.efg;
02:import java.util.HashMap;
03:// KVStorage-instance-continues-to-exist-for-a-long time
04:class KVStorage {
05: HashMap _map = new HashMap();
06:
07: public void store(MyKey k,MyData d) {
08: // ...before-processing ...
09: _map.put(k,d);
10: // ...after processing...
11: }
12:
13: public MyData load(MyKey k) {
14: // ...before-processing...
15: MyData d = map.get(k);
16: // ...after processing...
17: return d;
18: }
19:}

In this setup example, the HashMap class, where KVStorage is stored to instance field, is the object with a long
lifespan that causes increase in the memory size of the Tenured area. To change the generation destination of this
object to Explicit heap, specify the automatic allocation setup file as described in the following example:

#Described for generation position (method name or class name), class name to be
generated.
abcd.efg.KVStorage.<init>, java.util.HashMap

Alike this example, you can change the position for generating HashMap instance (_map) on 5th line in Java
program example from Java heap to Explicit heap. You can also move the MyKey instance and MyData instance
saved in _map by the store method sequentially to Explicit heap. These instances are automatically released by
JavaVM when they are not required.

(2) When the cause of increase in the used size of the Tenured area is not known
Even after implementing the Survivor area tuning, there is an increase in the used size of the Tenured area. As a result,
when the occurrence interval of full garbage collection does not fulfill the system requirements, the objects that cause
increase in the used size of the Tenured area are generated in Explicit heap. Set the automatic allocation setup file of
Explicit Memory Management to generate objects in Explicit heap.

The following point describes how to investigate the objects that cause increase in the used size of the Tenured area
and how to setup the automatic allocation setup file:

(a) Investigating increase in the used size of the Tenured area

Specify the -garbage option in the jheapprof command for the applications that are running, and execute the
unused objects statistical function in the Tenured area.

7. JavaVM Memory Tuning

242

In earlier versions than 08-70, to use the -garbage option concurrently with the automatic allocation function (-
XX:+HitachiAutoExplicitMemory) of Explicit memory block, you must start the Application Server in a
status where the -XX:-HitachiExplicitMemoryPartialTenuredAreaCollection option is specified
beforehand.

The following is an output example of unused object statistical function in the Tenured area. This function outputs the
list of class names of objects (basic objects that cause increase in the Tenured area) that cause increase in the used size
of the Tenured area to Thread dump log file:

Garbage Profile Root Object Information

*, java.util.HashMap # 35234568
*, java.util.WeakHashMap # 4321000

In this output example, it is understood that the java.util.HashMap object is of 35,234,568 bytes and the
java.util.WeakHashMap object is of 4,321,000 bytes that is the cause for increase in the used size of the
Tenured area. For details about the unused object statistical function in the Tenured area, see 9.8 Unwanted object
statistical function in the Tenured area in the uCosminexus Application Server Maintenance and Migration Guide.

(b) Description of the automatic allocation setup file

Enter some part of output examples list (last 2 lines) of the unused object statistical function in the Tenured area to
automatic allocation setup file. An example for setting automatic allocation setup file is as follows:

*, java.util.HashMap # 35234568
*, java.util.WeakHashMap # 4321000

In such cases, all the java.util.HashMap objects and java.util.WeakHashMap objects in the program are
generated in Explicit heap.

All the objects saved in above objects are moved sequentially to Explicit heap. The runtime overhead when generating
objects in Explicit heap is higher as compared to generating objects in Java heap. Therefore, when generating objects
in Explicit heap, you can reduce the runtime overhead by setting up the objects generating.

In the automatic allocation setup file, * indicates all-the-classes-running-in-JavaVM. In this setup example, the
position for generating java.util.HashMap and java.util.WeakHashMap objects in all the classes is
Explicit heap. As a result, the position for generating objects that do not cause increase in the used size of the Tenured
area is Explicit heap, and this might cause an increase in Explicit heap.

By specifying *, when the throughput of applications does not fulfill the requirements, determine the methods to sort
positions for generating objects that cause increase in the used size of the Tenured area.

When the system administrator and application developer are two different people, the request for investigations must
be sent to application developer. Even though it is difficult to perform detail investigation of the application, you can
specify positions for generating objects in 4 stages such as "All classes", "Specific packages", "Specific classes", and
"Specific methods" in the automatic allocation setup file. You can implement sorting on the range where
investigations can be performed and can improve the throughput by specifying the automatic allocation setup file.

For example, when the position for generating object is under the com.abc.defg package, by changing the
example for setting the automatic allocation setup file as follows you can sort from "All classes of all packages" to
"All classes of com.abc.defg package and sub packages":

com.abc.defg.*, java.util.HashMap # 35234568
com.abc.defg.*, java.util.WeakHashMap # 4321000

For details about how to specify the automatic allocation configuration file, see 8.13.2 Using the Explicit Memory
Management functionality with the automatic allocation configuration file in the uCosminexus Application Server
Expansion Guide.

(c) Investigating applications by the unused object statistical function in the Tenured area

To investigate the application based on contents of the automatic allocation setup file, use the unused object statistical
function in the Tenured area.

Specify the -garbage option in the jheapprof command and execute the unused object statistical function in the
Tenured area to output the list of basic objects that cause increase in the Tenured area and the statistical information of

7. JavaVM Memory Tuning

243

unused objects in the Tenured area to the extended thread dump. The following is an output example of extended
thread dump:

Garbage Profile

________________Size__Instances__Class________________
 35234568 10648 java.util.HashMap
 5678900 10668 [Ljava.util.HashMap$Entry;
 4456788 7436 java.util.HashMap$Entry
 4321000 200 java.util.WeakHashMap
 1234568 190 [Ljava.util.WeakHashMap$Entry
1456788 9524 java.lang.String
1256788 6424 com.abc.defg.MyData;
:

There are objects that are saved to java.util.HashMap or java.util.WeakHashMap and not output to list
of basic objects that cause increase in the Tenured area. These objects are output by the unused object statistical
function in the Tenured area. The number of instances of each object are also output.

You can acquire this log multiple times and provide the log as an input file for the class-wise statistical information
analysis function (jheapprofanalyzer command) to investigate the changes in each object size and time of the
number of instances.

Investigate the applications based on the above information and sort the positions for generating objects. For details
about the unused object statistical function in the Tenured area, see 9.8 Unwanted object statistical function in the
Tenured area in the uCosminexus Application Server Maintenance and Migration Guide. For details about the class-
wise statistical information analysis function, see 9.10 Class-wise statistical information analysis function in the
uCosminexus Application Server Maintenance and Migration Guide.

7. JavaVM Memory Tuning

244

7.13 Errors that occur during the application of the
Explicit Memory Management functionality and the
solutions

The following table describes the events that might occur due to the memory size of the Explicit heap, how the
Explicit Memory Management functionality is used, how the Java application is designed, and the execution
environment settings.

Table 7‒9: Events that occur during the application of the Explicit Memory Management functionality and
the reference locations for the actions

No. Event Reference location for the
action

1 The Explicit heap is full and an attempt to generate an object in the Explicit memory block
fails.

7.13.3

2 An attempt to generate an Explicit memory block fails. 7.13.4

3 Even if the Explicit Memory Management functionality is used, a full garbage collection
occurs frequently.

7.13.5

4 The automatic release processing of the Explicit memory block takes a long time. 7.13.6

You can check whether these events are occurring from the event log of the Explicit Memory Management
functionality. For details on the verification methods, see 7.13.1 Investigating the usage (snapshot) of Explicit heap at
a certain point, and 7.13.2 Investigating the transition of usage status. For details on the event log contents of the
Explicit Memory Management functionality, see 5.11 Event log of the Explicit Memory Management functionality in
the uCosminexus Application Server Maintenance and Migration Guide. Note that for ready visibility, \ has been
entered at the linefeed locations in the examples of output described in this section. There is no linefeed in the actually
output content.

7.13.1 Investigating the usage (snapshot) of Explicit heap at a certain
point

The method of investigating the usage (snapshot) of Explicit heap at a certain point includes the method for checking
the thread dump and the method for acquiring information using Java API.

• How to check thread dump
You can execute the cjdumpsv command to output a thread dump at any given time. In the thread dump, usage
of Explicit heap and each memory block is output.
An output example is as follows:

Explicit Heap Status

 max 65536K, total 21376K, used 20480K, garbage 1234K (31.2% used/max, 95.8% used/
total, 6.0% garbage/used), 1 spaces exist
 Explicit Memories(0x12345678)
 "EJBMgrData" eid=1(0x02f25610)/R, total 21376K, used 20480K, garbage 1234K (95.8%
used/total, 6.0% garbage/used, 0 blocks) Enable

The part marked in bold indicates the usage of Explicit heap and the individual Explicit memory block. In this
example, the maximum size of Explicit heap is 65,536 Kilobytes and the allocated Explicit heap size is 21,376
Kilobytes. Moreover, the memory allocated size of Explicit memory block called EJBMgrData is 21,376
Kilobytes and the used size is 20,480 Kilobytes.

• How to acquire the information with Java API
You can acquire the usage of the Explicit heap and the Explicit memory block using the Java API of JavaVM. By
implementing the application using the following API, you can acquire the information at any given time of
processing.

7. JavaVM Memory Tuning

245

Method used to acquire the use status of Explicit heap:
JP.co.Hitachi.soft.jvm.MemoryArea.ExplicitMemory.getMemoryUsage()

Method used to acquire the use status of Explicit memory block:
JP.co.Hitachi.soft.jvm.MemoryArea.ExplicitMemory.freeMemory()
JP.co.Hitachi.soft.jvm.MemoryArea.ExplicitMemory.totalMemory()
JP.co.Hitachi.soft.jvm.MemoryArea.ExplicitMemory.usedMemory()

7.13.2 Investigating the transition of usage status
The method for investigating the transition of use status of Explicit heap includes the method for investigating the
event log of the explicit management heap functionality and method for acquiring the information using JavaAPI. For
details about how to use the Java API, see 7.13.1 Investigating the usage (snapshot) of Explicit heap at a certain point.

This point describes how to investigate using the event log of explicit management heap functionality.

(1) Transition of usage status of Explicit heap
Set normal in the -XX:HitachiExplicitMemoryLogLevel option of JavaVM. As a result, the use status of
Explicit heap is output at the following timings:

• When garbage collection occurs (regular)

• During the explicit release processing of the Explicit memory block

• During the automatic release processing of the Explicit memory block

Moreover, when verbose is specified in the -XX:HitachiExplicitMemoryLogLevel option of JavaVM,
the use status of the Explicit heap will be output at the following timings in addition to the output timing in case of
normal.

• When object of Explicit memory block is created by the methods such as ExplicitMemory.newInstance
method

An output example is as follows:

[ENS]<Thu Oct 21 14:55:50 2007>[EH: 12672K->12800K(12800K/65536K)][E/F/D: 200/0/0]
[cause:GC][CF: 0]
[ENS]<Thu Oct 21 14:55:50 2007>[EH: 12800K->12800K(12800K/65536K), 0.1124626 secs]
[E/F/D: 200/0/0]\
[DefNew::Eden: 0K->0K(243600K)][DefNew::Survivor: 0K->0K(17400K)][Tenured: 103400K-
>103400K(556800K)]\
[target:584K/0K/584K][cause:Migrate]

The part marked with bold starting with EH indicates the usage of Explicit heap. Among the contents output to the
log, the row indicating the usage of Explicit heap must include the information corresponding to the bold part. You
can check the transition of the use status by coding and plotting this value in graph.

This example shows that the line beginning with the first [ENS] is the log that is output when a copy garbage
collection (GC) occurs, as indicated in the part that begins with cause:, and the line beginning with the second
[ENS] is the log that is output during the automatic release processing of the Explicit memory block (Migrate).
The log in the first line indicates that the used size of the Explicit heap before the copy garbage collection occurs is
12,672 KB, and the used size after the copy garbage collection occurs is 12,800 KB. The log in the second line
indicates that the used size of the Explicit heap is 12,800 KB and that the automatic release processing of the Explicit
memory block took 0.1124626 seconds.

Note that the log indicating the use status starts with ENS or EVS. When the event log is filtered in this character
string, it becomes easier to check the use status.

(2) Transition of usage status for each Explicit memory block
Specify verbose in the -XX:HitachiExplicitMemoryLogLevel option of JavaVM. As a result, the use
status of Explicit memory block with the changed size will be output at the following timings:

7. JavaVM Memory Tuning

246

• When migrating the object to the Explicit memory block

• When creating the object of the Explicit memory block

An output example is as follows:

[ENS]Thu Oct 21 14:55:50 2007[EH: 11422K->12800K(12800K/65536K)][E/F/D: 200/0/0]
[cause:GC][CF: 0]
[EVS]["REM2" eid=2/R: 0K->88K(128K)]["REM3" eid=3/R: 30K->230K(256K)]["REM6" eid=6/R:
30K->200K(256K)]\
["Session1" eid=8/R: 30K->250K(256K)]["Session2" eid=10/R: 30K->250K(256K)]
[EVS]["Session3" eid=12/R: 30K->510K(512K)]

The part marked in bold indicates the usage of one Explicit memory block called "REM2".

Moreover, when verbose is specified in the -XX:HitachiExplicitMemoryLogLevel option, if the Explicit
memory block is released, the information of the released Explicit memory block is output. An output example is as
follows:

[ENS]Tue Jul 24 01:23:51 2007[EH: 12800K->11776K(11776K/65536K), 0.1129602 secs]
[E/F/D: 523/0/0]\
[DefNew::Eden: 0K->0K(243600K)][DefNew::Survivor: 12K->0K(17400K)][Tenured: 103400K-
>103400K(556800K)][cause:Reclaim]
[EVS]["REM2" eid=2/R: 320K]["BEM3" eid=5/B: 320K]["BEM1" eid=7/B: 384K]

The part marked in bold indicates the information of the released Explicit memory block called "REM2". "302" is the
released memory size (Size of the allocated Explicit memory block).

You can check the transition of the use status for each Explicit memory block by coding and plotting these values in
the graph. Note that the size of individual Explicit memory block increases uniformly until released.

7.13.3 Checking and measures when there is an overflow from the
Explicit heap

This point describes the measures to be taken and how to check when there is overflow of Explicit heap.

An overflow of Explicit heap indicates the following state:

• State where Explicit heap was used up to the maximum size

• State where OS failed to allocate memory when the Explicit memory block is extended

When there is an overflow of the Explicit heap, the sub-state of Explicit memory block, whose area is tried to be
extended, changes from Enable to Disable. You cannot deploy the object in Explicit memory block which is in
the Disable state.

You can check whether there is an overflow of Explicit heap by checking the event log of the explicit management
heap functionality or by checking the contents of thread dump. Moreover, you can also check through the information
acquired by JavaAPI.

When there is an overflow of Explicit heap, take the following measures:

Measures to be taken when Explicit heap overflows

• Increase the maximum size of Explicit heap.
Change the specifications of the -XX:HitachiExplicitHeapMaxSize option.

• If there is an overflow of Explicit heap when the maximum size of Explicit heap is not achieved, increase the
memory size that can be allocated from OS
Increase the memory size that can be used by the Application Server.

• Eliminate the cause responsible for consuming large amount of Explicit heap.

These points describe about how to check an overflow from Explicit heap.

7. JavaVM Memory Tuning

247

(1) Investigating the event log of the Explicit Memory Management functionality
To investigate with the event log of explicit management heap functionality, you must specify normal in the -
XX:HitachiExplicitMemoryLogLevel option of JavaVM in advance. As a result, whenever the garbage
collection occurs, the use status of Explicit block will be output to the event log of the explicit management heap
functionality.

An output example is as follows:

[ENS]Thu Oct 21 14:55:50 2007[EH: 12672K->12800K(12800K/65536K)][E/F/D: 200/0/0]
[cause:GC][CF: 0]

The part marked in bold indicates number of Explicit memory blocks. E and D indicate Enable and Disable
which are the sub-states of Explicit memory block. When the Explicit memory block is in the Disable state, there is
an overflow of Explicit heap. In this example, it is concluded that there are 200 Explicit memory blocks in Enable
state and nil in Disable state. Furthermore, when the Explicit memory block is Disable, check for relation with
the Explicit heap maximum size. When there is extra Explicit heap maximum size, it can be concluded that the OS
fails to allocate the memory.

Moreover, when verbose is specified in the -XX:HitachiExplicitMemoryLogLevel option of JavaVM,
the factors responsible for changing the sub-state of Explicit memory block to Disable state, is also output.

An output example is as follows:

[EVO]Tue Jul 24 01:23:51 2007[alloc failed(Disable)][EH: 32760K(0K)/32768K/65536K]
[E/F/D: 321/0/1][cause:GC]\
["BasicExplicitMemory-3" eid=3/B: 128K(0K)/128K][Thread: 0x00035a60]
[EVO][Thread: 0x00035a60] at ExplicitMemory.newInstance0(Native Method)
[EVO][Thread: 0x00035a60] at BasicExplicitMemory.newInstance(Unknown Source)
[EVO][Thread: 0x00035a60] at AllocTest.test(AllocTest.java:64)
[EVO][Thread: 0x00035a60] at java.lang.Thread.run(Thread.java:2312)

Above is the example showing the overflow of Explicit heap.

Among the part marked in bold, alloc failed(Disable) indicates a factor responsible for changing the sub-
state of Explicit memory block to Disable. "BasicExplicitMemory-3" eid=3/B: 128K(0K)/128K
indicates the information of Explicit memory block that is in Disable state. Moreover, the rows starting with
[EVO][Thread: 0x00035a60] indicates the stack trace when the event has occurred. However, when there is
an overflow of Explicit heap due to the transition of object by garbage collection, the stack trace is not output.

(2) Investigating from the log file output by the thread dump
You can output the sub-state of each Explicit memory block by the output of the thread dump using the cjdumpsv
command.

The output example is as follows:

Explicit Heap Status

 max 65536K, total 21888K, used 20992K, garbage 1288K (32.0% used/max, 95.9% used/
total, 6.1% garbage/used), 2 spaces exist

 Explicit Memories(0x12345678)

 "EJBMgrData" eid=1(0x02f25610)/R, total 21376K, used 20480K, garbage 1234K (95.8%
used/total, 6.0% garbage/used, 0 blocks) Enable

 "ExplicitMemory-4" eid=4(0x02f45800)/B, total 512K, used 512K, garbage 54K (100.0%
used/total, 10.5% garbage/used, 0 blocks) Disable

The part in bold indicates the sub-state of respective Explicit memory block.

(3) Investigation from the API of Java
You can investigate the sub-state of the Explicit memory block using the following methods:

• JP.co.Hitachi.soft.jvm.MemoryArea.ExplicitMemory.isActive()

7. JavaVM Memory Tuning

248

• JP.co.Hitachi.soft.jvm.MemoryArea.ExplicitMemory.isReclaimed()

If the return value of both methods is false, the sub-state of the Explicit memory block can be determined as
Disable.

7.13.4 Checking and measures when the initialization of the Explicit
memory block fails

This point describes about the measures to be taken and how to check when the initialization of Explicit memory
block fails.

When number of Explicit memory blocks reaches the maximum limit, the Explicit memory block cannot be initialized
beyond that limit.

In such cases, reduce the number of Explicit memory blocks.

Here, how to check whether the initialization of Explicit memory block has failed, is described.

(1) Investigating from the event log of the Explicit Memory Management functionality
To investigate with the event log of explicit management functionality, you must specify normal in the -
XX:HitachiExplicitMemoryLogLevel option of JavaVM in advance. As a result, whenever the garbage
collection occurs, the frequency at which the initialization of Explicit memory block fails, will be output to the explicit
management heap functionality event log.

An output example is as follows:

[ENS]Thu Oct 21 14:55:50 2007[EH: 12672K->12800K(12800K/65536K)][E/F/D: 200/0/0]
[cause:GC][CF: 0]

The part in bold indicates the number of times the initialization of Explicit memory block failed between the last and
the recent output. In this example, frequency is "0". When there is no failure in the initialization, it is concluded that
there is no problem.

Moreover, when verbose is specified in the -XX:HitachiExplicitMemoryLogLevel option of JavaVM,
the information about event of failure in the initialization of Explicit memory block will be output.

An output example is as follows:

[EVO]Tue Jul 24 01:23:51 2007[Creation failed][EH: 32760K(0K)/32768K/65536K][E/F/D:
65535/0/0][Thread: 0x00035a60]
[EVO][Thread: 0x00035a60] at ExplicitMemory.registerExplicitMemory(Native Method)
[EVO][Thread: 0x00035a60] at BasicExplicitMemory.<init>(Unknown Source)
[EVO][Thread: 0x00035a60] at AllocTest.test(AllocTest.java:64)
[EVO][Thread: 0x00035a60] at java.lang.Thread.run(Thread.java:2312)

From the part marked in bold, you can confirm that there is a failure in the initialization of Explicit memory block.
Moreover, the rows starting with [EVO][Thread: 0x00035a60] indicates the stack trace when event occurs.

Also, when debug is specified in the -XX:HitachiExplicitMemoryLogLevel option of JavaVM, the
detailed information about the initialization events of the Explicit memory block other than the event of failure in the
initialization will be output. The initialization fails when the number of Explicit memory blocks exceed the constant
number. Therefore, the information of initialization event prior to failure in initialization is useful for investigations.

An output example is as follows:

[EVO]Tue Jul 24 01:23:51 2007[Created]["BasicExplicitMemory-2" eid=2(0x1234568)/B]
[Thread: 0x00035a60]
[EDO][Thread: 0x00035a60] at ExplicitMemory.registerExplicitMemory(Native Method)
[EDO][Thread: 0x00035a60] at BasicExplicitMemory.<init>(Unknown Source)
[EDO][Thread: 0x00035a60] at AllocTest.test(AllocTest.java:64)
[EVO][Thread: 0x00035a60] at java.lang.Thread.run(Thread.java:2312)

The part marked in bold confirms that there is an Explicit memory block initialization event. Moreover, the rows
starting with [EDO][Thread: 0x00035a60] indicates the stack trace when the event has occurred.

7. JavaVM Memory Tuning

249

(2) Investigating from the log file output by the thread dump
Though you cannot check the direct cause responsible for failure in initialization of the Explicit memory block from
the information output by thread dump, you can find out the number of Explicit memory blocks.

An output example is as follows:

Explicit Heap Status

 max 65536K, total 21888K, used 20992K, garbage 1288K (32.0% used/max, 95.9% used/
total, 6.1% garbage/used), 2 spaces exist

 Explicit Memories(0x12345678)

 "EJBMgrData" eid=1(0x02f25610)/R, total 21376K, used 20480K, garbage 1234K (95.8%
used/total, 6.0% garbage/used, 0 blocks) Enable

 "ExplicitMemory-4" eid=4(0x02f45800)/B, total 512K, used 512K, garbage 54K (100.0%
used/total, 10.5% garbage/used, 0 blocks) Disable

The part marked in bold indicates the number of Explicit memory blocks.

(3) Investigating from the API of Java
You can investigate the number of Explicit memory blocks using the following methods:

• JP.co.Hitachi.soft.jvm.ExplicitMemory.countExplicitMemories()

However, you cannot check the direct cause responsible for failure in initialization of the Explicit memory block in
this API.

7.13.5 Checks and measures when an object is transited to the Java
heap during the explicit release processing of the Explicit memory
block

When there is a reference available for the objects within the Explicit heap that is to be released during the explicit
release processing of the Explicit memory block, the referenced object and the objects referenced either directly or
indirectly from that object, are transited to the Java heap. The object is transited to the Tenured area on priority.
Therefore, when the object is transited frequently, the used size of the Tenured area increases resulting in full garbage
collection.

You can investigate whether the object is transited to the Java heap through the extended verbosegc information of
the JavaVM log file or the explicit management heap event log.

(1) Checking by using the extended verbosegc information
When the explicit management heap functionality is not used, the used size of the Tenured area increases only when
the copy garbage collection occurs. Therefore, the used size of the Tenured area after the Nth copy collection garbage
completion matches the used size of the Tenured area before the N+1th copy garbage collection starts.

As a result, when the objects are transited from Explicit heap to Java heap, the used size of the Tenured area increases
during the Explicit heap release. From this difference, it is concluded that the objects start transiting during the explicit
release processing of the Explicit memory block.

You can calculate the size of the object transited to the Java heap during the explicit release processing of the Explicit
memory block after completion of the Nth copy garbage collection by the following formula:

Size-of-object-transited-from-Explicit-heap-to-Java-heap
=tenured-area-used-size-before-N + 1th-Copy-GC
 -Tenured-area-used-size-after-Nth-Copy-GC

7. JavaVM Memory Tuning

250

(2) Checking by using the event log of the explicit management heap
When none is not specified in the -XX:HitachiExplicitMemoryLogLevel option of JavaVM, a log related
to the explicit release processing of the Explicit memory block is output. In this log, you can directly check the
increase in the size of the used memory of the Tenured area during the explicit release processing of the Explicit
memory block.

An output example is as follows:

[ENS]Tue Jul 24 01:23:51 2007[EH: 12800K->11776K(11776K/65536K), 0.1129602 secs]
[E/F/D: 523/0/0]\
[DefNew::Eden: 0K->0K(243600K)][DefNew::Survivor: 0K->0K(17400K)][Tenured: 103400K-
>103464K(556800K)][cause:Reclaim]

Among the part marked in bold, [cause:Reclaim] indicates the information output during the explicit release
processing of the Explicit memory block. Furthermore, [DefNew::Eden: 0K->0K(243600K)]
[DefNew::Survivor: 0K->0K(17400K)][Tenured: 103400K->103464K(556800K)] indicates the
change in the Java heap during the explicit release processing of the Explicit memory block. In this example, the
memory size of the Tenured area is increased from 103,400 Kilobytes to 103,464 Kilobytes. That is, the memory size
is increased by 64 Kilobytes. From this, it is concluded that an object of 64 Kilobytes is transited from the Java heap
during the explicit release processing of the Explicit memory block.

Moreover, when verbose is specified in the -XX:HitachiExplicitMemoryLogLevel option of JavaVM,
information related to released Explicit memory block is also output. As a result, you can check by which Explicit
memory block release the used size of the Tenured area has increased.

An output example is as follows:

[ENS]Tue Jul 24 01:23:51 2007[EH: 12800K->11776K(11776K/65536K), 0.1129602 secs][E/F/D:
523/0/0]\
[DefNew::Eden: 0K->0K(243600K)][DefNew::Survivor: 0K->0K(17400K)][Tenured: 103400K-
>103464K(556800K)][cause:Reclaim]
[EVS]["REM2" eid=2/R: 320K]["BEM3" eid=5/B: 320K]["BEM1" eid=7/B: 384K]

The part marked in bold indicates the released Explicit memory block. From the output contents, it is understood that
the object of 64 Kilobytes transited to Java heap, is transited from the Explicit memory block of either (REM2)
(BEM3) (BEM1).

Also, when debug is specified in the -XX:HitachiExplicitMemoryLogLevel option of JavaVM, you can
check the object referenced as the object within the Explicit heap to be released during the explicit release processing.

An output example is as follows:

[EDO][eid=3: Reference to ClassZ(0x1234680), total 64K]
[EDO] ClassU(0x1233468)(Tenured)

Following can be understood from [eid=3: Reference to ClassZ(0x1234680), total 64K]:

• An object transited to Java heap, is the instance of "ClassZ"

• The total size of the object transited to Java heap is 64 Kilobytes by referencing to "ClassZ" instance.

Moreover, from (ClassU(0x1233468)(Tenured)), it can be concluded that the object that refers to the instance of
"Class Z" is the instance of "Class U".

Based on this information, modify the Java program in such a way so that there is no reference to the object in the
Explicit memory block during the explicit release processing of that Explicit memory block.

7.13.6 Checks and measures when the automatic release processing of
the Explicit memory block takes a long time

This subsection describes the checks and measures when the automatic release processing of the Explicit memory
block takes a long time.

7. JavaVM Memory Tuning

251

The automatic release processing of the Explicit memory block occurs concurrently with the garbage collection, and
the processing of the J2EE server stops during the automatic release processing. Therefore, if the automatic release
processing takes a long time, problems might occur in the system.

If an Explicit memory block with a large size (called large block hereafter) is generated, the automatic release
processing takes a long time. A large block might be generated if the objects that are not called back even with a full
garbage collection, such as the objects that are used until an application stops, are allocated to the Explicit heap.
Therefore, you must prevent the generation of a large block by allocating the objects that must not be allocated to the
Explicit heap, to the Java heap. For details on the event in which a large block is generated and the automatic release
processing takes time, see 8.10.2 Mechanism for reducing the time taken for the automatic release processing, and
Appendix B.1 Effect on the automatic release processing of the Explicit memory block in the uCosminexus Application
Server Expansion Guide.

From the content of the thread dump, you can check whether a large block is being generated.

If a large block is generated, follow the below procedure to specify settings to allocate the objects responsible for the
large block to the Java heap.

Action

1. Applying the functionality for controlling the transfer of objects to the Explicit memory block

2. Applying the functionality for specifying the classes to be excluded from the Explicit Memory Management
functionality

3. Identifying the objects responsible for a large block and preventing the transfer of those objects to the Explicit
heap

4. Re-tuning the Java heap area and Explicit heap area

This subsection describes how to check whether a large block is being generated and the action to be taken.

(1) Checking whether a large block is being generated
Execute the eheapprof command to check the Explicit heap information output to the thread dump.

An example of output is as follows:

 "NULL" eid=1(0x1000000000123456)/B, total 112K, used 55K, garbage 0K (49.2% used/total,
0.0% garbage/used, 0 blocks) Enable
 "NULL" eid=2(0x1000000000223456)/A, total 153744K, used 144766K, garbage 0K (94.2% used/
total, 0.0% garbage/used, 0 blocks) Enable
 "ReferenceExplicitMemory-2" eid=3(0x1000000000323456)/R, total 112K, used 55K, garbage 0K
(49.3% used/total, 0.0% garbage/used, 0 blocks) Enable

Note: NULL in the name of the Explicit memory block indicates that the automatic release processing was implemented once, for this
Explicit memory block.

The total part in bold indicates the allocated memory size of the Explicit heap.

In this example, the memory size described in total for each Explicit memory block indicates that the Explicit
memory block eid=2 is 153,744 KB, and is extremely large compared to the 112-KB Explicit memory blocks
eid=1 and eid=3. This indicates that a large block has been generated and that this block is the Explicit memory
block eid=2.

(2) Applying the functionality for controlling the transfer of objects to the Explicit memory
block

Check the transition in the usage status of the Explicit heap using the event log of the Explicit Memory Management
functionality. For details on how to check the transition in the usage status of the Explicit heap, see 7.13.2
Investigating the transition in the usage status.

An example of output is as follows:

[ENS]<Thu Oct 21 14:55:50 2007>[EH: 12672K->172032K(172032K/196608K)][E/F/D: 200/0/0]
[cause:Full GC][CF: 0]
[ENS]<Thu Oct 21 14:55:50 2007>[EH: 172032K->172032K(172032K/196608K), 0.1124626 secs]
[E/F/D: 200/0/0]\
[DefNew::Eden: 0K->0K(243600K)][DefNew::Survivor: 0K->0K(17400K)][Tenured: 103400K-

7. JavaVM Memory Tuning

252

>103400K(556800K)]\
[target:584K/0K/584K][cause:Migrate]

The part beginning with EH: in bold indicates the usage status of the Explicit heap.

In this example, the first line is the log that is output when a full garbage collection (Full GC) occurs, as indicated in
the part that begins with cause:, and the second line immediately after this is the log that is output during the
automatic release processing (Migrate) of the Explicit memory block. This indicates that the automatic release
processing occurred immediately after the full garbage collection. The part beginning with EH: in the log on the first
line indicates that the used size of the Explicit heap before the full garbage collection occurred is 12,672 KB, the used
size after the full garbage collection occurs is 172,032 KB, and that the used size of the Explicit heap has increased
considerably. Note that if such an event (great increase in the used size of the Explicit heap) does not occur, proceed
to step (3).

If the used size of the Explicit heap increases considerably during a full garbage collection, as described in this
example, specify 1 in the -XX:ExplicitMemoryFullGCPolicy option, and apply the functionality for
controlling the transfer of objects to the Explicit memory block. If you apply this functionality, the objects based on a
reference relationship are no longer transferred to the Explicit memory block during a full garbage collection. For
details on the functionality for controlling the transfer of objects to the Explicit memory block, see 8.10 Reducing the
time taken for the automatic release processing of the Explicit memory block in the uCosminexus Application Server
Expansion Guide.

Proceed to step (5) if you can prevent the generation of a large block by applying this functionality, or proceed to step
(3) if a large block is still being generated.

(3) Applying the functionality for specifying the classes to be excluded from the Explicit
Memory Management functionality

If the following events occur, specify the -XX:+ExplicitMemoryUseExcludeClass option to apply the
functionality for specifying the classes to be excluded from the Explicit Memory Management functionality.

• The used size of the Explicit heap does not seem to have increased considerably in the usage status of the Explicit
heap for a full garbage collection implemented just before the automatic release processing

• A large block is being generated even after applying the functionality for controlling the transfer of objects to the
Explicit memory block (step (2) is implemented)

If you apply the functionality for specifying the classes to be excluded from the Explicit Memory Management
functionality, the objects of a specific class are no longer transferred to the Explicit heap. The objects of a specific
class indicate the objects of the classes coded in the exclusion configuration file for the Explicit Memory Management
functionality provided with the system (sysexmemexcludeclass.cfg). For details on the functionality for
specifying the classes to be excluded from the Explicit Memory Management functionality, see 8.10 Reducing the
time taken for the automatic release processing of the Explicit memory block in the uCosminexus Application Server
Expansion Guide.

Proceed to step (5) if you can prevent the generation of a large block by applying this functionality, or proceed to step
(4) if a large block is still being generated.

(4) Identifying the objects responsible for a large block and preventing the transfer of the
objects to the Explicit heap

If a large block is being generated even after applying the functionality for specifying the classes to be excluded from
the Explicit Memory Management functionality in step (3), the large block might be generated by the transfer of the
following objects to the Explicit heap. From among these objects, the objects that continue to survive are not called
back with the automatic release processing of the Explicit memory block.

• Objects of the classes created by the user in the Java application

• Objects created automatically by the framework being used

Therefore, the Explicit Memory Management functionality is not effective even if the objects that are not called back
within a fixed period are allocated to the Explicit heap, so allocating the objects to the Java heap (Tenured area) is
more appropriate. From among the objects, identify the objects responsible for a large block, and make sure these
objects do not move to the Explicit heap.

7. JavaVM Memory Tuning

253

To identify the objects responsible for a large block, check the object release ratio. The object release ratio is the
percentage of objects released with the automatic release processing of the Explicit memory block. Execute the
eheapprof command by specifying the -freeratio option to output the object release ratio in the Explicit heap
information output in the thread dump.

An example of output is as follows:

 "NULL" eid=1(0x1000000000123456)/B, total 112K, used 55K, garbage 0K (49.2% used/total,
0.0% garbage/used, 0 blocks) Enable
 deployed objects
 ________________Size__Instances__FreeRatio__Class________________
 49256 10 0 [B
 3680 4 20 package1.session.StandardManager
 52936 14 total

 "NULL" eid=2(0x1000000000223456)/A, total 153744K, used 144766K, garbage 0K (94.2% used/
total, 0.0% garbage/used, 0 blocks) Enable
 deployed objects
 ________________Size__Instances__FreeRatio__Class________________
 77862918 433523 10 [C
 52622946 441714 10 java.lang.String
 12838192 39462 35 [B
 3680 4 20 package1.session.StandardManager
 104 4 0 framework.ut.impl.performList
 143327840 914707 total

 "ReferenceExplicitMemory-2" eid=3(0x1000000000323456)/R, total 112K, used 55K, garbage 0K
(49.3% used/total, 0.0% garbage/used, 0 blocks) Enable
 deployed objects
 ________________Size__Instances__FreeRatio__Class________________
 49256 4 - [B
 3416 10 - package3.ajp.RequestHandler
 64 2 - java.lang.StringBuffer
 64 1 - java.net.SocketInputStream
 48 1 - [I
 24 1 - [C
 52872 19 total

#1: NULL in the name of the Explicit memory block indicates that the automatic release processing was implemented once for this
Explicit memory block.

#2: [B in the class name indicates the array type of the Byte class, [C indicates the array type of the Char class, and [I indicates
the array type of the Integer class.

The total part in bold indicates the allocated memory size of the Explicit heap, and the FreeRatio part indicates
the object release ratio.

In this example, there are three Explicit memory blocks, eid=1, eid=2, and eid=3. The object release ratio
indicated in FreeRatio of each Explicit memory block shows that the object release ratio of the Explicit memory
block eid=3 is "-", and that the automatic release processing has not been executed.

First, see the memory size indicated in total for each Explicit memory block. The Explicit memory block eid=2 is
153,744 KB, and is extremely large compared to the 112-KB Explicit memory blocks eid=1 and eid=3. This
indicates that the Explicit memory block eid=2 is a large block.

Next, see the object release ratio and the Explicit memory block size for each class of the objects in the large block
(eid=2). In this example, there are five objects and the classes of these objects also include the classes provided in
Java SE ([B, [C, and java.lang.String). In many cases, the classes provided in Java SE are transferred to the
Explicit memory block referenced from the objects responsible for the large block. Therefore, if you specify settings
so that the objects responsible for the large block are not transferred to the Explicit memory block, you can also
prevent the transfer of the objects of the classes provided in Java SE. Also, if you set the classes provided in Java SE
as the target of the functionality for specifying the classes to be excluded from the Explicit Memory Management
functionality, the extent of impact is wide and also results in restrictions on the objects allocated to an ideal Explicit
memory block. Therefore, do not set the classes provided in Java SE as the target of the functionality for specifying
the classes to be excluded from the Explicit Memory Management functionality (however, excluding the cases in
which all the objects of the classes provided in Java SE might be allocated to the Java heap) .

The classes other than those provided with Java SE include package1.session.StandardManager and
framework.ut.impl.performList. The object of package1.session.StandardManager is also used
in the Explicit memory block eid=1, but eid=1 is not a large block. This indicates that the objects of this class are
not responsible for the large block. From this, you can identify that the object of
framework.ut.impl.performList is responsible for the large block.

7. JavaVM Memory Tuning

254

After identifying the object responsible for the large block, code the class of that object in the configuration file used
with the functionality for specifying the classes to be excluded from the Explicit Memory Management functionality.
For details on how to specify the code in the configuration file, see 8.13.3 Controlling the application target of the
Explicit Memory Management functionality using the configuration file in the uCosminexus Application Server
Expansion Guide.

(5) Re-tuning the Java heap area and Explicit heap area
If you apply the object transfer control functionality and the functionality for specifying the classes to be excluded
from the Explicit Memory Management functionality, the allocated area of the object changes and the memory size of
the Java heap and Explicit heap also increases and decreases. Therefore, see the methods described at the following
locations, and then re-tune the memory size for each area:

• 7.3 Java heap tuning

• 7.4 Estimating the memory size of the Tenured area in Java heap

• 7.5 Estimating the memory size of the New area in Java heap

• 7.6 Determining the handling of objects that exist for a fixed time period in Java heap

• 7.7 Deciding the maximum size or the initial size of Java heap

• 7.8 Estimating the memory size of the Permanent area in Java heap

• 7.9 How to analyze the factors of a full garbage collection using the extended verbosegc information

• 7.10 Explicit heap tuning

• 7.11 Estimating the memory size when using the Explicit Memory Management functionality in the application

• 7.12 Determining the usage of the Explicit heap using the automatic allocation functionality of the Explicit
Memory Management functionality

7. JavaVM Memory Tuning

255

8 Performance Tuning (J2EE
Application Execution Platform)
This chapter describes how to tune the performance of a system for executing J2EE
applications.

You can maximize the performance of the system by optimizing the operating
environment through performance tuning.

For determining the performance tuning of a batch application execution platform,
see 9. Performance Tuning (Batch Application Execution Platform).

257

8.1 Points to be considered for performance tuning
This section explains the points to be considered for performance tuning of the J2EE application execution platform.

8.1.1 Viewpoints for performance tuning
Tune the performance of the J2EE application execution platform with the following viewpoints:

• Optimizing the number of concurrent executions

• Optimizing the method of invoking the Enterprise Bean

• Optimizing the method of accessing the database

• Setting the timeout

• Optimizing the operation of the Web application

• Optimizing the operation of CTM

• Tuning of other items

These points are explained below:

(1) Optimizing the number of concurrent executions
The objective of optimizing the number of concurrent executions is to enhance the throughput of the system by multi-
processing in order to maximize the CPU performance. In the following cases, however, only multi-processing may
not enhance throughput; sometimes the throughput may even deteriorate:

• Bottlenecks in I/O processing and lock processing

• Maximum throughput has already been reached

• Load exceeds the multiplicity when the CPU usage is already full

• Pending queue size is inappropriate

• Settings for maximum number of hierarchical executions is inappropriate

Performance tuning aims at optimizing the number of concurrent executions through proper tuning for the above
points.

(2) Optimizing the method of invoking the Enterprise Bean
The objective of optimizing the method of invoking the Enterprise Bean is to restrict unnecessary network access by
using the local invocation functionality of the local interface and the remote interface when invoking the components
in the same J2EE application and the same J2EE server.

You can restrict the unnecessary network access caused by RMI-IIOP communication, by using the following
functionality:

• Use of local interface

• Use of local invocation functionality of the remote interface

In addition, you can further enhance the processing performance by using pass by reference method of passing the
argument and return value. Performance tuning aims at enhancing the processing performance by effectively using
these functions depending on the features of the application and the system.

(3) Optimizing the database access method
The purpose of optimizing the database access method is to reduce the overheads during database access by
generating in advance the connections and statements that are likely to need more time for processing.

Performance tuning enhances throughput by optimizing the database access by using the following functionality
effectively:

8. Performance Tuning (J2EE Application Execution Platform)

258

• Connection pooling

• Statement pooling (pooling of PreparedStatement and CallableStatement)

(4) Setting the timeout
The purpose of setting the timeout is to detect a failure that may occur in the system and release the resources
whenever required to avoid a delay in responding to the requests.

There are following types of timeout settings:

• Timeout of Web front-end system

• Timeout of back-end system

• Timeout of transaction

• Timeout of database

(5) Optimizing the Web application operations
The purpose of optimizing the Web application operations is to increase the processing speed by restricting
unnecessary network access that results from the use of cache and determination of delivery method of contents, and
enhance the system throughput with the help of load balancing.

Note that the items that can be tuned differ depending on whether you are integrating with a Web server in which a
redirector module is embedded, or whether you are using an in-process HTTP server.

You can execute the following processes for connecting to the Web server:

• Dividing processes in the Web application and static contents

• Caching static contents

• Dividing requests according to session information

You can execute the following processes when you use an in-process HTTP server:

• Separating the deployment of static contents from Web applications

• Caching static contents

(6) Optimizing the operation of CTM
The purpose of optimizing the operation of CTM is to improve the performance of the system by reducing the
communication overhead through optimization of the communication interval between the processes used in CTM,
and by promptly detecting and taking action when a trouble occurs. Moreover, by prioritizing the processing of
requests by CTM, you can tune to execute quick processing of the important requests.

(7) Tuning other items
In addition to those explained above in points (1) to (6), application server has other items that can be tuned. These
can be tuned whenever required.

8.1.2 Tuning procedure
Performance tuning is a task that involves detecting the best settings for system performance. In an environment that
is already built, revising parameters, identifying and removing bottlenecks during actual processing and mock loading
can continuously enhance the performance.

The procedure of tuning a number of concurrent executions is shown below as an example of performance tuning
procedure:

8. Performance Tuning (J2EE Application Execution Platform)

259

Figure 8‒1: Procedure of performance tuning (tuning the number of concurrent executions)

For tuning, first of all, you need to decide the target value. In the above example, it could be any value such as the
CPU usage.

Next, measure the throughput where the default value is set in each parameter, then while applying the simulated load,
revise each parameter and search for the optimum value that is closest to the target value. Using a special tool for this
purpose can simulate load-increase.

You can use tools such as the monitoring tool of the OS for estimating the CPU usage for the purpose of tuning. You
can use tools such as the load generation tool for estimating the throughput. Moreover, you can use the statistics
collection functionality to collect statistic information of Application Server such as the number of statistic threads.
For details about confirmation methods, see 3. Monitoring of the Statistic Information (Statistics Collection
Functionality) in the uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

The performance tuning is complete when throughput reaches a value specified as the target value. If the CPU usage is
slightly less than 100%, bottlenecks are likely in the I/O and exclusion processing of the system. Identify and remove
the bottlenecks and then retry performance tuning. You can use performance analysis trace to identify the bottlenecks
in the Application Server system. For details about the functionality of performance analysis trace, and how to use the
trace file acquired using the performance analysis trace, see 7. Performance Analysis by Using Performance Analysis
Trace in the uCosminexus Application Server Maintenance and Migration Guide.

8.1.3 Items that can be tuned for each type of application
The tuning items differ as per the type of application. The table below describes the tuning items for each component
of the application.

Table 8‒1: Tuning items of an application consisting of Servlet and JSP (Web application)

Tuning Items Available functionality Reference

Optimizing the number of request-
processing threads (when using an
in-process HTTP server)

Control the number of request-processing threads (when using
an in-process HTTP server)#

8.3.3

8. Performance Tuning (J2EE Application Execution Platform)

260

Tuning Items Available functionality Reference

Optimizing the number of
concurrent executions

Concurrently executed thread control in the Web application
(each Web container, Web application, or URL group)

8.3.4

Optimizing the method for
accessing the database

Connection pooling 8.5.1

Statement pooling 8.5.2

Setting the timeout Setup of timeout in the Web front-end system 8.6.2

Setup of timeout of method execution of business application 8.6.7

Optimizing the operation of Web
application

Separation of the deployment of static contents and Web
application

8.7.1

Caching static contents 8.7.2

Distributing the requests using the redirector 8.7.3

Tuning other items Control the Persistent Connection (when using an in-process
HTTP server)

8.9

#
When integrating with a Web server, tune using the Web server functionality.

Table 8‒2: Tuning items of application configured by Enterprise Bean

Tuning items Available functionality Reference

Optimizing the number of
concurrent executions

Pooling of Stateless Session Bean instances 8.3.5

Session control of Stateful Session Bean

Pooling of Message-driven Bean instances

Control the number of concurrent executions with CTM#

(when using CTM)
8.3.6

Optimizing the method of invoking
Enterprise Bean

Use of local interface 8.4.1

Optimization of local invocation of remote interface 8.4.2

Pass by reference for the remote interface 8.4.3

Optimizing the method of accessing
database

Connection pooling 8.5.1

Statement pooling 8.5.2

Setting the timeout Setup of timeout in the back-end system 8.6.3

Setup of transaction timeout 8.6.4

Setup of timeout for database 8.6.6

Setup of timeout for method execution of J2EE application 8.6.7

#
Applicable only for the Stateless Session Bean.

The following table describes the tuning items of CTM operation that can be set up in systems that use CTM. You can
use CTM when Stateless Session Beans configure an application.

Table 8‒3: Tuning items of CTM operation

Tuning items Available functionality Reference

Optimizing the operation of CTM Tuning of the monitoring interval of the operation state of
CTM domain managers and CTM daemons

8.8.1

8. Performance Tuning (J2EE Application Execution Platform)

261

Tuning items Available functionality Reference

Optimizing the operation of CTM Tuning of the monitoring interval of the load status 8.8.2

Setup of a timeout lock for CTM daemon 8.8.3

Setup of a priority order for the requests distributed with CTM 8.8.4

8. Performance Tuning (J2EE Application Execution Platform)

262

8.2 Tuning Method
This section describes the tuning method and the way it differs according to the type of the object that will be set.

(1) Tuning of J2EE server and Web server (including redirector)
You use the Easy Setup definition file of the Smart Composer functionality for tuning the J2EE server and Web server
(including redirector). In the Easy Setup definition file, specify type of the logical server (J2EE server or Web server)
you want to set in logical-server-type under the configuration tag, and specify the parameter name and its value under
the param tag. For details about the Easy Setup definition file, see 4.6 Easy Setup definition file in the uCosminexus
Application Server Definition Reference Guide.

Reference note
When you cannot use the Smart Composer functionality, define the tuning of Web server (Including redirector) by editing
the file.

The following table describes the files to be used for tuning the Web server (including redirector) when you cannot use the
Smart Composer functionality:

Table 8‒4: Files to be used for tuning the Web server (including redirector) when the Smart
Composer functionality cannot be used

Target Tuning method

Web server Edit httpsd.conf

Web server (redirector) Edit mod_jk.conf (for Cosminexus HTTP Server)

Edit isapi_redirect.conf (for Microsoft IIS)

Edit workers.properties (for worker settings)

For details about mod_jk.conf, see 9.3 mod_jk.conf (Redirector operation definition file for Cosminexus HTTP Server)
in the uCosminexus Application Server Definition Reference Guide. For details about isapi_redirect.conf, see 9.2
isapi_redirect.conf (Redirector operation definition file for Microsoft IIS) in the uCosminexus Application Server Definition
Reference Guide. For details about workers.properties, see 9.5 workers.properties (Definition file for worker) in the
uCosminexus Application Server Definition Reference Guide. For details about httpsd.conf, see the manual Cosminexus
HTTP Server.

(2) Tuning of applications or resources
Use the server management commands for tuning application and resources.

Edit the property file to use the server management command. For details about the property files, see the
uCosminexus Application Server Application and Resource Definition Reference Guide.

(3) Tuning of the CTM operation
Use an Easy Setup definition file of the Smart Composer functionality for tuning CTM. In the Easy Setup definition
file, specify the types of logical server (CTM domain manager or CTM) for setting up in <logical-server-
type> under the configuration tag, and set up the parameter name and value under the param tag.

For details about the Easy Setup definition files, see 4.6 Easy Setup definition file in the uCosminexus Application
Server Definition Reference Guide.

(4) Tuning other items
In addition to the above, there are other parameters that are used for tuning such as items set in the API and the items
set in the database. For more information about these settings, see the sections on respective tuning parameters.

8. Performance Tuning (J2EE Application Execution Platform)

263

8.3 Optimizing the number of concurrent executions
This section describes the various tuning methods and the concept of optimizing the number of concurrent executions
of application requests.

8.3.1 Concept of number of concurrent executions control and pending
queue control

Multi-processing of several requests is an effective way of enhancing the throughput of applications in the Application
Server system. In comparison to processing one request in one thread at one time, processing of requests in multiple
threads is found to enhance the throughput.

If there are bottlenecks in I/O processing or exclusion processing, however, and if maximum throughput has already
been achieved, multi-processing is not effective in enhancing the throughput. Check the following points as you tune
the number of concurrent executions:

Removing bottlenecks from I/O processing and exclusion processing
If the CPU usage remains low even after multiplexing threads and the throughput is not enhanced, it is likely that
there are bottlenecks in I/O processing and exclusion processing, for example when the application accesses a
database. In such a case, tuning has to be done after identifying the process that has a bottleneck and removing the
bottleneck. For example, the bottlenecks in I/O processing and exclusion processing can be removed by tuning the
method of accessing the database and by changing the method of exclusion processing.

Check maximum throughput
If you go on increasing the multiplicity of requests and the number of threads, the free time available in the CPU
goes on decreasing along with the increase in the number of threads and any further increase will result in almost
no time available in the CPU. If this stage is reached, the throughput will not be enhanced even by increasing the
number of threads.
This state indicates that there is a bottleneck in the CPU and the performance of the machine itself has reached the
maximum limit. In short, the throughput at this time is the maximum throughput of the application on the
machine.
To gain higher throughput, you have to enhance the hardware by increasing the number of machines and CPU.

Maintaining the throughput by controlling the number of concurrent executions
If multiplicity and the number of threads are increased in a state in which the CPU usage is full, there is an
increase in the number of threads that cannot be allocated by the CPU in an executable state. This will lead to a
lock conflict between the threads, and repetition of thread's context switch that can result in deterioration of the
throughput.
If you increase the number of threads, the memory usage will also increase along with the number of threads in the
application server. In short, to avoid increasing the memory usage and decreasing the throughput, it is necessary to
limit the number of threads to the number of executable threads only.
You can use the function for controlling the number of concurrent executions appropriately in order to hold the
execution of requests exceeding the value of the maximum number of concurrent executions even when you have
tuned the maximum number of concurrent executions and increased the multiplicity of the requests. As a result, a
high throughput can be maintained despite temporary overloading and peak load status.

Tuning the pending queue size
When a request received in the application server exceeds the maximum number of concurrent executions, you
can register the request in a queue and keep the request pending until the processing of all requests in progress is
complete. However, if the queue in which the request is kept pending until processing of other requests is
complete, has a maximum size limit (pending queue size), and there is a new request that exceeds the maximum
size of the pending queue, the request is not registered in the queue and is returned to the client as an error. When
setting a maximum value for the pending queue, it is necessary to secure enough number of requests that can be
held pending in the queue.
The concepts of registering a request in the pending queue and returning the request as an error are explained
below with the help of following figure:

8. Performance Tuning (J2EE Application Execution Platform)

264

Figure 8‒2: Registering a request in a pending queue and returning a request as an error

Tip
Keeping requests in the pending queue is to prevent an error that may occur due to temporary overloading and peak-
load state. Unnecessarily increasing the size of the pending queue for preventing failures is not an effective solution.
Increase the number of concurrent executions or increase the number of machines or CPUs as necessary.

When a timeout has been specified on the client-side and if too much time has elapsed from the time the request was
registered in the pending queue until it is actually executed, it is likely that the timeout will occur before the execution
of the request and result in an error.

Specify an appropriate size for the pending queue.

Balancing the maximum number of concurrent executions in a hierarchical application
The performance of the entire system is not enhanced by tuning only a certain layer and increasing the number of
concurrent executions because the layer with low performance is limiting the performance of the entire system.
The figure below illustrates an example in which meaningless settings are specified as a result of optimizing only
a particular layer:

Figure 8‒3: Example of meaningless settings due to optimization of a particular layer

If you increase the number of concurrent executions, it is likely that resources such as memory will be consumed
unnecessarily even in an idle state in which no request is being processed. Therefore, to control the number of
concurrent executions, check the entire system and specify an appropriate number of concurrent executions for each
layer.

8. Performance Tuning (J2EE Application Execution Platform)

265

8.3.2 Procedure for requesting the maximum number of concurrent
executions and pending queue

You can tune the maximum number of concurrent executions and pending queue size according to the following
procedure:

1. Increase the multiplicity of requests by using tools such as the load generation tool.
At this point, if the CPU usage on the server-side is 80% to 90% proceed to step 2. If the CPU usage is not 80% to
90%, the performance is low and it is not possible to increase the throughput, it is likely that there are bottlenecks
in the I/O processing and exclusion processing. In such case, identify the process with the bottleneck and enhance
the performance.

2. Set the multiplicity in which the CPU usage on the server-side has reached 80% to 90% as the maximum number
of concurrent executions in the tuning parameters.
The throughput at this stage is the maximum throughput of a single machine. Enhance the hardware if you require
a higher throughput.

3. Check whether maximum throughput can be maintained by applying additional load by using tools such as load
generation tool.
If a maximum throughput cannot be maintained, revise the tuning parameter to prevent loads that exceed the
maximum throughput.

4. Estimate the number of requests when the actual system is temporarily overloaded and when the loading is at a
peak state and decide the size of the pending queue.

5. In an application having a hierarchical structure, revise the tuning parameter so that the size of the pending queue
and number of concurrent executions in each layer can be balanced.

8.3.3 Controlling the number of request-processing threads in a Web
server

In the case of Web front-end systems, the request-processing thread created by the Web server processes the requests
from clients like the Web browser. The processing efficiency can be improved by appropriately controlling the
number of request-processing threads.

This subsection describes the purpose of controlling the number of request-processing threads in Web servers, and the
guidelines for tuning.

This subsection also describes tuning methods if you use an in-process HTTP server.

Reference note
When Cosminexus HTTP Server is used for Web server integration, similar tuning can be done for the settings of
Cosminexus HTTP Server. For details, see the manual Cosminexus HTTP Server.

In order to build a system using the Smart Composer functionality, you can use abstract parameters for setting the number of
request-processing threads in the Web server. An abstract parameter means several mutually related parameters merged into
a single parameter. Use an abstract parameter to define the settings for the number of request-processing threads of Web
server along with the related parameters such as the number of concurrent executions. For details about the abstract
parameters, see Appendix J Abstract parameters available with the Smart Composer Functionality in the uCosminexus
Application Server Command Reference Guide.

(1) Purpose of controlling the number of request-processing threads
The performance can be improved by tuning the number of request-processing threads according to the quality of the
host on which the J2EE server is running, and according to the status of access from the client.

The process of generating request-processing threads puts a heavy load on the system. By generating and pooling the
request-processing threads beforehand, you can reduce the load for a processing request from the client, such as a Web
browser and can increase the processing performance.

When you use an in-process HTTP server, you can generate and pool the request-processing threads in batch when the
J2EE server is started, and can use this pool in the event of a processing request from the client, such as a Web
browser. This leads to an improvement in the processing performance when a processing request is received. By

8. Performance Tuning (J2EE Application Execution Platform)

266

monitoring the number of pooled threads, you can generate additional threads when the number of pooled threads
becomes less, and can secure these threads in the pool.

However, if you pool a large number of unused threads, it will lead to unnecessary consumption of resources.
Therefore, depending on the processing contents of the system, you must appropriately control the number of request-
processing threads to be pooled, and delete the unnecessary threads, if required.

When controlling the request-processing threads, set up appropriate values in the parameters by considering the above.

(2) Guidelines for setup
When controlling the number of request-processing threads, you can tune using the following parameters:

• Number of request-processing threads generated when the J2EE server is started

• Maximum number of connections to the Web client (number of request-processing threads)

• Maximum value of the Listen queue (back log) of TCP/IP, when the maximum number of connections is exceeded

• Maximum and minimum number of spare threads

• Choosing whether or not to maintain the number of request-processing threads generated when the J2EE server is
started

Make a note of the following points when setting up these parameters:

• Depending on the contents of the service to be provided, a large number of requests must be processed
immediately after the J2EE server is started. In such a case, set up a large value in the number of the request-
processing threads to be generated when the J2EE server is started.

• If you increase the maximum number of spare threads, you can promptly handle a sudden increase in the number
of accesses from the client, without a decline in the processing performance. However, if you pool a large number
of spare threads, many resources will be consumed. Therefore, be careful when setting the appropriate number of
pooled spare threads, after estimating the presumed sudden increase in the number of accesses.

• If a fixed number of request-processing threads are secured, and you want to control the increase and decrease in
the number of request-processing threads over and above the fixed number by specifying a maximum number and
minimum number, specify the settings for maintaining the number of request-processing threads generated when
the J2EE server is started. By doing this, you can handle an increase or decrease in the number of the request-
processing threads during peak access from the client, when the minimum number of request-processing threads
desired for the system is secured. The number of request-processing threads generated when the J2EE server is
started will be maintained even when the number of unused request-processing threads exceeds the maximum
number of spare threads.

• If you want to keep on pooling the threads that are created, without deleting them, set up the maximum number of
spare threads to a value same as the maximum number of connections to the Web client.

Apart from the above, consider the relationship with the number of concurrently executed threads of the Web
application. For details about the number of concurrently executed threads of a Web application, see 8.3.4 Controlling
the number of concurrent executions of a Web application.

8.3.4 Controlling the number of concurrent executions of a Web
application

In the case of a Web front-end system, the control of concurrently executed threads of a Web Application controls the
number of threads in which the Web server will concurrently process the requests received from clients like the Web
browser.

The number of concurrent executions is controlled in each URL group, Web application or Web container. The
number of concurrently executed threads can be controlled when you integrate with a Web server, or when you use an
in-process HTTP server.

(1) Difference in the control of number of concurrently executed threads
The difference in the control of the number of concurrently executed threads in the case of each Web container, Web
application and URL group is explained below:

8. Performance Tuning (J2EE Application Execution Platform)

267

Web container
You can set the number of threads for simultaneous processing of requests in the entire Web container.

Web application
You can set the number of threads for simultaneous processing of requests for each Web application running in
the Web container.

URL group
You can set the number of threads for simultaneous processing of requests for each process of distribution
destination URL, when a request is distributed to a URL corresponding to the specific business process (business
logic) in the Web application.

The figure below illustrates the relationship between concurrently executed threads of each Web container, Web
application, and URL group.

Figure 8‒4: Relationship between concurrently executed threads of each Web container, Web application,
and URL group

The execution of requests for a Web application is controlled by the number of concurrently executed threads set in
each Web container, Web application, and URL group. A request that exceeds the number of concurrently executed
threads that are set in each Web container, Web application, and URL group enters the respective pending queue.

(2) Guidelines for selection
The guidelines for selecting the unit of control for concurrently executed threads are explained below:

For details about the functionality for controlling the number of concurrently executed threads, see 2.15 Overview of
control over the number of concurrently executed threads in the uCosminexus Application Server Web Container
Functionality Guide.

8. Performance Tuning (J2EE Application Execution Platform)

268

■ Guidelines for selecting a Web application

The J2EE server can manage not only the TCP connection requests but also the pending queue of the Web
applications by controlling the number of concurrently executed threads of the Web application. Therefore, Hitachi
recommends setting a number of concurrently executed threads of a Web application even when a single Web
application is running on the J2EE server.

Setting the number of concurrently executed threads in the Web application has the following advantages as compared
to the setting of the number concurrently executed threads in each Web container:

• Setting the maximum number of concurrently executed threads for each Web application will prevent the Web
application with a large number of requests, corresponding to a particular business, from using the processing
efficiency of the entire Web container. As a result, the other businesses can also be executed without any delay.

• If there are several Web applications with different loads required for CPU and I/O processing, you can set the
number of concurrently executed threads according to the conditions of respective Web applications.

• As the size of the pending queue for requests can be set for each Web application separately, it is possible to
control the pending queue according to the features of the Web application. In addition, if the requests exceeding
the pending queue size of each Web application are sent, it can be communicated to the client using the HTTP
response code.

The number of concurrently executed threads of each Web application can be dynamically changed in the running
J2EE server. For details about the procedure for dynamically changing the number of concurrently executed threads of
Web applications executed on running J2EE servers, see 2.19.2 Flow of dynamically changing the number of
concurrently executed threads in the uCosminexus Application Server Web Container Functionality Guide.

■ Guidelines for selecting a URL group

If concurrently executed threads are controlled in a Web application, control the concurrently executed threads in a
URL group if you want to further control the concurrently executed threads in business logic.

Determine the settings of a URL group to include the following business logic in the Web application:

• Business logic that you want to prioritize and execute without being influenced by other processes

• Business logic where the CPU and I/O load is high or the required processing time is more as compared to other
processes

Setting the concurrently executed threads in a URL group has the following advantages as compared to setting only in
a Web application.

• The threads that need to be executed are allocated to the business logic (URL group) with a high priority. Even
when the requests for another business logic increase, you can execute the business logic with a high priority
instead of assigning the concurrently executed threads of the entire Web application to the business logic with
more requests.

• Setting the upper limit for concurrently executed threads of business logic (URL group) that require more
processing time makes it possible to prevent a particular business logic from using up the concurrently executed
threads of the entire Web application.

• If a Web application has several business logics (URL groups) with CPU and I/O having different loads, you can
set the number of concurrently executed threads according to the business logic.

• Setting the queue size (pending queue size) for the request of each business logic (URL group) in the Web
application allows the controlling of the pending queue according to the features of the business logic. If the
pending queue of each URL group exceeds the upper limit, the same is notified to the client by using the HTTP
response code 503 (Service Temporarily Unavailable).

8.3.5 Controlling the number of concurrently executed threads in a
Enterprise Bean

The methods of controlling the number of concurrently executed threads in an Enterprise Bean are explained below
for each type of Enterprise Bean. The functions of an EJB container are used to implement the concurrently executed
thread control of Enterprise Bean by instance pooling and session control. For details about the functions of EJB
container, see 2. EJB Container in the uCosminexus Application Server EJB Container Functionality Guide.

8. Performance Tuning (J2EE Application Execution Platform)

269

(1) Types of functions that can be used for concurrently executed thread control of Enterprise
Bean

The following two types of functions of the EJB container are used for controlling the concurrently executed threads
of Enterprise Bean:

Instance Pooling
Instance pooling is a function that creates an instance of Enterprise Bean in advance and immediately processes
the requests sent by the client. You can queue the execution of requests that exceed the upper limit by setting the
maximum number of instances to be pooled. This helps in controlling the number of concurrently executed
threads.
Reference note

When dynamically changing the number of concurrent executions of CTM during operation, you must set up no upper
limit to the upper-limit value.

Session control
Session control is a function for controlling the number of sessions (instances) that is concurrently generated in
the session.

The functions that can be used differ based on the type of Enterprise Bean.

The following table describes the functions of concurrently executed thread control that can be used based on the type
of Enterprise Bean:

Table 8‒5: Functions of concurrently executed thread control that can be used based on the type of
Enterprise Bean

Type of Enterprise Bean Control function that can be used

Stateless Session Bean# Instance pooling

Stateful Session Bean Session control

Entity Bean Instance pooling and session control

Message-driven Bean Instance pooling

#
When controlling the number of concurrent executions of a Stateless Session Bean, Hitachi recommends that you use CTM. For
details about how to control the number of concurrent executions using CTM, see 8.3.6 Controlling the number of concurrent
executions using CTM.

Among the concurrently executed thread controls of Enterprise Bean, Message-driven Bean is the only one that
manages the requests using the concept of queue for controlling the pending requests. In the case of Message-driven
Bean, pending requests are controlled by using a JMS queue. In other Enterprise Beans, when a request sent from the
client exceeds the maximum number of concurrent executions one of the following processes is performed, according
to the setup:

• Request is kept in a queue until there is a free instance

• Immediately returned as an exception to the client

• Return the request as an exception to the client after timeout that is set for acquiring instance (in the case of
method-ready pool or Entity Bean pool of the Stateless Session Bean)

(2) Controlling the number of concurrent executions in a Stateless Session Bean
Instance pooling can be used in the Stateless Session Bean. Set the normal simultaneous access count as the minimum
value of instance pooling, and specify the value exceeding the maximum number of the expected simultaneous access
count for the maximum value of instance pooling. This will save the time required for generating an instance during
normal access and enhance the processing efficiency. Further, even when the access count increases, the access
requests can be processed until it reaches the expected number of maximum access count and the execution of any
request that exceeds the maximum access count is held in the pending queue.

8. Performance Tuning (J2EE Application Execution Platform)

270

By default, a request that exceeds the upper limit is not returned as an error. It remains in the queue until the pooled
instance becomes empty. To return the request as an error, set the timeout for instance collection queue if required.

(3) Controlling the number of concurrent executions in a Stateful Session Bean
As the Stateful Session Bean has a state for each session for each client, the number of concurrent executions cannot
be controlled accurately. Stateful Session Bean enables flow control (session control) in the session.

Specify the maximum expected concurrently executed sessions as the maximum value of session control. When the
number of access requests increase and there is an access request that exceeds the maximum expected concurrently
executed sessions, the session is not established and it is returned as an exception
(java.rmi.RemoteException) to the client.

Tip
When it is necessary to control the number of concurrent executions of each request, it is possible to control the number of
concurrent executions of Web application or control the number of concurrent executions using instance pooling, by
invoking Stateful Session Bean through servlet, JSP or Stateless Session Bean.

(4) Controlling the number of concurrent executions in an Entity Bean
In the case of an Entity Bean, the number of concurrent executions can be controlled through the setup of maximum
sessions that can be controlled for each client, and instance pooling. When maximum number of sessions is reached,
request for a new session cannot be executed even if there is a vacancy in the instance pool.

When the maximum number of sessions is exceeded, an exception (java.rmi.RemoteException) is notified to
the client immediately when there is a failure to generate the session. In the case of default settings, a request that
exceeds the maximum number of instance pools is not returned as an error but kept pending in queue until there is a
vacancy in the pooled instances. To return the request as an error, specify a timeout for instance collection queue as
required.

The database is accessed in the execution of request for the Entity Bean. The number of connections for accessing the
database also controls the number of requests that can be executed concurrently.

(5) Controlling the number of concurrent executions in a Message-driven Bean
You can use instance pooling in a Message-driven Bean. Specify the value of maximum messages as the maximum
value of instance pooling. This helps to save the time required to generate an instance when a message arrives and
enhance the processing performance. Even when the number of messages increases, keeping the messages pending in
a queue can control the execution of the messages exceeding the maximum value for instance pooling.

In the case of Message-driven Bean, the incoming messages can be managed in the pending queue by using a JMS
queue.

Reference note
When invoking Message-driven Bean from SUP of OpenTP1 using the TP1 inbound integrated function or when invoking
Message-driven Bean using Cosminexus JMS provider, you must examine the number of concurrent executions in view of
the component used along with the contents described in this section. For details, see 4. Invoking Application Server from
OpenTP1 (TP1 inbound integrated function) or 7. Cosminexus JMS Provider in the uCosminexus Application Server
Common Container Functionality Guide.

8.3.6 Controlling the number of concurrent executions using CTM
When you are using CTM, you can control the number of concurrent executions of a Stateless Session Bean.

CTM is a group of processes independent of the J2EE server. The number of concurrent executions is controlled when
the invocation of the Stateless Session Bean between the EJB client and J2EE server is relayed, and the Stateless
Session Bean is invoked. When using CTM, the number of concurrent executions will be controlled in each J2EE
application.

(1) Controlling the number of concurrent executions of a Stateless Session Bean using CTM
By controlling the number of concurrent executions (flow control) with CTM, you can perform the following tuning:

8. Performance Tuning (J2EE Application Execution Platform)

271

• If multiple J2EE applications with different loads for CPU and I/O processing are running on a J2EE server, you
can set up the appropriate number of concurrent executions for each condition.

• By managing pending queues (schedule queues) with CTM, you can maintain the number of pending requests
below a fixed number, and you can report an exception to the client when requests are sent in excess of this fixed
number.

• If the load on a particular J2EE server is high, you can distribute the requests to other J2EE servers.

The following figure shows an example of controlling the number of concurrent executions of a Stateless Session
Bean with CTM:

Figure 8‒5: Example of controlling the number of concurrent executions of a Stateless Session Bean with
CTM

Tip
CTM can control the number of concurrently executed threads on a host by controlling the invocation of Stateless Session
Beans on J2EE servers running on the same host. Although this varies with the machine specifications of the application
server machine, Hitachi recommends a configuration in which one CTM daemon and two to four J2EE servers are started
for each machine.

Note that the number of concurrently executed threads can also be changed dynamically with CTM in a running CTM
daemon.

For details about the CTM functionality to control the number of concurrent executions, and the procedure to
dynamically change the number of concurrently executed threads with CTM in a running CTM daemon, see 3.4
Controlling volume of the request flow in the uCosminexus Application Server Expansion Guide.

(2) Guidelines for proper usage with instance pooling of the EJB container
Hitachi recommends the control of the number of concurrent executions using CTM. Note that when you use CTM to
control the number of concurrent executions, you can use the instance pooling functionality of the EJB container and
controlling the number of concurrent executions at the same time.

The advantages of using CTM for controlling the number of concurrent executions, in addition to the use of the
functionality of EJB container for controlling the number of concurrent executions are as follows:

• When the number of concurrent executions reaches the upper limit in an EJB container, the requests can be
distributed to another J2EE server.

• If loading on a particular J2EE server is high even when the number of concurrent executions does not reach the
upper limit, the requests can be distributed to another J2EE server.

8. Performance Tuning (J2EE Application Execution Platform)

272

• By managing pending queues (schedule queues) with CTM, you can maintain the number of pending requests
below a fixed number, and you can report an exception to the client when requests are received in excess of this
fixed number.
Tip

When you use CTM for controlling the number of concurrent executions along with the instance pooling functionality
of the EJB container, you must set up the instance pooling count of Stateless Session Bean to a value higher than that of
the number of concurrent executions of CTM.

For dynamically changing the number of concurrent executions of CTM during operation, you must set up no upper
limit for the instance pooling count of the Stateless Session Bean. By default, no upper limit is setup. Do not change the
default settings.

8.3.7 Tuning parameter for optimizing the number of concurrent
executions

This section explains the method of setting up the tuning parameters used for optimizing the number of concurrent
executions.

(1) Number of request-processing threads (to use an in-process HTTP server)
This subsection explains how to set up the tuning parameters for the number of request-processing threads, when you
use an in-process HTTP server.

Set up the items listed in the following table in the Easy Setup definition file. Afterward re-build the system using the
Smart Composer functionality.

Table 8‒6: Tuning parameters for the number of request-processing threads (to use an in-process HTTP
server)

Setup item Setup target Location of setup (parameter name)

Number of request-processing
threads generated when the
J2EE server is started

Logical J2EE server
(j2ee-server)

webserver.connector.inprocess_http.init_th
reads

Upper limit of the number of
connections with the Web
client (upper limit of the
number of request-processing
threads)

Logical J2EE server
(j2ee-server)

webserver.connector.inprocess_http.max_con
nections

Maximum value of the Listen
queue (back log) of TCP/IP,
when the maximum number
of connections with the Web
client is exceeded

Logical J2EE server
(j2ee-server)

webserver.connector.inprocess_http.backlog

Maximum number of spare
threads

Logical J2EE server
(j2ee-server)

webserver.connector.inprocess_http.max_spa
re_threads

Minimum number of spare
threads

Logical J2EE server
(j2ee-server)

webserver.connector.inprocess_http.min_spa
re_threads

For details about the tuning parameters when you use Cosminexus HTTP Server during the Web server integration,
see the uCosminexus Application Server HTTP Server User Guide.

(2) Number of concurrent executions of a Web application
Set in each URL group, Web application or Web container.

8. Performance Tuning (J2EE Application Execution Platform)

273

(a) Number of concurrent executions of a URL group

This subsection explains how to set up the tuning parameters for number of concurrent executions of a URL group.
The method and location of the setup is different for each setup item.

You specify the items listed in the following table using the Smart Composer functionality. You define the parameters
in the Easy Setup definition file.

Table 8‒7: Tuning parameters of the number of concurrent executions of a URL group (items to be
specified using the Smart Composer functionality)

Setup item Setup target Location of setup (parameter name)

Maximum number of concurrently
executed threads in each Web container
(during the Web server integration)

Logical J2EE server
(j2ee-server)

webserver.connector.ajp13.max_thread
s

Maximum number of concurrently
executed threads in each Web container
(when using an in-process HTTP
server)

Logical J2EE server
(j2ee-server)

webserver.connector.inprocess_http.m
ax_execute_threads

Whether to control the number of
concurrent executions for each Web
application

Logical J2EE server
(j2ee-server)

webserver.container.thread_control.e
nabled

Default pending queue size Logical J2EE server
(j2ee-server)

webserver.container.thread_control.q
ueue_size

You specify the items listed in the following table using the server management command (cjsetappprop). You
define parameters in the WAR property file.

Table 8‒8: Tuning parameters of the number of concurrent executions of a URL group (items to be
specified using the server management command (cjsetappprop))

Setup item Location of setup (parameter name)

Maximum number of concurrently executed
threads in each Web application

<thread-control-max-threads> under <thread-control>
tag

Number of dedicated threads of the Web
application

<thread-control-exclusive-threads> under <thread-
control> tag

Pending queue size of the Web application <thread-control-queue-size> under <thread-control> tag

Definition the name of concurrently executed
thread control for a URL group

<urlgroup-thread-control-name> under <thread-
control> <urlgroup-thread-control> tag

Maximum number of concurrently executed
threads in a URL group

<urlgroup-thread-control-max-threads> under <thread-
control> <urlgroup-thread-control> tag

Number of dedicated threads in a URL group <urlgroup-thread-control-exclusive-threads> under
<thread-control> <urlgroup-thread-control> tag

Pending queue size of a URL group <urlgroup-thread-control-queue-size> under <thread-
control> <urlgroup-thread-control> tag

URL pattern to be controlled for each URL group <urlgroup-thread-control-mapping> under <thread-
control> <urlgroup-thread-control> tag

(b) Number of concurrent executions in a Web application

This subsection explains how to set up the tuning parameters for the number of concurrent executions in each Web
application. The method and location of setup is different for each setup item.

You specify the items listed in the following table using the Smart Composer functionality. You define the parameters
in the Easy Setup definition file.

8. Performance Tuning (J2EE Application Execution Platform)

274

Table 8‒9: Tuning parameters of the number of concurrent executions in a Web application (items to be
specified using the Smart Composer functionality)

Setup item Setup Target Location of setup (parameter name)

Maximum number of concurrently
executed threads in each Web
container (during the Web server
integration)

Logical J2EE server (j2ee-
server)

webserver.connector.ajp13.max_threads

Maximum number of concurrently
executed threads in each Web
container (when using an in-process
HTTP server)

Logical J2EE server (j2ee-
server)

webserver.connector.inprocess_http.ma
x_execute_threads

Whether to control the number of
concurrent executions for each Web
application

Logical J2EE server (j2ee-
server)

webserver.container.thread_control.en
abled

Default pending queue size Logical J2EE server (j2ee-
server)

webserver.container.thread_control.qu
eue_size

You specify the items listed in the following table using the server management command (cjsetappprop). You
define the parameters in the WAR property file.

Table 8‒10: Tuning parameters of the number of concurrent executions in the Web application (items to be
specified using the server management command (cjsetappprop))

Setup item Location of setup (parameter name)

Maximum number of concurrently executed
threads in each Web application

<thread-control-max-threads>

Number of dedicated threads of a Web application <thread-control-exclusive-threads>

Pending queue size for each Web application <thread-control-queue-size>

(c) Number of concurrent executions in a Web container

This subsection explains how to set up the tuning parameters for the number of concurrent executions in each Web
container.

You specify the items listed in the following table using the Smart Composer functionality. You define the parameters
in the Easy Setup definition file.

Table 8‒11: Tuning parameter of the number of concurrent executions in a Web container

Setup item Setup target Location of setup (parameter name)

Maximum number of concurrently
executed threads in each Web
container (during the Web server
integration)

Logical J2EE server (j2ee-
server)

webserver.connector.ajp13.max_threa
ds

Maximum number of concurrently
executed threads in each Web
container (when using an in-process
HTTP server)

Logical J2EE server (j2ee-
server)

webserver.connector.inprocess_http.
max_execute_threads

Reference note
In addition to the above, you can also specify the maximum size of the pending queue of the TCP connection requests from
the redirector in the Web container (webserver.connector.ajp13.backlog of the logical J2EE server (j2ee-
server)). Since this key specifies the size of the Listen queue of the socket, there is no direct relationship with the pending
queue of the request.

8. Performance Tuning (J2EE Application Execution Platform)

275

(3) Number of concurrent executions in an Enterprise Bean
The number of concurrent executions of an Enterprise Bean is set for each Enterprise Bean. The settings are explained
below for each type of Enterprise Bean:

(a) Number of concurrent executions of a Stateless Session Bean

This subsection explains how to set up the tuning parameters for the number of concurrent executions of a Stateless
Session Bean.

You specify the items listed in the following table using the server management command (cjsetappprop). You
define the parameters in the Session Bean property file.

Table 8‒12: Tuning parameters of the number of concurrent executions of the Stateless Session Bean

Setup item Location of setup (parameter name)

Maximum number of instances managed in the
pool

<maximum> under <stateless> <pooled-instance> tag#

Minimum number of instances managed in the
pool

<minimum> under <stateless> <pooled-instance> tag

#
When dynamically changing the number of concurrent executions of CTM during operation, you must set up no limit (set up 0)
to the maximum value.

(b) Number of concurrent executions of a Stateful Session Bean

This subsection explains how to set up the tuning parameters for the number of concurrent executions of a Stateful
Session Bean.

You specify the items listed in the following table using the server management command (cjsetappprop). You
define the parameters in the Session Bean property file.

Table 8‒13: Tuning parameters of the number of concurrent executions of a Stateful Session Bean

Setup item Location of setup (parameter name)

Maximum number of sessions that can be
generated from the client

<maximum-active-sessions> under <stateful> tag

Time (minutes) until the unused instances are
deleted

<removal-timeout> under <stateful> tag

(c) Number of concurrent executions of an Entity Bean

This subsection describes how to set up the tuning parameters for the number of concurrent executions of an Entity
Bean.

You specify the items listed in the following table using the server management command (cjsetappprop). You
define the parameters in the Entity Bean property file.

Table 8‒14: Tuning parameters of the number of concurrent executions of an Entity Bean

Setup item Location of setup (parameter name)

Maximum value of the Entity Bean that can be generated from
the client

<maximum-instances>

Time (minutes) until the EJBObject of the unused Entity Bean
is deleted

<entity-timeout>

(d) Number of concurrent executions of a Message-driven Bean

This subsection describes how to set up the tuning parameters for the number of concurrent executions of a Message-
driven Bean.

8. Performance Tuning (J2EE Application Execution Platform)

276

You specify the items listed in the following table using the server management command (cjsetappprop), and
define the parameters in the Message-driven Bean property file.

Table 8‒15: Tuning parameters of the number of concurrent executions of a Message-driven Bean

Setup item Location of setup (parameter name)

Maximum number of instances managed in the pool <pooled-instance> <maximum>

Minimum number of instances managed in the pool <pooled-instance> <minimum>

(4) Number of concurrent executions controlled with CTM
This subsection describes how to set up the tuning parameters for the number of concurrent executions controlled with
CTM. The items are set up in CTM daemon, application, and Stateless Session Bean.

■ Items to be set up in CTM daemon

Set up the items listed in the following table in the Easy Setup definition file. Afterward re-build the system using the
Smart Composer functionality.

Table 8‒16: Tuning parameter for the number of concurrent executions controlled with CTM (item to be
specified using the Smart Composer functionality)

Setup item Setup target Location of setup (parameter name)

Maximum value of threads
controlled with CTM, and
number of requests registered in
each queue

Logical CTM (component-
transaction-monitor)

ctm.DispatchParallelCount

■ Items to be set up in the application or Stateless Session Bean

Set up the items listed in the following table using the server management commands. Define the parameters in the
application property file or Session Bean property file.

Table 8‒17: Tuning parameters for the number of concurrent executions controlled with CTM (items to be
specified using the server management commands)

Setup item Definition file Setup target Location of setup (parameter
name)

Whether to control the
number of concurrent
executions with CTM in the
application

Application property
file

Application <managed-by-ctm>

Number of concurrently
executed threads of the
application

Application property
file

Application parallel-count below the
<scheduling> tag

Whether to control the
number of concurrent
executions with CTM in the
Stateless Session Bean

Session Bean property
file

Stateless Session Bean <enable-scheduling>

Settings for the queues of
each Bean#

Session Bean property
file

Stateless Session Bean parallel-count below the
<scheduling> tag

#
This item is required when you deploy a schedule queue in each Bean. Set up the deployment of the schedule queue in the
<scheduling-unit> tag of the application property file.

8. Performance Tuning (J2EE Application Execution Platform)

277

8.4 Optimizing the method of invoking the Enterprise
Bean

This chapter describes how to optimize the method of invoking the Enterprise Bean.

Normally, the Enterprise Bean is invoked through an RMI-IIOP by using the remote interface. In this method, the
overheads are similar to those in the case of remote connection, even when invoked from the Enterprise Bean running
in the same J2EE application and the same J2EE server.

The following methods can be used in optimizing the method of invoking the Enterprise Bean and enhancing the
throughput:

• Invocation by using local interface

• Local invocation of remote interface

• Pass by reference of the remote interface

Each of these methods has the following features as listed in the table below. In this table, the methods are compared
on the basis of four features that are as follows:

1. Standard specifications: Does it conform to standard specifications?

2. Performance: Does it enhance the performance?

3. Location transparency: Is there location transparency?

4. Maintainability: Is it easily maintainable?

Determine the method to be used based on the features of the application and system.

Table 8‒18: Features of the methods of invoking Enterprise Bean

Type of method used for invocation Standard
specifications Performance Location

transparency
Maintainabilit

y

Local interface F F N F

Local invocation of remote interface F P F F

Pass by reference for remote interface N F P N

Legend:
F: Fully supported. Excellent.
P: Partially supported. Not good
N: Not supported. Poor

For more details about local interface, see the EJB specifications.

For details about the local invocation of the remote interface and the pass by reference of the remote interface, see
2.13 Invoking EJB remote interface in the uCosminexus Application Server EJB Container Functionality Guide.

8.4.1 Using the local interface
This method uses the local interface that conforms to the J2EE standard specifications, during the development of the
application.

Local interface is a functionality that as usual invokes the Enterprise Bean as a method invocation of the same thread.
As a J2EE standard functionality, the local interface has portability. However, if you use local interfaces, location
independence is lost, since using local interfaces requires you to create programs that use dedicated local interface for
local invocation, at the server side as well as the client side.

The local interface is invoked by using the pass by reference method. The local interface does not support invocations
between different J2EE applications even if they are running on the same J2EE server.

8. Performance Tuning (J2EE Application Execution Platform)

278

8.4.2 Using the functionality for optimizing the local invocation of the
remote interface

This method uses the functionality (local invocation optimization functionality) that invokes by the remote interfacing
of Enterprise Bean in the same J2EE applications or the same server by delaying the same threads. It maintains
location transparency since it creates a program that uses the remote interface on both the client and server-side.

The default settings specify the use of the local invocation optimization functionality in the same application.

8.4.3 Using the pass by reference functionality of the remote interface
This method aims to increase the processing speed by using pass by reference for transferring large size data such as
the objects used for argument and return value when local invocation optimization functionality is used.

Processing speed can be expected to increase under the following conditions:

Table 8‒19: Conditions under which the processing speed can be expected to increase by using pass by
reference for remote interface

Item Processing contents

Processing of business method The data obtained through virtual argument is only passed by reference without
being changed directly

Argument and return value of business
method

In this process, classes like the array and collection transfer large data

Location of the Enterprise Bean to be
invoked

In similar J2EE applications or similar J2EE servers

Transfer of data in remote interface uses call by value. A program that is created on the basis of call by value may not
work properly. An example of a program that may not work properly is shown below:

Figure 8‒6: Example of a program that may not work properly

This functionality is not effective in the following cases:

• In the case of primitive type (simple type) (since it is always call by value)

• In case the size of the data to be transferred is small

This functionality can be set in the Enterprise bean or a J2EE server.

8.4.4 Tuning parameters for optimizing the method of invoking the
Enterprise Bean

This section explains the methods for setting up the tuning parameters that are used for optimizing the method of
invoking an Enterprise Bean.

8. Performance Tuning (J2EE Application Execution Platform)

279

(1) Using the local interface
Use the local interface defined in J2EE for creating an application.

(2) Using the local invocation functionality of the remote interface
This subsection explains how to set up the tuning parameters for the local invocation functionality of the remote
interface.

You specify the items listed in the following table using the Smart Composer functionality and define the parameters
in the Easy Setup definition file.

Table 8‒20: Tuning parameters of a local invocation functionality of the remote interface

Setup item Setup target
Location of setup

(parameter name)

Scope of local invocation
optimization functionality

Logical J2EE server (j2ee-
server)

ejbserver.rmi.localinvocation.scope

(3) Using the pass by reference functionality of the remote interface
This subsection explains how to set up tuning parameters for the pass by reference functionality of the remote
interface.

You specify the items listed in the following table using the Smart Composer functionality and define the parameters
in the Easy Setup definition file.

Table 8‒21: Tuning parameters of the pass by reference functionality of the remote interface (items to be
specified using the Smart Composer functionality)

Setup item Setup target Parameter name

Usage of the pass by reference
functionality of the remote
interface (each J2EE server)

Logical J2EE server (j2ee-
server)

ejbserver.rmi.passbyreference

You specify the items listed in the following table using the server management command (cjsetappprop), and
define the parameters in the Session Bean property file or Entity Bean property file.

Table 8‒22: Tuning parameters of the pass by reference functionality of the remote interface (items to be
specified using the server management command (cjsetappprop))

Setup item Parameter name

Usage of the pass by reference functionality of the
remote interface (each Enterprise Bean)

<pass-by-reference>

8. Performance Tuning (J2EE Application Execution Platform)

280

8.5 Optimizing the database access method
The optimization of the method of accessing a database is explained below:

The methods of accessing a database in the J2EE server can be tuned in the following two ways:

• Connection pooling

• Statement pooling

8.5.1 Using connection pooling
The advantages of using connection pooling in the J2EE server and the functionality that can be used in relation to
connection pooling are explained below:

Also, acquire a connection of DB Connector in Cosminexus JPA provider. For details about estimating the number of
connections used in Cosminexus JPA provider, see 6.2.4 Estimating the number of connections of DB Connector in
the uCosminexus Application Server Common Container Functionality Guide.

(1) Advantages of using connection pooling
Establishing a connection with an EIS such as a database is a process that involves excessive loading. The load can be
reduced by using connection pooling. Connection pooling is a function that aims to enhance the processing efficiency
by pooling the connections that are secured and generated by a J2EE server and reusing those connections. Connection
pooling is effective in preventing the deterioration of performance rather than acquiring a connection each time the
database is accessed.

The functionality that can be used differs depending on the method used for connecting with the EIS. For details, see
3.14.1 Connection pooling in the uCosminexus Application Server Common Container Functionality Guide.

By default, connection pooling is enabled.

(2) Usable functionality
The functionality that can be used in connection pooling and the guidelines for setup are explained below.

The following functionality can be used in the case of connection pooling:

• Specify the maximum and minimum number of connections for pooling

• Check the connections in the pool and delete the unnecessary connections#1

• Retry in the case of a failure in establishing a connection#2

• Use sweeper to delete unused connections from the pool#2

• Pool the connections in advance by using connection warming-up

• Register the requests for connection in the queue when all connections are exhausted

• Reduce the unnecessary connections gradually from the connection pool

• Cluster the connection pool#3

#1
When this functionality is used, you can also set the timeout for checking the connections.

#2
This functionality is disabled by default. Use if required.

#3
This functionality can be used only when the database is Oracle10g or Oracle11g.

(a) Specify the minimum and maximum number of connections that can be pooled

The setup of connection pooling requires you to set the minimum and maximum number of connections that can be
pooled. If you specify unlimited maximum number of connections, unlimited connections are established.

8. Performance Tuning (J2EE Application Execution Platform)

281

Set the minimum and maximum values by referring the values such as number of concurrently executed accesses to an
EIS like the database, the number of transactions, and the number of concurrent executions of the business that occurs
normally.

We recommend that the maximum number of connections to be pooled be set up in such a way so that the following
relationship expression is satisfied between the number of concurrently executed threads and the Session Bean
instance pool:
Maximum number of connections to be pooled = Session Bean instance pool =
Number of concurrently executed threads

(b) Check the connections in the pool and delete unnecessary connections

Check that there is no failure in any connection in the pool when acquiring a connection or check for any failure in the
connection pool at regular intervals and delete the connection in which a failure has occurred, from the pool (detect
connection failure). This helps to prevent establishing a connection in which a failure has occurred at the point of time
it was acquired and reduces the probability of connection failure. This functionality is effective in the case of
connections for accessing the database using the DB Connector. This functionality cannot be used when direct is
specified in the selectMethod property of the DB Connector.

The guidelines for deciding the timing for detecting the connection failure are given below. Decide according to the
type of business.

Table 8‒23: Guidelines for deciding the timing for detecting the connection failure

Type of business Timing

• Business that does not allow
failures in connecting with the
EIS

• Business having low connection
frequency

Hitachi recommends settings to detect any failure when acquiring a connection.

The processing time required for acquiring a connection is more as compared to when
detection of any failure in acquiring a connection is not executed, but the risk of
acquiring a connection in which a failure has occurred is reduced.

• Business with high connection
frequency

• Business that allows connection
to a certain extent even when the
secured connection has a failure

Hitachi recommends settings to regularly check for any failures. You can prevent the
performance from deteriorating by the process of detecting a connection failure, by
prolonging the check interval to some extent. There is a risk of acquiring a connection in
which a failure has occurred.

When detection of connection failure is performed, you can also set a timeout for detecting a connection failure.
Sometimes, when there is no response from the resource due to a server failure and a network failure, it is likely that
there may be no response for detecting a connection failure. Timeout is set so that the process of detecting a
connection failure can be finished and the process can continue even when there is no response from the resource. In
such a case, it is assumed that a connection failure has occurred.

Tip

• When timeout is specified for detecting a connection failure, the connection management threads are generated
according to the number of connections in the connection pool of the system. You need to be more careful because when
timeout is specified for detecting a connection failure, a large amount of memory is consumed as compared to when a
timeout is not specified. The number of connection management threads created is twice the maximum number of
connections in the connection pool. Estimate the required memory appropriately.

• Connection management threads are used along with the timeout of connection adjustment functionality. The timeout of
connection adjustment functionality is also enabled when a timeout is specified for detecting a connection failure.

• When detecting connection failure by enabling the timeout for detecting connection failure, the unused connections that
are removed from the connection pool are not counted in the number of connections of connection pool. As a result, the
sum of the connections in the connection pool and the unused connections that are removed from the connection pool
might temporarily exceed the maximum number of connections specified for the connection pool.

(c) Retry connection when it fails

If an attempt to connect fails, it is no longer necessary to use a user program for retrying the connection. Set the retry
connection so that even when there is decrease in the response of business processing, the business does not terminate
due to the failure.

The guidelines for setting a retry frequency and retry interval are as follows:

8. Performance Tuning (J2EE Application Execution Platform)

282

• If you increase the retry frequency or lengthen the retry interval, there may be a waiting period if the process for
acquiring the connection has started.

• If the time setting derived from multiplying the retry interval with the retry frequency is too long, timeouts occur
in the RMI-IIOP communication. However, continued attempts for reconnecting are also made after the timeout.
Therefore, set up values for the retry interval and the retry frequency such that their product is lesser than the
timeout value.

• Although the retry frequency and retry interval will also depend on the approximate time required by the business
that uses connection of the same resource, Hitachi recommends that you specify at least 10 seconds.

(d) Automatically delete the unused connections from the connection pool by using a sweeper

The connections that remain idle for a given period of time are automatically deleted from the pool by using a
sweeper. Set this functionality when it is likely that the failure will occur if the unused connections are pooled. This
functionality can be set in the resource adaptor.

(e) Pool the connections in advance by using connection warming up

This is a functionality for securing the minimum number of connections in advance and pooling them when a resource
adaptor or a J2EE server is started. With this functionality, you can enhance the response for the connection request
from the application immediately after beginning to use the connection pool. The time required for processing is
longer when the resource adaptor or the J2EE server is started.

(f) Enter a request for acquiring a connection in a queue when all connections are exhausted

This functionality enters a request for acquiring a connection in a queue, when there is a request for connection after
all the pooled connections are exhausted.

The request for connection can be re-opened immediately when a used connection is released or when a connection is
deleted and the number of connections falls below the maximum number of pooled connections. Additionally, the
waiting time can be specified, and hence, an error might occur when the connection cannot be established after the
specified period of time is elapsed.

(g) Reduce unnecessary connections from the connection pool gradually

This functionality reduces the number of connections in case there are unnecessary connections in the connection pool
(Connection adjustment functionality).

Check the number of connection pools at regular intervals. With the maximum number of concurrently executed
connections until the check is performed as the standard value, delete the excess connections from the pool if there are
connections in the pool that exceed this standard value. This will reduce the connections in the pool to a number
adequate for actual operational performance and enable economizing on resources and costs of generating a
connection.

You can specify a timeout value for the deletion process of connections. Use connection management thread for
timeout. Connection management thread is also used for the timeout of detecting a connection failure.

Tip
Connection management thread is used along with the timeout of detecting a connection failure. When a timeout has been
set for the connection adjustment functionality, the timeout is also enabled for detecting a connection failure.

Also, if you use the connection adjustment functionality, the unused connections removed for adjusting the number of
connections of connection pool are not counted in the number of connections of connection pool. As a result, the sum of the
connections in connection pool and the unused connections that are removed from the connection pool might temporarily
exceed the maximum number of connections specified for the connection pool.

(h) Clustering the connection pool

When a database has a cluster configuration, you can also set the cluster configuration for connection pools and
maintain a connection pool for each database node having the cluster configuration (Cluster connection pool
functionality). Database node and connection pool have a one-to-one relationship. If a failure occurs in the database
node, then its corresponding connection pool is also stopped temporarily and becomes unavailable. This enhances the
usability of the system since there is no risk of using a connection in which a failure has occurred.

8. Performance Tuning (J2EE Application Execution Platform)

283

8.5.2 Using statement pooling
The advantages of using a statement pooling and the guidelines for its setup are explained below:

This functionality can be used when a DB Connector is used. The use of this functionality depends on the method
used for connecting with an EIS. A statement pooling cannot be used when the database version used is older than
XDM/RD E2 11-01. For details, see 3.14.4 Statement pooling in the uCosminexus Application Server Common
Container Functionality Guide.

(1) Advantages of using a statement pooling
The process of generating statements such as SQL statements and stored procedure that is necessary for accessing the
database increase the load. The use of a statement pooling helps to reduce the load. Statement pooling is a
functionality that enhances the processing efficiency by pooling in advance the PreparedStatement and the
CallableStatement that are generated once, and reusing them. The processing efficiency is enhanced as
compared to the processing efficiency for generating the statements each time the database is accessed.

Now, the PreparedStatement and the CallableStatement are the instances of the
java.sql.PreparedStatement and java.sql.CallableStatement, respectively that are the APIs of
JDBC.

(2) Guidelines for setup
To use statement pooling, it is necessary to consider the following points before starting the application:

• Use a java.sql.Connection#prepareStatement method having the same signature.

• Specify the same argument value in the java.sql.Connection#prepareStatement method.

Statement pooling does not work properly in the applications that do not meet the above conditions.

Use statement pooling after understanding its relationship with the connection pooling. The points you must note
while configuring the application and setting up the environment are explained as follows:

• The PreparedStatement and the CallableStatement are pooled for each instance of the physical
connection. If there are multiple connections pooled when acquiring a connection, it is likely that a connection, for
which statements are not yet pooled, may be allocated.

• You need to set the pool size keeping in mind the maximum value of each connection of the JDBC driver that is
used, in order to pool the instances of the respective statements.

The following figure shows the relationship between the connection pool and the statement pool:

Figure 8‒7: Relationship between a connection pool and a statement pool

Determine the size of a pool in the case of statement pooling after considering its relationship with connection pooling
according to the contents of the business process. For example, in the case of accessing different tables and using a
different SQL even when the same database is used in different business processes, it may be more effective to
prepare separate DB Connectors for each business process and prepare the connection pool and the statement pool of
only the size required for that business instead of increasing the size of the statement pool and connection pool with
one DB Connector.

8. Performance Tuning (J2EE Application Execution Platform)

284

Figure 8‒8: Use of a connection pool and statement pool according to the business process

If you decrease the size of the pool by using multiple DB Connectors, then there is no surplus of connections pooled
for each business that is likely to result in a shortage of connections during the peak access. Estimate in detail the
number of concurrent executions of the business and tune the settings to avoid any shortage of connections as far as
possible. In addition, tune the size of the pool for each business depending on how many statements are used.

Determine the size of the statement pool when a single DB Connector is used by adding up the following values.
Estimate the pool size considering that DB Connector uses one statement pool internally.

How to calculate the size of PreparedStatement pool and the guidelines for its setup
Assume the resource limit of the JDBC driver of each connection as the maximum value, and calculate the size
based on the number of usages of PreparedStatement that uses the same DB Connector. Set the resource
limit of the JDBC driver according to the limit value of the JDBC driver that is being used.
The number of usages is obtained by adding up following numbers:

• Number of invocations for java.sql.Connection#prepareStatement method by specifying
different arguments from the servlet and JSP

• Number of invocations for java.sql.Connection#prepareStatement method by specifying
different arguments from the Session Bean and the Entity Bean (BMP)

• Number of SQLs used in PreparedStatement internally by the J2EE server for the Entity Bean (CMP)

• Number of invocations for java.sql.Connection#prepareStatement method by specifying
different arguments from the Message-driven Bean

How to calculate the size of CallableStatement pool and the guidelines for its setup
Assume the resource limit of the JDBC driver for each connection as the maximum value, and calculate the size
based on the number of usages of CallableStatement that use the same DB Connector. Set the resource
limit of the JDBC driver according to the limit value of the JDBC driver that is being used.

8. Performance Tuning (J2EE Application Execution Platform)

285

The number of usages is obtained by adding up the following values:

• Number of invocations for java.sql.Connection#prepareCall method by specifying different
arguments from the servlet and JSP

• Number of invocations for java.sql.Connection#prepareCall method by specifying different
arguments from the Session Bean and the Entity Bean (BMP)

• Number of invocations for java.sql.Connection#prepareCall method by specifying different
arguments from the Message-driven Bean

8.5.3 Tuning parameters for optimizing the method of accessing the
database

How to set up the tuning parameters used to optimize the method of accessing a database is explained in this section.

(1) Connection pooling
This subsection explains how to set up tuning parameters for connection pooling.

Specify the items listed in the following table using the server management command (cjsetresprop /
cjsetrarprop) for each resource adapter and define the parameters in the Connector property file.

Table 8‒24: Tuning parameters of connection pooling

Setup item
Location of setup

(parameter name) #1

Minimum number of connections for pooling in the
connection pool

MinPoolSize specified in <property> tag

Maximum number of connections for pooling in the
connection pool

MaxPoolSize specified in <property> tag

Select the method for checking connection failures
within the pool

ValidationType specified in <property> tag

Time interval for regularly checking for any
connection failure within the pool

ValidationInterval specified in <property> tag

Specify whether the requests for connections are to be
queued when all connections are in use

RequestQueueEnable specified in <property> tag

Waiting time when a connection request is managed in
a queue when all connections are being used

RequestQueueTimeout specified in <property> tag

Retry frequency in the case of a connection failure#2 RetryCount specified in <property> tag

Retry interval in the case of a connection failure#2 RetryInterval specified in <property> tag

Time until it is decided to automatically delete the
connections, from the time connection was used last

ConnectionTimeout specified in <property> tag

Time interval before automatic deletion of connection
is executed (connection sweeper)

SweeperInterval specified in <property> tag

Specify whether connection warm-up is to be used Warmup specified in <property> tag

Specify whether to set a timeout for detecting the
connection failure#3

NetworkFailureTimeout specified in <property> tag

Specify whether to set a timeout for the deletion
process of connection adjustment functionality#3

Time interval for executing the connection adjustment
functionality

ConnectionPoolAdjustmentInterval specified in
<property> tag

8. Performance Tuning (J2EE Application Execution Platform)

286

#1
Set in the member resource adaptor when the cluster connection pool functionality is used.

#2
Cannot be set when the cluster connection pool functionality is used.

#3
Common connection management method is used when timeout is used for detecting a connection failure and the connection
adjustment functionality. When either of the timeout is set, timeout is enabled for both connection failure detection and
connection adjustment functionality. When you want to change the timeout of connection failure detection and connection
adjustment functionality, change the settings of the parameter (ejbserver.connectionpool.validation.timeout)
for the J2EE server setup in the Easy Setup definition file. For details, see 4.14.1 Parameters setting the user properties for J2EE
server in the uCosminexus Application Server Definition Reference Guide.

Tip
We recommend the following settings to use the connection pooling functionality in HiRDB or XDM/RD E2:

• To use the connection pooling functionality in HiRDB
Specify 0 in the HiRDB client environment variable PDSWATCHTIME. For details on this parameter, see the HiRDB
UAP Development Guide.

• To use the connection pooling functionality in XDM/RD E2
Specify 0 in the SVINTERVAL parameter of the control statement for invoking the control space or the control
statement for invoking the server space of the DB connection server. For details on this parameter, see the manual VOS3
Database Connection Server.

If the above settings are not specified, the pooled connections might be disconnected from the database due to a timeout.

• If the error detection functionality is used
The connections disconnected from the database due to a timeout are destroyed using the error detection functionality. A
connection can be acquired normally.

• If the error detection functionality is not used
The connections disconnected from the database due to a timeout are acquired.

(2) Statement pooling
This subsection explains how to set up the tuning parameters of statement pooling.

Specify the items listed in the following table using the server management command (cjsetresprop /
cjsetrarprop), and define the parameters in the Connector property file.

Table 8‒25: Tuning parameters of a statement pooling

Setup item Parameter name#

Number of PreparedStatement to be pooled for each
physical connection

PreparedStatementPoolSize specified in <config-
property> tag

Number of CallableStatement to be pooled for each
physical connection

CallableStatementPoolSize specified in <config-
property> tag

#
Specify the usage of the cluster connection pool functionality in the member resource adaptor.

8. Performance Tuning (J2EE Application Execution Platform)

287

8.6 Setting a timeout
In the Application Server, you can set a timeout at several points in order to prevent the state where there is no
response to a request in case of an error.

This section describes the points where you can set a timeout in the entire system and the guidelines for setting the
timeout.

Reference note
When invoking Application Server from OpenTP1 using the TP1 inbound integrated function, you must perform timeout
settings in view of the settings in OpenTP1 besides the contents described in this section. For details, see 4. Invoking
Application Server from OpenTP1 (TP1 inbound integrated function) in the uCosminexus Application Server Common
Container Functionality Guide.

8.6.1 Points where a timeout can be set
In the systems used for executing J2EE applications, you can set up timeouts at the points shown in the following
figure. In the following figure, a Web browser is used as the client. The points will differ when you integrate with a
Web server, and when you use an in-process HTTP server.

8. Performance Tuning (J2EE Application Execution Platform)

288

Figure 8‒9: Points where a timeout can be set (for Web server integration)

If the client is an EJB client, replace the Web container with the EJB client. You can set the timeout ranging from the
EJB client up to the database.

A redirector will not be applicable when you use an in-process HTTP server, and therefore, a timeout will not be set
up at points 2 to 5, and 13. The following figure shows the points where you can set up timeouts to use in-process
HTTP servers:

8. Performance Tuning (J2EE Application Execution Platform)

289

Figure 8‒10: Points where timeouts can be set up (for in-process HTTP servers)

The timeout specified at each point has a specific use that is described in the table below:

Table 8‒26: Purpose of timeout set at each point and default timeout settings

Points Type of timeout Primary usage

1 Timeout set in the server for receiving the
request from the client and sending the data to
the client

For Web server integration
Detecting failures in the communication path or the
Web server

For in-process HTTP servers
Detecting failures in the communication path, or
access from an invalid client

2 Connection timeout specified in the redirector
in the processes for sending the requests to the
Web container

Detecting failures in the communication path or the Web
container

8. Performance Tuning (J2EE Application Execution Platform)

290

Points Type of timeout Primary usage

3 Timeout for sending the request header and
request body set in the redirector in the
processes for sending the requests to the Web
container

Detecting failures in the communication path or the Web
container

4 Timeout set in the redirector for receiving data
from the Web container

Detecting failures in business processing (such as infinite
loop and deadlock) of the J2EE server or the
communication path

5 Timeout set in the Web container for receiving
data from the redirector

Detecting failures in the communication path or the Web
server

6 Timeout set in the Web application for the
method execution time

Detecting failures in business processing (such as infinite
loop and deadlock) of the J2EE server

7 Timeout set in the EJB client for remotely
invoking the Enterprise Bean (RMI-IIOP
communication) and for invoking the JNDI
Naming Service

Detecting failures in business processing (such as infinite
loop and deadlocks) of the J2EE server or the
communication path

8# Timeout set up in the EJB client for invoking
the Enterprise Bean from CTM

Detecting failures in business processing (such as infinite
loop and deadlocks) of the J2EE server or the
communication path

9 Timeout set in the EJB for the method
execution time

Detecting failures in business processing (such as infinite
loop and deadlock) of the J2EE server

10 Timeout set in the EJB container for the
database transaction

Detecting failures in database server (such as server is
down or a deadlock has occurred) or preventing the
extended exclusive use of the resources

11 Timeout set in DB Connector for acquiring a
connection

Detecting errors when a connection is acquired
(communication path errors or resource depletion)

12 Database timeout Detecting failures in database server (such as server is
down or a deadlock has occurred) or preventing the
extended exclusive use of the resources

13 Timeout set in the Web container for sending a
response to the redirector

Detecting failures in the communication path or the
redirector

#
This point exists only when you are using CTM. For a configuration in which CTM is not used, the range of point 7 extends from
the time of execution of remote invocation of the EJB from the Web container to the EJB container, until the dispatch of
execution result from the EJB container to the Web container.

The basic guidelines for setting the above timeouts are as follows:

• The general rule for setting a timeout value is that the closer a point is from the invocation origin (Web client or
EJB client), the higher the timeout value. It is, therefore, recommended to use the following relationship for
setting the timeout.

• Point 1 < Point 5

• Point 4 > Point 6 > Point 7

• Point 7 = Point 8 > Point 9 > Point 10

• Point 10 > Point 11

• Point 10 < Point 12

• Point 9 > Point 12

• Point 1 < Point 13

• When setting the timeout values for points 4, 7, 10 and 12, first check the amount of time normally taken by the
invocation process, and then calculate and set the timeout value for each invocation process (business).

The points 1 to 13 can be divided into the following three categories depending on their location in the system:

8. Performance Tuning (J2EE Application Execution Platform)

291

• For more information on points (1 to 6, and 13) that need to be considered in a Web front-end system.
For details, see 8.6.2 Setting the timeout in a Web front-end system.

• Points (7 to 9) that need to be considered in the back system
For details, see 8.6.3 Setting a timeout in the back-end system.

• Point (10 to 12) that need to be considered during database connection
This point needs to be further classified into a transaction timeout, DB Connector timeout, and database timeout.
For details, see 8.6.4 Setting the transaction timeout and 8.6.6 Setting the database timeout.

For details about the settings of each point, see 8.6.8 Tuning parameters for setting the timeout.

Reference note
The default values for each point are as follows:

Point Default value

1 300 seconds

2 30 seconds

3 100 seconds

4 3,600 seconds

5 600 seconds

6 Not set . No timeout.

7 Not set. Continues to wait for response.

8 A value same as point 7 is automatically inherited and set up when the Enterprise Bean is invoked.

9 Not set. No timeout.

10 180 seconds

11 Differs according to the location of the timeout setup.

• A timeout in establishing a physical connection: 8 seconds

• A timeout in the request for connection during connection depletion: 30 seconds

• A timeout in detecting a connection error: 5 seconds

12 Differs according to the type of database and the location of timeout setting.

For HiRDB
Unlock waiting timeout: 180 seconds
Response timeout: 0 seconds (The HiRDB client continues to wait until there is a response from
the HiRDB server.)
Request interval timeout: 600 seconds

For Oracle (when global transaction is used)
Unlock waiting timeout: 60 seconds

For SQL Server
Timeout in acquiring memory: -1 (For details about the operations when -1 is specified, see the
SQL Server documentation)
Unlock waiting timeout: -1 (Continues to wait until the lock is released)

For XDM/RD E2
Unlock waiting timeout: None (timeout is not monitored)
CPU timeout during SQL execution: 10 seconds
SQL execution timeout: 0 seconds (timeout is not monitored)
Transaction timeout: 600 seconds
Response timeout: 0 seconds (The HiRDB client continues to wait until there is a response from
the XDM/RD E2 server.)

8. Performance Tuning (J2EE Application Execution Platform)

292

Point Default value

13 600 seconds

8.6.2 Setting the timeout in a Web front-end system
This section explains the settings of timeout in a Web front-end system.

When setting the timeout in a Web front-end system, amongst all the timeout values for the entire system, you need to
consider points 1 to 6 and 13 shown in the following figure. These numbers correspond to Figure 8-9 or Figure 8-10.

Tip
When you use an in-process HTTP server, you can set up points 1 and 6. The points 2 to 5, and 13 are not applicable.

Figure 8‒11: The timeout points (points 1 to 6 and 13) to be considered in the case of a Web front-end system

• Waiting time in the Web server for receiving requests from the client and sending the data to the client
(point 1)
When there is a backlog of requests from the Web browser, the redirector resources will be released according to
the timeout. When there is a backlog of responses to the Web browser, (when the Web browser does not receive
the responses), the resources of the Web container in the redirector and the J2EE server will be released according
to the timeout.
In the case of a Web server integration, the same values are set in the above waiting time settings.

8. Performance Tuning (J2EE Application Execution Platform)

293

When you use an in-process HTTP server, you can specify different values for the waiting time for receiving
requests from the client, and the waiting time for sending data to the client.

• Waiting time for sending requests to the Web container of the redirector that is registered in the Web
server (points 2 and 3)
When the redirector sends a request to the Web container and the control does not return due to an error in the
Web container or an error in the communication path between the redirector and the Web container, the redirector
resources will be released according to the timeout. At the same time, the error is notified to the Web browser.
You can set the timeout at this point only in the case of Web server integration.
Point 2 is the waiting time for establishing connection with the Web container and Point 3 is the waiting time for
the process of sending requests to the Web container.

• Waiting time for receiving data from the Web container of the redirector registered in the Web server
(point 4)
If there is an error in the J2EE application and the control does not return, the redirector resources will be released
according to the timeout. At the same time, the error is notified to the Web browser. You can set the timeout at
this point only in the case of Web server integration.
Tip

The unit for the settings is worker. Hitachi, therefore, recommends that when the processing time differs according to
the business, define the worker for each Web application corresponding to the business and set the timeout value.

• Waiting time for receiving data from the redirector, in the Web container (point 5)
When there is a backlog of requests from the browser, the J2EE server (Web container) resources will be released.
You can set the timeout at this point only in the case of Web server integration.

• Waiting time for processing request in the Web container (point 6)
The functionality of monitoring the execution time of J2EE application is used to set this timeout. See 8.6.7
Setting the method timeout in the J2EE application.

• Waiting time for sending a response from the Web container to the redirector (point 13)
When the Web container sends a response to the redirector and the control does not return due to an error in the
redirector or an error in the communication path between the redirector and the Web container, the Web container
resources will be released according to the timeout. At the same time, the error is notified to the Web browser.
You can set the timeout at this point only in the case of Web server integration.

8.6.3 Setting a timeout in the back-end system
This section describes the timeout settings in the back-end system. Among the timeout values set in the back-end
system, the value related to the transactions with EIS, such as a database, is described in 8.6.4 Setting the transaction
timeout. The section here describes the timeout related to the EJB client and the EJB container.

When setting a timeout in the back-end system, amongst the timeout values of the entire system, you need to consider
the points 7 and 8 shown in the following figure. These numbers correspond to Figure 8-9 or Figure 8-10.

Figure 8‒12: Timeout points to be considered in the case of a back-end system

8. Performance Tuning (J2EE Application Execution Platform)

294

• Waiting time in the client when the Enterprise Bean is invoked remotely (RMI-IIOP communication) and
when the CORBA Naming Service is invoked (point 7)
If the control does not return due to an error in accessing the CORBA Naming Service or the J2EE application, the
error is notified to the EJB client by the timeout.

• Waiting time at client side when the Enterprise Bean is invoked from CTM or the EJB client (point 8)
For trouble such as infinite loop or deadlock occurs in J2EE applications, the CTM resources are released. The
error is reported to EJB client.
Tip

When invoking the Enterprise Bean from the EJB client, you can specify the timeout in usrconf.properties or in
the API (method of the com.hitachi.software.ejb.ejbclient.RequestTimeoutConfig class)
provided by Application Server.

The definition of the usrconf.properties affects the entire process. The timeout value specified in the API
affects only the thread or the object that invokes the business method. The API specifications override the definitions of
usrconf.properties.

Hitachi, therefore, recommends that you define the standard values that you want to set for the entire process, in the
usrconf.properties and use the appropriate API to set the detailed values as per the invoked business.

If there is a timeout during the invocation of the Enterprise Bean, the javax.rmi.RemoteException (such
as org.omg.CORBA.TIMEOUT) exception is notified to the EJB client-side. Consequently, the request from the
client-side is cancelled. At this point, however, the process will continue if the Enterprise Bean process on the
server-side has already started. As a result, the server-side processing terminates normally even in the event of a
timeout.

• Waiting time for method processing in the EJB container (point 9)
The functionality of monitoring the execution time of the J2EE application is used to set this waiting time. See
8.6.7 Setting the method timeout in the J2EE application.

In addition, in point 9, you can also set the timeout value for instances of the 'method-ready' pool of the Stateless
Session Bean and 'pool' of the Entity Bean that cannot be obtained within the specified time. In this case,
java.rmi.RemoteException (in the case of a remote client) or javax.ejb.EJBException (in the case of
a local client) is sent to the client.

8.6.4 Setting the transaction timeout
This section explains the transaction timeout settings. Set the timeout for transactions with EIS such as the database
system. This section describes the transaction timeout when DB Connector is used for accessing the database.

When setting the transaction timeout, amongst all the timeout values of the entire system, you need to consider the
transaction of the database with the EJB container (point 10 in the figure). These numbers correspond to Figure 8-9 or
Figure 8-10.

Figure 8‒13: Timeout points to be considered in the case of transaction with EIS

The Application Server will execute the following processes when there is a transaction timeout:

8. Performance Tuning (J2EE Application Execution Platform)

295

• The active transactions are rolled back.

• Close the connections participating in the transaction and delete them from the connection pool.
Tip

The method of setting the timeout value of a transaction is different in the case of CMT and BMT.

• For CMT
You can define the transaction timeout for CMT in usrconf.properties or you can set the timeout as an
attribute of the Enterprise Bean, interface or method. Use the server management commands for setting Enterprise
Bean, interface or method attributes.
The definition of the usrconf.properties affects the entire process. The timeout value specified in the
Enterprise Bean, interface or method attributes affect only the transactions used by the relevant Enterprise Bean,
interface or method. These specifications override the definitions in usrconf.properties.
Hitachi, therefore, recommends that you define the standard values to be set in the entire process, in the
usrconf.properties and set the detailed values, as per the invoked business, as the attributes of the
Enterprise Bean, interface or method.

• For UserTransaction
You can specify a transaction timeout for UserTransaction in usrconf.properties or in JTA API (the
javax.transaction.UserTransaction#setTransactionTimeout method). The definition of the
usrconf.properties affects the entire process. The timeout value specified in API only affects the
transactions that issued the API. The API specifications override the definitions in usrconf.properties.
Hitachi, therefore, recommends that you define the standard values to be set in the entire process, in the
usrconf.properties and use the appropriate API to set the detailed values as per the invoked business.

Tip
Specify settings so that the set values related to a transaction timeout and a connection establishment have the following
relationship:
Transaction timeout > Error detection timeout + Maximum waiting time for
connection Connection count + Retry interval Retry count
This relationship, if shown with parameters, is as follows:
ejbserver.jta.TransactionManager.defaultTimeOut >
ejbserver.connectionpool.validation.timeout + loginTimeout (RetryCount+1) +
RetryInterval RetryCount
Also, in the transaction timeout settings, you must add the transaction execution time in addition to the time required for
establishing a connection.

If a transaction timeout occurs, the exception is not notified to the user application. The message KDJE31002-W,
however, is output to the log file and the J2EE server. An exception is notified when you attempt to use the JTA
interface or the JDBC interface by using the relevant transaction from the user application.

8.6.5 Setting up a timeout in DB Connector
This subsection describes the timeout settings in DB Connector.

You can set up the following three types of timeouts with DB Connector:

• Timeout in establishing a physical connection
This timeout occurs when a physical connection is established. You can set the timeout in HiRDB, Oracle, and
SQL Server.
The operation executed when this timeout occurs is as follows:

• An exception is reported to the user application.

• Timeout in the request for connection during connection depletion
This timeout occurs when waiting for a connection request during connection depletion.
The operation executed when this timeout occurs is as follows:

• An exception (java.sql.SQLException) is reported to the user application.

• Timeout in detecting a connection error

8. Performance Tuning (J2EE Application Execution Platform)

296

This timeout occurs when a connection error is detected. This timeout occurs when an error is detected during a
connection request.
The operation executed when this timeout occurs is as follows:

• The message KDJE48602-W indicating a timeout is output. The connection in which the error was detected is
destroyed and a new connection is returned to the user.

8.6.6 Setting the database timeout
This section explains the database timeout settings for the following databases:

• HiRDB

• Oracle

• SQL Server

• XDM/RD E2

In the case of Oracle, the items that can be set differ depending on whether the global transaction or the local
transaction is being used.

(1) Timeout in HiRDB
You can set the following three types of timeout values in HiRDB:

• Unlock waiting timeout
Set this timeout for preventing deadlocks and extended exclusive use of the resources. Set the timeout value in the
pd_lck_wait_timeout parameter of the common system definition of the HiRDB server. The timeout value set here
is the maximum time for monitoring the exclusion waiting time. The exclusion waiting time is the time period
from when the exclusion request is in a queue until it is released from the queue.
When this timeout occurs, the Application Server and HiRDB execute the following operations:

• An exception (java.sql.SQLException) is notified to the user application.

• The HiRDB message KFPA11770-I, indicating that timeout has occurred, or the message KFPA11911-E,
indicating that a deadlock has occurred, are output.

• The active transactions are rolled back.

• After terminating the business method of the user application, the connection is closed and deleted from the
connection pool.

• Response timeout
Set this timeout for detecting a failure on the server-side of the database system.
Set the timeout value in the environment variable PDCWAITTIME of the HiRDB client. The timeout period set
here is the maximum waiting time of the HiRDB client from when it makes a request to the HiRDB server until a
response is returned. Specify this timeout value in cases such as monitoring the time for a long-term SQL.
When this timeout occurs, the Application Server and HiRDB execute the following operations:

• An exception (java.sql.SQLException) is notified to the user application.

• The HiRDB message KFPA11732-E, indicating that timeout has occurred, is output.

• The active transactions are rolled back.

• The connection is closed and deleted from the connection pool.

• Request interval timeout
Set this timeout for detecting a failure on the client-side of the database system.
Set the timeout value in the environment variable PDSWAITTIME of the HiRDB client. The timeout value set
here is the maximum waiting time of the HiRDB server from when the HiRDB server returns a response to the
request from the HiRDB client until the next request is sent by the HiRDB client. The time is monitored for the
transactions that are being processed (from the start of SQL execution until commit or rollback). The timeout
value is reset when the request from the HiRDB client reaches the HiRDB server.
When this timeout occurs, the Application Server and HiRDB execute the following operations:

• An exception (java.sql.SQLException) is notified to the user application.

8. Performance Tuning (J2EE Application Execution Platform)

297

• The HiRDB message KFPA11723-E, indicating that timeout has occurred, is output.

• The active transactions are rolled back.

• The connection is closed and deleted from the connection pool.

• Connection timeout in the non-block mode
This timeout is used to detect a LAN error quickly.
Specify the timeout value in the HiRDB client environment variable PDNBLOCKWAITTIME. The timeout value
specified here monitors the connection between the HiRDB server and the HiRDB client.
Application Server and HiRDB execute the following operation when this timeout is detected:

• An exception (java.sql.SQLException) is reported to the user application.

(2) Timeout in Oracle (for local transaction)
When you use the local transaction in Oracle, you can set up the following timeout values:

• Query timeout
Query timeout is a timeout that you can set up only when you use the Oracle JDBC Thin Driver as a JDBC driver.
You use the setQueryTimeout method of the java.sql.Statement interface to specify a timeout value.
For details on the notes when Oracle JDBC Thin Driver is used to connect to Oracle, see 3.6.6 Preconditions and
notes on connecting to Oracle in the uCosminexus Application Server Common Container Functionality Guide.

If a deadlock occurs, the Oracle message ORA-00060 is output. After the Application Server terminates the business
method of the user application, the connection is closed and is deleted from the connection pool.

(3) Timeout in Oracle (for global transaction)
You can set up the following timeout values when the global transaction is being used in Oracle:

• Query timeout
For details about the query timeout, see the explanation related to the query timeout in (2) Timeout in Oracle (for
local transaction).

• Unlock waiting timeout
You set up this timeout for preventing deadlocks and extended exclusive use of resources. Set up the timeout
value in the DISTRIBUTED_LOCK_TIMEOUT parameter of the Oracle server definition. When this timeout
occurs, the Application Server and Oracle execute the following operations:

• An exception (java.sql.SQLException) is reported to the user application.

• The Oracle message ORA-02049, indicating that the timeout has occurred or the Oracle message
ORA-00060 indicating that a deadlock has occurred, is output.

• After terminating the business method for the user application, the connection is closed and deleted from the
connection pool.

The active transactions are not rolled back.

(4) Timeout in SQL Server
You can set the following two types of timeout values in the SQL Server:

• Timeout in acquiring memory
Set this timeout for monitoring the waiting time for acquiring the memory for SQL execution. Set the timeout
value in the query wait parameter of the environment settings option of the SQL Server. The timeout period set
here is the waiting time for acquiring the memory, when the memory required for executing SQL is not obtained.
When the timeout occurs, the Application Server and the SQL Server execute the following operations:

• An exception (java.sql.SQLException) is notified to the user application.

• The SQL Server message 8645, indicating that timeout has occurred, is output.

• The active transactions are rolled back.

8. Performance Tuning (J2EE Application Execution Platform)

298

• After terminating the business method of the user application, the connection is closed and deleted from the
connection pool.

• Unlock waiting timeout
Set this timeout for preventing deadlock and extended exclusive use of the resources. Set the timeout value by
executing the SET LOCK_TIMEOUT statement of the SQL Server. The timeout period set here is the waiting
time until the lock is released.
When timeout occurs, the Application Server and the SQL Server execute the following operations:

• An exception (java.sql.SQLException) is notified to the user application.

• The SQL Server message 1222, indicating that timeout has occurred, is output.

• After terminating the business method of the user application, the connection is closed and deleted from the
connection pool.

When a deadlock occurs in the SQL Server, the Application Server and the SQL Server execute the following
operations:

• An exception (java.sql.SQLException) is notified to the user application.

• The SQL Server message 1205, indicating that a deadlock has occurred, is output.

• The active transactions are rolled back.

• After terminating the business method of the user application, the connection is closed and deleted from the
connection pool.

(5) Timeout in XDM/RD E2
You can set the following five types of timeout values in XDM/RD E2:

• Unlock waiting timeout
Set this timeout for preventing deadlock and extended exclusive use of resources. Set the timeout value in the
TIMER parameter of the system option definition of XDM/BASE. The timeout value set here is the maximum
time for monitoring the exclusion waiting time. The exclusion waiting time is the time from which the exclusion
request is pending in a queue until it is released from the queue.
When timeout occurs, the Application Server and XDM/RD E2 execute the following operations:

• An exception (java.sql.SQLException) is notified to the J2EE application.

• The message JXZ1911I of XDM/RD E2, indicating that a timeout or deadlock has occurred, is output.

• The active transactions are rolled back.

• After terminating the business method of the J2EE application, the connection is closed and deleted from the
connection pool.

The operations executed when a deadlock occurs in XDM/RD E2 are similar to the operations that are executed
when a timeout occurs in unlock waiting timeout.

• CPU timeout during SQL execution
Set this timeout for monitoring the CPU processing time during SQL execution. Set the timeout value in the
SQLCTIME parameter of the control statement for invoking control space or the control statement for invoking
server space of the DB connection server. The timeout period set here is the maximum time for monitoring the
CPU processing time during the execution of one SQL. Specify this timeout value when monitoring the time for
the long-term SQL.
When timeout occurs, the Application Server and XDM/RD E2 execute the following operations:

• An exception (java.sql.SQLException) is notified to the J2EE application.

• A message indicating that timeout has occurred is output. The message differs depending on the value
specified in the VPARTOPTION parameter of the control statement for invoking control space of the DB
connection server. When the value is not specified or when ERROR NORMAL is specified, the HiRDB client
message KFPA11723-E is output. If a value other than that given above is specified, the XDM/RD E2
message JXZ1874I is output.

• The active transactions are rolled back.

• If VPARTOPTION parameter is not specified or if ERROR NORMAL is specified, the connection is closed
and deleted from the connection pool. If a value other than that given above is specified, the connection is

8. Performance Tuning (J2EE Application Execution Platform)

299

closed and deleted from the connection pool when the database is accessed for the first time after the timeout
occurs, or after the business method of the J2EE application terminates.

• SQL execution timeout
Set this timeout for monitoring the time elapsed during SQL execution. Set the timeout value in the SQLETIME
parameter of the control statement for invoking control space or the control statement for invoking server space of
the DB connection server. The timeout period set here is the maximum time for monitoring the time elapsed in the
execution of one SQL. Specify this timeout value when monitoring the time for the long-term SQL.
When timeout occurs, the Application Server and XDM/RD E2 execute the following operations:

• An exception (java.sql.SQLException) is notified to the J2EE application.

• The message indicating that timeout has occurred is output. The message differs depending on the value
specified in the VPARTOPTION parameter of the control statement for invoking control space of the DB
connection server. When the value is not specified or when ERROR NORMAL or ERROR SQLCTIME is
specified, the HiRDB client message KFPA11723-E is output. If a value other than that given above is
specified, the message JXZ1874I of XDM/RD E2 is output.

• The active transactions are rolled back.

• When VPARTOPTION parameter is not specified, or if ERROR NORMAL or ERROR SQLCTIME is
specified, the connection is closed and deleted from the connection pool. If a value other than that given above
is specified, the connection is closed and deleted from the connection pool when the database is accessed for
the first time after the timeout occurs, or after the business method of the J2EE application terminates.

• Transaction timeout
Set this timeout for monitoring the elapsed time from the starting of the transaction. Set the timeout value in the
SVETIME parameter of the control statement for invoking control space or the control statement for invoking
server space of the DB connection server. The timeout value set here is the maximum time for monitoring the
elapsed time of the transaction.
When timeout occurs, the Application Server and XDM/RD E2 execute the following operations. If an SQL is
being executed when timeout occurs, it is executed at that time. If the SQL is not being executed, it is executed
during the SQL execution after the timeout occurs.

• An exception (java.sql.SQLException) is notified to the J2EE application.

• The message indicating that timeout has occurred is output. The message differs depending on the value
specified in the VPARTOPTION parameter of the control statement for invoking control space of the DB
connection server. When the value is not specified, or when ERROR NORMAL or ERROR SQLCTIME is
specified, the HiRDB client message KFPA11723-E is output. If a value other than that given above is
specified, the XDM/RD E2 message JXZ1874I is output.

• The active transactions are rolled back.

• If the VPARTOPTION parameter is not specified, or if ERROR NORMAL or ERROR SQLCTIME is
specified, the Application Server and XDM/RD E2 the connection is closed and deleted from the connection
pool. If a value other than that given above is specified, the connection is closed and deleted from the
connection pool when the database is accessed for the first time after the timeout occurs, or after the business
method of the J2EE application terminates.

• Response timeout
Set this timeout for detecting failures on the server-side of the database system.
Set the timeout value in the environment variable PDCWAITTIME of the HiRDB client. The timeout value set
here is the maximum waiting time of the HiRDB client from when it makes a request to the XDM/RD E2 server
until the response is returned. Specify this timeout value when monitoring the time for the long-term SQL.
When timeout occurs, the Application Server and HiRDB execute the following operations:

• An exception (java.sql.SQLException) is notified to the J2EE application.

• The HiRDB client message KFPA11732-E, indicating that timeout has occurred, is output.

• The active transactions are rolled back.

• The connection is closed and deleted from the connection pool.

8. Performance Tuning (J2EE Application Execution Platform)

300

(6) Processing of the user application when timeout or deadlock occurs during database
access

When an exception occurs in the user application due to a deadlock or timeout of the database, roll back the active
transactions and suspend the processing of the business method. Check and, if necessary, revise the tuning parameters
explained in this section.

8.6.7 Setting the method timeout in the J2EE application
This section explains the settings for method timeout in the J2EE application. The method timeout settings can help
you to detect the occurrence of an infinite loop in the business processing on the Web container or EJB container, in
Point 6 and Point 8. You can also forcibly cancel (method cancellation) the method that detected the timeout. For
details about the method cancellation functionality, see 5.3.2 J2EE application execution time monitoring in the
uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

The following subsections explain the concept of setting the method timeout:

When method invocation is nested in the J2EE application, specify the order for invoking the method so that a higher
value can be set as the timeout value at the invocation source.

An example of setup is given below:

8. Performance Tuning (J2EE Application Execution Platform)

301

Figure 8‒14: Example of setup of method timeout

In this example, a high value is set for the method that is close to the invocation source. As a result, if timeout occurs
somewhere in the method, timeout will occur sequentially from the method farthest from the client. The timeout is
notified through a message. Depending on the settings, method cancellation can be automatically executed at this
time.

If method timeout and method cancellation are set for the methods for executing remote invocation, you need to pay
attention to the invocation order. In the method cancellation functionality, the methods that are being remotely
invoked are considered to be running in the protected area. If timeout occurs first in the method closer to the
invocation source, the method cannot be cancelled since the method is being remotely invoked. As shown in the above
example, if you set a high value in the methods closer to the invocation source, since the timeout occurs sequentially
from the methods farthest from the invocation source, the method in which timeout has occurred is not being remotely
invoked. You can, therefore, definitely cancel the method.

Even if the method timeout and method cancellation are set for the methods for executing local invocation, you can
integrate the timed-out method with the cancelled method by canceling sequentially from the methods farthest from
the invocation source.

For details about the methods that can be used to set up the timeout value, see 5.3.4 Method cancellation in the
uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

8. Performance Tuning (J2EE Application Execution Platform)

302

Precautions when a locally invoked method is invoked by nesting
If app or all are specified in the ejbserver.rmi.localinvocation.scope of the <param-name>
tag of the Easy Setup definition file, a locally invoked method that is invoked by nesting from one method is
executed in all the identical threads. At this time, note the following points:

• If timeout and method cancellation of a method invoked by nesting fails, timeout will not occur in the other
methods of the identical threads until that method is terminated.

• When method cancellation is executed for the method that has been invoked by nesting from a timed-out
method, the container cancels only the method for which method cancellation was executed. The invocation
source method in which timeout has occurred will not be cancelled. As a result, even after the method is
cancelled, the invoked methods will be terminated sequentially, as in the case of the normal invocation of a
nested method. The timeout will also be monitored for such sequentially invoked methods.

The following figure shows the precautions in the case of nested invocation of a locally invoked method in the
same thread:

Figure 8‒15: Precautions in the case of nested invocation of a locally invoked method in the same
thread

8. Performance Tuning (J2EE Application Execution Platform)

303

8.6.8 Tuning parameters for setting the timeout
This section explains how to set up tuning parameters used for timeout settings.

(1) Timeout set in the Web server for receiving requests from the client and sending the data
to the client

This is a tuning parameter for setting the timeout at point 1 of Figure 8-9 or Figure 8-10. The location of setup differs
according to the Web server used.

In the case of Web server integration, set the tuning parameter for each Web server. You edit the files for specifying
the settings.

Table 8‒27: Tuning parameters for the timeout to be set in the Web server for receiving requests from the
client and sending the data to the client (for Web server integration)

Setup item Location of setup

Timeout for receiving requests from the
client and sending data to the client

Timeout directive of httpsd.conf

Note: When you are using Microsoft IIS as the Web server, edit the receive_client_timeout key in
isapi_redirect.conf.

For an in-process HTTP server, specify the settings in each J2EE server.

You set up the items listed in the following table using the Smart Composer functionality. Define the parameters in the
Easy Setup definition file.

Table 8‒28: Tuning parameters for the timeout to be set in the Web server for receiving requests from the
client and sending the data to the client (for an in-process HTTP server)

Setup item Setup target Location of setup (parameter name)

Timeout for receiving requests
from the client

Logical J2EE server
(j2ee-server)

webserver.connector.inprocess_http.recei
ve_timeout

Timeout for sending data to the
client

Logical J2EE server
(j2ee-server)

webserver.connector.inprocess_http.send_
timeout

(2) Timeout set in the redirector for sending the data to the Web container
This is a tuning parameter for setting the timeout at point 2 and point 3 of Figure 8-9.The following table describes the
tuning parameters for the timeout to be set in the redirector. You can specify the tuning parameter only in the case of
Web server integration.

Specify the items listed in the following table with the Smart Composer functionality. You define the parameters in
the Easy Setup definition file.

Table 8‒29: Tuning parameters for the timeout to be set in the redirector

Point Setup item Setup target
Location of setup

(parameter name)#

2 Connection timeout for Web
container when sending requests

Logical Web server (web-
server)

JkConnectTimeout

3 Timeout for sending requests Logical Web server (web-
server)

JkSendTimeout

#
When you are using Microsoft IIS as the Web server, edit the connect_timeout key in isapi_redirect.conf.

8. Performance Tuning (J2EE Application Execution Platform)

304

(3) Timeout set in the redirector for receiving the data from the Web container
This is a tuning parameter for setting the timeout at point 4 of Figure 8-9.

You set up the tuning parameters for each worker definition of the redirector. The following table describes the tuning
parameters for the timeout to be set up in the redirector.

You specify the items listed in the following table using the Smart Composer functionality and define the parameters
in the Easy Setup definition file.

Table 8‒30: Tuning parameters for the timeout to be set in the redirector

Setup item Setup target Location of setup (parameter name)

Communication timeout of waiting
for response data

Logical Web server (web-server) worker.worker-
name.receive_timeout

You can specify this tuning parameter only in the case of Web server integration.

(4) Timeout set in the Web container for receiving the data from the redirector
This is a tuning parameter for setting the timeout at point 5 of Figure 8-9.

You set up the tuning parameter for each J2EE server. The following table describes tuning parameters for the timeout
to be set in the Web container.

You specify the items listed in the following table using the Smart Composer functionality and define the parameters
in the Easy Setup definition file.

Table 8‒31: Tuning parameters for the timeout to be set in the Web container

Setup item Setup target Location of setup (parameter name)

Timeout in waiting for reply
from redirector

Logical J2EE server (j2ee-server) webserver.connector.ajp13.receive_t
imeout

You can specify this tuning parameter only in the case of Web server integration.

(5) Timeout set in the Web container for receiving the data from the redirector
This is a tuning parameter for setting the timeout at the point 13 of Figure 8-9.

You set up the tuning parameter for each J2EE server. The following table describes the tuning parameters for the
timeout to be set up in the Web container.

You specify the items listed in the following table using the Smart Composer functionality and define the parameters
in the Easy Setup definition file.

Table 8‒32: Tuning parameters for the timeout to be set in the Web container

Setup item Setup target Parameter name

Timeout of response sending
process

Logical J2EE server (j2ee-
server)

webserver.connector.ajp13.send_timeo
ut

You can specify this tuning parameter only in the case of Web server integration.

(6) Timeout set in the EJB client for remotely invoking the Enterprise Bean (RMI-IIOP
communication) and for invoking the Naming Service by JNDI

This is a tuning parameter for setting the timeout at point 7 of Figure 8-9 or Figure 8-10.

Set the tuning parameter for each J2EE server, EJB client application, or invocation by API.

The following table describes the tuning parameters (remote invocation by RMI-IIOP communication) for timeout to
be set in the EJB client:

8. Performance Tuning (J2EE Application Execution Platform)

305

Table 8‒33: Tuning parameters for the timeout to be set in the EJB client (remote invocation by RMI-IIOP
communication)

Units Method of setup Setup item Location of setup

Each
J2EE
server

Smart Composer
functionality

Communicati
on timeout
between
client and
server

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
ejbserver.rmi.request.timeout

Each EJB
client
applicatio
n

Specify the
system property to
be specified at the
time of editing or
starting a file

Definition file (in the case of edit file)
usrconf.properties

Parameter name
ejbserver.rmi.request.timeout key

Each API API When setting for each object
RequestTimeoutConfig#setRequestTimeout (java.rmi.Remote
obj, int sec) method#

When setting for each thread
RequestTimeoutConfig#setRequestTimeout (int sec) method#

#
The name of the package is com.hitachi.software.ejb.ejbclient.

The following table describes the tuning parameters (invoking the Naming Service) for timeout to be set in the EJB
client:

Table 8‒34: Tuning parameters for the timeout to be set in the EJB client (invoking the Naming Service)

Units Method of setup Setup item Location of setup

Each J2EE server Smart Composer
functionality

Period of communication
timeout with Naming
Service

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
ejbserver.jndi.request.timeo
ut

Each EJB client
application

Specify the system
property to be specified at
the time of editing or
starting a file

Definition file (in the case of edit file)
usrconf.properties

Parameter name
ejbserver.jndi.request.timeo
ut key

(7) Timeout set up in the EJB client for invoking the Enterprise Bean from CTM
This is a tuning parameter for setting up timeout at point 8 of Figure 8-9 or Figure 8-10.

You set up the tuning parameter for each J2EE server, EJB client application, or each invocation by API.

A value same as that set up in (6) Timeout set in the EJB client for remotely invoking Enterprise Bean (RMI-IIOP
communication) and for invoking Naming Service by JNDI is inherited as the setup value of this timeout.

(8) Timeout set in the EJB container for the database transaction (when DB Connector is
used)

This is a tuning parameter for setting the timeout at point 10 of Figure 8-9 or Figure 8-10.

8. Performance Tuning (J2EE Application Execution Platform)

306

Set the tuning parameter for each J2EE server, Enterprise Bean, interface, method (in the case of CMT), or each
invocation by API (in the case of BMT).

The following table describes the tuning parameters for transaction timeout:

Table 8‒35: Tuning parameters for transaction timeout

Units Method of setup Setup item Location of setup

Each J2EE
server

Smart Composer
functionality

Default
transaction
timeout value of
a transaction

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
ejbserver.jta.TransactionManager.defaul
tTimeOut

Each Enterprise
Bean, interface,
method (in the
case of CMT)

The cjsetappprop
command of the server
management command

Transaction
timeout time

Definition file
Session Bean property file, Entity Bean property file, or
Message-driven Bean property file

Parameter name
<ejb-transaction-timeout>

Each API (in
the case of
BMT)

API UserTransaction#setTransactionTimeout method#

#
The name of the package is javax.transaction.

(9) DB Connector timeout
This is a tuning parameter for setting the timeout at point 11 of Figure 8-9 or Figure 8-10.

Set the tuning parameter for each DB Connector.

The following table describes the tuning parameters for DB Connector.

Table 8‒36: Tuning parameters for DB Connector

Units Method of setup Setup item Location of setup

Each DB
Connector

Server management
commands
cjsetrarprop or
cjsetresprop

Timeout in
establishing a
physical
connection

Definition file
Connector property file

Setup target
DB Connector

Parameter name
loginTimeout

Timeout in the
request for
connection
during
connection
depletion

Definition file
Connector property file

Setup target
DB Connector

Parameter name
RequestQueueTimeout

Each J2EE server Smart Composer
functionality

Timeout in
detecting a
connection error

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

8. Performance Tuning (J2EE Application Execution Platform)

307

Units Method of setup Setup item Location of setup

Each J2EE server Smart Composer
functionality

Timeout in
detecting a
connection error

Parameter name
ejbserver.connectionpool.validation.timeou
t#

#
The same property as the timeout value of the connection adjustment functionality.

(10) Database timeout
This is a tuning parameter for setting the timeout at point 12 of Figure 8-9 or Figure 8-10.

The database timeout differs according to the type of database used and the operation mode of the server. This section
explains how to set the timeout value when accessing the HiRDB, Oracle, SQL Server, or XDM/RD E2 by using the
DB Connector.

Reference note
When Oracle is used, you can use the tuning parameters for setting the timeout only when global transaction is used. When
local transaction is used, you cannot use the tuning parameters for setting timeout. You can, however, set the query timeout
that is set by the method, in the case of both global and local transactions.

(a) Timeout settings in HiRDB

Set the timeout value in the common system definition of the HiRDB server or the environment variable of the
HiRDB client. For details, see the manual HiRDB System Definition or the manual HiRDB UAP Development Guide.

The following table describes the tuning parameters used for setting the timeout in HiRDB:

Table 8‒37: Tuning parameters for setting the timeout in HiRDB

Type of timeout Location of setup Method of setup
(parameter name) Settings

Unlock waiting
timeout

Common system definition of the
HiRDB server

pd_lck_wait_tim
eout parameter

The settings are optional.

Response timeout Environment variable of the HiRDB
client

PDCWAITTIME Specify a value greater than the value
of transaction timeout.

Request interval
timeout

Environment variable of the HiRDB
client

PDSWAITTIME Specify a value greater than the value
of transaction timeout.

Reference note
If PDCWAITTIME and PDSWAITTIME are smaller than the transaction timeout value, even if the processing is within the
time limit for the transaction, the database processing exceeds the time limit and a timeout occurs.

In this case, the database connection is lost regardless of the transaction being in process, and the transaction manager
cannot conclude the transaction.

Also, in the case of a global transaction, the transaction must be recovered because the instruction about transaction
conclusion does not reach after the connection is lost.

(b) Timeout settings in Oracle (when global transaction is used)

Set the timeout value in the DISTRIBUTED_LOCK_TIMEOUT parameter of the Oracle server definition.

In addition to the above, the setting of SesTm parameter of XAOpenString affects the timeout. This parameter
cannot be tuned.

(c) Timeout settings in SQL Server

Set the timeout value by executing the parameter or statement in the environment settings option of the SQL Server.

The following table describes the tuning parameters for setting the timeout in the SQL Server.

8. Performance Tuning (J2EE Application Execution Platform)

308

Table 8‒38: Tuning parameters for setting the timeout in the SQL Server

Type of timeout Location of setup

Method of setup
(name of

parameter or
statement

Settings

Timeout in acquiring
memory

Server configuration option query wait
parameter

The settings are optional.

Unlock waiting
timeout

-- SET
LOCK_TIMEOUT
statement

The settings are optional.

Legend:
--: Not applicable.

(d) Timeout settings in XDM/RD E2

Set the timeout value in the system option definition of the XDM/BASE, the environment variable of the HiRDB
client, and the control statement for invoking control space or the control statement for invoking server space of the
DB connection server.

The following table describes the tuning parameters for setting the timeout in XDM/RD E2:

Table 8‒39: Tuning parameters for setting the timeout in XDM/RD E2

Type of timeout Location of setup Method of setup
(parameter name) Settings

Unlock waiting
timeout

System option definition of XDM/
BASE

TIMER The settings are optional.#1

CPU timeout during
SQL execution

The control statement for invoking
control space or control statement for
invoking server space of the DB
connection server

SQLCTIME Specify a value greater than the value
of transaction timeout.#2

SQL execution
timeout

The control statement for invoking
control space or control statement for
invoking server space of the DB
connection server

SQLETIME Specify a value greater than the value
of transaction timeout.#2

Transaction timeout The control statement for invoking
control space or control statement for
invoking server space of the DB
connection server

SVETIME Specify a value greater than the value
of transaction timeout.#2

Response timeout HiRDB client environment variable PDCWAITTIME Specify a value greater than the value
of transaction timeout.#3

#1
For details, see the manual VOS3 Data Management System XDM E2 Node System Definition (XDM/BASE, SD, or TM2).

#2
For details, see the manual VOS3 Database Connection Server.

#3
For details, see the manual HiRDB XDM/RD E2 Connection Functionality.

(11) Method timeout in J2EE application
This is a tuning parameter for setting the timeout at point 6 and point 9 of Figure 8-9 or Figure 8-10.

Set the timeout value as an application attribute when you want to set the timeout for each method in the Web
application or the Enterprise Bean. Set the operations in the case of timeout as an application attribute as well. You
specify these items using the server management command (cjsetappprop).

8. Performance Tuning (J2EE Application Execution Platform)

309

The following table describes the tuning parameters for setting the timeout in the method execution time. The location
of setup differs for each point.

Table 8‒40: Tuning parameters for setting the timeout for the method execution time

Points to set
Type of timeout and

operations in the case of
timeout

Location of setup

6 Request processing method for
the filter, servlet or JSP

Definition file
Servlet property file

Parameter name
<method-observation-timeout>

9 Request processing method for
the Enterprise Bean

Definition file
Session Bean property file, Entity Bean property file, or
Message-driven Bean property file

Parameter name
<ejb-method-observation-timeout>

6 and 9 Operations for each application
when timeout occurs

Definition file
Application property file

Parameter name
<method-observation-recovery-mode>

8. Performance Tuning (J2EE Application Execution Platform)

310

8.7 Optimizing the operations of the Web application
This chapter explains how to tune the performance of the Web application. Determine the tuning in the case of a Web
front-end system.

The following three types of tuning methods are explained below:

• Separate the deployment of the static contents and the Web application

• Caching static contents

• Distribute the requests by using the redirector (in the case of Web server integration)

8.7.1 Separating the deployment of the static contents and the Web
application

From the files that are used for responding to the requests from the client such as HTML file and image file, the
contents that remain the same and do not change according to the contents of the request are called static contents. On
the other hand, the contents that are dynamically generated according to the requests from the client, such as servlets
and JSPs, are called dynamic contents.

The following section explains how to enhance the performance by separating and deploying the static contents and
Web applications that are the dynamic contents. The setup method is different when you integrate with a Web server,
and when you use an in-process HTTP server.

Each example of setup is explained on the basis of an example of displaying an HTML page consisting of frames and
inline images, as shown in the following figure, in the web browser:

Figure 8‒16: Example of HTML page consisting of static and dynamic contents

In the above configuration, the following files form the static contents that are not generated dynamically:

• Style sheet (such as a CSS file)

• Inline image (image file)

• HTML file that defines frames

(1) For Web server integration
If the static contents are embedded in the Web application, there is access between the redirector and the Web
container even when exchanging static contents that need not be processed in the Web container. In the case of image
files, the processing time takes longer due to the large data size.

Hitachi recommends that the static contents be segregated from the Web application and deployed on the Web server.
This helps to reduce the frequency of network access and the size of exchanged data that in turn will enhance the
performance. The following figure shows an image of the processing of the static contents and the Web application:

8. Performance Tuning (J2EE Application Execution Platform)

311

Figure 8‒17: Image of static contents and Web application processing

The method of deploying the static contents that have been segregated from the Web application is explained below
using the HTML page configuration that is shown in Figure 8-16.

In case of Figure 8-16, the performance is enhanced by deploying the following static contents on the Web server:

Contents deployed on the Web server

• Style sheet (such as a CSS file)

• Inline image (image file)

• HTML file that defines frames

The following figure shows an example of deployment:

Figure 8‒18: Deploying the static contents on the Web server (in the case of Web server integration)

Define the above mapping as shown below. For details, see 9. File used in Web Server Integration in the uCosminexus
Application Server Definition Reference Guide.

8. Performance Tuning (J2EE Application Execution Platform)

312

When Cosminexus HTTP Server is used as the Web server (mod_jk.conf)
#
JkMount /APP/* worker1
JkMount /* worker1
If # is used, /images/ on the Web server cannot be referred.

When Microsoft IIS is used as the Web server (uriworkermap.properties)
#
/APP/*=worker1
/*=worker1
If # is used, /images/ on the Web server cannot be referred.

! Important note

During the Web server integration, instead of allocating all Web application files to the Web server, allocate only the
static contents that are directly accessed from the client.

If the request extension and the path information cannot be read correctly in the redirector, a request for dynamic
contents might be incorrectly considered to be the request for static contents. In this case, the redirector sends the Web
server contents to the client as it is, without distributing the processing to J2EE server. If dynamic contents, such as
servlets and JSPs, are allocated to a Web server, and if a request for dynamic contents is handled as a request for static
contents, the source of the contents, such as the class file entities and JSPs, might be sent as a response to the request
source client.

(2) When using an in-process HTTP server
When transferring the same contents to the client at all times such as the static contents, even when you use an in-
process HTTP server, if you process the static contents on Web server besides the in-process HTTP server and Web
container, the performance will improve. Particularly when handling large amount of data with a heavy file size, such
as an image file, Hitachi recommends that a Web server be deployed specifically for processing the static contents,
instead of embedding the data in Web applications.

To extract static contents from Web applications, and then handle them, a reverse proxy server or load balancer is to
be deployed at the front-end. In such a case, depending on the reverse proxy server or load balancer, distribute the
process as given below:

• The access to the dynamic contents is dispatched to the J2EE server in which the in-process HTTP server and Web
container operate.

• The access to the static contents is dispatched to the Web server.

The following figure shows an image of the distributed process. This figure is an example of distribution of the
process by the reverse proxy server.

8. Performance Tuning (J2EE Application Execution Platform)

313

Figure 8‒19: Image showing the distribution of dynamic and static contents by the reverse proxy server

The method of deploying the static contents that are separated from a Web application is explained below using the
HTML page configuration that is shown in Figure 8-16.

In case of Figure 8-16, the performance is enhanced by deploying the following static contents on the Web server:

Contents deployed on the Web server

• Style sheet (such as a CSS file)

• Inline image (image file)

• HTML file that defines frames

The following figure shows an example of deployment:

Figure 8‒20: Deploying the static contents on the Web server (to use an in-process HTTP server)

8. Performance Tuning (J2EE Application Execution Platform)

314

To distribute the process in the above manner, describe the following reverse proxy definition in the ProxyPass
directive of the configuration file (httpsd.conf) of Cosminexus HTTP Server.

For details, see the uCosminexus Application Server HTTP Server User Guide.

Reverse proxy definition
ProxyPass /APP/ http://inprocweb/APP/
ProxyPass /images/ http://websvr/images/
ProxyPass /css/ http://websvr/css/

8.7.2 Caching static contents
In a Web container, the static contents can be saved in the memory (cache). Once the static contents are accessed, they
are saved in the memory. This helps to reduce the frequency of subsequent access to the file system and enhance the
response speed.

The method of tuning required for caching the static contents is explained below.

The following items can be tuned:

• Selecting whether to cache the static contents

• Maximum size of the memory used for the static contents cache

• Maximum file size of the static contents for caching

Each of these items is explained below. You can set the above items for each Web container and Web application. The
Web application settings override the Web container settings. If you want to specify a default value for the entire J2EE
server, specify the value for each Web container and if you want to specify detailed settings, specify the value for each
Web application.

Tip
Relationship with the estimation of the memory size

In the static contents cache, the memory is used to enhance the response speed. When this functionality is used, it is
important to tune the size according to the memory size that can be used in the server.

Set the size of the memory used for the static contents cache for each Web application. The sum total of all memory sizes
specified for each Web application is the maximum memory size that can be used for the caching the static contents in the
entire J2EE server. To use this functionality, therefore, add the total value of the memory size specified for each Web
application, for estimating the memory size required in the J2EE server.

(1) Selecting whether to cache the static contents
The static contents caching is a functionality that is not used by default. You need to change the parameters if you
want to use this functionality.

The use of static contents cache can be set for each Web container and Web application. The Web application settings
override the Web container settings. If, however, the settings are forcibly disabled in the Web container, the Web
application settings will also be disabled. The settings can be forcibly disabled in the following cases:

• To check the difference between the usage of memory when static contents cache is enabled and when the static
contents cache is disabled

• To temporarily disable the static contents cache when the settings for each Web application are saved

(2) Maximum size of the memory used for the static contents cache
To cache the static contents, you can set the size of the memory to be used for each Web application. If the total size
of the cache becomes more than the size specified in the respective Web application, the time that is not accessed, is
deleted from the largest cache. Deletion continues until the total cache size falls below the size that was set.

The guidelines for setting the memory size are explained below:

Guidelines for setting the memory size

• Set the maximum value of the total size of the static contents contained in the Web application.

8. Performance Tuning (J2EE Application Execution Platform)

315

• The optimum size to be specified differs depending on the contents of the Web application. After setting the
size, estimate the response speed of the request for the static contents and find the optimum size of the cache
that will give the best response speed.

(3) Maximum file size of the static contents for caching
You can set the maximum file size of the static contents to be saved in the static contents. When the maximum size
has been set, the contents of the file that exceed the maximum size are not saved in the cache, but are retrieved from
the file system every time they are used.

The guidelines for setting the file size are explained below:

Guidelines for setting the file size

• From the static contents contained in the Web application, specify a file size that is no more than the
maximum file size.

• Specify a value keeping in mind that the cache of static contents that does not have a high access frequency is
not destroyed due to the cache of large size static contents.

(4) Check the operation status of the static contents
You can check the operation status of the static contents from details in the message KDJE39234-I that is output when
the Web application is stopped. Tune all the parameters as required, according to the total size of the static contents
and the total number of contents saved in the cache that is output to the above message.

8.7.3 Distributing the requests using the redirector
In the redirector, you can define the mapping for distributing the processes to multiple Web containers. This helps in
balancing and reducing the load on individual Web containers and thereby enhancing the performance. You can use
this functionality only when integrating with a Web server. You cannot use this functionality for an in-process HTTP
server.

When a redirector is used for distributing the requests, the redirector will distribute the requests according to the
session information and therefore, it is not necessary to distribute the requests according to the session of the Web
application. This is because, when a session is generated in a Web application on a particular Web container, the
redirector is used to check the session information contained in the request from the client and it is distributed to the
Web container in which the session was generated for the request from the client.

For details about the distribution of requests using Web server (redirector), see 4.2 Distribution of requests using Web
server (redirector) in the uCosminexus Application Server Web Container Functionality Guide.

8.7.4 Tuning parameters for optimizing the operations of the Web
application

This section explains how to set up the tuning parameters used for optimizing the operations of a Web application.

(1) Tuning parameter for separating the deployment of the static contents and the Web
application

Specify the separation of the deployment of the static contents and the Web application as the parameter of the file
that defines the operations of the Web server. The setup locations, files and parameters differ depending on the type of
Web server used.

When you use Cosminexus HTTP Server for a Web server integration, you use the redirector module for separation.
When you use an in-process HTTP server, use the reverse proxy module deployed in the reverse proxy server
(Cosminexus HTTP Server) for separation.

The following table explains the method and location of setup:

8. Performance Tuning (J2EE Application Execution Platform)

316

Table 8‒41: Tuning parameters for separating the deployment of the static contents and the Web
application

Web server to be used Method of setup Location of setup

Cosminexus HTTP Server
(separation using the redirector
module)#1

Smart Composer functionality Definition file
Easy Setup definition file

Setup target
Logical Web server (web-server)

Parameter name
JkMount

In-process HTTP server

(separation using the reverse proxy
module)

Edit file Definition file
httpsd.conf

Setup target
Reverse proxy server

Parameter name
ProxyPass directive#2

#1
Specify in uriworkermap.properties, if you are using Microsoft IIS as a Web server.

#2
For details about httpsd.conf, see the uCosminexus Application Server HTTP Server User Guide.(3)

(2) Tuning parameters for caching static contents
The tuning parameters for cache of static contents are explained below. These tuning parameters are set for each Web
container or Web application.

The following table describes how to set up the tuning parameters for each Web container. You specify these items
using the Smart Composer functionality.

Table 8‒42: Tuning parameter for caching static contents (items to be set for each Web container)

Setup items Locations of setup

Select whether static contents cache is to be used Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
webserver.static_content.cache.enabled

Setup of maximum memory size for each Web
application

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
webserver.static_content.cache.size

Setup of maximum file size of the static contents for
cache

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
webserver.static_content.cache.filesize.thresh
old

The tuning parameters to be set for each Web application are described below. Set the items in the Web application
either directly by editing web.xml or using the server management commands. Edit web.xml for setting the items

8. Performance Tuning (J2EE Application Execution Platform)

317

in the Web application before deployment. You use the server management command (cjsetappprop) for setting
the items in the Web application after deployment.

The following table describes the settings:

Table 8‒43: Tuning parameters for caching of static contents (items to be set for each Web application)

Setup items Settings#

Select whether to use the cache of static
contents

param-name tag
com.hitachi.software.web.static_content.cache.enab
led

param-value tag
(Setup value)

Setup of maximum size of memory for each
Web application

param-name tag
com.hitachi.software.web.static_content.cache.size

param-value tag
(Setup value)

Setup of maximum file size of the static
contents for caching

param-name tag
com.hitachi.software.web.static_content.cache.file
size.threshold

param-value tag
(Setup value)

Note
For details about the values that can be specified in (setup value), see 2.21.2 Definitions in DD (Settings for each Web
application) in the uCosminexus Application Server Web Container Functionality Guide.

#
For directly editing web.xml, add <context-param> tag within the <web-app> tag and add the <param-name> and
<param-value> tags within the <context-param> tag.
To use the server management commands, add <context-param> tag within the <hitachi-war-property> tag of the
WAR property file and add <context-param> and <param-value> tags within the <context-param> tag.

(3) Tuning parameters for distributing the requests using a redirector
Specify the tuning parameters for distributing the requests using a redirector as the parameters of the file that defines
the operations of the Web server.

You can specify this definition only when integrating with a Web server. You cannot specify this definition when you
are using an in-process HTTP server.

The following table describes the method and location of setup:

Table 8‒44: Tuning parameters for distributing the requests by using a redirector

Setup items Method of setup Location of setup

Mapping definition of URL pattern# Smart Composer
functionality

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
JkMount

#
When you are using Microsoft IIS as the Web server, specify in uriworkermap.properties.

8. Performance Tuning (J2EE Application Execution Platform)

318

8.8 Optimizing the operation of CTM
This section explains how to tune the performance of a system that uses CTM. Determine in for a back-end system
using CTM.

Following four types of tuning procedures are described here:

• Tuning the monitoring interval of the operation state of CTM domain managers and CTM daemons

• Tuning the monitoring interval of the load status

• Setting up a timeout lock for a CTM daemon

• Setting up a priority order for the requests distributed with CTM

8.8.1 Tuning the monitoring interval of the operation state of CTM
domain managers and CTM daemons

A communication process is executed periodically between the multiple CTM domain managers present in a system,
and the multiple CTM daemons within a CTM domain, to monitor the mutual operation state.

This subsection describes the concept of tuning the respective communication process intervals.

(1) Tuning the monitoring interval of the operation state between CTM domain managers
The CTM domain managers periodically exchange information about the CTM daemons present in the mutual hosts.
Based on this information, the requests received in the local host are distributed properly in the CTM daemon of the
other host.

When exchanging information, the mutual operation state of the CTM domain managers is also checked concurrently.
If the CTM domain manager of the other host is not running, requests will not be distributed to that host. While
exchanging information, if a CTM domain manager does not receive a response until the lapse of a time period
derived by multiplying with a fixed coefficient of time, the other CTM domain manager is assumed to be in a stopped
state.

The setup location for the interval of exchanging information differs depending on whether the other CTM domain
manager is present within the same network segment, or in another network segment. The default value of the
coefficient used to judge the operation state is 2. For example, when checking the operation (online) information of a
CTM domain manager present within the same network segment of a system built using Management Server, if there
is no response for a time period derived by multiplying 2 with the dispatch interval of the CTM domain configuration
information, the CTM domain manager is assumed to be in a stopped state. If the dispatch interval of the CTM domain
configuration information is 60 seconds, the CTM domain manager will be assumed to be in a stopped state if there is
no response for 120 seconds.

You can change this coefficient value to optimize the communication process.

Determine an appropriate value to be specified in the coefficient, after considering the load of the processing
generated as a result of communication. If necessary, determine the standard dispatch interval as well. If you reduce
the coefficient, the interval will be shortened, and you can immediately detect if the other CTM domain manager is in
stopped state. This will help in preventing the dispatch of requests to the host in which the CTM daemon has stopped
running. However, if the interval becomes too short, the communication processing will increase, thus increasing the
communication overload.

(2) Tuning the monitoring interval of the operation state between CTM daemons
The CTM daemons mutually distribute requests based on the information exchanged between the CTM domain
managers.

If no response is received from the CTM daemon to which requests are distributed, the CTM daemon distributing the
requests assumes that the other CTM daemon is in stopped state, and does not distribute any more requests.

By default, a CTM daemon waits for 180 seconds to receive a response. If no response is received within 180
seconds, it is assumed that the other CTM daemon is in stopped state. By changing this value, the unnecessary wait
time can be shortened.

8. Performance Tuning (J2EE Application Execution Platform)

319

You set up an appropriate value after considering the size of the data to be sent as a request. By shortening the
interval, any trouble in the other host can be detected promptly, and therefore, enabling you to disconnect from the
system at a stage when the effect of the trouble is minimum. However, if the interval is too short, timeouts may occur
while a large-sized data is being transferred.

8.8.2 Tuning the monitoring interval of the load status
The multiple CTM daemons present within a CTM domain monitor the loading information of the respective schedule
queues. The monitoring result is used during distribution of requests between CTM daemons.

You can tune the interval of monitoring the load status. The default value is 10 seconds.

By shortening the interval of monitoring the load status, you can distribute the requests according to the corresponding
status. However, if the interval becomes too short, the communication will occur frequently, thus increasing the load.

Note that if you set up the interval of load status monitoring to 0, the load status during startup of the J2EE server will
be collected only once, and that value will be used repeatedly.

8.8.3 Setting up a timeout lock for CTM daemon
If an error occurs in the J2EE server corresponding to the CTM daemon, timeouts will occur in the requests sent by
the CTM daemon. If you continue the operation in this state, the CTM daemon will continue to send requests to the
J2EE server in which the trouble occurred, and therefore, the timeout will occur in the request.

To handle this, you can set up the timeout lock in the CTM daemon. The timeout lock is a functionality to lock the
schedule queue of a CTM daemon when request timeouts occur more frequently than the timeout frequency specified
for a fixed period of time. Thus, no more requests are received by the CTM daemon in which the trouble occurred, and
the requests are received by other CTM daemons. This leads to the distribution of requests to a J2EE server running
normally.

8.8.4 Setting up a priority order for the requests distributed with CTM
You can set up a priority order for the requests controlled with CTM. By setting up a high priority order for the
requests that must be executed promptly, processing can be done fast without the accumulation of requests in the
schedule queue.

The priority order of requests can be set up in the EJB client application or J2EE server that sends requests to CTM.
The high-priority requests sent from the EJB client application or J2EE server are processed before the requests sent
by other clients that are saved in the schedule queue.

8.8.5 Tuning parameters for optimizing the operation of CTM
This section explains how to set up the tuning parameters used to optimize the operation of CTM.

(1) Tuning parameters for setting up the monitoring interval of the operation state of CTM
domain managers and CTM daemons

This subsection explains the parameters for tuning the monitoring interval of the operation state of CTM domain
manager.

You set up the items listed in the following table in the Easy Setup definition file. Afterward re-build the system using
the Smart Composer functionality.

Note that the monitoring interval is the product of the dispatch interval and the coefficient.

Table 8‒45: Parameters for tuning the monitoring interval of the operation state of CTM domain manager

Target Setup item Setup target Location of setup (parameter name)

CTM domain
managers present in

Dispatch interval Logical CTM domain manager
(ctm-domain-manager)

cdm.SendInterval

8. Performance Tuning (J2EE Application Execution Platform)

320

Target Setup item Setup target Location of setup (parameter name)

the same network
segment

Coefficient Logical CTM domain manager
(ctm-domain-manager)

cdm.AliveCheckCount

CTM domain
managers present in
a different network
segment

Dispatch interval Logical CTM domain manager
(ctm-domain-manager)

cdm.SendHostInterval

Coefficient Logical CTM domain manager
(ctm-domain-manager)

cdm.AliveCheckCount

The parameter for tuning the monitoring interval of the operating status of CTM daemons is as follows:

You set up the items listed in the following table in the Easy Setup definition file. Afterward re-build the system using
the Smart Composer functionality.

Table 8‒46: Parameter for tuning the monitoring interval of the operation state of CTM daemon

Setup item Setup target Location of setup (parameter name)

Timeout during
transfer between CTM
daemons

Logical CTM ctm.DCSendTimeOut

(2) Tuning parameters for setting up the monitoring interval of the load status
This subsection explains the parameter for tuning the monitoring interval of the load status.

You set up the items listed in the following table in the Easy Setup definition file. Afterward re-build the system using
the Smart Composer functionality.

Table 8‒47: Parameter for tuning the monitoring interval of the load information

Setup item Setup target Location of setup (parameter name)

Timeout during
transfer between CTM
daemons

Logical CTM ctm.LoadCheckInterval

(3) Tuning parameters for setting up the timeout lock for CTM daemon
The timeout lock is executed by setting up the timeout occurrence frequency and the monitoring interval.

This subsection explains the parameters for tuning the timeout lock of a CTM daemon.

You set up the items listed in the following table in the Easy Setup definition file. Afterward re-build the system using
the Smart Composer functionality.

Table 8‒48: Parameters for tuning the timeout lock of a CTM daemon

Setup item Setup target Location of setup (parameter name)

Timeout occurrence
frequency

Logical CTM ctm.RequestCount

Monitoring interval Logical CTM ctm.RequestInterval

(4) Tuning parameters for setting up a priority order for the requests distributed with CTM
The setting of the priority order of requests distributed with CTM is different for an EJB client application and for a
J2EE server. Moreover, for a J2EE server, the setup location differs depending on how the system is built. The
following table describes the tuning parameters for setting up the priority order of requests distributed with CTM:

8. Performance Tuning (J2EE Application Execution Platform)

321

Table 8‒49: Tuning parameters for setting up the priority order of requests distributed with CTM

Setup unit Method of setup Location of setup

EJB client application Specify the system property to be specified
while editing the file or starting the EJB client
application

Definition file (when editing the file)
usrconf.properties

Parameter name
ejbserver.client.ctm.Request
Priority key

J2EE server Smart Composer functionality Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
ejbserver.client.ctm.Request
Priority

8. Performance Tuning (J2EE Application Execution Platform)

322

8.9 Tuning other items
This section explains the tuning items other than those described till the previous section.

The following item is explained here:

• Tuning of the Persistent Connection

Determine the tuning of this item to use in-process HTTP servers in Web front-end systems.

In HTTP/1.1, a Persistent Connection is defined for the persistent use of the same TCP connection established
between a Web client and Web server among multiple HTTP requests. Using a Persistent Connection, the time taken
to establish a connection between a Web client and Web server can be shortened, and the communication traffic can
be reduced.

However, the use of a Persistent Connection causes a specific Web client to occupy the request-processing threads,
thereby leading to a decline in the processing performance of the entire server. Therefore, you are required to tune so
as to be able to use the Persistent Connection effectively, and maintain the server processing performance.

When you use an in-process HTTP server, you can tune the following items of a Persistent Connection:

• Upper-limit value of the number of Persistent Connections
When a TCP connection exceeds this upper-limit value, it gets disconnected after the completion of request
processing. Therefore, a thread can be secured for processing a new connection that can prevent the request-
processing threads from being occupied by a specific client.

• Upper-limit value of the request-processing frequency of a Persistent Connection
Even when requests are received continuously from the same Web client, the TCP connection is disconnected
once after the completion of request processing, if this upper-limit value is exceeded.
This can prevent the request-processing threads from being occupied by a specific client.

• Timeout of a Persistent Connection
You can set up timeouts for the request-waiting time of the Persistent Connection. If no processing request is
received even after the lapse of the specified timeout period, the TCP connection will be disconnected. This can
prevent the TCP connection from being occupied when it is not in use.

These items are specified as parameters of the Easy Setup definition file used with the Smart Composer functionality.
The following table describes the tuning parameters to be set up for a Persistent Connection:

Table 8‒50: Tuning parameters to be set up for a Persistent Connection

Setup item Location of setup

Upper-limit value of the number
of Persistent Connections

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
webserver.connector.inprocess_http.persistent_connection.ma
x_connections

Upper-limit value of the request-
processing frequency

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
webserver.connector.inprocess_http.persistent_connection.ma
x_requests

Timeout Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

8. Performance Tuning (J2EE Application Execution Platform)

323

Setup item Location of setup

Timeout Parameter name
webserver.connector.inprocess_http.persistent_connection.ti
meout

For details about each parameter, see 4.14 Parameters that can be specified in a logical J2EE server in the
uCosminexus Application Server Definition Reference Guide.

8. Performance Tuning (J2EE Application Execution Platform)

324

9 Performance Tuning (Batch
Application Execution Platform)
This chapter explains how to setup the performance tuning of systems for executing
batch applications.

You can optimize the operating environment through the performance tuning, and can
maximize the performance of systems.

For determining the performance tuning of a J2EE application execution platform, see
8. Performance Tuning (J2EE Application Execution Platform).

325

9.1 Points to be considered for performance tuning
This section explains the points to be considered for the performance tuning of a batch application execution platform.

9.1.1 Viewpoints of performance tuning
Tune the performance of the batch application execution platform from the following viewpoints:

• Optimizing the database access method

• Setting up timeouts

• Setting up threshold value for the memory usage causing a full garbage collection

Explanation regarding these points is as follows:

(1) Optimizing the database access method
The purpose of optimizing the database access method is to reduce overhead during database access by pooling the
connections and statements that will require more time for generation.

The performance tuning enhances the throughput by optimizing the database access through an effective use of the
following functionality:

• Connection pooling

• Statement pooling (pooling of PreparedStatement and CallableStatement)

The database access method can be optimized when you are using a DB Connector to establish a connection with the
database.

(2) Setting up timeouts
The purpose of setting up timeouts is to detect trouble in the system and release resources whenever required to avoid
a delay in responding to requests.

You can set up the following types of timeouts:

• Timeout when invoking an Enterprise Bean

• Timeout of a transaction

• Timeout of a database

(3) Setting up a threshold value for the memory usage causing a full garbage collection
The threshold value used to control a full garbage collection is set up when the same resources are used for online
processing and for batch processing. The purpose of this is to avoid the interruption of the online processing due to
full garbage collection in the batch server.

By controlling the execution of full garbage collection, you can properly execute full garbage collection when the
resources are not excluded.

9.1.2 Tuning procedure
The performance tuning is a task that involves detecting the best settings for system performance. For already built
environments, revising parameters, and identifying and removing bottlenecks during the actual processing can
continuously enhance the performance.

During tuning, first of all, determine target values. The next task is to measure the throughput when the initial value is
set up for each parameter. Keep adjusting each parameter to detect the optimum value closest to the target value.

When tuning, you can use the monitoring tools provided as accessories with the OS to measure the CPU usage rate.
You can check the statistical information of Application Server related to JavaVM using the statistics collection

9. Performance Tuning (Batch Application Execution Platform)

326

functionality. For details about how to check, see 3. Monitoring Statistics (Statistics Collection Functionality) in the
manual uCosminexus Application Server Operation, Monitoring, and Linkage Guide.

Note that when the CPU usage rate is saturated at a level considerably lower than 100%, bottlenecks, such as I/O
processing and exclusion processing might be present in the system. Identify and remove the bottlenecks, and then re-
execute the performance tuning. In Application Server, you can use performance analysis trace to identify the
bottlenecks of the system. For details about the functionality of performance analysis trace and for details about how
to use the trace file acquired using performance analysis trace, see 7. Performance Analysis by using Performance
Analysis Trace in the manual uCosminexus Application Server Maintenance and Migration Guide.

9.1.3 Tuning items
The following table describes the tuning items of the batch application execution platform:

Table 9‒1: Tuning items of the batch application execution platform

Tuning item Available functionality Reference

Optimizing the database access method Connection pooling#1 8.5.1#2

Statement pooling#1 8.5.2#2

Setting up timeouts Setup of timeouts during invocation of an Enterprise Bean 8.6.3#2#3

Setup of transaction timeouts 9.3.2

Setup of timeouts in a database 8.6.6#2

Controlling full garbage collection#1 Setup of threshold values 9.4

#1
This functionality is available when you are using a DB Connector.

#2
See the explanation about a J2EE application execution platform. When reading the description, please substitute J2EE server for
batch server. Similarly, substitute J2EE application for batch application.

#3
When invoking Enterprise Beans, you can set up timeouts for the items same as for the back-end systems of the J2EE application
execution platform.

9. Performance Tuning (Batch Application Execution Platform)

327

9.2 Tuning procedure
This section explains how to execute tuning. The tuning procedure differs depending on the type of setup target.

9.2.1 Tuning a batch server
Use the Easy Setup definition file of the Smart Composer functionality to tune a batch server. In the Easy Setup
definition file, specify the type of the logical server (J2EE server#) you want to set up in <logical-server-
type> under the <configuration> tag, and specify the parameter name and its value under the <param> tag.
For details about the Easy Setup definition file, see 4.6 Easy Setup definition file in the manual uCosminexus
Application Server Definition Reference Guide.

#
The Smart Composer functionality handles a batch server as a J2EE server.

9.2.2 Tuning a resource
Use the server management commands for tuning a resource.

If you are using the server management commands, edit the Connector property file. For details about the
Connector property file, see 4.1 Connector property file in the manual uCosminexus Application Server
Application and Resource Definition Reference Guide.

9. Performance Tuning (Batch Application Execution Platform)

328

9.3 Setting up timeouts
In Application Server systems, you can set up timeouts at several points to prevent states in which no response is
received for a request when trouble occurs.

This section describes the points where you can set up timeouts in the entire system, and the guidelines for setting up
timeouts.

9.3.1 Points where you can set up a timeout
In the systems for executing batch applications, you can set up timeouts at the points shown in the following figure:

Figure 9‒1: Points where a timeout can be set up

The timeout specified at each point has a specific use that is described in the table below:

9. Performance Tuning (Batch Application Execution Platform)

329

Table 9‒2: Purpose of the timeout set up at each point and the default timeout settings

Point Type of timeout Primary usage

1 Timeout set up in the batch server for remotely
invoking the Enterprise Bean (RMI-IIOP
communication) and for invoking the JNDI
Naming Service

Detecting failures in the business processing (such as infinite
loop and deadlocks) of the batch server or the communication
path

2# Timeout set up in the batch server for invoking
the Enterprise Bean from CTM

Detecting failures in the business processing (such as infinite
loop and deadlocks) of the batch server or the communication
path

3 Timeout set up for the method execution time in
the EJB that accesses the Enterprise Bean
through invocation

Detecting failures in the business processing (such as infinite
loop and deadlock) of the J2EE server

4 Timeout set up in the batch server for the
database transaction

Detecting failures in database server (such as, server is down
or a deadlock has occurred) or preventing the extended
exclusive use of resources

5 Database timeout Detecting failures in database server (such as server is down or
a deadlock has occurred) or preventing the extended exclusive
use of resources

#
This point exists only when you are using CTM. For a configuration in which CTM is not used, the range of point 2 extends from
the time of execution of remote invocation of the EJB from the batch server to the EJB container, until the dispatch of execution
result from the EJB container to the batch server.

The basic guidelines for setting up the above timeouts are as follows:

• The general rule for setting up a timeout value is the closer the point is to the source of invocation (batch server),
the higher is the timeout value. Therefore, Hitachi recommends that you use the following relationship for setting
up a timeout:

• Point 1 = Point 2 > Point 3 > Point 4 > Point 5

• When setting up a timeout value for points 1, 4, and 5, first check the amount of time normally taken by the
invocation process, then calculate and set up a timeout value for each invocation process (business).

Points 1 to 5 can be divided into following two categories depending on their location in the system:

• Points (1 to 3) that must be considered during invocation of the Enterprise Bean
The items for which timeouts are to be set up at these points are same as the items that can be set up in back-end
systems of the J2EE application execution platform. For details, see 8.6.3 Setting a timeout in the back-end
system.

• Points (4 and 5) that must be considered when establishing a connection with the database
These points must be considered by classifying them furthermore into transaction timeout and database timeout.
For details about the transaction timeout, see 9.3.2 Setting up the transaction timeout.
The items for which the database timeouts are to be set up are same as the items that can be set up in the back-end
systems of the J2EE application execution platform. For details, see 8.6.6 Setting the database timeout.

For details about the settings for each point, see 9.3.3 Tuning parameters for setting up the timeout for the batch
application execution platform and 8.6.8 Tuning parameters for setting the timeout for the J2EE application execution
platform.

Reference note
The default value of each point is as follows:

Point Default value

1 Not set up. Continues to wait for a response.

2 A value same as point 1 is automatically inherited and set up when the Enterprise Bean is invoked.

9. Performance Tuning (Batch Application Execution Platform)

330

Point Default value

3 Not set up. A timeout does not occur.

4 180 seconds

5 Differs according to the type of the database and the location of setup of the timeout#

For HiRDB
Unlock waiting timeout: 180 seconds
Response timeout: 0 seconds (The HiRDB client continues to wait until a response is received
from the HiRDB server.)
Request interval timeout: 600 seconds

For an SQL Server
Timeout while waiting to acquire memory: -1 (For details about the operations when -1 is
specified, see the SQL Server documentation)
Unlock waiting timeout: -1 (Continues to wait until the lock is released)

For XDM/RD E2
Unlock waiting timeout: None (The timeout period is not monitored)
CPU timeout during SQL execution: 10 seconds
SQL execution timeout: 0 seconds (The timeout period is not monitored)
Transaction timeout: 600 seconds
Response timeout: 0 seconds (The HiRDB client continues to wait until a response is received
from the XDM/RD E2 server.)

#
In Oracle, there is no default value for the unlock waiting timeout.

9.3.2 Setting up the transaction timeout
This section explains the settings for a transaction timeout. Set up a transaction timeout in transactions with EIS, such
as database systems. The transaction timeout set up when accessing a database using a DB Connector is as follows:

When setting up the transaction timeout, of all the timeout values of the entire system, you must consider the
transactions between the batch server and database.

When a transaction timeout occurs, the Application Server executes the following processing:

• The active transactions are rolled back.

• The connections participating in the transaction are closed, and then deleted from the connection pool.
Tip

The transaction management method used in this case is BMT. You can specify the transaction timeout either in
usrconf.properties or in the JTA API
(javax.transaction.UserTransaction#setTransactionTimeout method).

The definition of the usrconf.properties affects the entire process. The timeout value specified in API affects
only the transactions that issued the API. The API specifications override the definitions in usrconf.properties.

Hitachi, therefore, recommends that you define the standard values to be set up in the entire process, in the
usrconf.properties and use the appropriate API to set up the detailed values as per the business to be invoked.

When a transaction timeout occurs, the exception is not reported to the batch application. However, the message
KDJE31002-W is output to the log file and the batch server console. After a transaction timeout occurs, an exception
is reported when you attempt to use the JTA interface or the JDBC interface using the relevant transaction from the
batch application.

9.3.3 Tuning parameters for setting up the timeout
This section explains how to set up the tuning parameters used for timeout settings.

9. Performance Tuning (Batch Application Execution Platform)

331

(1) Timeout set up in the batch server for remotely invoking the Enterprise Bean (RMI-IIOP
communication) and for invoking the Naming Service by JNDI

A tuning parameter for setting up the timeout at point 1 of Figure 9-1.

The setup method is same as for the J2EE application execution platform. See (6) Timeout set in the EJB client for
remotely invoking the Enterprise Bean (RMI-IIOP communication) and for invoking Naming Service by JNDI of 8.6.8
Tuning parameters for setting the timeout.

Note that point 7 of 8.6.8 Tuning parameters for setting the timeout correspond to point 1 of Figure 9-1.

(2) Timeout set up in the EJB client for invoking the Enterprise Bean from CTM
A tuning parameter for setting up the timeout at point 2 of Figure 9-1.

The setup method is same as for the J2EE application execution platform. See (7) Timeout set up in the EJB client for
invoking Enterprise Bean from CTM of 8.6.8 Tuning parameters for setting the timeout.

Note that point 8 of 8.6.8 Tuning parameters for setting the timeout correspond to point 2 of Figure 9-1.

(3) Timeout for the method execution time set up in the EJB that is accessed by invoking the
Enterprise Bean

This is a tuning parameter for setting up a timeout at point 3 of Figure 9-1.

The setup method is same as for the J2EE application execution platform. See (11) Method timeout in a J2EE
application of 8.6.8 Tuning parameters for setting the timeout.

Note that point 9 of 8.6.8 Tuning parameters for setting the timeout correspond to point 3 of Figure 9-1.

(4) Timeout set up in the batch server for the database transaction (when a DB Connector is
used)

This is a tuning parameter for setting up the timeout at point 4 of Figure 9-1.

You set up the tuning parameter for each batch server, Enterprise Bean, interface, or each invocation by API (in
BMT).

The following table describes the tuning parameters for a transaction timeout:

Table 9‒3: Tuning parameters for a transaction timeout

Unit Setup method Setup item Location of setup

Each batch
server

Smart Composer
functionality

Default
transaction
timeout value of
a transaction

Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
ejbserver.jta.TransactionManager.defaul
tTimeOut

Each API
(BMT)

API Transaction
timeout period

UserTransaction#setTransactionTimeout
method#

#
The name of the package is javax.transaction.

(5) Database timeout
This is a tuning parameter for setting up a timeout at point 5 of Figure 9-1.

The setup method is same as for the J2EE application execution platform. See (10) Database timeout of 8.6.8 Tuning
parameters for setting the timeout.

Note that point 12 of 8.6.8 Tuning parameters for setting the timeout correspond to point 5 of Figure 9-1.

9. Performance Tuning (Batch Application Execution Platform)

332

9.4 Setting up the threshold value to be used to control
garbage collection

You can control the execution timings of full garbage collection of batch servers by setting up threshold values for
memory usage. Hitachi recommends that the threshold value be set up when the same resources are accessed during
batch processing and online processing. By setting up the appropriate threshold value, you can secure the throughput
of both online processing and batch processing.

Tip
For details about the full garbage collection, see 7.1.3 Relation between the occurrence of garbage collection and memory
space.

9.4.1 Purpose of setting up a threshold value
When the same resources are accessed during online processing and batch processing, you must take into
consideration the fact that there is no influence on the throughput of the online processing.

When the available memory space becomes less during the execution of a batch application, JavaVM executes full
garbage collection of the batch server. In such a case, the processing of all programs running on the batch server is
interrupted. If some resources are excluded for the batch application, those resources remain in the exclusion state
even during the execution of full garbage collection of the batch server. If a process uses the excluded resources
during the online processing, the online processing will also be interrupted.

To avoid this, you must setup a threshold value for the memory usage, and execute full garbage collection before the
memory becomes insufficient. The explicit full garbage collection can be controlled such that it occurs when the
resources are not excluded. By increasing the available memory space before JavaVM executes full garbage
collection, you can prevent the execution of the full garbage collection while the resources are in the exclusion state.

When a threshold value is set up, full garbage collection will be executed in the following conditions. However, if
some resources are excluded for the batch application at the same time, the full garbage collection will not be executed
until the exclusion is cancelled.

• Ratio of the Tenured area consumption size to the Tenured area total size Threshold value

• Ratio of the New area total size to the Tenured area maximum available size Threshold value

• Ratio of the Permanent area consumption size to the Permanent area total size Threshold value

9.4.2 Concept of setting up the threshold value
You can calculate the threshold value by keeping the value calculated with the following formula as the standard:

Threshold-value 100 - (100 Free-memory-size-required-while-waiting-for-cancellation-of-resource-exclusion) /
Maximum-memory-size

Consider the following points when setting up the threshold value:

• Occurrence frequency of full garbage collection

• Free memory required while waiting for cancellation of the resource exclusion

The relationship between the occurrence frequency of full garbage collection and the threshold value, and the method
for estimating the free memory size required while waiting for cancellation of resource exclusion are as follows:

(1) Relationship between the occurrence frequency of full garbage collection and the
threshold value

The processing of full garbage collection takes more time as compared to the execution speed of any program.
Therefore, when tuning JavaVM, try to avoid the occurrence of full garbage collection as far as possible. For details
about the concept of JavaVM tuning, see 7.2.1 Concept of tuning.

9. Performance Tuning (Batch Application Execution Platform)

333

You must also tune in such a way so that setting up a threshold value reduces the frequency of a full garbage
collection to be executed explicitly.

The following figure shows an example of memory usage for each setup threshold value:

Figure 9‒2: Example of memory usage for each setup threshold value

The memory usage in JavaVM keeps increasing along with the passage of time, and reduces when full garbage
collection occurs.

When you set up 0 as the threshold value, full garbage collection will not be executed until JavaVM executes it
automatically. As compared to the specification of a large value, when you set up a small value as the threshold value,
the frequency of occurrence of full garbage collection increases. In the figure, when 80 is set up as the threshold
value, the frequency of execution of full garbage collection can be suppressed down as compared to the case where 50
is set up as the threshold value.

However, when the execution frequency of full garbage collection is reduced, the time taken for the execution of one
full garbage collection becomes longer as compared to when full garbage collection is executed more frequently.

(2) Estimating the free memory required while waiting for cancellation of the resource
exclusion

When the memory usage exceeds the threshold value, full garbage collection will not be executed until the resource
exclusion is cancelled. However, while waiting for cancellation of resource exclusion, if the memory required by
JavaVM becomes insufficient, full garbage collection will be executed by JavaVM without waiting for cancellation of
resource exclusion.

The following figure shows an example in which the memory becomes insufficient while waiting for cancellation of
resource exclusion:

9. Performance Tuning (Batch Application Execution Platform)

334

Figure 9‒3: Example of a case when the memory becomes insufficient while waiting for cancellation of
resource exclusion

Tip
For details about the free memory size required to avoid the occurrence of full garbage collection in JavaVM, see 7.1.3
Relation between the occurrence of garbage collection and memory space.

When you set up the memory size for the occurrence of full garbage collection to 100, the memory size that can be
used while waiting for cancellation of resource exclusion will be 100 - Threshold value (%).

For example, if you set up a large value, such as 95 as the threshold value, the free memory size that can be used
while waiting for cancellation of resource exclusion will be minimal at 5%, and therefore, full garbage collection
might be executed automatically by JavaVM before the cancellation of the resource exclusion.

Therefore, when estimating the threshold value, set up a value with a considerable margin such that the memory does
not become insufficient while waiting for cancellation of the resource exclusion.

! Important note

When JavaVM executes full garbage collection due to insufficient free memory size while waiting for cancellation of
resource exclusion, full garbage collection will be executed once again when the exclusion of the resource is cancelled, due
to full garbage collection control.

9.4.3 Tuning parameters for setting up the threshold value to be used for
controlling a garbage collection

This section describes how to set up the tuning parameters used to set up the threshold value for executing a full
garbage collection of the batch server.

Table 9‒4: Tuning parameters for setting up the threshold value to execute a full garbage collection of the
batch server

Setup item Location of setup

Threshold value Definition file
Easy Setup definition file

Setup target
Logical J2EE server (j2ee-server)

Parameter name
ejbserver.batch.gc.watch.threshold

9. Performance Tuning (Batch Application Execution Platform)

335

Appendixes

337

A. Efficient Usage of the Explicit Heap Used in an HTTP
Session

When you use the Explicit Memory Management functionality, the HTTP session-related objects are allocated to the
Explicit heap with the default J2EE server settings. For details on the allocation and release times of the Explicit
memory block area to which an HTTP session is allocated, see 8.4.1 HTTP session-related objects in the uCosminexus
Application Server Expansion Guide. Note that for details on the concept of an object life span and the types of
Explicit memory blocks that are automatically released, see Appendix B Effect on the Explicit Memory Management
Functionality Due to the Life Span of the Objects Allocated to the Explicit heap.

You can apply the Explicit Memory Management functionality to an HTTP session efficiently, if you implement an
application from the following perspective:

• Life span of the objects stored in an HTTP session

• Update frequency of the objects stored in an HTTP session

• Timing at which an HTTP session is created

Furthermore, you can check whether the application is being implemented as per this perspective by using the J2EE
server log.

This section describes how to implement an application and how to check the implementation using the J2EE server
log, for each perspective.

A.1 Considering the life span of the objects stored in an HTTP session
This subsection describes how to implement an application considering the life span of the objects stored in an HTTP
session and how to check the implementation using the J2EE server log.

(1) Considerations for the implementation of applications
We recommend that only the objects released when an HTTP session is destroyed be stored in an HTTP session. If the
percentage of such objects is high, the time taken for the automatic release processing reduces. If there are objects that
remain even after the HTTP session is destroyed, a new Explicit memory block is generated, the objects are
transferred to that block, and are subject to the subsequent automatic release processing. Also, the transferred objects
do not support the HTTP session.

With the Explicit Memory Management functionality, the objects referenced directly or indirectly from the objects
stored in the HTTP session using the setAttribute method are assumed to have been stored in the HTTP session.
These objects move to the Explicit memory block according to the timing of promotion. If the reference relationship
from the objects stored in the HTTP session becomes complicated, there is a higher possibility that the objects that
continue to be used even after the HTTP session is destroyed are stored in the HTTP session.

Therefore, we recommend that the objects to be stored in an HTTP session be made as simple as possible, such as the
String type objects and the objects storing the primitive type or primitive type array.

From the application design point of view, if the objects that continue to be used even after the HTTP session is
destroyed must be stored in the HTTP session, consider using the functionality for specifying the classes to be
excluded from the Explicit Memory Management functionality. For details on the functionality for specifying the
classes to be excluded from the Explicit Memory Management functionality, see 8.10 Reducing the time taken for the
automatic release processing of the Explicit memory block in the uCosminexus Application Server Expansion Guide.

(2) How to check using the J2EE server log
You check the life span of the objects stored in an HTTP session from the contents of the thread dump.

To check:

1. Start the J2EE server, and execute the general business until the HTTP session is destroyed.

2. After the HTTP session is destroyed, execute the eheapprof command to obtain the thread dump.

3. Find the Explicit memory block where <EM_NAME> is NULL.

A. Efficient Usage of the Explicit Heap Used in an HTTP Session

338

If a NULL Explicit memory block does not exist, this indicates that no objects continue to be used even after the
HTTP session is destroyed.
If a NULL Explicit memory block exists, check the value of used (used size of the Explicit memory block).
An example of output is as follows:

"NULL" eid=1(0x02f25610)/A, total 542K, used 501K, garbage 0K (92.4% used/total,
0.0% garbage/used, 0 blocks) Enable

This indicates that this Explicit memory block has objects that continue to be used even after the HTTP session is
destroyed. However, if the used value is from a few kilobytes to a few megabytes, the impact during the
automatic release processing is not great.

(3) Mechanism of using the objects stored in an HTTP session after the HTTP session is
destroyed

This section describes the mechanism by which the objects stored in an HTTP session are used even after the HTTP
session is destroyed. As a typical example, the following figure shows an example of referencing the common data
(object) from the objects stored in an HTTP session.

Figure A‒1: Example of referencing the common data (object) from the objects stored in an HTTP session

In this example, the setAttribute method is used to reference the common data, object A, from the objects stored
in an HTTP session. The object A does not appear to have been stored in an HTTP session, but due to the transfer of
objects based on a reference relationship, the object is moved to an Explicit memory block corresponding to an HTTP
session at the reference source. In this example, the object is assumed to have moved to the Explicit memory block 1.
For details on the transfer of objects based on a reference relationship, see 8.6.5 Transferring the objects based on a
reference relationship from the Java heap to the Explicit memory block in the uCosminexus Application Server
Expansion Guide.

Thereafter, if the HTTP session corresponding to the Explicit memory block 1 is destroyed and the automatic release
processing occurs, the object A referenced from outside (Explicit memory block that is not a target of the release
processing) is moved to the new Explicit memory block x. This Explicit memory block x does not support the HTTP
session. The following figure shows the status of the Explicit memory block after the HTTP session is destroyed.

A. Efficient Usage of the Explicit Heap Used in an HTTP Session

339

Figure A‒2: Status of the Explicit memory block after the HTTP session is destroyed

Greater the number of objects in use in the target Explicit memory block, longer is the time taken by the automatic
release processing corresponding to the destruction of the HTTP session. Also, the objects, which are being used
during the automatic release processing corresponding to the destruction of the HTTP session, are moved to an
Explicit memory block that does not support the HTTP session, and are subject to the automatic release processing.
The longer the period, during which these objects cannot be released, the higher the frequency at which these objects
become subject to the automatic release processing and this might lead to deterioration in the throughput and latency.

In this example, the references to the common data, object A, last until one of the n number of HTTP sessions is
destroyed. During this time, the automatic release processing of the new Explicit memory block x is repeated and the
operation becomes inefficient. If the size of the common data is small, the impact is not particularly great, but in the
case of hundreds of megabytes or more, the impact on the automatic release processing time is great, and might cause
deterioration in the throughput and latency.

A.2 Considering the update frequency of the objects stored in an HTTP
session
This subsection describes how to implement an application considering the update frequency of the objects stored in
an HTTP session and how to check the implementation using the J2EE server log.

(1) Considerations for the implementation of applications
Smaller the update frequency of the objects stored in an HTTP session, better the memory efficiency of the Explicit
memory block. For example, if you invoke multiple setAttribute methods with the same value in the first
argument name, the objects in the second argument value are only updated for the number of times the method is
invoked with the same value. This is the update frequency of the object.

If the objects stored in an HTTP session are updated, the objects before update are used, but that memory area is not
released until the HTTP session is destroyed. Therefore the lower the update frequency the better the memory
efficiency. Note that there is no problem if the object updates are repeated in short cycles (cycles of about 10 times or
less of the copy garbage collection interval), but if the updates are repeated in long cycles, the object becomes a long
life span object and is moved to the Explicit memory block. The objects that are transferred to the Explicit memory
block are not released until the HTTP session is destroyed even if the object has already been used. If the Explicit
Memory Management functionality is not applied, such objects are released when a full garbage collection occurs.

A. Efficient Usage of the Explicit Heap Used in an HTTP Session

340

Typically, in systems where the survival duration of an HTTP session is long, for example the HTTP session is not
destroyed during the day, the object updates might be easily repeated in long cycles.

From the application design point of view, if the update frequency of the objects stored in an HTTP session increases,
consider the following points to determine the applicability of the Explicit Memory Management functionality:

• Spike in latency due to the full garbage collection when the Explicit Memory Management functionality is not
applied

• Deterioration in memory efficiency when the Explicit Memory Management functionality is applied

(2) How to check using the J2EE server log
You check the update frequency of the objects stored in an HTTP session from the contents of the thread dump.

To check:

1. Start the J2EE server, and execute the business until just before the HTTP session is destroyed.

2. Execute the eheapprof command to obtain the thread dump.

3. Find the Explicit memory block where <EM_NAME> is CCC#HttpSession.
The CCC#HttpSession Explicit memory block corresponds to the HTTP session. Compare the value of used
(used size of the Explicit memory block) and the total size of the objects stored in the HTTP session, calculated
and estimated during application development. If the update frequency of the objects is high, there is a big
difference between the two values, and the value of used is greater.
An example of output is as follows:

"CCC#HttpSession" eid=97(0x02f25610)/R, total 16K, used 8K, garbage 0K (50.1% used/
total, 0.0% garbage/used, 0 blocks) Enable

(3) Mechanism of retaining the used HTTP session-related objects in the Explicit memory
block

This point describes the mechanism by which the used HTTP session-related objects remain in the Explicit memory
block as a result of repeated updates. The objects described here are long life-span objects with survival duration
shorter than the destruction of an HTTP session.

The following figure shows the differences in the object release processing when the Explicit Memory Management
functionality is enabled and when the functionality is disabled.

A. Efficient Usage of the Explicit Heap Used in an HTTP Session

341

Figure A‒3: Object release processing when the Explicit Memory Management functionality is enabled and
when the functionality is disabled

This figure is an example of an HTTP session that is not destroyed for a long time. With Time 2, four objects are
used up due to an object update. With Time 3, when the Explicit Memory Management functionality is disabled, the
Tenured area size exceeds the threshold value for the occurrence of a full garbage collection, so the full garbage
collection (in the figure, FullGC occurs is applicable) occurs, and the used objects are released. When the Explicit
Memory Management functionality is enabled, the full garbage collection does not occur, so the used objects remain
behind and are not released. Furthermore, even after the lapse of Time n, the HTTP session is not yet destroyed.
When the Explicit Memory Management functionality is disabled, the used objects of the Tenured area are released
with the occurrence of the threshold value-based full garbage collection. When the Explicit Memory Management
functionality is enabled, the automatic release processing does not occur until the HTTP session is destroyed, so the
used up and un-released objects remain behind and the possibility of Explicit heap overflow increases.

By Time n in this example, there are 16 objects that are used up and have not been released, but in a system that
requires an HTTP session that is not destroyed for a long time (for example, during a day), there might be a situation
in which even more used objects are not released.

A. Efficient Usage of the Explicit Heap Used in an HTTP Session

342

A.3 Considering the timing at which an HTTP session is created
This subsection describes how to implement an application considering the times at which an HTTP session is created
and how to check the implementation using the J2EE server log.

(1) Considerations for the implementation of applications
If you specify settings so that only the HTTP sessions used in applications are created, the memory efficiency of the
Explicit memory block improves. Note that a J2EE server has the functionality for using an HTTP session implicitly.

An Explicit memory block and an HTTP session have a one-to-one correspondence. Also, the minimum size of one
Explicit memory block is 16 KB (default is 64 KB). If you create one HTTP session, the Explicit heap area uses 16
KB, even if no objects are stored in the HTTP session. Therefore, the memory efficiency becomes better if you create
the HTTP sessions that are actually used. For example, assume an application that creates an un-used HTTP session
whenever a servlet is accessed, and the HTTP session is not destroyed until the session times out. If you assume that
the timeout is 30 minutes and that the servlets are accessed 10,000 times in 30 minutes, a 16 KB 10,000 =
160 MB (by default, 640 MB) Explicit heap area will be used.

Also, with the JSPs, an HTTP session is created for each access by default. Therefore, if an HTTP session uses a JSP
with an unnecessary processing (for example, the health check of a J2EE server), an unnecessary HTTP session object
is generated and the Explicit heap might overflow. With JSPs that do not need sessions, specify settings so that the
HttpSession object is not created explicitly. You use the session attribute of the page directive in the settings.

If you cannot change the application, consider using the memory saving functionality of the Explicit heap to be used
in the HTTP session. For details on the memory saving functionality of the Explicit heap to be used in the HTTP
session, see 8.11 Reducing the memory usage of the Explicit heap used in an HTTP session in the uCosminexus
Application Server Expansion Guide. If you use this functionality, even before the HTTP session is destroyed, the
objects stored in an Explicit memory block with a low utilization rate are moved and consolidated to another area, and
the Explicit memory block with a low utilization rate is automatically released. The relationship of the HTTP sessions
and Explicit memory blocks in Application Server becomes many to one. One Explicit memory block can be shared
by multiple HTTP sessions, so the utilization rate of the Explicit memory block improves. Due to this, you can reduce
the memory usage of the Explicit heap allocated to the HTTP session.

(2) How to check using the J2EE server log
You check whether Explicit memory blocks are being created for unnecessary HTTP sessions, from the contents of
the thread dump.

To check:

1. Start the J2EE server, and execute the business.
An HTTP session might also be used implicitly in an application. Therefore, do not limit the business to one using
the HTTP sessions.

2. During the execution of the business, execute the eheapprof command to obtain the thread dump.
Check the values of used/total (Explicit memory block utilization rate) and spaces exist (number of
enabled Explicit memory blocks) output to the Explicit heap information.
An example of output is as follows:

max 31415926K, total 162816K, used 150528K, garbage 10004K (0.0% used/max, 91.1%
used/total, 6.6% garbage/used), 3 spaces exist

In this example, the value of used/total is 91.1%. The closer this value is to 100%, the better is the memory
efficiency. Check whether this value is a single digit and whether the value of spaces exist greatly exceeds
the assumed number of HTTP sessions.

A. Efficient Usage of the Explicit Heap Used in an HTTP Session

343

B. Effect on the Explicit Memory Management Functionality Due
to the Life Span of the Objects Allocated to the Explicit heap

The efficient usage of the Explicit Memory Management functionality is greatly affected by the life span of the
objects allocated to the Explicit heap. When the Explicit memory block in an Explicit heap is automatically released,
if all the objects in the Explicit memory block are already used, the automatic release processing time reduces and the
memory efficiency improves.

This appendix describes how to select the Explicit memory block subject to the automatic release processing of the
Explicit Memory Management functionality, and the concepts of the memory usage of an Explicit heap and the life
span of an object. After you understand the concepts, check the points to be considered in Appendix A Efficient Usage
of the Explicit Heap Used in an HTTP session, and determine the efficient usage of the Explicit Memory Management
functionality.

B.1 Effect on the automatic release processing of the Explicit memory
block
The efficient usage of the Explicit Memory Management functionality is greatly affected by the efficiency of the
automatic release processing of the Explicit memory block. To execute the automatic release processing carefully so
that a latency spike does not occur with the Explicit Memory Management functionality, divide and manage the
memory areas (Explicit heap) into Explicit memory blocks, and execute the automatic release processing for the
blocks. The automatic release processing of the Explicit memory block is executed during garbage collection as and
when required. Also, the execution of applications stops during the automatic release processing, as in the case of a
full garbage collection. Therefore, the shorter the automatic release processing time, the better the throughput and
latency.

The following figure shows the automatic release processing of the Explicit memory block.

Figure B‒1: Automatic release processing of the Explicit memory block

B. Effect on the Explicit Memory Management Functionality Due to the Life Span of the Objects Allocated to the Explicit heap

344

With the automatic release processing, if the Explicit memory block subject to the automatic release processing has in-
use objects, a new Explicit memory block is created and the objects are moved to this block. If there are multiple in-
use objects, the automatic release processing time increases in proportion to that amount. Also, the automatic release
processing must be re-executed for the new Explicit memory blocks (6 and 7 in this example), so the overall automatic
release processing time also increases. Therefore, during the automatic release processing, the fewer the in-use objects
in the Explicit memory block, the higher the efficiency of the automatic release processing. This also indicates that
with the Explicit Memory Management functionality, the life span of the objects affects the efficiency.

Note that the following subsection describe how to select Explicit memory blocks for the automatic release
processing.

How to select Explicit memory blocks for the automatic release processing
JavaVM selects (reserved for release) an Explicit memory block corresponding to one of the following blocks as
the target of the automatic release processing.

1. Blocks corresponding to the HTTP sessions destroyed between the previous and the next automatic release
processing

2. New blocks created during the automatic release processing

3. Blocks created by the automatic allocation functionality

However, for the blocks in 2 and 3, only the blocks selected by estimating the increment and the release ratio of
the Explicit heap, or by the threshold value are subject to the automatic release processing.
This subsection describes how to select a block by estimating the increment and the release ratio of the Explicit
heap, or by the threshold value.

Selection by estimating the increment and the release ratio of the Explicit heap
Select multiple blocks based on the following information. Normally, this method is used.

• Increment in the Explicit heap size after the previous automatic release processing

• Release ratio of the past automatic release processing (ratio of objects that could be released
automatically)

• Estimated value of the object usage rate in each block

First, from "increment in the Explicit heap size after the previous automatic release processing", set up the
target value (hereafter called the target automatic release size) of the Explicit heap size to be released
automatically. The size released automatically must be more than the increment in the Explicit heap size so
that the Explicit heap does not increase monotonically, and the greater the increment, the larger the target
automatic release size. To automatically release the target automatic release size, calculate the size that might
be selected from the total of multiple blocks (hereafter called the selection size). Even if the automatic release
processing is executed for a particular block, all the objects in that block cannot necessarily be released.
Therefore, based on the "release ratio of the past automatic release processing", estimate the release ratio of
the objects to be released automatically. With the estimated release ratio, calculate the selection size required
for reaching the target automatic release size. The lower the "release ratio of the past automatic release
processing", the greater the selection size.
Next, sort all the blocks with the "estimated value of the object usage rate in each block", if the percentage of
the in-use objects is low, select the blocks sequentially from the estimated blocks. If the total size of the
selected blocks reaches the selection size, discontinue the selection process. The blocks selected here are
subject to the automatic release processing.

Selection by the threshold value
The blocks that always have a high percentage of in-use objects, and the blocks with size exceeding the
selection size are not selected with "Selection by estimating the increment and release ratio of the Explicit
heap". Therefore, if the size of the Explicit memory block exceeds a fixed percentage of the overall Explicit
heap size (threshold value), the block is forcefully selected as a target for automatic release processing. Note
that the blocks selected with "Selection by the threshold value" are not selected with "Selection by estimating
the increment and the release ratio of the Explicit heap".

B.2 Effect on the memory usage of the Explicit heap
The memory usage of the Explicit heap greatly affects the efficient usage of the Explicit Memory Management
functionality. Until the block is subject to the automatic release processing, the more the number of used objects in the
Explicit memory block, the lower the memory efficiency of the Explicit heap. For example, for the Explicit memory

B. Effect on the Explicit Memory Management Functionality Due to the Life Span of the Objects Allocated to the Explicit heap

345

block 2 in Figure B-1, two out of the three objects are used up (66% are used up). However, the used objects in the
Explicit memory block 2 are not released automatically until the block is selected for the automatic release processing.
This indicates that if there are many in-use objects in the Explicit memory block before the automatic release
processing, the memory efficiency improves.

B.3 Relation between the reference relationship and the life span of
objects allocated to the Explicit heap
If a garbage collection occurs, the objects referenced from the objects allocated to an Explicit heap are transferred to
the Explicit memory block from the Java heap due to the "transferring the objects based on a reference relationship
from the Java heap to the Explicit memory block" processing. This processing is applied recursively, and the objects
until the end of the reference relationship are transferred to the Explicit memory block. Therefore, from the objects in
the Explicit memory block, the fewer the references to the objects with different life spans, the more similar are the
life spans of the objects in the Explicit memory block. By making the life spans identical, the objects are automatically
released concurrently, and the memory efficiency improves. In other words, you must implement the applications in
such a way so that the reference relationship of the objects closes between the objects with as identical life spans as
possible. For example, the efficiency improves if there is no reference relationship between a management table object
with a long life span and a data object used for one business with a short life span. For details on transferring the
objects based on a reference relationship from the Java heap to the Explicit memory block, see 8.6.5 Transferring the
objects based on a reference relationship from the Java heap to the Explicit memory block in the uCosminexus
Application Server Expansion Guide.

B. Effect on the Explicit Memory Management Functionality Due to the Life Span of the Objects Allocated to the Explicit heap

346

C. Tuning Parameters for Performing the Performance Tuning
with Methods other than the Recommended Procedures
This appendix describes the tuning parameters for tuning the items described in 8. Performance Tuning (J2EE
Application Execution Platform) and 9. Performance Tuning (Batch Application Execution Platform) with methods
other than the recommended procedures. The methods other than those recommended include the method for the
settings using the management portal and the method for the settings by editing files.

For details about the concept of tuning, see 8. Performance Tuning (J2EE Application Execution Platform) and 9.
Performance Tuning (Batch Application Execution Platform).

C.1 Tuning parameter for optimizing the number of concurrent
executions (methods other than the recommended procedures)
This subsection describes the methods and locations for setting up the tuning parameters used to optimize the number
of concurrent executions.

(1) Number of request-processing threads when an in-process HTTP server is used
The following table describes the methods and locations to set up the tuning parameters for the number of request-
processing threads, when an in-process HTTP server is used:

For details about the tuning parameters when Cosminexus HTTP Server is used for Web server integration, see the
uCosminexus Application Server HTTP Server User Guide.19,22,59

Table C‒1: Tuning parameters for the number of request-processing threads when an in-process HTTP
server is used (methods other than the recommended procedures)

Setup item Method of setup Location of setup

Number of request-processing
threads generated when the J2EE
server is started

Edit file webserver.connector.inprocess_http.in
it_threads key in usrconf.properties

Upper-limit of the number of
connections to the Web client
(upper-limit of the number of
request-processing threads)

Edit file webserver.connector.inprocess_http.ma
x_connections key in usrconf.properties

Maximum value of the Listen queue
(back log) of TCP/IP, when the
maximum number of connections to
the Web client exceeds

Edit file webserver.connector.inprocess_http.ba
cklog key in usrconf.properties

Maximum number of spare threads Edit file webserver.connector.inprocess_http.ma
x_spare_threads key in
usrconf.properties

Minimum number of spare threads Edit file webserver.connector.inprocess_http.mi
n_spare_threads key in
usrconf.properties

(2) Number of concurrent executions in a Web application
Setup for each URL group, Web application, or Web container.

(a) Number of concurrent executions for a URL group

The following table describes the methods and locations to set up the tuning parameters for the number of concurrent
executions of a URL group:

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

347

Table C‒2: Tuning parameters for the number of concurrent executions of a URL group (methods other
than the recommended procedures)

Setup item Method of setup Location of setup

Maximum number of
concurrently
executed threads in
each Web container

(during the Web
server integration)

Edit file webserver.connector.ajp13.max_threads key in
usrconf.properties

Maximum number of
concurrently
executed threads in
each Web container
(for using an in-
process HTTP
server)

Edit file webserver.connector.inprocess_http.max_execute_thr
eads key in usrconf.properties

Whether to control
the number of
concurrent
executions for each
Web application

Edit file webserver.container.thread_control.enabled key in
usrconf.properties

Whether to control
the number of
concurrent
executions for each
Web application

Edit file webserver.container.thread_control.queue_size key in
usrconf.properties

The following setup items are the same as specified for the recommended procedures:

• Maximum number of concurrently executed threads in each Web application

• Number of dedicated threads for the Web application

• Size of the pending queue in a Web application

• Definition name of concurrently executed thread control of a URL group

• Maximum number of concurrently executed threads in a URL group

• Number of dedicated threads for a URL group

• Size of the pending queue in a URL group

• URL pattern to be controlled by a URL group

(b) Number of concurrent executions for a Web application

The following table describes the methods and locations to set up the tuning parameters for the number of concurrent
executions in a Web application:

Table C‒3: Tuning parameters for the number of concurrent executions in a Web application (methods
other than the recommended procedures)

Setup item Method of setup Location of setup

Maximum number of
concurrently
executed threads in
each Web container

(during the Web
server integration)

Edit file webserver.connector.ajp13.max_threads key in
usrconf.properties

Maximum number of
concurrently
executed threads in
Web container unit

Edit file webserver.connector.inprocess_http.max_execute_thr
eads key in usrconf.properties

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

348

Setup item Method of setup Location of setup

(for using an in-
process HTTP
server)

Edit file webserver.connector.inprocess_http.max_execute_thr
eads key in usrconf.properties

Whether to control
the number of
concurrent
executions for each
Web application

Edit file webserver.container.thread_control.enabled key in
usrconf.properties

Default pending
queue size

Edit file webserver.container.thread_control.queue_size key in
usrconf.properties

The following setup items are the same as specified for the recommended procedures:

• Maximum number of concurrently executed threads in each Web application

• Number of dedicated threads of the Web application

• Size of the pending queue in a Web application

(c) Number of concurrent executions for a Web container

The following table describes the methods and locations to set up the tuning parameters for the number of concurrent
executions in a Web container:

Table C‒4: Tuning parameters for the number of concurrent executions in a Web container (methods other
than the recommended procedures)

Setup item Method of setup Location of setup

Maximum number of
concurrently
executed threads in
each Web container

(during the Web
server integration)

Edit file webserver.connector.ajp13.max_threads key in
usrconf.properties

Maximum number of
concurrently
executed threads in
each Web container
(for using an in-
process HTTP
server)

Edit file webserver.connector.inprocess_http.max_execute_thr
eads key in usrconf.properties

Reference note
Moreover, you can also specify the maximum size of the pending queue of the TCP connection requests from the redirector
in the Web container (webserver.connector.ajp13.backlog key in usrconf.properties). Since this key
specifies the size of the Listen queue in a socket, there is no direct relationship with the pending queue of the request.

(3) Number of concurrent executions in an Enterprise Bean
Set up the number of concurrent executions in an Enterprise Bean for each Enterprise Bean.

The tuning parameters for the number of concurrent executions in an Enterprise Bean are the same as specified for the
recommended procedures.

(4) Number of concurrent executions controlled by CTM
The following table describes the methods and locations to set up the tuning parameters for the number of concurrent
executions controlled by CTM. The items are set up in the CTM daemon, application, and Stateless Session Bean.

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

349

The following table describes the methods and locations to set up the tuning parameters for the number of concurrent
executions controlled by CTM:

Table C‒5: Tuning parameters for the number of concurrent executions controlled by CTM (methods other
than the recommended procedures)

Setup target Setup item Method of setup Location of setup

CTM daemon Maximum value of threads controlled
by CTM, and number of requests
registered in each queue

Edit file Argument -
CTMDispatchParallelCount of
the ctmstart command

The setup items of the application or Stateless Session Bean are the same as specified in the recommended procedures.

C.2 Tuning parameters for optimizing the method of invoking the
Enterprise Bean (methods other than the recommended procedures)
The location of tuning parameters used to optimize the method of invoking the Enterprise Bean are as follows:

(1) Using the local interface
You use the local interface defined in J2EE for creating an application.

The method is the same as specified for the recommended procedures.

(2) Using the local invocation functionality of remote interface
The following table describes the methods and locations to set up the tuning parameters for the local invocation
functionality of the remote interface:

Table C‒6: Tuning parameters for the local invocation functionality of the remote interface (methods other
than the recommended procedures)

Setup item Method of setup Location of setup

Scope of local invocation
optimization functionality

Edit file ejbserver.rmi.localinvocation.scope
key in usrconf.properties

(3) Using the pass by reference functionality of remote interface
The following table describes the methods and locations to set up the tuning parameters for the pass by reference
functionality of the remote interface:

Table C‒7: Tuning parameters for the pass by reference functionality of the remote interface (method other
than the recommended procedures)

Setup item Method of setup Location of setup

Usage of the pass by reference
functionality of the remote
interface (for each J2EE server)

Edit file ejbserver.rmi.passbyreference key in
usrconf.properties

The usage of the pass by reference functionality of the remote interface (for each Enterprise Bean) is the same as
specified in the recommended procedures.

C.3 Tuning parameters for optimizing the methods of accessing the
database (methods other than the recommended procedures)
The tuning parameters used for optimizing the method of accessing the database are the same as specified for the
recommended procedures.

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

350

C.4 Tuning parameters for specifying the timeout (methods other than
the recommended procedures)
This subsection describes the locations to set up the tuning parameters used for specifying the timeout.

(1) Timeout specified in the Web server for receiving requests from the client and sending
data to the client

For the Web server integration, set up the tuning parameter for each Web server. As for the in-process HTTP server,
set up the parameters in every J2EE server.

Table C‒8: Tuning parameters for the timeout to be specified in the Web server for receiving requests from
the client and sending data to the client (method other than the recommended procedures)

Web server to be
used Method of setup Location of setup

Web server
integration

Management portal (For
Cosminexus HTTP
Server)

Timeout directive of "Additional directives" of "Perform the setup for
each item" in "Web Server Setup" window.

Timeout directive of "Setup file details" of "Directly set the details of
setup file" in "Web Server Setup" window.

Edit file# • For Cosminexus HTTP Server
The Timeout directive in httpsd.conf

• For Microsoft IIS
receive_client_timeout key in isapi_redirect.conf

In-process HTTP
server

Edit file webserver.connector.inprocess_http.receive_timeout
key in usrconf.properties

webserver.connector.inprocess_http.send_timeout key
in usrconf.properties

#
Set up the tuning parameters by editing httpd.conf, a definition file of Cosminexus HTTP Server.

(2) Timeout specified in the redirector for sending data to the Web container
The following table describes the tuning parameters for the timeout to be specified in the redirector. You can specify
these tuning parameters only for the Web server integration.

Table C‒9: Tuning parameters for the timeout to be specified in the redirector (methods other than the
recommended procedures)

Web server type Method of setup Location of setup

Cosminexus
HTTP Server

Edit file JkConnectTimeout parameter of mod_jk.conf

Microsoft IIS Edit file connect_timeout key in isapi_redirect.conf

Cosminexus
HTTP Server

Edit file JkSendTimeout parameter of mod_jk.conf

Microsoft IIS Edit file send_timeout key in isapi_redirect.conf

(3) Timeout specified in the redirector for receiving data from the Web container
Set up the tuning parameters for each worker definition of the redirector. The following table describes the methods
and locations to set up the tuning parameters for the timeout to be specified in the redirector:

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

351

Table C‒10: Tuning parameters for the timeout to be specified in the redirector (methods other than the
recommended procedures)

Method of setup Location of setup

Edit file worker.worker-name.receive_timeout key in workers.properties

You can specify this tuning parameter only for the Web server integration.

(4) Timeout specified in the Web container for receiving data from the redirector
Set up the tuning parameter for each J2EE server. The following table describes the tuning parameters for the timeout
to be specified in the Web container:

Table C‒11: Tuning parameters for the timeout to be specified in the Web container (method other than
the recommended procedures)

Method of setup Location of setup

Edit file webserver.connector.ajp13.receive_timeout key in
usrconf.properties

You can specify this tuning parameter only for the Web server integration.

(5) Timeout specified in the Web container for receiving data from the redirector
Set up the tuning parameter for each J2EE server. The following table describes the tuning parameters for the timeout
to be specified in the Web container:

Table C‒12: Tuning parameters for the timeout specified in the Web container (methods other than the
recommended procedures)

Method of setup Location of setup

Edit file webserver.connector.ajp13.send_timeout key in
usrconf.properties

You can specify this tuning parameter only for Web server integration.

(6) Timeout specified in the EJB client for remotely invoking the Enterprise Bean (RMI-IIOP
communication) and for invoking the Naming Service by JNDI

Set up the tuning parameter for each J2EE server, EJB client application, or invocation by API.

The following table describes the tuning parameters (remote invocation by RMI-IIOP communication) for the timeout
to be specified in the EJB client:

Table C‒13: Tuning parameters for the timeout to be specified in the EJB client (remote invocation by RMI-
IIOP communication) (methods other than the recommended procedures)

Unit Method of setup Location of setup

Each J2EE server Edit file ejbserver.rmi.request.timeout key in
usrconf.properties

The setup of the tuning parameter for each EJB client application and for each API is the same as specified for the
recommended procedures.

The following table describes the tuning parameters (Naming Service invocation) for the timeout to be specified in the
EJB client:

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

352

Table C‒14: Tuning parameters for the timeout to be specified in the EJB client (invoking the Naming
Service) (method other than the recommended procedures)

Unit Method of setup Location of setup

Each J2EE server Edit file ejbserver.jndi.request.timeout key in
usrconf.properties

The setup of the tuning parameters for each EJB client application is the same as specified in the recommended
procedures.

(7) Timeout set up in the EJB client for invoking the Enterprise Bean from CTM
Set up the tuning parameter in J2EE server unit, EJB client application unit, or invocation API unit.

The same value as that specified in (6) Timeout specified in the EJB client for remotely invoking the Enterprise Bean
(RMI-IIOP communication) and for invoking the Naming Service by JNDI is inherited as the setup value of this
timeout.

(8) Timeout specified in the EJB container for the database transaction (when DB Connector
is used)

Set up the tuning parameter for each J2EE server, Enterprise Bean, interface, method (for CMT), or each invocation
by API (for BMT).

The following table describes the tuning parameters for the transaction timeout:

Table C‒15: Tuning parameters for the transaction timeout (method other than the recommended
procedures)

Unit Method of setup Location of setup

Each J2EE server Edit file ejbserver.jta.TransactionManager.defau
ltTimeOut key in usrconf.properties

The setup of the tuning parameters for the Enterprise Bean, interface, each method (for case of CMT), and API (for BMT) are the
same as specified in the recommended procedures.

(9) Database timeout
The setup of the tuning parameter specified for the database timeout are the same as that specified in the
recommended procedures.

C.5 Tuning parameters for optimizing the operations of the Web
application (methods other than the recommended procedures)
This subsection describes the locations to set up the tuning parameters used for optimizing the operations of the Web
application.

(1) Tuning parameters for separating the deployment of static contents and Web application
Specify the separation of the deployment of static contents and Web application as parameter of the file that defines
the operations of the Web server. The setup locations, files and parameters differ according to the type of the Web
server used.

The following table describes the methods and locations of setup for each type of Web server:

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

353

Table C‒16: Tuning parameters for separating the deployment of static contents and Web application
(methods other than the recommended procedures)

Web server used Type of Web server Method of setup Location of setup

Web server integration

(separation using the
redirector module)

Cosminexus HTTP Server Edit file Mapping definition of
mod_jk.conf (JkMount
parameter)

Microsoft IIS Edit file uriworkermap.properties

In-process HTTP server

(separation using the
reverse proxy module)

Cosminexus HTTP Server Management portal ProxyPass directive of "Additional
directives" of "Perform setup for each
item" in "Web Server Setup"
window.

ProxyPass directive of "Setup file
details" of "Directly set the details of
setup file" in "Web Server Setup"
window.

Edit file ProxyPass directive# of
httpsd.conf

#
For details about httpsd.conf, see the uCosminexus Application Server HTTP Server User Guide.

(2) Tuning parameters for caching static contents
The tuning parameters for caching static contents are explained in this subsection. You set up these tuning parameters
for each Web container or Web application.

The following table describes the methods and locations to set up the tuning parameters specified in each Web
container:

Table C‒17: Tuning parameters for caching static contents (items to be set up for each Web container)
(methods other than the recommended procedures)

Setup items Method of setup Location of setup

Select whether static contents cache
is to be used

Edit file webserver.static_content.cache.enable
d key in usrconf.properties

Setup of maximum memory size for
each Web application

Edit file webserver.static_content.cache.size
key in usrconf.properties

Setup of maximum file size of the
static contents for cache

Edit file webserver.static_content.cache.filesi
ze.threshold key in usrconf.properties

The setup of the tuning parameters for each Web application is the same as that specified in the recommended
procedures.

(3) Tuning parameters for distributing the requests using a redirector
Specify the tuning parameters for distributing the requests using a redirector as parameters of the file that defines the
operations of the Web server. The location of setup, files, and parameters differ according to the type of the Web
server used.

You can define these tuning parameters only for Web server integration. You cannot define these tuning parameters if
you are using an in-process HTTP server.

The following table describes the methods and locations of setup for each Web server:

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

354

Table C‒18: Tuning parameters for distributing the requests using a redirector (methods other than the
recommended procedures)

Type of Web server Method of setup Location of setup

Cosminexus HTTP Server Edit file Mapping definition of mod_jk.conf
(JkMount parameter)

Microsoft IIS Edit file uriworkermap.properties

C.6 Tuning parameters for optimizing the operation of CTM (methods
other than the recommended procedures)
This subsection describes the locations to set up the tuning parameters used for optimizing the operation of CTM.

(1) Tuning parameters for setting up the monitoring interval of the operating state of CTM
domain managers and CTM daemons

The following table describes the parameters for tuning the monitoring interval of the operating state of the CTM
domain manager:

The monitoring interval is the value after multiplying the send interval with the coefficient.

Table C‒19: Parameters for tuning the monitoring interval of the operating state of CTM domain manager
(methods other than the recommended procedures)

Target Setup item Method of setup Location of setup

CTM domain
managers
existing in the
same network
segment

Send interval Execute command Argument -CTMSendInterval of the ctmdmstart
command

Coefficient Execute command Argument -CTMAliveCheckCount of the ctmdmstart
command

CTM domain
managers
existing in a
different
network
segment

Send interval Execute command Argument -CTMSendHostInterval of the
ctmdmstart command

Coefficient Execute command Argument -CTMAliveCheckCount of the ctmdmstart
command

The parameter for tuning the monitoring interval of the operating state of the CTM daemons is as follows:

Table C‒20: Parameter for tuning the monitoring interval of the operating state of CTM daemons (methods
other than the recommended procedures)

Setup item Method of setup Location of setup

Timeout during transfer
between CTM daemons

Execute command Argument -CTMDCSendTimeOut of
the ctmstart command

(2) Tuning parameters for setting up the monitoring interval of the load status
The tuning parameter for the monitoring interval of the load status is as follows:

Table C‒21: Tuning parameter for the monitoring interval of the load information (methods other than the
recommended procedures)

Setup item Method of setup Location of setup

Timeout during transfer
between CTM daemons

Execute command Argument -
CTMLoadCheckInterval of the
ctmstart command

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

355

(3) Tuning parameters for setting up the timeout lock for CTM daemon
The timeout lock is executed by setting up the timeout occurrence frequency and the monitoring interval.

The tuning parameters for the timeout lock of the CTM daemon are as follows:

Table C‒22: Tuning parameters for the timeout lock of a CTM daemon (methods other than the
recommended procedures)

Setup item Method of setup Location of setup

Timeout occurrence frequency Execute command Argument -CTMWatchRequest (first optional argument) of
the ctmstart command

Monitoring interval Execute command Argument -CTMWatchRequest (second optional argument)
of the ctmstart command

(4) Tuning parameters for setting up a priority order for the requests distributed by CTM
The setting of the priority order of requests distributed by CTM is different for an EJB client application and for a
J2EE server. Moreover, for a J2EE server, the location of setup differs depending on how the system is built. The
tuning parameters for setting up the priority order of requests distributed with CTM, are as follows:

Table C‒23: Tuning parameters for setting up the priority order of requests distributed by

Setup unit Method of setup Location of setup

J2EE server Edit file ejbserver.client.ctm.Reques
tPriority key of
usrconf.properties

CTM (methods other than the recommended procedures)

The tuning parameters for each EJB client application are the same as specified in the recommended procedures.

C.7 Tuning parameters for a persistent connection (methods other than
the recommended procedures)
This subsection describes the tuning parameters for a persistent connection.

Determine the tuning of this item when you use in-process HTTP servers in Web front-end systems.

Table C‒24: Tuning parameters to be set up for a Persistent Connection (methods other than the
recommended procedures)

Setup item Method of setup Location of setup

Upper-limit value of the number
of Persistent Connections

usrconf.properties webserver.connector.inprocess_http
.persistent_connection.max_connect
ions key

Upper-limit value of the request-
processing frequency

usrconf.properties webserver.connector.inprocess_http
.persistent_connection.max_request
s key

Timeout usrconf.properties webserver.connector.inprocess_http
.persistent_connection.timeout key

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

356

C.8 Tuning parameters for setting up the threshold value that causes full
garbage collection of the batch server (methods other than the
recommended procedures)
This subsection describes the tuning parameters used to set up the threshold value for executing full garbage collection
of the batch server.

Determine the tuning of this item when you want to control the execution of full garbage collection in the batch
server.

Table C‒25: Tuning parameters for setting up the threshold value to execute full garbage collection of the
batch server

Setup item Method of setup Location of setup

Threshold value usrconf.properties ejbserver.batch.gc.watch.threshold
key

C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures

357

D. Glossary
Terminology used in this manual

For the terms used in the manual, see the uCosminexus Application Server and BPM/ESB Platform Terminology Guide.

D. Glossary

358

Index

Symbols
-XX:+HitachiVerboseGCPrintTenuringDistribution option

219

A
access point 34
access point 43
Administration Agent 9, 17
Application Server 2
Application Server machine 54
assemble 12
automatic operations of entire system 29

B
back-end system 32
batch application 18, 26
batch business 7
batch server 16, 17
batch service 19

C
centralized monitoring of entire system 29
C heap area 205
CJMSP resource adapter 52
client machine 54
client-side application server 61
cluster connection pool functionality 283
code cache area 206
configuration

application 43
batch server 17
J2EE server 10
memory space used in JavaVM 205

connection adjustment functionality 283
connection pooling 281
Container extension library 15, 20
copy garbage collection 201
Cosminexus 2
Cosminexus JPA Provider 15
CTM 9, 16

D
database session failover functionality 92
DB Connector 48
DB Connector for Cosminexus RM 50
DD 12
deploy 12
deploying

JCA and EIS 39
naming service 39
Web server and Web container (J2EE server) 39

deployment of CTM and EJB container (J2EE server) 39

detect connection failure 282
determining usage of explicit heap using automatic

allocation functionality of explicit memory management
functionality 242

dynamic contents 311

E
EADs session failover functionality 92
Eden area 205
EJB client 23, 44
EJB client configuration 57
EJB container 13
EJB-JAR 12
Estimating number of threads of CORBA Naming Service

(When invoking as in-process) 172
estimating virtual memory usage 183, 197
Explicit heap area 205
extended verbosegc information 215

F
forceful termination when OutOfMemory occurs 208
full garbage collection 201
functionality layer 38

G
garbage collection 200
generation-wise garbage collection 200
guidelines for selecting Web server 23

I
In-process HTTP server 22
instance pooling 270
Integrated naming scheduler server 78
items that can be tuned for each type of application 260
items to be determined for various access point components

35

J
J2EE application 11, 12
J2EE application in archive format 12
J2EE application in exploded archive format 12
J2EE component 11
J2EE container 13
J2EE resource 14, 20
J2EE server 8, 10
J2EE server mode 15
J2EE service 13, 20
Java heap 205
JavaVM options 205
JavaVM specific area 205

359

L
layer 5 switch 74
layer 5 switch 72
legend items used for figures in system configuration 42
legend items used for figures in system configuration

(classification of host) 42
Library JAR 12
lifespan of an object 202
local invocation optimization functionality 279
logical server 29
logical user server 125

M
Management domain 87
Management server 87
Management Server 9, 17, 29, 87
Management Server machine 41
Management server model 87
mechanism of copy garbage collection 202
memory session failover functionality 92
method cancellation 301
Model for managing each host 87
Modules required for each function (provided by products

other than Application Server) and software to be
provided 24, 27

mutual node switching system 110
mutual standby 110
mutual standby configuration 110

N
node switching 29
n-to-1 recovery system 112

O
Online business 7
operation of system integrated with cluster software 29
operations

system integrated with JP1 29
optimizing

database access method 258, 326
method of invoking Enterprise Bean 258
number of concurrent executions 258

OS specific area 205
OutOfMemory handling functionality 208
overflow of Explicit heap 247

P
pending queue size 264
Performance tracer 9, 17
performance tuning 257, 325
permanent area 205
PRF daemon 9, 17
Processes and modules required for each function (provided

by Application Server) 24, 27
processes required depending on system classification 22

Processes required for each function (provided by products
other than Application Server) and software to be
provided 25

purpose of designing system 2

Q
query Timeout 298

R
relation between J2EE application and J2EE components 11

S
saving objects 203
server exclusive for recovery 112
Server operation mode 15
server-side application server 61
session control 270, 271
session failover server 98
SFO server 9
stack area 206
statement pooling 284
static contents 311
static contents cache 315
structure of batch server 18
structure of J2EE application 11
structure of J2EE server 10
Survivor area 205
system configuration

common point to be considered 41
concept 38

system design
flow 3

T
TCP/UDP port numbers used by Application Server 132
Tenured area 205
TP1/Client/J 51
TP1/Message Queue - Access 51
TP1 inbound adapter 52
TPBroker client 123
TPBroker OTM client 123
transaction context propagation 70
tuning method 263
tuning procedure 259, 326, 328

U
uCosminexus TP1 Connector 51
user server 9, 17

W
Web application 12
Web client configuration 54
Web container 13
Web front-end system 32
Web server 8
Web server integration 22

Index

360

	System Design Guide
	Summary of amendments
	Preface
	Contents
	1. Purpose and Flow of Designing an Application Server System
	1.1 Purpose of designing an Application Server system
	1.2 Flow of system design
	1.2.1 For applications that execute online processing (J2EE applications)
	1.2.2 For applications that execute batch processing (batch applications)

	2. Preparing for System Design
	2.1 Items to be determined before designing a system
	2.2 Identifying the types of business
	2.3 Determining the functionality to be used (when executing online processing)
	2.3.1 Process configuration
	2.3.2 Configuration of a J2EE server
	2.3.3 J2EE applications and J2EE component
	2.3.4 J2EE container
	2.3.5 J2EE service
	2.3.6 J2EE resource
	2.3.7 Cosminexus JPA Provider
	2.3.8 Container extension library
	2.3.9 Server operation mode

	2.4 Determining the functionality to be used (for executing batch processing)
	2.4.1 Process configuration
	2.4.2 Configuration of a batch server
	2.4.3 Batch application
	2.4.4 Batch service
	2.4.5 J2EE service
	2.4.6 J2EE resource
	2.4.7 Container extension library

	2.5 Determining the application configuration that suits the system purpose (for operations that execute online processing)
	2.5.1 Determining the J2EE applications to be executed
	2.5.2 Determining the processes to be used and preparing the required software

	2.6 Determining the application configuration that suits the system purpose (for businesses that execute batch processing)
	2.6.1 Determining batch applications to be executed
	2.6.2 Determining the processes to be used and preparing the required software

	2.7 Determining the operation method
	2.7.1 Operations of a system integrated with JP1
	2.7.2 Operations of system integrated with cluster software

	3. Determining the System Configuration (J2EE Application Execution Platform)
	3.1 Points to be considered when determining the system configuration
	3.1.1 Purpose and configuration of the system
	3.1.2 Procedure for designing the system configuration
	3.1.3 Concept of system configuration

	3.2 Description of the system configuration
	3.3 Determining the configuration of an application
	3.3.1 Configuration of an application and the access points
	3.3.2 Resource types and resource adapters

	3.4 Determining the configuration of the client and the server
	3.4.1 Configuration with servlets and JSPs as access points (for Web server integration)
	3.4.2 Configuration where servlets and JSPs are used as access points (when using the in-process HTTP server)
	3.4.3 Configuration with Session Beans and Entity Beans as access points
	3.4.4 Configuration where Stateless Session Bean is used as access point when using CTM

	3.5 Determining integration between servers
	3.5.1 Integration between servers invoking Session Bean and Entity Bean
	3.5.2 Integration between the servers that invokes Stateless Session Bean through CTM

	3.6 Determining the transaction type
	3.6.1 Configuration when using a local transaction
	3.6.2 Configuration when using a global transaction
	3.6.3 Configuration when using transaction context propagation

	3.7 Determining the load balancing method by the load-balancing cluster
	3.7.1 Load balancing with a load balancer in case of Web server integration (in the case of servlet or JSP)
	3.7.2 Load balancing with the load balancer when using in-process HTTP server (for Servlet/JSP)
	3.7.3 Load balancing with the CORBA Naming Service (in the case of Session Beans and Entity Beans)
	3.7.4 Load balancing when using CTM (for Stateless Session Bean)

	3.8 Determining the configuration for asynchronous communication between servers
	3.8.1 Configuration in which a Message-driven Bean is used as the access point (when using Cosminexus JMS provider)
	3.8.2 Configuration in which a Message-driven Bean is used as the access point (when using TP1/Message Queue)
	3.8.3 Configuration when using a Message-driven Bean as an access point (when using Cosminexus RM)
	3.8.4 Load balancing using the Message-driven Bean instance pool (when using TP1/Message Queue)

	3.9 Determining the deployment of the operation management process
	3.9.1 Configuration wherein the Management Server is deployed on each Management Server
	3.9.2 Configuration for deploying Management Server on each machine
	3.9.3 Configuration when operating with commands

	3.10 Determining the inheritance of session information
	3.10.1 Configuration using a database (database session failover functionality)
	3.10.2 Configuration in which the EADs server is allocated to a computer different from the J2EE server (EADs session failover functionality)
	3.10.3 Configuration in which the EADs server is allocated to the same computer as the J2EE server (EADs session failover functionality)
	3.10.4 Configuration where many SFO servers exist in a system (Memory session failover functionality)
	3.10.5 Configuration where only a single SFO server exists in a system (Memory session failover functionality)

	3.11 Determining node switching when cluster software is used and an error occurs
	3.11.1 Configuration in which executing node and standby node of Application Server are in 1-to-1 ratio (when transaction service is not used)
	3.11.2 Configuration in which executing node and standby node of Application Server are in 1-to-1 ratio (when using transaction service)
	3.11.3 Configuration in which executing node and standby node of Management Server are in 1-to-1 ratio
	3.11.4 Configuration in which executing node and standby node of Application Server are mutually standby
	3.11.5 Configuration using server exclusive for recovery (N-to-1 recovery system)
	3.11.6 Configuration in which the executing node and standby node of the host unit management model are in an N-to-1 ratio

	3.12 Deploying a process for the output of the performance analysis trace file
	3.13 Determining integration with products other than Application Server
	3.13.1 Configuration when using JP1 for operations
	3.13.2 Configuration for invoking a Message-driven Bean from SUP of OpenTP1 using the TP1 inbound integrated function
	3.13.3 Configuration in which a Stateless Session Bean is invoked from other than an EJB client using the CTM gateway function

	3.14 Managing optional processes with operation management
	3.15 Determining other configurations
	3.15.1 Configuration with a Web server and Application Server deployed on different machines
	3.15.2 Configuration where the load is balanced by using a redirector
	3.15.3 Configuration where the CORBA Naming Service is invoked as an out-process

	3.16 TCP/UDP port numbers used by Application Server processes

	4. Determining the System Configuration (Batch Application Execution Platform)
	4.1 Points to be considered when determining the system configuration
	4.1.1 Purpose and configuration of system
	4.1.2 Procedure for designing the system configuration
	4.1.3 Precautions for the TCP/UDP port used in a system for executing batch applications

	4.2 System configuration when using a batch server
	4.2.1 System configuration of a system that does not use the scheduling functionality of batch applications
	4.2.2 System configuration of a system that uses the scheduling functionality of batch applications

	5. Estimating Resources to be Used (J2EE Application Execution Platform)
	5.1 Resources used for each system configuration
	5.1.1 Resources used for deploying Web server and J2EE server on the same machine
	5.1.2 Resources used when Web server and J2EE server are deployed on different machines
	5.1.3 Resources used for the in-process HTTP server functionality
	5.1.4 Resources used by the database
	5.1.5 Resources used by Management Server
	5.1.6 Resources used for the memory session failover functionality
	5.1.7 Resources used for CTM

	5.2 Resources used for each process
	5.2.1 Estimating the resources used by J2EE server
	5.2.2 Estimating the resources used by Administration Agent
	5.2.3 Estimating the resources used by performance tracer
	5.2.4 Estimating the resources used by CTM

	5.3 Estimating virtual memory usage

	6. Estimating Resources to be Used (Batch Application Execution Platform)
	6.1 Resources used for each system configuration
	6.1.1 Resources used for deploying batch server
	6.1.2 Resources used by the database
	6.1.3 Resources for using CTM

	6.2 Resources used for each process
	6.2.1 Estimating the resources used by batch server
	6.2.2 Estimating the resources used by Administration Agent
	6.2.3 Estimating the resources used by performance tracer
	6.2.4 Estimating the resources used by CTM

	6.3 Estimating virtual memory usage

	7. JavaVM Memory Tuning
	7.1 Overview of garbage collection and JavaVM memory management
	7.1.1 Mechanism of garbage collection
	7.1.2 Configuring the memory space used in JavaVM and the JavaVM options
	7.1.3 Relation between the occurrence of garbage collection and memory space

	7.2 Overview of tuning to prevent the occurrence of full garbage collection
	7.2.1 Concept of tuning
	7.2.2 Tuning procedure

	7.3 Java heap tuning
	7.3.1 How to estimate the memory size of Java heap
	7.3.2 How to set the memory size in Java heap
	7.3.3 How to check the usage of memory size of Java heap

	7.4 Estimating the memory size of the Tenured area in Java heap
	7.4.1 Calculating the memory size required by an application
	7.4.2 Reason for adding the memory size of the New area in Java heap

	7.5 Estimating the memory size of the New area in Java heap
	7.5.1 Estimating the memory size of the Survivor area in Java heap
	7.5.2 Estimating the memory size of the Eden area in Java heap

	7.6 Determining the handling of objects that exist for a fixed time period in Java heap
	7.6.1 How to save in the New area in Java heap
	7.6.2 How to save in the Tenured area in Java heap
	7.6.3 How to save in the Explicit heap

	7.7 Deciding the maximum size or the initial size of Java heap
	7.8 Estimating the memory size of the Permanent area in Java heap
	7.9 How to analyze the factors of a full garbage collection using the extended verbosegc information
	7.9.1 Overview of the output format of extended verbosegc information
	7.9.2 Example of output of extended verbosegc information when full garbage collection occurs

	7.10 Explicit heap tuning
	7.10.1 How to estimate the memory size of Explicit heap (Estimating memory size used in J2EE server)
	7.10.2 Memory size used by the object for communicating with redirector
	7.10.3 Memory size used by the object related to the HTTP session
	7.10.4 Impact of using the Explicit Memory Management functionality when estimating memory size
	7.10.5 How to estimate using statistical information

	7.11 Estimating the memory size when using the explicit management heap functionality in the application
	7.11.1 Determine whether to use the explicit management heap functionality in the application
	7.11.2 Estimation concept
	7.11.3 Memory size used in the application

	7.12 Determining the usage of the Explicit heap using the automatic allocation functionality of the Explicit Memory Management functionality
	7.13 Errors that occur during the application of the Explicit Memory Management functionality and the solutions
	7.13.1 Investigating the usage (snapshot) of Explicit heap at a certain point
	7.13.2 Investigating the transition of usage status
	7.13.3 Checking and measures when there is an overflow from the Explicit heap
	7.13.4 Checking and measures when the initialization of the Explicit memory block fails
	7.13.5 Checks and measures when an object is transited to the Java heap during the explicit release processing of the Explicit memory block
	7.13.6 Checks and measures when the automatic release processing of the Explicit memory block takes a long time

	8. Performance Tuning (J2EE Application Execution Platform)
	8.1 Points to be considered for performance tuning
	8.1.1 Viewpoints for performance tuning
	8.1.2 Tuning procedure
	8.1.3 Items that can be tuned for each type of application

	8.2 Tuning Method
	8.3 Optimizing the number of concurrent executions
	8.3.1 Concept of number of concurrent executions control and pending queue control
	8.3.2 Procedure for requesting the maximum number of concurrent executions and pending queue
	8.3.3 Controlling the number of request-processing threads in a Web server
	8.3.4 Controlling the number of concurrent executions of a Web application
	8.3.5 Controlling the number of concurrently executed threads in a Enterprise Bean
	8.3.6 Controlling the number of concurrent executions using CTM
	8.3.7 Tuning parameter for optimizing the number of concurrent executions

	8.4 Optimizing the method of invoking the Enterprise Bean
	8.4.1 Using the local interface
	8.4.2 Using the functionality for optimizing the local invocation of the remote interface
	8.4.3 Using the pass by reference functionality of the remote interface
	8.4.4 Tuning parameters for optimizing the method of invoking the Enterprise Bean

	8.5 Optimizing the database access method
	8.5.1 Using connection pooling
	8.5.2 Using statement pooling
	8.5.3 Tuning parameters for optimizing the method of accessing the database

	8.6 Setting a timeout
	8.6.1 Points where a timeout can be set
	8.6.2 Setting the timeout in a Web front-end system
	8.6.3 Setting a timeout in the back-end system
	8.6.4 Setting the transaction timeout
	8.6.5 Setting up a timeout in DB Connector
	8.6.6 Setting the database timeout
	8.6.7 Setting the method timeout in the J2EE application
	8.6.8 Tuning parameters for setting the timeout

	8.7 Optimizing the operations of the Web application
	8.7.1 Separating the deployment of the static contents and the Web application
	8.7.2 Caching static contents
	8.7.3 Distributing the requests using the redirector
	8.7.4 Tuning parameters for optimizing the operations of the Web application

	8.8 Optimizing the operation of CTM
	8.8.1 Tuning the monitoring interval of the operation state of CTM domain managers and CTM daemons
	8.8.2 Tuning the monitoring interval of the load status
	8.8.3 Setting up a timeout lock for CTM daemon
	8.8.4 Setting up a priority order for the requests distributed with CTM
	8.8.5 Tuning parameters for optimizing the operation of CTM

	8.9 Tuning other items

	9. Performance Tuning (Batch Application Execution Platform)
	9.1 Points to be considered for performance tuning
	9.1.1 Viewpoints of performance tuning
	9.1.2 Tuning procedure
	9.1.3 Tuning items

	9.2 Tuning procedure
	9.2.1 Tuning a batch server
	9.2.2 Tuning a resource

	9.3 Setting up timeouts
	9.3.1 Points where you can set up a timeout
	9.3.2 Setting up the transaction timeout
	9.3.3 Tuning parameters for setting up the timeout

	9.4 Setting up the threshold value to be used to control garbage collection
	9.4.1 Purpose of setting up a threshold value
	9.4.2 Concept of setting up the threshold value
	9.4.3 Tuning parameters for setting up the threshold value to be used for controlling a garbage collection

	Appendixes
	A. Efficient Usage of the Explicit Heap Used in an HTTP Session
	A.1 Considering the life span of the objects stored in an HTTP session
	A.2 Considering the update frequency of the objects stored in an HTTP session
	A.3 Considering the timing at which an HTTP session is created

	B. Effect on the Explicit Memory Management Functionality Due to the Life Span of the Objects Allocated to the Explicit heap
	B.1 Effect on the automatic release processing of the Explicit memory block
	B.2 Effect on the memory usage of the Explicit heap
	B.3 Relation between the reference relationship and the life span of objects allocated to the Explicit heap

	C. Tuning Parameters for Performing the Performance Tuning with Methods other than the Recommended Procedures
	C.1 Tuning parameter for optimizing the number of concurrent executions (methods other than the recommended procedures)
	C.2 Tuning parameters for optimizing the method of invoking the Enterprise Bean (methods other than the recommended procedures)
	C.3 Tuning parameters for optimizing the methods of accessing the database (methods other than the recommended procedures)
	C.4 Tuning parameters for specifying the timeout (methods other than the recommended procedures)
	C.5 Tuning parameters for optimizing the operations of the Web application (methods other than the recommended procedures)
	C.6 Tuning parameters for optimizing the operation of CTM (methods other than the recommended procedures)
	C.7 Tuning parameters for a persistent connection (methods other than the recommended procedures)
	C.8 Tuning parameters for setting up the threshold value that causes full garbage collection of the batch server (methods other than the recommended procedures)

	D. Glossary

	Index

